WO2016029798A1 - 高分散碳纳米管母炼胶的液相连续混炼工艺及其橡胶制品 - Google Patents

高分散碳纳米管母炼胶的液相连续混炼工艺及其橡胶制品 Download PDF

Info

Publication number
WO2016029798A1
WO2016029798A1 PCT/CN2015/086710 CN2015086710W WO2016029798A1 WO 2016029798 A1 WO2016029798 A1 WO 2016029798A1 CN 2015086710 W CN2015086710 W CN 2015086710W WO 2016029798 A1 WO2016029798 A1 WO 2016029798A1
Authority
WO
WIPO (PCT)
Prior art keywords
rubber
carbon nanotube
suspension
liquid phase
weight
Prior art date
Application number
PCT/CN2015/086710
Other languages
English (en)
French (fr)
Inventor
李岩
徐泗蛟
翟俊学
尚积金
耿磊
Original Assignee
山东大展纳米材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东大展纳米材料有限公司 filed Critical 山东大展纳米材料有限公司
Publication of WO2016029798A1 publication Critical patent/WO2016029798A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L7/00Compositions of natural rubber

Definitions

  • the invention relates to the field of carbon nanotube/rubber composite materials, in particular to a liquid phase continuous mixing process of carbon nanotube masterbatch, a method for preparing a high-dispersion and high-oriented carbon nanotube master batch, and the processes in the rubber product Applications.
  • the most common method of reinforcing rubber is to add various powder or other shapes of reinforcing agents, such as nano-sized carbon black, silica or other hard particles, and various organic/inorganic short fibre.
  • carbon black, short fibers and other organic reinforcing agents are completely dependent on the petroleum industry, so it is bound to be increasingly severely constrained with the decreasing of petroleum resources.
  • Nano-sized silica not only has similar reinforcing properties to carbon black, but also gives some excellent properties to rubber due to surface modification and coupling. For example, tread rubber containing solution of styrene-butadiene rubber is added to the coupling modification.
  • the wet skid resistance and the rolling resistance were significantly improved.
  • white carbon black to reinforce the rubber, it is necessary to consider the matching of the white carbon black, the rubber variety and the coupling agent type, otherwise the mechanical properties cannot be significantly improved; and the surface properties of the white carbon black are different from the rubber during the mixing process. It is very difficult to mix into the rubber, it is difficult to disperse evenly. It must go through a multi-stage mixing process, and the production energy consumption is large and the cycle is long. Otherwise, the poor dispersion of the white carbon black will lead to the decrease of the strength of the rubber compound and the performance degradation.
  • nanomaterials such as carbon black and white carbon black have serious environmental pollution problems in production and application due to extremely small particle size, easy flying, and large exhaust gas and waste water discharge. Therefore, the processing technology with better reinforcing performance and less environmental pollution has always been one of the research priorities of rubber researchers.
  • Carbon nanotubes are single-layer or multi-layer nano-scale tubular materials mainly composed of carbon hexagons. Their excellent physical and mechanical properties and surface properties similar to carbon black make them extremely valuable in the rubber field. [CN102924763A, CN102321879A, CN102344587A, CN103694505A, CN102630238A, CN102630244A, etc.].
  • the Young's modulus of carbon nanotubes is about 1.8 TPa, the tensile strength is about 200 GPa, 100 times higher than steel, and the density is only 1/6 to 1/7 of steel.
  • the elastic strain of carbon nanotubes is the most It is about 12% high and has good flexibility.
  • the electrical conductivity and thermal conductivity of carbon nanotubes are also very good.
  • carbon nanotubes are a potential nanofiller to replace carbon black or silica.
  • the agglomeration and entanglement of carbon nanotubes are very easy to occur. It is difficult to disperse uniformly in the rubber matrix material by ordinary mechanical mixing process, which often causes the mechanics of rubber products. Performance cannot be significantly improved or even worse, thus limiting its use in the rubber industry.
  • wet mixing not only improves the dispersion of fillers, but also reduces energy consumption and equipment investment.
  • the disadvantages are long solidification and drying time, long production cycle and reduced efficiency, which cannot meet the requirements of modern rubber industry. Production needs.
  • Patent CN102153792B discloses a preparation method of wet-mixed white carbon black-filled natural rubber by preparing a slurry (white carbon black 15-40%+69-85% water+coupling agent+surfactant) and uniformly mixing Grinding, adding the mixture to the latex, stirring and mixing into a latex mixture, then adding acetic acid flocculation, washing and dewatering and granulating by washing machine, equipment input is small, dust pollution is small, energy is saved, and white carbon black is dispersed. Increased sex and uniformity.
  • Patent CN102731874B discloses a method for preparing a modified rubber by agglomeration and demulsification coprecipitation after blending rubber latex and nano silica/polyconjugated diene composite emulsion.
  • Patent 102775650B discloses a tread rubber compound containing a liquid phase dispersed white carbon black latex mixture and a preparation method thereof, which effectively preserves the original state of the natural rubber macromolecule, so that the strength of the natural rubber is retained, and the uniformity of the rubber and the white carbon black is achieved. Dispersion greatly improves the strength and wear resistance of the mixed rubber, and the heat build-up and hysteresis loss are significantly reduced.
  • the mixed rubber produced by the method can be used alone or in combination with natural rubber, synthetic rubber and the like in any ratio.
  • the drawback of this method is that the white carbon black has a strong delay effect on the vulcanization when the liquid phase dispersion of the white carbon black latex mixture is used, and the existence of the water and the acid not only affects the original performance of the formulation, but also may lead to tire manufacturing. Defects occur in the process. The presence of acid also reduces the vulcanization effect and must be compensated for by incremental growth.
  • Patent CN102816350A discloses a wet process for preparing a natural rubber/carbon black-nano-silica (white carbon black) rubber compound.
  • the invention uses carbon black dispersion and silica sol aqueous solution to prepare carbon black-silica dispersion
  • the body is mixed with the NR latex to form a wet refining system, and the silica sol is heated to undergo condensation reaction to form a white carbon black gel, and the wet refining system is heated to cause the silica sol to generate carbon black-silica composite particles in situ. It is uniformly dispersed in the NR latex and coagulates to form an NR/carbon black-silica blend.
  • Patent CN 103203810A discloses a continuous manufacturing method of a rubber masterbatch and a rubber masterbatch and a rubber product prepared by the method. Compared with the existing wet mixing rubber technology, the method has no special requirements on rubber and filler. A wide range of use, correspondingly increase the dispersion of the filler in the rubber compound. The process combines carbon black directly with water, mixing with water and later mixing with the latex in a purely mechanical manner with high speed agitation without adding any dispersant or surfactant.
  • the latex and the filler slurry are subjected to high-speed mechanical mixing at room temperature, and completed in a short time, followed by subsequent steps such as dehydration, thereby improving the dispersion of the filler in the rubber, the production process is continuous, and the mixing cost is lowered.
  • the patent CN102825674A proposes a continuous extrusion device and method for in-situ modified mixing of high-filled silica, the whole device is composed of a set of a set of mixing units and 1 to 10 sets of screw extruders; Each set of screw extruders is made up of one screw extruder or 2 to 10 screw extruders that are connected side by side through the head.
  • the rubber compound can be in situ modified by the silane coupling agent on the surface of the silica in a screw extruder under constant temperature conditions, and the production efficiency is obviously improved, which is beneficial to the molding process of the rubber compound in the subsequent production process.
  • CN1312206C discloses a carbon nanotube modified powder natural rubber, for carbon nano
  • the tube is acidified, dispersed in water under the action of dispersing agent and ultrasonic wave, adjusted to pH, uniformly mixed with natural latex, and then spray dried.
  • the rubber obtained by the above method often has the disadvantages of low strength, low elongation, low viscosity, poor processing property, etc., and the performance of the rubber product cannot be achieved.
  • Patent CN1554693A discloses a method for preparing a carbon nanotube modified hydrogenated nitrile rubber by preparing a masterbatch using a liquid nitrile rubber or a liquid carboxylated nitrile rubber, and then kneading the masterbatch with a hydrogenated nitrile rubber; The method generally has the disadvantages that the process is complicated, the quality of the prepared product is difficult to meet the requirements, and the application range is limited.
  • the object of the present invention is to provide a high-dispersion, high-oriented carbon nanotube masterbatch by preparing a liquid phase continuous preparation method of a carbon nanotube master batch.
  • Another object of the present invention is to provide a liquid phase continuous mixing process for a carbon nanotube masterbatch, which can improve the dispersibility and orientation of carbon nanotubes in a rubber compound, and is prepared by the method.
  • the rubber product has the advantages of high hardness, good tensile property, good aging resistance, high electrical and thermal conductivity and the like.
  • a liquid phase continuous preparation method of a carbon nanotube masterbatch comprising:
  • the step of preparing the carbon nanotube suspension comprises adding the carbon nanotubes, the surfactant, the stabilizer and the dispersing agent to the oily solvent or the aqueous dispersion medium, and preparing the stable by the stirring device.
  • the carbon nanotubes are organofunctionalized surface modified carbon nanotubes.
  • the step of continuously dispersing and mixing the carbon nanotube suspension with the rubber solution/emulsion and the optional rubber compounding agent solution/suspension comprises: suspending the carbon nanotubes by a high pressure pump
  • the liquid, rubber solution/emulsion and optional rubber compounding agent solution/suspension are respectively delivered to the pipeline with the cross-sectional area of the flow passage at a certain flow rate, and then uniformly dispersed under the action of high pressure and flow passage impact and mixing.
  • a stable carbon nanotube/rubber/solvent mixture wherein the high pressure is from 1 to 100 MPa, preferably from 10 to 60 MPa; and the flow rate is from 10 m/s to 1000 m/s, preferably from 100 to 500 m/s.
  • the simultaneous coagulation and continuous extrusion of the carbon nanotube/rubber/solvent mixture comprises: adding 0.01-2.00 to the carbon nanotube/rubber/solvent mixture fluid at a certain flow rate. % mass concentration of coagulant, the rubber is rapidly solidified to obtain a stable rubber/carbon nanotube coprecipitation mixture fluid continuously into the screw extrusion unit for high pressure extrusion to achieve the orientation of the carbon nanotubes in the rubber, wherein the high pressure is 2 -200 MPa, preferably 20-60 MPa; the flow rate is from 0.1 m/s to 100 m/s, preferably from 0.1 to 10 m/s.
  • the step of continuously drying the carbon nanotube/rubber mixture comprises drying by heating at a drying temperature of 50 to 150 ° C, preferably 80 to 120 ° C.
  • the rubber is natural rubber or synthetic rubber, preferably three-leaf rubber, gutta percha, silver geran, dandelion, polybutadiene rubber, polyisoprene rubber, butylbenzene Rubber, ethylene propylene rubber, butyl rubber, nitrile rubber, neoprene, silicone rubber, urethane rubber, acrylate rubber, fluororubber and its derivatives.
  • Still another aspect of the present invention provides a carbon nanotube masterbatch prepared by a liquid phase continuous preparation method of a carbon nanotube master batch according to the present invention.
  • Still another aspect of the present invention provides a rubber article prepared by using the carbon nanotube masterbatch of the present invention.
  • Yet another aspect of the present invention provides a liquid phase continuous kneading process for a carbon nanotube masterbatch, the process comprising:
  • the dried carbon nanotube masterbatch is continuously introduced into one or more internal mixers, one or more open mills, and one or more screw extruders, and processed until vulcanization.
  • FIG. 1 is a schematic diagram of a carbon nanotube/rubber liquid phase continuous mixing process
  • Figure 2 is a photomicrograph of a uniformly dispersed and stable carbon nanotube/rubber/solvent mixing system
  • Figure 3 is a graph showing the particle size distribution of a carbon nanotube/rubber/solvent mixed system
  • Figure 4 is a scanning electron micrograph showing the orientation of carbon nanotubes in a masterbatch.
  • the term "rubber” may be any kind of rubber or elastomer such as natural rubber or synthetic rubber, synthetic elastomer.
  • the natural rubber includes, but is not limited to, three-leaf rubber, gutta-percha, cyanidin, dandelion, etc.; the synthetic rubber or elastomer, including but not limited to solution polymerization or emulsion polymerization, bulk polymerization, etc., having different polymerizations Polybutadiene rubber, polyisoprene rubber, styrene butadiene rubber, ethylene propylene rubber, butyl rubber, nitrile rubber, neoprene, silicone rubber, urethane rubber, acrylate rubber, fluororubber and its derivatives product.
