WO2016031964A1 - 接合構造 - Google Patents

接合構造 Download PDF

Info

Publication number
WO2016031964A1
WO2016031964A1 PCT/JP2015/074436 JP2015074436W WO2016031964A1 WO 2016031964 A1 WO2016031964 A1 WO 2016031964A1 JP 2015074436 W JP2015074436 W JP 2015074436W WO 2016031964 A1 WO2016031964 A1 WO 2016031964A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
side sill
plate
welding
structure according
Prior art date
Application number
PCT/JP2015/074436
Other languages
English (en)
French (fr)
Inventor
研一郎 大塚
嘉明 中澤
隆一 西村
泰山 正則
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to US15/502,435 priority Critical patent/US10435081B2/en
Priority to BR112017003331A priority patent/BR112017003331A2/pt
Priority to CA2956055A priority patent/CA2956055C/en
Priority to RU2017105812A priority patent/RU2660095C1/ru
Priority to MX2017002403A priority patent/MX2017002403A/es
Priority to KR1020177004610A priority patent/KR101940934B1/ko
Priority to JP2016545637A priority patent/JP6269843B2/ja
Priority to EP15836716.9A priority patent/EP3196105B1/en
Priority to CN201580045344.7A priority patent/CN106573653B/zh
Publication of WO2016031964A1 publication Critical patent/WO2016031964A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D25/00Superstructure or monocoque structure sub-units; Parts or details thereof not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D25/00Superstructure or monocoque structure sub-units; Parts or details thereof not otherwise provided for
    • B62D25/20Floors or bottom sub-units
    • B62D25/2009Floors or bottom sub-units in connection with other superstructure subunits
    • B62D25/2036Floors or bottom sub-units in connection with other superstructure subunits the subunits being side panels, sills or pillars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/10Spot welding; Stitch welding
    • B23K11/11Spot welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D25/00Superstructure or monocoque structure sub-units; Parts or details thereof not otherwise provided for
    • B62D25/02Side panels
    • B62D25/025Side sills thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D25/00Superstructure or monocoque structure sub-units; Parts or details thereof not otherwise provided for
    • B62D25/04Door pillars ; windshield pillars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D25/00Superstructure or monocoque structure sub-units; Parts or details thereof not otherwise provided for
    • B62D25/20Floors or bottom sub-units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D27/00Connections between superstructure or understructure sub-units
    • B62D27/02Connections between superstructure or understructure sub-units rigid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D27/00Connections between superstructure or understructure sub-units
    • B62D27/02Connections between superstructure or understructure sub-units rigid
    • B62D27/023Assembly of structural joints

