WO2023095304A1 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
WO2023095304A1
WO2023095304A1 PCT/JP2021/043452 JP2021043452W WO2023095304A1 WO 2023095304 A1 WO2023095304 A1 WO 2023095304A1 JP 2021043452 W JP2021043452 W JP 2021043452W WO 2023095304 A1 WO2023095304 A1 WO 2023095304A1
Authority
WO
WIPO (PCT)
Prior art keywords
power conversion
substrate
shield member
core
conversion device
Prior art date
Application number
PCT/JP2021/043452
Other languages
English (en)
French (fr)
Inventor
貴昭 ▲高▼原
浩一 有澤
遥 松尾
知宏 沓木
祐輔 森本
佑弥 近藤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2021/043452 priority Critical patent/WO2023095304A1/ja
Publication of WO2023095304A1 publication Critical patent/WO2023095304A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only

Definitions

  • the present disclosure relates to power converters.
  • a power conversion device has a power conversion circuit that includes an inverter circuit that drives a load (for example, a motor) and a converter circuit that supplies a DC voltage to the inverter circuit. See, for example, US Pat.
  • the device described in Patent Literature 1 includes a reactor that suppresses harmonics.
  • the reactor is fixed to a mounting plate different from the printed circuit board on which the drive circuit for driving the switching elements of the inverter circuit and the converter circuit is mounted. Therefore, it was necessary to secure an arrangement space for the reactor.
  • the reactor is connected to the printed circuit board via wiring. Therefore, there is a possibility that the power conversion circuit malfunctions due to noise emitted from the wiring that connects the reactor and the printed circuit board.
  • An object of the present disclosure is to prevent malfunction of the power conversion circuit due to noise while reducing the space for arranging the reactor.
  • a power conversion device includes a first substrate, a power conversion circuit provided on the first substrate, and a second substrate arranged at a position overlapping the first substrate. , a core and a winding pattern provided on the second substrate, a reactor electrically connected to the power conversion circuit and disposed between the power conversion circuit and the winding pattern, and a shield member for shielding noise generated in the winding pattern.
  • FIG. 1 is a block diagram showing a configuration of a power converter according to Embodiment 1;
  • FIG. 1 is a side view showing the configuration of a power converter according to Embodiment 1;
  • FIG. 1 is a perspective view showing a part of a configuration of a power converter according to Embodiment 1;
  • FIG. FIG. 4 is a configuration diagram showing the configuration of the core of the reactor shown in FIGS. 2 and 3;
  • FIG. 1 is a plan view showing a part of the configuration of a power converter according to Embodiment 1;
  • FIG. 4 is a plan view showing the configuration of a second substrate and winding patterns shown in FIGS. 1 to 3;
  • FIG. It is a block diagram which shows the structure of the power converter device which concerns on a comparative example.
  • FIG. 1 is a side view showing the configuration of a power converter according to Embodiment 1;
  • FIG. 1 is a perspective view showing a part of a configuration of a power converter according to Embod
  • FIG. 3 is a circuit diagram showing an example of the configuration of a converter circuit according to a comparative example; 1 is a cross-sectional view showing a part of the configuration of a power converter according to Embodiment 1; FIG. FIG. 3 is a cross-sectional view showing a part of the configuration of a power converter according to Modification 1 of Embodiment 1; 11 is a plan view showing the configuration of the first printed circuit board and the shield member shown in FIG. 10; FIG. FIG. 9 is a plan view showing the configuration of a second substrate and a shield member of a power conversion device according to Modification 2 of Embodiment 1; FIG. 7 is a side view showing the configuration of a power conversion device according to Embodiment 2; FIG. 11 is a side view showing the configuration of a power conversion device according to Embodiment 3; FIG. 11 is a perspective view showing a part of the configuration of a power conversion device according to Embodiment 3;
  • FIG. 1 is a block diagram showing the configuration of a power converter 100 according to Embodiment 1. As shown in FIG. As shown in FIG. 1, the power conversion device 100 has a converter circuit 120 and an inverter circuit 130 as power conversion circuits.
  • the converter circuit 120 converts the AC voltage output from the power supply unit (for example, the AC power supply) 110 into a DC voltage.
  • the inverter circuit 130 is connected to the output terminal of the converter circuit 120 .
  • the inverter circuit 130 generates a PWM (Pulse Width Modulation) signal for turning the load section 1 on and off.
  • the converter circuit 120 and the inverter circuit 130 are provided on the first printed circuit board 10 shown in FIG. 2 and the like, which will be described later.
  • a load unit 1 is connected to the inverter circuit 130 .
  • the load unit 1 is, for example, a compressor motor.
  • FIG. 2 is a side view showing the configuration of the power converter 100 according to Embodiment 1.
  • FIG. FIG. 3 is a perspective view showing a part of the configuration of the power conversion device 100 according to Embodiment 1.
  • the power converter 100 includes a first printed board 10 as a first board, an insulating board 20 as a second board, a cooler 30, and a reactor 50. have.
  • coordinate axes of an xyz orthogonal coordinate system are shown to facilitate understanding between the drawings.
  • the x-axis and y-axis are coordinate axes parallel to the surface 30 a of the cooler 30 facing the first printed circuit board 10 .
  • the z-axis is a coordinate axis orthogonal to the x-axis and the y-axis.
  • the first printed circuit board 10 includes a first power semiconductor 2 forming a switching element of the converter circuit 120 (see FIG. 1) and a second power semiconductor forming a switching element of the inverter circuit 130 (see FIG. 1). 3 is implemented.
  • the first printed board 10 has a double-sided board and a wiring pattern (for example, a copper foil layer).
  • the wiring pattern is a wiring pattern of a drive circuit that drives the first power semiconductor 2 and the second power semiconductor 3 .
  • the number of wiring pattern layers in the first printed circuit board 10 is, for example, four or less. Thereby, the cost of the first printed circuit board 10 can be reduced.
  • the first power semiconductor 2 and the second power semiconductor 3 are arranged on the cooler 30 . Thereby, the temperature rise of the first power semiconductor 2 and the second power semiconductor 3 can be suppressed.
  • the insulating substrate 20 is arranged at a position overlapping the first printed circuit board 10 .
  • the insulating substrate 20 is arranged to be thermally connected to the cooler 30 .
  • the insulating substrate 20 is in contact with the surface 30a of the cooler 30 facing the +z-axis direction.
  • the insulating substrate 20 is attached with an adhesive such as silicon grease. may be in direct contact with the surface 30a of the cooler 30 facing the +z-axis direction.
  • a winding pattern 21 is formed on the surface of the insulating substrate 20 facing the +z-axis direction.
  • a plurality of insulating substrates 20 and a plurality of winding patterns 21 constitute a multilayer wiring board 25 (see FIG. 9 described later) as a second printed board.
  • the insulating substrate 20 is made of, for example, glass epoxy resin.
  • a wiring pattern may be formed on the surface of the insulating substrate 20 facing the ⁇ z-axis direction.
  • a thermally conductive sheet such as TIM (Thermal Interface Material) having insulating properties is placed between the wiring pattern and the cooler 30.
  • the reactor 50 suppresses harmonics generated in the converter circuit 120 (see FIG. 1).
  • Reactor 50 is electrically connected to converter circuit 120 .
  • Reactor 50 includes a core 40 and a winding pattern 21 provided on insulating substrate 20 .
  • the core 40 penetrates the insulating substrate 20 in the z-axis direction.
  • the cooler 30 is made of a metal material (eg, aluminum).
  • Core 40 is arranged to be in thermal connection with cooler 30 . Specifically, the core 40 is in contact with the concave portion 30b provided on the surface 30a of the cooler 30 facing the +z-axis direction.
  • the core 40 is fixed to the recess 30b by a fixing member 45 and a fastening member (for example, screw) 46. As shown in FIG. Thereby, the temperature rise of the core 40 can be suppressed.
  • the core 40 may be arranged in the vicinity of the cooler 30 without being in contact with the cooler 30 .
  • FIG. 4 is a configuration diagram showing the configuration of the core 40 shown in FIGS. 1-3.
  • the core 40 has an E-shaped first split core 41 and an I-shaped second split core 42 .
  • the first split core 41 has a flat plate portion 41a, a first projecting portion 41c, a second projecting portion 41d, and a third projecting portion 41e.
  • the first protruding portion 41c, the second protruding portion 41d, and the third protruding portion 41e protrude toward the insulating substrate 20 from the surface 41b of the flat plate portion 41a facing the -z-axis direction.
  • Recesses 41f and 41g are provided between the first protrusion 41c and the second protrusion 41d and between the second protrusion 41d and the third protrusion 41e.
  • the insulating substrate 20 (see FIG. 2) is engaged with the recesses 41f and 41g.
  • the core 40 is configured by a combination of the E-shaped first split core 41 and the I-shaped second split core 42, but the configuration is not limited to this.
  • the core 40 may have a configuration in which two E-shaped split cores are engaged.
  • the I-shaped second split core 42 is arranged closer to the cooler 30 than the E-shaped first split core 41 . side, and the second split core 42 may be placed on the first printed circuit board 10 side.
  • FIG. 5 is a plan view showing part of the configuration of the power converter 100 according to Embodiment 1.
