WO2016031760A1 - タイヤ用ゴム組成物および空気入りタイヤ - Google Patents

タイヤ用ゴム組成物および空気入りタイヤ Download PDF

Info

Publication number
WO2016031760A1
WO2016031760A1 PCT/JP2015/073693 JP2015073693W WO2016031760A1 WO 2016031760 A1 WO2016031760 A1 WO 2016031760A1 JP 2015073693 W JP2015073693 W JP 2015073693W WO 2016031760 A1 WO2016031760 A1 WO 2016031760A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
rubber
diene rubber
conjugated diene
content
Prior art date
Application number
PCT/JP2015/073693
Other languages
English (en)
French (fr)
Inventor
圭介 前島
佐藤 正樹
芦浦 誠
Original Assignee
横浜ゴム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横浜ゴム株式会社 filed Critical 横浜ゴム株式会社
Priority to CN201580045641.1A priority Critical patent/CN106661283B/zh
Priority to EP15836499.2A priority patent/EP3196241B1/en
Priority to US15/507,212 priority patent/US10703828B2/en
Priority to RU2017109683A priority patent/RU2670897C9/ru
Publication of WO2016031760A1 publication Critical patent/WO2016031760A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/30Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L15/00Compositions of rubber derivatives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/30Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule
    • C08C19/34Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule reacting with oxygen or oxygen-containing groups
    • C08C19/36Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule reacting with oxygen or oxygen-containing groups with carboxy radicals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/30Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule
    • C08C19/34Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule reacting with oxygen or oxygen-containing groups
    • C08C19/38Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule reacting with oxygen or oxygen-containing groups with hydroxy radicals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/02Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type
    • C08F297/04Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type polymerising vinyl aromatic monomers and conjugated dienes
    • C08F297/044Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type polymerising vinyl aromatic monomers and conjugated dienes using a coupling agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/02Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type
    • C08F297/04Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type polymerising vinyl aromatic monomers and conjugated dienes
    • C08F297/046Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type polymerising vinyl aromatic monomers and conjugated dienes polymerising vinyl aromatic monomers and isoprene, optionally with other conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/42Introducing metal atoms or metal-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • C08K5/5419Silicon-containing compounds containing oxygen containing at least one Si—O bond containing at least one Si—C bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • C08L53/025Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes modified
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0016Compositions of the tread

