WO2016021397A1 - 貫通電極基板及びその製造方法、並びに貫通電極基板を用いた半導体装置 - Google Patents

貫通電極基板及びその製造方法、並びに貫通電極基板を用いた半導体装置 Download PDF

Info

Publication number
WO2016021397A1
WO2016021397A1 PCT/JP2015/070636 JP2015070636W WO2016021397A1 WO 2016021397 A1 WO2016021397 A1 WO 2016021397A1 JP 2015070636 W JP2015070636 W JP 2015070636W WO 2016021397 A1 WO2016021397 A1 WO 2016021397A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
substrate
electrode substrate
base
etching
Prior art date
Application number
PCT/JP2015/070636
Other languages
English (en)
French (fr)
Inventor
浅野 雅朗
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Priority to CN201580040076.XA priority Critical patent/CN106664794B/zh
Publication of WO2016021397A1 publication Critical patent/WO2016021397A1/ja
Priority to US15/422,990 priority patent/US10008442B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49838Geometry or layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation
    • H01L21/486Via connections through the substrate with or without pins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76898Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics formed through a semiconductor substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/32Holders for supporting the complete device in operation, i.e. detachable fixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49827Via connections through the substrates, e.g. pins going through the substrate, coaxial cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49866Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers characterised by the materials
    • H01L23/49894Materials of the insulating layers or coatings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/42Plated through-holes or plated via connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/023Redistribution layers [RDL] for bonding areas
    • H01L2224/0237Disposition of the redistribution layers
    • H01L2224/02372Disposition of the redistribution layers connecting to a via connection in the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/0401Bonding areas specifically adapted for bump connectors, e.g. under bump metallisation [UBM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05541Structure
    • H01L2224/05548Bonding area integrally formed with a redistribution layer on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/061Disposition
    • H01L2224/0618Disposition being disposed on at least two different sides of the body, e.g. dual array
    • H01L2224/06181On opposite sides of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/1302Disposition
    • H01L2224/13024Disposition the bump connector being disposed on a redistribution layer on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/13109Indium [In] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13144Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • H01L2224/16148Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked the bump connector connecting to a bonding area protruding from the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16227Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/17Structure, shape, material or disposition of the bump connectors after the connecting process of a plurality of bump connectors
    • H01L2224/171Disposition
    • H01L2224/1718Disposition being disposed on at least two different sides of the body, e.g. dual array
    • H01L2224/17181On opposite sides of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48105Connecting bonding areas at different heights
    • H01L2224/48106Connecting bonding areas at different heights the connector being orthogonal to a side surface of the semiconductor or solid-state body, e.g. parallel layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73257Bump and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/0651Wire or wire-like electrical connections from device to substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06513Bump or bump-like direct electrical connections between devices, e.g. flip-chip connection, solder bumps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06517Bump or bump-like direct electrical connections from device to substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06548Conductive via connections through the substrate, container, or encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/17Structure, shape, material or disposition of the bump connectors after the connecting process of a plurality of bump connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0652Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00 the devices being arranged next and on each other, i.e. mixed assemblies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0657Stacked arrangements of devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/157Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2924/15738Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950 C and less than 1550 C
    • H01L2924/15747Copper [Cu] as principal constituent
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • H05K1/115Via connections; Lands around holes or via connections
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/095Conductive through-holes or vias
    • H05K2201/09509Blind vias, i.e. vias having one side closed

Definitions

  • the present invention relates to a through electrode substrate, a manufacturing method thereof, and a semiconductor device using the through electrode substrate.
  • the through electrode is formed by filling the through hole with a conductive material by electrolytic plating or the like.
  • a through electrode substrate manufactured using an SOI wafer is disclosed (see Patent Document 1).
  • a blind via hole having a depth reaching the buried insulating layer is provided in the supporting substrate layer of the SOI wafer, and an inner wall insulating layer is applied to the inner wall of the via hole to provide the through electrode.
  • the buried insulating layer exposed by removing the silicon layer is provided with a contact hole in a portion corresponding to the through electrode.
  • the conventional through electrode substrate has a structure in which an insulating layer is provided on the surface, and the through electrode is exposed through a contact hole provided in the insulating layer so as to be conductive.
  • . 25 and 26 show the structure of such a through electrode substrate 800 in cross-sectional views.
  • the base 801 has a surface 801a and a surface 801b facing each other, and a through electrode 803 is disposed in a through-hole penetrating the surface 801a and the surface 801b.
  • a wiring 804 is disposed on the surface 801 b of the base 801 and the surface 803 b of the through electrode 803.
  • FIG. 26 is an enlarged view of the vicinity of the through electrode substrate 800 shown in FIG. 25 surrounded by a dotted line, and shows the vicinity of the periphery 803c on the surface 803b side of the through electrode 803.
