WO2016027569A1 - リアクトルおよびそれを用いたdc-dcコンバータ - Google Patents
リアクトルおよびそれを用いたdc-dcコンバータ Download PDFInfo
- Publication number
- WO2016027569A1 WO2016027569A1 PCT/JP2015/068936 JP2015068936W WO2016027569A1 WO 2016027569 A1 WO2016027569 A1 WO 2016027569A1 JP 2015068936 W JP2015068936 W JP 2015068936W WO 2016027569 A1 WO2016027569 A1 WO 2016027569A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- bus bar
- reactor
- flat
- heat sink
- core
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/22—Conversion of dc power input into dc power output with intermediate conversion into ac
- H02M3/24—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
- H02M3/28—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
- H02M3/325—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/33538—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only of the forward type
- H02M3/33546—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only of the forward type with automatic control of the output voltage or current
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F37/00—Fixed inductances not covered by group H01F17/00
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/08—Cooling; Ventilating
- H01F27/22—Cooling by heat conduction through solid or powdered fillings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/24—Magnetic cores
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/28—Coils; Windings; Conductive connections
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/28—Coils; Windings; Conductive connections
- H01F27/2847—Sheets; Strips
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/28—Coils; Windings; Conductive connections
- H01F27/2876—Cooling
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/28—Coils; Windings; Conductive connections
- H01F27/32—Insulating of coils, windings, or parts thereof
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/22—Conversion of dc power input into dc power output with intermediate conversion into ac
- H02M3/24—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
- H02M3/28—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
Definitions
- the present invention relates to a reactor and a DC-DC converter using the reactor, and more particularly to a reactor used in an electric vehicle or a plug-in hybrid vehicle and a DC-DC converter using the reactor.
- An electric vehicle or a plug-in hybrid vehicle includes an inverter device for driving a motor with a high-voltage storage battery for driving power, and a low-voltage storage battery for operating auxiliary equipment such as a vehicle light and a radio.
- Such a vehicle is equipped with a DC-DC converter device that performs power conversion from a high voltage storage battery to a low voltage storage battery or power conversion from a low voltage storage battery to a high voltage storage battery (see, for example, Patent Document 1). ).
- the DC-DC converter device includes a high voltage side switching circuit that converts a high DC voltage into an AC voltage, a transformer that converts an AC high voltage into an AC low voltage, and a low voltage that converts the low voltage AC voltage into a DC voltage. And a side rectifier circuit.
- the DC-DC converter device has high voltage side terminals 103 a and 103 b and a low voltage side terminal 112.
- a high voltage side switching circuit a circuit configuration is adopted in which four MOSFETs 105a to 105d are H-bridge connected and a smoothing capacitor 104 is connected to the input side.
- the primary winding of the transformer 107 is connected to the output line via the resonance coil 106.
- a center tap type transformer in which the intermediate point of the secondary side winding is drawn to the outside of the winding is adopted.
- a smoothing circuit composed of a capacitor 110 is connected, and a noise suppressing filter coil 109 and a filter capacitor 111 are connected.
- the structure shown in FIG. 2C can be adopted as the reactor heat dissipation structure.
- the flat bus bar 202 forming the reactor winding is thermally connected to the heat sink 203 via the heat dissipation sheets 204a and 204b. Thereby, the temperature rise of the flat bus bar 202 can be suppressed.
- the reactor and the heat dissipation structure are employed, in order to sufficiently reduce the temperature of the flat bus bar 202, it is necessary to increase the width of the flat bus bar 202 and increase the heat dissipation area to the heat sink 203.
- the flat bus bar 202 since the flat bus bar 202 has a structure in which a part of the flat bus bar 202 serving as a heat dissipation surface protrudes from the core part 201, there is a problem that the entire reactor is enlarged and the mounting space is increased.
- the reactor according to the present invention includes a flat plate bus bar, a core portion having a middle foot portion, and a heat sink that cools the flat plate bus bar, and the flat plate bus bar is configured by the flat plate bus bar on the middle foot portion.
- the flat bus bar is arranged so that the main axis of the flat bus bar is parallel to the direction of the winding axis, and is thermally connected to the heat sink via an insulating layer. Connected to.
- the mounting form of the present invention it is possible to suppress the temperature rise of the reactor and realize downsizing. In addition, it is possible to reduce the size of the power conversion device including the reactor.
- FIG. 3 is an exploded perspective view of a reactor 300.
- FIG. 4 is a perspective view for illustrating a heat dissipation structure of a reactor 300.
- FIG. It is sectional drawing in plane BB 'in FIG.3 (c). It is a perspective view which shows Example 2 of a reactor. It is a disassembled perspective view of the reactor which concerns on Example 2.
- FIG. It is a perspective view which shows the reactor of Example 3.
- FIG. It is a disassembled perspective view of the reactor of Example 3.