  • the concentration of the rubber in the solution ranges from 1 to 80%, preferably from 20 to 30%.
  • the term "masterbatch” refers to a base rubber which can be compounded in the next step
  • “kneading” refers to the mixing of raw rubber or plasticized raw rubber with a compounding agent by a rubber mixing machine.
  • the process of rubber compounding is the most important production process of rubber processing. In essence, the compounding agent is uniformly dispersed in the raw rubber, the granular compounding agent is in a dispersed phase, and the raw rubber is in a continuous phase.
  • the term "complexing agent” means an auxiliary agent added to a rubber matrix material, including but not limited to a vulcanization system (including but not limited to sulfur, sulfur carrier, zinc oxide, peroxide, vulcanized resin, accelerator, active Agent, co-vulcanizing agent), reinforcing/filling system (including but not limited to carbon black, white carbon, carbon Calcium acid, clay, barium sulfate), softening/plasticizing systems (including but not limited to petroleum, coal tar, vegetable oil, synthetic esters or polyesters), protective systems (including but not limited to amines, phenols) , quinoline chemical antioxidant or antioxidant, paraffin, microcrystalline wax physical anti-aging agent).
  • a vulcanization system including but not limited to sulfur, sulfur carrier, zinc oxide, peroxide, vulcanized resin, accelerator, active Agent, co-vulcanizing agent
  • reinforcing/filling system including but not limited to carbon black, white carbon, carbon Calcium acid, clay, barium sulfate
  • the complexing agent does not include the carbon nanotube itself.
  • exemplary compounding agents for use in the present invention include vulcanizing agent-sulfur, promoter NS, active agent zinc oxide, stearic acid, reinforcing agent-carbon black N330, filler-calcium carbonate, softener-environmental aromatic oil, Plasticizer - dibutyl phthalate, antioxidant -4010NA, microcrystalline wax.
  • carbon nanotube masterbatch refers to a base rubber in which pre-dispersed carbon nanotubes are contained without other compounding agents, wherein the carbon nanotube concentration is 0.1-200%.
  • the term "carbon nanotube” means a one-dimensional quantum material having a special structure having a radial dimension of the order of nanometers and an axial dimension of the order of micrometers, which is a lightweight fibrous material.
  • the carbon nanotubes are mainly composed of a plurality of coaxial tubes of a plurality of layers of carbon atoms arranged in a hexagonal shape. The layer is maintained at a fixed distance between the layers, about 0.34 nm, and generally has a diameter of 2 to 20 nm.
  • the carbon nanotubes used in the present invention are not particularly limited, and may be any conventional carbon nanotubes in the art, including single-walled carbon nanotubes, multi-walled carbon nanotubes, and mixtures of the above-mentioned carbon nanotubes, and various forms of carbon.
  • Nanotubes preferably multi-walled carbon nanotubes.
  • the single-walled carbon nanotube is composed of a single-layer cylindrical graphite layer, and has a small distribution range of diameters, few defects, and high uniformity.
  • the multi-walled carbon nanotubes are composed of a plurality of layers of graphite, and the layers are easily become the center of the trap to capture various defects, and thus the wall of the multi-walled tube is usually covered with small holes.
  • inorganic materials such as carbon nanorods and nanowires having similar structures are also suitable for use in the present invention.
  • the carbon nanotubes are preferably organic functionalized surface modified carbon nanotubes, for example, cyclopentadiene modified carbon nanotubes.
  • the carbon nanotube suspensions include oily suspensions and aqueous suspensions.
  • the step of preparing the carbon nanotube suspension comprises adding a carbon nanotube, a surfactant, a stabilizer, and a dispersing agent to an oily solvent or an aqueous dispersion medium, and preparing a stable carbon nanotube oily or aqueous suspension by a stirring apparatus.
  • Methods of preparing an oily suspension of carbon nanotubes include:
  • a good solvent capable of dissolving rubber including but not limited to aliphatic hydrocarbons, aromatic hydrocarbons, chlorinated hydrocarbons, esters, ketones or ether solvents, and mixtures thereof;
  • Methods of preparing an aqueous suspension of carbon nanotubes include:
  • surfactants include, but are not limited to, sodium dodecyl sulfate and its derivatives, sodium dodecylbenzene sulfonate and its derivatives, sodium lauryl sulfate and its derivatives, cetyl Trimethylammonium bromide and its derivatives, emulsifier OP, etc.
  • exemplary stabilizers include, but are not limited to, potassium hydroxide, sodium hydroxide, ammonia, lauric acid, casein, polyethylene glycol, polyglycerol, a condensation product of ethylene oxide with an alcohol, sodium N-methyl-N-oleic acid sodium borate and a derivative product or mixture of the above
  • exemplary dispersing agents include, but are not limited to, sodium methylene ter
  • the method for efficiently and continuously dispersing and mixing the carbon nanotube suspension and the rubber solution/emulsion and the optional rubber compounding agent solution/suspension comprises: dissolving the carbon nanotube suspension and the rubber by a high pressure pump
  • the liquid (or emulsion) and the optional rubber compounding agent solution/suspension are respectively delivered to the pipeline with the cross-sectional area of the flow passage at a certain flow rate, and then uniformly dispersed under the action of high pressure and flow channel impact and mixing.
  • a stable carbon nanotube/rubber/solvent mixing system (as shown in Figure 2) is passed to the next continuous solidification and extrusion process at a flow rate.
  • the high pressure in this step is from 1 to 100 MPa, preferably from 10 to 60 MPa; the flow rate is from 10 m/s to 1000 m/s, preferably from 100 to 500 m/s.
  • Fig. 2 is a uniformly dispersed and stable system
  • Fig. 3 is a particle size distribution diagram of the carbon nanotube/rubber/solvent mixed system, carbon nanotubes.
  • the D50 of the rubber/solvent mixed system is 4.409 um, that is, the particle size of 50% of the carbon nanotube/rubber/solvent mixed system is less than 4.409 um. 2 and 3 demonstrate that after the step 2), the carbon nanotubes are uniformly dispersed in the rubber solvent mixing system to form a carbon nanotube/rubber/solvent mixed system which is uniformly dispersed and stable.
  • the rubber solution/emulsion refers to a rubber solution or a rubber emulsion.
  • the rubber emulsion is an emulsion prepared from natural latex or various synthetic rubbers, and the rubber solution is an undissolved product for preparing a solution rubber or a product in which a dry rubber is dissolved in a good solvent, and the two may be added together with other rubber compounding agents. Mix with the carbon nanotube suspension.
  • the rubber compounding agent solution/suspension is a solution or suspension of various compounding agents for rubber products prepared by methods known in the art, and the rubber compounding agent solution or suspension can be adjusted according to the performance requirements of the final rubber product. Formula and content.
  • the rubber compounding agent solution/suspension is carried out in a similar manner to the preparation of carbon nanotube oily or aqueous suspensions.
  • step 2) the rubber compounding agent solution/suspension is optional.
  • a solution/suspension of the rubber compounding agent may or may not be added to the step 2) carbon nanotube/rubber mixture.
  • the rubber compounding agent is added in the form of a liquid phase of the solution or the suspension, and the rubber product is prepared by liquid phase wet mixing.
  • the carbon nanotube masterbatch prepared by the invention can be further processed into a rubber product according to the addition of the rubber compounding agent.
  • the inventors of the present invention have found that in the liquid phase continuous mixing process of the present invention, the solidification of the carbon nanotube/rubber/solvent mixture is carried out simultaneously with the continuous high pressure extrusion, and the carbon nanotubes can be obtained in the master batch. to.
  • the orientation of the carbon nanotubes in the rubber can improve the strength of the rubber product and improve the electrical and thermal conductivity. The higher the degree of orientation, the better the rubber performance.
  • the liquid phase continuous mixing process of the present invention can produce a carbon nanotube masterbatch having an orientation degree of up to 80-95%.
  • the step of simultaneously solidifying and continuously extruding the carbon nanotube/rubber/solvent mixture comprises adding 0.01-2.00% by weight, preferably 0.01-1.00% by weight, of a coagulant to the carbon nanotube/rubber/solvent mixture fluid at a certain speed,
  • the rubber is rapidly solidified to obtain a stable rubber/carbon nanotube co-precipitation mixture fluid while continuously entering a dehydration (solvent) screw extrusion unit and a high-pressure extrusion of the breaker unit, and the obtained carbon or rubber mixture glue for removing water or solvent is obtained.
  • the block and the rubber block pass through the conveying system to the next continuous drying process.
  • the steps of simultaneous solidification and continuous extrusion include solidification co-precipitation at high-speed flow, preliminary dehydration, deep dewatering, screw extruder mastication, and extrusion orientation to achieve orientation of carbon nanotubes in rubber (as shown in FIG. 4). ). Scanning electron micrographs of the carbon nanotube masterbatch shown in Figure 4 demonstrate that after step 3), the carbon nanotubes are highly oriented in the masterbatch.
  • the high pressure in this step is from 2 to 200 MPa, preferably from 20 to 60 MPa; and the flow rate is from 0.1 m/s to 100 m/s, preferably from 0.1 to 10 m/s.
  • the dehydration (solvent) screw extrusion unit includes one or more extruders, and those skilled in the art can adjust the use conditions of the screw extruder according to actual needs.
  • Exemplary coagulants include, but are not limited to, a mixture of one or more of hydrochloric acid, sulfuric acid, acetic acid, formic acid, calcium chloride, calcium nitrate, cyclohexyl acetate, and the like.
  • the step of continuously drying the carbon nanotube/rubber mixture includes drying by heating at an elevated temperature to obtain a carbon nanotube masterbatch.
  • the drying temperature is 50-150 ° C, preferably 80-120 ° C.
  • the continuous drying process of the carbon nanotube/rubber mixture of the present invention comprises the following steps: continuously dehydrating (or desolventizing), crushing the carbon nanotube/rubber mixture into a high temperature drying channel, After being sufficiently dried, it is processed into powder, granules or lumps, and can be used as a carbon nanotube masterbatch at a drying temperature of 50 to 150 ° C, preferably 80 to 120 ° C.
  • Heating methods for high temperature drying channels include, but are not limited to, heating processes such as saturated steam, hot air, microwave, far infrared, salt bath, ultrasonic, and the like.
  • the masterbatch obtained after drying can be processed into powder by a breaker, a refiner, or the like, or can be frozen at a low temperature. After grinding into powder, the masterbatch can also be processed into pellets by a granulator; or it can be pressed into a block at 100-120 ° C using a common hydraulic press.
  • the carbon nanotube master batch obtained by adding the rubber compounding agent in the liquid phase can be directly processed and vulcanized into a rubber product, and therefore, a rubber compound has been added for the liquid phase.
  • the carbon nanotube masterbatch prepared by the method of the invention can be further continuously fed into one or more internal mixers, one to more open mills, one or more screw extruders, and processed until vulcanization.
  • the carbon nanotubes can be used as pre-dispersed carbon nanotubes at high concentrations, and low-concentration carbon nanotube masterbatches can be added as other compounding agents. Mixing rubber is used.
  • the vulcanized rubber and the rubber product thereof according to the present invention are prepared by using the carbon nanotube masterbatch prepared by the liquid phase continuous preparation method of the present invention, and include the tire tread rubber having a carbon nanotube content of 0.1-100 parts. , rubber outer layer glue, conveyor belt cover rubber, rubber soles and other plastic.
  • FIG. 1 is a schematic diagram of a carbon nanotube/rubber liquid phase continuous mixing process.
  • a carbon nanotube suspension and optionally other compounding agents are added to a rubber solution or emulsion to continuously disperse the obtained mixture.
  • the obtained carbon nanotube masterbatch can have different concentrations according to actual process conditions, high concentration masterbatch can be added to common mixing In the middle of rubber mixing, processing and vulcanization to obtain rubber products; medium and low concentration masterbatch can be added to other compounding agents, processed and vulcanized to obtain rubber products; for the preparation of carbon nanotube masterbatch, other compounding agents have been added.
  • the prepared medium and low concentration rubber compound can be directly processed and vulcanized to obtain a rubber product.
  • the liquid phase continuous kneading process of the carbon nanotubes of the present invention can improve the dispersion of carbon nanotubes in rubber through pre-modification and fine grinding/dispersing equipment of carbon nanotubes; and can improve carbon by continuous extrusion equipment The degree of orientation of the nanotubes.
  • the process is suitable for rubber latex such as natural latex, styrene-butadiene latex, nitrile latex or different rubber solutions.