  • a through electrode 803 is formed by filling a hole provided in the base body 801 by electrolytic plating. However, a minute space is formed between the side surface 803d of the through electrode 803 and the base body 801. May occur.
  • the through electrode 803 is arranged on the base 801, the surface 801b of the base 801 and the surface 803b of the through electrode 803 are polished by CMP or the like. In some cases, space is generated. If the space 881 generated by such a cause exists, the wiring 804 is disconnected, and a connection failure with the through electrode 803 occurs. Alternatively, when the space 881 is filled with gas, the connection reliability of the wiring 804 is reduced.
  • FIG. 27 and 28 are cross-sectional views of another form of the through electrode substrate 900.
  • FIG. FIG. 28 is a view showing a process of forming the through electrode substrate 900, and is an enlarged view of the vicinity surrounded by a dotted line in FIG.
  • a through electrode 903 that penetrates the surface 901a and the surface 901b of the base body 901 is disposed.
  • the through electrodes 903 exposed on the surface 901a side and the surface 901b side of the base 901 are referred to as a surface 903a and a surface 903b, respectively.
  • a surface of the through electrode 903 that is in contact with the base body 901 is a side surface 903d.
  • the insulating layer 930 is disposed on the surface 901 b of the base body 901 and a part on the surface 903 b of the through electrode 903 from the surface 901 b.
  • a wiring 904 is arranged on the insulating layer 930 and on the surface 903b of the through electrode 903 where the insulating layer 930 is not formed.
  • an insulating layer 930 is formed on a part of the surface 901b of the base 901 and part of the surface 903b of the through electrode 903. Since the insulating layer 930 is also formed in the vicinity of the peripheral edge 903c of the through electrode 903, the side surface 903d of the peripheral edge 903c is covered with the base 901 and the surface 903b side is covered with the insulating layer 930.
  • the peripheral edge 903c of the through electrode 903 is covered.
  • the insulating layer 930 is undercut during the manufacturing process, resulting in a gap. Then, the insulating layer 930 is structurally lacking in stability, which causes the wiring 904 to be disconnected.
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to provide a through-electrode substrate that is structurally stable by eliminating the problems caused by the structure occurring at the boundary between the through-electrode and the substrate. To do.
  • a base body having a first surface and a second surface facing each other, and a through electrode disposed in a through hole penetrating the first surface and the second surface of the base body,
  • the through electrode has an end surface on the first surface side and an end surface on the second surface side exposed from the base on the first surface and the second surface, and an end surface on the first surface side and an end surface on the second surface side.
  • the base body may be located at the periphery of the through electrode or outside the periphery, and may have an annular convex portion along the periphery.
  • the substrate may include glass.
  • the substrate may include silicon, and an insulating film may be disposed on the inner wall surface of the through hole.
  • a member made of the same material as that of the base may be disposed inside one or both of the end surface on the first surface side and the end surface on the second surface side whose peripheral edge is covered with the base material.
  • a plurality of wirings may be arranged on one or both of the end surface on the first surface side and the end surface on the second surface side whose peripheral edge is covered with the substrate.
  • an opening is formed in the first surface of the base body having the first surface and the second surface facing each other at a depth not reaching the second surface.
  • An electrode is formed by filling the substrate with a conductive material, and a mask is formed on the second surface of the base body, the mask having an opening in a part of the inner region of the electrode and covering the periphery of the electrode.
  • a method of manufacturing a through electrode substrate is provided, wherein the second surface of the substrate is etched to expose a part of the inner region of the electrode and to leave a part of the substrate at the periphery of the electrode. .
  • the mask may be formed in an annular shape.
  • the mask may include isotropic etching at least partially.
  • the etching mask may be removed as the etching progresses.
  • a semiconductor device having the above-described through electrode substrate is provided.
  • a through electrode penetrating through two opposite surfaces of a base is disposed, and the periphery of at least one surface of the through electrode is covered with the base, so that a structurally stable through electrode substrate is provided. be able to.
  • the manufacturing method of the penetration electrode substrate concerning a 1st embodiment of the present invention is a mimetic diagram showing a section of a substrate provided with a bottomed hole.
  • the manufacturing method of the penetration electrode substrate concerning a 1st embodiment of the present invention is a mimetic diagram showing the section of the substrate in which the penetration electrode was provided.
  • the manufacturing method of the penetration electrode substrate concerning a 1st embodiment of the present invention it is a mimetic diagram showing the section of the substrate in which the mask was formed.
  • the manufacturing method of the penetration electrode substrate concerning a 1st embodiment of the present invention it is a mimetic diagram showing the section of the substrate in the middle of etching.
  • the manufacturing method of the penetration electrode substrate concerning a 1st embodiment of the present invention is a mimetic diagram showing the section of the substrate in the middle of etching.
  • the top view and perspective view of a substrate which completed etching are shown.