- FIG. It is the perspective view which looked at the wiring formation body 501 used for the reactor of Example 3 from the heat radiating surface side. It is a perspective view which shows the mounting structure of the DC-DC converter which employ
- FIG. 3A is an external perspective view of the reactor 300 of the present embodiment.
- FIG. 3B is an exploded perspective view of the reactor 300.
- FIG. 3C is a perspective view for illustrating the heat dissipation structure of the reactor 300.
- FIG. 3D is a cross-sectional view taken along the plane BB ′ in FIG.
- a core portion 301 having a middle foot portion is arranged by combining the E-shaped core 301a and the core 301b, and windings are formed by flat plate bus bars 302 on the middle foot portion 310a and the middle foot portion 310b.
- the main surface of the flat bus bar 302 is parallel to the winding axis direction of the winding.
- the flat bus bar 302 is provided with a connection terminal portion 302a and a connection terminal portion 302b for connection with other components.
- the reactor can be miniaturized by this structure.
- Heat dissipation structure of reactor 300 As the heat dissipation structure of the reactor 300 described above, the configuration shown in FIG. 3D, the main surface of the planar bus bar 302 on the opposite side through the connection terminal portion 302a and the connection terminal portion 302b and the core 301 is connected to the heat sink 303 through the heat dissipation sheet 304. It is the composition which becomes. Thereby, the thermal radiation structure of a flat bus bar is formed and a temperature rise can be suppressed.
- the reactor 300 can be reduced in size and increased in heat dissipation, and there is no problem of increasing the mounting space unlike the conventional example. If necessary, the flat bus bar 30 connected to the heat sink 303 via the heat dissipation sheet 304 By increasing the area of only the main surface of 2, it is possible to further improve the heat dissipation without increasing the size of the reactor 300.
- FIG. 4A is a perspective view showing Example 2 of the reactor.
- FIG. 4B is an exploded perspective view of the reactor according to the second embodiment.
- a single core bus bar 202 is bent to form a reactor winding, but in this embodiment, a plurality of flat plate bus bars are connected to form a reactor winding.
- FIG. 4 shows a configuration in which the winding has approximately two turns, the number of turns can be further increased by adding a flat bus bar.
- the core 406 includes an E-type core 406a and an E-type core 406b.
- the flat plate bus bar 401 and the flat plate bus bar 402 bent in a U-shape are arranged side by side so that their main surfaces are parallel, and the end portions of the flat plate bus bar 401 and the flat plate bus bar 402 are the through holes 410a and the through holes of the core 406. It arrange
- a gap 411 b is provided between one end and the other end of the flat bus bar 401, and a gap 411 a is provided between one end and the other end of the flat bus bar 402.
- a flat plate bus bar 403 different from the flat plate bus bar 401 and the flat plate bus bar 402 is arranged, and one end thereof is connected to the flat plate bus bar 401 and the other end is connected to the flat plate bus bar 402. Further, a flat bus bar 404 and a flat bus bar 405 for connection with other components are connected to the flat bus bars 401 and 402, respectively.
- a winding for winding the middle leg portion of the core 406 can be formed.
- the main surface opposite to the terminal portion through the core 406 is thermally connected to the heat sink 408 through the heat dissipation sheet 407. Thereby, a heat radiating surface can be formed.
- the processing becomes difficult depending on the thickness and width of the flat bus bar. Further, when the machining accuracy is not sufficient, it is necessary to make a large gap between the windings to ensure insulation, and as a result, the reactor may be enlarged.
- the winding can be easily formed by combining a plurality of bus bars.
- each bus bar has a simple shape, so that the processing accuracy is good, and the winding structure can be downsized.
- FIG. 5A is a perspective view showing a reactor according to the third embodiment.
- FIG. 5B is an exploded perspective view of the reactor according to the third embodiment.
- the wiring structure of the present embodiment is the same as that of the second embodiment, but the wiring module 501 is formed by sealing the flat bus bar 401 and the flat bus bar 402 with a molding material 420 except for the terminal portions. Also, the wiring buses 502 are formed by sealing the flat bus bars 403 to 405 with a molding material 421. Since the wiring formation body 502 has a flat plate shape, a printed board or the like can be used instead.
- the wiring forming body 501 and the wiring forming body 502 can support the bus bar and the core by adding a mechanism that can be fixed to the heat sink 408 with screws or the like in the mold material portion. Further, as shown in FIG. 5C, the heat sink side of the wiring forming body 501 can form a heat radiation path via the heat radiation sheet 407 by exposing the flat bus bar.
- FIG. 6A is a perspective view showing a mounting structure of the DC-DC converter 600 employing the above-described reactor.
- FIG. 6B is an exploded perspective view of the DC-DC converter 600.
- the DC-DC converter 600 includes a plurality of reactors such as a resonance coil, a transformer, a choke coil, and a filter coil.
- the wiring forming body 602 is formed by providing a plurality of wiring forming bodies having the same configuration as the wiring forming body 501 described in the second and third embodiments and integrating them.
- a plurality of core parts 603 are also provided according to the number of reactors.