Definitions

  • the present invention relates to a rubber composition for a tire and a pneumatic tire.
  • Winter tires that may be used on icy and snowy roads are required to have excellent performance on icy and snowy roads, that is, braking on icy and snowy roads, in addition to dry grip performance, wet grip performance and wear resistance. .
  • Patent Document 1 discloses that “a rubber composition for tire tread containing a diene rubber component and silica and carbon black, wherein the diene rubber component is (A ) A hydroxyl group-containing aromatic vinyl-conjugated diene copolymer containing 20 to 30% by mass of aromatic vinyl units and 0.1 to 10% by mass of isoprene units and having a vinyl bond content of 40 to 60 mol% in the conjugated diene part.
  • the inventors of the present invention have studied the rubber composition for tire tread described in Patent Document 1, and depending on the type and blending amount of the diene rubber component, the wet grip properties (hereinafter simply referred to as “wet” It was clarified that performance on ice and snow roads may be inferior.
  • an object of the present invention is to provide a tire rubber composition that exhibits excellent wet performance and on-ice / road performance when used as a tire, and a pneumatic tire using the tire rubber composition.
  • the present inventors have formulated a specific amount of a predetermined conjugated diene rubber and added a specific amount of silica and a predetermined alkyltrialkoxysilane to form a wet tire.
  • the present invention was completed by finding that both the performance and the performance on the snowy and snowy road were good. That is, the present inventors have found that the above problem can be solved by the following configuration.
  • the diene rubber includes a butadiene rubber and a specific conjugated diene rubber, and the content of the butadiene rubber in the diene rubber is 20% by mass or more, and the specific conjugated diene system in the diene rubber.
  • the rubber content is 30 to 80% by mass
  • the diene rubber has an average glass transition temperature of ⁇ 65 to ⁇ 45 ° C.
  • the silica content is 90 to 150 parts by mass with respect to 100 parts by mass of the diene rubber
  • the alkyltrialkoxysilane content is 0.1 to 8% by mass with respect to the silica content
  • R 11 represents an alkyl group having 1 to 20 carbon atoms
  • R 12 each independently represents a methyl group or an ethyl group.
  • the specific conjugated diene rubber is a conjugated diene rubber produced by a method for producing a conjugated diene rubber comprising the following steps A, B and C in this order, and has an aromatic vinyl unit content of 38 to 48 mass.
  • a rubber composition for tires which is a conjugated diene rubber having a vinyl bond content of 20 to 35 mass% and a weight average molecular weight of 500,000 to 800,000.
  • Step A By polymerizing a monomer mixture containing isoprene and aromatic vinyl, the isoprene unit content is 80 to 95% by mass, the aromatic vinyl unit content is 5 to 20% by mass, and weight Step of forming polymer block A having an active terminal having an average molecular weight of 500 to 15,000
  • Step B A monomer mixture containing the polymer block A and 1,3-butadiene and aromatic vinyl And the polymerization reaction is continued, and the polymer block B having the active terminal is formed continuously with the polymer block A, thereby having the polymer block A and the polymer block B.
  • Step of obtaining terminal conjugated diene polymer chain Step C Polyorganosiloxane represented by the following formula (1) at the active terminal of the conjugated diene polymer chain Step of reacting
  • R 1 to R 8 are each an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms, and these may be the same or different from each other.
  • X 1 and X 4 are composed of an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 12 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, and a group having 4 to 12 carbon atoms containing an epoxy group.
  • X 2 represents an alkoxy group having 1 to 5 carbon atoms or an alkoxy group having 4 to 12 carbon atoms containing an epoxy group;
  • a plurality of X 2 may be the same or different, and
  • X 3 is a group containing 2 to 20 alkylene glycol repeating units, and when there are a plurality of X 3 , They may be the same or different from each other.
  • the pneumatic tire according to [5] which is used for a winter tire.
  • a rubber composition for a tire that exhibits excellent wet performance and on-ice / road performance when made into a tire, and a pneumatic tire using the rubber composition for a tire.
  • excellent wet performance when used as a tire is simply abbreviated as “excellent in wet performance”, and the excellent performance on ice and snow when used as a tire is also simply referred to as “excellent on snow and snow”.
  • a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • the rubber composition for tires of the present invention (hereinafter also simply referred to as “the rubber composition of the present invention”) comprises a diene rubber, silica, and an alkyltrialkoxysilane represented by the formula (I) described later. contains.
  • the diene rubber includes butadiene rubber and a specific conjugated diene rubber, and the content of the butadiene rubber in the diene rubber is 20% by mass or more, and the specific rubber in the diene rubber.
  • the content of the conjugated diene rubber is 30 to 80% by mass, and the average glass transition temperature of the diene rubber is ⁇ 65 to ⁇ 45 ° C.
  • the specific conjugated diene rubber is a conjugated diene rubber produced by a method for producing a conjugated diene rubber comprising steps A, B and C described later in this order, and has an aromatic vinyl unit content of 38.
  • the silica content is 90 to 150 parts by mass with respect to 100 parts by mass of the diene rubber.
  • the content of the alkyltrialkoxysilane is 0.1 to 8% by mass with respect to the content of silica.
  • the rubber composition of the present invention has such a configuration, both wet performance and on-ice / snow road performance are good when formed into a tire.
  • the reason is not clear, but it is presumed that it is as follows. That is, it is known that characteristics such as wet performance are improved by blending silica or alkoxysilane, but it is known that silica is easily aggregated and the workability is inferior due to aggregation.
  • the specific conjugated diene rubber contained in the rubber composition of the present invention is obtained by polymerizing a monomer mixture containing isoprene and aromatic vinyl into a polymer block A formed of a rubber-based polymer block B. And a further reaction with a specific polyorganosiloxane.
  • the polyorganosiloxane in the specific conjugated diene rubber has a composition while maintaining the low temperature characteristics of the butadiene rubber.
  • the strong affinity with silica in the product makes it possible to disperse the silica at a high level. As a result, it is considered that both the wet performance and the performance on the snowy road are improved.
  • each component contained in the rubber composition of the present invention will be described in detail.
  • the diene rubber contained in the rubber composition of the present invention includes butadiene rubber and a specific conjugated diene rubber.
  • the butadiene rubber contained in the diene rubber is not particularly limited.
  • the content of butadiene rubber in the diene rubber is 20% by mass or more, and preferably 20 to 50% by mass.
  • the “content of butadiene rubber in the diene rubber” refers to the content (% by mass) of butadiene rubber with respect to the entire diene rubber.
  • the butadiene rubber is preferably a butadiene rubber having a high cis structure, specifically, a butadiene rubber having a cis-1,4 bond content of 90% or more, preferably 95% or more. More preferably.
  • a cis rubber having a high cis structure can be polymerized by a usual method using a Ziegler catalyst or a neodymium catalyst.
  • the weight average molecular weight of the butadiene rubber is preferably 50,000 to 1,000,000, and more preferably 200,000 to 800,000.
  • Mw weight average molecular weight of butadiene rubber shall be measured by standard polystyrene conversion by gel permeation chromatography (GPC) using tetrahydrofuran as a solvent.
  • the specific conjugated diene rubber is a conjugated diene rubber produced by a method for producing a conjugated diene rubber comprising the following steps A, B, and C in this order, and has an aromatic vinyl unit content.
  • Step A By polymerizing a monomer mixture containing isoprene and aromatic vinyl, the isoprene unit content is 80 to 95% by mass, the aromatic vinyl unit content is 5 to 20% by mass, and weight Step of forming polymer block A having an active terminal having an average molecular weight of 500 to 15,000
  • Step B A monomer mixture containing the polymer block A and 1,3-butadiene and aromatic vinyl And the polymerization reaction is continued, and the polymer block B having the active terminal is formed continuously with the polymer block A, thereby having the polymer block A and the polymer block B.
  • Step C A polyorganoshiro represented by the formula (1) described later at the active end of the conjugated diene polymer chain Step reacting the Sun will be described in detail for each step.
  • Step A by polymerizing a monomer mixture containing isoprene and aromatic vinyl, the isoprene unit content is 80 to 95% by mass, the aromatic vinyl unit content is 5 to 20% by mass, A polymer block A having an active end having an average molecular weight of 500 to 15,000 is formed.
  • the monomer mixture may contain only isoprene and aromatic vinyl, or may contain monomers other than isoprene and aromatic vinyl.
  • the aromatic vinyl is not particularly limited, and examples thereof include styrene, ⁇ -methylstyrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, 2-ethylstyrene, 3-ethylstyrene, 4-ethylstyrene, Examples include 2,4-diisopropylstyrene, 2,4-dimethylstyrene, 4-t-butylstyrene, 5-t-butyl-2-methylstyrene, vinylnaphthalene, dimethylaminomethylstyrene, and dimethylaminoethylstyrene. Among these, styrene is preferable. These aromatic vinyls can be used alone or in combination of two or more.
  • Examples of monomers other than isoprene and aromatic vinyl other than aromatic vinyl include 1,3-butadiene, 2,3-dimethyl-1,3-butadiene, 2-chloro-1,3-butadiene, 1 Conjugated dienes other than isoprene such as 1,3-pentadiene and 1,3-hexadiene; ⁇ , ⁇ -unsaturated nitriles such as acrylonitrile and methacrylonitrile; unsaturated carboxylic acids such as acrylic acid, methacrylic acid, and maleic anhydride Acids or anhydrides; unsaturated carboxylic esters such as methyl methacrylate, ethyl acrylate, and butyl acrylate; 1,5-hexadiene, 1,6-heptadiene, 1,7-octadiene, dicyclopentadiene, and 5 Non-conjugated dienes such as ethylidene-2-norbornene; Of these, 1,3-buta
  • the monomer mixture is preferably polymerized in an inert solvent.
  • the inert solvent is not particularly limited as long as it is one usually used in solution polymerization and does not inhibit the polymerization reaction. Specific examples thereof include, for example, chain aliphatic hydrocarbons such as butane, pentane, hexane, heptane, and 2-butene; alicyclic hydrocarbons such as cyclopentane, cyclohexane, and cyclohexene; benzene, toluene, and xylene Aromatic hydrocarbons such as; and the like.
  • the amount of the inert solvent used is such that the monomer mixture concentration is, for example, 1 to 80% by mass, preferably 10 to 50% by mass.
  • the monomer mixture is preferably polymerized with a polymerization initiator.
  • the polymerization initiator is not particularly limited as long as it can polymerize a monomer mixture containing isoprene and aromatic vinyl to give a polymer chain having an active end.
  • a polymerization initiator mainly containing an organic alkali metal compound, an organic alkaline earth metal compound, a lanthanum series metal compound, or the like is preferably used.
  • organic alkali metal compound examples include organic monolithium compounds such as n-butyllithium, sec-butyllithium, t-butyllithium, hexyllithium, phenyllithium, and stilbenelithium; dilithiomethane, 1,4-dilithiobutane, 1, Organic polyvalent lithium compounds such as 4-dilithio-2-ethylcyclohexane, 1,3,5-trilithiobenzene, and 1,3,5-tris (lithiomethyl) benzene; organic sodium compounds such as sodium naphthalene; potassium naphthalene and the like Organic potassium compounds; and the like.
  • organic monolithium compounds such as n-butyllithium, sec-butyllithium, t-butyllithium, hexyllithium, phenyllithium, and stilbenelithium
  • dilithiomethane 1,4-dilithiobutane
  • Organic polyvalent lithium compounds such as 4-d
  • organic alkaline earth metal compound examples include di-n-butylmagnesium, di-n-hexylmagnesium, diethoxycalcium, calcium distearate, di-t-butoxystrontium, diethoxybarium, and diisopropoxybarium. , Diethyl mercaptobarium, di-t-butoxybarium, diphenoxybarium, diethylaminobarium, barium distearate, and diketylbarium.
  • Examples of the polymerization initiator having a lanthanum series metal compound as a main catalyst include, for example, a lanthanum series metal comprising a lanthanum series metal such as lanthanum, cerium, praseodymium, neodymium, samarium and gadolinium, a carboxylic acid, and a phosphorus-containing organic acid. And a polymerization initiator composed of this salt and a cocatalyst such as an alkylaluminum compound, an organoaluminum hydride compound, and an organoaluminum halide compound.
  • an organic monolithium compound is preferably used, and n-butyllithium is more preferably used.
  • the organic alkali metal compound is used as an organic alkali metal amide compound by previously reacting with a secondary amine such as dibutylamine, dihexylamine, dibenzylamine, pyrrolidine, hexamethyleneimine, and heptamethyleneimine. Also good.
  • a secondary amine such as dibutylamine, dihexylamine, dibenzylamine, pyrrolidine, hexamethyleneimine, and heptamethyleneimine. Also good.
  • These polymerization initiators can be used alone or in combination of two or more.
  • the amount of the polymerization initiator used may be determined according to the target molecular weight, but is preferably 4 to 250 mmol, more preferably 6 to 200 mmol, and particularly preferably 10 to 70 mmol per 100 g of the monomer mixture. is there.
  • the polymerization temperature for polymerizing the monomer mixture is, for example, in the range of ⁇ 80 to + 150 ° C., preferably 0 to 100 ° C., more preferably 20 to 90 ° C.
  • the polymerization mode any mode such as batch mode or continuous mode can be adopted.
  • bonding mode it can be set as various coupling
  • Examples of the method for adjusting the 1,4-bond content in the isoprene unit in the polymer block A include a method of adjusting the addition amount by adding a polar compound to an inert solvent during polymerization.
  • polar compounds include ether compounds such as dibutyl ether, tetrahydrofuran, and 2,2-di (tetrahydrofuryl) propane; tertiary amines such as tetramethylethylenediamine; alkali metal alkoxides; phosphine compounds; Among these, ether compounds and tertiary amines are preferable, and among them, those capable of forming a chelate structure with the metal of the polymerization initiator are more preferable, 2,2-di (tetrahydrofuryl) propane, and tetramethylethylenediamine Is particularly preferred.
  • ether compounds such as dibutyl ether, tetrahydrofuran, and 2,2-di (tetrahydrofuryl) propane
  • tertiary amines such as tetramethylethylenediamine
  • alkali metal alkoxides alkali metal alkoxides
  • phosphine compounds Among these, ether compounds and
  • the amount of the polar compound used may be determined according to the target 1,4-bond content, and is preferably 0.01 to 30 mol, more preferably 0.05 to 10 mol, relative to 1 mol of the polymerization initiator.
  • the 1,4-bond content in the isoprene unit can be easily adjusted, and problems due to the deactivation of the polymerization initiator hardly occur.
  • the 1,4-bond content in the isoprene unit in the polymer block A is preferably 10 to 95% by mass, and more preferably 20 to 95% by mass.
  • the 1,4-bond content in the isoprene unit refers to the ratio (mass%) of 1,4-bonded isoprene units to the total isoprene units of the polymer block A.
  • the weight average molecular weight (Mw) of the polymer block A is 500 to 15,000 as a value in terms of polystyrene measured by gel permeation chromatography (GPC). Of these, 1,000 to 12,000 is more preferable, and 1,500 to 10,000 is even more preferable. If the weight average molecular weight of the polymer block A is less than 500, the desired low heat build-up and wet performance are hardly exhibited. If the weight average molecular weight of the polymer block A exceeds 15,000, there is a possibility that the balance between the desired low rolling and viscoelastic properties that serve as an indicator of wet performance may be lost.
  • the molecular weight distribution represented by the ratio (Mw / Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) of the polymer block A is preferably 1.0 to 1.5, preferably 1.0 to More preferably, it is 1.3.
  • Mw and Mn are both polystyrene-equivalent values measured by GPC.
  • the isoprene unit content of the polymer block A is 80 to 95% by mass, preferably 85 to 95% by mass.
  • the aromatic vinyl content of the polymer block A is 5 to 20% by mass, preferably 5 to 15% by mass, and more preferably 5 to 13% by mass.
  • the content of monomer units other than isoprene and aromatic vinyl in the polymer block A is preferably 15% by mass or less, more preferably 10% by mass or less, and 6% by mass or less. Is more preferable.
  • step B the polymer block A formed in the above-mentioned step A and the monomer mixture containing 1,3-butadiene and aromatic vinyl are mixed to continue the polymerization reaction.
  • the block B together with the polymer block A, a conjugated diene polymer chain having an active terminal and having the polymer block A and the polymer block B is obtained.
  • the monomer mixture is preferably polymerized in an inert solvent.
  • the definition, specific examples and preferred embodiments of the inert solvent are as described above.
  • the amount of the polymer block A having an active terminal in forming the polymer block B may be determined according to the target molecular weight, but a monomer mixture containing 1,3-butadiene and aromatic vinyl For example, the range is 0.1 to 5 mmol, preferably 0.15 to 2 mmol, more preferably 0.2 to 1.5 mmol per 100 g.
  • the mixing method of the polymer block A and the monomer mixture containing 1,3-butadiene and aromatic vinyl is not particularly limited, and the polymer block A may be mixed into the monomer mixture containing 1,3-butadiene and aromatic vinyl.
  • Polymer block A having active ends may be added, or a monomer mixture containing 1,3-butadiene and aromatic vinyl may be added to the solution of polymer block A having active ends. From the viewpoint of controlling the polymerization, it is preferable to add the polymer block A having an active end to a solution of a monomer mixture containing 1,3-butadiene and aromatic vinyl.
  • the polymerization temperature is, for example, in the range of ⁇ 80 to + 150 ° C., preferably 0 to 100 ° C., more preferably 20 to 90 ° C. .
  • the polymerization mode any mode such as batch mode or continuous mode can be adopted. Of these, the batch type is preferable.
  • the bonding mode of each monomer of the polymer block B can be various bonding modes such as a block shape, a taper shape, and a random shape. Among these, a random shape is preferable.
  • the bonding mode of 1,3-butadiene and aromatic vinyl is made random, the ratio of aromatic vinyl to the total amount of 1,3-butadiene and aromatic vinyl in the polymerization system should not be too high. 1,3-butadiene and aromatic vinyl are preferably supplied continuously or intermittently into the polymerization system for polymerization.
  • the 1,3-butadiene unit content of the polymer block B is not particularly limited, but is preferably 55 to 95% by mass, and more preferably 55 to 90% by mass.
  • the aromatic vinyl unit content in the polymer block B is not particularly limited, but is preferably 5 to 45% by mass, and more preferably 10 to 45% by mass.
  • the polymer block B may further contain other monomer units in addition to the 1,3-butadiene unit and the aromatic vinyl unit.
  • Other monomers used to constitute other monomer units include those described above except for 1,3-butadiene in the “examples of monomers other than isoprene other than aromatic vinyl”. And isoprene.
  • the content of other monomer units in the polymer block B is preferably 50% by mass or less, more preferably 40% by mass or less, and further preferably 35% by mass or less.
  • a polar compound in an amount sufficient to adjust the vinyl bond content in the 1,3-butadiene unit in the polymer block B is added to the inert solvent. It is not necessary to add a new polar compound.
  • Specific examples of the polar compound used for adjusting the vinyl bond content are the same as the polar compound used for the formation of the polymer block A described above.
  • the amount of the polar compound used may be determined according to the target vinyl bond content, and is preferably adjusted in the range of 0.01 to 100 mol, more preferably 0.1 to 30 mol with respect to 1 mol of the polymerization initiator. do it. When the amount of the polar compound used is within this range, it is easy to adjust the vinyl bond content in the 1,3-butadiene unit, and problems due to the deactivation of the polymerization initiator hardly occur.
  • the vinyl bond content in the 1,3-butadiene unit in the polymer block B is preferably 10 to 90% by mass, more preferably 20 to 80% by mass, and particularly preferably 25 to 70% by mass.
  • a conjugated diene polymer chain having an active terminal and having polymer block A and polymer block B can be obtained.
  • the conjugated diene polymer chain having an active end is composed of a polymer block A-polymer block B, and the end of the polymer block B is preferably an active end.
  • a plurality of blocks A may be included, or other polymer blocks may be included. Examples thereof include conjugated diene polymer chains having an active end, such as polymer block A-polymer block B-polymer block A, and polymer block A-polymer block B-a block composed solely of isoprene.
  • the amount of isoprene used is preferably 10 to 100 mol with respect to 1 mol of the polymerization initiator used in the initial polymerization reaction. 15 to 70 mol is more preferable, and 20 to 35 mol is particularly preferable.
  • the mass ratio between the polymer block A and the polymer block B in the conjugated diene polymer chain having the active terminal (when there are a plurality of polymer blocks A and B, the total mass is based on each) is:
  • the mass of polymer block A) / (mass of polymer block B) is preferably 0.001 to 0.1, more preferably 0.003 to 0.07, and 0.005 to 0.
  • the molecular weight distribution represented by the ratio (Mw / Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) of the conjugated diene polymer chain having an active end is 1.0 to 3.0. Is more preferable, 1.0 to 2.5 is more preferable, and 1.0 to 2.2 is particularly preferable.
  • Mw and Mn are both polystyrene-equivalent values measured by GPC.
  • the total content of isoprene units and 1,3-butadiene units is 50 to 99.995% by mass, and the content of aromatic vinyl units is 0.005 to 50% by mass.
  • the total content of isoprene units and 1,3-butadiene units is preferably 55 to 95% by mass, and the content of aromatic vinyl units is more preferably 5 to 45% by mass, and isoprene units
  • the total content of 1,3-butadiene units is 55 to 90% by mass
  • the content of aromatic vinyl units is particularly preferably 10 to 45% by mass.
  • the vinyl bond content in the isoprene unit and the 1,3-butadiene unit in the conjugated diene polymer chain having an active end is the vinyl bond content in the 1,3-butadiene unit in the polymer block B described above. It is the same.
  • Step C is a step in which the polyorganosiloxane represented by the following formula (1) is reacted with the active terminal of the conjugated diene polymer chain obtained in Step B.
  • R 1 to R 8 are an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms, which may be the same as or different from each other.
  • X 1 and X 4 are composed of an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 12 carbon atoms, an alkoxy group having 1 to 5 carbon atoms, and a group having 4 to 12 carbon atoms containing an epoxy group. Any group selected from the group may be the same or different.
  • X 2 is an alkoxy group having 1 to 5 carbon atoms or a group having 4 to 12 carbon atoms containing an epoxy group, and a plurality of X 2 may be the same as or different from each other.
  • X 3 is a group containing 2 to 20 alkylene glycol repeating units, and when there are a plurality of X 3 , they may be the same as or different from each other.
  • m is an integer of 3 to 200
  • n is an integer of 0 to 200
  • k is an integer of 0 to 200.
  • examples of the alkyl group having 1 to 6 carbon atoms represented by R 1 to R 8 , X 1 and X 4 include, for example, methyl group, ethyl group, n- Examples include propyl group, isopropyl group, butyl group, pentyl group, hexyl group, and cyclohexyl group.
  • examples of the aryl group having 6 to 12 carbon atoms include a phenyl group and a methylphenyl group. Among these, a methyl group and an ethyl group are preferable from the viewpoint of production of the polyorganosiloxane itself.
  • examples of the alkoxy group having 1 to 5 carbon atoms represented by X 1 , X 2 and X 4 include a methoxy group, an ethoxy group, a propoxy group, A propoxy group, a butoxy group, etc. are mentioned. Of these, a methoxy group and an ethoxy group are preferred from the viewpoint of reactivity with the active terminal of the conjugated diene polymer chain.