Definitions

  • the present invention relates to a joining structure.
  • This application claims priority based on Japanese Patent Application No. 2014-175620 filed in Japan on August 29, 2014 and Japanese Patent Application No. 2015-020332 filed on February 04, 2015 in Japan. These contents are incorporated herein by reference.
  • An automobile body having a monocoque structure is assembled by welding a plurality of molded panels with their edges overlapped with each other. Resistance spot welding, laser welding, or the like is used for welding the molded panel.
  • structural members such as side sills (rockers), side members, and various pillars are joined to a portion to which a high load is applied and a portion on which a heavy object such as an engine is mounted. This ensures the rigidity and strength required for the automobile body.
  • Patent Document 1 discloses a joint structure between a side sill that is a structural member of an automobile body and another structural member.
  • An inward flange that is bent toward the inside of the side sill is provided at an end portion in the longitudinal direction of the side sill.
  • the side sill is joined to another structural member (for example, A pillar lower) via the inward flange.
  • a side sill outer panel including a side sill outer part, a side sill stiffener that extends in the vehicle longitudinal direction and is joined to the side sill outer part, and a front side facing the rear end of the side sill stiffener
  • a rear wheel house member having a wall, and a connecting member having a rear wall connected to a rear end portion of the side sill stiffener and blocking a rear end opening of the side sill stiffener, and a front wall of the rear wheel house member and a rear wall of the connecting member
  • a vehicle side part structure in which and are joined is disclosed. According to this vehicle side part structure, the rigidity of the side sill rear end side can be improved.
  • Patent Document 3 discloses a front side member having a front side member main body portion and a rear portion and a kick-up portion positioned below.
  • the front side member is configured by spot welding a pair of left and right inner members and an outer member.
  • the inner member and the outer member have an intermediate portion in the vertical direction formed in a concave shape so as to be in contact with each other.
  • the front side member is provided with a coupling portion by butting the vertical intermediate portions with each other and spot welding.
  • FIG. 22 is a diagram showing an example of the structure of a general automobile body 200.
  • the automobile body 200 includes a side sill (rocker) 202, an A pillar (front pillar) 203, a B pillar (center pillar) 204, a roof rail 205, and the like as structural members.
  • FIG. 23 is a perspective view showing an example of the side sill 202.
  • the side sill inner panel 206 and the side sill outer panel 207 are shown in a transparent state by a two-dot chain line.
  • the side sill 202 has a closed cross section including a side sill inner panel 206, a side sill outer panel 207, a first reinforcement 208, and a second reinforcement 209.
  • the side sill inner panel 206 has two flanges 206a and 206b at both ends in the width direction, respectively, and has a hat-shaped cross-sectional shape having these two flanges 206a and 206b as elements.
  • the side sill outer panel 207 has two flanges 207a and 207b at both ends in the width direction, and has a hat-shaped cross-sectional shape having these two flanges 207a and 207b as elements.
  • the first reinforcement 208 is disposed between the two flanges 206a and 206b and the two flanges 207a and 207b, and is in a state where three sheets are overlapped on the side sill inner panel 206 and the side sill outer panel 207 in a superposed manner. They are joined by a weld nugget (molten metal block) 210 formed by spot welding.
  • the second reinforcement 209 is also disposed between the two flanges 206a and 206b and the two flanges 207a and 207b, and the side sill inner panel 206 and the side sill outer panel 207 have three.
  • FIG. 23 is a diagram so that the position of the weld nugget 210 can be recognized. Show.
  • Patent Documents 4 to 6 listed below disclose various structural members assembled by resistance spot welding.
  • the side sill is joined to another structural member via the inward flange in a state where a gap exists between the inward flanges adjacent to each other. That is, since the side sill and the other structural member are joined in a state where the adjacent inward flanges are separated from each other, the rigidity of the side sill is reduced, and as a result, the function required as the side sill is reduced. Further, in order to suppress a decrease in the rigidity of the side sill, the side sill and other structural members are bonded by welding the overlapping portion of the inward flange and its vicinity in a state where the adjacent inward flanges are overlapped with each other. A joining method is also conceivable. However, this method causes an increase in weight due to the overlapping of a part of adjacent inward flanges, and as a result, there is a strong demand on the current automobile body to reduce greenhouse gases. It will be difficult to achieve significant weight reduction.
  • Patent Documents 4 to 6 the structural member shown in FIG. 23, that is, a structure having a closed cross section composed of a side sill inner panel 206, a side sill outer panel 207, a first reinforcement 208, and a second reinforcement 209 is shown.
  • the side sill 202 having a structure in which the first reinforcement 208 and the second reinforcement 209 are arranged to be abutted or separated from each other in the longitudinal direction of the side sill inner panel 206 and the side sill outer panel 207, respectively. There is no disclosure or suggestion.
  • the structural member of the automobile body such as the side sill 202 needs to be low cost, light weight, and high rigidity.
  • expanding the welding range of the two flanges 206a and 206b and the two flanges 207a and 207b in the side sill 202 for example, increasing the number of spot welds (the number of welded nuggets)
  • an increase in welding cost due to expansion of the welding range cannot be denied.
  • the rigidity of the structural member can be increased. This not only increases the material cost, but also increases the weight of the structural member.
  • the structure is not limited to an automobile body, and other structures such as a railway vehicle body and an airplane body are used.
  • the structure is also required to be reduced in cost, weight and rigidity. Therefore, in recent years, it has become very important to develop a technique that can achieve a reduction in cost, weight, and rigidity required for a structure including an automobile body in a balanced manner.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a joint structure capable of realizing the three requirements of cost reduction, weight reduction, and rigidity improvement for a structure in a well-balanced manner. To do.
  • a joining structure includes a first metal plate; a pair of second metal plates; and an end surface of one of the second metal plates and an end surface of the other of the second metal plates.
  • Each of the pair of second metal plates is superimposed on the first metal plate, and the end surfaces facing each other are integrated with the first metal plate by a single molten metal lump. It is joined to.
  • the pair of second metal plates may be present on the same plane.
  • a distance between the end faces facing each other may be 0 mm or more and less than 1 mm.
  • the thickness of the pair of second metal plates is defined as t (mm), and the distance between the end faces facing each other is defined as G (mm).
  • the following conditional expression (a) may be satisfied. 0 mm 2 ⁇ G ⁇ t ⁇ 1 mm 2 (a)
  • a distance between the end faces facing each other may be less than 40% of a thickness of the second metal plate.
  • the extension length of the end faces facing each other may be 3 mm or more and less than 50 mm.
  • the pair of second metal plates has ends in a material axial direction of a metal forming plate having a constant cross-sectional shape in the material axis direction.
  • a pair of inward flanges provided in the portion may be used.
  • the cross-sectional shape of the metal forming plate may be an angle shape, a channel shape, or a quadrangular shape.
  • the metal molded plate is a side sill of an automobile body, and the first metal plate is a part of an A pillar lower of the automobile body. Also good.
  • the joining structure according to any one of (1) to (6) further includes a third metal plate, and the pair of second metal plates between the first metal plate and the third metal plate.
  • the metal plates may be sandwiched, and the end faces facing each other may be integrally joined to the first metal plate and the third metal plate by the molten metal lump.
  • the first metal plate is a flange provided on a first metal forming plate having a hat-shaped cross-sectional shape in a material axis direction, and the third metal plate
  • the flange provided in the 2nd metal forming board which has a hat-shaped cross-sectional shape in a material axial direction may be sufficient.
  • the first metal molded plate is a side sill outer panel of an automobile body
  • the second metal molded plate is a side sill inner panel of the automobile body.
  • the pair of second metal plates may be a reinforcement or a center pillar inner panel of the automobile body, respectively.
  • FIG. 3 is a cross-sectional view taken along line AA of the joint structure 1 shown in FIG. It is the figure which expanded the location in which the welding nugget 17 was formed in the joining structure 1 shown in FIG. It is explanatory drawing which shows the analysis model of the joining structure. It is a side view which extracts and shows the longitudinal direction edge part of the side sill in an analysis model. It is explanatory drawing of the analysis model (conventional shape 1) of a prior art example.
  • FIG. 16 plate thickness direction sectional view of a welding location
  • FIG. 1 is a perspective view schematically showing a joint structure 1 (joint structure of a side sill 2 and an A pillar lower 3) according to the first embodiment of the present invention.
  • FIG. 2 is a view of the joining structure 1 shown in FIG. 1 as viewed from the A pillar lower 3 side.
  • 1st Embodiment demonstrates the junction structure 1 of the side sill 2 and A pillar lower 3, this invention is not limited only to this form.
  • each shape of the side sill 2 and the A pillar lower 3 is simplified and shown.
  • a pillar lower 3 is shown in the see-through
  • the side sill 2 is a metal forming plate having a constant cross-sectional shape (in the present embodiment, a quadrangular shape) in the material axis direction (the arrow direction shown in FIG. 1). More specifically, the side sill 2 is a long and hollow cylindrical press-formed body made of a high-strength steel plate having a tensile strength of usually 590 MPa class (preferably 780 MPa class, more desirably 980 MPa class).
  • the press molding may be a cold press or a hot press.
  • the side sill 2 includes at least a first surface 4, a first ridge line 5, and a second surface 6.
  • the first surface 4 extends in the material axis direction.
  • the first ridge line 5 is connected to the first surface 4 and extends in the material axis direction.
  • the second surface 6 is connected to the first ridge line 5 and extends in the material axis direction.
  • the side sill 2 has a substantially square cross-sectional shape. Therefore, the side sill 2 includes a second ridgeline 7 connected to the second surface 6, a third surface 8 connected to the second ridgeline 7, a third ridgeline 9 connected to the third surface 8, and a third The fourth surface 10 connected to the ridge line 9 and the fourth ridge line 11 connected to the fourth surface 10 and the first surface 4 are further provided.
  • the side sill 2 may have, for example, an angular cross-sectional shape instead of a substantially square cross-sectional shape.
  • the side sill 2 has only the first surface 4, the first ridge line 5, and the second surface 6.
  • the side sill 2 may have a channel-shaped cross-sectional shape.
  • the side sill 2 has only the first surface 4, the second surface 6, the third surface 8, the first ridge line 5, and the second ridge line 7.
  • a first inward flange 13, a second inward flange 14, a third inward flange 15, and a fourth inward flange 16 are present on the same plane at the material axial end 12 of the side sill 2. It is provided as follows.
  • the first inward flange 13 is connected to the first surface 4 and formed.
  • the second inward flange 14 is connected to the second surface 6 and has a gap with the first inward flange 13 so as not to overlap the first inward flange 13.
  • the first end face 13 a of the first inward flange 13 and the second end face 14 b of the second inward flange 14 face each other on the same plane.
  • the pair of the first inward flange 13 and the second inward flange 14 corresponds to a pair of second metal plates in the present invention.
  • the third inward flange 15 is connected to the third surface 8 and has a gap with the second inward flange 14 so as not to overlap the second inward flange 14. As shown in FIG. 2, the first end surface 14 a of the second inward flange 14 and the second end surface 15 b of the third inward flange 15 face each other on the same plane.
  • the pair of the second inward flange 14 and the third inward flange 15 also corresponds to the pair of second metal plates in the present invention.
  • the fourth inward flange 16 is connected to the fourth surface 10 and has a gap with the third inward flange 15 so as not to overlap the third inward flange 15. As shown in FIG. 2, the first end surface 15 a of the third inward flange 15 and the second end surface 16 b of the fourth inward flange 16 face each other on the same plane.
  • the pair of the third inward flange 15 and the fourth inward flange 16 also corresponds to the pair of second metal plates in the present invention.
  • the fourth inward flange 16 has a gap with the first inward flange 13 and is formed without overlapping with the first inward flange 13. As shown in FIG. 2, the first end face 16 a of the fourth inward flange 16 and the second end face 13 b of the first inward flange 13 face each other on the same plane.
  • the pair of the fourth inward flange 16 and the first inward flange 13 also corresponds to the pair of second metal plates in the present invention.
  • the A Pillar Lower 3 is a press-formed product of a high-tensile steel plate, like the side sill 2.
  • the side sill 2 is joined to a flat portion (hereinafter referred to as a flat portion) 31 of the A pillar lower 3.
  • the flat part 31 which is a part of the A pillar lower 3 corresponds to the first metal plate in the present invention.
  • the side sill 2 passes through the first inward flange 13, the second inward flange 14, the third inward flange 15, and the fourth inward flange 16. For example, they are joined by resistance spot welding.
  • FIG. 3 is a cross-sectional view (a cross-sectional view in the thickness direction of the welded portion) of the joining structure 1 shown in FIG. As shown in FIG.
  • the first end face 13a of the first inward flange 13 and the second end face 14b (end faces opposite to each other) of the second inward flange 14 are joined to each other by a resistance spot welding (thickness direction).
  • the flat portion 31 of the A pillar lower 3 is integrally joined by a single molten metal block (hereinafter referred to as a welding nugget) 17 formed so as to spread elliptically from the center).
  • a welding nugget molten metal block
  • the molten metal lump is a portion in which the metal melted by the high heat generated by the welding process is cooled and solidified, and is responsible for strong bonding between the metal members.
  • a molten metal mass formed by resistance spot welding is called a weld nugget (or simply nugget).
  • the second inward flange 14 and the third Each of the inward flanges 15 is superimposed on the flat portion 31 of the A pillar lower 3 and joined by resistance spot welding.
  • the first end surface 14a of the second inward flange 14 and the second end surface 15b (the end surfaces facing each other) of the third inward flange 15 are simply formed so as to spread elliptically from the joint surface by resistance spot welding.
  • One weld nugget 18 is integrally joined to the flat portion 31 of the A pillar lower 3.
  • the cross-sectional shape of the weld nugget 18 is the same as the cross-sectional shape of the weld nugget 17 shown in FIG.
  • the third inward flange 15 and the fourth Each of the inward flanges 16 is overlapped with the flat portion 31 of the A pillar lower 3 and joined by resistance spot welding.
  • the first end surface 15a of the third inward flange 15 and the second end surface 16b (the end surfaces opposite to each other) of the fourth inward flange 16 are formed so as to spread elliptically from the joint surface by resistance spot welding.
  • One weld nugget 19 is integrally joined to the flat portion 31 of the A pillar lower 3.
  • the cross-sectional shape of the weld nugget 19 is the same as the cross-sectional shape of the weld nugget 17 shown in FIG.
  • the fourth inward flange 16 and the first Each of the inward flanges 13 is overlapped with the flat portion 31 of the A pillar lower 3 and joined by resistance spot welding.
  • the first end surface 16a of the fourth inward flange 16 and the second end surface 13b (the end surfaces facing each other) of the first inward flange 13 are simply formed so as to spread elliptically from the joint surface by resistance spot welding.
  • One weld nugget 20 is integrally joined to the flat portion 31 of the A pillar lower 3. Since the cross-sectional shape of the weld nugget 20 is the same as the cross-sectional shape of the weld nugget 17 shown in FIG. 3, the cross-sectional shape of the weld nugget 20 is not shown.
  • the joint strength between the side sill 2 and the A pillar lower 3 depends on the size (nugget diameter) of each weld nugget 17, 18, 19 and 20. Therefore, by performing resistance spot welding under welding conditions (electrode pressing force, current value, energization time, etc.) according to the required bonding strength, the nugget diameter of each welding nugget 17, 18, 19 and 20 is appropriately set. Need to control. For example, it is preferable to set the welding conditions so that the nugget diameter is 2.5 ⁇ t or more.
  • t is the plate thickness of each of the inward flanges 13 to 16 (that is, the plate thickness of the side sill 2), and its unit is mm. It is more preferable to set the welding conditions so that the nugget diameter is 3.0 ⁇ t or more, and it is further preferable to set the welding conditions so that the nugget diameter is 4.0 ⁇ t or more.
  • the first inward flange 13, the second inward flange 14, the third inward flange 15 and the fourth inward flange 16 all ensure weldability, particularly resistance spot weldability and laser weldability. Therefore, it is desirable that they exist on substantially the same plane. In other words, it is preferable that the inward flanges 13 to 16 are in close contact (surface contact) with the flat portion 31 of the A pillar lower 3 without overlapping each other.
  • FIG. 4 is an enlarged view of a portion where the weld nugget 17 is formed in the joint structure 1 shown in FIG.
  • the distance between the first end face 13a of the first inward flange 13 and the second end face 14b of the second inward flange 14 is preferably 0 mm or more and less than 1 mm. This is to ensure weight reduction and weldability with the A pillar lower 3, particularly resistance spot weldability and laser weldability.
  • the end face distance G is more preferably 0 mm or more and less than 0.3 mm, and further preferably 0 mm or more and less than 0.1 mm.
  • the distance between the end faces G is set to 0. 1 so that the first end face 13a of the first inward flange 13 and the second end face 14b of the second inward flange 14 are in contact with each other. It is recommended to be less than 1 mm.
  • the distance G between the end faces may be normalized by the plate thickness t.
  • the conditional expression when the distance G between the end faces is normalized by the plate thickness t is as follows. Preferred conditional expression: 0 mm 2 ⁇ G ⁇ t ⁇ 1 mm 2 (a) More preferable conditional expression: 0 mm 2 ⁇ G ⁇ t ⁇ 0.3 mm 2 (b) Further preferred conditional expression: 0 mm 2 ⁇ G ⁇ t ⁇ 0.1 mm 2 (c)
  • the end face distance G is preferably 0 mm or more and less than 40% of the plate thickness t.
  • the end face distance G is more preferably 0 mm or more and less than 10% of the plate thickness t.
  • the reason for defining the end face distance G is that if the end face distance G is too long, the molten weld metal leaks from the end face during resistance spot welding, and a desired welding strength cannot be obtained.
  • the extension lengths of the first end surface 13 a of the first inward flange 13 and the second end surface 14 b of the second inward flange 14 is preferably 3 mm or more and less than 50 mm.
  • end face length D is less than 3 mm, it is difficult to perform resistance spot welding. Even if welding can be performed by laser welding or the like instead of resistance spot welding, the rigidity as a member cannot be ensured when the end face length D is less than 3 mm.
  • the end face length D is 50 mm or more, the weight of the side sill 2 increases, and as a result, the weight of the automobile body increases.
  • the end face length D is more preferably 3 mm or more and less than 20 mm.