  • FIG. 5 in the first embodiment, when the first printed circuit board 10 is viewed in the z-axis direction (that is, in plan view), the winding pattern 21 (see FIG. 2) of the reactor 50 is The provided insulating substrate 20 is arranged at a position overlapping the first printed circuit board 10 .
  • the installation space for the reactor 50 is reduced, so the power conversion device 100 can be downsized.
  • FIG. 6 is a plan view showing the configuration of the insulating substrate 20 and the winding pattern 21 shown in FIGS. As shown in FIG. 6, the insulating substrate 20 has through holes 22 . The through hole 22 is engaged with the second projecting portion 41d of the core 40 shown in FIG.
  • the winding pattern 21 is a conductive film pattern formed on the insulating substrate 20 by patterning.
  • the winding pattern 21 surrounds the through hole 22 .
  • the winding pattern 21 is arranged in the recesses 41f, 41g of the core 40 shown in FIG. At this time, the winding pattern 21 surrounds the second projecting portion 41d.
  • the reactor 50 as a planar reactor is configured.
  • a bobbin that is required to secure an insulation distance between the core and the winding in a conventional reactor is not required.
  • the power conversion device 100 has a shield member 60 arranged between the first printed circuit board 10 and the insulating substrate 20 .
  • the shield member 60 shields noise generated in the winding pattern 21 (see FIG. 3).
  • the problem to be solved by the first embodiment and the effect of providing the shield member 60 in the power conversion device 100 will be described in comparison with a comparative example.
  • FIG. 7 is a block diagram showing the configuration of a power conversion device 100A according to a comparative example.
  • the reactor 50A is electrically connected via the wiring 51 to the printed circuit board 10A on which the converter circuit 120A and the inverter circuit 130A are mounted. It differs from the power conversion device 100 .
  • the reactor 50A is fixed to a sheet metal member or the like provided in a device (for example, a compressor) provided with the power conversion device 100A.
  • the reactor 50A is provided separately from the printed circuit board 10A, it is necessary to secure an extra arrangement space for the reactor 50A. Further, when high-frequency noise is emitted from the wiring connecting the printed circuit board 10A and the reactor 50A, there is a possibility that the circuit mounted on the printed circuit board 10A malfunctions.
  • ⁇ Iron loss of core 40> when the reactor 50A is used in a relatively low frequency range such as commercial frequency, the size and weight of the reactor 50A increase.
  • a method of driving the switching elements forming the converter circuit 120A at a high frequency is conceivable. For example, if the power conversion device has a boost chopper circuit 121B (see FIG. 8 described below), the switching element can be driven at a high frequency.
  • FIG. 8 is a circuit diagram showing an example of the configuration of a converter circuit 120A according to a comparative example.
  • the converter circuit 120A has a rectifier circuit 121A and a boost chopper circuit 121B.
  • the boost chopper circuit 121B has a reactor 50B, a diode 122, a switching element (for example, a MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor)) 123, and a capacitor 121C.
  • a positive main terminal (ie, drain) of the switching element 123 is connected to the reactor 50B, and a negative main terminal (ie, source) of the switching element 123 is connected to the rectifier circuit 121A.
  • MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
  • the iron loss of the core 40 forming the reactor 50 significantly increases in proportion to the 2.5th to 3.0th power of the switching frequency. Therefore, in order to downsize the reactor 50, the iron loss of the core 40 needs to be reduced.
  • FIG. 9 is a cross-sectional view showing a part of the configuration of the power conversion device 100 according to Embodiment 1.
  • FIG. The shield member 60 is arranged between the power conversion circuit (that is, the converter circuit 120 and the inverter circuit 130) mounted on the first printed circuit board 10 and the winding pattern 21, and is generated in the winding pattern 21. Shield noise. As a result, superimposition of noise on the converter circuit 120 and the inverter circuit 130 is suppressed, so malfunction of the converter circuit 120 and the inverter circuit 130 can be prevented. Therefore, since the first printed circuit board 10 can be arranged close to the reactor 50, the size of the power conversion device 100 can be reduced.
  • the shield member 60 partially covers the winding pattern 21 in plan view. Note that the shield member 60 may cover the entire winding pattern 21 . That is, the shield member 60 only needs to cover at least a portion of the winding pattern 21 .
  • the shield member 60 has an insulating substrate 65 as an insulating portion and a shield pattern 66 as a first shield pattern.
  • the insulating substrate 65 is arranged between the winding pattern 21 and the shield pattern 66 .
  • the shield pattern 66 is formed on the surface 65 a of the insulating substrate 65 facing the first printed circuit board 10 .
  • the potential of the shield member 60 is, for example, the same as the potential of the cooler 30 on which the insulating substrate 20 is arranged. In other words, no potential difference occurs between shield member 60 and cooler 30 . This makes it more difficult for noise generated in the winding pattern 21 to be superimposed on the converter circuit 120 and the inverter circuit 130 .
  • the shield member 60 may be electrically floating from the potential of the cooler 30 . Even in this case, the shield member 60 functions as a shield member that shields magnetic coupling of noise generated in the winding pattern 21, and can prevent noise from being superimposed on the converter circuit 120 and the inverter circuit 130. .
  • Embodiment 1 As shown in FIG. 2, core 40 is in contact with recess 30b of cooler 30, so core 40 can be cooled. Moreover, since the insulating substrate 20 provided with the winding pattern 21 is in contact with the cooler 30, the winding pattern 21 can be cooled. As a result, heat is radiated from reactor 50, so that iron loss of core 40 can be reduced even when switching element 123 is driven at a high frequency by boost chopper circuit 121B. Therefore, reactor 50 can be miniaturized. At least one of the core 40 and the winding pattern 21 may be in contact with the cooler 30 .
  • the power conversion device 100 has multiple insulating substrates 20 and multiple winding patterns 21 stacked in the z-axis direction.
  • the power conversion device 100 has a plurality of insulating substrates 20 stacked in the z-axis direction, and winding patterns 21 are formed on both surfaces 20a and 20b of the insulating substrates 20 in the z-axis direction.
  • a three-layer winding pattern 21 is formed.
  • a double-sided board is used for the first printed circuit board 10 .
  • an inexpensive double-sided board is used for the first printed circuit board 10, and only the plurality of winding patterns 21 that constitute the reactor 50 have a multilayer structure.
  • the cost of the power converter 100 can be reduced.
  • the number of layers of the winding pattern 21 provided in the power conversion device 100 is not limited to three layers, and may be two layers or less, or may be four layers or more.
  • the insulating substrate 20 provided with the winding pattern 21 forming the reactor 50 is arranged at a position overlapping the first printed circuit board 10 .
  • the distance between reactor 50 and first printed circuit board 10 on which converter circuit 120 (see FIG. 1) is mounted can be shortened. Therefore, wiring connecting converter circuit 120 and reactor 50 can be reduced, and the arrangement space of reactor 50 can be reduced.
  • the power conversion device 100 is arranged between the power conversion circuit (that is, the converter circuit 120 and the inverter circuit 130) and the winding pattern 21, and the It has a shielding member 60 for shielding noise.
  • the power conversion circuit that is, the converter circuit 120 and the inverter circuit 130
  • the winding pattern 21 the winding pattern 21
  • the It has a shielding member 60 for shielding noise.
  • the insulating substrate 20 on which the winding pattern 21 forming the reactor 50 is formed is arranged at a position overlapping the first printed circuit board 10 . Therefore, the distance between the converter circuit 120 mounted on the first printed circuit board 10 and the reactor 50 can be shortened. Therefore, wiring connecting converter circuit 120 and reactor 50 can be reduced.
  • the potential of the shield member 60 is the same as the potential of the cooler 30 .
  • superposition of noise generated in the winding pattern 21 on the converter circuit 120 and the inverter circuit 130 can be further suppressed. Therefore, malfunction of the converter circuit 120 and the inverter circuit 130 can be further suppressed.
  • reactor 50 can be miniaturized.
  • the insulating substrate 20 provided with the winding pattern 21 is in contact with the cooler 30 .
  • heat is radiated from the winding pattern 21, so iron loss of the core 40 can be reduced. Therefore, reactor 50 can be miniaturized.
  • the power conversion device 100 has the first printed circuit board 10 including a double-sided board, and a plurality of winding patterns 21 laminated in the z-axis direction.
  • the power conversion device 100 an inexpensive double-sided board is used for the first printed circuit board 10, and only the plurality of winding patterns 21 that constitute the reactor 50 have a multilayer structure. The cost of the conversion device 100 can be reduced.
  • FIG. 10 is a cross-sectional view showing a part of the configuration of power converter 101 according to Modification 1 of Embodiment 1.
  • FIG. 10 components that are the same as or correspond to components shown in FIGS. 2 and 9 are labeled with the same reference numerals as those shown in FIGS.