  • the prepared carbon nanotube masterbatch or rubber mixture containing other compounding agents can be used for preparing tire tread. Glue, rubber outer layer glue, conveyor belt cover rubber, rubber shoes Large primer, etc., can improve the wear resistance, tear resistance, puncture resistance of rubber products, and has high conductivity, high thermal conductivity, low density and the like.
  • Natural concentrated latex purchased from Hainan Xingmatai Natural Rubber Co., Ltd., concentration 60% by weight;
  • Styrene-butadiene latex purchased from Shandong Qilu Petrochemical Co., Ltd., concentration 22% by weight;
  • Neoprene latex purchased from Qingdao China Resources Rubber Co., Ltd., concentration 50% by weight;
  • the carbon nanotubes are supplied by Shandong Dazhan Nanomaterials Co., Ltd. with a purity of >96%, a diameter of 8-15 nm, a length of about 3-15 ⁇ m, and an ash content of ⁇ 2.5%;
  • Potassium hydroxide purchased from Jinan Jinyu Chemical Co., Ltd., purity >95%;
  • Polyethylene glycol purchased from Jiangsu Hai'an Petrochemical Plant, molecular weight 900-3300;
  • the remaining rubber compounding agents including accelerators and anti-aging agents, were purchased from Qingdao Huaheng Auxiliary Co., Ltd.
  • the hardness test is carried out according to the method of GB/T531.1-2008 using a Shore A hardness tester;
  • Abrasion resistance test was carried out according to the method of GB/T 1689-1998 using the Akron abrasion machine: the result is expressed by the volume of the Akron wear, and the volume of the Akron wear volume indicates the friction between the sample and the grinding wheel. The amount of rubber that is worn away on the sample. Therefore, the larger the volume of the Akron wear, the worse the wear resistance;
  • the resistivity test is carried out according to the method of GB/T 1692-2008 using a high resistance meter;
  • a common tread rubber (usually used for all-steel radial tires) used as a comparative example was prepared by the following dry mixing method: 100 parts by weight of plasticized natural rubber, 1 part by weight of accelerator N-tert-butyl-2-benzene Thiazole hypoxanthamide, 5 parts by weight of zinc oxide, 2 parts by weight of stearic acid, 1 part by weight of an antioxidant N-isopropyl-N'-phenyl-p-phenylenediamine, 0.5 parts by weight of N,N'-m-phenylene Bismaleimide, 50 parts by weight of carbon black N330, 5 parts by weight of calcium carbonate, 3 parts by weight of environmentally friendly aromatic oil, 0.5 parts by weight of zinc soap salt, uniformly kneaded in an internal mixer, and discharged at 140 ° C, after cooling
  • the roller was added to the mill roll, and 2 parts by weight of sulfur was added and kneaded uniformly, and the lower sheet was placed. After standing for 12 hours, it was vulcanized at
  • Carbon nanotube 5 Sodium dodecyl sulfate 0.8 Stabilizer polyethylene glycol 0.8 Dispersant water 100
  • the solid content ratio of each component is 100 parts by weight of rubber, 1 part by weight of carbon nanotubes, and 1 part by weight of N-tert-butyl-2.
  • the natural latex, carbon nanotube suspension and rubber compounding agent suspension are added to the continuous dispersion and mixing equipment (ie, fully stirred), through high pressure impact, mixing, and finally uniformly dispersed carbon nanotubes/rubber liquid from the discharge port. mixture.
  • the high pressure injection pressure is 50 MPa; the discharge port flow rate is 200 m/s.
  • the carbon nanotube/rubber fluid enters the continuous solidification equipment, the acetic acid solution of 1% mass concentration is automatically added dropwise. After the solidification of the cement is solidified, it is transported into the screw extruder and the breaker to perform high pressure extrusion, high pressure crushing and extrusion. Dehydration, and the orientation of the carbon nanotubes is achieved by the flow channel guiding action of the extrusion orifice. After the block solid mixture is neutralized with acetic acid, it is transported into a continuous drying device, and the liquid solvent or coagulant is collected and recycled.
  • the dehydrated rubber particles are transported into an electric heating and temperature-controlled high-temperature drying line channel, and dried to obtain a carbon nanotube masterbatch.
  • Example 1A The dried carbon nanotube/rubber mixture is kneaded and molded, and vulcanized to obtain a rubber product.
  • the whole process of Example 1A was carried out by a liquid phase mixing method to obtain a rubber product, and the product property test results correspond to Example 1A in Table 1.
  • Example 1B was prepared by a dry kneading method of the conventional tread rubber of the above comparative example, except that a master batch containing 1 part by weight of carbon nanotubes was added to the conventional tread rubber formulation.
  • the preparation method of the carbon nanotube masterbatch is the same as that of the embodiment 1A, but wherein the solid rubber/carbon nanotube solid content ratio in the carbon nanotube master batch is 60/40, and the step 3) of preparing the master batch is No rubber compounding agent suspension was added. Therefore, Example 1B is a rubber article obtained by ordinary dry mixing using the carbon nanotube master batch of the present invention.
  • a normal tread rubber (usually used for a semi-steel radial tire) used as a comparative example was prepared as follows: 100 parts by weight of styrene-butadiene rubber SBR 1502, 1 part by weight of accelerator N-tert-butyl-2-benzothiazole hypoxanthine, 3 parts by weight of zinc oxide, 1.5 parts by weight of stearic acid, 1 part by weight of an antioxidant N-(1,3-dimethyl)butyl-N'-phenyl-p-phenylenediamine, 0.5 parts by weight of N,N'- M-phenylene bismaleimide, 50 parts by weight of carbon black N339, 5 parts by weight of environmentally friendly aromatic oil, 0.5 parts by weight of zinc soap salt, uniformly kneaded in an internal mixer, degreased at 140 ° C, cooled and added to the opening The machine was coated with a roll, and 2.5 parts by weight of sulfur was added and kneaded uniformly, and the lower piece was allowed to stand for 12
  • the solid content ratio of each component is 100 parts by weight of styrene-butadiene latex, 1 part by weight of carbon nanotubes, and 1 part by weight of accelerator N- Tert-butyl-2-benzothiazole hypoxanthamide, 3 parts by weight of zinc oxide, 1.5 parts by weight of stearic acid, 1 part by weight of antioxidant N-(1,3-dimethyl)butyl-N'-phenyl P-phenylenediamine, 0.5 parts by weight of N,N'-m-phenylene bismaleimide, 50 parts by weight of carbon black N339, 5 parts by weight of environmentally friendly aromatic oil, 0.5 parts by weight of zinc soap salt, and 2.5 parts by weight of sulfur.
  • the suspension of the styrene-butadiene latex and the carbon nanotube suspension and the rubber compounding agent are added to the continuous dispersion and mixing equipment (ie, fully stirred) at the above solid content ratio, and are uniformly dispersed from the discharge port by high-pressure impact, mixing action.
  • Carbon nanotube/rubber liquid mixture is added to the continuous dispersion and mixing equipment (ie, fully stirred) at the above solid content ratio, and are uniformly dispersed from the discharge port by high-pressure impact, mixing action.
  • Carbon nanotube/rubber liquid mixture The high pressure injection pressure is 40 MPa; the discharge port flow rate is 250 m/s.
  • the carbon nanotube/rubber fluid enters the continuous solidification equipment, the 1% mass concentration acetic acid solution is automatically added dropwise. After the solidification of the cement slurry, it is transported into the screw extruder and the breaker to perform high pressure extrusion, orientation, and extrusion dewatering. After the block solid solid material is washed and neutralized with acetic acid, it is transported into a continuous drying device, and the liquid solvent or coagulant is collected and recycled.
  • the dehydrated rubber pellets are transported into an electric heating and temperature-controlled high-temperature drying line channel, which is ready for use after drying.
  • Example 2A The dried carbon nanotube/rubber mixture is kneaded and molded to obtain a rubber product.
  • the entire process of Example 2A was carried out by liquid phase mixing to obtain a rubber article, and the product property test results correspond to Example 2A in Table 2.
  • Example 2B was prepared by a dry kneading method of the conventional tread rubber of the above comparative example, except that a styrene-butadiene latex masterbatch containing 1 part by weight of carbon nanotubes was added to the conventional tread rubber formulation.
  • the preparation method of the carbon nanotube masterbatch is the same as that of the embodiment 2B, but wherein the solid content ratio of the styrene-butadiene rubber/carbon nanotube in the carbon nanotube master batch is 60/40, and the master of the embodiment is prepared. No rubber compounding agent suspension is added to step 3) of the gum. Therefore, Example 2B is a rubber article obtained by ordinary dry mixing using the carbon nanotube masterbatch of the present invention.
  • the product performance test results correspond to Example 2B in Table 2.
  • the tread rubber obtained by the ordinary dry mixing method of the carbon nanotube masterbatch of the present invention is still used compared with the tread rubber obtained by the ordinary dry mixing.
  • the tread rubber prepared by the liquid phase mixing method has better performance in terms of tensile strength, tear strength, tensile stress, wear resistance, electrical and thermal conductivity, and the whole preparation process adopts liquid phase.
  • the performance of the styrene-butadiene rubber product obtained by the mixing method is better.
  • the ordinary rubber outer layer rubber used as a comparative example was prepared as follows: 20 parts by weight of natural rubber, 80 parts by weight of chloroprene rubber, 4 parts by weight of magnesium oxide, 2.5 parts by weight of stearic acid, and 1 part by weight of an antioxidant N-(1) , 3-dimethyl)butyl-N'-phenyl-p-phenylenediamine, 1 part by weight of antioxidant BLE-acetone and diphenylamine high temperature condensate, 20 parts by weight of carbon black N330, 100 parts by weight of calcium carbonate, 8 weight Dibutyl phthalate, 1 part by weight of accelerator N-cyclohexyl-2-benzothiazole sulfenamide, uniformly mixed in an internal mixer, degreased at 140 ° C, cooled and added to the open mill The coated roll was mixed with 4 parts by weight of zinc oxide, 0.5 parts by weight of sulfur, and the mixture was allowed to stand. After 12 hours of standing, it was vulcanized at 148 ° C for 20 minutes to
  • Neoprene latex 50%) 100 Sulfonated methyl oleate 1 water 100
  • Carbon nanotube 5 Sodium dodecyl sulfate 0.8 Polyethylene glycol 0.8 water 100
  • the solid content ratio of each component when the latex, the carbon nanotube suspension and the rubber compounding agent suspension are mixed is 20 parts by weight of natural rubber, 80 parts by weight of chloroprene rubber, 1 part by weight of carbon nanotubes, and 4 parts by weight.
  • Magnesium oxide 2.5 parts by weight of stearic acid, 1 part by weight of an antioxidant N-(1,3-dimethyl)butyl-N'-phenyl-p-phenylenediamine, 1 part by weight of an antioxidant BLE-acetone and diphenylamine High temperature condensate, 20 parts by weight of carbon black N330, 100 parts by weight of calcium carbonate, 8 parts by weight of dibutyl phthalate, 1 part by weight of accelerator N-cyclohexyl-2-benzothiazole sulfenamide, 4 parts by weight Parts of zinc oxide, 0.5 parts by weight of sulfur.
  • the natural latex, the neoprene emulsion and the carbon nanotube suspension and the rubber compounding agent suspension are added to the continuous dispersion and mixing device (ie, fully stirred) at the above solid content ratio, through high pressure impact, mixing, and finally from the discharge port.
  • a uniformly dispersed carbon nanotube/rubber liquid mixture is obtained.
  • the high pressure injection pressure is 50 MPa; the discharge port flow rate is 150 m/s.
  • the 1% mass concentration acetic acid solution is automatically added dropwise, and the glue is immediately transferred to the screw extruder, the glue breaker, the extrusion dewatering, and the block solid material. After washing and neutralizing the acetic acid, it is transported into a continuous drying apparatus, and the liquid solvent or coagulant is collected and recycled.
  • the dehydrated rubber pellets are transported into an electric heating and temperature-controlled high-temperature drying line channel, which is ready for use after drying.
  • Example 3A The dried carbon nanotube/rubber mixture is kneaded and molded to obtain a rubber product.
  • the entire process of Example 3A was carried out by liquid phase mixing to obtain a rubber article, and the product property test results correspond to Example 3A in Table 3.
  • Example 3B was prepared by a dry mixing method of the ordinary rubber outer layer rubber of the above comparative example, except that a neoprene latex containing 1 part by weight of carbon nanotubes was added to the outer rubber outer layer adhesive formulation.
  • the masterbatch, the carbon nanotube masterbatch preparation method is the same as that of the embodiment 3A, but wherein the solid content ratio of the chloroprene latex/carbon nanotube in the carbon nanotube master batch is 60/40, and the preparation of the embodiment No rubber compounding agent suspension is added to step 3) of the masterbatch. Therefore, Example 3B is a rubber article obtained by ordinary dry mixing using the carbon nanotube masterbatch of the present invention.
  • the product performance test results correspond to Example 3B in Table 3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Mechanical Engineering (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明公开了一种碳纳米管母炼胶的液相连续制备方法,该方法包括:制备碳纳米管悬浮液;将所述碳纳米管的悬浮液与橡胶溶液/乳液和任选的橡胶配合剂溶液/悬浮液连续分散与混合,得到碳纳米管/橡胶/溶剂混合物;对所述碳纳米管/橡胶/溶剂混合物同时进行凝固与连续挤压,以实现碳纳米管取向,去除水或溶剂之后得到碳纳米管/橡胶混合物;对所述碳纳米管/橡胶混合物进行连续干燥,得到碳纳米管母炼胶。本发明还包括通过该液相连续制备方法制得的碳纳米管母炼胶和采用所述碳纳米管母炼胶制得的橡胶制品。