  • the condition of the distance G between the end faces and the condition of the end face length D are not only a pair of the first inward flange 13 and the second inward flange 14 but also the second inward flange 14 and the third inward flange 14. Also for a pair of inward flanges 15, a pair of third inward flanges 15 and a fourth inward flange 16, and a pair of fourth inward flanges 16 and a first inward flange 13 Preferably applied.
  • the inward flanges 13 to 16 of the side sill 2 and the flat portion 31 of the A pillar lower 3 are exemplified by four welded nuggets 17 to 20, but the inward flanges 13 to 16 and the flat portion 31 may be welded at a place other than the place where the weld nuggets 17 to 20 exist. This makes it possible to further increase the bonding strength between the side sill 2 and the A pillar lower 3. However, since the welding cost increases as the number of welding points increases, the total number of welding points may be appropriately determined in consideration of the required joint strength and manufacturing cost.
  • the side sill 2 is manufactured by press-molding a blank, which is a material, by a known method. After the inward flanges 13 to 16 are formed at the longitudinal edge of the blank, the blank is pressed. The side sill 2 may be manufactured. Alternatively, the inward flanges 13 to 16 may be formed after the body portion of the side sill 2 is formed by blank pressing.
  • a molten metal lump (weld nugget) formed by resistance spot welding is used for joining structural members.
  • arc welding, laser welding, laser arc welding, and the like in addition to resistance spot welding.
  • a molten metal lump formed by discontinuous welding may be used for joining structural members.
  • the shape of the molten metal block formed by discontinuous welding include C shape, O shape, elliptical shape, linear shape, curved shape, wave shape, and spiral shape.
  • an automobile body (particularly, the side sill 2 and the It is possible to increase the rigidity of the joint portion with the A pillar lower 3). That is, according to the joining structure 1, it is possible to realize the three demands for reducing the cost, weight, and rigidity of the automobile body in a balanced manner.
  • the grounds for obtaining the above effect by the bonding structure 1 will be described with reference to the following examples.
  • FIG. 5 is an explanatory diagram showing the analysis model 21
  • FIG. 6 is a side view showing the longitudinal end of the side sill 22 in the analysis model 21. *
  • the analysis model 21 includes four inward flanges at both ends 21a and 21b in the longitudinal direction of the side sill 22 (total length 500 mm, curvature radius of the first ridge line 5 mm).
  • the four inward flanges formed at both ends 21a and 21b are joined to rigid end plates 23 and 24, which are flat portions of the A pillar lower, with a joining strength corresponding to the joining strength of resistance spot welding.
  • Both the side sill 22 and the flat portions 23 and 24 of the A pillar lower were made of a high-tensile steel plate having a thickness of 1.4 mm and a tensile strength of 590 MPa.
  • the torsional rigidity was evaluated by rotating the end plate 24 around the central axis of the side sill 22 once (1 deg.) In a state where the end plate 23 was completely restrained.
  • FIG. 7A to 7D are explanatory diagrams of a conventional analysis model (conventional shape 1).
  • FIG. 7A is a perspective view showing the side sill 22 in the analysis model of the conventional example.
  • FIG. 7B is a view on arrow A in FIG. 7A.
  • 7C and 7D are explanatory views showing resistance spot welding positions of the analysis model of the conventional example.
  • FIG. 7C shows the case of 8-point welding
  • FIG. 7D shows the case of 12-point welding.
  • the length of one side of the resistance spot welding forming a square is 4.7 mm. The same applies to the conventional shape 2 and the developed shape described later.
  • the four inward flanges are separated from each other without overlapping each other.
  • Each of the four inward flanges has a width wh of 14 mm.
  • the gap (distance between the end faces) between the inward flanges adjacent to each other is 7 mm in the shortest distance in the plane where the four inward flanges exist.
  • the square mark in FIG. 7C and FIG. 7D schematically shows a weld nugget formed by resistance spot welding.
  • FIGS. 8A to 8D are explanatory diagrams of a conventional analysis model (conventional shape 2).
  • FIG. 8A is a perspective view showing the side sill 25 in the analysis model of the conventional example.
  • FIG. 8B is a view on arrow A in FIG. 8A.
  • 8C and 8D are illustrations showing resistance spot welding positions of the analysis model of the conventional example.
  • FIG. 8C shows the case of 8-point welding
  • FIG. 8D shows the case of 12-point welding.
  • the square marks in FIGS. 8C and 8D schematically show a weld nugget formed by resistance spot welding.
  • a step is formed on one of the two inward flanges adjacent to each other, and the two inward flanges are overlapped at the step portion. It is joined (welded) in a state.
  • Each of the four inward flanges has a width of 14 mm.
  • FIG. 9A to 9D are explanatory diagrams of an analysis model (development shape) of an example of the present invention.
  • FIG. 9A is a perspective view showing a side sill in a conventional analysis model.
  • FIG. 9B is a view on arrow A in FIG. 9A.
  • 9C and 9D are explanatory diagrams showing resistance spot welding positions of the analysis model of the conventional example.
  • FIG. 9C shows the case of 8-point welding
  • FIG. 9D shows the case of 12-point welding.
  • the square mark in FIG. 9C and FIG. 9D schematically shows a weld nugget formed by resistance spot welding.
  • one end face and the other end face of two adjacent inward flanges face each other on the same plane and are in close contact with each other. That is, the distance between the end faces is 0 mm.
  • One end face and the other end face are integrally joined to an end plate (not shown) (corresponding to a flat portion of the A pillar lower) by a single weld nugget.
  • FIG. 10 is a graph showing torsional rigidity in the case of 8-point welding and 12-point welding for the analysis models of the conventional shapes 1 and 2 and the developed shape.
  • FIG. 11 is a graph showing torsional rigidity / number of welded parts (number of welded nuggets) in the case of 8-point welding and 12-point welding for the analysis models of the conventional shapes 1 and 2 and the developed shape.
  • FIG. 12 is a graph showing torsional rigidity / (weight of plane of inward flange) in the case of 8-point welding and 12-point welding for the analysis models of the conventional shapes 1 and 2 and the developed shape.
  • the torsional rigidity in the developed shape and the torsional rigidity per number of welded parts are the highest when the number of welded parts is the same.
  • the developed shape 8-point welding has higher rigidity than the conventional shape 1 12-point welding.
  • the developed shape is lighter than the conventional shape 2 because there is no overlap of the inward flanges.
  • FIG. 13 is an explanatory diagram showing the strain distribution when the analysis models of the conventional shapes 1 and 2 and the developed shape are rotated once.
  • the numbers in FIG. 13 indicate the value of the shear stress at the center of the plate thickness analyzed at the site indicated by the line.
  • FIG. 14 shows the result of analyzing the relationship between the gap between the inward flanges adjacent to each other (distance between end faces) and the torsional rigidity of the developed shape shown in FIG. 9C.
  • the distance between the end faces is preferably 0 mm or more and less than 1 mm.
  • FIG. 14 also shows that the distance between the end faces is more preferably 0 mm or more and less than 0.3 mm, and most preferably 0 mm or more and less than 0.1 mm.
  • the torsional rigidity can be significantly improved by setting the distance between the end faces to 0 mm, that is, by bringing the opposing end faces into close contact with each other.
  • the automobile body includes a side sill inner panel, a side sill outer panel, a first reinforcement, and a second reinforcement as structural members.
  • the joining structure of the present invention is applied to the joining structure of these structural members.
  • at least one of the first reinforcement and the second reinforcement may be a center pillar inner panel.
  • FIG. 15 is a perspective view schematically showing a joining structure 111 (a joining structure of the side sill inner panel 106, the side sill outer panel 107, the first reinforcement 108, and the second reinforcement 109) according to the second embodiment of the present invention.
  • FIG. 16 is a view taken in the direction of arrow B in FIG.
  • the side sill inner panel 106 and the side sill outer panel 107 are shown in the transparent state by the dashed-two dotted line.
  • the case where the joining structure 111 itself is a side sill is taken as an example, but the present invention is not limited to the side sill, and is applied to a roof rail, an A pillar, and the like.
  • the joint structure (that is, the side sill) 111 has a closed cross section including a side sill inner panel 106, a side sill outer panel 107, a first reinforcement 108, and a second reinforcement 109.
  • the side sill inner panel 106 is a metal forming plate having a constant cross-sectional shape in the material axis direction, more specifically, a press forming plate made of a high-tensile steel plate.
  • the side sill inner panel 106 has two flanges 106a and 106b at both ends in the width direction.
  • the side sill inner panel 106 has a hat-shaped cross-sectional shape having two flanges 106a and 106b as elements.
  • the side sill outer panel 107 is a metal forming plate having a constant cross-sectional shape in the material axis direction, more specifically, a press forming plate made of a high-tensile steel plate.
  • the side sill outer panel 107 has two flanges 107a and 107b at both ends in the width direction.
  • the side sill outer panel 107 has a hat-shaped cross-sectional shape having two flanges 107a and 107b as elements.
  • the first reinforcement 108 is a flat plate made of a high-tensile steel plate.
  • the first reinforcement 108 is disposed between the two flanges 106a and 106b and the two flanges 107a and 107b, and is in a state of being overlapped with the side sill inner panel 106 and the side sill outer panel 107 in a laminated manner.
  • the side sill inner panel 106 and the side sill outer panel 107 are joined by a welding nugget 112 formed by spot welding. In FIG. 15, the welding nugget 112 is shown in a visualized state.
  • the second reinforcement 109 is also a flat plate made of a high-tensile steel plate.
  • the second reinforcement 109 is disposed between the two flanges 106a and 106b and the two flanges 107a and 107b, and is in a state of being overlapped with the side sill inner panel 106 and the side sill outer panel 107 in a laminated manner.
  • the side sill inner panel 106 and the side sill outer panel 107 are joined by a welding nugget 112 formed by spot welding.
  • the first reinforcement 108 and the second reinforcement 109 are abutted with each other or arranged at a predetermined distance in the longitudinal direction of the side sill inner panel 106 and the side sill outer panel 107.
  • the first reinforcement 108 and the second reinforcement 108 are in a state where the end surface 108 a of the first reinforcement 108 and the end surface 109 a of the second reinforcement 109 face each other on the same plane.
  • a reinforcement 109 is sandwiched between the side sill inner panel 106 and the side sill outer panel 107.
  • FIG. 17 is a cross-sectional view taken along the line CC of the weld location shown in FIG. 16 (cross-sectional view in the plate thickness direction of the weld location).
  • the end surface 108a of the first reinforcement 108 and the end surface 109a (end surfaces facing each other) of the second reinforcement 109 are joined to each other by resistance spot welding (the center in the thickness direction).
  • resistance spot welding the center in the thickness direction.
  • the first reinforcement 108 and the second reinforcement 109 are used as a pair of second metal plates in the present invention.
  • the flange 106a of the side sill inner panel 106 corresponds to the first metal plate in the present invention
  • the flange 107a of the side sill outer panel 107 corresponds to the third metal plate in the present invention.
  • the end surface 108a of the first reinforcement 108 and the end surface 109a (end surfaces facing each other) of the second reinforcement 109 are elliptical from the joint surface (center in the thickness direction) by resistance spot welding.
  • the flanges 106b of the side sill inner panel 106 and the flanges 107b of the side sill outer panel 107 are integrally joined by a single weld nugget 113b formed so as to spread.
  • the cross-sectional shape of the weld nugget 113b in the plate thickness direction is the same as the cross-sectional shape of the weld nugget 113a shown in FIG.
  • the first reinforcement 108 and the second reinforcement 109 correspond to the pair of second metal plates in the present invention
  • the side sill inner panel 106 The flange 106b corresponds to the first metal plate in the present invention
  • the flange 107b of the side sill outer panel 107 corresponds to the third metal plate in the present invention.
  • the joining strength of the side sill inner panel 106, the side sill outer panel 107, the first reinforcement 108, and the second reinforcement 109 depends on the size (nugget diameter) of each weld nugget 112, 113a, and 113b. Therefore, by performing resistance spot welding under welding conditions (electrode pressing force, current value, energization time, etc.) according to the required bonding strength, the nugget diameter of each welding nugget 112, 113a and 113b is appropriately controlled. There is a need to. For example, it is preferable to set the welding conditions so that the nugget diameter is 2.5 ⁇ t or more. Here, t is the thickness of each of the reinforcements 108 and 109, and its unit is mm. It is more preferable to set the welding conditions so that the nugget diameter is 3.0 ⁇ t or more, and it is further preferable to set the welding conditions so that the nugget diameter is 4.0 ⁇ t or more.
  • both the first reinforcement 108 and the second reinforcement 109 exist on substantially the same plane in order to ensure weldability, particularly resistance spot weldability and laser weldability.
  • the first reinforcement 108 and the second reinforcement 109 are in close contact with the flanges 106a and 106b of the side sill inner panel 106 and the flanges 107a and 107b of the side sill outer panel 107 without overlapping each other (surface contact). It is preferable that
  • the distance (end-to-end distance) G between the end surface 108a of the first reinforcement 108 and the end surface 109a of the second reinforcement 109 is 0 mm or more and 1 mm. It is preferable that it is less than (refer FIG.15 and FIG.16). Further, similarly to the first embodiment, in the second embodiment, the distance G between the end faces is more preferably 0 mm or more and less than 0.3 mm, and more preferably 0 mm or more and less than 0.1 mm from the viewpoint of improving the torsional rigidity. More preferably it is.
  • the thickness t (unit: mm) of the first reinforcement 108 and the second reinforcement 109 is large, the molten metal is generated during resistance spot welding.
  • the distance G between the end faces may be normalized by the plate thickness t.
  • the conditional expressions when the end face distance G is normalized by the plate thickness t are the same as the conditional expressions (a) to (c) described in the first embodiment.
  • the end face distance G when the preferable range of the end face distance G is defined as a percentage of the plate thickness t, the end face distance G is 0 mm or more and less than 40% of the plate thickness t. Preferably there is.
  • the end face distance G is 40% or more of the plate thickness t, the welded nuggets 113a and 113b cannot be stably formed, so that the torsional rigidity of the joint structure 111 is lowered.
  • the end face distance G is more preferably 0 mm or more and less than 10% of the plate thickness t.
  • the reason for defining the end face distance G is that if the end face distance G is too long, the molten weld metal leaks from the end face during resistance spot welding, and a desired welding strength cannot be obtained.
  • the extension length (end surface length) D of the end surface 108a of the first reinforcement 108 and the end surface 109a of the second reinforcement 109 is 3 mm or more and 50 mm. It is preferable that it is less (refer FIG. 16).
  • the end face length D in the second embodiment is the length of the part of the total length of the end faces 108a and 109a facing each other that overlaps the flanges 106a and 107a.
  • the end face length D at the welding place on the opposite side of the welding place shown in FIG. 16, that is, the place where the weld nugget 113b is formed overlaps the flanges 106b and 107b out of the total length of the end faces 108a and 109a facing each other. The length of the part.
  • the end face length D is less than 3 mm, it is difficult to perform resistance spot welding. Even if welding can be performed by laser welding or the like instead of resistance spot welding, the rigidity as a member cannot be ensured when the end face length D is less than 3 mm.
  • the end face length D is 50 mm or more, the member weight increases, and as a result, the weight of the automobile body increases.
  • the end face length D is more preferably 3 mm or more and less than 20 mm.
  • a molten metal lump (weld nugget) formed by resistance spot welding is used for joining structural members.
  • arc welding, laser welding, laser arc welding, and the like in addition to resistance spot welding.
  • a molten metal lump formed by discontinuous welding may be used for joining structural members.
  • the shape of the molten metal block formed by discontinuous welding include C shape, O shape, elliptical shape, linear shape, curved shape, wave shape, and spiral shape.
  • the joining structure 111 is a side sill
  • the case where the first reinforcement 108 and the second reinforcement 109 are sandwiched between the side sill inner panel 106 and the side sill outer panel 107 is exemplified.
  • the present invention is not limited to this case, and a pair of reinforcements (a pair of second metal plates) is sandwiched between an upper panel (first metal plate) and a lower panel (third metal plate). Is also applicable.
  • the joining structure 111 According to the joining structure 111 according to the second embodiment as described above, the number of resistance spot welds (the number of welding nuggets) is not increased, and the area of the reinforcement force superimposed on the panel is minimized, while It becomes possible to increase the rigidity (in particular, torsional rigidity of the side sill itself). That is, according to the joining structure 111, it is possible to realize the three demands for reducing the cost, weight, and rigidity of the automobile body in a balanced manner.
  • the grounds for obtaining the above effect by the bonding structure 111 will be described with reference to the following examples. ⁇ Example ⁇
  • FIG. 18 is an explanatory diagram showing the cross-sectional shapes of the side sill 111 and the side sills 2-1 to 2-3.
  • FIG. 18 shows the thickness center positions of the side sill inner panel 106, the side sill outer panel 107, the first reinforcement 108, and the second reinforcement 109.
  • the lengths L1 and L2 of the first reinforcement 108 and the second reinforcement 109 are both 239.975 mm, and the end face distance G is 0.05 mm.
  • the strength and thickness of each of the side sill inner panel 106, the side sill outer panel 107, the first reinforcement 108, and the second reinforcement 109 were as follows. ⁇ Side sill inner panel 106: 980 MPa, 1.0 mm ⁇ Side sill outer panel 107: 980 MPa, 1.0 mm First reinforce 108: 980 MPa, 1.0 mm Second reinforcement 109: 980 MPa, 1.0 mm
  • FIGS. 19A to 19D show the arrangement of the first and second reinforcements 108 and 109 in the side sills 2-1 to 2-3 of the conventional example and the side sill 111 of the present invention, respectively. It is explanatory drawing which shows the position of the welding nuggets 110, 112, 113a, and 113b.
  • FIG. 20 is a graph showing the torsional rigidity of the side sills 2-1, 2-2, and 111 when 0.1 deg torsion is applied at the central angle.
  • FIG. 21 is a graph showing torsional rigidity when side sills 2-3 and 111 are subjected to 0.1 deg torsion at a central angle per weld nugget.
  • the joining structure of the present invention is applied to the joining structure of the side sill 2 and the A pillar lower 3 is exemplified.
  • the bonding structure of the present invention (the bonding structure described in the first embodiment) can also be applied to the bonding structure between the side sill 202 and the cross member 230.
  • the joining structure of the present invention is applied to the joining structure of the side sill inner panel 106, the side sill outer panel 107, the first reinforcement 108, and the second reinforcement 109 is illustrated.
  • the bonding structure of the present invention (the first structure)
  • the joint structure described in the second embodiment can be applied.
  • an automobile body is given as an example of a structure that is required to be reduced in cost, weight, and rigidity.
  • the structure is not limited to an automobile body.
  • the joining structure of the present invention can also be applied to other structures such as airplane bodies.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Body Structure For Vehicles (AREA)
  • Connection Of Plates (AREA)
  • Laser Beam Processing (AREA)