- the wiring formation body 604 is configured as follows, for example.
- a plurality of reactors shown in FIG. 4B of the second embodiment are provided, and the flat plate bus bar 404 of one reactor is connected to the flat plate bus bar 401 or the flat plate bus bar 402 of the other reactor.
- the housing 601 functioning as a heat sink has an exposed surface of the flat bus bar 401 or the flat bus bar 402 of one reactor and an exposed surface of the flat bus bar 401 or the flat bus bar 402 of the other reactor via the housing 601 and an insulating layer. Thermally connected.
- the structure shown in the third embodiment is applied, and the respective wiring line forming bodies are integrated, whereby the DC-DC converter can be miniaturized.
- Heat dissipation sheet 301a and 301b ... Core, 301 ... Core, 302 ... Plate bus bar, 302a and 302b ... Connection terminal, 303 ... Heat sink, 304 ... Heat radiating sheet, 311 ... Winding protrusion, 401 to 405 ... Plate bus bar, 406a and 406b ... , 406 ... Core part, 407 ... Heat dissipation sheet, 408 ... Heat sink, 410a and 410b ... Through hole, 411a ... Gap, 411b ... Gap, 420 and 421 ... Mold material, 501 and 502 ... Wiring formation body, 600 ... DC-DC Converter, 601... Housing, 602 and 603... Wiring forming body, 603.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Dc-Dc Converters (AREA)
- Coils Of Transformers For General Uses (AREA)
Abstract
本発明の目的は、小型・高放熱のリアクトルおよびそれを用いたDC-DCコンバータを提供することである。本発明に係るリアクトルは、平板バスバと、中足部を有するコアと、前記平板バスバを冷却するヒートシンクと、を備え、前記平板バスバは、前記中足部に、当該平板バスバによる巻線の巻線軸が通るように形成され、前記平板バスバの主面は、前記巻線軸の方向とは平行となるように配置され、かつ絶縁層を介して前記ヒートシンクに熱的に接続される。
Description
本発明は、リアクトルおよびそれを用いたDC-DCコンバータに関し、特に電気自動車やプラグインハイブリッド車に用いられるリアクトルおよびそれを用いたDC-DCコンバータに関する。
(DC-DCコンバータの構成)
電気自動車やプラグインハイブリッド車は、動力駆動用の高電圧蓄電池でモータ駆動するためのインバータ装置と、車両のライトやラジオなどの補機を作動させるための低電圧蓄電池と、を備えている。このような車両には、高電圧蓄電池から低電圧蓄電池への電力変換または低電圧蓄電池から高電圧蓄電池への電力変換を行うDC-DCコンバータ装置が搭載されている(例えば、特許文献1を参照)。
電気自動車やプラグインハイブリッド車は、動力駆動用の高電圧蓄電池でモータ駆動するためのインバータ装置と、車両のライトやラジオなどの補機を作動させるための低電圧蓄電池と、を備えている。このような車両には、高電圧蓄電池から低電圧蓄電池への電力変換または低電圧蓄電池から高電圧蓄電池への電力変換を行うDC-DCコンバータ装置が搭載されている(例えば、特許文献1を参照)。
DC-DCコンバータ装置は、高電圧の直流電圧を交流電圧に変換する高電圧側スイッチング回路と、交流高電圧を交流低電圧に変換するトランスと、低電圧交流電圧を直流電圧に変換する低電圧側整流回路と、を備えている。
DC-DCコンバータ装置の一般的な回路構成を図1に示す。DC-DCコンバータ装置は、高電圧側端子103a及び103b、さらに低電圧側端子112を有する。高電圧側スイッチング回路として、4つのMOSFET105aないしMOSFET 105dをHブリッジ接続し、その入力側に平滑コンデンサ104を接続した回路構成をとっている。その出力線には共振コイル106を介してトランス107の1次巻線が接続される。トランス107として2次側巻線の中間点を巻線外側に引き出したセンタタップ型トランスを採用し、低電圧側整流回路としてダイオードあるはMOSFET113a及びMOSFET 113bを用いた整流回路に、チョークコイル108とコンデンサ110からなる平滑回路を接続し、さらにノイズ抑制のフィルタコイル109とフィルタコンデンサ111を接続した構成をとる。
(従来リアクトルの構造)