Description

高分散碳纳米管母炼胶的液相连续混炼工艺及其橡胶制品 技术领域
本发明涉及碳纳米管/橡胶复合材料领域,尤其涉及碳纳米管母炼胶的液相连续混炼工艺,制备高分散和高取向的碳纳米管母炼胶的方法及这些工艺在橡胶制品中的应用。
背景技术
在现代橡胶工业中,大多数橡胶必须经过补强才能具有高机械强度和长期使用寿命等实用价值。除了骨架材料之外,目前最通用的增强橡胶的方法是加入各种粉粒状或其他形状的补强剂,如纳米尺寸的炭黑、白炭黑或其他硬质颗粒,和各种有机/无机短纤维。但是,炭黑、短纤维和其他有机补强剂完全依赖于石油工业,因此必然随着石油资源的日益减少,会受到越来越严重的限制。纳米尺寸的白炭黑不仅具有与炭黑相近的补强性能,而且由于表面改性和偶联更赋予橡胶某些优异的性能,例如含有溶聚丁苯橡胶的胎面胶加入偶联改性的白炭黑之后,抗湿滑性能和滚动阻力得到显著改善。然而使用白炭黑对橡胶进行补强时,需要考虑白炭黑、橡胶品种和偶联剂品种的匹配,否则力学性能无法达到显著的改善;而且混炼过程中白炭黑表面性质与橡胶相差极大,很难混入到橡胶中,难以分散均匀,必须经过多段混炼工艺,生产能耗大、周期长,否则白炭黑的不良分散会导致胶料强度降低、性能下降。除了上述缺点,炭黑、白炭黑等纳米材料由于粒子尺寸极小、容易飞扬,废气、废水排放量大,在生产和应用中均存在严重的环境污染问题。因此,补强性能更好的填料和环境污染更小的加工工艺,一直是橡胶科研工作者的研究重点之一。
碳纳米管是一种主要由碳六边形组成的单层或多层纳米级管状材料,其优良的物理机械性能和类似炭黑的表面性质,使其在橡胶领域中具有极强的应用价值[CN102924763A,CN102321879A,CN102344587A,CN103694505A,CN102630238A,CN102630244A等]。碳纳米管的杨氏模量约为1.8TPa,拉伸强度约为200GPa,比钢高100倍,密度却只有钢的1/6到1/7。碳纳米管的弹性应变最 高可达12%左右,拥有良好的柔韧性。碳纳米管的电导率和导热性也非常好。因此碳纳米管是一种潜在的代替炭黑或白炭黑的纳米填料。但是由于碳纳米管的强表面效应等纳米材料特性,导致碳纳米管之间非常容易发生团聚和缠结,采用普通的机械混炼工艺难以在橡胶基体材料中分散均匀,往往造成橡胶制品的力学性能无法明显改善甚至变差,因此限制了其在橡胶工业中的应用。
为了避免普通机械混炼法即干法混炼的各种缺点,如加工工序复杂、设备投资大、劳动强度高,粉尘飞扬、环境污染严重,许多新型的混合方法被应用到橡胶与填料的混合过程,例如将聚合物胶乳和填料浆混合并凝固制备聚合物填料母炼胶的方法,即湿法混炼[CN102153792B,CN102775650B,CN102816265A等]。湿炼法利用炭黑对NR胶乳的破乳作用,NR乳胶粒将炭黑包埋而共沉,形成天然橡胶/炭黑混炼胶。与干法混炼相比,采用湿法混炼不仅改善填料的分散,还能降低能耗、减少设备投资,但是缺点是凝固和干燥时间长,生产周期长、效率降低,无法满足现代橡胶工业的生产需求。专利CN102153792B公开了一种湿法混炼白炭黑填充天然橡胶的制备方法,通过配制浆料(白炭黑15-40%+69-85%水+偶联剂+表面活性剂)、混合均匀、研磨,将混合料加入到胶乳中,搅拌混合成胶乳混合液,然后加醋酸絮凝,经洗胶机洗胶脱水、造粒,设备投入小,粉尘污染小,节约能源,白炭黑的分散性和均匀性提高。专利CN102731874B公开了一种采用橡胶胶乳和纳米二氧化硅/聚共轭二烯烃复合乳液掺混后凝聚、破乳共沉淀制备改性橡胶的方法。专利102775650B公开了含液相分散白炭黑胶乳混合物的胎面胶胶料及其制备方法,有效保存了天然胶大分子的原状,使天然胶的强力得以保留,实现了橡胶与白炭黑的均匀分散,大幅提高了混合胶的强力和耐磨性,生热性和滞后损失明显降低,应用该法生产的混合胶可单独使用,也可按任意比例与天然胶、合成胶等并用。但该方法的缺陷是采用液相分散白炭黑胶乳混合物时白炭黑对硫化有很强的延时效应,同时由于水分及酸的存在不但影响了配方的原有性能,而且可能导致轮胎制造过程中产生缺陷。酸的存在还降低了硫化效应,必须促进剂增量才能弥补。专利CN102816350A公开一种制备天然橡胶/炭黑-纳米二氧化硅(白炭黑)混炼胶的湿炼法。本发明用炭黑分散体与硅溶胶水溶液混合制备炭黑-硅胶分散 体,用其与NR胶乳混合构成湿炼体系,利用硅溶胶受热发生缩合反应生成白炭黑凝胶的性质,对湿炼体系加热,使硅溶胶原位生成炭黑-白炭黑复合粒子并均匀分散于NR胶乳中,凝聚共沉后形成NR/炭黑-白炭黑混炼胶。
在湿法混炼的基础上,卡博特公司提出了液相连续混炼工艺[CN98811684,CN00808002,CN02825969],简化炼胶工艺、缩短混炼时间。专利CN 103203810A公开一种橡胶母炼胶的连续式制造方法及该方法制备的橡胶母炼胶与橡胶制品,与现有湿法混炼胶技术相比,该法对橡胶、填料无特殊要求,使用范围广,相应地提高填料在橡胶胶料中的分散度。该工艺过程将炭黑直接与水混合,与水的混合及后期与胶乳的混合以高速搅拌的纯机械方式,未添加任何分散剂或表面活性剂。接着将胶乳与填料浆在室温下进行高速机械混合,短时间完成,随后进行脱水等后续工序,提高填料在橡胶中的分散度,生产工艺连续,降低了混炼成本。
此外,专利CN102825674A提出一种面向高填充白炭黑原位改性混炼的连续挤出装置及方法,整个装置由1套密炼机组和1~10套螺杆挤出机组组合搭配而成;其中每套螺杆挤出机组由1台螺杆挤出机或2~10台通过机头侧向首尾对接的螺杆挤出机串联而成。胶料能够在螺杆挤出机中处于恒定的温度条件下进行硅烷偶联剂对白炭黑表面的原位改性处理,生产效率明显提高,有利于胶料在后续生产工艺中的成型加工。
对于碳纳米管/橡胶混合物而言,大多数专利或研究都集中在干法混炼(CN1803939A,CN102321879A,CN102344587A,CN102924763A,CN101381483A,CN103189310A,CN101831090B,CN 102702591B)和非连续湿法混炼(Composite Structures,2006,75:496-500,CN1663991A,CN1673261A,CN01381483A,Composites Science and Technology,2007,67(9):1813-1822.),CN1312206C公开了一种碳纳米管改性粉末天然橡胶,对碳纳米管进行酸化,在分散剂、超声波的作用下分散到水中,调节pH后,与天然胶乳混合均匀,然后喷雾干燥。上述方法得到的胶料往往存在着强度不高、伸长率低、粘度低、加工性能差等缺点,达不到橡胶制品的使用性能。此外由于碳纳米管未经过表面处理,在橡胶中分散不均匀,以致复合材料的结构均匀 性较差,碳纳米管在力学性能和导热性能方面的优势不能得到很好发挥,复合材料性能提高的幅度不大。专利CN1554693A公开了一种利用液体丁腈橡胶或液体羧基丁腈橡胶制备母胶,然后将母胶与氢化丁腈橡胶混炼制备碳纳米管改性氢化丁腈橡胶的方法;这些现有技术方法普遍存在着工艺复杂,制备的产品质量难以达到要求,应用范围受限等缺点。
本领域希望得到高分散高取向的碳纳米管橡胶制品,但现有的技术均未能实现碳纳米管的高分散高取向。因此,现有技术仍需要开发一种碳纳米管母炼胶的液相连续制备方法,该方法能提高碳纳米管在橡胶胶料中的分散性,制得高分散、高取向的碳纳米管母炼胶。
发明内容
本发明的目的是提供一种碳纳米管母炼胶的液相连续制备方法制备出高分散、高取向的碳纳米管母炼胶。
本发明的又一个目的是提供一种碳纳米管母炼胶的液相连续混炼工艺,该工艺方法能提高碳纳米管在橡胶胶料中的分散性和取向性,采用该工艺方法制备得到的橡胶制品具有硬度高、拉伸性能好、耐老化性能好、导电导热性高等优点。
因此,本发明的一个方面,提供了一种碳纳米管母炼胶的液相连续制备方法,所述方法包括:
1)制备碳纳米管悬浮液;
2)将所述碳纳米管的悬浮液与橡胶溶液/乳液和任选的橡胶配合剂溶液/悬浮液连续分散与混合,得到碳纳米管/橡胶/溶剂混合物;
3)对所述碳纳米管/橡胶/溶剂混合物同时进行凝固与连续挤压,以实现碳纳米管取向,去除水或溶剂之后得到碳纳米管/橡胶混合物;
4)对所述碳纳米管/橡胶混合物进行连续干燥,得到碳纳米管母炼胶。
在本发明一个优选的实施方式中,所述制备碳纳米管悬浮液的步骤包括将碳纳米管、表面活性剂、稳定剂和分散剂加入油性溶剂或水性分散介质中,通过搅拌设备制备稳定的碳纳米管油性或水性悬浮液。
在本发明一个优选的实施方式中,所述碳纳米管是有机官能化表面改性的碳纳米管。
在本发明一个优选的实施方式中,将所述碳纳米管悬浮液与橡胶溶液/乳液和任选的橡胶配合剂溶液/悬浮液连续分散与混合的步骤包括:通过高压泵将碳纳米管悬浮液、橡胶溶液/乳液和任选的橡胶配合剂溶液/悬浮液以一定的流速分别输送到流道截面积渐变的管路中,继而在高压和流道冲击、混合的作用下,得到分散均匀且稳定的碳纳米管/橡胶/溶剂混合物,其中高压压力为1-100MPa,优选10-60MPa;流速为10m/s-1000m/s,优选100-500m/s。
在本发明一个优选的实施方式中,对所述碳纳米管/橡胶/溶剂混合物同时进行凝固与连续挤压步骤包括:按照一定的流速向碳纳米管/橡胶/溶剂混合物流体中加入0.01-2.00%质量浓度的凝固剂,将橡胶迅速凝固后得到稳定的橡胶/碳纳米管共沉混合物流体连续进入螺杆挤出机组高压挤出,以实现碳纳米管在橡胶中的取向,其中高压压力为2-200MPa,优选20-60MPa;流速为0.1m/s-100m/s,优选0.1-10m/s。
在本发明一个优选的实施方式中,对碳纳米管/橡胶混合物进行连续干燥的步骤包括在干燥温度为50-150℃,优选80-120℃的条件下通过加热进行干燥。
在本发明一个优选的实施方式中,所述橡胶是天然橡胶或合成橡胶,优选三叶橡胶、杜仲胶、银菊胶、蒲公英胶,聚丁二烯橡胶、聚异戊二烯橡胶、丁苯橡胶、乙丙橡胶、丁基橡胶、丁腈橡胶、氯丁橡胶、硅橡胶、聚氨酯橡胶、丙烯酸酯橡胶、氟橡胶及其衍生产物。
本发明的又一个方面提供了根据本发明所述的碳纳米管母炼胶的液相连续制备方法制备得到的碳纳米管母炼胶。
本发明的又一个方面提供了采用本发明所述的碳纳米管母炼胶制备得到的橡胶制品。
本发明的又一个方面提供了一种碳纳米管母炼胶的液相连续混炼工艺,所述工艺包括:
1)制备碳纳米管悬浮液;
2)将所述碳纳米管的悬浮液与橡胶溶液/乳液和任选的橡胶配合剂溶液/悬 浮液连续分散与混合,得到碳纳米管/橡胶/溶剂混合物;
3)对所述碳纳米管/橡胶/溶剂混合物同时进行凝固与连续挤压,以实现碳纳米管取向,去除水或溶剂之后得到碳纳米管/橡胶混合物;
4)对所述碳纳米管/橡胶混合物进行连续干燥,得到碳纳米管母炼胶;
5)将经过干燥的碳纳米管母炼胶连续进入一至多台密炼机、一至多台开炼机、一至多台螺杆挤出机,加工成型直至硫化。
下面,结合附图对本发明进行说明。
图1是碳纳米管/橡胶液相连续混炼工艺流程示意图;
图2是分散均匀且稳定的碳纳米管/橡胶/溶剂混合体系的显微镜照片;
图3是碳纳米管/橡胶/溶剂混合体系的粒度分布曲线图;
图4是显示碳纳米管在母炼胶中的取向的扫描电镜照片。
具体实施方式
在本发明中,术语“橡胶”可以是任何种类的橡胶或弹性体,如天然橡胶或合成橡胶、合成弹性体。所述天然橡胶包括但不限于三叶橡胶、杜仲胶、银菊胶、蒲公英胶等;所述合成橡胶或弹性体,包括但不限于溶液聚合或乳液聚合、本体聚合等方法得到的具有不同聚合度的聚丁二烯橡胶、聚异戊二烯橡胶、丁苯橡胶、乙丙橡胶、丁基橡胶、丁腈橡胶、氯丁橡胶、硅橡胶、聚氨酯橡胶、丙烯酸酯橡胶、氟橡胶及其衍生产物。橡胶在溶液中的浓度范围为1-80%,优选20-30%。
在本发明中,术语“母炼胶”是指可供下一步按配方混炼的基础胶料,“混炼”是指用炼胶机将生胶或塑炼生胶与配合剂炼成混炼胶的工艺,是橡胶加工最重要的生产工艺。本质来说是配合剂在生胶中均匀分散的过程,粒状配合剂呈分散相,生胶呈连续相。