  • a power conversion device 101 according to Modification 1 of Embodiment 1 differs from power conversion device 100 according to Embodiment 1 in that shield member 61 is provided on first printed circuit board 10 . Except for this point, the power converter 101 according to the first modification of the first embodiment is the same as the power converter 100 according to the first embodiment. Therefore, FIG. 2 will be referred to in the following description.
  • the power conversion device 101 has a first printed circuit board 10, an insulating substrate 20, a reactor 50 (see FIG. 2), and a shield member 61.
  • FIG. 11 is a plan view showing the configuration of the first printed circuit board 10 and the shield member 61 shown in FIG. 10.
  • the first printed circuit board 10 has a double-sided board 11 as an insulating portion, wiring patterns 12 and a shield member 61 .
  • the wiring pattern 12 is a wiring pattern of a driving circuit for driving the first power semiconductor 2 and the second power semiconductor 3 (see FIG. 2).
  • the wiring pattern 12 is formed on the surface 11a of the double-sided board 11 facing the +z-axis direction.
  • the shield member 61 is a shield pattern (second shield pattern) provided on the surface 11b of the double-sided substrate 11 facing the insulating substrate 20 (see FIG. 2) (that is, the surface facing the -z-axis direction).
  • second shield pattern provided on the surface 11b of the double-sided substrate 11 facing the insulating substrate 20 (see FIG. 2) (that is, the surface facing the -z-axis direction).
  • wiring patterns of a drive circuit for driving the first power semiconductor 2 and the second power semiconductor 3 are provided. may be formed.
  • the shield member 61 overlaps the IC (Integrated Circuit) 4 mounted on the surface 11a of the double-sided board 11 facing the +z-axis direction and the signal line 4a connected to the IC 4 in plan view. placed in position.
  • the IC4 is, for example, the IC of the converter circuit 120 (see FIG. 1) or the IC of the inverter circuit 130 (see FIG. 1).
  • the signal line 4a is an example of the wiring pattern 12 shown in FIG.
  • the shield member 61 shields noise generated in the winding pattern 21 . As a result, superimposition of noise on the converter circuit 120 and the inverter circuit 130 is suppressed, so malfunction of the converter circuit 120 and the inverter circuit 130 can be prevented.
  • shield member 61 is arranged on surface 11 b of double-sided substrate 11 facing insulating substrate 20 to shield noise generated in winding pattern 21 .
  • superimposition of noise on the converter circuit 120 and the inverter circuit 130 is suppressed, so malfunction of the converter circuit 120 and the inverter circuit 130 can be prevented. Therefore, since the first printed circuit board 10 can be arranged close to the reactor 50, the size of the power conversion device 100 can be reduced.
  • FIG. 12 is a plan view showing a part of the configuration of power conversion device 102 according to Modification 2 of Embodiment 1.
  • a power conversion device 102 according to Modification 2 of Embodiment 1 differs from power conversion device 100 according to Embodiment 1 in that a shield member 62 is provided with a slit 62b. Except for this point, the power converter 102 according to the second modification of the first embodiment is the same as the power converter 100 according to the first embodiment. 2 and 4 are therefore referred to in the following description.
  • the power conversion device 102 has a first printed circuit board 10, an insulating substrate 20, a reactor 50 (see FIG. 2), and a shield member 62.
  • the shield member 62 has a through hole 62a and a slit 62b.
  • the through hole 62a is a hole through which the core 40 penetrates.
  • a second projecting portion 41d (see FIG. 4) of the core 40 is engaged with the through hole 62a.
  • the slit 62b extends from the through hole 62a to the outer circumference 62c of the shield member 62. As shown in FIG.
  • the slit 62b extends in a direction perpendicular to the length direction of the winding pattern 21 in the example shown in FIG. Since the shield member 62 has the slit 62b, a one-turn short circuit can be suppressed and an eddy current can be prevented from flowing on the surface of the shield member 62.
  • shield member 62 has through hole 62 a through which core 40 penetrates, and slit 62 b extending from through hole 62 a to outer periphery 62 c of shield member 62 .
  • slit 62 b extending from through hole 62 a to outer periphery 62 c of shield member 62 .
  • FIG. 13 is a side view showing the configuration of power conversion device 200 according to Embodiment 2. As shown in FIG. 13, the same or corresponding components as those shown in FIG. 2 are given the same reference numerals as those shown in FIG. A power conversion device 200 according to the second embodiment differs from the power conversion device 100 according to the first embodiment in that the first printed circuit board 10 is directly arranged on the insulating substrate 20 . Except for this point, the power converter 200 according to the second embodiment is the same as the power converter 100 according to the first embodiment. Therefore, FIG. 9 will be referred to in the following description.
  • the power conversion device 200 has a first printed circuit board 210, an insulating substrate 20, a reactor 50, and a shield member 60 (see FIG. 9). 13, illustration of the shield member 60 is omitted.
  • the first printed board 210 and the insulating board 20 are electrically connected. Specifically, the first printed circuit board 210 is laminated on the insulating substrate 20, and the first printed circuit board 210 and the insulating substrate 20 are in close contact with each other. In other words, in the second embodiment, the first printed circuit board 210 is arranged directly on the insulating substrate 20 without the terminals 70 shown in FIG. Thereby, the power conversion device 200 can be made thinner.
  • the insulating substrate 20 is connected to the first printed circuit board 210 by soldering, for example.
  • the first printed circuit board 210 has a through hole 214 as an engaged portion that engages with the core 40 .
  • Core 40 engages through hole 214 and through hole 22 .
  • the power conversion device 200 is arranged between the power conversion circuit (that is, the converter circuit 120 and the inverter circuit 130) and the winding pattern 21, and the It has a shielding member 60 for shielding noise.
  • the power conversion circuit that is, the converter circuit 120 and the inverter circuit 130
  • the winding pattern 21 the winding pattern 21
  • the It has a shielding member 60 for shielding noise.
  • the first printed circuit board 210 on which the power conversion circuit (that is, the converter circuit 120 and the inverter circuit 130) is mounted is arranged directly on the insulating substrate 20.
  • the power conversion device 200 can be made thinner. can.
  • FIG. 14 is a side view showing the configuration of power conversion device 300 according to Embodiment 3.
  • FIG. 15 is a perspective view showing a part of the configuration of the power conversion device 300 according to Embodiment 3.
  • FIG. 14 and 15 components that are the same as or correspond to those shown in FIGS. 2 and 3 are labeled with the same reference numerals as those shown in FIGS.
  • the power conversion device 300 according to Embodiment 3 differs from the power conversion device 100 according to Embodiment 1 in that the member fixing the core 40 shields noise generated in the winding pattern 21 . Except for this point, the power converter 300 according to the third embodiment is the same as the power converter 100 according to the first embodiment. Therefore, FIG. 1 will be referred to in the following description.
  • the power converter 300 has a first printed board 10, an insulating board 20, a cooler 30, a reactor 50, and a shield member 360.
  • the shield member 360 is arranged between the power conversion circuit (that is, the converter circuit 120 and the inverter circuit 130 shown in FIG. 1) and the winding pattern 21 to shield noise generated in the winding pattern 21. As a result, superimposition of noise on the converter circuit 120 and the inverter circuit 130 is suppressed, so malfunction of the converter circuit 120 and the inverter circuit 130 can be prevented.
  • the shield member 360 also has the function of fixing the core 40 to the cooler 30 .
  • the shield member 360 has a fixing portion 361 that fixes the core 40 to the cooler 30 and a fastened portion 362 to which the fastening member 46 is fastened.
  • the fixed portion 361 is in contact with the outer surface 40 a of the core 40 .
  • the fixing portion 361 presses the core 40 .
  • the core 40 is thereby fixed to the cooler 30 .
  • the fixing portion 361 is arranged at a position overlapping the winding pattern 21 in plan view. In the example shown in FIG. 15 , the fixed portion 361 partially covers the winding pattern 21 . Note that the fixing portion 361 may cover the entire winding pattern 21 . That is, the shield member 360 only needs to cover at least part of the winding pattern 21 .
  • the shield member 360 is made of, for example, a metal material. In the example shown in FIGS. 14 and 15, shield member 360 is made of the same material as cooler 30 .
  • the shield member 360 is made of, for example, an aluminum material. Thereby, the heat dissipation of the core 40 of the reactor can be improved.
  • the power conversion device 300 is arranged between the power conversion circuit (that is, the converter circuit 120 and the inverter circuit 130) and the winding pattern 21, and the power generated in the winding pattern 21 It has a shielding member 360 for shielding noise. As a result, superimposition of noise on the converter circuit 120 and the inverter circuit 130 is suppressed, so malfunction of the converter circuit 120 and the inverter circuit 130 can be prevented. Therefore, since the first printed circuit board 10 can be arranged close to the reactor 50, the size of the power conversion device 300 can be reduced.
  • the shield member 360 fixes the core 40 to the cooler 30 .
  • the fixing structure of the core 40 and the noise shielding structure can be realized by one member. Therefore, compared with the power conversion device 100 according to Embodiment 1, the number of parts in the power conversion device 300 can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