大電力出力用のDC-DCコンバータ装置ではリアクトルの巻線損失を低減するために、断面積を大きくとれる平板バスバを巻線として使用することが多い(例えば、特許文献2および特許文献3を参照)。図2(a)及び図2(b)に従来用いられている代表的なリアクトル構造を示す。E型のコア201aと201bを組み合わせることで中足部210を有するコア部201が配置され、その中足部210には平板バスバ202によって巻線が形成されている。ここで平板バスバ202の主面は、巻線の巻軸方向Aに垂直となっている。主面とは、平板の面積が大きい側の面である。上記のリアクトルの放熱構造として、図2(c)に示す構成が採用できる。ここでリアクトル巻線を形成する平板バスバ202は、放熱シート204a及び204bを介して、ヒートシンク203へ熱的に接続されている。これにより、平板バスバ202の温度上昇を抑制できる。
(従来リアクトルの問題点)
上記リアクトルと上記放熱構造を採用した場合、平板バスバ202の温度を十分に低減するには、平板バスバ202の幅を十分に大きくとり、ヒートシンク203への放熱面積を大きくする必要がある。その場合、平板バスバ202は、放熱面となる平板バスバ202の一部がコア部201から突出する構造であるため、リアクトル全体が大型化し、実装スペースが大きくなってしまう問題がある。
(従来リアクトルの構造)
大電力出力用のDC-DCコンバータ装置ではリアクトルの巻線損失を低減するために、断面積を大きくとれる平板バスバを巻線として使用することが多い(例えば、特許文献2および特許文献3を参照)。図2(a)及び図2(b)に従来用いられている代表的なリアクトル構造を示す。E型のコア201aと201bを組み合わせることで中足部210を有するコア部201が配置され、その中足部210には平板バスバ202によって巻線が形成されている。ここで平板バスバ202の主面は、巻線の巻軸方向Aに垂直となっている。主面とは、平板の面積が大きい側の面である。上記のリアクトルの放熱構造として、図2(c)に示す構成が採用できる。ここでリアクトル巻線を形成する平板バスバ202は、放熱シート204a及び204bを介して、ヒートシンク203へ熱的に接続されている。これにより、平板バスバ202の温度上昇を抑制できる。
(従来リアクトルの問題点)
上記リアクトルと上記放熱構造を採用した場合、平板バスバ202の温度を十分に低減するには、平板バスバ202の幅を十分に大きくとり、ヒートシンク203への放熱面積を大きくする必要がある。その場合、平板バスバ202は、放熱面となる平板バスバ202の一部がコア部201から突出する構造であるため、リアクトル全体が大型化し、実装スペースが大きくなってしまう問題がある。
上記で述べたように、平板バスバを巻線として用いたリアクトルでは、バスバの幅を大きくとり、放熱シートを介して、ヒートシンクへ熱的に接続することで、放熱性を確保できるが、平板バスバの面積の増加により、リアクトル全体の体積が増加し、その実装スペースが大きくなる課題がある。
本発明に係るリアクトルは、平板バスバと、中足部を有するコア部と、前記平板バスバを冷却するヒートシンクと、を備え、前記平板バスバは、前記中足部に、当該平板バスバによって構成される巻線の巻線軸が通るように形成され、さらに前記平板バスバは、当該平板バスバの主面が前記巻線軸の方向と平行になるように配置され、かつ絶縁層を介して前記ヒートシンクに熱的に接続される。
本発明の実装形態によれば、リアクトルの温度上昇を抑制し、小型化を実現できる。またリアクトルを備えた電力変換装置の小型化が可能となる。
以下、本発明を実施するための形態を図面によって説明する。
(リアクトル300の基本構造)
図3(a)は、本実施形態のリアクトル300の外観斜視図である。図3(b)は、リアクトル300の分解斜視図である。図3(c)は、リアクトル300の放熱構造を示すための斜視図である。
図3(d)は、図3(c)における平面BB’での断面図である。
図3(a)は、本実施形態のリアクトル300の外観斜視図である。図3(b)は、リアクトル300の分解斜視図である。図3(c)は、リアクトル300の放熱構造を示すための斜視図である。
図3(d)は、図3(c)における平面BB’での断面図である。
図3(a)及び図3(b)を用いて本実施例の構造を説明する。E型のコア301aとコア301bを組み合わせることで中足部を有するコア部301が配置され、その中足部310a及び中足部310bには平板バスバ302によって巻線が形成されている。ここで平板バスバ302の主面は、巻線の巻軸方向に平行となっている。平板バスバ302には他部品との接続のために接続端子部302a及び接続端子部302bが設けられている。このように平板バスバ302を巻回することで、従来例と比較して、コア部301からの巻線突出部分311を小さくすることができる。そのため、本構造によりリアクトルの小型化が可能になる。
(リアクトル300の放熱構造)
上記のリアクトル300の放熱構造として、図3(c)に示す構成が採用できる。図3(d)の断面図で説明すると、接続端子部302a及び接続端子部302bとコア301を介して反対側となる平面バスバ302の主面が、放熱シート304を介してヒートシンク303へ接続される構成となっている。これにより、平板バスバの放熱構造を形成し、温度上昇を抑制できる。
(リアクトル300の放熱構造)
上記のリアクトル300の放熱構造として、図3(c)に示す構成が採用できる。図3(d)の断面図で説明すると、接続端子部302a及び接続端子部302bとコア301を介して反対側となる平面バスバ302の主面が、放熱シート304を介してヒートシンク303へ接続される構成となっている。これにより、平板バスバの放熱構造を形成し、温度上昇を抑制できる。
上記のリアクトル300とその放熱構造を用いれば、リアクトル300の小型化と高放熱化を実現することが可能となり、従来例のように実装スペースが大きくなる問題は生じない。また、必要に応じて、放熱シート304を介してヒートシンク303へ接続される平板バスバ30
2の主面のみの面積を広くすることで、リアクトル300の大型化を伴わずに、放熱性をさらに改善することも可能である。
2の主面のみの面積を広くすることで、リアクトル300の大型化を伴わずに、放熱性をさらに改善することも可能である。
(リアクトルの基本構造)