  • the manufacturing method of the penetration electrode substrate concerning a 1st embodiment of the present invention it is a mimetic diagram showing the section of the substrate in which the wiring layer was formed.
  • the manufacturing method of the penetration electrode substrate concerning a 1st embodiment of the present invention it is a mimetic diagram showing the section of the substrate in which the insulating layer was formed.
  • the manufacturing method of the penetration electrode substrate concerning the modification of a 1st embodiment of the present invention it is a mimetic diagram showing the section of the substrate where etching was completed.
  • the manufacturing method of the penetration electrode substrate concerning the modification of a 1st embodiment of the present invention it is a mimetic diagram showing the state where the penetration electrode protruded from the convex part of the base.
  • the manufacturing method of the penetration electrode substrate concerning the modification of a 1st embodiment of the present invention it is a mimetic diagram showing the state where the penetration electrode which protruded from the convex part of the base was made flat.
  • the manufacturing method of the penetration electrode substrate concerning a 2nd embodiment of the present invention it is a mimetic diagram showing the section of the substrate in the middle of etching.
  • the manufacturing method of the penetration electrode substrate concerning a 2nd embodiment of the present invention it is a mimetic diagram showing the section of the substrate in which the mask was formed. In the manufacturing method of the penetration electrode substrate concerning a 2nd embodiment of the present invention, it is a mimetic diagram showing the section of the substrate where etching was completed. In the manufacturing method of the penetration electrode substrate concerning a 2nd embodiment of the present invention, it is a mimetic diagram showing the section of the substrate in which the wiring layer and the insulating layer were formed. It is a schematic diagram which shows the upper surface and cross section of the penetration electrode substrate which concern on 3rd Embodiment of this invention.
  • the through electrode substrate of the present invention is not limited to the following embodiments, and can be implemented with various modifications. In all the embodiments, the same components are described with the same reference numerals. In addition, the dimensional ratio in the drawing may be different from the actual ratio for convenience of explanation, or a part of the configuration may be omitted from the drawing.
  • FIG. 8 is a plan view and a perspective view of the through electrode substrate 100 according to the first embodiment of the present invention.
  • 8A is a plan view seen from the second surface 101b side of the base 101 constituting the through electrode substrate 100
  • FIG. 8B is a perspective view seen from an oblique direction on the second surface 101b side of the base 101.
  • FIG. FIG. FIG. 7 is a schematic diagram of a cross section when viewed in the AA ′ direction of FIG.
  • the through electrode substrate 100 has a through electrode 103 disposed on a base 101.
  • the base 101 has a first surface 101a and a second surface 101b that face each other.
  • the first surface 103 a is exposed from the first surface 101 a side of the base 101
  • the second surface 103 b is exposed from the second surface 101 b side of the base 101.
  • the side surface 103 d of the through electrode 103 is in contact with the base body 101.
  • the second surface 103 b of the through electrode 103 is covered with the base 101 at the periphery 103 c and the periphery thereof, and the other inner region is exposed from the base 101. That is, the peripheral edge 103c is covered with the base body 101 on both the side surface 103d side and the second surface 103b side.
  • the portion where the base 101 covers the peripheral edge 103c of the through electrode 103 and the second surface 103b in the vicinity thereof is thinner than the other portions, and the thin region (region where the thickness is reduced) 101e. Is formed.
  • FIG. 1 shows a cross section of a substrate in which a bottomed hole 102 is provided in a base 101 in the method of manufacturing a through electrode substrate 100.
  • the base 101 has an insulating property at least on the surface.
  • the substrate 101 for example, glass (blue plate glass, low expansion glass, non-alkali glass, etc.), sapphire, resin, or the like is used.
  • the thickness of the substrate 101 may be formed within a range of 100 ⁇ m to 1 mm.
  • the base 101 may be a base having an insulating surface provided with an insulating film on the surface of a conductive substrate.
  • an insulating film may be formed on the surface of a conductive substrate such as silicon.
  • the thickness of the insulating film may be formed within a range of 0.1 ⁇ m to 5 ⁇ m.
  • an insulating film be formed on the inner wall surface of the bottomed hole 102 to provide the insulating film on the inner wall surface of the final through hole.
  • an etching process for removing the insulating film is required in FIG. 7 described later.
  • the base 101 has a first surface 101a and a second surface 101b facing each other.
  • a mask (not shown) is formed on the first surface 101a side of the substrate 101, and the bottomed hole 102 is formed by etching.
  • Etching methods include second etching of the substrate 101 by dry etching processing such as RIE (Reactive Ion Etching) and DRIE (Deep RIE), wet etching processing, laser processing, and the like.
  • RIE Reactive Ion Etching
  • DRIE Deep RIE
  • wet etching processing laser processing, and the like.
  • a bottomed hole 102 that does not penetrate to the surface 101b side can be formed.