  • the group having 4 to 12 carbon atoms containing an epoxy group represented by X 1 , X 2 and X 4 is represented by the following formula (2). Group.
  • Z 1 is an alkylene group or alkylarylene group having 1 to 10 carbon atoms
  • Z 2 is a methylene group, a sulfur atom, or an oxygen atom
  • E is a carbon number 2 having an epoxy group.
  • * represents a bonding position.
  • Z 2 is an oxygen atom
  • Z 2 is an oxygen atom
  • E is a glycidyl group
  • Z 1 is C 1 -C
  • Particularly preferred are those having an alkylene group of 1 to 3
  • Z 2 is an oxygen atom
  • E is a glycidyl group.
  • X 1 and X 4 are preferably a group having 4 to 12 carbon atoms or an alkyl group having 1 to 6 carbon atoms containing an epoxy group.
  • X 2 is preferably a group having 4 to 12 carbon atoms containing an epoxy group, X 1 and X 4 are alkyl groups having 1 to 6 carbon atoms, and X 2 is an epoxy group. It is more preferably a group having 4 to 12 carbon atoms containing a group.
  • the group represented by the following formula (3) is preferable as the group containing X 3 , that is, a repeating unit of 2 to 20 alkylene glycol.
  • t is an integer of 2 to 20
  • P is an alkylene group or alkylarylene group having 2 to 10 carbon atoms
  • R is a hydrogen atom or a methyl group
  • Q is 1 to carbon atoms. 10 alkoxy groups or aryloxy groups.
  • * represents a bonding position.
  • P is an alkylene group having 3 carbon atoms
  • R is a hydrogen atom
  • Q is a methoxy group
  • m is an integer of 3 to 200, preferably an integer of 20 to 150, more preferably an integer of 30 to 120. Since m is an integer of 3 or more, the specific conjugated diene rubber has high affinity with silica, and as a result, the tire obtained from the rubber composition of the present invention exhibits excellent low heat build-up. Moreover, since m is an integer of 200 or less, the production of the polyorganosiloxane itself is facilitated, and the viscosity of the rubber composition of the present invention is lowered.
  • n is an integer of 0 to 200, preferably an integer of 0 to 150, more preferably an integer of 0 to 120.
  • k is an integer of 0 to 200, preferably an integer of 0 to 150, more preferably an integer of 0 to 130.
  • the total number of m, n and k is preferably 3 to 400, more preferably 20 to 300, and more preferably 30 to 250. Is particularly preferred.
  • the epoxy group in the polyorganosiloxane reacts with the active end of the conjugated diene polymer chain, at least a part of the epoxy group in the polyorganosiloxane is opened. By ringing, it is considered that a bond between the carbon atom of the portion where the epoxy group is opened and the active end of the conjugated diene polymer chain is formed.
  • the alkoxy group in the polyorganosiloxane reacts with the active end of the conjugated diene polymer chain, at least a part of the alkoxy group in the polyorganosiloxane is eliminated, so that the released alkoxy group is bonded. It is considered that a bond is formed between the silicon atom in the polyorganosiloxane and the active end of the conjugated diene polymer chain.
  • the amount of the polyorganosiloxane (hereinafter also referred to as a modifier) is such that the ratio of the total number of moles of epoxy groups and alkoxy groups in the modifier with respect to 1 mol of the polymerization initiator used in the polymerization is 0.1 to 1.
  • the amount is preferably in the range of 0.2 to 0.9, more preferably in the range of 0.3 to 0.8.
  • the active ends of some of the conjugated diene polymer chains may be inactivated so long as the effects of the present invention are not impaired. That is, the specific conjugated diene rubber has a polymerization terminator, a polymerization terminal modifier other than the above-described modifier, and a cup as long as the active ends of some conjugated diene polymer chains do not hinder the effects of the present invention.
  • polymerization terminal modifier and coupling agent used at this time include N-methyl-2-pyrrolidone, N-vinyl-2-pyrrolidone, N-phenyl-2-pyrrolidone, and N-methyl- ⁇ -caprolactam.
  • N-substituted cyclic amides such as; N-substituted cyclic ureas such as 1,3-dimethylethyleneurea and 1,3-diethyl-2-imidazolidinone; 4,4′-bis (dimethylamino) benzophenone, And N-substituted aminoketones such as 4,4′-bis (diethylamino) benzophenone; aromatic isocyanates such as diphenylmethane diisocyanate and 2,4-tolylene diisocyanate; N, such as N, N-dimethylaminopropylmethacrylamide N-disubstituted aminoalkylmethacrylamides; 4-N, N-dimethyl N-substituted aminoaldehydes such as tilaminobenzaldehyde 1 N-substituted carbodiimides such as dicyclohexylcarbodiimide; Schiff bases such as N-ethyleth
  • a tire obtained by using a hyperbranched conjugated diene rubber obtained by using a halogenated silicon compound having 5 or more silicon-halogen atom bonds in one molecule as a coupling agent has excellent steering stability.
  • These polymerization terminal modifiers and coupling agents may be used alone or in combination of two or more.
  • the modifier When the above-mentioned modifier is reacted with the active end of the conjugated diene polymer chain, it is preferable to add the modifier to the solution containing the conjugated diene polymer chain having the active end, and the reaction is good. From the viewpoint of controlling the concentration, it is more preferable to dissolve the modifier in an inert solvent and add it to the polymerization system.
  • the solution concentration is preferably in the range of 1 to 50% by mass.
  • the timing for adding the modifier is not particularly limited, but the polymerization reaction in the conjugated diene polymer chain having an active end is not completed, and a solution containing a conjugated diene polymer chain having an active end is simple.
  • a solution containing a conjugated diene polymer chain having an active end is preferably 100 ppm or more, more preferably 300 to 50,000 ppm of monomer. It is desirable to add a denaturing agent or the like to this solution in the contained state. By adding a modifier or the like in this way, it is possible to suppress the side reaction between the conjugated diene polymer chain having an active terminal and impurities contained in the polymerization system, and to control the reaction well. Become.
  • Conditions for reacting the above-described modifier with the active end of the conjugated diene polymer chain include, for example, a temperature in the range of 0 to 100 ° C., preferably 30 to 90 ° C., and each reaction time. Is, for example, in the range of 1 minute to 120 minutes, preferably 2 minutes to 60 minutes.
  • a polymerization terminator such as alcohol or water such as methanol and isopropanol. preferable.
  • the polymerization solvent is separated from the polymerization solution by direct drying or steam stripping and the resulting specific conjugated diene rubber is recovered.
  • an extension oil may be mixed into the polymerization solution and the specific conjugated diene rubber may be recovered as an oil extension rubber. Examples of the extending oil used when the specific conjugated diene rubber is recovered as an oil-extended rubber include paraffinic, aromatic and naphthenic petroleum softeners, plant softeners, and fatty acids.
  • the content of polycyclic aromatics extracted by the IP346 method is less than 3%.
  • the amount used is, for example, 5 to 100 parts by weight, preferably 10 to 60 parts by weight, and more preferably 20 to 50 parts by weight with respect to 100 parts by weight of the conjugated diene rubber.
  • the specific conjugated diene rubber is a structure in which three or more conjugated diene polymer chains are formed by reacting a conjugated diene polymer chain having an active terminal with the polyorganosiloxane described above (hereinafter referred to as a structure).
  • a structure in which three or more conjugated diene polymer chains formed by reacting a conjugated diene polymer chain having an active end with the polyorganosiloxane described above is simply “three or more 5-40% by mass, more preferably 5-30% by mass, and more preferably 10-20% by mass of “a structure in which a conjugated diene polymer chain is bonded”. % Content is particularly preferable.
  • the ratio of the structure to which 3 or more conjugated diene polymer chains are bonded is in the above range, the solidification property and the drying property at the time of production are improved, and moreover, when silica is blended, A rubber composition for a tire excellent in processability and a tire excellent in lower heat generation can be provided.
  • the ratio (mass fraction) of the structure in which three or more conjugated diene polymer chains are bonded to the total amount of the specific conjugated diene rubber finally obtained is 3 of the conjugated diene polymer chains. Expressed as a coupling ratio above branching. This can be measured by gel permeation chromatography (polystyrene conversion).
  • the area ratio of the peak portion having a peak top molecular weight of 2.8 times or more of the peak top molecular weight indicated by the peak with the smallest molecular weight relative to the total elution area is calculated as the conjugated diene weight.
  • the coupling rate is 3 or more branches of the combined chain.
  • the aromatic vinyl unit content of the specific conjugated diene rubber is 38 to 48% by mass. Among them, the content is preferably 40 to 45% by mass because wet performance becomes better and low rolling resistance becomes better. When the aromatic vinyl unit content is less than 38% by mass, the wet performance is insufficient. Moreover, when the said aromatic vinyl unit content exceeds 48 mass%, low rolling resistance will deteriorate.
  • the vinyl bond content of the specific conjugated diene rubber is 20 to 35% by mass. Among these, the content is preferably 25 to 30% by mass because low rolling resistance and workability are good. When the vinyl bond content is less than 20% by mass, the low rolling resistance is deteriorated.
  • vinyl bond content refers to the ratio (mass%) which a vinyl bond accounts among the conjugated diene units contained in specific conjugated diene type rubber.
  • the specific conjugated diene rubber has a weight average molecular weight (Mw) of 500,000 to 800,000 as a polystyrene-equivalent value measured by gel permeation chromatography (GPC). Of these, 600,000 to 700,000 is preferable. When the weight average molecular weight is less than 500,000, the wear performance is deteriorated. Moreover, when the said weight average molecular weight exceeds 800,000, workability will deteriorate.
  • the molecular weight distribution represented by the ratio (Mw / Mn) between the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the specific conjugated diene rubber is preferably 1.1 to 3.0. It is more preferably 2 to 2.5, and particularly preferably 1.2 to 2.2. Mw and Mn are both polystyrene-equivalent values measured by GPC.
  • the Mooney viscosity (ML 1 + 4 , 100 ° C.) of the specific conjugated diene rubber is preferably 20 to 100, more preferably 30 to 90, and particularly preferably 35 to 80.
  • the Mooney viscosity of the oil-extended rubber is preferably in the above range.
  • the content of the specific conjugated diene rubber in the diene rubber is 30 to 80% by mass, preferably 30 to 70% by mass, and more preferably 35 to 60% by mass.
  • the content of the specific conjugated diene rubber in the diene rubber is less than 30% by mass, the wet performance and the performance on snowy and icy roads are insufficient.
  • the “content of the specific conjugated diene rubber in the diene rubber” refers to the content (% by mass) of the specific conjugated diene rubber with respect to the entire diene rubber.
  • the diene rubber may contain a rubber component (other rubber component) other than the butadiene rubber and the specific conjugated diene rubber described above.
  • a rubber component is not particularly limited, but for example, natural rubber (NR), isoprene rubber (IR), aromatic vinyl-conjugated diene copolymer rubber other than specific conjugated diene rubber, acrylonitrile-butadiene copolymer rubber (NBR), butyl rubber (IIR), halogenated butyl rubber (Br-IIR, Cl-IIR), chloroprene rubber (CR) and the like.
  • aromatic vinyl-conjugated diene copolymer rubber examples include styrene butadiene rubber (SBR) other than modified conjugated diene rubber, styrene isoprene copolymer rubber, and the like. Of these, SBR is preferable.
  • SBR styrene butadiene rubber
  • the content of other rubber components in the diene rubber is not particularly limited, but is preferably 10 to 30% by mass.
  • the “content of other rubber components in the diene rubber” refers to the content (% by mass) of other rubber components with respect to the entire diene rubber.
  • the average glass transition temperature (Tg) of such a diene rubber is ⁇ 65 to ⁇ 45 ° C., preferably ⁇ 60 to ⁇ 50 ° C.
  • the average Tg of the diene rubber is obtained by multiplying the Tg of each rubber component by the mass% of each rubber component.
  • the Tg of each rubber was measured by a differential scanning calorimeter (DSC) at a rate of temperature increase of 20 ° C./min, and calculated by the midpoint method.
  • DSC differential scanning calorimeter
  • the silica contained in the rubber composition of the present invention is not particularly limited, and any conventionally known silica compounded in the rubber composition for uses such as tires can be used.
  • Specific examples of the silica include fumed silica, calcined silica, precipitated silica, pulverized silica, fused silica, colloidal silica, and the like. These may be used alone or in combination of two or more. You may use together.
  • the silica preferably contains 50% by mass or more of silica (X) having a CTAB adsorption specific surface area of 80 to 130 m 2 / g for the reason that the performance on snowy and snowy roads is further improved, and 50 to 100% by mass. It is preferable to include.
  • 100 mass% means mix
  • the CTAB adsorption specific surface area is a value obtained by measuring the adsorption amount of n-hexadecyltrimethylammonium bromide on the silica surface in accordance with JIS K6217-3: 2001 “Part 3: Determination of specific surface area—CTAB adsorption method”. It is.
  • the content of silica is 90 to 150 parts by mass with respect to 100 parts by mass of the diene rubber. It is preferably 95 to 145 parts by mass, and more preferably 100 to 140 parts by mass. If the silica content is less than 90 parts by mass, the wet performance will be insufficient, and if it exceeds 150 parts by mass, the performance on ice and snow road will be insufficient.
  • alkyltrialkoxysilane The alkyltrialkoxysilane contained in the rubber composition of the present invention is an alkyltrialkoxysilane represented by the following formula (I).
  • R 11 represents an alkyl group having 1 to 20 carbon atoms
  • R 12 each independently represents a methyl group or an ethyl group.
  • alkyl group having 1 to 20 carbon atoms of R 11 include, for example, a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, and a nonyl group. Decyl group, undecyl group, dodecyl group and the like.
  • the carbon number of R 11 is preferably 7 or more, and more specifically, an octyl group or a nonyl group is more preferable.
  • the content of the alkyltrialkoxysilane is 0.1 to 8% by mass, preferably 1 to 7% by mass, based on the content of the silica.
  • the content of the alkyltrialkoxysilane is less than 0.1% by mass or more than 8 parts by mass, the wet performance and the performance on ice and snow roads are insufficient.
  • the rubber composition of the present invention can further contain other components (arbitrary components) as needed, as long as the effects and purposes are not impaired.
  • the optional components include fillers other than silica (for example, carbon black), silane coupling agents, aromatic modified terpene resins, zinc oxide (zinc white), stearic acid, anti-aging agents, waxes, and processing aids.
  • various additives such as oil, liquid polymer, thermosetting resin, vulcanizing agent (for example, sulfur), and vulcanization accelerator.
  • silane coupling agent is not specifically limited,
  • Specific examples of the silane coupling agent include bis (3-triethoxysilylpropyl) tetrasulfide, bis (3-triethoxysilylpropyl) trisulfide, bis (3-triethoxysilylpropyl) disulfide, Bis (2-triethoxysilylethyl) tetrasulfide, bis (3-trimethoxysilylpropyl) tetrasulfide, bis (2-trimethoxysilylethyl) tetrasulfide, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxy Silane, 2-mercaptoethyltrimethoxysilane, 2-mercaptoethyltriethoxysi
  • silane coupling agent other than the above examples include ⁇ -mercaptopropyltriethoxysilane, 3- [ethoxybis (3,6,9,12,15-pentaoxaoctacosan-1-yloxy), and the like.
  • Silyl] -1-propanethiol and other mercapto silane coupling agents 3-octanoylthiopropyltriethoxysilane and other thiocarboxylate silane coupling agents; 3-thiocyanate propyltriethoxysilane and other thiocyanate silane cups Ring agents; and the like.
  • bis- (3-triethoxysilylpropyl) tetrasulfide and / or bis- (3-triethoxysilylpropyl) disulfide is preferably used from the viewpoint of reinforcing effect.
  • Si75 [bis- (3-triethoxysilylpropyl) disulfide; manufactured by Evonik Degussa] and the like can be mentioned.
  • the content when the silane coupling agent is contained is preferably 3 to 20% by mass, and preferably 4 to 15% by mass with respect to the content of the silica. More preferred.
  • the silane coupling agent and the silica satisfy the following formula (A) because the wet performance and the performance on snowy and snowy roads are further improved.
  • “content of silane coupling agent (g)” and “content of silica (g)” refer to content (g) relative to diene rubber 100 (g), respectively. .
  • Formula (A): [content of silane coupling agent (g) ⁇ 100 / ⁇ content of silica (g) ⁇ CTAB adsorption specific surface area (m 2 /g) ⁇ ] ⁇ 100 3.5 to 7.5
  • the rubber composition of the present invention preferably further contains an aromatic-modified terpene resin because the wet performance is further improved.
  • the softening point of the aromatic modified terpene resin is not particularly limited, but is preferably 100 to 150 ° C, and more preferably 100 to 130 ° C.
  • the softening point is a Vicat softening point measured according to JIS K7206: 1999.
  • the content when the aromatic modified terpene resin is contained is not particularly limited, but is preferably 1 to 30 parts by mass with respect to 100 parts by mass of the diene rubber. More preferably, it is ⁇ 20 parts by mass.
  • the method for producing the rubber composition of the present invention is not particularly limited, and specific examples thereof include, for example, kneading the above-described components using a known method and apparatus (for example, a Banbury mixer, a kneader, a roll, etc.). The method of doing is mentioned.
  • a known method and apparatus for example, a Banbury mixer, a kneader, a roll, etc.
  • the method of doing is mentioned.
  • the rubber composition of the present invention contains sulfur or a vulcanization accelerator, components other than sulfur and the vulcanization accelerator are first mixed at a high temperature (preferably 100 to 160 ° C.), cooled, and then sulfur. Or it is preferable to mix a vulcanization accelerator.
  • the rubber composition of the present invention can be vulcanized or crosslinked under conventionally known vulcanization or crosslinking conditions.
  • the pneumatic tire of the present invention is a pneumatic tire manufactured using the above-described rubber composition of the present invention. Especially, it is preferable that it is a pneumatic tire which has arrange
  • FIG. 1 shows a schematic partial sectional view of a tire representing an example of an embodiment of the pneumatic tire of the present invention, but the pneumatic tire of the present invention is not limited to the embodiment shown in FIG.
  • reference numeral 1 represents a bead portion
  • reference numeral 2 represents a sidewall portion
  • reference numeral 3 represents a tire tread portion
  • a carcass layer 4 in which fiber cords are embedded is mounted between the pair of left and right bead portions 1, and the end of the carcass layer 4 extends from the inside of the tire to the outside around the bead core 5 and the bead filler 6. Wrapped and rolled up.
  • a belt layer 7 is disposed over the circumference of the tire on the outside of the carcass layer 4.
  • the rim cushion 8 is arrange
  • the tire tread portion 3 is formed of the above-described rubber composition of the present invention.
  • the pneumatic tire of the present invention can be manufactured, for example, according to a conventionally known method. Moreover, as gas with which a tire is filled, inert gas, such as nitrogen, argon, helium other than the air which adjusted normal or oxygen partial pressure, can be used.
  • inert gas such as nitrogen, argon, helium other than the air which adjusted normal or oxygen partial pressure
  • the solution was added in the form of a 20% by mass xylene solution so as to be equivalent to 0.33 mol of n-butyllithium, and reacted for 30 minutes. Thereafter, as a polymerization terminator, an amount of methanol corresponding to twice the mole of n-butyllithium used was added to obtain a solution containing a specific conjugated diene rubber.
  • a small amount of an anti-aging agent (Irganox 1520, manufactured by BASF) was added to this solution, and 25 parts of Fukkoreramic 30 (manufactured by Nippon Oil Co., Ltd.) as an extending oil was added to 100 parts by mass of the specific conjugated diene rubber. After addition of parts by mass, solid rubber was recovered by a steam stripping method. The obtained solid rubber was dehydrated with a roll and dried in a drier to obtain a solid specific conjugated diene rubber.
  • X 1 , X 4 , R 1 to R 3 and R 5 to R 8 are methyl groups.
  • m is 80 and k is 120.
  • X 2 is a group represented by the following formula (5) (here, * represents a bonding position).
  • the obtained specific conjugated diene rubber was measured for weight average molecular weight, molecular weight distribution, coupling ratio of 3 or more branches, aromatic vinyl unit content, vinyl bond content, and Mooney viscosity.
  • the measurement results are shown in Table 2.
  • the measurement method is as follows.
  • Weight average molecular weight, molecular weight distribution, and coupling ratio of 3 or more branches Regarding the weight average molecular weight, molecular weight distribution, and coupling ratio of 3 or more branches (ratio of “structure in which 3 or more conjugated diene polymer chains are bonded to the specific conjugated diene rubber”) (mass%)
  • a chart based on the molecular weight in terms of polystyrene was obtained by permeation chromatography, and obtained based on the chart.
  • the specific measurement conditions for gel permeation chromatography are as follows.
  • HLC-8020 manufactured by Tosoh Corporation
  • Column GMH-HR-H (manufactured by Tosoh Corporation) connected in series-Detector: Differential refractometer RI-8020 (manufactured by Tosoh Corporation) -Elution night: Tetrahydrofuran-Column temperature: 40 ° C
  • the coupling ratio of three or more branches is the peak portion area (s2) having a peak top molecular weight of 2.8 times or more of the peak top molecular weight indicated by the smallest peak of molecular weight with respect to the total elution area (s1).
  • Mooney viscosity The Mooney viscosity (ML 1 + 4 , 100 ° C.) was measured according to JIS K6300-1: 2013.
  • the rubber composition of Comparative Example 1 in which the compounding amount of the specific conjugated diene rubber is out of the predetermined range has little improvement in wet performance and on-snow road performance even when compared with the standard example. (Comparative Example 1). Further, the rubber composition of Comparative Example 2 in which the compounding amount of silica is less than the predetermined range has poor wet performance, and the rubber composition of Comparative Example 3 in which the compounding amount of silica is more than the predetermined range is the performance on ice and snow road. Was found to be inferior (Comparative Examples 2 to 3).
  • the rubber composition of Comparative Example 4 in which the average glass transition temperature of the diene rubber is higher than the predetermined temperature range is inferior in snow and snow road performance
  • the rubber composition of Comparative Example 5 in which the average temperature is lower than the predetermined temperature range is wet It was found that the performance was inferior (Comparative Examples 4 to 5).
  • the rubber composition of Comparative Example 6 in which the compounding amount of the alkyltrialkoxysilane is out of the predetermined range and Comparative Example 7 in which dimethyldiethoxysilane was compounded had wet performance and performance on snowy and snowy roads as compared with the standard example. was found to be hardly improved (Comparative Examples 6 to 7).
  • the rubber composition of the comparative example 8 in which the compounding quantity of the butadiene rubber in a diene-type rubber is less than the predetermined range has inferior performance on an ice-snow road (comparative example 8).
  • the rubber compositions of Examples 1 to 9 in which a predetermined amount of the specific conjugated diene rubber and butadiene rubber and a predetermined amount of silica and alkyltrialkoxysilane are mixed are both wet performance and on snowy roads. It was found that the performance was good. In particular, from the comparison of Examples 1, 7 and 8, it was found that the wet performance and the performance on snowy and snowy roads are further improved when the silane coupling agent and silica to be blended satisfy the above formula (A).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Tires In General (AREA)
  • Graft Or Block Polymers (AREA)
  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)
  • Oil, Petroleum & Natural Gas (AREA)