図4(a)は、リアクトルの実施例2を示す斜視図である。図4(b)は、実施例2に係るリアクトルの分解斜視図である。実施例1では、一枚の平板バスバ202を屈曲させてリアクトル巻線を形成したが、本実施例では、複数の平板バスバを接続することでリアクトル巻線を形成している。図4では、巻線が略2ターンの構成を示しているが、さらに平板バスバを追加すればさらにターン数を増やすことも可能である。
図4(a)は、リアクトルの実施例2を示す斜視図である。図4(b)は、実施例2に係るリアクトルの分解斜視図である。実施例1では、一枚の平板バスバ202を屈曲させてリアクトル巻線を形成したが、本実施例では、複数の平板バスバを接続することでリアクトル巻線を形成している。図4では、巻線が略2ターンの構成を示しているが、さらに平板バスバを追加すればさらにターン数を増やすことも可能である。
コア406は、E型のコア406aとE型のコア406bから構成される。コの字形状に屈曲した平板バスバ401及び平板バスバ402を、その各主面が平行となるように並べて配置し、平板バスバ401及び平板バスバ402の端部がコア406の貫通孔410a及び貫通孔410bから突出するように配置する。平板バスバ401の一端と他端との間にはギャップ411bが設けられ、平板バスバ402の一端と他端との間にはギャップ411aが設けられる。
平板バスバ401及び平板バスバ402とは別の平板バスバ403を配置し、その一端を平板バスバ401と、他端を平板バスバ402と接続する。さらに他部品との接続用の平板バスバ404及び平板バスバ405をそれぞれ平板バスバ401と402へ接続する。このように複数バスバを接続することで、コア406の中足部を巻回する巻線を形成することができる。平板バスバ401において、端子部とはコア406を介して反対側の主面は、放熱シート407を介して、ヒートシンク408に熱的に接続する。これにより放熱面が形成できる。
実施例1のように一枚の平板バスバを屈曲させて複数巻回する巻線を作成する場合、平板バスバの厚さや幅によっては加工が困難となる。また、加工精度が充分でない場合には、絶縁を確保するために巻線間の隙間を大きくとる必要があり、その結果リアクトルが大型化する場合もある。しかし、本実施例では、複数のバスバを組み合わせることで、容易に巻線を形成できる。また、各バスバは単純な形状のために加工精度が良好であり、巻線構造の小型化が可能となる。
(リアクトルの基本構造)
図5(a)は実施例3のリアクトルを示す斜視図である。図5(b)は、実施例3のリアクトルの分解斜視図である。本実施例の配線構造は実施例2と同様であるが、平板バスバ401及び平板バスバ402をその端子部を除いてモールド材420で封止することで配線モジュール501を形成している。また平板バスバ403ないし405をモールド材421で封止することで配線形成体502を形成したものである。なお配線形成体502は平板形状であるので、プリント基板などで代用もできる。
(本構成の効果)
配線形成体501及び配線形成体502は、そのモールド材部分にネジなどによってヒートシンク408へ固定できる機構を追加すれば、バスバやコアを支持することも可能である。また、図5(c)に示すように、配線形成体501のヒートシンク側は、平板バスバを露出させておくことによって、放熱シート407を介した放熱経路を形成することが可能となる。
図5(a)は実施例3のリアクトルを示す斜視図である。図5(b)は、実施例3のリアクトルの分解斜視図である。本実施例の配線構造は実施例2と同様であるが、平板バスバ401及び平板バスバ402をその端子部を除いてモールド材420で封止することで配線モジュール501を形成している。また平板バスバ403ないし405をモールド材421で封止することで配線形成体502を形成したものである。なお配線形成体502は平板形状であるので、プリント基板などで代用もできる。
(本構成の効果)
配線形成体501及び配線形成体502は、そのモールド材部分にネジなどによってヒートシンク408へ固定できる機構を追加すれば、バスバやコアを支持することも可能である。また、図5(c)に示すように、配線形成体501のヒートシンク側は、平板バスバを露出させておくことによって、放熱シート407を介した放熱経路を形成することが可能となる。
(DCDCコンバータの構造)
図6(a)は、前述したリアクトルを採用したDC-DCコンバータ600の実装構造を示す斜視図である。図6(b)はDC-DCコンバータ600の分解斜視図である。
図6(a)は、前述したリアクトルを採用したDC-DCコンバータ600の実装構造を示す斜視図である。図6(b)はDC-DCコンバータ600の分解斜視図である。
DC-DCコンバータ600は共振コイル、トランス、チョークコイル、フィルタコイルといった複数のリアクトルを備えている。
配線形成体602は実施例2や実施例3にて説示された配線形成体501と同一構成の配線形成体を複数設け、それを一体化したものである。リアクトルの数に応じて、コア部603も複数設ける。
配線形成体604は、例えば、以下のように構成される。
実施例2の図4(b)に示されたリアクトルを複数設け、一方のリアクトルの平板バスバ404は、他方のリアクトルの平板バスバ401又は平板バスバ402と接続される。さらに、ヒートシンクとして機能する筐体601は、一方のリアクトルの平板バスバ401又は平板バスバ402の露出面及び他方のリアクトルの平板バスバ401又は平板バスバ402の露出面が筐体601と絶縁層を介して熱的に接続される。
これらすべてのリアクトル構造として、実施例3に示した構造を適用し、それぞれの配線線形成体を一体化することで、DC-DCコンバータの小型化が可能となる。
103a…高圧側入力部,103b…高圧側入力部、104…平滑コンデンサ、105aないし105d… MOSFET、106…共振コイル、107…トランス、108…チョークコイル、109…フィルタコイル、110…平滑コンデンサ、111…フィルタコンデンサ、112…低圧側出力部、113a及び113b…MOSFET、200…リアクトル、201a及び201b…コア、201…コア部、202…平板バスバ、203…ヒートシンク、204a及び204b…放熱シート、301a及び301b…コア、301…コア部、302…平板バスバ、302a及び302b…接続端子部、303…ヒートシンク、304…放熱シート、311…巻線突出部分、401ないし405…平板バスバ、406a及び406b…コア、406…コア部、407…放熱シート、408…ヒートシンク、410a及び410b…貫通孔、411a…ギャップ、411b…ギャップ、420及び421…モールド材、501及び502…配線形成体、600…DC-DCコンバータ、601…筐体、602及び603…配線形成体、603…コア部