電力変換装置(100)は、第1の基板(10)と、第1の基板(10)上に備えられた電力変換回路(120、130)と、第1の基板(10)と重なる位置に配置された第2の基板(25)と、リアクトル(50)と、シールド部材(60)とを有する。リアクトル(50)は、コア(40)及び第2の基板(25)上に備えられた巻線パターン(21)を含み、電力変換回路(120、130)に電気的に接続されている。シールド部材(60)は、電力変換回路(120、130)と巻線パターン(21)との間に配置され、巻線パターン(21)で発生するノイズをシールドする。

Description

電力変換装置
 本開示は、電力変換装置に関する。
 負荷(例えば、モータ)を駆動するインバータ回路と、インバータ回路に直流電圧を供給するコンバータ回路とを含む電力変換回路を有する電力変換装置が知られている。例えば、特許文献1を参照。特許文献1に記載の装置では、高調波を抑制するリアクトルが、備えられている。
特開2013-088071号公報(図7)
 しかしながら、特許文献1に記載の装置では、インバータ回路及びコンバータ回路のそれぞれのスイッチング素子を駆動させる駆動回路が実装されたプリント基板と異なる取付板に、リアクトルが固定されている。そのため、リアクトルの配置スペースを確保する必要があった。
 また、特許文献1に記載された装置では、リアクトルは、プリント基板と配線を介して接続されている。そのため、リアクトルとプリント基板とをつなぐ配線から放出されるノイズによって電力変換回路が誤動作するおそれがあった。
 本開示は、リアクトルの配置スペースを低減しつつ、ノイズに基づく電力変換回路の誤動作を防止することを目的とする。
 本開示の一態様に係る電力変換装置は、第1の基板と、前記第1の基板上に備えられた電力変換回路と、前記第1の基板と重なる位置に配置された第2の基板と、コア及び前記第2の基板上に備えられた巻線パターンを含み、前記電力変換回路に電気的に接続されたリアクトルと、前記電力変換回路と前記巻線パターンとの間に配置され、前記巻線パターンで発生するノイズをシールドするシールド部材とを有することを特徴とする。
 本開示によれば、リアクトルの配置スペースを低減しつつ、ノイズに基づく電力変換回路の誤動作を防止できる。
実施の形態1に係る電力変換装置の構成を示すブロック図である。 実施の形態1に係る電力変換装置の構成を示す側面図である。 実施の形態1に係る電力変換装置の構成の一部を示す斜視図である。 図2及び3に示されるリアクトルのコアの構成を示す構成図である。 実施の形態1に係る電力変換装置の構成の一部を示す平面図である。 図1から3に示される第2の基板及び巻線パターンの構成を示す平面図である。 比較例に係る電力変換装置の構成を示すブロック図である。 比較例に係るコンバータ回路の構成の一例を示す回路図である。 実施の形態1に係る電力変換装置の構成の一部を示す断面図である。 実施の形態1の変形例1に係る電力変換装置の構成の一部を示す断面図である。 図10に示される第1のプリント基板及びシールド部材の構成を示す平面図である。 実施の形態1の変形例2に係る電力変換装置の第2の基板及びシールド部材の構成を示す平面図である。 実施の形態2に係る電力変換装置の構成を示す側面図である。 実施の形態3に係る電力変換装置の構成を示す側面図である。 実施の形態3に係る電力変換装置の構成の一部を示す斜視図である。
 以下に、本開示の実施の形態に係る電力変換装置を、図面を参照しながら説明する。以下の実施の形態は、例にすぎず、実施の形態を適宜組み合わせること及び各実施の形態を適宜変更することが可能である。
《実施の形態1》
 図1は、実施の形態1に係る電力変換装置100の構成を示すブロック図である。図1に示されるように、電力変換装置100は、電力変換回路としてのコンバータ回路120及びインバータ回路130を有する。
 コンバータ回路120は、電源部(例えば、交流電源)110から出力された交流電圧を直流電圧に変換する。インバータ回路130は、コンバータ回路120の出力端に接続されている。インバータ回路130は、負荷部1をオン、オフ駆動するためのPWM(Pulse Width Modulation)信号を生成する。コンバータ回路120及びインバータ回路130は、後述する図2などに示される第1のプリント基板10上に備えられている。インバータ回路130には、負荷部1が接続されている。負荷部1は、例えば、圧縮機のモータなどである。
 図2は、実施の形態1に係る電力変換装置100の構成を示す側面図である。図3は、実施の形態1に係る電力変換装置100の構成の一部を示す斜視図である。図2及び3に示されるように、電力変換装置100は、第1の基板としての第1のプリント基板10と、第2の基板としての絶縁基板20と、冷却器30と、リアクトル50とを有する。なお、図面には、図面相互間の理解を容易にするためにxyz直交座標系の座標軸が示されている場合がある。x軸及びy軸は、冷却器30の、第1のプリント基板10と対向する面30aに平行な座標軸である。z軸は、x軸及びy軸に直交する座標軸である。
 第1のプリント基板10には、コンバータ回路120(図1参照)のスイッチング素子を構成する第1のパワー半導体2と、インバータ回路130(図1参照)のスイッチング素子を構成する第2のパワー半導体3とが実装されている。第1のプリント基板10は、両面基板と、配線パターン(例えば、銅箔層)とを有する。配線パターンは、第1のパワー半導体2及び第2のパワー半導体3を駆動する駆動回路の配線パターンである。第1のプリント基板10における配線パターンの層数は、例えば、4層以下である。これにより、第1のプリント基板10のコストを低減することができる。
 第1のパワー半導体2及び第2のパワー半導体3は、冷却器30上に配置されている。これにより、第1のパワー半導体2及び第2のパワー半導体3の温度上昇を抑制することができる。
 絶縁基板20は、第1のプリント基板10と重なる位置に配置されている。絶縁基板20は、冷却器30に熱的に接続するように配置されている。絶縁基板20は、冷却器30の+z軸方向を向く面30aに接している。具体的には、絶縁基板20の-z軸方向を向く面(すなわち、冷却器30側の面)に配線パターンが形成されていない場合に、絶縁基板20は、シリコングリス等の接着剤を介して冷却器30の+z軸方向を向く面30aに直接、接していてもよい。絶縁基板20の+z軸方向を向く面には、巻線パターン21が形成されている。実施の形態1では、複数の絶縁基板20と複数の巻線パターン21とによって、第2のプリント基板としての多層配線基板25(後述する図9参照)が構成されている。
 絶縁基板20は、例えば、ガラスエポキシ樹脂から形成されている。絶縁基板20の-z軸方向を向く面には、配線パターンが形成されていてもよい。この場合、配線パターンと冷却器30との間を絶縁するために、例えば、絶縁性を有するTIM(Thermal Interface Material)等の熱伝導シートが、当該配線パターンと冷却器30との間に配置されていてもよい。
 リアクトル50は、コンバータ回路120(図1参照)において発生した高調波を抑制する。リアクトル50は、コンバータ回路120に電気的に接続されている。リアクトル50は、コア40と、絶縁基板20上に備えられた巻線パターン21とを含む。コア40は、絶縁基板20をz軸方向に貫通している。
 冷却器30は、金属材料(例えば、アルミ)などから形成されている。コア40は、冷却器30に熱的に接続するように配置されている。具体的には、コア40は、冷却器30の+z軸方向を向く面30aに設けられた凹部30bに接している。コア40は、固定部材45及び締結部材(例えば、ネジ)46によって凹部30bに固定されている。これにより、コア40の温度上昇を抑制することができる。なお、コア40は、冷却器30に接しないで、冷却器30の近傍に配置されていてもよい。