Abstract

 本発明の課題は、タイヤにしたときに優れたウェット性能および氷雪路上性能を示すタイヤ用ゴム組成物、ならびに、上記タイヤ用ゴム組成物を用いた空気入りタイヤを提供することである。本発明のタイヤ用ゴム組成物は、ジエン系ゴムと、シリカと、所定のアルキルトリアルコキシシランとを含有し、上記ジエン系ゴムが、ブタジエンゴムと特定共役ジエン系ゴムとを含み、上記ジエン系ゴム中の上記ブタジエンゴムの含有量が20質量%以上であり、上記ジエン系ゴム中の上記特定共役ジエン系ゴムの含有量が30~80質量%であり、上記ジエン系ゴムの平均ガラス転移温度が-65~-45℃であり、上記特定共役ジエン系ゴムが、特定の製造方法により製造される共役ジエン系ゴムであって、芳香族ビニル単位含有量、ビニル結合含有量および重量平均分子量が所定の範囲である共役ジエン系ゴムである、タイヤ用ゴム組成物である。

Description

タイヤ用ゴム組成物および空気入りタイヤ
 本発明は、タイヤ用ゴム組成物および空気入りタイヤに関する。
 氷雪路面で使用されることがある冬用タイヤでは、ドライグリップ性能、ウェットグリップ性能および耐摩耗性に加えて、氷雪路上性能、すなわち氷雪路上での制動性に優れていることも要求されている。
 このような要求を満たすことを目的として、例えば、特許文献1には、「ジエン系ゴム成分ならびにシリカおよびカーボンブラックを含むタイヤトレッド用ゴム組成物であって、前記ジエン系ゴム成分が、(A)芳香族ビニル単位を20~30質量%およびイソプレン単位を0.1~10質量%含み、かつ、共役ジエン部のビニル結合量が40~60モル%である水酸基含有芳香族ビニル-共役ジエン共重合体を30~80質量%、(B)シス-1,4-結合含有量が90モル%以上である高シスブタジエンゴムを10~50質量%、および(C)天然ゴムを10~50質量%、を含み、シリカおよびカーボンブラックの合計量がジエン系ゴム成分100質量部に対して90~150質量部であることを特徴とするタイヤトレッド用ゴム組成物。」が提案されており([請求項1])、このゴム組成物をトレッドに用いた冬用タイヤも記載されている([請求項5][請求項6])。
特開2010-270207号公報
 本発明者らは、特許文献1に記載されたタイヤトレッド用ゴム組成物について検討したところ、ジエン系ゴム成分の種類や配合量によっては、作製されるタイヤのウェットグリップ性(以下、単に「ウェット性能」と略す。)や氷雪路上性能が劣る場合があることを明らかとした。
 そこで、本発明は、タイヤにしたときに優れたウェット性能および氷雪路上性能を示すタイヤ用ゴム組成物、ならびに、上記タイヤ用ゴム組成物を用いた空気入りタイヤを提供することを課題とする。
 本発明者らは、上記課題について鋭意検討した結果、所定の共役ジエン系ゴムを特定量配合し、かつ、シリカおよび所定のアルキルトリアルコキシシランを特定量配合することにより、タイヤにしたときにウェット性能および氷雪路上性能がいずれも良好となることを見出し、本発明を完成させた。
 すなわち、本発明者らは、以下の構成により上記課題が解決できることを見出した。
 [1] ジエン系ゴムと、シリカと、下記式(I)で表されるアルキルトリアルコキシシランとを含有し、
 上記ジエン系ゴムが、ブタジエンゴムと、特定共役ジエン系ゴムとを含み、上記ジエン系ゴム中の上記ブタジエンゴムの含有量が20質量%以上であり、上記ジエン系ゴム中の上記特定共役ジエン系ゴムの含有量が30~80質量%であり、
 上記ジエン系ゴムの平均ガラス転移温度が、-65~-45℃であり、
 上記シリカの含有量が、上記ジエン系ゴム100質量部に対して90~150質量部であり、
 上記アルキルトリアルコキシシランの含有量が、上記シリカの含有量に対して0.1~8質量%であり、
Figure JPOXMLDOC01-appb-C000003

(式(I)中、R11は、炭素数1~20のアルキル基を表し、R12はそれぞれ独立にメチル基またはエチル基を表す。)
 上記特定共役ジエン系ゴムが、下記工程AとBとCとをこの順に備える共役ジエン系ゴムの製造方法により製造される共役ジエン系ゴムであって、芳香族ビニル単位含有量が38~48質量%であり、ビニル結合含有量が20~35質量%であり、重量平均分子量が500,000~800,000である、共役ジエン系ゴムである、タイヤ用ゴム組成物。
 ・工程A:イソプレンおよび芳香族ビニルを含む単量体混合物を重合することにより、イソプレン単位含有量が80~95質量%であり、芳香族ビニル単位含有量が5~20質量%であり、重量平均分子量が500~15,000である、活性末端を有する重合体ブロックAを形成する工程
 ・工程B:上記重合体ブロックAと、1,3-ブタジエンおよび芳香族ビニルを含む単量体混合物とを混合して重合反応を継続し、活性末端を有する重合体ブロックBを、上記重合体ブロックAと一続きにして形成することにより、上記重合体ブロックAおよび上記重合体ブロックBを有する、活性末端を有する共役ジエン系重合体鎖を得る工程
 ・工程C:上記共役ジエン系重合体鎖の上記活性末端に、下記式(1)で示されるポリオルガノシロキサンを反応させる工程
Figure JPOXMLDOC01-appb-C000004