在橡胶领域,术语“配合剂”是指橡胶基体材料中加入的助剂,包括但不限于硫化体系(包括但不限于硫黄、硫载体、氧化锌、过氧化物、硫化树脂,促进剂,活性剂,助硫化剂)、补强/填充体系(包括但不限于炭黑、白炭黑、碳 酸钙、陶土、硫酸钡)、软化/增塑体系(包括但不限于石油系、煤焦油系、植物油系、合成酯类或聚酯类)、防护体系(包括但不限于胺类、酚类、喹啉类化学防老剂或抗氧剂,石蜡、微晶蜡类物理防老剂)。在本发明中,配合剂不包括碳纳米管本身。本发明使用的示例性的配合剂有硫化剂-硫黄,促进剂NS,活性剂氧化锌、硬脂酸,补强剂-炭黑N330,填充剂-碳酸钙,软化剂-环保芳烃油,增塑剂-邻苯二甲酸二丁酯,防老剂-4010NA、微晶蜡。
本发明所述的“碳纳米管母炼胶”是指其中含有预分散碳纳米管而不含其他配合剂的基础胶料,其中碳纳米管浓度为0.1-200%。
以下对碳纳米管母炼胶的液相连续混炼工艺的具体步骤进行描述:
(1)制备碳纳米管悬浮液
在本发明中,术语“碳纳米管”表示一种具有特殊结构的一维量子材料,其径向尺寸为纳米量级,轴向尺寸为微米量级,是一种轻质的纤维状材料。碳纳米管主要由呈六边形排列的碳原子构成数层到数十层的同轴圆管。层与层之间保持固定的距离,约0.34nm,直径一般为2~20nm。
本发明所用的碳纳米管无特别的限制,可以是本领域任何常规的碳纳米管,它包括单壁碳纳米管、多壁碳纳米管以及上述碳纳米管的混合物,及各种形态的碳纳米管;优选为多壁碳纳米管。其中,单壁碳纳米管是由单层圆柱型石墨层构成,其直径大小的分布范围小、缺陷少,具有较高的均匀一致性。而多壁碳纳米管是由多层石墨层构成,层与层之间很容易成为陷阱中心而捕获各种缺陷,因而多壁管的管壁上通常布满小洞样的缺陷。除了单壁和多壁碳纳米管之外,具有类似结构的碳纳米棒、纳米线等无机材料也适用于本发明。
所述碳纳米管优选是有机官能化表面改性的碳纳米管,例如,环戊二烯改性碳纳米管。
碳纳米管悬浮液包括油性悬浮液和水性悬浮液。制备碳纳米管悬浮液的步骤包括将碳纳米管、表面活性剂、稳定剂和分散剂加入油性溶剂或水性分散介质中,通过搅拌设备制备稳定的碳纳米管油性或水性悬浮液。
制备碳纳米管油性悬浮液的方法包括:
1)选择能够溶解橡胶的良溶剂作为分散液,所述良溶剂包括但不限于脂肪烃类、芳香烃类、氯化烃类、酯类、酮类或醚类溶剂及其混合物;
2)将碳纳米管、0.1-3.0重量%的表面活性剂、0.1-3.0重量%的稳定剂、0.1-3.0重量%的分散剂等加入上述良溶剂中,通过均质器、胶体磨或高速搅拌机等搅拌设备,制备稳定的碳纳米管油性悬浮液,转速100-10000rpm,时间1分钟-10000小时,得到的悬浮液中碳纳米管的浓度为0.1-100重量%,以上重量百分数均以所述油性悬浮液的总重量为基准计。
制备碳纳米管水性悬浮液的方法包括:
1)选择水与乙二醇、改性纤维素等组成的水溶液作为分散液;
2)将碳纳米管、0.1-3.0重量%的表面活性剂、0.1-3.0重量%的稳定剂、0.1-3.0重量%的分散剂等加入上述良溶剂中,通过均质器、胶体磨或高速搅拌机等搅拌设备,制备稳定的碳纳米管油性悬浮液,转速100-10000rpm,时间1分钟-10000小时,得到的悬浮液中碳纳米管的浓度为0.1-100重量%,以上重量百分数均以所述水性悬浮液的总重量为基准计。
所述表面活性剂、稳定剂和分散剂均是湿法混炼橡胶中常用的试剂,本领域技术人员可以根据最终橡胶制品的性能需求对所用试剂和设备条件进行选择。示例性的表面活性剂包括但不限于十二烷基磺酸钠及其衍生产物、十二烷基苯磺酸钠及其衍生产物、十二烷基硫酸钠及其衍生产物、十六烷基三甲基溴化铵及其衍生产物、乳化剂OP等;示例性的稳定剂包括但不限于氢氧化钾、氢氧化钠、氨水、月桂酸、酪素、聚乙二醇、聚丙三醇、环氧乙烷与醇的缩合产物、N-甲基-N-油酸酰基牛酸钠及上述物质的衍生产物或混合物;示例性的分散剂包括但不限于甲撑二苯磺酸钠、二丁基萘磺酸钠、甲撑二异丙基萘磺酸钠、焦磷酸钠及其衍生产物或混合物。
(2)连续分散与混合所述碳纳米管的悬浮液与橡胶溶液/乳液和任选的橡 胶配合剂溶液/悬浮液
本发明中,高效连续分散与混合碳纳米管悬浮液与橡胶溶液/乳液和任选的橡胶配合剂溶液/悬浮液的方法包括:通过高压泵,将碳纳米管悬浮液、橡胶溶 液(或乳液)和任选的橡胶配合剂溶液/悬浮液以一定的流速分别输送到流道截面积渐变的管路中,继而在高压和流道冲击、混合的作用下,得到分散均匀且稳定的碳纳米管/橡胶/溶剂混合体系(如附图2所示),并以一定的流速进入到下一步连续凝固与挤压工艺。该步骤中高压压力为1-100MPa,优选10-60MPa;流速为10m/s-1000m/s,优选100-500m/s。
从图2所示的显微镜照片可以看出,碳纳米管/橡胶/溶剂混合体系是均匀分散且稳定的体系,图3是碳纳米管/橡胶/溶剂混合体系的粒径分布图,碳纳米管/橡胶/溶剂混合体系的D50为4.409um,即碳纳米管/橡胶/溶剂混合体系中50%的粒子粒径均小于4.409um。图2和图3证明经过步骤2)之后碳纳米管在橡胶溶剂混合体系中均匀分散,形成了分散均匀且稳定的碳纳米管/橡胶/溶剂混合体系。
所述橡胶溶液/乳液是指橡胶溶液或橡胶乳液。所述橡胶乳液为天然胶乳或各种合成胶制备的乳液,橡胶溶液为制备溶聚橡胶的未脱溶剂产物或干胶溶解在良溶剂中的产物,二者可加入其他橡胶配合剂共同研磨后与碳纳米管悬浮液混合。
橡胶配合剂溶液/悬浮液是采用本领域已知的方法配制的用于橡胶制品的各种配合剂的溶液或悬浮液,根据最终橡胶制品的性能需求,可以调整橡胶配合剂溶液或悬浮液的配方和含量。在本发明中,橡胶配合剂溶液/悬浮液采用与制备碳纳米管油性或水性悬浮液类似的方法进行。在步骤2)中,橡胶配合剂溶液/悬浮液是任选的。
在本发明的液相连续混炼工艺中,可以向步骤2)碳纳米管/橡胶混合物中加入或不加入橡胶配合剂的溶液/悬浮液。在步骤2)中向碳纳米管/橡胶混合物中加入橡胶配合剂时,橡胶配合剂以溶液或悬浮液的液相形式加入,通过液相湿法混炼制备橡胶制品。本发明制备得到的碳纳米管母炼胶可根据橡胶配合剂的加入情况进一步加工成橡胶制品。
(3)同时凝固与连续挤压所述碳纳米管/橡胶/溶剂混合物
本申请发明人发现,在本发明的液相连续混炼工艺中,碳纳米管/橡胶/溶剂混合物的凝固与连续高压挤压同时进行,可实现碳纳米管在母炼胶中的取 向。碳纳米管在橡胶中取向能提高橡胶制品的强度、提高导电导热性能,取向程度越高,橡胶性能越好。本发明的液相连续混炼工艺能制得取向度高达80-95%的碳纳米管母炼胶。
同时凝固与连续挤压所述碳纳米管/橡胶/溶剂混合物的步骤包括按照一定速度向碳纳米管/橡胶/溶剂混合物流体中加入0.01-2.00重量%,优选0.01-1.00重量%的凝固剂,将橡胶迅速凝固后得到稳定的橡胶/碳纳米管共沉混合物流体同时连续进入脱水(溶剂)螺杆挤出机组、破胶机组高压挤出,得到的去除水或溶剂的碳纳米管/橡胶混合物胶块,胶块经过输送系统进入下一步连续干燥工艺。同时凝固与连续挤压的步骤包括高速流动时凝固共沉、初步脱水、深度脱水、螺杆挤出机塑炼、挤出取向,以实现碳纳米管在橡胶中的取向(如附图4所示)。如图4所示的碳纳米管母炼胶的扫描电镜照片所证实,经过步骤3)之后,碳纳米管在母炼胶中高度取向。
该步骤中高压压力为2-200MPa,优选20-60MPa;流速为0.1m/s-100m/s,优选0.1-10m/s。
所述脱水(溶剂)螺杆挤出机组包括一至多台挤出机,本领域技术人员可以根据实际需要对螺杆挤出机的使用条件进行调节。
示例性的凝固剂包括但不限于盐酸、硫酸、乙酸、甲酸、氯化钙、硝酸钙、乙酸环己胺等物质的一种或多种的混合物。
(4)对所述碳纳米管/橡胶混合物进行连续干燥
对碳纳米管/橡胶混合物进行连续干燥的步骤包括在升高的温度下通过加热进行干燥,得到碳纳米管母炼胶。干燥温度为50-150℃,优选80-120℃。
具体来说,本发明的碳纳米管/橡胶混合物的连续干燥工艺,包括以下内容:将经过脱水(或脱溶剂)、破碎成块的碳纳米管/橡胶混合物,连续输送至高温干燥通道中,充分干燥后加工成粉状、颗粒状或块状,即可作为碳纳米管母炼胶进行使用,干燥温度50-150℃,优选80-120℃。高温干燥通道的加热方法包括但不限于饱和蒸汽、热空气、微波、远红外、盐浴、超声波等加热工艺。
干燥后得到的母炼胶可通过破胶机、精磨机等加工成粉状,也可低温冷冻 后研磨成粉状;母炼胶也可通过造粒机加工成为颗粒状;或者采用普通水压机在100-120℃时压成块状。
在本发明的液相连续制备方法中,在液相时已经加入橡胶配合剂得到的碳纳米管母炼胶,可以直接加工成型、硫化成橡胶制品,因此,对于在液相时已经加入橡胶配合剂的情况,采用本发明方法制备得到的碳纳米管母炼胶可以进一步连续进入一至多台密炼机、一至多台开炼机、一至多台螺杆挤出机,加工成型直至硫化。
对于在未加入橡胶配合剂的情况下制得的母炼胶,其碳纳米管浓度高时可作为预分散的碳纳米管使用,中低浓度的碳纳米管母炼胶可加入其他配合剂作为混炼胶使用。
本发明所述的硫化橡胶及其橡胶制品采用由本发明所述的液相连续制备方法制备得到的碳纳米管母炼胶制成,包括碳纳米管含量在0.1-100份之间的轮胎胎面胶、胶管外层胶、输送带覆盖胶、胶鞋大底胶等。
图1是碳纳米管/橡胶液相连续混炼工艺流程示意图,运行该工艺流程时,向橡胶溶液或乳液中加入碳纳米管悬浮液和任选的其他配合剂,对得到的混合物进行连续分散与混合,连续凝固与挤压取向脱水,并连续干燥,得到碳纳米管母炼胶,得到的碳纳米管母炼胶根据实际工艺条件可具有不同的浓度,高浓度母炼胶可以加入普通混炼胶即中,加工成型并硫化制得橡胶制品;中低浓度母炼胶可以加入其他配合剂,加工成型并硫化制得橡胶制品;对于制备碳纳米管母炼胶时已加入其他配合剂的情况,制备得到的中低浓度混炼胶可以直接加工成型,硫化制得橡胶制品。
本发明所述的碳纳米管的液相连续混炼工艺通过碳纳米管预改性、精细研磨/分散设备,可提高碳纳米管在橡胶中的分散度;通过连续挤压设备,可提高碳纳米管的取向程度。该工艺适用于天然胶乳、丁苯胶乳、丁腈胶乳等橡胶乳液或者不同橡胶的溶液,制备出的碳纳米管母炼胶或含有其他配合剂的橡胶混合物应用范围广,可用于制备轮胎胎面胶、胶管外层胶、输送带覆盖胶、胶鞋 大底胶等,能够提高橡胶制品的耐磨性能、抗撕裂性能、抗刺扎性能,并具有高导电、高导热、低密度等性质。
下面结合附图和具体实施例来对本发明作更进一步的说明,以便本领域的技术人员更了解本发明,但并不以此限制本发明。对本发明做出的改进和等同修改也应该落入本文提出的本发明范围内。
原料来源及制备:
(1)橡胶胶乳
天然浓缩胶乳:购自海南兴马泰天然橡胶有限公司,浓度60重量%;
丁苯胶乳:购自山东齐鲁石化有限公司,浓度22重量%;
氯丁胶乳:购自青岛华润橡塑有限公司,浓度50重量%;
(2)碳纳米管:
碳纳米管由山东大展纳米材料有限公司提供,纯度>96%,直径为8-15nm,长度约为3-15μm,灰分含量<2.5%;
(3)稳定剂
氢氧化钾:购自济南金昊化工有限公司,纯度>95%;
磺化甲基油酸钠:购自济南沃尔德化工有限公司,纯度>99%;
聚乙二醇:购自江苏省海安石油化工厂,分子量900-3300;
(4)表面活性剂
十二烷基磺酸钠:购自天津化学试剂有限公司,纯度>97%;
其余橡胶配合剂,包括促进剂、防老剂等均购自青岛华恒助剂有限公司。
产品性能测试:
对制备得到的橡胶制品进行如下性能测试:
(1)硬度测试采用邵A硬度计按照GB/T531.1-2008方法进行;
(2)拉伸测试采用电子拉力机按照GB/T 528-2009方法进行;
(3)耐磨性测试采用阿克隆磨耗机按照GB/T 1689-1998方法进行:结果以阿克隆磨耗体积表示,其中阿克隆磨耗体积值表示试样与砂轮摩擦时,从试 样上磨掉的橡胶体积。因此,阿克隆磨耗体积值越大,表示耐磨性越差;
(4)老化测试采用GB/T 3512-2001进行进行;