 図4は、図1から3に示されるコア40の構成を示す構成図である。図4に示されるように、コア40は、E型の第1の分割コア41と、I型の第2の分割コア42とを有する。第1の分割コア41は、平板部41aと、第1の突出部41cと、第2の突出部41dと、第3の突出部41eとを有する。第1の突出部41c、第2の突出部41d及び第3の突出部41eは、平板部41aの-z軸方向を向く面41bから絶縁基板20側に突出している。第1の突出部41cと第2の突出部41dとの間、及び第2の突出部41dと第3の突出部41eとの間には、凹部41f、41gが設けられている。凹部41f、41gには、絶縁基板20(図2参照)が係合する。なお、図4に示す例では、E型の第1の分割コア41とI型の第2の分割コア42との組み合わせによってコア40が構成されているが、この構成に限られない。例えば、コア40は、2つのE型の分割コアが係合された構成であってもよい。また、図4に示す例では、I型の第2の分割コア42がE型の第1の分割コア41より冷却器30側に配置されているが、第1の分割コア41が冷却器30側に配置されて、第2の分割コア42が第1のプリント基板10側に配置されていてもよい。
 図5は、実施の形態1に係る電力変換装置100の構成の一部を示す平面図である。図5に示されるように、実施の形態1では、第1のプリント基板10をz軸方向に見たときに(すなわち、平面視で)、リアクトル50の巻線パターン21(図2参照)が備えられた絶縁基板20が、第1のプリント基板10と重なる位置に配置されている。これにより、後述する図7に示される比較例に係る電力変換装置100Aと比較して、リアクトル50の配置スペースが低減されるため、電力変換装置100を小型化することができる。
 図6は、図1から3に示される絶縁基板20及び巻線パターン21の構成を示す平面図である。図6に示されるように、絶縁基板20は、貫通穴22を有する。貫通穴22には、図4に示されるコア40の第2の突出部41dが係合する。
 巻線パターン21は、絶縁基板20にパターニングによって形成された導電性を有する膜パターンである。巻線パターン21は、貫通穴22を囲んでいる。コア40の第2の突出部41dが貫通穴22に係合したとき、巻線パターン21は、図4に示されるコア40の凹部41f、41gに配置される。このとき、巻線パターン21は、第2の突出部41dを囲んでいる。これにより、プレーナリアクトルとしてのリアクトル50が構成される。実施の形態1によれば、従来のリアクトルにおいてコアと巻線との間の絶縁距離を確保するために必要なボビンが不要となる。
 図5に戻って、電力変換装置100の他の構成について説明する。電力変換装置100は、第1のプリント基板10と絶縁基板20との間に配置されたシールド部材60を有する。シールド部材60は、巻線パターン21(図3参照)で発生したノイズをシールドする。以下では、比較例と対比しながら、実施の形態1が解決しようとする課題及びシールド部材60が電力変換装置100に備えられていることによる効果などについて説明する。
〈ノイズの遮蔽〉
 図7は、比較例に係る電力変換装置100Aの構成を示すブロック図である。比較例に係る電力変換装置100Aでは、リアクトル50Aが、コンバータ回路120A及びインバータ回路130Aが実装されたプリント基板10Aに配線51を介して電気的に接続されている点で、実施の形態1に係る電力変換装置100と相違する。比較例では、リアクトル50Aは、電力変換装置100Aが備えられた装置(例えば、圧縮機)に備えられた板金部材等に固定されている。
 このように、比較例では、リアクトル50Aが、プリント基板10Aと別体に設けられるため、リアクトル50Aの配置スペースを余分に確保する必要がある。また、当該プリント基板10Aとリアクトル50Aとを接続する配線から高周波のノイズが放出された場合、プリント基板10Aに実装されている回路が誤動作するおそれがあった。
〈コア40の鉄損〉
 また、リアクトル50Aを商用周波数などの比較的低周波の領域で使用した場合、リアクトル50Aのサイズ及び重量が大きくなる。ここで、リアクトル50Aの小型化を実現するために、コンバータ回路120Aを構成するスイッチング素子を高周波駆動させる方法が考えられる。例えば、電力変換装置が昇圧チョッパ回路121B(以下に述べる図8参照)を有することで、スイッチング素子を高周波駆動させることができる。
 図8は、比較例に係るコンバータ回路120Aの構成の一例を示す回路図である。図8に示されるように、コンバータ回路120Aは、整流回路121Aと、昇圧チョッパ回路121Bとを有する。昇圧チョッパ回路121Bは、リアクトル50Bと、ダイオード122と、スイッチング素子(例えば、MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor))123と、コンデンサ121Cとを有する。スイッチング素子123の正極主端子(すなわち、ドレイン)がリアクトル50Bに接続され、スイッチング素子123の負極主端子(すなわち、ソース)が整流回路121Aに接続されている。
 ここで、スイッチング素子123の高周波化に伴うヒステリシス損及び渦電流損が発生する。これにより、リアクトル50を構成するコア40の鉄損は、スイッチング周波数の2.5乗から3.0乗に比例して著しく上昇する。よって、リアクトル50を小型化するためには、コア40の鉄損を低減する必要がある。
〈シールド部材60〉
 次に、シールド部材60が電力変換装置100に備えられていることによる効果について説明する。図9は、実施の形態1に係る電力変換装置100の構成の一部を示す断面図である。シールド部材60は、第1のプリント基板10に実装された電力変換回路(すなわち、コンバータ回路120及びインバータ回路130)と巻線パターン21との間に配置されて、且つ巻線パターン21で発生するノイズをシールドする。これにより、コンバータ回路120及びインバータ回路130へのノイズの重畳が抑制されるため、コンバータ回路120及びインバータ回路130の誤動作を防止できる。よって、第1のプリント基板10を、リアクトル50に近接して配置することができるため、電力変換装置100を小型化することができる。
 上述した図6に示す例では、シールド部材60は、平面視で、巻線パターン21の一部を覆っている。なお、シールド部材60は、巻線パターン21の全部を覆っていてもよい。すなわち、シールド部材60は、巻線パターン21の少なくとも一部を覆っていればよい。
 図9に示されるように、シールド部材60は、絶縁部としての絶縁基板65と、第1のシールドパターンとしてのシールドパターン66とを有する。絶縁基板65は、巻線パターン21とシールドパターン66との間に配置されている。シールドパターン66は、絶縁基板65の、第1のプリント基板10と向き合う面65a上に形成されている。
 シールド部材60の電位は、例えば、絶縁基板20が配置されている冷却器30の電位と同じである。言い換えれば、シールド部材60と冷却器30との間に電位差は生じていない。これにより、巻線パターン21で発生したノイズが、コンバータ回路120及びインバータ回路130に一層重畳され難くなる。なお、シールド部材60は、冷却器30の電位から電気的に浮いた状態であってもよい。この場合であっても、シールド部材60は、巻線パターン21で発生したノイズの磁気結合を遮蔽する遮蔽部材として機能し、コンバータ回路120及びインバータ回路130へのノイズの重畳を防止することができる。
〈コア40の鉄損の低減〉