Claims (7)
- 平板バスバと、中足部を有するコア部と、前記平板バスバを冷却するヒートシンクと、を備え、
前記平板バスバは、前記中足部に、当該平板バスバによって構成される巻線の巻線軸が通るように形成され、
さらに前記平板バスバは、当該平板バスバの主面が前記巻線軸の方向と平行になるように配置され、かつ絶縁層を介して前記ヒートシンクに熱的に接続されるリアクトル。 - 請求項1に記載のリアクトルであって、
前記平板バスバは、一端と他端との間に第1ギャップを設けるための屈曲部を有する第1バスバと、一端と他端との間に第2ギャップを設けるための屈曲部を有する第2バスバと、前記第1バスバ及び前記第2バスバとは異なる第3バスバと、により構成され、
前記第1バスバ及び前記第2バスバは、当該第1バスバに一部及び当該第2バスバの一部を露出するようにモールド部によって封止され、
前記コア部は、前記第1バスバ及び前記第2バスバを貫通させるための貫通孔を形成し、
前記第1バスバの一端と他端及び前記第2バスバの一端と他端は、前記第1ギャップ及び前記第2ギャップが前記コア部の外部に配置されるように前記コア部の前記貫通孔から突出し、
前記第1バスバの一端は、前記第3バスバを介して前記第2バスバの他端と接続され、
前記モールド部は、前記コア部を挟んで前記第3バスバとは反対側の前記第1バスバ又は第2バスバの面に露出面を形成させ、
前記第1バスバ又は第2バスバの前記露出面は、前記ヒートシンクと絶縁層を介して熱的に接続されるリアクトル。 - 請求項2に記載されたリアクトルであって、
前記第3バスバを埋設する絶縁性の基板部を備えるリアクトル。 - 請求項3に記載されたリアクトルであって、
前記第1バスバの他端と接続される第4バスバを備え、
前記第4バスバは、他の部品と接続される端子部を有し、
前記基板部は、前記第4バスバを埋設するリアクトル。 - 請求項4に記載されたリアクトルであって、
前記第2バスバの一端と接続される第5バスバを備え、
前記第5バスバは、他の部品と接続される端子部を有し、
前記基板部は、前記第5バスバを埋設するリアクトル。 - 請求項4に記載されたリアクトルを少なくとも2つ設けた複数のリアクトルであって、
一方の前記リアクトルの第4バスバは、他方の前記リアクトルの前記第1バスバ又は前記第2バスバと接続され、
前記ヒートシンクは、前記一方のリアクトルの前記第1バスバ又は第2バスバの露出面及び前記他方のリアクトルの前記第1バスバ又は第2バスバの露出面が前記ヒートシンクと絶縁層を介して熱的に接続される複数のリアクトル。 - 請求項7に記載の複数のリアクトルを備えたDC-DCコンバータ。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201580043127.4A CN106575566B (zh) | 2014-08-20 | 2015-07-01 | 电抗器和使用它的dc-dc转换器 |
DE112015002847.1T DE112015002847B4 (de) | 2014-08-20 | 2015-07-01 | Drossel und Gleichspannungsumsetzer, der sie verwendet |
US15/320,500 US10784788B2 (en) | 2014-08-20 | 2015-07-01 | Reactor and DC-DC converter using same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014167079A JP6397692B2 (ja) | 2014-08-20 | 2014-08-20 | リアクトルおよびそれを用いたdc−dcコンバータ |
JP2014-167079 | 2014-08-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016027569A1 true WO2016027569A1 (ja) | 2016-02-25 |
Family
ID=55350521
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/068936 WO2016027569A1 (ja) | 2014-08-20 | 2015-07-01 | リアクトルおよびそれを用いたdc-dcコンバータ |
Country Status (5)
Country | Link |
---|---|
US (1) | US10784788B2 (ja) |
JP (1) | JP6397692B2 (ja) |
CN (1) | CN106575566B (ja) |
DE (1) | DE112015002847B4 (ja) |
WO (1) | WO2016027569A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022091625A1 (ja) * | 2020-10-29 | 2022-05-05 | 日立Astemo株式会社 | 電力変換装置 |
JP7574315B2 (ja) | 2020-10-29 | 2024-10-28 | 日立Astemo株式会社 | 電力変換装置 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102018202663A1 (de) | 2018-02-22 | 2019-08-22 | Zf Friedrichshafen Ag | Drossel |
FR3078816B1 (fr) * | 2018-03-08 | 2020-02-07 | Renault S.A.S | Dispositif d’electronique de puissance comportant un transformateur plan et une structure de refroidissement |