(5)电阻率测试采用高阻计按照GB/T 1692-2008方法进行;
(6)导热性能测试采用保护平板法导热仪按照GB/T 3399-1982进行。
实施例1
(1)对比例
用作对比例的普通胎面胶(常用于全钢丝子午线轮胎)按照如下的干法混炼方法制备:将100重量份塑炼天然橡胶、1重量份促进剂N-叔丁基-2-苯并噻唑次黄酰胺、5重量份氧化锌、2重量份硬脂酸、1重量份防老剂N—异丙基—N’—苯基对苯二胺、0.5重量份N,N’-间苯撑双马来酰亚胺、50重量份炭黑N330、5重量份碳酸钙、3重量份环保芳烃油、0.5重量份锌皂盐,在密炼机中混炼均匀、140℃排胶,冷却后加入开炼机中包辊,加入2重量份硫黄混炼均匀、下片,停放12小时后在143℃下硫化15分钟,得到橡胶制品。其产品性能测试结果对应于表1中的对比例。
(2)实施例1A
1、原料配制
a.天然胶乳
天然胶乳组份
组份 含量/重量份
浓缩胶乳(60%) 100
氢氧化钾 0.1
100
搅拌条件:2000-3000rpm,2-5分钟。
b.碳纳米管悬浮液
碳纳米管悬浮液组份
组份 含量/重量份
碳纳米管 5
十二烷基磺酸钠 0.8
稳定剂聚乙二醇 0.8
分散剂水 100
搅拌条件:2000-3000rpm,2-5分钟。
c.橡胶配合剂悬浮液
将1重量份促进剂N-叔丁基-2-苯并噻唑次黄酰胺,5重量份氧化锌,2重量份硬脂酸,1重量份防老剂N—异丙基—N’—苯基对苯二胺,0.5重量份N,N’-间苯撑双马来酰亚胺,50重量份炭黑N330,5重量份碳酸钙、3重量份环保芳烃油,0.5重量份锌皂盐,2重量份硫黄与100重量份水配制成橡胶配合剂悬浮液。
2、混合
本实施例中天然胶乳、碳纳米管悬浮液及橡胶配合剂悬浮液混合时各组份的固含量比例为100重量份橡胶,1重量份碳纳米管,1重量份N-叔丁基-2-苯并噻唑次黄酰胺,5重量份氧化锌,2重量份硬脂酸,1重量份N—异丙基—N’—苯基对苯二胺,0.5重量份N,N’-间苯撑双马来酰亚胺,50重量份炭黑N330,5重量份碳酸钙、3重量份环保芳烃油,0.5重量份锌皂盐,2重量份硫黄。
将天然胶乳、碳纳米管悬浮液和橡胶配合剂悬浮液加入连续分散与混合设备中(即充分搅拌),通过高压冲击、混合作用,最后从出料口得到均匀分散的碳纳米管/橡胶液态混合物。高压注射压力50MPa;出料口流速200m/s。
3、凝固、挤压脱水
当碳纳米管/橡胶流体进入连续凝固设备后,自动滴加1%质量浓度的醋酸溶液,胶浆凝固后立即被输送进入螺杆挤出机组、破胶机进行高压挤出、高压破碎,挤压脱水,并利用挤出口型的流道导向作用使碳纳米管实现取向。块状固态胶料洗涤中和醋酸后,被输送进入连续干燥设备,液体溶剂或凝固剂被收集后回收利用。
4、干燥
经过脱水的胶粒被输送进入电加热控温的高温干燥流水线通道中,烘干后得到碳纳米管母炼胶。
5.混炼、硫化
将烘干后的碳纳米管/橡胶混合物,混炼加工成型、硫化得到橡胶制品。实施例1A整个过程采用液相混炼法制得橡胶制品,其产品性能测试结果对应于表1中的实施例1A。
(3)实施例1B
实施例1B的橡胶制品采用与上述对比例的普通胎面胶的干法混炼方法制备,不同之处仅在于向普通胎面胶配方中加入含有1重量份碳纳米管的母炼胶,所述碳纳米管母炼胶制备方法与实施例1A相同,但其中碳纳米管母炼胶中天然橡胶/碳纳米管的固含量比为60/40,并且制备本母炼胶的步骤3)中不加入橡胶配合剂悬浮液。因此,实施例1B是采用本发明的碳纳米管母炼胶经过普通干法混炼制得的橡胶制品。
表1
Figure PCTCN2015086710-appb-000001
Figure PCTCN2015086710-appb-000002
从表1所示结果可以看出,与普通干法混炼制得的胎面胶相比,无论是采用本发明的碳纳米管母炼胶经过普通干法混炼制得的天然橡胶制品还是所有配合剂采用液相混炼法制得天然橡胶制品在拉伸强度、撕裂强度、定伸应力、耐磨性、导电导热性方面均具有更好的性能,其中整个制备过程全部采用液相混炼法制得天然橡胶制品的性能更好。
实施例2
(1)对比例
用作对比例的普通胎面胶(常用于半钢丝子午线轮胎)按照如下方法制备:将100重量份丁苯橡胶SBR1502、1重量份促进剂N-叔丁基-2-苯并噻唑次黄酰胺、3重量份氧化锌、1.5重量份硬脂酸、1重量份防老剂N-(1,3-二甲基)丁基-N'-苯基对苯二胺、0.5重量份N,N’-间苯撑双马来酰亚胺、50重量份炭黑N339、5重量份环保芳烃油、0.5重量份锌皂盐,在密炼机中混炼均匀、140℃排胶,冷却后加入开炼机中包辊,加入2.5重量份硫黄混炼均匀、下片,停放12小时后在151℃下硫化15分钟,得到橡胶制品。其产品性能测试结果对应于表2中的对比例。
(2)实施例2A
1、原料的配制
a.丁苯胶乳
丁苯胶乳组份
组份 含量/重量份
丁苯胶乳(22%) 100
氢氧化钾 0.1
100
搅拌条件:2000-3000rpm,2-5分钟。
b.碳纳米管悬浮液
碳纳米管悬浮液组份
组份 含量/重量份
碳纳米管 5
十二烷基磺酸钠 0.8
聚乙二醇 0.8
100
搅拌条件:2000-3000rpm,2-5分钟。
c.橡胶配合剂悬浮液
将1重量份促进剂N-叔丁基-2-苯并噻唑次黄酰胺,3重量份氧化锌,1.5重量份硬脂酸,1重量份防老剂N-(1,3-二甲基)丁基-N'-苯基对苯二胺,0.5重量份N,N’-间苯撑双马来酰亚胺,50重量份炭黑N339,5重量份环保芳烃油,0.5重量份锌皂盐,2.5重量份硫黄与100重量份水配制成橡胶配合剂悬浮液。
2、混合
本实施例中丁苯胶乳、碳纳米管悬浮液及橡胶配合剂悬浮液混合时各组份的固含量比例为100重量份丁苯胶乳,1重量份碳纳米管,1重量份促进剂N-叔丁基-2-苯并噻唑次黄酰胺,3重量份氧化锌,1.5重量份硬脂酸,1重量份防老剂N-(1,3-二甲基)丁基-N'-苯基对苯二胺,0.5重量份N,N’-间苯撑双马来酰亚胺,50重量份炭黑N339,5重量份环保芳烃油,0.5重量份锌皂盐,2.5重量份硫黄。
将丁苯胶乳和碳纳米管悬浮液以及橡胶配合剂的悬浮液以上述固含量比例加入连续分散与混合设备中(即充分搅拌),通过高压冲击、混合作用,最后从出料口得到均匀分散的碳纳米管/橡胶液态混合物。高压注射压力40MPa;出料口流速250m/s。
3、凝固、挤压脱水
当碳纳米管/橡胶流体进入连续凝固设备后,自动滴加1%质量浓度的醋酸溶液,胶浆凝固后立即被输送进入螺杆挤出机组、破胶机进行高压挤出、取向,挤压脱水,块状固态胶料洗涤中和醋酸后,被输送进入连续干燥设备,液体溶剂或凝固剂被收集后回收利用。
4、干燥
经过脱水的胶粒被输送进入电加热控温的高温干燥流水线通道中,烘干后待用。
5、混炼、硫化
烘干后的碳纳米管/橡胶混合物,混炼加工成型、硫化得到橡胶制品。实施例2A整个过程采用液相混炼法制得橡胶制品,其产品性能测试结果对应于表2中的实施例2A。
(3)实施例2B
实施例2B的橡胶制品采用与上述对比例的普通胎面胶的干法混炼方法制备,不同之处仅在于向普通胎面胶配方中加入含有1重量份碳纳米管的丁苯胶乳母炼胶,所述碳纳米管母炼胶制备方法与实施例2B相同,但其中碳纳米管母炼胶中丁苯橡胶/碳纳米管的固含量比为60/40,并且制备本实施例母炼胶的步骤3)中不加入橡胶配合剂悬浮液。因此,实施例2B是采用本发明的碳纳米管母炼胶经过普通干法混炼制得的橡胶制品。其产品性能测试结果对应于表2中的实施例2B。
表2
Figure PCTCN2015086710-appb-000003
Figure PCTCN2015086710-appb-000004
从表2所示结果可以看出,与普通干法混炼制得的胎面胶相比,无论是采用本发明的碳纳米管母炼胶经过普通干法混炼制得的胎面胶还是所有配合剂采用液相混炼法制得的胎面胶在拉伸强度、撕裂强度、定伸应力、耐磨性、导电导热性方面均具有更好的性能,其中整个制备过程全部采用液相混炼法制得丁苯橡胶制品的性能更好。
实施例3
(1)对比例
用作对比例的普通胶管外层胶按照如下方法制备:将20重量份天然橡胶、80重量份氯丁橡胶、4重量份氧化镁、2.5重量份硬脂酸、1重量份防老剂N-(1,3-二甲基)丁基-N'-苯基对苯二胺、1重量份防老剂BLE-丙酮与二苯胺高温缩合物、20重量份炭黑N330、100重量份碳酸钙、8重量份邻苯二甲酸二丁酯、1重量份促进剂N-环已基-2-苯并噻唑次磺酰胺,在密炼机中混炼均匀、140℃排胶,冷却后加入开炼机中包辊,加入4重量份氧化锌、0.5重量份硫黄混炼均匀、下片,停放12小时后在148℃下硫化20分钟,得到橡胶制品。其产品性能测试结果对应于表3中的对比例。
(2)实施例3A
1、原料的配制
a.胶乳
天然胶乳组份
组份 含量/份
天然胶乳(60%) 100
氢氧化钾 0.1
100
氯丁橡胶乳液组份
组份 含量/份
氯丁胶乳(50%) 100
磺化甲基油酸钠 1
100
搅拌条件:2000-3000rpm,2-5分钟。
b.碳纳米管悬浮液
碳纳米管悬浮液组份
组份 含量/份
碳纳米管 5
十二烷基磺酸钠 0.8
聚乙二醇 0.8
100
搅拌条件:2000-3000rpm,2-5分钟。
c.橡胶配合剂悬浮液
将4重量份氧化镁,2.5重量份硬脂酸,1重量份防老剂N-(1,3-二甲基)丁基-N'-苯基对苯二胺,1重量份防老剂BLE-丙酮与二苯胺高温缩合物,20重量份炭黑N330、100重量份碳酸钙,8重量份邻苯二甲酸二丁酯,1重量份促进剂N-环已基-2-苯并噻唑次磺酰胺,4重量份氧化锌、0.5重量份硫黄与100重量份水配制成橡胶配合剂悬浮液。
3、混合
本实施例中胶乳、碳纳米管悬浮液及橡胶配合剂悬浮液混合时各组份的固含量比例为20重量份天然橡胶、80重量份氯丁橡胶,1重量份碳纳米管,4重量份氧化镁,2.5重量份硬脂酸,1重量份防老剂N-(1,3-二甲基)丁基-N'-苯基对苯二胺,1重量份防老剂BLE-丙酮与二苯胺高温缩合物,20重量份炭黑N330、100重量份碳酸钙,8重量份邻苯二甲酸二丁酯,1重量份促进剂N-环已基-2-苯并噻唑次磺酰胺,4重量份氧化锌、0.5重量份硫黄。
将天然胶乳、氯丁橡胶乳液和碳纳米管悬浮液以及橡胶配合剂悬浮液以上述固含量比例加入连续分散与混合设备中(即充分搅拌),通过高压冲击、混合作用,最后从出料口得到均匀分散的碳纳米管/橡胶液态混合物。高压注射压力50MPa;出料口流速150m/s。
4、凝固、挤压脱水
当碳纳米管/橡胶流体进入连续凝固设备后,自动滴加1%质量浓度的醋酸溶液,胶浆凝固后立即被输送进入螺杆挤出机组、破胶机,挤压脱水,块状固态胶料洗涤中和醋酸后,被输送进入连续干燥设备,液体溶剂或凝固剂被收集后回收利用。
5、干燥
经过脱水的胶粒被输送进入电加热控温的高温干燥流水线通道中,烘干后待用。
6、混炼、硫化
烘干后的碳纳米管/橡胶混合物,混炼加工成型、硫化得到橡胶制品。实施例3A整个过程采用液相混炼法制得橡胶制品,其产品性能测试结果对应于表3中的实施例3A。
(3)实施例3B
实施例3B的橡胶制品采用与上述对比例的普通胶管外层胶的干法混炼方法制备,不同之处仅在于向普通胶管外层胶配方中加入含有1重量份碳纳米管的氯丁胶乳母炼胶,所述碳纳米管母炼胶制备方法与实施例3A相同,但其中碳纳米管母炼胶中氯丁胶乳/碳纳米管的固含量比为60/40,并且制备本实施例母炼胶的步骤3)中不加入橡胶配合剂悬浮液。因此,实施例3B是采用本发明的碳纳米管母炼胶经过普通干法混炼制得的橡胶制品。其产品性能测试结果对应于表3中的实施例3B。
表3
Figure PCTCN2015086710-appb-000005
Figure PCTCN2015086710-appb-000006
从表3所示结果可以看出,与普通干法混炼制得的外层胶相比,无论是采用本发明的碳纳米管母炼胶经过普通干法混炼制得的外层胶还是所有配合剂采用液相混炼法制得外层胶在硬度、拉伸性能、耐老化性能、导电导热性方面均具有更好的性能,其中整个制备过程全部采用液相混炼法制得氯丁橡胶制品的性能更好。