Abstract

本発明の接合構造は、第1金属板と;一対の第2金属板と;を備え、一方の前記第2金属板の端面と他方の前記第2金属板の端面とが対向する状態で、前記一対の第2金属板のそれぞれが前記第1金属板に重ね合わされており、互いに対向する前記端面が、単一の溶融金属塊によって前記第1金属板と一体的に接合されている。

Description

接合構造
 本発明は、接合構造に関する。
 本願は、2014年08月29日に、日本に出願された特願2014-175620号と、2015年02月04日に、日本に出願された特願2015-020332号とに基づき優先権を主張し、これらの内容をここに援用する。

 モノコック構造を有する自動車車体は、複数の成形パネルを、それぞれの縁部を互いに重ね合わせた状態で溶接することにより組み立てられる。成形パネルの溶接には、抵抗スポット溶接及びレーザ溶接などが使用される。自動車車体において、高荷重が負荷される部分及びエンジン等の重量物が搭載される部分には、サイドシル(ロッカー)、サイドメンバー、及び各種ピラーなどの構造部材が接合される。これにより、自動車車体に要求される剛性及び強度が確保される。
近年では、各構造部材の接合強度及び各種剛性(ねじり剛性や曲げ剛性)をいっそう高めることが要求されている。その一方で、燃費向上により温暖化ガスの排出量を削減するために、各構造部材のさらなる軽量化も要求されている。
例えば、下記特許文献1には、自動車車体の構造部材であるサイドシルと他の構造部材との接合構造が開示されている。サイドシルの長手方向の端部には、サイドシルの内側に向かって折り曲げられた内向きフランジが設けられている。サイドシルは、上記内向きフランジを介して他の構造部材(例えばAピラーロアー)と接合されている。
下記特許文献2には、サイドシルアウタ部を含むサイドシルアウタパネルと、サイドシルアウタ部の内側を車体前後方向へ延在してサイドシルアウタ部に接合されるサイドシルスチフナと、サイドシルスチフナの後端に対向する前壁を有するリヤホイールハウスメンバと、サイドシルスチフナの後端部に接続されてサイドシルスチフナの後端開口をふさぐ後壁を有する連結メンバとを備え、リヤホイールハウスメンバの前壁と連結メンバの後壁とが接合された車両側部構造が開示されている。この車両側部構造によれば、サイドシル後端側の剛性を向上できる。
さらに、下記特許文献3には、フロントサイドメンバ本体部およびその後部かつ下方に位置するキックアップ部を有するフロントサイドメンバが開示されている。このフロントサイドメンバは、左右一対のインナ部材とアウタ部材とを互いに突き合わせてスポット溶接することにより構成されている。インナ部材及びアウタ部材は、互いに接するように凹形状に成形された上下方向中間部を有する。これら上下方向中間部同士を互いに突き合わせてスポット溶接することにより、フロントサイドメンバに結合部が設けられる。 
 図22は、一般的な自動車車体200の構造例を示す図である。図22に示すように、自動車車体200は、構造部材として、サイドシル(ロッカー)202、Aピラー(フロントピラー)203、Bピラー(センタピラー)204、及びルーフレール205などを備えている。
自動車の高性能化に伴い、自動車車体200の剛性(ねじり剛性や曲げ剛性)をいっそう高めて操縦安定性や静粛性等の快適性をさらに向上することが求められている。
図23は、サイドシル202の一例を示す斜視図である。なお、図面を判読し易くするため、図23では、サイドシルインナーパネル206及びサイドシルアウターパネル207を二点鎖線により透明の状態で示す。
図23に示すように、サイドシル202は、サイドシルインナーパネル206、サイドシルアウターパネル207、第1のレインフォース208、及び第2のレインフォース209からなる閉断面を有する。
サイドシルインナーパネル206は、その幅方向の両端部にそれぞれ2つのフランジ206a及び206bを有するとともに、これら2つのフランジ206a及び206bを要素とするハット型の横断面形状を有する。
サイドシルアウターパネル207は、その幅方向の両端部にそれぞれ2つのフランジ207a及び207bを有するとともに、これら2つのフランジ207a及び207bを要素とするハット型の横断面形状を有する。
第1のレインフォース208は、2つのフランジ206a及び206bと2つのフランジ207a及び207bとの間に配置され、且つサイドシルインナーパネル206及びサイドシルアウターパネル207に3枚合せで重ね合わされた状態で、抵抗スポット溶接によって形成された溶接ナゲット(溶融金属塊)210によって接合されている。
第2のレインフォース209も、第1のレインフォース208と同様に、2つのフランジ206a及び206bと2つのフランジ207a及び207bとの間に配置され、且つサイドシルインナーパネル206及びサイドシルアウターパネル207に3枚合せで重ね合わされた状態で、抵抗スポット溶接によって形成された溶接ナゲット210によって接合されている。
さらに、第1のレインフォース208及び第2のレインフォース209は、サイドシルインナーパネル206およびサイドシルアウターパネル207のそれぞれの長手方向において、互いに突き当てられる(当接される)か、あるいは離間して配置される。
なお、通常、溶接ナゲット210は板厚方向中央部に形成されるため、外部から溶接ナゲット210を視認することはできないが、説明の便宜上、図23では溶接ナゲット210の位置を認識できるように図示している。
このように、自動車車体に用いられる構造部材の多くは溶接によって組立てられる。このため、自動車車体の剛性を高めるには、レーザ溶接、アーク溶接さらにはプラズマ溶接といった線状の連続溶接を用いることが有効である。これに対し、自動車車体の構造部材の溶接方法として低コストであるために最も多用される抵抗スポット溶接は、連続溶接ではなく点状の不連続溶接であるため、連続溶接よりも、構造部材の剛性の面では不利である。このため、抵抗スポット溶接を使用したとしても自動車車体の剛性を向上可能な技術が開発されている。
例えば下記特許文献4~6には、抵抗スポット溶接により組み立てられた各種の構造部材が開示されている。
日本国特開2012-144185号公報 日本国特許第5411245号公報 日本国特許第3820867号公報 日本国特許第5082249号公報 日本国特許第5599553号公報 日本国特許第5261984号公報
特許文献1に開示された自動車車体の接合構造では、互いに隣接する内向きフランジの間にギャップが存在する状態で、サイドシルが内向きフランジを介して他の構造部材に接合される。すなわち、隣接する内向きフランジ同士が離れた状態でサイドシルと他の構造部材とが接合されるため、サイドシルの剛性が低下し、その結果、サイドシルとして要求される機能が低下してしまう。
また、サイドシルの剛性の低下を抑制するために、隣接する内向きフランジ同士を重ね合わせた状態で、内向きフランジの重ね合わせ部及びその近傍を溶接することにより、サイドシルと他の構造部材とを接合する方法も考えられる。しかしながら、この方法では、隣接する内向きフランジの一部を重ね合わせることに起因して重量の増加を招き、その結果、地球温暖化ガスの削減のために現在の自動車車体に極めて強く要請される大幅な軽量化を実現することは困難となる。
特許文献2に開示された構造では、連結メンバという新しい部品を用いる必要がある。すなわち、この構造では、連結メンバの増設に起因して重量の増加を招き、その結果、上述のように自動車車体に強く要請される軽量化を実現することは困難となる。
特許文献3に開示された構造では、そもそも、接合強度が低く衝突方向(車両前後方向)に対して垂直となる面に突き合わせスポット溶接が行われる。そのため、衝突時にスポット溶接部において容易に破断が発生し、所望の衝突特性を得られなくなる。また、異なる部材同士のエッジのみを突き合わせスポット溶接するとより破断し易い。
 特許文献4~6には、図23に示す構造部材、すなわち、サイドシルインナーパネル206、サイドシルアウターパネル207、第1のレインフォース208及び第2のレインフォース209からなる閉断面を有する構造であって、且つ第1のレインフォース208及び第2のレインフォース209が、サイドシルインナーパネル206及びサイドシルアウターパネル207のそれぞれの長手方向において突き当てられるか或いは離間して配置される構造を有するサイドシル202は、開示も示唆もされていない。
 このため、特許文献4~6に開示された発明に基づいても、抵抗スポット溶接によっても剛性をできるだけ高めることができる構造を有するサイドシル202を提供することはできない。
 上述したように、サイドシル202のような自動車車体の構造部材は、低コスト、軽量かつ高剛性である必要がある。サイドシル202における2つのフランジ206a及び206bと2つのフランジ207a及び207bの溶接範囲を拡大すること(例えばスポット溶接数(溶接ナゲット数)を増やすこと)により、構造部材の剛性を高めることが可能になるが、溶接範囲を拡大することによる溶接コストの上昇は否めない。
 また、2つのフランジ206a及び206bと2つのフランジ207a及び207bを、サイドシルインナーパネル206及びサイドシルアウターパネル207のそれぞれの長手方向において重ね合わせて溶接すれば、構造部材の剛性を高めることができるが、その分だけ材料コストが増加するだけでなく、構造部材の重量も増加する。
このため、2つのフランジ206a及び206bと2つのフランジ207a及び207bの溶接範囲を拡大することなく、1つ当たりのスポット溶接による剛性を向上させることができる構造を有する構造部材を開発する必要がある。
このように、近年では、自動車車体に対する低コスト化、軽量化及び高剛性化という3つ要請をバランス良く実現する必要がある。例えば、スポット溶接数を増やすことによりフランジの溶接範囲を拡大すれば、自動車車体の剛性が向上するが、溶接範囲の拡大に伴って溶接コストが不可避的に上昇する。また、フランジを大きくすれば、自動車車体の剛性が向上するが、フランジの大型化に伴って材料コストが増えるとともに重量も増加し、その結果、自動車車体の軽量化を実現することが困難となる。
上記の説明では、低コスト化、軽量化及び高剛性化が要請される構造体として自動車車体を一例として挙げたが、自動車車体に限らず、例えば鉄道車両の車体及び飛行機の機体などの他の構造体に対しても低コスト化、軽量化及び高剛性化が要請される場合が多い。
従って、近年では、自動車車体を含む構造体に対して要請される低コスト化、軽量化及び高剛性化をバランス良く実現することの可能な技術を開発することが非常に重要になっている。
本発明は上記の事情に鑑みてなされたものであり、構造体に対する低コスト化、軽量化及び高剛性化という3つの要請をバランス良く実現することの可能な接合構造を提供することを目的とする。
本発明は上記課題を解決して係る目的を達成するために以下のような手段を採用する。
(1)本発明の一態様に係る接合構造は、第1金属板と;一対の第2金属板と;を備え、一方の前記第2金属板の端面と他方の前記第2金属板の端面とが対向する状態で、前記一対の第2金属板のそれぞれが前記第1金属板に重ね合わされており、互いに対向する前記端面が、単一の溶融金属塊によって前記第1金属板と一体的に接合されている。
(2)上記(1)に記載の接合構造において、前記一対の第2金属板が、同一平面上に存在していてもよい。

(3)上記(1)または(2)に記載の接合構造において、互いに対向する前記端面間の距離が、0mm以上1mm未満であってもよい。
(4)上記(1)または(2)に記載の接合構造において、前記一対の第2金属板の板厚をt(mm)、互いに対向する前記端面間の距離をG(mm)と定義したとき、下記条件式(a)が満たされてもよい。
0mm≦G×t<1mm    …(a)
(5)上記(1)または(2)に記載の接合構造において、互いに対向する前記端面間の距離が、前記第2金属板の板厚の40%未満であってもよい。
(6)上記(1)~(5)のいずれか1つに記載の接合構造において、互いに対向する前記端面の延在長さが、3mm以上50mm未満であってもよい。 

(7)上記(1)~(6)のいずれか1つに記載の接合構造において、前記一対の第2金属板が、材軸方向に一定の断面形状を有する金属成形板の材軸方向端部に設けられた一対の内向きフランジであってもよい。 
(8)上記(7)に記載の接合構造において、前記金属成形板の前記断面形状が、アングル形状、チャンネル形状、又は四角形状であってもよい。
(9)上記(7)または(8)に記載の接合構造において、前記金属成形板が、自動車車体のサイドシルであり、前記第1金属板が、前記自動車車体のAピラーロアーの一部であってもよい。
(10)上記(1)~(6)のいずれか一項に記載の接合構造が第3金属板をさらに備え、前記第1金属板と前記第3金属板との間に前記一対の第2金属板が挟まれており、互いに対向する前記端面が、前記溶融金属塊によって前記第1金属板及び前記第3金属板と一体的に接合されていてもよい。
(11)上記(10)に記載の接合構造において、前記第1金属板が、材軸方向にハット形の断面形状を有する第1金属成形板に設けられたフランジであり、前記第3金属板が、材軸方向にハット形の断面形状を有する第2金属成形板に設けられたフランジであってもよい。
(12)上記(11)に記載の接合構造において、前記第1金属成形板が、自動車車体のサイドシルアウターパネルであり、前記第2金属成形板が、前記自動車車体のサイドシルインナーパネルであり、前記一対の第2金属板が、それぞれ前記自動車車体のレインフォースまたはセンターピラーインナーパネルであってもよい。
本発明の上記態様によれば、構造体に対する低コスト化、軽量化及び高剛性化という3つの要請をバランス良く実現することの可能な接合構造を提供できる。