(式(1)中、R~Rは、炭素数1~6のアルキル基、または炭素数6~12のアリール基であり、これらは互いに同一であっても相違していてもよい。XおよびXは、炭素数1~6のアルキル基、炭素数6~12のアリール基、炭素数1~5のアルコキシ基、および、エポキシ基を含有する炭素数4~12の基からなる群より選ばれるいずれかの基であり、これらは互いに同一であっても相違していてもよい。Xは、炭素数1~5のアルコキシ基、またはエポキシ基を含有する炭素数4~12の基であり、複数あるXは互いに同一であっても相違していてもよい。Xは、2~20のアルキレングリコールの繰返し単位を含有する基であり、Xが複数あるときは、それらは互いに同一であっても相違していてもよい。mは3~200の整数、nは0~200の整数、kは0~200の整数である。)
 [2] 更にシランカップリング剤を含有し、上記シランカップリング剤および上記シリカが、下記式(A)を満たす、[1]に記載のタイヤ用ゴム組成物。
 式(A):〔シランカップリング剤の含有量(g)×100/{シリカの含有量(g)×CTAB吸着比表面積(m/g)}〕×100=3.5~7.5
 [3] 上記シリカが、CTAB吸着比表面積が80~130m/gのシリカ(X)を50質量%以上含む、[1]または[2]に記載のタイヤ用ゴム組成物。
 [4] さらに軟化点が100~150℃の芳香族変性テルペン樹脂を含有し、
 上記芳香族変性テルペン樹脂の含有量が、上記ジエン系ゴム100質量部に対して3~20質量部である、[1]~[3]のいずれかに記載のタイヤ用ゴム組成物。
 [5] [1]~[4]のいずれかに記載のタイヤ用ゴム組成物を、キャップトレッドに配置した空気入りタイヤ。
 [6] 冬用タイヤに用いる[5]に記載の空気入りタイヤ。
 以下に示すように、本発明によれば、タイヤにしたときに優れたウェット性能および氷雪路上性能を示すタイヤ用ゴム組成物、ならびに、上記タイヤ用ゴム組成物を用いた空気入りタイヤを提供することができる。
 なお、以下、タイヤにしたときにウェット性能に優れることを単に「ウェット性能に優れる」とも略し、また、タイヤにしたときに氷雪路上性能が優れることを単に「氷雪路上性能に優れる」とも略す。
本発明の空気入りタイヤの実施態様の一例を表すタイヤの部分断面概略図である。
 以下に、本発明のタイヤ用ゴム組成物、および、本発明のタイヤ用ゴム組成物を用いた空気入りタイヤについて説明する。
 なお、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
[タイヤ用ゴム組成物]
 本発明のタイヤ用ゴム組成物(以下、単に「本発明のゴム組成物」とも略す。)は、ジエン系ゴムと、シリカと、後述する式(I)で表されるアルキルトリアルコキシシランとを含有する。
 ここで、上記ジエン系ゴムは、ブタジエンゴムと、特定共役ジエン系ゴムとを含み、上記ジエン系ゴム中の上記ブタジエンゴムの含有量が20質量%以上であり、上記ジエン系ゴム中の上記特定共役ジエン系ゴムの含有量が30~80質量%であり、また、上記ジエン系ゴムの平均ガラス転移温度は、-65~-45℃である。
 また、上記特定共役ジエン系ゴムは、後述する工程AとBとCとをこの順に備える共役ジエン系ゴムの製造方法により製造される共役ジエン系ゴムであって、芳香族ビニル単位含有量が38~48質量%であり、ビニル結合含有量が20~35質量%であり、重量平均分子量が500,000~800,000である、共役ジエン系ゴムである。
 また、上記シリカの含有量は、上記ジエン系ゴム100質量部に対して90~150質量部である。
 同様に、上記アルキルトリアルコキシシランの含有量は、上記シリカの含有量に対して0.1~8質量%である。
 本発明のゴム組成物はこのような構成をとるため、タイヤにしたときにウェット性能および氷雪路上性能がいずれも良好となる。その理由は明らかではないが、およそ以下のとおりと推測される。
 すなわち、シリカやアルコキシシランを配合することで、ウェット性能などの特性が向上することが知られているが、シリカが凝集しやすく、凝集により加工性などが劣ることが知られている。
 ここで、本発明のゴム組成物に含有する特定共役ジエン系ゴムは、イソプレンおよび芳香族ビニルを含む単量体混合物を重合することにより形成される重合体ブロックAにゴム系の重合体ブロックBを形成し、さらに特定のポリオルガノシロキサンを反応させることで得られる。
 そのため、本発明では、ブタジエンゴムと特定共役ジエン系ゴムとを所定量含むジエン系ゴムを用いることにより、ブタジエンゴムの低温特性を保持しつつ、特定共役ジエン系ゴム中の上記ポリオルガノシロキサンは組成物中のシリカと強く親和することにより、シリカを高いレベルで分散することが可能となり、その結果、ウェット性能および氷雪路上性能がいずれも良好になったと考えられる。
 以下、本発明のゴム組成物に含有される各成分について詳述する。
 〔ジエン系ゴム〕
 本発明のゴム組成物に含有されるジエン系ゴムは、ブタジエンゴムと、特定共役ジエン系ゴムとを含む。
 <ブタジエンゴム>
 上記ジエン系ゴムに含まれるブタジエンゴムは特に制限されない。
 上記ジエン系ゴム中のブタジエンゴムの含有量は、20質量%以上であり、20~50質量%であることが好ましい。
 なお、「ジエン系ゴム中のブタジエンゴムの含有量」とは、ジエン系ゴム全体に対するブタジエンゴムの含有量(質量%)を指す。
 本発明においては、上記ブタジエンゴムとして、ハイシス構造を有するブタジエンゴムであるのが好ましく、具体的には、シス-1,4結合の含有量が90%以上、好ましくは95%以上のブタジエンゴムであるのがより好ましい。
 なお、このようなハイシス構造のブタジエンゴムは、チーグラー系触媒やネオジウム触媒などを用いた通常の方法で重合することができる。
 上記ブタジエンゴムの重量平均分子量は、50000~1000000であることが好ましく、200000~800000であることがより好ましい。
 ここで、ブタジエンゴムの重量平均分子量(Mw)は、テトラヒドロフランを溶媒とするゲルパーミエーションクロマトグラフィー(GPC)により標準ポリスチレン換算により測定するものとする。
 <特定共役ジエン系ゴム>
 上述のとおり、上記特定共役ジエン系ゴムは、下記工程AとBとCとをこの順に備える共役ジエン系ゴムの製造方法により製造される共役ジエン系ゴムであって、芳香族ビニル単位含有量が38~48質量%であり、ビニル結合含有量が20~35質量%であり、重量平均分子量が500,000~800,000である、共役ジエン系ゴムである。
 ・工程A:イソプレンおよび芳香族ビニルを含む単量体混合物を重合することにより、イソプレン単位含有量が80~95質量%であり、芳香族ビニル単位含有量が5~20質量%であり、重量平均分子量が500~15,000である、活性末端を有する重合体ブロックAを形成する工程
 ・工程B:上記重合体ブロックAと、1,3-ブタジエンおよび芳香族ビニルを含む単量体混合物とを混合して重合反応を継続し、活性末端を有する重合体ブロックBを、上記重合体ブロックAと一続きにして形成することにより、上記重合体ブロックAおよび上記重合体ブロックBを有する、活性末端を有する共役ジエン系重合体鎖を得る工程
 ・工程C:上記共役ジエン系重合体鎖の上記活性末端に、後述する式(1)で示されるポリオルガノシロキサンを反応させる工程
 以下、各工程について詳述する。
(工程A)
 工程Aでは、イソプレンおよび芳香族ビニルを含む単量体混合物を重合することにより、イソプレン単位含有量が80~95質量%であり、芳香族ビニル単位含有量が5~20質量%であり、重量平均分子量が500~15,000である、活性末端を有する重合体ブロックAを形成する。
 上記単量体混合物はイソプレンおよび芳香族ビニルのみであってもよいし、イソプレンおよび芳香族ビニル以外の単量体を含んでもよい。
 上記芳香族ビニルとしては特に制限されないが、例えば、スチレン、α-メチルスチレン、2-メチルスチレン、3-メチルスチレン、4-メチルスチレン、2-エチルスチレン、3-エチルスチレン、4-エチルスチレン、2,4-ジイソプロピルスチレン、2,4-ジメチルスチレン、4-t-ブチルスチレン、5-t-ブチル-2-メチルスチレン、ビニルナフタレン、ジメチルアミノメチルスチレン、およびジメチルアミノエチルスチレンなどが挙げられる。これらの中でも、スチレンが好ましい。これらの芳香族ビニルは、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。
 イソプレンおよび芳香族ビニル以外の単量体のうち芳香族ビニル以外の例としては、1,3-ブタジエン、2,3-ジメチル-1,3-ブタジエン、2-クロロ-1,3-ブタジエン、1,3-ペンタジエン、および1,3-ヘキサジエンなどのイソプレン以外の共役ジエン;アクリロニトリル、およびメタクリロニトリルなどのα,β-不飽和ニトリル;アクリル酸、メタクリル酸、および無水マレイン酸などの不飽和カルボン酸または酸無水物;メタクリル酸メチル、アクリル酸エチル、およびアクリル酸ブチルなどの不飽和カルボン酸エステル;1,5-ヘキサジエン、1,6-ヘプタジエン、1,7-オクタジエン、ジシクロペンタジエン、および5-エチリデン-2-ノルボルネンなどの非共役ジエン;などが挙げられる。これらの中でも、1,3-ブタジエンが好ましい。これらは、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。
 上記単量体混合物は、不活性溶媒中で重合されるのが好ましい。
 上記不活性溶媒としては、溶液重合において通常使用されるものであって、重合反応を阻害しないものであれば、特に限定されない。その具体例としては、例えば、ブタン、ペンタン、ヘキサン、ヘプタン、および2-ブテンなどの鎖状脂肪族炭化水素;シクロペンタン、シクロヘキサン、およびシクロヘキセンなどの脂環式炭化水素;ベンゼン、トルエン、およびキシレンなどの芳香族炭化水素;などが挙げられる。不活性溶媒の使用量は、単量体混合物濃度が、例えば、1~80質量%であり、好ましくは10~50質量%である。
 上記単量体混合物は重合開始剤により重合されるのが好ましい。
 上記重合開始剤としては、イソプレンおよび芳香族ビニルを含む単量体混合物を重合させて、活性末端を有する重合体鎖を与えることができるものであれば、特に限定されない。その具体例としては、例えば、有機アルカリ金属化合物および有機アルカリ土類金属化合物、ならびにランタン系列金属化合物などを主触媒とする重合開始剤が好ましく使用される。有機アルカリ金属化合物としては、例えば、n-ブチルリチウム、sec-ブチルリチウム、t-ブチルリチウム、ヘキシルリチウム、フェニルリチウム、およびスチルベンリチウムなどの有機モノリチウム化合物;ジリチオメタン、1,4-ジリチオブタン、1,4-ジリチオ-2-エチルシクロヘキサン、1,3,5-トリリチオベンゼン、および1,3,5-トリス(リチオメチル)ベンゼンなどの有機多価リチウム化合物;ナトリウムナフタレンなどの有機ナトリウム化合物;カリウムナフタレンなどの有機カリウム化合物;などが挙げられる。また、有機アルカリ土類金属化合物としては、例えば、ジ-n-ブチルマグネシウム、ジ-n-ヘキシルマグネシウム、ジエトキシカルシウム、ジステアリン酸カルシウム、ジ-t-ブトキシストロンチウム、ジエトキシバリウム、ジイソプロポキシバリウム、ジエチルメルカプトバリウム、ジ-t-ブトキシバリウム、ジフェノキシバリウム、ジエチルアミノバリウム、ジステアリン酸バリウム、およびジケチルバリウムなどが挙げられる。ランタン系列金属化合物を主触媒とする重合開始剤としては、例えば、ランタン、セリウム、プラセオジム、ネオジム、サマリウムおよびガドリニウムなどのランタン系列金属と、カルボン酸、およびリン含有有機酸などとからなるランタン系列金属の塩を主触媒とし、これと、アルキルアルミニウム化合物、有機アルミニウムハイドライド化合物、および有機アルミニウムハライド化合物などの助触媒とからなる重合開始剤などが挙げられる。これらの重合開始剤の中でも、有機モノリチウム化合物を用いることが好ましく、n-ブチルリチウムを用いることがより好ましい。なお、有機アルカリ金属化合物は、予め、ジブチルアミン、ジヘキシルアミン、ジベンジルアミン、ピロリジン、ヘキサメチレンイミン、およびヘプタメチレンイミンなどの第2級アミンと反応させて、有機アルカリ金属アミド化合物として使用してもよい。これらの重合開始剤は、それぞれ単独で、または2種以上を組み合わせて用いることができる。
 重合開始剤の使用量は、目的とする分子量に応じて決定すればよいが、単量体混合物100g当り、好ましくは4~250mmol、より好ましくは6~200mmol、特に好ましくは10~70mmolの範囲である。
 上記単量体混合物を重合する重合温度は、例えば、-80~+150℃、好ましくは0~100℃、より好ましくは20~90℃の範囲である。
 重合様式としては、回分式、連続式など、いずれの様式をも採用できる。また、結合様式としては、例えば、ブロック状、テーパー状、およびランダム状などの種々の結合様式とすることができる。
 重合体ブロックAにおけるイソプレン単位中の1,4-結合含有量を調節する方法としては、例えば、重合に際し、不活性溶媒に極性化合物を添加し、その添加量を調整する方法などが挙げられる。極性化合物としては、ジブチルエーテル、テトラヒドロフラン、および2,2-ジ(テトラヒドロフリル)プロパンなどのエーテル化合物;テトラメチルエチレンジアミンなどの第三級アミン;アルカリ金属アルコキシド;ホスフィン化合物;などが挙げられる。これらの中でも、エーテル化合物、および第三級アミンが好ましく、その中でも、重合開始剤の金属とキレート構造を形成し得るものがより好ましく、2,2-ジ(テトラヒドロフリル)プロパン、およびテトラメチルエチレンジアミンが特に好ましい。
 極性化合物の使用量は、目的とする1,4-結合含有量に応じて決定すればよく、重合開始剤1molに対して、0.01~30molが好ましく、0.05~10molがより好ましい。極性化合物の使用量が上記範囲内にあると、イソプレン単位中の1,4-結合含有量の調節が容易であり、かつ重合開始剤の失活による不具合も発生し難い。
 重合体ブロックAにおけるイソプレン単位中の1,4-結合含有量は、10~95質量%であることが好ましく、20~95質量%であることがより好ましい。
 なお、本明細書において、イソプレン単位中の1,4-結合含有量とは、重合体ブロックAが有する全イソプレン単位に対する、1,4-結合のイソプレン単位の割合(質量%)を指す。
 重合体ブロックAの重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィ(GPC)によって測定されるポリスチレン換算の値として、500~15,000である。なかでも、1,000~12,000であることがより好ましく、1,500~10,000であることがさらに好ましい。
 重合体ブロックAの重量平均分子量が500に満たないと、所望の低発熱性とウェット性能が発現しにくくなる。
 重合体ブロックAの重量平均分子量が15,000を超えると、所望の低転がりとウェット性能の指標となる粘弾性特性のバランスが崩れる可能性がある。
 重合体ブロックAの重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)で表わされる分子量分布は、1.0~1.5であることが好ましく、1.0~1.3であることがより好ましい。重合体ブロックAの分子量分布の値(Mw/Mn)が上記範囲内にあると、特定共役ジエン系ゴムの製造がより容易となる。なお、MwおよびMnはいずれもGPCによって測定されるポリスチレン換算の値である。
 重合体ブロックAのイソプレン単位含有量は、80~95質量%であり、85~95質量%であることが好ましい。
 重合体ブロックAの芳香族ビニル含有量は5~20質量%であり、5~15質量%であることが好ましく、5~13質量%であることがより好ましい。
 重合体ブロックAにおける、イソプレンおよび芳香族ビニル以外の単量体単位の含有量は、15質量%以下であることが好ましく、10質量%以下であることがより好ましく、6質量%以下であることがさらに好ましい。
(工程B)
 工程Bでは、上述した工程Aで形成された重合体ブロックAと、1,3-ブタジエンおよび芳香族ビニルを含む単量体混合物とを混合して重合反応を継続し、活性末端を有する重合体ブロックBを、上記重合体ブロックAと一続きにして形成することにより、上記重合体ブロックAおよび上記重合体ブロックBを有する、活性末端を有する共役ジエン系重合体鎖を得る。
 上記芳香族ビニルの具体例および好適な態様は上述のとおりである。
 上記単量体混合物は、不活性溶媒中で重合されるのが好ましい。
 上記不活性溶媒の定義、具体例および好適な態様は上述のとおりである。
 重合体ブロックBを形成する際の活性末端を有する重合体ブロックAの使用量は、目的とする分子量に応じて決定すればよいが、1,3-ブタジエンおよび芳香族ビニルを含む単量体混合物100g当り、例えば、0.1~5mmol、好ましくは0.15~2mmol、より好ましくは0.2~1.5mmolの範囲である。
 重合体ブロックAと1,3-ブタジエンおよび芳香族ビニルを含む単量体混合物との混合方法は、特に限定されず、1,3-ブタジエンおよび芳香族ビニルを含む単量体混合物の溶液中に活性末端を有する重合体ブロックAを加えてもよいし、活性末端を有する重合体ブロックAの溶液中に1,3-ブタジエンおよび芳香族ビニルを含む単量体混合物を加えてもよい。重合の制御の観点より、1,3-ブタジエンおよび芳香族ビニルを含む単量体混合物の溶液中に活性末端を有する重合体ブロックAを加えることが好ましい。
 1,3-ブタジエンおよび芳香族ビニルを含む単量体混合物を重合するに際し、重合温度は、例えば、-80~+150℃、好ましくは0~100℃、より好ましくは20~90℃の範囲である。重合様式としては、回分式、連続式など、いずれの様式をも採用できる。なかでも、回分式が好ましい。
 重合体ブロックBの各単量体の結合様式は、例えば、ブロック状、テーパー状、およびランダム状などの種々の結合様式とすることができる。これらの中でも、ランダム状が好ましい。1,3-ブタジエンおよび芳香族ビニルの結合様式をランダム状にする場合、重合系内において、1,3-ブタジエンと芳香族ビニルとの合計量に対する芳香族ビニルの比率が高くなりすぎないように、1,3-ブタジエンと芳香族ビニルとを、連続的または断続的に重合系内に供給して重合することが好ましい。
 重合体ブロックBの1,3-ブタジエン単位含有量は特に制限されないが、55~95質量%であることが好ましく、55~90質量%であることがより好ましい。
 重合体ブロックBの芳香族ビニル単位含有量は特に制限されないが、5~45質量%であることが好ましく、10~45質量%であることがより好ましい。
 重合体ブロックBは、1,3-ブタジエン単位および芳香族ビニル単位以外に、さらに、その他の単量体単位を有していてもよい。その他の単量体単位を構成するために用いられるその他の単量体としては、上述した「イソプレン以外の単量体のうち芳香族ビニル以外の例」のうち1,3-ブタジエンを除いたものや、イソプレンなどが挙げられる。
 重合体ブロックBのその他の単量体単位の含有量は、50質量%以下であることが好ましく、40質量%以下であることがより好ましく、35質量%以下であることがさらに好ましい。
 重合体ブロックBにおける1,3-ブタジエン単位中のビニル結合含有量を調節するためには、重合に際し、不活性溶媒に極性化合物を添加することが好ましい。ただし、重合体ブロックAの調製時に、不活性溶媒に、重合体ブロックBにおける1,3-ブタジエン単位中のビニル結合含有量を調節するのに十分な量の極性化合物を添加している場合は、新たに極性化合物を添加しなくてもよい。ビニル結合含有量を調節するために用いられる極性化合物についての具体例は、上述の重合体ブロックAの形成に用いられる極性化合物と同様である。極性化合物の使用量は、目的とするビニル結合含有量に応じて決定すればよく、重合開始剤1molに対して、好ましくは0.01~100mol、より好ましくは0.1~30molの範囲で調節すればよい。極性化合物の使用量がこの範囲にあると、1,3-ブタジエン単位中のビニル結合含有量の調節が容易であり、かつ、重合開始剤の失活による不具合も発生し難い。
 重合体ブロックBにおける1,3-ブタジエン単位中のビニル結合含有量は、好ましくは10~90質量%、より好ましくは20~80質量%、特に好ましくは25~70質量%である。
 工程AおよびBにより、重合体ブロックAおよび重合体ブロックBを有する、活性末端を有する共役ジエン系重合体鎖を得ることができる。