 実施の形態1では、図2に示されるように、コア40が冷却器30の凹部30bに接しているため、コア40を冷却することができる。また、巻線パターン21が備えられた絶縁基板20が冷却器30に接しているため、巻線パターン21を冷却することができる。これにより、リアクトル50が放熱されるため、昇圧チョッパ回路121Bによって、スイッチング素子123が高周波駆動した場合であっても、コア40の鉄損を低減することができる。したがって、リアクトル50を小型化することができる。なお、コア40及び巻線パターン21のうちの少なくとも一方が、冷却器30に接していてもよい。
 図9に示す例では、電力変換装置100は、z軸方向に積層された複数の絶縁基板20及び複数の巻線パターン21を有する。電力変換装置100は、z軸方向に積層された複数の絶縁基板20を有し、当該絶縁基板20のz軸方向の両側の面20a、20bに巻線パターン21が形成されている。これにより、図9に示す例では、3層の巻線パターン21が形成されている。一方、上述したように、第1のプリント基板10には、両面基板が用いられている。このように、電力変換装置100において、第1のプリント基板10には安価な両面基板が用いられ、且つリアクトル50を構成する複数の巻線パターン21のみに多層構造が構成されていることによって、電力変換装置100のコストを低減することができる。なお、電力変換装置100に備えられる巻線パターン21の層数は3層に限られず、2層以下であってもよく、4層以上であってもよい。
 また、実施の形態1では、リアクトル50を構成する巻線パターン21が備えられた絶縁基板20が、第1のプリント基板10と重なる位置に配置されている。これにより、コンバータ回路120(図1参照)が実装されている第1のプリント基板10とリアクトル50との間の距離を短くすることができる。よって、コンバータ回路120とリアクトル50とを結ぶ配線を削減することができ、リアクトル50の配置スペースを低減することができる。
〈実施の形態1の効果〉
 以上に説明した実施の形態1によれば、電力変換装置100は、電力変換回路(すなわち、コンバータ回路120及びインバータ回路130)と巻線パターン21との間に配置されて巻線パターン21で発生するノイズをシールドするシールド部材60を有する。これにより、コンバータ回路120及びインバータ回路130へのノイズの重畳が抑制されるため、コンバータ回路120及びインバータ回路130の誤動作を防止できる。よって、第1のプリント基板10を、リアクトル50に近接して配置することができるため、電力変換装置100を小型化することができる。
 また、実施の形態1によれば、リアクトル50を構成する巻線パターン21が形成された絶縁基板20が、第1のプリント基板10と重なる位置に配置されている。これにより、第1のプリント基板10に実装されているコンバータ回路120とリアクトル50との間の距離を短くすることができる。よって、コンバータ回路120とリアクトル50とを結ぶ配線を削減することができる。
 また、実施の形態1によれば、シールド部材60の電位は、冷却器30の電位と同じである。これにより、コンバータ回路120及びインバータ回路130に、巻線パターン21で発生したノイズの重畳を一層抑制することができる。したがって、コンバータ回路120及びインバータ回路130の誤動作を一層抑制することができる。
 また、実施の形態1によれば、リアクトル50のコア40は、冷却器30に接している。これにより、コア40が放熱されるため、コア40の鉄損を低減することができる。したがって、リアクトル50を小型化することができる。
 また、実施の形態1によれば、巻線パターン21が備えられている絶縁基板20は、冷却器30に接している。これにより、巻線パターン21が放熱されるため、コア40の鉄損を低減することができる。したがって、リアクトル50を小型化することができる。
 また、実施の形態1によれば、電力変換装置100は、両面基板を含む第1のプリント基板10と、z軸方向に積層された複数の巻線パターン21とを有する。言い換えれば、電力変換装置100において、第1のプリント基板10には安価な両面基板が用いられ、且つリアクトル50を構成する複数の巻線パターン21のみに多層構造が構成されていることによって、電力変換装置100のコストを低減することができる。
《実施の形態1の変形例1》
 図10は、実施の形態1の変形例1に係る電力変換装置101の構成の一部を示す断面図である。図10において、図2及び9に示される構成要素と同一又は対応する構成要素には、図2及び9に示される符号と同じ符号が付される。実施の形態1の変形例1に係る電力変換装置101は、シールド部材61が第1のプリント基板10に備えられている点で、実施の形態1に係る電力変換装置100と相違する。これ以外の点については、実施の形態1の変形例1に係る電力変換装置101は、実施の形態1に係る電力変換装置100と同じである。そのため、以下の説明では、図2を参照する。
 図10に示されるように、電力変換装置101は、第1のプリント基板10と、絶縁基板20と、リアクトル50(図2参照)と、シールド部材61とを有する。
 図11は、図10に示される第1のプリント基板10及びシールド部材61の構成を示す平面図である。図11に示されるように、第1のプリント基板10は、絶縁部としての両面基板11と、配線パターン12と、シールド部材61とを有する。配線パターン12は、第1のパワー半導体2及び第2のパワー半導体3(図2参照)を駆動する駆動回路の配線パターンである。配線パターン12は、両面基板11の+z軸方向を向く面11aに形成されている。
 シールド部材61は、両面基板11の、絶縁基板20(図2参照)と向き合う面(すなわち、-z軸方向を向く面)11b上に備えられたシールドパターン(第2のシールドパターン)である。なお、両面基板11の-z軸方向を向く面11bには、シールド部材61に加えて、第1のパワー半導体2及び第2のパワー半導体3(図2参照)を駆動する駆動回路の配線パターンが形成されていてもよい。
 図11に示されるように、シールド部材61は、平面視で、両面基板11の+z軸方向を向く面11aに実装されたIC(Integrated Circuit)4と、IC4に接続された信号線4aと重なる位置に配置されている。IC4は、例えば、コンバータ回路120(図1参照)のIC又はインバータ回路130(図1参照)のICである。信号線4aは、図10に示される配線パターン12の一例である。シールド部材61は、巻線パターン21で発生したノイズをシールドする。これにより、コンバータ回路120及びインバータ回路130へのノイズの重畳が抑制されるため、コンバータ回路120及びインバータ回路130の誤動作を防止できる。
〈実施の形態1の変形例1の効果〉
 以上に説明した実施の形態1の変形例1によれば、シールド部材61は、両面基板11の、絶縁基板20と向き合う面11b上に配置され、巻線パターン21で発生したノイズをシールドする。これにより、コンバータ回路120及びインバータ回路130へのノイズの重畳が抑制されるため、コンバータ回路120及びインバータ回路130の誤動作を防止できる。よって、第1のプリント基板10を、リアクトル50に近接して配置することができるため、電力変換装置100を小型化することができる。
《実施の形態1の変形例2》
 図12は、実施の形態1の変形例2に係る電力変換装置102の構成の一部を示す平面図である。実施の形態1の変形例2に係る電力変換装置102は、シールド部材62にスリット62bが設けられている点で、実施の形態1に係る電力変換装置100と相違する。これ以外の点については、実施の形態1の変形例2に係る電力変換装置102は、実施の形態1に係る電力変換装置100と同じである。そのため、以下の説明では、図2及び4を参照する。
 図12に示されるように、電力変換装置102は、第1のプリント基板10と、絶縁基板20と、リアクトル50(図2参照)と、シールド部材62とを有する。