本発明の第1実施形態に係る接合構造1(サイドシル2とAピラーロアー3との接合構造)を模式的に示す斜視図である。 図1に示す接合構造1をAピラーロアー3の側から見た図である。 図2に示す接合構造1のA-A矢視断面図(溶接箇所の板厚方向断面図)である。 図2に示す接合構造1において溶接ナゲット17が形成された箇所を拡大した図である。 接合構造1の解析モデルを示す説明図である。 解析モデルにおけるサイドシルの長手方向端部を抜き出して示す側面図である。 従来例の解析モデル(従来形状1)の説明図である。 従来例の解析モデル(従来形状1)の説明図である。 従来例の解析モデル(従来形状1)の説明図である。 従来例の解析モデル(従来形状1)の説明図である。 従来例の解析モデル(従来形状2)の説明図である。 従来例の解析モデル(従来形状2)の説明図である。 従来例の解析モデル(従来形状2)の説明図である。 従来例の解析モデル(従来形状2)の説明図である。 本発明例の解析モデル(開発形状)の説明図である。 本発明例の解析モデル(開発形状)の説明図である。 本発明例の解析モデル(開発形状)の説明図である。 本発明例の解析モデル(開発形状)の説明図である。 従来形状1、2および開発形状の解析モデルについて、8点溶接および12点溶接の場合のねじり剛性を示すグラフである。 従来形状1、2および開発形状の解析モデルについて、8点溶接および12点溶接の場合のねじり剛性/溶接部数を示すグラフである。 従来形状1、2および開発形状の解析モデルについて、8点溶接および12点溶接の場合のねじり剛性/(内向きフランジの平面の重量)を示すグラフである。 従来形状1、2、および開発形状の解析モデルを1度回転させた時における歪み分布を示す説明図である。 図9Cに示す開発形状について、互いに隣接する内向きフランジ間のギャップ(端面間距離)とねじり剛性との関係を解析した結果を示す。 本発明の第2実施形態に係る接合構造111(サイドシルインナーパネル106、サイドシルアウターパネル107、第1のレインフォース108及び第2のレインフォース109の接合構造)を模式的に示す斜視図である。 図15のB矢視図である。 図16に示す溶接箇所のC-C矢視断面図(溶接箇所の板厚方向断面図)である。 サイドシルの断面形状を示す説明図である。 従来例のサイドシル、本発明例のサイドシルにおける第1のレインフォースおよび第2のレインフォースそれぞれの配置と、溶接ナゲットの位置を示す説明図である。 実施例における解析結果を示すグラフである。 実施例における解析結果を示すグラフである。 自動車車体のボディシェルの一例を示す説明図である。 サイドシルの一例を示す斜視図である。
以下、本発明の一実施形態について図面を参照しながら説明する。なお、以下では、低コスト化、軽量化及び高剛性化が要請される構造体として自動車車体を例示して説明する。
[第1実施形態]
 まず、本発明の第1実施形態について説明する。既に述べたように、自動車車体は、構造部材としてサイドシル及びAピラーロアーを備えている。以下の第1実施形態では、サイドシルとAピラーロアーとの接合構造に対して本発明の接合構造が適用された形態について説明する。
図1は、本発明の第1実施形態に係る接合構造1(サイドシル2とAピラーロアー3との接合構造)を模式的に示す斜視図である。図2は、図1に示す接合構造1をAピラーロアー3の側から見た図である。
なお、第1実施形態では、サイドシル2とAピラーロアー3との接合構造1について説明するが、本発明はこの形態のみに限定されるものではない。図1及び図2では、サイドシル2およびAピラーロアー3のそれぞれの形状を簡略化して示す。また、図1及び図2において、図面を判読し易くするために、Aピラーロアー3を二点鎖線を用いて透視状態で示す。
[サイドシル2]
 サイドシル2は、材軸方向(図1に示す矢印方向)に一定の断面形状(本実施形態では四角形状)を有する金属成形板である。より具体的には、サイドシル2は、引張強度が通常590MPa級(好ましくは780MPa級、さらに望ましくは980MPa級)の高張力鋼板製の長尺かつ中空の筒状のプレス成形体である。プレス成形は、冷間プレスでもよいし、熱間プレスでもよい。
サイドシル2は、少なくとも、第1の面4と、第1の稜線5と、第2の面6とを備える。

 第1の面4は、材軸方向に延在する。第1の稜線5は、第1の面4につながるとともに材軸方向に延在する。さらに、第2の面6は、第1の稜線5につながるとともに材軸方向に延在する。 

 サイドシル2は、略四角形の横断面形状を有する。そのため、サイドシル2は、第2の面6につながる第2の稜線7と、第2の稜線7につながる第3の面8と、第3の面8につながる第3の稜線9と、第3の稜線9につながる第4の面10と、第4の面10および第1の面4につながる第4の稜線11と、をさらに備える。 
サイドシル2は、略四角形の横断面形状ではなく、例えば、アングル状の横断面形状を有していてもよい。この場合、サイドシル2は、第1の面4、第1の稜線5および第2の面6のみを有する。また、サイドシル2は、チャンネル状の断面形状を有していてもよい。この場合、サイドシル2は、第1の面4、第2の面6、第3の面8、第1の稜線5および第2の稜線7のみを有する。

 サイドシル2の材軸方向端部12には、第1の内向きフランジ13、第2の内向きフランジ14、第3の内向きフランジ15および第4の内向きフランジ16が同一平面上に存在するように設けられている。 
第1の内向きフランジ13は第1の面4につながって形成される。

 第2の内向きフランジ14は、第2の面6につながるとともに第1の内向きフランジ13との間に隙間を有して第1の内向きフランジ13とは重ならずに形成される。
 図2に示すように、第1の内向きフランジ13の第1端面13aと第2の内向きフランジ14の第2端面14bとが同一平面上で対向している。第1の内向きフランジ13と第2の内向きフランジ14とのペアは、本発明における一対の第2金属板に対応する。 

 第3の内向きフランジ15は、第3の面8につながるとともに第2の内向きフランジ14との間に隙間を有して第2の内向きフランジ14とは重ならずに形成される。
 図2に示すように、第2の内向きフランジ14の第1端面14aと第3の内向きフランジ15の第2端面15bとが同一平面上で対向している。第2の内向きフランジ14と第3の内向きフランジ15とのペアも、本発明における一対の第2金属板に対応する。 
第4の内向きフランジ16は、第4の面10につながるとともに第3の内向きフランジ15との間に隙間を有して第3の内向きフランジ15とは重ならずに形成される。
図2に示すように、第3の内向きフランジ15の第1端面15aと第4の内向きフランジ16の第2端面16bとが同一平面上で対向している。第3の内向きフランジ15と第4の内向きフランジ16とのペアも、本発明における一対の第2金属板に対応する。
また、第4の内向きフランジ16は、第1の内向きフランジ13との間に隙間を有して第1の内向きフランジ13とは重ならずに形成される。
図2に示すように、第4の内向きフランジ16の第1端面16aと第1の内向きフランジ13の第2端面13bとが同一平面上で対向している。第4の内向きフランジ16と第1の内向きフランジ13とのペアも、本発明における一対の第2金属板に対応する。

[Aピラーロアー3]
Aピラーロアー3は、サイドシル2と同様に、高張力鋼板のプレス成形品である。Aピラーロアー3の平坦な部位(以下、平坦部と称す)31に対してサイドシル2が接合される。Aピラーロアー3の一部である平坦部31は、本発明における第1金属板に対応する。Aピラーロアー3の平坦部31に対して、サイドシル2が、第1の内向きフランジ13、第2の内向きフランジ14、第3の内向きフランジ15及び第4の内向きフランジ16を介して、例えば抵抗スポット溶接により接合される。 

[サイドシル2とAピラーロアー3との接合] 図2に示すように、第1の内向きフランジ13の第1端面13aと第2の内向きフランジ14の第2端面14bとが対向する状態で、第1の内向きフランジ13及び第2の内向きフランジ14のそれぞれが、Aピラーロアー3の平坦部31に重ね合わされて抵抗スポット溶接によって接合されている。
 図3は、図2に示す接合構造1のA-A矢視断面図(溶接箇所の板厚方向断面図)である。図3に示すように、第1の内向きフランジ13の第1端面13a及び第2の内向きフランジ14の第2端面14b(互いに対向する端面)は、抵抗スポット溶接によって接合面(板厚方向中心部)から楕円状に広がるように形成された単一の溶融金属塊(以下、溶接ナゲットと称する)17によってAピラーロアー3の平坦部31と一体的に接合されている。
 なお、溶融金属塊とは、溶接プロセスによって生じた高熱によって溶けた金属が冷えて凝固したものであり、金属部材同士の強固な接合を担う部位である。一般的には、抵抗スポット溶接によって形成された溶融金属塊は溶接ナゲット(或いは単にナゲット)と呼称されている。
図2に示すように、第2の内向きフランジ14の第1端面14aと第3の内向きフランジ15の第2端面15bとが対向する状態で、第2の内向きフランジ14及び第3の内向きフランジ15のそれぞれが、Aピラーロアー3の平坦部31に重ね合わされて抵抗スポット溶接によって接合されている。
第2の内向きフランジ14の第1端面14a及び第3の内向きフランジ15の第2端面15b(互いに対向する端面)は、抵抗スポット溶接によって接合面から楕円状に広がるように形成された単一の溶接ナゲット18によってAピラーロアー3の平坦部31と一体的に接合されている。なお、溶接ナゲット18の断面形状は、図3に示す溶接ナゲット17の断面形状と同様なので、溶接ナゲット18の断面形状の図示を省略する。
図2に示すように、第3の内向きフランジ15の第1端面15aと第4の内向きフランジ16の第2端面16bとが対向する状態で、第3の内向きフランジ15及び第4の内向きフランジ16のそれぞれが、Aピラーロアー3の平坦部31に重ね合わされて抵抗スポット溶接によって接合されている。
第3の内向きフランジ15の第1端面15a及び第4の内向きフランジ16の第2端面16b(互いに対向する端面)は、抵抗スポット溶接によって接合面から楕円状に広がるように形成された単一の溶接ナゲット19によってAピラーロアー3の平坦部31と一体的に接合されている。なお、溶接ナゲット19の断面形状は、図3に示す溶接ナゲット17の断面形状と同様なので、溶接ナゲット19の断面形状の図示を省略する。
図2に示すように、第4の内向きフランジ16の第1端面16aと第1の内向きフランジ13の第2端面13bとが対向する状態で、第4の内向きフランジ16及び第1の内向きフランジ13のそれぞれが、Aピラーロアー3の平坦部31に重ね合わされて抵抗スポット溶接によって接合されている。
第4の内向きフランジ16の第1端面16a及び第1の内向きフランジ13の第2端面13b(互いに対向する端面)は、抵抗スポット溶接によって接合面から楕円状に広がるように形成された単一の溶接ナゲット20によってAピラーロアー3の平坦部31と一体的に接合されている。なお、溶接ナゲット20の断面形状は、図3に示す溶接ナゲット17の断面形状と同様なので、溶接ナゲット20の断面形状の図示を省略する。
サイドシル2とAピラーロアー3との接合強度は、各溶接ナゲット17、18、19及び20の大きさ(ナゲット径)に依存する。従って、要求される接合強度に応じた溶接条件(電極の押圧力、電流値、通電時間等)にて抵抗スポット溶接を行うことにより、各溶接ナゲット17、18、19及び20のナゲット径を適切に制御する必要がある。
例えば、ナゲット径が2.5√t以上となるように溶接条件を設定することが好ましい。ここで、tは各内向きフランジ13~16の板厚(つまり、サイドシル2の板厚)であり、その単位はmmである。ナゲット径が3.0√t以上となるように溶接条件を設定することがより好ましく、ナゲット径が4.0√t以上となるように溶接条件を設定することがさらに好ましい。
第1の内向きフランジ13、第2の内向きフランジ14、第3の内向きフランジ15及び第4の内向きフランジ16は、いずれも、溶接性、特に抵抗スポット溶接性やレーザ溶接性を確保するために、略同一平面上に存在することが望ましい。言い換えれば、内向きフランジ13~16が、互いに重なることなく、Aピラーロアー3の平坦部31に対して密着(面接触)していることが好ましい。
図4は、図2に示す接合構造1における溶接ナゲット17が形成された箇所を拡大した図である。図4に示すように、第1の内向きフランジ13の第1端面13aと第2の内向きフランジ14の第2端面14bとの間の距離(互いに対向する端面間の距離:以下、端面間距離と称す)Gが、0mm以上1mm未満であることが好ましい。軽量化と、Aピラーロアー3との溶接性、特に抵抗スポット溶接性やレーザ溶接性をいずれも確保するためである。
詳細は後述するが、端面間距離Gが1mm以上の場合、溶接ナゲット17を安定的に形成できないので、接合構造1のねじれ剛性が低下する。ねじれ剛性向上の観点から、端面間距離Gは、0mm以上0.3mm未満であることがより好ましく、0mm以上0.1mm未満であることがさらに好ましい。特に、サイドシル2が変形したときに、第1の内向きフランジ13の第1端面13aと第2の内向きフランジ14の第2端面14bとが互いに接触するように、端面間距離Gを0.1mm未満とすることが推奨される。
 また、内向きフランジ13及び14の板厚t(単位はmm)が大きい場合、抵抗スポット溶接時に溶金が飛散するため、端面間距離Gを板厚tで規格化してもよい。端面間距離Gを板厚tで規格化した場合の条件式は以下の通りである。
好ましい条件式:0mm≦G×t<1mm      …(a)
より好ましい条件式:0mm≦G×t<0.3mm  …(b)
さらに好ましい条件式:0mm≦G×t<0.1mm …(c)
また、端面間距離Gの好ましい範囲を板厚tの百分率で定義する場合、端面間距離Gは0mm以上板厚tの40%未満であることが好ましい。端面間距離Gが板厚tの40%以上の場合、溶接ナゲット17を安定的に形成できないので、接合構造1のねじれ剛性が低下する。ねじれ剛性向上の観点から、端面間距離Gは0mm以上板厚tの10%未満であることがより好ましい。
端面間距離Gを規定する理由は、端面間距離Gが長すぎると、抵抗スポット溶接時に端面間から溶融した溶接金属が漏れ出てしまい、所望の溶接強度を得られないためである。
図4に示すように、第1の内向きフランジ13の第1端面13a及び第2の内向きフランジ14の第2端面14bの延在長さ(互いに対向する端面の延在長さ:以下、端面長さと称する)Dは、3mm以上50mm未満であることが好ましい。端面長さDが3mm未満の場合、抵抗スポット溶接を行うことが困難となる。仮に、抵抗スポット溶接の代わりにレーザ溶接などで溶接することができたとしても、端面長さDが3mm未満の場合は部材としての剛性を確保できない。端面長さDが50mm以上の場合、サイドシル2の重量が増加し、その結果、自動車車体の重量増加を招く。高剛性化と軽量化とのバランスを考慮すると、端面長さDは、3mm以上20mm未満であることがより好ましい。
上記の端面間距離Gの条件及び端面長さDの条件は、第1の内向きフランジ13と第2の内向きフランジ14とのペアだけでなく、第2の内向きフランジ14と第3の内向きフランジ15とのペア、第3の内向きフランジ15と第4の内向きフランジ16とのペア、及び第4の内向きフランジ16と第1の内向きフランジ13とのペアに対しても適用されることが好ましい。