 上記活性末端を有する共役ジエン系重合体鎖は、生産性の観点より、重合体ブロックA-重合体ブロックBで構成され、重合体ブロックBの末端が活性末端であることが好ましいが、重合体ブロックAを複数有していてもよいし、その他の重合体ブロックを有していてもよい。例えば、重合体ブロックA-重合体ブロックB-重合体ブロックA、および重合体ブロックA-重合体ブロックB-イソプレンのみからなるブロックなどの、活性末端を有する共役ジエン系重合体鎖が挙げられる。共役ジエン系重合体鎖の活性末端側にイソプレンのみからなるブロックを形成させる場合、イソプレンの使用量は、初めの重合反応に使用した重合開始剤1molに対して、10~100molであることが好ましく、15~70molであることがより好ましく、20~35molであることが特に好ましい。
 上記活性末端を有する共役ジエン系重合体鎖における重合体ブロックAと重合体ブロックBとの質量比(重合体ブロックA、Bが複数ある場合は、それぞれの合計質量を基準とする)は、(重合体ブロックAの質量)/(重合体ブロックBの質量)として、0.001~0.1であることが好ましく、0.003~0.07であることがより好ましく、0.005~0.05であることが特に好ましい。
 上記活性末端を有する共役ジエン系重合体鎖の重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)で表わされる分子量分布は、1.0~3.0であることが好ましく、1.0~2.5であることがより好ましく、1.0~2.2であることが特に好ましい。活性末端を有する共役ジエン系重合体鎖の分子量分布の値(Mw/Mn)が上記範囲内にあると、特定共役ジエン系ゴムの製造が容易となる。なお、MwおよびMnはいずれもGPCによって測定されるポリスチレン換算の値である。
 上記活性末端を有する共役ジエン系重合体鎖中、イソプレン単位および1,3-ブタジエン単位の合計の含有量が50~99.995質量%、芳香族ビニル単位の含有量が0.005~50質量%であることが好ましく、イソプレン単位および1,3-ブタジエン単位の合計の含有量が55~95質量%、芳香族ビニル単位の含有量が5~45質量%であることがより好ましく、イソプレン単位および1,3-ブタジエン単位の合計の含有量が55~90質量%、芳香族ビニル単位の含有量が10~45質量%であることが特に好ましい。また、活性末端を有する共役ジエン系重合体鎖におけるイソプレン単位中および1,3-ブタジエン単位中のビニル結合含有量は、上述した重合体ブロックBにおける1,3-ブタジエン単位中のビニル結合含有量と同様である。
(工程C)
 工程Cは、工程Bで得られた共役ジエン系重合体鎖の活性末端に、下記式(1)で示されるポリオルガノシロキサンを反応させる工程である。
Figure JPOXMLDOC01-appb-C000005
 上記式(1)中、R~Rは、炭素数1~6のアルキル基、または炭素数6~12のアリール基であり、これらは互いに同一であっても相違していてもよい。XおよびXは、炭素数1~6のアルキル基、炭素数6~12のアリール基、炭素数1~5のアルコキシ基、および、エポキシ基を含有する炭素数4~12の基からなる群より選ばれるいずれかの基であり、これらは互いに同一であっても相違していてもよい。Xは、炭素数1~5のアルコキシ基、またはエポキシ基を含有する炭素数4~12の基であり、複数あるXは互いに同一であっても相違していてもよい。Xは、2~20のアルキレングリコールの繰返し単位を含有する基であり、Xが複数あるときは、それらは互いに同一であっても相違していてもよい。mは3~200の整数、nは0~200の整数、kは0~200の整数である。
 上記式(1)で表されるポリオルガノシロキサンにおいて、R1~R8、X1およびX4で表される炭素数1~6のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、ブチル基、ペンチル基、ヘキシル基、およびシクロヘキシル基などが挙げられる。炭素数6~12のアリール基としては、例えば、フェニル基、およびメチルフェニル基などが挙げられる。これらのなかでも、ポリオルガノシロキサン自体の製造の観点から、メチル基、およびエチル基が好ましい。
 上記式(1)で表されるポリオルガノシロキサンにおいて、X1、X2、およびX4で表される炭素数1~5のアルコキシ基としては、例えば、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、およびブトキシ基などが挙げられる。なかでも、共役ジエン系重合体鎖の活性末端との反応性の観点から、メトキシ基、およびエトキシ基が好ましい。
 上記式(1)で表されるポリオルガノシロキサンにおいて、X1、X2、およびX4で表されるエポキシ基を含有する炭素数4~12の基としては、下記式(2)で表される基が挙げられる。
Figure JPOXMLDOC01-appb-C000006
 上記式(2)中、Z1は、炭素数1~10のアルキレン基またはアルキルアリーレン基であり、Z2はメチレン基、硫黄原子、または酸素原子であり、Eはエポキシ基を有する炭素数2~10の炭化水素基である。上記式(2)中、*は結合位置を表す。
 上記式(2)で表される基において、Z2が酸素原子であるものが好ましく、Z2が酸素原子であり、かつ、Eがグリシジル基であるものがより好ましく、Z1が炭素数1~3のアルキレン基であり、Z2が酸素原子であり、かつ、Eがグリシジル基であるものが特に好ましい。
 上記式(1)で表されるポリオルガノシロキサンにおいて、X1およびX4としては、上記の中でも、エポキシ基を含有する炭素数4~12の基、または炭素数1~6のアルキル基が好ましく、また、X2としては、上記の中でも、エポキシ基を含有する炭素数4~12の基が好ましく、X1およびX4が炭素数1~6のアルキル基であり、かつ、X2がエポキシ基を含有する炭素数4~12の基であることがより好ましい。
 上記式(1)で表されるポリオルガノシロキサンにおいて、X3、すなわち2~20のアルキレングリコールの繰返し単位を含有する基としては、下記式(3)で表される基が好ましい。
Figure JPOXMLDOC01-appb-C000007
 上記式(3)中、tは2~20の整数であり、Pは炭素数2~10のアルキレン基またはアルキルアリーレン基であり、Rは水素原子またはメチル基であり、Qは炭素数1~10のアルコキシ基またはアリールオキシ基である。上記式(3)中、*は結合位置を表す。これらの中でも、tが2~8の整数であり、Pが炭素数3のアルキレン基であり、Rが水素原子であり、かつ、Qがメトキシ基であるものが好ましい。
 上記式(1)で表されるポリオルガノシロキサンにおいて、mは3~200の整数であり、好ましくは20~150の整数、より好ましくは30~120の整数である。mが3以上の整数であるため、特定共役ジエン系ゴムはシリカとの親和性が高く、その結果、本発明のゴム組成物から得られるタイヤは優れた低発熱性を示す。また、mが200以下の整数であるため、ポリオルガノシロキサン自体の製造が容易になると共に、本発明のゴム組成物の粘度は低くなる。
 上記式(1)で表されるポリオルガノシロキサンにおいて、nは0~200の整数であり、好ましくは0~150の整数、より好ましくは0~120の整数である。また、上記式(1)で表されるポリオルガノシロキサンにおいて、kは0~200の整数であり、好ましくは0~150の整数、より好ましくは0~130の整数である。
 上記式(1)で表されるポリオルガノシロキサンにおいて、m、n、およびkの合計数は、3~400であることが好ましく、20~300であることがより好ましく、30~250であることが特に好ましい。
 なお、上記式(1)で示されるポリオルガノシロキサンにおいて、ポリオルガノシロキサン中のエポキシ基が共役ジエン系重合体鎖の活性末端と反応する場合、ポリオルガノシロキサン中の少なくとも一部のエポキシ基が開環することにより、エポキシ基が開環した部分の炭素原子と共役ジエン系重合体鎖の活性末端との結合が形成されると考えられる。また、ポリオルガノシロキサン中のアルコキシ基が共役ジエン系重合体鎖の活性末端と反応する場合、ポリオルガノシロキサン中の少なくとも一部のアルコキシ基が脱離することにより、脱離したアルコキシ基が結合していたポリオルガノシロキサンにおけるケイ素原子と共役ジエン系重合体鎖の活性末端との結合が形成されると考えられる。
 上記ポリオルガノシロキサン(以下、変性剤とも言う)の使用量は、重合に使用した重合開始剤1molに対する変性剤中のエポキシ基およびアルコキシ基の合計mol数の比が0.1~1の範囲となる量であることが好ましく、0.2~0.9の範囲となる量であることがより好ましく、0.3~0.8の範囲となる量であることがさらに好ましい。
 上記共役ジエン系ゴムの製造方法では、上述した変性剤にて、活性末端を有する共役ジエン系重合体鎖を変性する他に、重合停止剤、上述した変性剤以外の重合末端変性剤、およびカップリング剤などを重合系内に添加することにより、一部の共役ジエン系重合体鎖の活性末端を、本発明の効果を阻害しない範囲で、不活性化してもよい。すなわち、特定共役ジエン系ゴムは、一部の共役ジエン系重合体鎖の活性末端が、本発明の効果を阻害しない範囲で、重合停止剤、上述した変性剤以外の重合末端変性剤、およびカップリング剤などにより不活性化されていてもよい。
 このときに用いられる重合末端変性剤およびカップリング剤としては、例えば、N-メチル-2-ピロリドン、N-ビニル-2-ピロリドン、N-フェニル-2-ピロリドン、およびN-メチル-ε-カプロラクタムなどのN-置換環状アミド類;1,3-ジメチルエチレン尿素、および1,3-ジエチル-2-イミダゾリジノンなどのN-置換環状尿素類;4,4’-ビス(ジメチルアミノ)ベンゾフェノン、および4,4’-ビス(ジエチルアミノ)ベンゾフェノンなどのN-置換アミノケトン類;ジフェニルメタンジイソシアネート、および2,4-トリレンジイソシアネートなどの芳香族イソシアネート類;N,N-ジメチルアミノプロピルメタクリルアミドなどのN,N-ジ置換アミノアルキルメタクリルアミド類;4-N,N-ジメチルアミノベンズアルデヒドなどのN-置換アミノアルデヒド類1ジシクロヘキシルカルボジイミドなどのN-置換カルボジイミド類;N-エチルエチリデンイミン、N-メチルベンジリデンイミンなどのシッフ塩基類;4-ビニルピリジンなどのピリジル基含有ビニル化合物;四塩化錫;四塩化ケイ素、ヘキサクロロジシラン、ビス(トリクロロシリル)メタン、1,2-ビス(トリクロロシリル)エタン、1,3-ビス(トリクロロシリル)プロパン、1,4-ビス(トリクロロシリル)ブタン、1,5-ビス(トリクロロシリル)ペンタン、および1,6-ビス(トリクロロシリル)ヘキサンなどのハロゲン化ケイ素化合物;などが挙げられる。1分子中に5以上のケイ素-ハロゲン原子結合を有するハロゲン化ケイ素化合物をカップリング剤として併用して得られる高分岐共役ジエン系ゴムを用いて得られるタイヤは、操縦安定性が優れる。これらの重合末端変性剤およびカップリング剤は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 共役ジエン系重合体鎖の活性末端に、上述した変性剤などを反応させる際、活性末端を有する共役ジエン系重合体鎖を含有する溶液に、変性剤などを添加することが好ましく、反応を良好に制御する観点から、変性剤などを不活性溶媒に溶解して重合系内に添加することがより好ましい。その溶液濃度は、1~50質量%の範囲とすることが好ましい。
 変性剤などを添加する時期は、特に限定されないが、活性末端を有する共役ジエン系重合体鎖における重合反応が完結しておらず、活性末端を有する共役ジエン系重合体鎖を含有する溶液が単量体をも含有している状態、より具体的には、活性末端を有する共役ジエン系重合体鎖を含有する溶液が、好ましくは100ppm以上、より好ましくは300~50,000ppmの単量体を含有している状態で、この溶液に変性剤などを添加することが望ましい。変性剤などの添加をこのように行なうことにより、活性末端を有する共役ジエン系重合体鎖と重合系中に含まれる不純物との副反応を抑制して、反応を良好に制御することが可能となる。
 共役ジエン系重合体鎖の活性末端に、上述した変性剤などを反応させるときの条件としては、温度が、例えば、0~100℃、好ましくは30~90℃の範囲であり、それぞれの反応時間が、例えば、1分~120分、好ましくは2分~60分の範囲である。
 共役ジエン系重合体鎖の活性末端に、変性剤などを反応させた後は、メタノールおよびイソプロパノールなどのアルコールまたは水などの、重合停止剤を添加して未反応の活性末端を失活させることが好ましい。
 共役ジエン系重合体鎖の活性末端を失活させた後、所望により、フェノール系安定剤、リン系安定剤、イオウ系安定剤などの老化防止剤、クラム化剤、およびスケール防止剤などを重合溶液に添加し、その後、直接乾燥またはスチームストリッピングなどにより重合溶液から重合溶媒を分離して、得られる特定共役ジエン系ゴムを回収する。なお、重合溶液から重合溶媒を分離する前に、重合溶液に伸展油を混合し、特定共役ジエン系ゴムを油展ゴムとして回収してもよい。
 特定共役ジエン系ゴムを油展ゴムとして回収する場合に用いる伸展油としては、例えば、パラフィン系、芳香族系およびナフテン系の石油系軟化剤、植物系軟化剤、ならびに脂肪酸などが挙げられる。石油系軟化剤を用いる場合には、IP346の方法(英国のTHEINSTITUTEPETROLEUMの検査方法)により抽出される多環芳香族の含有量が3%未満であることが好ましい。伸展油を使用する場合、その使用量は、共役ジエン系ゴム100質量部に対して、例えば、5~100質量部、好ましくは10~60質量部、より好ましくは20~50質量部である。
 特定共役ジエン系ゴムは、活性末端を有する共役ジエン系重合体鎖と、上述したポリオルガノシロキサンとを反応させることにより生じる、3以上の共役ジエン系重合体鎖が結合している構造体(以下、「活性末端を有する共役ジエン系重合体鎖と、上述したポリオルガノシロキサンとを反応させることにより生じる、3以上の共役ジエン系重合体鎖が結合している構造体」を単に「3以上の共役ジエン系重合体鎖が結合している構造体」とも言う)を、5~40質量%含有していることが好ましく、5~30質量%含有していることがより好ましく、10~20質量%含有していることが特に好ましい。3以上の共役ジエン系重合体鎖が結合している構造体の割合が上記範囲内にあると、製造時における凝固性、および乾燥性が良好となり、さらには、シリカを配合したときに、より加工性に優れるタイヤ用ゴム組成物、およびより低発熱性に優れたタイヤを与えることができる。なお、最終的に得られた特定共役ジエン系ゴムの全量に対する、3以上の共役ジエン系重合体鎖が結合している構造体の割合(質量分率)を、共役ジエン系重合体鎖の3分岐以上のカップリング率として表す。これは、ゲルパーミエーションクロマトグラフィ(ポリスチレン換算)により測定することができる。ゲルパーミエーションクロマトグラフィ測定により得られたチャートより、全溶出面積に対する、分子量の最も小さいピークが示すピークトップ分子量の2.8倍以上のピークトップ分子量を有するピーク部分の面積比を、共役ジエン系重合体鎖の3分岐以上のカップリング率とする。
 上記特定共役ジエン系ゴムの芳香族ビニル単位含有量は38~48質量%である。なかでも、ウェット性能がより良好となり、低転がり抵抗性が良好となる理由から、40~45質量%であることが好ましい。上記芳香族ビニル単位含有量が38質量%に満たないと、ウェット性能が不十分となる。また、上記芳香族ビニル単位含有量が48質量%を超えると、低転がり抵抗性が悪化する。
 上記特定共役ジエン系ゴムのビニル結合含有量は20~35質量%である。なかでも、低転がり抵抗性および加工性が良好となる理由から、25~30質量%であることが好ましい。上記ビニル結合含有量が20質量%に満たないと、低転がり抵抗性が悪化する。また、上記ビニル結合含有量が35質量%を超えると、粘度が上昇し加工性が悪化する。なお、ビニル結合含有量とは、特定共役ジエン系ゴムに含まれる共役ジエン単位のうち、ビニル結合が占める割合(質量%)を指す。
 上記特定共役ジエン系ゴムの重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィ(GPC)によって測定されるポリスチレン換算の値として、500,000~800,000である。なかでも、600,000~700,000であることが好ましい。上記重量平均分子量が500,000に満たないと、摩耗性能が悪化する。また、上記重量平均分子量が800,000を超えると、加工性が悪化する。
 上記特定共役ジエン系ゴムの重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)で表わされる分子量分布は、1.1~3.0であることが好ましく、1.2~2.5であることがより好ましく、1.2~2.2であることが特に好ましい。なお、MwおよびMnはいずれもGPCによって測定されるポリスチレン換算の値である。
 上記特定共役ジエン系ゴムのムーニー粘度(ML1+4,100℃)は、20~100であることが好ましく、30~90であることがより好ましく、35~80であることが特に好ましい。なお、特定共役ジエン系ゴムを油展ゴムとする場合は、その油展ゴムのムーニー粘度を上記の範囲とすることが好ましい。
 本発明においては、ジエン系ゴム中の特定共役ジエン系ゴムの含有量は、30~80質量%であり、30~70質量%であることが好ましく、35~60質量%であることがより好ましい。
 ジエン系ゴム中の特定共役ジエン系ゴムの含有量が30質量%に満たないと、ウェット性能および氷雪路上性能が不十分となる。
 なお、「ジエン系ゴム中の特定共役ジエン系ゴムの含有量」とは、ジエン系ゴム全体に対する特定共役ジエン系ゴムの含有量(質量%)を指す。
 <その他のゴム成分>
 上記ジエン系ゴムは、上述したブタジエンゴムおよび特定共役ジエン系ゴム以外のゴム成分(その他のゴム成分)を含んでいてもよい。そのようなゴム成分としては特に制限されないが、例えば、天然ゴム(NR)、イソプレンゴム(IR)、特定共役ジエン系ゴム以外の芳香族ビニル-共役ジエン共重合体ゴム、アクリロニトリル-ブタジエン共重合ゴム(NBR)、ブチルゴム(IIR)、ハロゲン化ブチルゴム(Br-IIR、Cl-IIR)、クロロプレンゴム(CR)などが挙げられる。なお、上記芳香族ビニル-共役ジエン共重合体ゴムとしては、変性共役ジエン系ゴム以外のスチレンブタジエンゴム(SBR)、スチレンイソプレン共重合体ゴムなどが挙げられる。なかでも、SBRが好ましい。
 上記ジエン系ゴム中のその他のゴム成分の含有量は特に制限されないが、10~30質量%であることが好ましい。なお、「ジエン系ゴム中のその他ゴム成分の含有量」とは、ジエン系ゴム全体に対するその他のゴム成分の含有量(質量%)を指す。
 本発明においては、このようなジエン系ゴムの平均ガラス転移温度(Tg)は、-65~-45℃であり、-60~-50℃であることが好ましい。なお、ジエン系ゴムの平均Tgは、各ゴムの成分のTgに各ゴム成分の質量%をそれぞれ掛け合わせて足し合わせたものである。また、各ゴムのTgは、示差走査熱量計(DSC)を用いて20℃/分の昇温速度で測定し、中点法にて算出したものである。
 〔シリカ〕
 本発明のゴム組成物に含有されるシリカは特に限定されず、タイヤ等の用途でゴム組成物に配合されている従来公知の任意のシリカを用いることができる。
 上記シリカとしては、具体的には、例えば、ヒュームドシリカ、焼成シリカ、沈降シリカ、粉砕シリカ、溶融シリカ、コロイダルシリカ等が挙げられ、これらを1種単独で用いてもよく、2種以上を併用してもよい。
 本発明においては、氷雪路上性能がより向上する理由から、上記シリカが、CTAB吸着比表面積が80~130m/gのシリカ(X)を50質量%以上含むことが好ましく、50~100質量%含むことが好ましい。なお、100質量%含むとは、上記シリカとしてシリカ(X)のみを配合することをいう。
 ここで、CTAB吸着比表面積は、シリカ表面への臭化n-ヘキサデシルトリメチルアンモニウムの吸着量をJISK6217-3:2001「第3部:比表面積の求め方-CTAB吸着法」にしたがって測定した値である。
 本発明のゴム組成物において、シリカの含有量(上述したシリカ(X)および他のシリカを併用する場合はこれらの合計量)は、上記ジエン系ゴム100質量部に対して90~150質量部であり、95~145質量部であることが好ましく、100~140質量部であることがより好ましい。
 シリカの含有量が90質量部に満たないとウェット性能が不十分となり、150質量部を超えると氷雪路上性能が不十分となる。
 〔アルキルトリアルコキシシラン〕
 本発明のゴム組成物が含有するアルキルトリアルコキシシランは、下記式(I)で表されるアルキルトリアルコキシシランである。
Figure JPOXMLDOC01-appb-C000008