Claims (10)

  1. 一种碳纳米管母炼胶的液相连续制备方法,包括:
    1)制备碳纳米管悬浮液;
    2)将所述碳纳米管的悬浮液与橡胶溶液/乳液和任选的橡胶配合剂溶液/悬浮液连续分散与混合,得到碳纳米管/橡胶/溶剂混合物;
    3)对所述碳纳米管/橡胶/溶剂混合物同时进行凝固与连续挤压,以实现碳纳米管取向,去除水或溶剂之后得到碳纳米管/橡胶混合物;
    4)对所述碳纳米管/橡胶混合物进行连续干燥,得到碳纳米管母炼胶。
  2. 根据权利要求1所述的碳纳米管母炼胶的液相连续制备方法,其特征在于,制备碳纳米管悬浮液的步骤包括将碳纳米管、表面活性剂、稳定剂和分散剂加入油性溶剂或水性分散介质中,通过搅拌设备制备稳定的碳纳米管油性或水性悬浮液。
  3. 根据权利要求1或2所述的碳纳米管母炼胶的液相连续制备方法,其特征在于,所述碳纳米管是有机官能化表面改性的碳纳米管。
  4. 根据权利要求1所述的碳纳米管母炼胶的液相连续制备方法,其特征在于,将所述碳纳米管悬浮液与橡胶溶液/乳液和任选的橡胶配合剂溶液/悬浮液连续分散与混合的步骤包括通过高压泵将碳纳米管悬浮液、橡胶溶液/乳液和任选的橡胶配合剂溶液/悬浮液以一定的流速分别输送到流道截面积渐变的管路中,继而在高压和流道冲击、混合的作用下,得到分散均匀且稳定的碳纳米管/橡胶/溶剂混合物,其中高压压力为1-100MPa,优选10-60MPa;流速为10m/s-1000m/s,优选100-500m/s。
  5. 根据权利要求1所述的碳纳米管母炼胶的液相连续制备方法,其特征在于,对所述碳纳米管/橡胶/溶剂混合物同时进行凝固与连续挤压步骤包括:按照一定的流速向碳纳米管/橡胶/溶剂混合物流体中加入0.01-2.00%质量浓度的凝固剂,将橡胶迅速凝固后得到稳定的橡胶/碳纳米管共沉混合物流体连续进入螺杆挤出机组高压挤出,以实现碳纳米管在橡胶中的取向,其中高压压力为2-200MPa,优选20-60MPa;流速为0.1m/s-100m/s,优选0.1-10m/s。
  6. 根据权利要求1所述的碳纳米管母炼胶的液相连续制备方法,其特征在于,对碳纳米管/橡胶混合物进行连续干燥的步骤包括在干燥温度为50-150℃,优选80-120℃的条件下通过加热进行干燥。
  7. 根据权利要求1,4-6中任一项所述的碳纳米管母炼胶的液相连续制备方法,其特征在于,所述橡胶是天然橡胶或合成橡胶,优选三叶橡胶、杜仲胶、银菊胶、蒲公英胶,聚丁二烯橡胶、聚异戊二烯橡胶、丁苯橡胶、乙丙橡胶、丁基橡胶、丁腈橡胶、氯丁橡胶、硅橡胶、聚氨酯橡胶、丙烯酸酯橡胶、氟橡胶及其衍生产物。
  8. 根据权利要求1-7所述的碳纳米管母炼胶的液相连续制备方法制备得到的碳纳米管母炼胶。
  9. 采用权利要求8所述的碳纳米管母炼胶制备得到的橡胶制品。
  10. 一种碳纳米管母炼胶的液相连续混炼工艺,包括:
    1)制备碳纳米管悬浮液;
    2)将所述碳纳米管的悬浮液与橡胶溶液/乳液和任选的橡胶配合剂溶液/悬浮液连续分散与混合,得到碳纳米管/橡胶/溶剂混合物;
    3)对所述碳纳米管/橡胶/溶剂混合物同时进行凝固与连续挤压,以实现碳纳米管取向,去除水或溶剂之后得到碳纳米管/橡胶混合物;
    4)对所述碳纳米管/橡胶混合物进行连续干燥,得到碳纳米管母炼胶;
    5)将经过干燥的碳纳米管母炼胶连续进入一至多台密炼机、一至多台开炼机、一至多台螺杆挤出机,加工成型直至硫化。
PCT/CN2015/086710 2014-08-25 2015-08-12 高分散碳纳米管母炼胶的液相连续混炼工艺及其橡胶制品 WO2016029798A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410422228.X 2014-08-25
CN201410422228.XA CN105459284B (zh) 2014-08-25 2014-08-25 高分散碳纳米管母炼胶的液相连续混炼工艺及其橡胶制品