 図1及び図2では、サイドシル2の内向きフランジ13~16とAピラーロアー3の平坦部31とが、4つの溶接ナゲット17~20によって接合されている形態を例示したが、内向きフランジ13~16と平坦部31とが、溶接ナゲット17~20が存在する箇所以外の箇所でも溶接されていてもよい。これにより、サイドシル2とAピラーロアー3との接合強度をさらに高めることが可能になる。ただし、溶接箇所の増加に伴って溶接コストが上昇するため、溶接箇所の総数は、要求される接合強度と製造コストを勘案して、適宜決定すればよい。 
なお、サイドシル2は、素材であるブランクを公知の手法でプレス成形することにより製造されるが、ブランクの長手方向の縁部に内向きフランジ13~16を形成した後に、ブランクのプレス加工を行うことによりサイドシル2を製造してもよい。または、ブランクのプレス加工によってサイドシル2の本体部分を形成した後に、内向きフランジ13~16を形成してもよい。
上記の説明では、抵抗スポット溶接によって形成される溶融金属塊(溶接ナゲット)を構造部材の接合に用いる場合を例示したが、例えば、抵抗スポット溶接以外に、アーク溶接、レーザ溶接及びレーザーアーク溶接等の不連続溶接によって形成される溶融金属塊を構造部材の接合に用いてもよい。これらの不連続溶接によって形成される溶融金属塊の形状として、C形状、O形状、楕円形状、直線形状、曲線形状、波形状および渦巻き形状等が例示される。

 上記のような第1実施形態に係る接合構造1によれば、抵抗スポット溶接数(溶接ナゲット数)を増やすことなく、フランジの拡大量を最小限に抑えながら、自動車車体(特に、サイドシル2とAピラーロアー3との接合部分)の高剛性化を図ること可能になる。すなわち、接合構造1によれば、自動車車体に対する低コスト化、軽量化及び高剛性化という3つの要請をバランス良く実現することが可能となる。
以下、接合構造1によって上記の効果が得られる根拠について、下記実施例を参照しながら説明する。
〔実施例〕
 図1に示す接合構造1の解析モデルを製作し、数値解析を行って、接合構造1の性能を評価した。図5は、解析モデル21を示す説明図であり、図6は解析モデル21におけるサイドシル22の長手方向端部を抜き出して示す側面図である。 
解析モデル21は、接合構造1と同様に、サイドシル22(全長500mm、第1の稜線の曲率半径5mm)の長手方向の両端21a、21bそれぞれに4枚の内向きフランジを備える。両端21a、21bそれぞれに形成された4枚の内向きフランジは、抵抗スポット溶接の接合強度に相当する接合強度で、Aピラーロアーの平坦部である、剛体の端板23、24に接合される。なお、サイドシル22、Aピラーロアーの平坦部23、24ともに、板厚1.4mm、引張強度590MPaの高張力鋼板からなるものとした。

 そして、この解析モデル21の解析において、端板23を完全拘束した状態で、サイドシル22の中心軸回りに端板24を1度(1deg.)回転させることにより、ねじり剛性を評価した。 

 図7A~図7Dは、従来例の解析モデル(従来形状1)の説明図である。図7Aは、従来例の解析モデルにおけるサイドシル22を示す斜視図である。図7Bは、図7AにおけるA矢視図である。図7Cおよび図7Dは、従来例の解析モデルの抵抗スポット溶接位置を示す説明図である。図7Cは8点溶接の場合を示し、図7Dは12点溶接の場合を示す。なお、正方形をなす抵抗スポット溶接の一辺の長さは4.7mmである。これは後述する従来形状2および開発形状でも同じである。 
図7Aに示すように、解析モデル(従来形状1)では4枚の内向きフランジは、互いに重ならずに離間している。4枚の内向きフランジのそれぞれの幅whはいずれも14mmである。互いに隣接する内向きフランジ間のギャップ(端面間距離)は、4枚の内向きフランジが存在する平面内における最短距離で7mmである。図7Cおよび図7Dにおける四角印は抵抗スポット溶接によって形成された溶接ナゲットを模式的に示す。

 図8A~図8Dは、従来例の解析モデル(従来形状2)の説明図である。図8Aは、従来例の解析モデルにおけるサイドシル25を示す斜視図である。図8Bは、図8AにおけるA矢視図である。図8Cおよび図8Dは、従来例の解析モデルの抵抗スポット溶接位置を示す説明である。図8Cは8点溶接の場合を示し、図8Dは12点溶接の場合を示す。図8Cおよび図8Dにおける四角印は抵抗スポット溶接によって形成された溶接ナゲットを模式的に示す。 

 図8Aに示すように、解析モデル(従来形状2)では、互いに隣接する2枚の内向きフランジの一方に段差が形成されており、その段差の部位で2枚の内向きフランジが重ね合わされた状態で接合(溶接)されている。4枚の内向きフランジのそれぞれの幅はいずれも14mmである。 

 図9A~図9Dは、本発明例の解析モデル(開発形状)の説明図である。図9Aは、従来例の解析モデルにおけるサイドシルを示す斜視図である。図9Bは、図9AにおけるA矢視図である。図9Cおよび図9Dは、従来例の解析モデルの抵抗スポット溶接位置を示す説明図である。図9Cは8点溶接の場合を示し、図9Dは12点溶接の場合を示す。図9Cおよび図9Dにおける四角印は抵抗スポット溶接によって形成された溶接ナゲットを模式的に示す。 

 図9Aに示すように、解析モデル(開発形状)では、互いに隣接する2枚の内向きフランジの一方の端面と他方の端面とが同一平面上で対向し且つ密着している。すなわち、端面間距離は0mmである。一方の端面と他方の端面は、単一の溶接ナゲットによって不図示の端板(Aピラーロアーの平坦部に相当)に一体的に接合されている。 

 図10は、従来形状1、2および開発形状の解析モデルについて、8点溶接および12点溶接の場合のねじり剛性を示すグラフである。図11は、従来形状1、2および開発形状の解析モデルについて、8点溶接および12点溶接の場合のねじり剛性/溶接部数(溶接ナゲット数)を示すグラフである。図12は、従来形状1、2および開発形状の解析モデルについて、8点溶接および12点溶接の場合のねじり剛性/(内向きフランジの平面の重量)を示すグラフである。 

 図10及び図11に示すように、溶接部数が同数であるもの同士で比較すると、開発形状におけるねじり剛性および1溶接部数当たりのねじり剛性が最も高いことがわかる。また、図10に示すように、開発形状の8点溶接は、従来形状1の12点溶接よりも剛性が高いことがわかる。さらに、従来形状2と比べて開発形状は内向きフランジの重なりがないために軽量であることがわかる。 
図13は、従来形状1、2、及び開発形状の解析モデルを1度回転させたときの歪み分布を示す説明図である。図13における数字は、線で指し示す部位で解析された板厚中心でのせん断応力の値を示す。

図13を参照しながら、従来形状1、2に対する開発形状の優位性を説明する。
 [従来形状1に対する開発形状の優位性]
 開発形状では、従来形状1と単純に同一溶接点数(同一の溶接ナゲット数)であっても、従来形状1では図7Bに示すように8点溶接の1枚のフランジにおける拘束点数は2点であるのに対し、開発形状では図7Bに示すように8点溶接の1枚のフランジにおける拘束点数は3点となって、フランジを拘束するポイントが増加するために、従来形状1よりも高剛性となる。
[従来形状2と比較した開発形状の優位性]
 従来形状2の内向きフランジの端部には隣接する内向きフランジと重ね合わせるために板厚分の段差部を設ける必要があり、この段差部が応力集中部位となるのに対し、開発形状では隣接する内向きフランジのいずれも完全に平坦にすることができる。このため、従来形状2における内向きフランジのコーナー部分は溶接部の点で拘束されるのに対して、開発形状は点での拘束に加えて内向きフランジのエッジ同士(端面同士)が接触しているため線で拘束することができる。このため、これら2つの影響によって、開発形状では、図13のグラフに示すように、従来形状2よりも内向きフランジのせん断応力が集中することなく均一になり、これにより、せん断応力が均一になることによって剛性が向上する。
 図14は、図9Cに示す開発形状について、互いに隣接する内向きフランジ間のギャップ(端面間距離)とねじり剛性との関係を解析した結果を示す。図14に示すように、端面間距離が1mm以上になると、ねじり剛性が大きく低下するので、端面間距離は0mm以上1mm未満が好ましいことがわかる。また、図14から、端面間距離は0mm以上0.3mm未満であることがより好ましく、0mm以上0.1mm未満であることが最も好ましいこともわかる。特に、端面間距離を0mmとする、すなわち互いに対向する端面同士を密着させることにより、ねじり剛性を大幅に向上できることがわかる。
 以上のような解析結果により、本発明例(接合構造1)によれば、自動車車体に対する低コスト化、軽量化及び高剛性化という3つの要請をバランス良く実現可能であることが立証された。
 また、本発明例(接合構造1)によれば、従来形状2のようにフランジ同士を重ね合わせる必要がないので、従来形状2と比較して、サイドシルとAピラーロアーとの溶接作業工程を削減することができる。
[第2実施形態]次に、本発明の第2実施形態について説明する。図23を用いて説明したように、自動車車体は、構造部材として、サイドシルインナーパネル、サイドシルアウターパネル、第1のレインフォース及び第2のレインフォースを備えている。第2実施形態では、これら構造部材の接合構造に対して本発明の接合構造が適用された形態について説明する。また、上記第1のレインフォース及び第2のレインフォースの少なくとも一方が、センターピラーインナーパネルであってもよい。