(式(I)中、R11は、炭素数1~20のアルキル基を表し、R12はそれぞれ独立にメチル基またはエチル基を表す。)
 ここで、R11の炭素数1~20のアルキル基としては、具体的には、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基等が挙げられる。
 これらのうち、上記ゴム成分との相溶性の観点から、R11の炭素数は、7以上であるのが好ましく、具体的には、オクチル基、ノニル基であるのがより好ましい。
 本発明のゴム組成物において、上記アルキルトリアルコキシシランの含有量は、上記シリカの含有量に対して0.1~8質量%であり、1~7質量%であることが好ましい。
 アルキルトリアルコキシシランの含有量が0.1質量%未満または8質量部超であると、ウェット性能および氷雪路上性能が不十分となる。
 〔任意成分〕
 本発明のゴム組成物は、必要に応じて、その効果や目的を損なわない範囲でさらに他の成分(任意成分)を含有することができる。
 上記任意成分としては、例えば、シリカ以外の充填剤(例えば、カーボンブラック)、シランカップリング剤、芳香族変性テルペン樹脂、酸化亜鉛(亜鉛華)、ステアリン酸、老化防止剤、ワックス、加工助剤、オイル、液状ポリマー、熱硬化性樹脂、加硫剤(例えば、硫黄)、加硫促進剤などの各種添加剤などが挙げられる。
 これらのうち、後述するシランカップリング剤および芳香族変性テルペン樹脂を含有することが好ましい。
 <シランカップリング剤>
 上記シランカップリング剤は特に限定されず、タイヤ等の用途でゴム組成物に配合されている従来公知の任意のシランカップリング剤を用いることができる。
 上記シランカップリング剤としては、具体的には、例えば、ビス(3-トリエトキシシリルプロピル)テトラスルフィド、ビス(3-トリエトキシシリルプロピル)トリスルフィド、ビス(3-トリエトキシシリルプロピル)ジスルフィド、ビス(2-トリエトキシシリルエチル)テトラスルフィド、ビス(3-トリメトキシシリルプロピル)テトラスルフィド、ビス(2-トリメトキシシリルエチル)テトラスルフィド、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、2-メルカプトエチルトリメトキシシラン、2-メルカプトエチルトリエトキシシラン、3-トリメトキシシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、3-トリエトキシシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、2-トリエトキシシリルエチル-N,N-ジメチルチオカルバモイルテトラスルフィド、3-トリメトキシシリルプロピルベンゾチアゾールテトラスルフィド、3-トリエトキシシリルプロピルベンゾチアゾールテトラスルフィド、3-トリエトキシシリルプロピルメタクリレートモノスルフィド、3-トリメトキシシリルプロピルメタクリレートモノスルフィド、ビス(3-ジエトキシメチルシリルプロピル)テトラスルフィド、ジメトキシメチルシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、ジメトキシメチルシリルプロピルベンゾチアゾールテトラスルフィド等が挙げられ、これらを1種単独で用いてもよく、2種以上を併用してもよい。また、これらの1種または2種以上を事前にオリゴマー化させたものを用いてもよい。
 また、上記以外のシランカップリング剤としては、具体的には、例えば、γ-メルカプトプロピルトリエトキシシラン、3-[エトキシビス(3,6,9,12,15-ペンタオキサオクタコサン-1-イルオキシ)シリル]-1-プロパンチオールなどのメルカプト系シランカップリング剤;3-オクタノイルチオプロピルトリエトキシシランなどのチオカルボキシレート系シランカップリング剤;3-チオシアネートプロピルトリエトキシシランなどのチオシアネート系シランカップリング剤;等が挙げられ、これらを1種単独で用いてもよく、2種以上を併用してもよい。また、これらの1種または2種以上を事前にオリゴマー化させたものを用いてもよい。
 これらのうち、補強性改善効果の観点から、ビス-(3-トリエトキシシリルプロピル)テトラスルフィドおよび/またはビス-(3-トリエトキシシリルプロピル)ジスルフィドを使用することが好ましく、具体的には、例えば、Si69[ビス-(3-トリエトキシシリルプロピル)テトラスルフィド;エボニック・デグッサ社製]、Si75[ビス-(3-トリエトキシシリルプロピル)ジスルフィド;エボニック・デグッサ社製]等が挙げられる。
 本発明のゴム組成物において、上記シランカップリング剤を含有する場合の含有量は、上記シリカの含有量に対して3~20質量%であるのが好ましく、4~15質量%であるのがより好ましい。
 特に、本発明においては、ウェット性能および氷雪路上性能がより向上する理由から、上記シランカップリング剤および上記シリカが、下記式(A)を満たすのが好ましい。
 なお、下記式(A)中、「シランカップリング剤の含有量(g)」および「シリカの含有量(g)」は、それぞれ、ジエン系ゴム100(g)に対する含有量(g)をいう。
 式(A):〔シランカップリング剤の含有量(g)×100/{シリカの含有量(g)×CTAB吸着比表面積(m/g)}〕×100=3.5~7.5
 <芳香族変性テルペン樹脂>
 本発明のゴム組成物は、ウェット性能がより向上する理由から、さらに芳香族変性テルペン樹脂を含有するのが好ましい。
 芳香族変性テルペン樹脂の軟化点は特に制限されないが、100~150℃であることが好ましく、100~130℃であることがより好ましい。
 ここで、軟化点は、JIS K7206:1999に準拠して測定されたビカット軟化点である。
 本発明のゴム組成物において、上記芳香族変性テルペン樹脂を含有する場合の含有量は特に制限されないが、上記ジエン系ゴム100質量部に対して、1~30質量部であることが好ましく、2~20質量部であることがより好ましい。
 〔タイヤ用ゴム組成物の調製方法〕
 本発明のゴム組成物の製造方法は特に限定されず、その具体例としては、例えば、上述した各成分を、公知の方法、装置(例えば、バンバリーミキサー、ニーダー、ロールなど)を用いて、混練する方法などが挙げられる。本発明のゴム組成物が硫黄または加硫促進剤を含有する場合は、硫黄および加硫促進剤以外の成分を先に高温(好ましくは100~160℃)で混合し、冷却してから、硫黄または加硫促進剤を混合するのが好ましい。
 また、本発明のゴム組成物は、従来公知の加硫または架橋条件で加硫または架橋することができる。
[空気入りタイヤ]
 本発明の空気入りタイヤは、上述した本発明のゴム組成物を用いて製造した空気入りタイヤである。なかでも、本発明のゴム組成物をキャップトレッドに配置した空気入りタイヤであることが好ましく、冬用の空気入りタイヤとして用いるのがより好ましい。
 図1に、本発明の空気入りタイヤの実施態様の一例を表すタイヤの部分断面概略図を示すが、本発明の空気入りタイヤは図1に示す態様に限定されるものではない。
 図1において、符号1はビード部を表し、符号2はサイドウォール部を表し、符号3はタイヤトレッド部を表す。
 また、左右一対のビード部1間においては、繊維コードが埋設されたカーカス層4が装架されており、このカーカス層4の端部はビードコア5およびビードフィラー6の廻りにタイヤ内側から外側に折り返されて巻き上げられている。
 また、タイヤトレッド部3においては、カーカス層4の外側に、ベルト層7がタイヤ1周に亘って配置されている。
 また、ビード部1においては、リムに接する部分にリムクッション8が配置されている。
 なお、タイヤトレッド部3は上述した本発明のゴム組成物により形成されている。
 本発明の空気入りタイヤは、例えば、従来公知の方法に従って製造することができる。また、タイヤに充填する気体としては、通常のまたは酸素分圧を調整した空気の他、窒素、アルゴン、ヘリウムなどの不活性ガスを用いることができる。
 以下、実施例により、本発明についてさらに詳細に説明するが、本発明はこれらに限定されるものではない。
 <特定共役ジエン系ゴムの調製>
 窒素置換された100mLアンプル瓶に、シクロヘキサン(35g)、およびテトラメチルエチレンジアミン(1.4mmol)を添加し、さらに、n-ブチルリチウム(4.3mmol)を添加した。次いで、イソプレン(21.6g)、およびスチレン(3.1g)をゆっくりと添加し、50℃のアンプル瓶内で120分反応させることにより、活性末端を有する重合体ブロックAを得た。この重合体ブロックAについて、重量平均分子量、分子量分布、芳香族ビニル単位含有量、イソプレン単位含有量、および1,4-結合含有量を測定した。これらの測定結果を第1表に示す。
 次に、撹拌機付きオートクレーブに、窒素雰囲気下、シクロヘキサン(4000g)、1,3-ブタジエン(474.0g)、およびスチレン(126.0g)を仕込んだ後、上記にて得られた活性末端を有する重合体ブロックAを全量加え、50℃で重合を開始した。重合転化率が95%から100%の範囲になったことを確認してから、次いで、下記式(4)で表されるポリオルガノシロキサンAを、エポキシ基の含有量が1.42mmol(使用したn-ブチルリチウムの0.33倍モルに相当)となるように、20質量%濃度のキシレン溶液の状態で添加し、30分間反応させた。その後、重合停止剤として、使用したn-ブチルリチウムの2倍モルに相当する量のメタノールを添加して、特定共役ジエン系ゴムを含有する溶液を得た。この溶液に、老化防止剤(イルガノックス1520、BASF社製)を少量添加し、伸展油としてフッコールエラミック30(新日本石油(株)製)を特定共役ジエン系ゴム100質量部に対して25質量部添加した後、スチームストリッピング法により固形状のゴムを回収した。得られた固形状のゴムをロールにより脱水し、乾燥機中で乾燥を行い、固形状の特定共役ジエン系ゴムを得た。
Figure JPOXMLDOC01-appb-C000009
 上記式(4)中、X1、X4、R1~R3およびR5~R8はメチル基である。上記式(4)中、mは80、kは120である。上記式(4)中、X2は下記式(5)で表される基である(ここで、*は結合位置を表す)。
Figure JPOXMLDOC01-appb-C000010
 なお、得られた特定共役ジエン系ゴムについて、重量平均分子量、分子量分布、3分岐以上のカップリング率、芳香族ビニル単位含有量、ビニル結合含有量、および、ムーニー粘度を測定した。測定結果を第2表に示す。測定方法は以下のとおりである。
(重量平均分子量、分子量分布および3分岐以上のカップリング率)
 重量平均分子量、分子量分布および3分岐以上のカップリング率(特定共役ジエン系ゴムに対する「3以上の共役ジエン系重合体鎖が結合している構造体」の割合(質量%))については、ゲルパーミエーションクロマトグラフィにより、ポリスチレン換算の分子量に基づくチャートを得て、そのチャートに基づいて求めた。なお、ゲルパーミエーションクロマトグラフィの具体的な測定条件は、以下のとおりである。
 ・測定器:HLC-8020(東ソー社製)
 ・カラム:GMH-HR-H(東ソー社製)2本を直列に連結した
 ・検出器:示差屈折計RI-8020(東ソー社製)
 ・溶離夜:テトラヒドロフラン
 ・カラム温度:40℃
 ここで、3分岐以上のカップリング率は、全溶出面積(s1)に対する、分子量の最も小さいピークが示すピークトップ分子量の2.8倍以上のピークトップ分子量を有するピーク部分の面積(s2)の比(s2/s1)である。
 (芳香族ビニル単位含有量およびビニル結合含有量)
 芳香族ビニル単位含有量およびビニル結合含有量については、H-NMRにより測定した。
 (ムーニー粘度)
 ムーニー粘度(ML1+4、100℃))については、JIS K6300-1:2013に準じて測定した。
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
 <比較共役ジエン系ゴムの製造>
 窒素置換された内容量10Lのオートクレーブ反応器に、シクロヘキサン4533g、スチレン338.9g(3.254mol)、ブタジエン468.0g(8.652mol)、イソプレン20.0g(0.294mol)およびN,N,N′,N′-テトラメチルエチレンジアミン0.189mL(1.271mmol)を仕込み、攪拌を開始した。反応容器内の内容物の温度を50℃にした後、n-ブチルリチウム5.061mL(7.945mmol)を添加した。重合転化率がほぼ100%に到達した後、さらにイソプレン12.0gを添加して5分間反応させた後、1,6-ビス(トリクロロシリル)ヘキサンの40wt%トルエン溶液0.281g(0.318mmol)を添加し、30分間反応させた。さらに、上記式(4)で表されるポリオルガノシロキサンAを、エポキシ基の含有量が1.00mmol(使用したn-ブチルリチウムの0.13倍モルに相当)となるように、20質量%濃度のキシレン溶液の状態で添加し、30分間反応させた。メタノール0.5mLを添加して30分間攪拌し、共役ジエン系ゴムを含有する溶液を得た。得られた溶液に老化防止剤(イルガノックス1520、BASF社製)を少量添加し、伸展油としてフッコールエラミック30(新日本石油(株)製)を共役ジエン系ゴム100質量部に対して25質量部添加した後、スチームストリッピング法により固形状のゴムを回収した。得られた固形状のゴムをロールにより脱水し、乾燥機中で乾燥を行い、固形状の共役ジエン系ゴムを得た。得られた共役ジエン系ゴムを比較共役ジエン系ゴムとする。
 <タイヤ用ゴム組成物の調製>
 下記第3表に示す成分を、下記第3表に示す割合(質量部)で配合した。
 具体的には、まず、下記第3表に示す成分のうち硫黄および加硫促進剤を除く成分を、1.7リットルの密閉式バンバリーミキサーを用いて150℃付近に温度を上げてから、5分間混合した後に放出し、室温まで冷却してマスターバッチを得た。さらに、上記バンバリーミキサーを用いて、得られたマスターバッチに硫黄および加硫促進剤を混合し、タイヤ用ゴム組成物を得た。
 なお、第3表中、特定共役ジエン系ゴムおよび比較共役ジエン系ゴムならびにSBR1の質量部は、伸展油を除いたゴムの正味の量(単位:質量部)である。
 <評価>
 得られたタイヤ用ゴム組成物について、以下の評価を行った。
 (ウェット性能)
 得られたタイヤ用ゴム組成物(未加硫)を金型(15cm×15cm×0.2cm)中で、160℃で20分間プレス加硫して加硫ゴムシートを作製した。
 作製した加硫ゴムシートについて、JISK6394:2007に準じて、粘弾性スペクトロメーター(東洋精機製作所社製)を用いて、伸張変形歪率10%±2%、振動数20Hz、温度0℃の条件で、tanδ(0℃)を測定した。
 結果を第3表に示す(第3表中の「ウェット性能」の欄)。結果は標準例のtanδ(0℃)を100とする指数で表した。指数が大きいほどtanδ(0℃)が大きく、タイヤにしたときにウェット性能に優れる。
 (氷雪路上性能)
 得られたタイヤ用ゴム組成物をトレッド部に使用して製造されたサイズ205/55R16のタイヤを排気量2000ccのABSを搭載した車両に装着し、フロントタイヤおよびリヤタイヤの空気圧をともに220kPaとして、氷雪路面上で速度40kmからの制動停止距離を測定した。結果は標準例の制動停止距離を100とする指数で表した。指数が大きいほど、制動距離が短く、氷雪路上性能に優れることを意味する。
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
 第3表中、各成分の詳細は以下のとおりである。
 ・特定共役ジエン系ゴム:上述のとおり製造された特定共役ジエン系ゴム(ゴム100質量部に対して油展オイル25質量部を含む)
 ・比較共役ジエン系ゴム:上述のとおり製造された比較共役ジエン系ゴム(ゴム100質量部に対して油展オイル25質量部を含む)(芳香族ビニル単位含有量:42質量%、ビニル結合含有量:32質量%、Tg:-25℃、Mw:750,000(測定方法はいずれも上述のとおり)
 ・SBR1:BUNA VSL 5025-2(ゴム分100質量部に対して油展オイル37.5質量部を含む油展品、LANXESS社製)
 ・SBR2:Tufdene1000R(旭化成社製)
 ・BR:NIPOL BR1220(日本ゼオン社製)
 ・シリカ1:Zeosil 1165MP(CTAB吸着比表面積:159m/g、Solvay社製)
 ・シリカX-1:Zeosil 1115MP(CTAB吸着比表面積:110m/g、Rhodia社製)
 ・カーボンブラック:N339(キャボットジャパン社製)
 ・シランカップリング剤:ビス-(3-トリエトキシシリルプロピル)テトラスルフィド(Si69、エボニック・デグッサ社製)
 ・アルキルシシラン1:オクチルトリエトキシシラン(KBE-3083、信越化学工業社製)
 ・アルキルシシラン2:デシルトリメトキシシラン(KBM-3103、信越化学工業社製)
 ・アルキルシシラン3:ジメチルジエトキシシラン(KBE-22、信越化学工業社製)
 ・芳香族変性テルペン樹脂:YSレジン TO-125(軟化点:125±5℃、ヤスハラケミカル社製)
 ・酸化亜鉛:酸化亜鉛3種(正同化学工業社社製)
 ・ステアリン酸:ビーズステアリン酸 YR(日本油脂社製)
 ・老化防止剤:6PPD(フレキシス社製)
 ・ワックス:パラフィンワックス(大内新興化学社製)
 ・オイル:エキストラクト4号S(昭和シェル石油社製)
 ・硫黄:油処理イオウ(細井化学社製)
 ・加硫促進剤1:サンセラーCM-G(三新化学社製)
 ・加硫促進剤2:Perkacit DPG grs(フレキシス社製)
 第3表から分かるように、特定共役ジエン系ゴムの配合量が所定の範囲外である比較例1のゴム組成物は、標準例と比較してもウェット性能および氷雪路上性能が殆ど改善されないことが分かった(比較例1)。
 また、シリカの配合量が所定の範囲よりも少ない比較例2のゴム組成物は、ウェット性能が劣り、シリカの配合量が所定の範囲よりも多い比較例3のゴム組成物は、氷雪路上性能が劣ることが分かった(比較例2~3)。
 また、ジエン系ゴムの平均ガラス転移温度が所定の温度範囲よりも高い比較例4のゴム組成物は、氷雪路上性能が劣り、所定の温度範囲よりも低い比較例5のゴム組成物は、ウェット性能が劣ることが分かった(比較例4~5)。
 また、アルキルトリアルコキシシランの配合量が所定の範囲外である比較例6や、ジメチルジエトキシシランを配合した比較例7のゴム組成物は、標準例と比較してもウェット性能および氷雪路上性能が殆ど改善されないことが分かった(比較例6~7)。
 また、ジエン系ゴム中のブタジエンゴムの配合量が所定の範囲より少ない比較例8のゴム組成物は、氷雪路上性能が劣ることが分かった(比較例8)。
 これに対し、特定共役ジエン系ゴムおよびブタジエンゴムを所定量配合し、かつ、シリカおよびアルキルトリアルコキシシランを所定量配合した実施例1~9のゴム組成物は、いずれも、ウェット性能および氷雪路上性能が良好となることが分かった。
 特に、実施例1、7および8の対比から、配合するシランカップリング剤およびシリカが、上記式(A)を満たすことにより、ウェット性能および氷雪路上性能がより向上することが分かった。
 また、実施例1~3の対比から、CTAB吸着比表面積が80~130m/gのシリカを50質量%以上配合すると、氷雪路上性能がより向上することが分かった。
 また、実施例1および9の対比から、軟化点が100~150℃の芳香族変性テルペン樹脂を配合すると、ウェット性能がより向上することが分かった。
 1 ビード部
 2 サイドウォール部
 3 タイヤトレッド部
 4 カーカス層
 5 ビードコア
 6 ビードフィラー
 7 ベルト層
 8 リムクッション