Publications (1)

Publication Number Publication Date
WO2016029798A1 true WO2016029798A1 (zh) 2016-03-03

Family

ID=55398742

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/086710 WO2016029798A1 (zh) 2014-08-25 2015-08-12 高分散碳纳米管母炼胶的液相连续混炼工艺及其橡胶制品

Country Status (2)

Country Link
CN (1) CN105459284B (zh)
WO (1) WO2016029798A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018210471A1 (de) * 2017-05-15 2018-11-22 Continental Reifen Deutschland Gmbh Schwefelvernetzte kautschukmischung für fahrzeugreifen enthaltend carbon nanotubes (cnt), fahrzeugreifen, der die schwefelvernetzte kautschukmischung aufweist, sowie verfahren zur herstellung der schwefelvernetzten kautschukmischung enthaltend cnt
CN109535510A (zh) * 2018-11-21 2019-03-29 宁波旭泰橡胶工业有限公司 一种密封圈
WO2019075201A1 (en) * 2017-10-11 2019-04-18 Molecular Rebar Design, Llc DISCRETE AND CONCENTRATED CARBON NANOTUBES OF DRY LIQUID AND THEIR FORMULATIONS
KR20200063220A (ko) * 2017-10-11 2020-06-04 몰레큘라 레바 디자인 엘엘씨 표적화된 산화 수준을 갖는 이산 탄소 나노튜브 및 그의 제제를 사용한 차폐 제제
CN112778584A (zh) * 2021-01-28 2021-05-11 苏州第一元素纳米技术有限公司 橡胶复合母粒及其制备方法
CN113061296A (zh) * 2021-03-16 2021-07-02 重庆市金盾橡胶制品有限公司 一种碳纳米管胎面胶及其制备方法
CN113861521A (zh) * 2021-10-12 2021-12-31 际华三五三七有限责任公司 阻燃型鞋用围边混炼胶及其制备方法
CN114381049A (zh) * 2022-01-10 2022-04-22 青岛科技大学 一种无机填料/橡胶复合材料制备方法
CN115558158A (zh) * 2022-07-19 2023-01-03 青岛泰联新材料有限公司 一种碳纳米管预分散母粒及其制备方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105949545A (zh) * 2016-05-17 2016-09-21 山东瑞川硅业有限公司 一种含有硅烷偶联剂及纳米碳管的橡胶组合物及其制备方法
CN105860133B (zh) * 2016-06-23 2018-10-09 上海绿韧新材料有限公司 碳管母料及其在轮胎胎面的应用
CN109251327B (zh) * 2017-07-12 2020-08-07 山东大展纳米材料有限公司 连续喷雾混合制备混炼胶的方法及装置
CN108794822A (zh) * 2018-06-25 2018-11-13 青岛黑猫炭黑科技有限责任公司 一种复合母胶的制备方法
CN109741856B (zh) * 2019-01-25 2020-02-21 电子科技大学 一种碳纳米管-硅橡胶复合导电流体及其制备方法
CN110240736B (zh) * 2019-06-27 2022-06-07 海南中橡科技有限公司 一种天然胶乳多相并流凝固方法
CN110606965B (zh) * 2019-10-24 2020-09-01 苏州第一元素纳米技术有限公司 碳纳米管-天然橡胶复合母胶及其制备方法、制备装置
CN114106362B (zh) * 2020-08-31 2024-01-05 中国石油化工股份有限公司 优化乳聚丁苯橡胶物性的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101381483A (zh) * 2008-10-28 2009-03-11 中国热带农业科学院农产品加工研究所 一种碳纳米管-天然橡胶复合材料的制备方法
CN102321279A (zh) * 2011-09-29 2012-01-18 北京化工大学 一种多巴胺改性碳纳米管/橡胶复合材料及其制备方法
CN103159963A (zh) * 2011-12-15 2013-06-19 中国石油天然气股份有限公司 一种高性能粉末丁腈橡胶的制备方法
EP2650325A1 (en) * 2012-04-10 2013-10-16 ContiTech AG Polymer mixture, rubber mixture comprising the polymer mixture and process for preparing the rubber mixture

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103205001B (zh) * 2013-01-10 2017-10-03 怡维怡橡胶研究院有限公司 填料在橡胶溶液中的分散方法
CN103600434B (zh) * 2013-08-05 2016-04-27 怡维怡橡胶研究院有限公司 橡胶母炼胶的连续式制造方法及该方法制备的橡胶母炼胶

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101381483A (zh) * 2008-10-28 2009-03-11 中国热带农业科学院农产品加工研究所 一种碳纳米管-天然橡胶复合材料的制备方法
CN102321279A (zh) * 2011-09-29 2012-01-18 北京化工大学 一种多巴胺改性碳纳米管/橡胶复合材料及其制备方法
CN103159963A (zh) * 2011-12-15 2013-06-19 中国石油天然气股份有限公司 一种高性能粉末丁腈橡胶的制备方法
EP2650325A1 (en) * 2012-04-10 2013-10-16 ContiTech AG Polymer mixture, rubber mixture comprising the polymer mixture and process for preparing the rubber mixture

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018210471A1 (de) * 2017-05-15 2018-11-22 Continental Reifen Deutschland Gmbh Schwefelvernetzte kautschukmischung für fahrzeugreifen enthaltend carbon nanotubes (cnt), fahrzeugreifen, der die schwefelvernetzte kautschukmischung aufweist, sowie verfahren zur herstellung der schwefelvernetzten kautschukmischung enthaltend cnt
US11326028B2 (en) 2017-05-15 2022-05-10 Continental Reifen Deutschland Gmbh Sulfur-crosslinked rubber mixture for vehicle tires, containing carbon nanotubes (CNT), vehicle tire having the sulfur-crosslinked rubber mixture, and method for producing the sulfur-crosslinked rubber mixture containing carbon nanotubes
US11014815B2 (en) 2017-10-11 2021-05-25 Molecular Rebar Design, Llc Discrete carbon nanotubes and dry liquid concentrates and formulations thereof
KR20200062307A (ko) * 2017-10-11 2020-06-03 몰레큘라 레바 디자인 엘엘씨 이산 탄소 나노튜브 및 건조 액체 농축물 및 그의 제제
KR20200063220A (ko) * 2017-10-11 2020-06-04 몰레큘라 레바 디자인 엘엘씨 표적화된 산화 수준을 갖는 이산 탄소 나노튜브 및 그의 제제를 사용한 차폐 제제
WO2019075201A1 (en) * 2017-10-11 2019-04-18 Molecular Rebar Design, Llc DISCRETE AND CONCENTRATED CARBON NANOTUBES OF DRY LIQUID AND THEIR FORMULATIONS
KR102397787B1 (ko) 2017-10-11 2022-05-12 몰레큘라 레바 디자인 엘엘씨 이산 탄소 나노튜브 및 건조 액체 농축물 및 그의 제제
KR102524930B1 (ko) 2017-10-11 2023-04-26 몰레큘라 레바 디자인 엘엘씨 표적화된 산화 수준을 갖는 이산 탄소 나노튜브 및 그의 제제를 사용한 차폐 제제
CN109535510A (zh) * 2018-11-21 2019-03-29 宁波旭泰橡胶工业有限公司 一种密封圈
CN112778584A (zh) * 2021-01-28 2021-05-11 苏州第一元素纳米技术有限公司 橡胶复合母粒及其制备方法
CN113061296A (zh) * 2021-03-16 2021-07-02 重庆市金盾橡胶制品有限公司 一种碳纳米管胎面胶及其制备方法
CN113061296B (zh) * 2021-03-16 2022-06-17 重庆市金盾橡胶制品有限公司 一种碳纳米管胎面胶及其制备方法
CN113861521A (zh) * 2021-10-12 2021-12-31 际华三五三七有限责任公司 阻燃型鞋用围边混炼胶及其制备方法
CN114381049A (zh) * 2022-01-10 2022-04-22 青岛科技大学 一种无机填料/橡胶复合材料制备方法
CN115558158A (zh) * 2022-07-19 2023-01-03 青岛泰联新材料有限公司 一种碳纳米管预分散母粒及其制备方法

Also Published As

Publication number Publication date
CN105459284B (zh) 2019-04-05
CN105459284A (zh) 2016-04-06

Similar Documents

Publication Publication Date Title
WO2016029798A1 (zh) 高分散碳纳米管母炼胶的液相连续混炼工艺及其橡胶制品
TWI789597B (zh) 具有彈性體及填料之複合物之製備方法
TWI432489B (zh) 彈性體複合物及製造彼之方法
CA2811004C (en) Elastomer composite with silica-containing filler and methods to produce same
JP5947192B2 (ja) ゴムウエットマスターバッチの製造方法およびゴムウエットマスターバッチ、ならびにゴムウエットマスターバッチを含有するゴム組成物
JP5850778B2 (ja) ゴム組成物およびその製造方法
JP6510770B2 (ja) ゴムウエットマスターバッチの製造方法およびゴムウエットマスターバッチ、ならびにゴムウエットマスターバッチを含有するゴム組成物
US20170260340A1 (en) Styrene-butadiene rubber (sbr)-nanocarbon filled masterbatches and uses thereof
TW202146560A (zh) 具有碳奈米結構填料之彈性體組合物
CN111527132A (zh) 弹性体配混物的制备方法和弹性体配混物
CN109251327B (zh) 连续喷雾混合制备混炼胶的方法及装置
Wu et al. Continuous mixing process and properties of NR/CB nanocomposites based on elongational rheology
WO2022125683A1 (en) Methods of preparing a composite comprising never-dried natural rubber and filler
JP6371633B2 (ja) ゴム組成物及びベルト被覆ゴム
JP2023010333A (ja) タイヤ用マスターバッチ、タイヤ用ゴム組成物、タイヤ、およびそれらの製造方法
CN108350185B (zh) 橡胶湿法母炼胶及橡胶组合物的制造方法
JP7125883B2 (ja) ゴムウエットマスターバッチの製造方法
JP2011021108A (ja) ウエットマスターバッチの製造方法、該ウエットマスターバッチを用いて得られたゴム組成物、および該ゴム組成物を用いて得られた空気入りタイヤ
JP2018062622A (ja) ゴムウエットマスターバッチの製造方法
JP2023062741A (ja) マスターバッチの製造方法、およびタイヤの製造方法
JP2019112524A (ja) ゴムウエットマスターバッチ塊の脱水方法およびゴムウエットマスターバッチの製造方法
JP6532667B2 (ja) ゴムウエットマスターバッチの製造方法、ゴムウエットマスターバッチ、ゴム組成物および空気入りタイヤ
JP2023078541A (ja) タイヤ用マスターバッチの製造方法、およびタイヤの製造方法
Chatterjee et al. Styrene–Butadiene Rubber-Based Nanoblends (SBR-nB): Preparation, Characterization and Applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15836844

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15836844

Country of ref document: EP

Kind code of ref document: A1