 図15は、本発明の第2実施形態に係る接合構造111(サイドシルインナーパネル106、サイドシルアウターパネル107、第1のレインフォース108及び第2のレインフォース109の接合構造)を模式的に示す斜視図である。図16は、図15のB矢視図である。なお、図面を判読し易くするため、図15及び図16においても、サイドシルインナーパネル106及びサイドシルアウターパネル107を二点鎖線により透明の状態で示す。また、以降の説明では、接合構造111そのものがサイドシルである場合を例にとるが、本発明はサイドシルには限定されず、ルーフレールやAピラー等にも適用される。
 図15に示すように、接合構造(すなわちサイドシル)111は、サイドシルインナーパネル106、サイドシルアウターパネル107、第1のレインフォース108および第2のレインフォース109からなる閉断面を有する。
サイドシルインナーパネル106は、材軸方向に一定の断面形状を有する金属成形板であり、より具体的には高張力鋼板からなるプレス成形板である。サイドシルインナーパネル106は、その幅方向の両端部にそれぞれ2つのフランジ106a及び106bを有する。
サイドシルインナーパネル106は、2つのフランジ106a及び106bを要素とするハット型の横断面形状を有する。
サイドシルアウターパネル107は、材軸方向に一定の断面形状を有する金属成形板であり、より具体的には高張力鋼板からなるプレス成形板である。サイドシルアウターパネル107は、その幅方向の両端部にそれぞれ2つのフランジ107a及び107bを有する。
サイドシルアウターパネル107は、2つのフランジ107a及び107bを要素とするハット型の横断面形状を有する。
 第1のレインフォース108は、高張力鋼板からなる平板である。第1のレインフォース108は、2つのフランジ106a及び106bと2つのフランジ107a及び107bとの間に配置され、且つサイドシルインナーパネル106およびサイドシルアウターパネル107に3枚合せで重ね合わされた状態で、抵抗スポット溶接によって形成された溶接ナゲット112によってサイドシルインナーパネル106及びサイドシルアウターパネル107と接合されている。なお、図15では、溶接ナゲット112を可視化した状態で示している。
第2のレインフォース109も、第1のレインフォース108と同様に、高張力鋼板からなる平板である。第2のレインフォース109は、2つのフランジ106a及び106bと2つのフランジ107a及び107bとの間に配置され、且つサイドシルインナーパネル106およびサイドシルアウターパネル107に3枚合せで重ね合わされた状態で、抵抗スポット溶接によって形成された溶接ナゲット112によってサイドシルインナーパネル106及びサイドシルアウターパネル107と接合されている。
第1のレインフォース108および第2のレインフォース109は、サイドシルインナーパネル106およびサイドシルアウターパネル107のそれぞれの長手方向において、互いに突き合わされるか、または所定距離を隔てて配置される。
図15及び図16に示すように、第1のレインフォース108の端面108aと第2のレインフォース109の端面109aとが同一平面上で対向する状態で、第1のレインフォース108及び第2のレインフォース109が、サイドシルインナーパネル106とサイドシルアウターパネル107との間に挟まれている。
図17は、図16に示す溶接箇所のC-C矢視断面図(溶接箇所の板厚方向断面図)である。図16及び図17に示すように、第1のレインフォース108の端面108a及び第2のレインフォース109の端面109a(互いに対向する端面)は、抵抗スポット溶接によって接合面(板厚方向中心部)から楕円状に広がるように形成された単一の溶接ナゲット113aによってサイドシルインナーパネル106のフランジ106a及びサイドシルアウターパネル107のフランジ107aと一体的に接合されている。
このように、第2実施形態では、図16に示す溶接箇所(溶接ナゲット113a)に着目すると、第1のレインフォース108及び第2のレインフォース109が、本発明における一対の第2金属板に対応し、サイドシルインナーパネル106のフランジ106aが、本発明における第1金属板に対応し、サイドシルアウターパネル107のフランジ107aが、本発明おける第3金属板に対応する。
図15に示すように、第1のレインフォース108の端面108a及び第2のレインフォース109の端面109a(互いに対向する端面)は、抵抗スポット溶接によって接合面(板厚方向中心部)から楕円状に広がるように形成された単一の溶接ナゲット113bによってサイドシルインナーパネル106のフランジ106b及びサイドシルアウターパネル107のフランジ107bと一体的に接合されている。
なお、溶接ナゲット113bの板厚方向の断面形状は、図17に示す溶接ナゲット113aの断面形状と同様なので、溶接ナゲット113bの断面形状の図示を省略する。
このように、第2実施形態では、溶接ナゲット113bに着目すると、第1のレインフォース108及び第2のレインフォース109が、本発明における一対の第2金属板に対応し、サイドシルインナーパネル106のフランジ106bが、本発明における第1金属板に対応し、サイドシルアウターパネル107のフランジ107bが、本発明おける第3金属板に対応する。
サイドシルインナーパネル106、サイドシルアウターパネル107、第1のレインフォース108及び第2のレインフォース109の接合強度は、各溶接ナゲット112、113a及び113bの大きさ(ナゲット径)に依存する。従って、要求される接合強度に応じた溶接条件(電極の押圧力、電流値、通電時間等)にて抵抗スポット溶接を行うことにより、各溶接ナゲット112、113a及び113bのナゲット径を適切に制御する必要がある。
例えば、ナゲット径が2.5√t以上となるように溶接条件を設定することが好ましい。ここで、tは各レインフォース108及び109の板厚であり、その単位はmmである。ナゲット径が3.0√t以上となるように溶接条件を設定することがより好ましく、ナゲット径が4.0√t以上となるように溶接条件を設定することがさらに好ましい。
第1のレインフォース108及び第2のレインフォース109は、いずれも、溶接性、特に抵抗スポット溶接性やレーザ溶接性を確保するために、略同一平面上に存在することが望ましい。言い換えれば、第1のレインフォース108及び第2のレインフォース109が、互いに重なることなく、サイドシルインナーパネル106のフランジ106a及び106bと、サイドシルアウターパネル107のフランジ107a及び107bに対して密着(面接触)していることが好ましい。
第1実施形態と同様に、第2実施形態においても、第1のレインフォース108の端面108aと第2のレインフォース109の端面109aとの間の距離(端面間距離)Gが、0mm以上1mm未満であることが好ましい(図15及び図16参照)。また、第1実施形態と同様に、第2実施形態においても、ねじれ剛性向上の観点から、端面間距離Gは、0mm以上0.3mm未満であることがより好ましく、0mm以上0.1mm未満であることがさらに好ましい。
また、第1実施形態と同様に、第2実施形態においても、第1のレインフォース108及び第2のレインフォース109の板厚t(単位はmm)が大きい場合、抵抗スポット溶接時に溶金が飛散するため、端面間距離Gを板厚tで規格化してもよい。端面間距離Gを板厚tで規格化した場合の条件式は、第1実施形態で説明した条件式(a)~(c)と同じである。

また、第1実施形態と同様に、第2実施形態においても、端面間距離Gの好ましい範囲を板厚tの百分率で定義する場合、端面間距離Gは0mm以上板厚tの40%未満であることが好ましい。端面間距離Gが板厚tの40%以上の場合、溶接ナゲット113a及び113bを安定的に形成できないので、接合構造111のねじれ剛性が低下する。ねじれ剛性向上の観点から、端面間距離Gは0mm以上板厚tの10%未満であることがより好ましい。
端面間距離Gを規定する理由は、端面間距離Gが長すぎると、抵抗スポット溶接時に端面間から溶融した溶接金属が漏れ出てしまい、所望の溶接強度を得られないためである。
第1実施形態と同様に、第2実施形態においても、第1のレインフォース108の端面108a及び第2のレインフォース109の端面109aの延在長さ(端面長さ)Dは、3mm以上50mm未満であることが好ましい(図16参照)。ここで、図16に示すように、第2実施形態における端面長さDは、互いに対向する端面108a及び109aの全長のうち、フランジ106a及び107aと重なっている部分の長さである。一方、図16に示す溶接箇所の反対側の溶接箇所、すなわち、溶接ナゲット113bの形成箇所における端面長さDは、互いに対向する端面108a及び109aの全長のうち、フランジ106b及び107bと重なっている部分の長さである。
端面長さDが3mm未満の場合、抵抗スポット溶接を行うことが困難となる。仮に、抵抗スポット溶接の代わりにレーザ溶接などで溶接することができたとしても、端面長さDが3mm未満の場合は部材としての剛性を確保できない。端面長さDが50mm以上の場合、部材重量が増加し、その結果、自動車車体の重量増加を招く。高剛性化と軽量化とのバランスを考慮すると、端面長さDは、3mm以上20mm未満であることがより好ましい。
 上記の説明では、抵抗スポット溶接によって形成される溶融金属塊(溶接ナゲット)を構造部材の接合に用いる場合を例示したが、例えば、抵抗スポット溶接以外に、アーク溶接、レーザ溶接及びレーザーアーク溶接等の不連続溶接によって形成される溶融金属塊を構造部材の接合に用いてもよい。これらの不連続溶接によって形成される溶融金属塊の形状として、C形状、O形状、楕円形状、直線形状、曲線形状、波形状および渦巻き形状等が例示される。
このため、接合構造111では、抵抗スポット溶接といった点状の不連続溶接を用いることによっても、重量増加を抑制しながら低コストで、軸心周りの高い捩じり剛性を得られる。
以上の説明では、接合構造111がサイドシルであるため、第1のレインフォース108及び第2のレインフォース109を、サイドシルインナーパネル106とサイドシルアウターパネル107との間に挟み込む場合を例示した。しかし、本発明はこの場合に限定されず、一対のレインフォース(一対の第2金属板)を、アッパーパネル(第1金属板)とロアーパネル(第3金属板)との間に挟み込む形態にも適用できる。
上記のような第2実施形態に係る接合構造111によれば、抵抗スポット溶接数(溶接ナゲット数)を増やすことなく、パネルに重ね合わせられるレインフォースの面積を最小限に抑えながら、自動車車体の高剛性化(特にサイドシルそのものの捩じり剛性の向上)を図ること可能になる。すなわち、接合構造111によれば、自動車車体に対する低コスト化、軽量化及び高剛性化という3つの要請をバランス良く実現することが可能となる。
以下、接合構造111によって上記の効果が得られる根拠について、下記実施例を参照しながら説明する。
〔実施例〕
図15に示す接合構造(サイドシル)111と、図23に示すような構造を有する従来例のサイドシル2-1~2-3について、一方の端部を完全拘束した状態で他方の端部に軸心周りの捩じりを付与することにより、中心角で0.1deg捩じりを与えたときの捩じり剛性を、数値解析により求めた。
図18は、サイドシル111、サイドシル2-1~2-3の横断面形状を示す説明図である。なお、図18では、サイドシルインナーパネル106、サイドシルアウターパネル107、第1のレインフォース108および第2のレインフォース109それぞれの板厚中心位置を示す。
この解析では、第1のレインフォース108および第2のレインフォース109のそれぞれの長さL1、L2はいずれも239.975mmとし、端面間距離Gは0.05mmとした。また、サイドシルインナーパネル106、サイドシルアウターパネル107、第1のレインフォース108および第2のレインフォース109のそれぞれの強度及び板厚は、以下の通りとした。
・サイドシルインナーパネル106:980MPa、1.0mm
・サイドシルアウターパネル107:980MPa、1.0mm
・第1のレインフォース108  :980MPa、1.0mm
・第2のレインフォース109  :980MPa、1.0mm
 図19(a)~(d)は、それぞれ、従来例のサイドシル2-1~2-3、本発明例のサイドシル111における第1のレインフォース108および第2のレインフォース109のそれぞれの配置と、溶接ナゲット110、112、113a及び113bの位置を示す説明図である。
 解析結果を図20及び21のグラフに示す。図20は、サイドシル2-1、2-2、及び111について、中心角で0.1deg捩じりを与えたときの捩じり剛性を示すグラフである。図21は、サイドシル2-3、及び111について、溶接ナゲット一つ当たりの、中心角で0.1deg捩じりを与えたときの捩じり剛性を示すグラフである。
 図20及び21のグラフにより、本発明によれば、従来よりも、抵抗スポット溶接といった点状の不連続溶接で溶接することによっても、重量増加を抑制しながら低コストで、軸心周りの高い捩じり剛性を得られることがわかる。
 以上、本発明の第1実施形態及び第2実施形態について説明したが、本発明はこれに限定されず、本発明の趣旨を逸脱しない範囲において種々の形態に変更することができる。
 上記第1実施形態では、サイドシル2とAピラーロアー3との接合構造に対して本発明の接合構造を適用する場合を例示したが、例えば、図22に示すサイドシル202とCピラーロアー220との接合構造、または、サイドシル202とクロスメンバー230との接合構造に対しても本発明の接合構造(第1実施形態で説明した接合構造)を適用することができる。
 上記第2実施形態では、サイドシルインナーパネル106、サイドシルアウターパネル107、第1のレインフォース108及び第2のレインフォース109の接合構造に対して本発明の接合構造を適用する場合を例示したが、例えば、図22に示すBピラー204又はルーフレール205において、一対のレインフォースを2枚のパネルで挟み込む構造を採用する必要がある場合には、その構造にに対しても本発明の接合構造(第2実施形態で説明した接合構造)を適用することができる。
 上記第1実施形態及び第2実施形態では、低コスト化、軽量化及び高剛性化が要請される構造体として自動車車体を一例として挙げたが、自動車車体に限らず、例えば鉄道車両の車体及び飛行機の機体などの他の構造体に対しても本発明の接合構造を適用することができる。
 1 接合構造
 2 サイドシル(金属成形板)
 3 Aピラーロアー
 13 第1の内向きフランジ(第2金属板)
 14 第2の内向きフランジ(第2金属板)
 15 第3の内向きフランジ(第2金属板)
 16 第4の内向きフランジ(第2金属板)
31 Aピラーロアーの平坦部(第1金属板)
17~20 溶接ナゲット(溶融金属塊)
111 接合構造
106 サイドシルインナーパネル(第1金属成形板)
107 サイドシルアウターパネル(第2金属成形板)
106a、106b フランジ(第1金属板)
107a、107b フランジ(第3金属板)
108 第1のレインフォース(第2金属板)
109 第2のレインフォース(第2金属板)
113a、113b 溶接ナゲット(溶融金属塊)

Claims (12)


  1.  第1金属板と;
    一対の第2金属板と;
    を備え、
    一方の前記第2金属板の端面と他方の前記第2金属板の端面とが対向する状態で、前記一対の第2金属板のそれぞれが前記第1金属板に重ね合わされており、
    互いに対向する前記端面が、単一の溶融金属塊によって前記第1金属板と一体的に接合されている
    ことを特徴とする接合構造。  
  2. 前記一対の第2金属板が、同一平面上に存在することを特徴とする請求項1に記載の接合構造。