JP7148356B2 (ja) * | 2018-10-17 | 2022-10-05 | 株式会社タムラ製作所 | コイル |
DE102023200218A1 (de) | 2023-01-12 | 2024-07-18 | Zf Friedrichshafen Ag | Leiteranordnung für große Ströme |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6390821U (ja) * | 1986-12-04 | 1988-06-13 | ||
JPH11251164A (ja) * | 1998-03-03 | 1999-09-17 | Hitachi Ferrite Denshi Kk | 小型チョークコイル |
JP2002208521A (ja) * | 2001-01-11 | 2002-07-26 | Denso Corp | 大電流平滑用の平滑コイル |
JP2009059954A (ja) * | 2007-08-31 | 2009-03-19 | Hitachi Powdered Metals Co Ltd | ディスク型リアクトル |
JP2011181856A (ja) * | 2010-03-04 | 2011-09-15 | Toyota Industries Corp | 誘導機器の組立体 |
JP2013051402A (ja) * | 2011-08-01 | 2013-03-14 | Sumitomo Electric Ind Ltd | チョークコイル及びその製造方法 |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4549130A (en) * | 1983-07-12 | 1985-10-22 | International Business Machines Corporation | Low leakage transformers for efficient line isolation in VHF switching power supplies |
JP4165034B2 (ja) * | 2001-05-14 | 2008-10-15 | サンケン電気株式会社 | トランス |
JP2002353045A (ja) | 2001-05-29 | 2002-12-06 | Hitachi Metals Ltd | パワートランス及びこれを用いた電力変換装置 |
TWI270900B (en) * | 2002-06-11 | 2007-01-11 | Delta Electronics Inc | Transformer and its iron core structure |
JP4418208B2 (ja) | 2003-11-06 | 2010-02-17 | ニチコン株式会社 | Dc−dcコンバータ装置 |
CN1894755B (zh) * | 2003-12-10 | 2011-11-16 | 株式会社田村制作所 | 变压器 |
US7248139B1 (en) | 2006-01-30 | 2007-07-24 | Nemic-Lambda Ltd. | High-current electrical coil construction |
JP4783183B2 (ja) * | 2006-03-16 | 2011-09-28 | スミダコーポレーション株式会社 | インダクタ |
US7257881B1 (en) * | 2006-10-02 | 2007-08-21 | Tyco Electronics Power Systems, Inc. | Method and structure for assembling electrical windings about a central member |
TW200917292A (en) * | 2007-10-05 | 2009-04-16 | Acbel Polytech Inc | Transformer and composition structure thereof |
JP4927142B2 (ja) * | 2009-09-18 | 2012-05-09 | トヨタ自動車株式会社 | 電力変換器 |
JP5418195B2 (ja) * | 2009-12-15 | 2014-02-19 | 株式会社豊田自動織機 | コイルの放熱構造 |
JP5465151B2 (ja) * | 2010-04-23 | 2014-04-09 | 住友電装株式会社 | リアクトル |
WO2012053439A1 (ja) * | 2010-10-21 | 2012-04-26 | Tdk株式会社 | コイル部品及びその製造方法 |
JP5179561B2 (ja) * | 2010-12-02 | 2013-04-10 | 三菱電機株式会社 | リアクトル装置 |
US20130063234A1 (en) * | 2011-07-07 | 2013-03-14 | Hypertherm, Inc. | High power inductor and ignition transformer using planar magnetics |
CN103093942B (zh) * | 2011-11-01 | 2016-03-09 | 株式会社日立产机系统 | 非晶铁芯变压器 |
US9601257B2 (en) * | 2011-11-14 | 2017-03-21 | Abb Schweiz Ag | Wind-on core manufacturing method for split core configurations |
JP6268509B2 (ja) * | 2012-08-10 | 2018-01-31 | パナソニックIpマネジメント株式会社 | リアクトル装置 |
CN103871724B (zh) * | 2012-12-18 | 2016-09-28 | 佳邦科技股份有限公司 | 功率电感及其制造方法 |