Claims (6)

  1.  ジエン系ゴムと、シリカと、下記式(I)で表されるアルキルトリアルコキシシランとを含有し、
     前記ジエン系ゴムが、ブタジエンゴムと、特定共役ジエン系ゴムとを含み、前記ジエン系ゴム中の前記ブタジエンゴムの含有量が20質量%以上であり、前記ジエン系ゴム中の前記特定共役ジエン系ゴムの含有量が30~80質量%であり、
     前記ジエン系ゴムの平均ガラス転移温度が、-65~-45℃であり、
     前記シリカの含有量が、前記ジエン系ゴム100質量部に対して90~150質量部であり、
     前記アルキルトリアルコキシシランの含有量が、前記シリカの含有量に対して0.1~8質量%であり、
    Figure JPOXMLDOC01-appb-C000001

    (式(I)中、R11は、炭素数1~20のアルキル基を表し、R12はそれぞれ独立にメチル基またはエチル基を表す。)
     前記特定共役ジエン系ゴムが、下記工程AとBとCとをこの順に備える共役ジエン系ゴムの製造方法により製造される共役ジエン系ゴムであって、芳香族ビニル単位含有量が38~48質量%であり、ビニル結合含有量が20~35質量%であり、重量平均分子量が500,000~800,000である、共役ジエン系ゴムである、タイヤ用ゴム組成物。
     ・工程A:イソプレンおよび芳香族ビニルを含む単量体混合物を重合することにより、イソプレン単位含有量が80~95質量%であり、芳香族ビニル単位含有量が5~20質量%であり、重量平均分子量が500~15,000である、活性末端を有する重合体ブロックAを形成する工程
     ・工程B:前記重合体ブロックAと、1,3-ブタジエンおよび芳香族ビニルを含む単量体混合物とを混合して重合反応を継続し、活性末端を有する重合体ブロックBを、前記重合体ブロックAと一続きにして形成することにより、前記重合体ブロックAおよび前記重合体ブロックBを有する、活性末端を有する共役ジエン系重合体鎖を得る工程
     ・工程C:前記共役ジエン系重合体鎖の前記活性末端に、下記式(1)で示されるポリオルガノシロキサンを反応させる工程
    Figure JPOXMLDOC01-appb-C000002

    (式(1)中、R~Rは、炭素数1~6のアルキル基、または炭素数6~12のアリール基であり、これらは互いに同一であっても相違していてもよい。XおよびXは、炭素数1~6のアルキル基、炭素数6~12のアリール基、炭素数1~5のアルコキシ基、および、エポキシ基を含有する炭素数4~12の基からなる群より選ばれるいずれかの基であり、これらは互いに同一であっても相違していてもよい。Xは、炭素数1~5のアルコキシ基、またはエポキシ基を含有する炭素数4~12の基であり、複数あるXは互いに同一であっても相違していてもよい。Xは、2~20のアルキレングリコールの繰返し単位を含有する基であり、Xが複数あるときは、それらは互いに同一であっても相違していてもよい。mは3~200の整数、nは0~200の整数、kは0~200の整数である。)
  2.  更にシランカップリング剤を含有し、前記シランカップリング剤および前記シリカが、下記式(A)を満たす、請求項1に記載のタイヤ用ゴム組成物。
     式(A):〔シランカップリング剤の含有量(g)×100/{シリカの含有量(g)×CTAB吸着比表面積(m/g)}〕×100=3.5~7.5
  3.  前記シリカが、CTAB吸着比表面積が80~130m/gのシリカ(X)を50質量%以上含む、請求項1または2に記載のタイヤ用ゴム組成物。
  4.  さらに軟化点が100~150℃の芳香族変性テルペン樹脂を含有し、
     前記芳香族変性テルペン樹脂の含有量が、前記ジエン系ゴム100質量部に対して3~20質量部である、請求項1~3のいずれかに記載のタイヤ用ゴム組成物。
  5.  請求項1~4のいずれかに記載のタイヤ用ゴム組成物を、キャップトレッドに配置した空気入りタイヤ。
  6.  冬用タイヤに用いる請求項5に記載の空気入りタイヤ。
PCT/JP2015/073693 2014-08-27 2015-08-24 タイヤ用ゴム組成物および空気入りタイヤ WO2016031760A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201580045641.1A CN106661283B (zh) 2014-08-27 2015-08-24 轮胎用橡胶组合物和充气轮胎
EP15836499.2A EP3196241B1 (en) 2014-08-27 2015-08-24 Tire rubber composition and pneumatic tire
US15/507,212 US10703828B2 (en) 2014-08-27 2015-08-24 Rubber composition for tires and pneumatic tire
RU2017109683A RU2670897C9 (ru) 2014-08-27 2015-08-24 Каучуковая композиция для шин и пневматическая шина

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014173306A JP6064952B2 (ja) 2014-08-27 2014-08-27 タイヤ用ゴム組成物および空気入りタイヤ
JP2014-173306 2014-08-27

Publications (1)

Publication Number Publication Date
WO2016031760A1 true WO2016031760A1 (ja) 2016-03-03

Family

ID=55399650

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/073693 WO2016031760A1 (ja) 2014-08-27 2015-08-24 タイヤ用ゴム組成物および空気入りタイヤ

Country Status (6)

Country Link
US (1) US10703828B2 (ja)
EP (1) EP3196241B1 (ja)
JP (1) JP6064952B2 (ja)
CN (1) CN106661283B (ja)
RU (1) RU2670897C9 (ja)
WO (1) WO2016031760A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3572460A4 (en) * 2017-01-17 2020-11-18 The Yokohama Rubber Co., Ltd. TIRE PROFILE RUBBER COMPOSITION AND PNEUMATIC TIRES WITH TREAD

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6350779B1 (ja) * 2017-01-17 2018-07-04 横浜ゴム株式会社 タイヤトレッド用ゴム組成物及び空気入りタイヤ
JP6911385B2 (ja) * 2017-03-02 2021-07-28 横浜ゴム株式会社 タイヤ用ゴム組成物及び空気入りタイヤ
JP6919233B2 (ja) * 2017-03-02 2021-08-18 横浜ゴム株式会社 タイヤ用ゴム組成物及び空気入りタイヤ
JP6384568B1 (ja) * 2017-05-16 2018-09-05 横浜ゴム株式会社 空気入りタイヤ
JP7006425B2 (ja) * 2018-03-22 2022-02-10 横浜ゴム株式会社 タイヤ用ゴム組成物および空気入りタイヤ
JP6791205B2 (ja) 2018-05-16 2020-11-25 横浜ゴム株式会社 冬用タイヤトレッド用ゴム組成物および冬用空気入りタイヤ
CN114573890B (zh) * 2022-03-21 2024-02-02 北京化工大学 一种氢化丁腈橡胶材料及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011503308A (ja) * 2007-11-15 2011-01-27 ソシエテ ド テクノロジー ミシュラン ヒドロキシシラン被覆剤を含むタイヤ用ゴム組成物
JP2011184546A (ja) * 2010-03-08 2011-09-22 Toyo Tire & Rubber Co Ltd タイヤトレッド用ゴム組成物及び空気入りタイヤ
WO2014050341A1 (ja) * 2012-09-28 2014-04-03 日本ゼオン株式会社 共役ジエン系ゴムの製造方法
WO2014185495A1 (ja) * 2013-05-17 2014-11-20 横浜ゴム株式会社 タイヤトレッド用ゴム組成物および空気入りタイヤ
JP2014231575A (ja) * 2013-05-30 2014-12-11 横浜ゴム株式会社 タイヤ用ゴム組成物および空気入りタイヤ
WO2015152398A1 (ja) * 2014-04-03 2015-10-08 横浜ゴム株式会社 タイヤトレッド用ゴム組成物

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6127472A (en) * 1997-11-11 2000-10-03 Jsr Corporation Rubber composition
EP1448400A1 (en) * 2001-10-30 2004-08-25 PIRELLI PNEUMATICI Società per Azioni Tyre with low rolling resistance, tread band and elastomeric composition used therein
JP2005281621A (ja) * 2004-03-30 2005-10-13 Toyo Tire & Rubber Co Ltd 空気入りタイヤ用ゴム組成物及び空気入りタイヤ
FR2928374B1 (fr) * 2008-03-10 2011-10-07 Michelin Soc Tech Composition de caoutchouc dienique pour pneumatique comprenant une silice en tant que charge renforcante
JP4666089B2 (ja) 2009-05-20 2011-04-06 横浜ゴム株式会社 タイヤトレッド用ゴム組成物および空気入りタイヤ
US20110184086A1 (en) * 2009-06-26 2011-07-28 Bridgestone Corporation Rubber composition and tire using the same
JP4883172B2 (ja) * 2009-12-10 2012-02-22 横浜ゴム株式会社 タイヤ用ゴム組成物
JP4835769B2 (ja) * 2010-05-26 2011-12-14 横浜ゴム株式会社 タイヤトレッド用ゴム組成物
WO2012073837A1 (ja) * 2010-12-03 2012-06-07 横浜ゴム株式会社 タイヤトレッド用ゴム組成物
DE112011104012B9 (de) * 2010-12-03 2017-08-03 The Yokohama Rubber Co., Ltd. Kautschukzusammensetzung zur Verwendung in Reifenlaufflächen, vulkanisiertes Produkt davon und dessen Verwendung in einer Reifenlauffläche eines Luftreifens
JP5691456B2 (ja) * 2010-12-03 2015-04-01 横浜ゴム株式会社 タイヤトレッド用ゴム組成物
WO2012127445A2 (en) * 2011-03-23 2012-09-27 Cochlear Limited Fitting of hearing devices
JP5234203B2 (ja) * 2011-07-14 2013-07-10 横浜ゴム株式会社 タイヤ用ゴム組成物
US8877110B2 (en) * 2011-12-27 2014-11-04 Nike, Inc. Method of molding a single-piece hollow shell including perforations
JP5376008B2 (ja) * 2012-04-24 2013-12-25 横浜ゴム株式会社 タイヤ用ゴム組成物

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011503308A (ja) * 2007-11-15 2011-01-27 ソシエテ ド テクノロジー ミシュラン ヒドロキシシラン被覆剤を含むタイヤ用ゴム組成物
JP2011184546A (ja) * 2010-03-08 2011-09-22 Toyo Tire & Rubber Co Ltd タイヤトレッド用ゴム組成物及び空気入りタイヤ
WO2014050341A1 (ja) * 2012-09-28 2014-04-03 日本ゼオン株式会社 共役ジエン系ゴムの製造方法
WO2014185495A1 (ja) * 2013-05-17 2014-11-20 横浜ゴム株式会社 タイヤトレッド用ゴム組成物および空気入りタイヤ
JP2014231575A (ja) * 2013-05-30 2014-12-11 横浜ゴム株式会社 タイヤ用ゴム組成物および空気入りタイヤ
WO2015152398A1 (ja) * 2014-04-03 2015-10-08 横浜ゴム株式会社 タイヤトレッド用ゴム組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3196241A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3572460A4 (en) * 2017-01-17 2020-11-18 The Yokohama Rubber Co., Ltd. TIRE PROFILE RUBBER COMPOSITION AND PNEUMATIC TIRES WITH TREAD

Also Published As

Publication number Publication date
RU2017109683A (ru) 2018-09-28
RU2670897C2 (ru) 2018-10-25
US10703828B2 (en) 2020-07-07
EP3196241B1 (en) 2020-03-11
RU2670897C9 (ru) 2018-12-12
EP3196241A1 (en) 2017-07-26
JP2016047886A (ja) 2016-04-07
CN106661283A (zh) 2017-05-10
CN106661283B (zh) 2018-11-16
US20170283518A1 (en) 2017-10-05
RU2017109683A3 (ja) 2018-09-28
JP6064952B2 (ja) 2017-01-25
EP3196241A4 (en) 2018-05-16

Similar Documents

Publication Publication Date Title
JP6064953B2 (ja) タイヤ用ゴム組成物および空気入りタイヤ
JP6481337B2 (ja) タイヤ用ゴム組成物および空気入りタイヤ
JP6520018B2 (ja) タイヤ用ゴム組成物および空気入りタイヤ
JP6331267B2 (ja) タイヤ用ゴム組成物および空気入りタイヤ
JP6064952B2 (ja) タイヤ用ゴム組成物および空気入りタイヤ
JP5845883B2 (ja) 変性共役ジエン系ゴム組成物の製造方法、ゴム組成物の製造方法、ゴム架橋物の製造方法及びタイヤの製造方法
JP6459307B2 (ja) タイヤトレッド用ゴム組成物および空気入りタイヤ
JP5796688B2 (ja) タイヤトレッド用ゴム組成物および空気入りタイヤ
JP5515206B2 (ja) ポリブタジエンゴムの製造方法、タイヤ用ゴム組成物、およびタイヤ
JP6504166B2 (ja) 共役ジエン系ゴムの製造方法
KR101750818B1 (ko) 타이어용 고무 조성물 및 공기입 타이어
WO2017138553A1 (ja) タイヤ用ゴム組成物および空気入りタイヤ
JP2015196759A (ja) タイヤ用ゴム組成物
WO2016031783A1 (ja) タイヤ用ゴム組成物および空気入りタイヤ
JP6155667B2 (ja) ゴム組成物
JP6651787B2 (ja) タイヤ用ゴム組成物
JP6319469B1 (ja) タイヤトレッド用ゴム組成物及び空気入りタイヤ
JP6651788B2 (ja) タイヤ用ゴム組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15836499

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015836499

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15507212

Country of ref document: US

Ref document number: 2015836499

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017109683

Country of ref document: RU

Kind code of ref document: A