 シールド部材62は、貫通孔62aと、スリット62bとを有する。貫通孔62aは、コア40が貫通する孔である。貫通孔62aには、コア40の第2の突出部41d(図4参照)が係合する。スリット62bは、貫通孔62aからシールド部材62の外周62cまで繋がっている。スリット62bは、図12に示す例では、巻線パターン21の長さ方向に直交する方向に伸びている。シールド部材62がスリット62bを有していることによって、1ターンショートが抑制され、シールド部材62の表面で渦電流が流れることを防止できる。
〈実施の形態1の変形例2の効果〉
 以上に説明した実施の形態1の変形例2によれば、シールド部材62は、コア40が貫通する貫通孔62aと、貫通孔62aからシールド部材62の外周62cまで繋がるスリット62bとを有する。これにより、1ターンショートが抑制され、シールド部材62の表面で渦電流が流れることを防止できる。
《実施の形態2》
 図13は、実施の形態2に係る電力変換装置200の構成を示す側面図である。図13において、図2に示される構成要素と同一又は対応する構成要素には、図2に示される符号と同じ符号が付される。実施の形態2に係る電力変換装置200は、第1のプリント基板10が絶縁基板20上に直接、配置されている点で実施の形態1に係る電力変換装置100と相違する。これ以外の点については、実施の形態2に係る電力変換装置200は、実施の形態1に係る電力変換装置100と同じである。そのため、以下の説明では、図9を参照する。
 図13に示されるように、電力変換装置200は、第1のプリント基板210と、絶縁基板20と、リアクトル50と、シールド部材60(図9参照)とを有する。なお、図13では、シールド部材60の図示は省略されている。
 第1のプリント基板210及び絶縁基板20が電気的に接続されている。具体的には、第1のプリント基板210は、絶縁基板20に積層されていて、第1のプリント基板210及び絶縁基板20は密着している。言い換えれば、実施の形態2では、第1のプリント基板210が、図2に示される端子70を介さずに絶縁基板20上に直接、配置されている。これにより、電力変換装置200を薄型化することができる。絶縁基板20は、例えば、第1のプリント基板210とはんだ付けによって接続されている。
 第1のプリント基板210は、コア40と係合する被係合部としての貫通穴214を有する。コア40は、貫通穴214及び貫通穴22に係合する。
〈実施の形態2の効果〉
 以上に説明した実施の形態2によれば、電力変換装置200は、電力変換回路(すなわち、コンバータ回路120及びインバータ回路130)と巻線パターン21との間に配置されて巻線パターン21で発生するノイズをシールドするシールド部材60を有する。これにより、コンバータ回路120及びインバータ回路130へのノイズの重畳が抑制されるため、コンバータ回路120及びインバータ回路130の誤動作を防止できる。よって、第1のプリント基板10を、リアクトル50に近接して配置することができるため、電力変換装置200を小型化することができる。
 また、実施の形態2によれば、電力変換回路(すなわち、コンバータ回路120及びインバータ回路130)が実装された第1のプリント基板210は、絶縁基板20上に直接、配置されている。これにより、第1のプリント基板210と絶縁基板20とが端子70(図2参照)を介して接続されている実施の形態1の構成と比較して、電力変換装置200を薄型化することができる。
《実施の形態3》
 図14は、実施の形態3に係る電力変換装置300の構成を示す側面図である。図15は、実施の形態3に係る電力変換装置300の構成の一部を示す斜視図である。図14及び図15において、図2及び3に示される構成要素と同一又は対応する構成要素には、図2及び3に示される符号と同じ符号が付される。実施の形態3に係る電力変換装置300は、コア40を固定する部材が、巻線パターン21で発生するノイズをシールドする点で、実施の形態1に係る電力変換装置100と相違する。これ以外の点については、実施の形態3に係る電力変換装置300は、実施の形態1に係る電力変換装置100と同じである。そのため、以下の説明では、図1を参照する。
 図14及び15に示されるように、電力変換装置300は、第1のプリント基板10と、絶縁基板20と、冷却器30と、リアクトル50と、シールド部材360とを有する。
 シールド部材360は、電力変換回路(すなわち、図1に示されるコンバータ回路120及びインバータ回路130)と巻線パターン21との間に配置されて、巻線パターン21で発生するノイズをシールドする。これにより、コンバータ回路120及びインバータ回路130へのノイズの重畳が抑制されるため、コンバータ回路120及びインバータ回路130の誤動作を防止できる。
 実施の形態3では、シールド部材360は、コア40を冷却器30に固定する機能も有する。シールド部材360は、コア40を冷却器30に固定する固定部361と、締結部材46が締結される被締結部362とを有する。固定部361は、コア40の外面40aに接触している。被締結部362が締結部材46を介して冷却器30に締結されることで、固定部361は、コア40を押圧する。これにより、コア40が、冷却器30に固定される。
 固定部361は、平面視で、巻線パターン21と重なる位置に配置されている。図15に示す例では、固定部361は、巻線パターン21の一部を覆っている。なお、固定部361は、巻線パターン21の全部を覆っていてもよい。すなわち、シールド部材360は、巻線パターン21の少なくとも一部を覆っていればよい。
 シールド部材360は、例えば、金属材料から形成されている。図14及び15に示す例では、シールド部材360は、冷却器30と同一の素材から形成されている。シールド部材360は、例えば、アルミ材料から形成されている。これにより、リアクトルのコア40の放熱性を向上させることができる。
〈実施の形態3の効果〉
 以上に説明した実施の形態3によれば、電力変換装置300は、電力変換回路(すなわち、コンバータ回路120及びインバータ回路130)と巻線パターン21との間に配置されて巻線パターン21で発生するノイズをシールドするシールド部材360を有する。これにより、コンバータ回路120及びインバータ回路130へのノイズの重畳が抑制されるため、コンバータ回路120及びインバータ回路130の誤動作を防止できる。よって、第1のプリント基板10を、リアクトル50に近接して配置することができるため、電力変換装置300を小型化することができる。
 また、実施の形態3によれば、シールド部材360は、コア40を冷却器30に固定している。これにより、コア40の固定構造及びノイズのシールド構造を1つの部材によって実現することができる。よって、実施の形態1に係る電力変換装置100と比較して、電力変換装置300における部品点数を削減することができる。
 1 負荷部、 2、3 パワー半導体、 4 IC、 4a 信号線、 10、210 第1のプリント基板、 11 両面基板、 11a、11b、20a、20b、30a、41b、65a 面、 12 配線パターン、 20 絶縁基板、 21 巻線パターン、 22 貫通穴、 25 多層配線基板、 30 冷却器、 30b 凹部、 40 コア、 40a 外面、 41 第1の分割コア、 41a 平板部、 41c 第1の突出部、 41d 第2の突出部、 41e 第3の突出部、 41f、41g 凹部、 42 第2の分割コア、 45 固定部材、 46 締結部材、 50 リアクトル、 60、61、62、360 シールド部材、 62a 貫通孔、 62b スリット、 62c 外周、 65 絶縁基板、 66 シールドパターン、 70 端子、 100、101、102、200、300 電力変換装置、 110 電源部、 120 コンバータ回路、 130 インバータ回路、 214 貫通穴、 361 固定部、 362 被締結部。