JP5995147B2 (ja) * | 2013-09-24 | 2016-09-21 | 住友電装株式会社 | 回路構成体 |
JP2015065345A (ja) * | 2013-09-25 | 2015-04-09 | トヨタ自動車株式会社 | リアクトル装置及び電力変換装置 |
-
2014
- 2014-08-20 JP JP2014167079A patent/JP6397692B2/ja active Active
-
2015
- 2015-07-01 DE DE112015002847.1T patent/DE112015002847B4/de active Active
- 2015-07-01 WO PCT/JP2015/068936 patent/WO2016027569A1/ja active Application Filing
- 2015-07-01 CN CN201580043127.4A patent/CN106575566B/zh active Active
- 2015-07-01 US US15/320,500 patent/US10784788B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6390821U (ja) * | 1986-12-04 | 1988-06-13 | ||
JPH11251164A (ja) * | 1998-03-03 | 1999-09-17 | Hitachi Ferrite Denshi Kk | 小型チョークコイル |
JP2002208521A (ja) * | 2001-01-11 | 2002-07-26 | Denso Corp | 大電流平滑用の平滑コイル |
JP2009059954A (ja) * | 2007-08-31 | 2009-03-19 | Hitachi Powdered Metals Co Ltd | ディスク型リアクトル |
JP2011181856A (ja) * | 2010-03-04 | 2011-09-15 | Toyota Industries Corp | 誘導機器の組立体 |
JP2013051402A (ja) * | 2011-08-01 | 2013-03-14 | Sumitomo Electric Ind Ltd | チョークコイル及びその製造方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022091625A1 (ja) * | 2020-10-29 | 2022-05-05 | 日立Astemo株式会社 | 電力変換装置 |
JP7574315B2 (ja) | 2020-10-29 | 2024-10-28 | 日立Astemo株式会社 | 電力変換装置 |
Also Published As
Publication number | Publication date |
---|---|
CN106575566B (zh) | 2018-09-11 |
DE112015002847B4 (de) | 2024-10-02 |
CN106575566A (zh) | 2017-04-19 |
US20170229971A1 (en) | 2017-08-10 |
JP2016046277A (ja) | 2016-04-04 |
JP6397692B2 (ja) | 2018-09-26 |
DE112015002847T5 (de) | 2017-03-09 |
US10784788B2 (en) | 2020-09-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110024497B (zh) | 电子电路基板、电力变换装置 | |
WO2016027569A1 (ja) | リアクトルおよびそれを用いたdc-dcコンバータ | |
JP5359749B2 (ja) | トランス及びスイッチング電源装置 | |
JP6227446B2 (ja) | トランスおよびそれを用いた電力変換装置 | |
JP4924797B2 (ja) | 車載用dc/dcコンバータ | |
JP5558543B2 (ja) | スイッチング電源装置 | |
JP6525360B1 (ja) | 電力変換装置 | |
JP6234537B1 (ja) | 電力変換装置 | |
CN111344821B (zh) | 电力转换装置 | |
JP6672724B2 (ja) | 電源装置 | |
JP2016219612A (ja) | 電磁誘導機器 | |
JP2015116040A (ja) | 電力変換装置 | |
JP6226543B2 (ja) | 電源装置 | |
JP2013150414A (ja) | トランス及びスイッチング電源装置 | |
CN110419085B (zh) | 变压器 | |
CN113439314B (zh) | 电力变换装置以及线圈装置 | |
KR101360707B1 (ko) | 평면 변압기 | |
JP6569404B2 (ja) | 電源装置及び電源装置の製造方法 | |
JP2016144238A (ja) | 電力変換装置 | |
JP2005110406A (ja) | パワー変換モジュールデバイスおよびそれを用いた電源装置 | |
JP6548817B2 (ja) | 絶縁型昇圧コンバータ | |
JP7484234B2 (ja) | 電源装置および照明器具 | |
WO2023095304A1 (ja) | 電力変換装置 | |
JP6237517B2 (ja) | 電力変換装置 | |
JP6638338B2 (ja) | 支持部材および電源装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15833383 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 112015002847 Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15833383 Country of ref document: EP Kind code of ref document: A1 |