  3.  互いに対向する前記端面間の距離が、0mm以上1mm未満であることを特徴とする請求項1または2に記載の接合構造。
  4.  前記一対の第2金属板の板厚をt(mm)、互いに対向する前記端面間の距離をG(mm)と定義したとき、下記条件式(a)を満足することを特徴とする請求項1または2に記載の接合構造。
    0mm≦G×t<1mm    …(a)
  5.  互いに対向する前記端面間の距離が、前記第2金属板の板厚の40%未満であることを特徴とする請求項1または2に記載の接合構造。
  6.  互いに対向する前記端面の延在長さが、3mm以上50mm未満であることを特徴とする請求項1~5のいずれか一項に記載の接合構造。  

  7.  前記一対の第2金属板が、材軸方向に一定の断面形状を有する金属成形板の材軸方向端部に設けられた一対の内向きフランジであることを特徴とする請求項1~6のいずれか一項に記載の接合構造。  
  8. 前記金属成形板の前記断面形状が、アングル形状、チャンネル形状、又は四角形状であることを特徴とする請求項7に記載の接合構造。
  9. 前記金属成形板が、自動車車体のサイドシルであり、
    前記第1金属板が、前記自動車車体のAピラーロアーの一部であることを特徴とする請求項7または8に記載の接合構造。
  10. 第3金属板をさらに備え、
    前記第1金属板と前記第3金属板との間に前記一対の第2金属板が挟まれた状態で、互いに対向する前記端面が、前記溶融金属塊によって前記第1金属板及び前記第3金属板と一体的に接合されている

    ことを特徴とする請求項1~6のいずれか一項に記載の接合構造。 
  11. 前記第1金属板が、材軸方向にハット形の断面形状を有する第1金属成形板に設けられたフランジであり、
    前記第3金属板が、材軸方向にハット形の断面形状を有する第2金属成形板に設けられたフランジである
    ことを特徴とする請求項10に記載の接合構造。
  12. 前記第1金属成形板が、自動車車体のサイドシルアウターパネルであり、
    前記第2金属成形板が、前記自動車車体のサイドシルインナーパネルであり、
    前記一対の第2金属板が、それぞれ前記自動車車体のレインフォースまたはセンターピラーインナーパネルである
    ことを特徴とする請求項11に記載の接合構造。
PCT/JP2015/074436 2014-08-29 2015-08-28 接合構造 WO2016031964A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
US15/502,435 US10435081B2 (en) 2014-08-29 2015-08-28 Joining structure
BR112017003331A BR112017003331A2 (pt) 2014-08-29 2015-08-28 estrutura de ligação
CA2956055A CA2956055C (en) 2014-08-29 2015-08-28 Joining structure
RU2017105812A RU2660095C1 (ru) 2014-08-29 2015-08-28 Соединительная конструкция
MX2017002403A MX2017002403A (es) 2014-08-29 2015-08-28 Estructura de union.
KR1020177004610A KR101940934B1 (ko) 2014-08-29 2015-08-28 접합 구조
JP2016545637A JP6269843B2 (ja) 2014-08-29 2015-08-28 接合構造
EP15836716.9A EP3196105B1 (en) 2014-08-29 2015-08-28 Joining structure
CN201580045344.7A CN106573653B (zh) 2014-08-29 2015-08-28 接合构造

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014175620 2014-08-29
JP2014-175620 2014-08-29
JP2015020332 2015-02-04
JP2015-020332 2015-02-04

Publications (1)

Publication Number Publication Date
WO2016031964A1 true WO2016031964A1 (ja) 2016-03-03

Family

ID=55399847

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/074436 WO2016031964A1 (ja) 2014-08-29 2015-08-28 接合構造

Country Status (10)

Country Link
US (1) US10435081B2 (ja)
EP (1) EP3196105B1 (ja)
JP (1) JP6269843B2 (ja)
KR (1) KR101940934B1 (ja)
CN (1) CN106573653B (ja)
BR (1) BR112017003331A2 (ja)
CA (1) CA2956055C (ja)
MX (1) MX2017002403A (ja)
RU (1) RU2660095C1 (ja)
WO (1) WO2016031964A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106903430A (zh) * 2017-03-17 2017-06-30 敏实汽车技术研发有限公司 一种汽车门框a柱板、b柱板、c柱板焊接方法
WO2020050422A1 (ja) 2018-09-07 2020-03-12 日本製鉄株式会社 自動車構造部材
JP2021172277A (ja) * 2020-04-28 2021-11-01 日本製鉄株式会社 サイドシル構造

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11019715B2 (en) * 2018-07-13 2021-05-25 Mks Instruments, Inc. Plasma source having a dielectric plasma chamber with improved plasma resistance
CN109014752B (zh) * 2018-10-31 2020-06-23 安徽江淮汽车集团股份有限公司 一种车身顶盖定位机构

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5382631A (en) * 1976-12-28 1978-07-21 Kawasaki Heavy Ind Ltd Tack welding method
JPH0324383U (ja) * 1989-07-13 1991-03-13
JP2006187786A (ja) * 2005-01-06 2006-07-20 Hitachi Cable Ltd チタン薄板の接続方法及びそれを用いて接続した接続部材
JP2006205901A (ja) * 2005-01-28 2006-08-10 Mitsubishi Motors Corp 車体骨格構造

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1363156A (en) * 1920-07-03 1920-12-21 Thomas E Murray Method of electrically welding together the edges of thin metal plates
US2024686A (en) * 1934-03-01 1935-12-17 Westinghouse Air Brake Co Welded seam
JPS5082249A (ja) 1973-11-26 1975-07-03
JPS5261984A (en) 1976-08-20 1977-05-21 Hitachi Ltd Production of photoelectric converting device
JPS60998B2 (ja) 1977-06-28 1985-01-11 オルガノ株式会社 糖液の処理方法
JPS6051627B2 (ja) 1979-01-23 1985-11-14 松下電器産業株式会社 冷房給湯装置
SU1684151A1 (ru) * 1989-04-18 1991-10-15 Волжское объединение по производству легковых автомобилей Узел соединени элементов основани кузова в зоне ниши заднего колеса автомобил
JPH08309554A (ja) * 1995-05-11 1996-11-26 Mitsubishi Electric Corp 電着塗装物品
EP1061240A3 (de) 1999-06-17 2002-12-11 Scambia Industrial Developments Aktiengesellschaft Verfahren zum Verbinden von Verbindungsabschnitten einer Abgasanlage sowie Abgasanlage
JP3330921B2 (ja) * 2000-03-13 2002-10-07 菊池プレス工業株式会社 テーラードブランク製物品及びその製造方法
JP3820867B2 (ja) 2000-10-17 2006-09-13 三菱自動車工業株式会社 車体構造
JP2004182189A (ja) * 2002-12-06 2004-07-02 Honda Motor Co Ltd 車体フレーム
US7273915B2 (en) * 2003-08-13 2007-09-25 Zeon Corporation Crosslinkable resin composition and resin formed body produced therefrom
US20050189790A1 (en) * 2004-02-27 2005-09-01 Chernoff Adrian B. Automotive side frame and upper structure and method of manufacture
JP5082249B2 (ja) * 2006-01-31 2012-11-28 Jfeスチール株式会社 抵抗スポット溶接方法
JP4956367B2 (ja) * 2007-02-27 2012-06-20 株式会社神戸製鋼所 耐脆性き裂伝播特性に優れたスティフナおよび溶接構造体
WO2008123299A1 (ja) * 2007-03-28 2008-10-16 Kabushiki Kaisha Kobe Seiko Sho 異材構造部材
JP5261984B2 (ja) 2007-05-23 2013-08-14 Jfeスチール株式会社 抵抗スポット溶接方法
JP5599553B2 (ja) 2008-03-31 2014-10-01 Jfeスチール株式会社 抵抗スポット溶接方法
JP5378738B2 (ja) 2008-09-25 2013-12-25 Jfeスチール株式会社 閉構造部材の製造方法、プレス成形装置
JP5470839B2 (ja) * 2008-12-25 2014-04-16 株式会社Sumco 貼り合わせシリコンウェーハの製造方法
JP5164870B2 (ja) * 2009-01-21 2013-03-21 日立Geニュークリア・エナジー株式会社 上下t型継手の溶接方法及び上下t型溶接継手並びにこれを用いた溶接構造物
JP5444029B2 (ja) * 2010-02-08 2014-03-19 株式会社神戸製鋼所 複合補強部材の製造方法および複合補強部材
JP5606884B2 (ja) * 2010-11-25 2014-10-15 本田技研工業株式会社 車体のシーム溶接構造
JP2012144185A (ja) 2011-01-13 2012-08-02 Kanto Auto Works Ltd 車両下部構造
US8403390B2 (en) * 2011-03-10 2013-03-26 Shiloh Industries, Inc. Vehicle panel assembly and method of attaching the same
JOP20200150A1 (ar) 2011-04-06 2017-06-16 Esco Group Llc قطع غيار بأوجه مقواه باستخدام عملية التقسية المصلدة والطريقة والتجميع المرافق للتصنيع
JP5411245B2 (ja) 2011-12-08 2014-02-12 本田技研工業株式会社 車体側部構造
WO2014007145A1 (ja) * 2012-07-02 2014-01-09 本田技研工業株式会社 車体パネルの溶接構造
JP2014188548A (ja) * 2013-03-27 2014-10-06 Fuji Heavy Ind Ltd 部材接合方法および部材接合構造
JPWO2016103376A1 (ja) * 2014-12-25 2017-07-13 本田技研工業株式会社 異材接合構造及び異材接合方法
DE102015109471A1 (de) * 2015-06-15 2016-12-15 Benteler Automobiltechnik Gmbh Hybridbauteil sowie Verfahren zur Herstellung des Hybridbauteils

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5382631A (en) * 1976-12-28 1978-07-21 Kawasaki Heavy Ind Ltd Tack welding method
JPH0324383U (ja) * 1989-07-13 1991-03-13
JP2006187786A (ja) * 2005-01-06 2006-07-20 Hitachi Cable Ltd チタン薄板の接続方法及びそれを用いて接続した接続部材
JP2006205901A (ja) * 2005-01-28 2006-08-10 Mitsubishi Motors Corp 車体骨格構造

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106903430A (zh) * 2017-03-17 2017-06-30 敏实汽车技术研发有限公司 一种汽车门框a柱板、b柱板、c柱板焊接方法
WO2020050422A1 (ja) 2018-09-07 2020-03-12 日本製鉄株式会社 自動車構造部材
US11597441B2 (en) 2018-09-07 2023-03-07 Nippon Steel Corporation Automobile structural member
JP2021172277A (ja) * 2020-04-28 2021-11-01 日本製鉄株式会社 サイドシル構造

Also Published As

Publication number Publication date
US10435081B2 (en) 2019-10-08
US20170225717A1 (en) 2017-08-10
CN106573653B (zh) 2020-03-03
MX2017002403A (es) 2017-05-17
KR101940934B1 (ko) 2019-01-21
EP3196105B1 (en) 2021-08-18
RU2660095C1 (ru) 2018-07-04
JPWO2016031964A1 (ja) 2017-06-15
BR112017003331A2 (pt) 2017-11-28
KR20170033386A (ko) 2017-03-24
JP6269843B2 (ja) 2018-01-31
CA2956055C (en) 2019-10-22
CN106573653A (zh) 2017-04-19
EP3196105A1 (en) 2017-07-26
CA2956055A1 (en) 2016-03-03
EP3196105A4 (en) 2018-05-02

Similar Documents

Publication Publication Date Title
JP6269843B2 (ja) 接合構造
JP5703380B2 (ja) 車体上部構造
US9676421B2 (en) Welded structure for vehicle body panel
JP5488703B2 (ja) 成形部材の製造方法
TWI592238B (zh) Automobile structural member and its manufacturing method
US20110233970A1 (en) Vehicle side body structure
JP2009040100A (ja) 車両上部構造
US20080052908A1 (en) Roll-formed structural member with internal web
WO2017142062A1 (ja) 自動車部材
JP5460402B2 (ja) 車体側部構造
JP5478314B2 (ja) 車体側部構造
CN110171484B (zh) 车辆用柱结构以及车辆用柱的制造方法
JP4463183B2 (ja) アルミニウム構造体及びその製造方法
US11577788B2 (en) Joining structure of vehicle steel plates and joining method for vehicle steel plates
JP6142455B2 (ja) 自動車の車体構造
JP6172426B1 (ja) 自動車部材
EP1911663B1 (en) Box-type structure for the cab of a truck and method of production
WO2018143070A1 (ja) 車両用ピラー構成部材
JP7288211B2 (ja) 接合構造、接合構造の製造方法、および、車体
JP2015145225A (ja) 自動車の車体構造
JP6175378B2 (ja) 自動車の車体構造
JP6145886B2 (ja) 自動車の車体構造
JP6137691B2 (ja) 自動車の車体構造

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15836716

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016545637

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2956055

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20177004610

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015836716

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015836716

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: MX/A/2017/002403

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017003331

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2017105812

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112017003331

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170220