Claims (10)

  1.  第1の基板と、
     前記第1の基板上に備えられた電力変換回路と、
     前記第1の基板と重なる位置に配置された第2の基板と、
     コア及び前記第2の基板上に備えられた巻線パターンを含み、前記電力変換回路に電気的に接続されたリアクトルと、
     前記電力変換回路と前記巻線パターンとの間に配置され、前記巻線パターンで発生するノイズをシールドするシールド部材と
     を有する電力変換装置。
  2.  前記シールド部材は、前記第2の基板の、前記第1の基板と向き合う面上に備えられた第1のシールドパターンを有する
     請求項1に記載の電力変換装置。
  3.  前記シールド部材は、前記第1の基板の、前記第2の基板と向き合う面上に備えられた第2のシールドパターンを有する
     請求項1又は2に記載の電力変換装置。
  4.  冷却器を更に有し、
     前記シールド部材は、前記コアを前記冷却器に固定する固定部を有する
     請求項1から3のいずれか1項に記載の電力変換装置。
  5.  冷却器を更に有し、
     前記コア及び前記第2の基板の少なくとも一方は、前記冷却器に接し、又は前記冷却器の近傍に配置されている
     請求項1から3のいずれか1項に記載の電力変換装置。
  6.  前記冷却器は、前記コアが接する凹部を有する
     請求項5に記載の電力変換装置。
  7.  前記シールド部材の電位は、前記冷却器の電位と同一である
     請求項5又は6に記載の電力変換装置。
  8.  前記シールド部材は、前記コアが貫通する貫通孔と、前記貫通孔から前記シールド部材の外周まで繋がるスリットとを有する、
     請求項1から7のいずれか1項に記載の電力変換装置。
  9.  前記電力変換回路と前記巻線パターンとを電気的に接続する端子を更に有する
     請求項1から8のいずれか1項に記載の電力変換装置。
  10.  前記第1の基板は、前記第2の基板上に直接、配置されている
     請求項1から9のいずれか1項に記載の電力変換装置。
PCT/JP2021/043452 2021-11-26 2021-11-26 電力変換装置 WO2023095304A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/043452 WO2023095304A1 (ja) 2021-11-26 2021-11-26 電力変換装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/043452 WO2023095304A1 (ja) 2021-11-26 2021-11-26 電力変換装置

Publications (1)

Publication Number Publication Date
WO2023095304A1 true WO2023095304A1 (ja) 2023-06-01

Family

ID=86539197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/043452 WO2023095304A1 (ja) 2021-11-26 2021-11-26 電力変換装置

Country Status (1)

Country Link
WO (1) WO2023095304A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06325949A (ja) * 1993-05-11 1994-11-25 Yokogawa Electric Corp 電磁気回路の実装構造
JP2012016108A (ja) * 2010-06-30 2012-01-19 Toshiba Lighting & Technology Corp スイッチング電源モジュールおよび電気機器

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06325949A (ja) * 1993-05-11 1994-11-25 Yokogawa Electric Corp 電磁気回路の実装構造
JP2012016108A (ja) * 2010-06-30 2012-01-19 Toshiba Lighting & Technology Corp スイッチング電源モジュールおよび電気機器

Similar Documents

Publication Publication Date Title
US11153966B2 (en) Electronic circuit device
JP5743851B2 (ja) 電子装置
US8334747B2 (en) Coil-integrated switching power supply module
US8188829B2 (en) Coil substrate structure, substrate holding structure, and switching power supply
US9345176B2 (en) Power supply device having heat conductive member
US8897029B2 (en) Compact isolated switching power converters
US11296613B2 (en) Power conversion device
WO2014141672A1 (ja) 磁気デバイス
JP4558407B2 (ja) スイッチング電源装置
WO2019208184A1 (ja) 電力変換装置
CN106575566B (zh) 电抗器和使用它的dc-dc转换器
WO2018185805A1 (ja) スイッチング素子駆動ユニット
WO2023095304A1 (ja) 電力変換装置
CN112928900A (zh) 功率转换装置
WO2017187478A1 (ja) 電力変換装置
CN113544958A (zh) 线圈装置及电力转换装置
JP2023130993A (ja) 電力変換装置および直流直流コンバータ装置
JP2014017988A (ja) Dc−dcコンバータ
JP2013188010A (ja) 絶縁型スイッチング電源装置
JP2016144238A (ja) 電力変換装置
JP6439319B2 (ja) 巻線部および巻線部品
JP2014217244A (ja) 絶縁型スイッチング電源装置および絶縁型スイッチング電源装置の製造方法
JP7357710B2 (ja) 電力変換装置
US20240013967A1 (en) Power supply device
KR101826727B1 (ko) 방열 장치 및 그 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21965674

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023563459

Country of ref document: JP