  • the depth of the bottomed hole 102 depends on the thickness of the substrate 101, but can be set to 100 ⁇ m to 500 ⁇ m, for example.
  • the size of the opening of the bottomed hole 102 is not particularly limited, and can be, for example, 10 ⁇ m to 100 ⁇ m.
  • the shape of the bottomed hole 102 typically shows a straight shape in the thickness direction of the base 101 as shown in each drawing, but is not limited thereto.
  • the opening on the first surface 101a side may be wide, and the bottom on the second surface 101b side may be narrowed to have a tapered shape.
  • the shape of the bottomed hole 102 on the plan view is not particularly limited and is typically a circle, but may be a rectangle or a polygon other than a circle.
  • FIG. 2 is a cross-sectional view showing a state in which the through electrode 103 is formed in the bottomed hole 102.
  • the through electrode 103 is formed by providing a conductive material so as to fill the bottomed hole 102.
  • a metal such as Cu is used as the conductive material.
  • an electrolytic plating filling method can be used.
  • electrolytic plating is performed, electrolytic plating is performed after forming a seed layer, that is, a base layer for plating formation (not shown).
  • a portion to be plated is exposed with a resist prepared by a lithography method.
  • the first surface 101a of the base 101 and the first surface 103a of the through electrode 103 are planarized by CMP (Chemical Mechanical Polishing) or the like.
  • the opening side (the first surface 101a side of the base body 101) of the through-hole electrode 103 disposed in the bottomed hole 102 is defined as the first surface 103a
  • the bottom side (base body 101) of the bottomed hole 102 is provided.
  • the second surface 101b side) is defined as a second surface 103b.
  • the surface in contact with the base 101 is referred to as a side surface 103d.
  • FIG. 3 is a cross-sectional view showing a state in which a mask 130 for etching is formed on the second surface 101b side of the base 101.
  • the mask 130 is disposed in the vicinity of the peripheral edge 103 c of the second surface 103 b of the through electrode 103 when seen through the second surface 101 b of the base 101 from the second surface 101 b side. At this time, it arrange
  • the mask 130 is arranged in this way because when the second surface 101b of the substrate 101 is isotropically etched after the mask 130 is arranged, the etching in the vicinity of the peripheral edge 103c of the second surface 103b of the through electrode 103 is delayed. This is to prevent the peripheral edge 103c of the second surface 103b of 103 from being exposed.
  • the mask 130 is arranged on the second surface 101 b of the base 101 in a ring shape following the peripheral edge 103 c of the through electrode 103.
  • the mask 130 is disposed along the shape on the plane of the second surface 103 b of the through electrode 103.
  • isotropic etching is performed from the opposite side of the first surface 101a of the base 101 in which the bottomed hole 102 is formed, that is, from the second surface 101b side of the base 101 that is the bottom of the bottomed hole 102. I do.
  • isotropic etching a wet etching process will be described.
  • the substrate 101 is glass
  • hydrofluoric acid is used as the etchant.
  • the mask 130 is made of a material resistant to hydrofluoric acid, and is formed by patterning, for example, chromium, copper, or the like by a resist plate making etching process. Note that a protective layer is formed before wet etching so that the first surface 101a side of the substrate 101 is not etched.
  • FIG. 7 is a cross-sectional view showing a state in which isotropic etching is completed, and shows the through electrode substrate 100 according to the first embodiment of the present invention.
  • FIG. 6 shows a state where the mask 130 and the portion where the second surface 101b of the base body 101 is in contact are all etched and the mask 130 is peeled off.
  • Etching is further advanced from FIG. 6, and etching is finally performed to the state shown in FIG. Referring to FIG. 7, the base body 101 is not completely etched in the vicinity of the periphery 103c of the second surface 103b of the through electrode 103, and a part of the base body 101 remains as a thin region 101e.
  • the second surface 103 b other than the vicinity of the peripheral edge 103 c of the through electrode 103 is exposed from the base body 101 as etching progresses. That is, the through electrode 103 is disposed in a through hole that penetrates between the first surface 101 a and the second surface 103 b of the base 101.
  • the periphery 103c of the through electrode 103 and the second surface 103b in the vicinity thereof are covered with the base 101. .
  • FIG. 8A is a plan view of the base 101 viewed from the second surface 101b side.
  • the second surface 103 b of the through electrode 103 is covered with a part of the second surface 101 b of the base 101 at the periphery 103 c and the vicinity thereof.
  • a region inside the second surface 103 b of the through electrode 103 is exposed from the second surface 101 b of the base 101.
  • FIG. 8B is a perspective view of the base 101 viewed from an oblique direction on the second surface 101b side.
  • an annular convex portion 101c is formed from a portion where the peripheral edge 103c of the penetrating electrode 103 formed in a circle is disposed and a portion located outside the portion.
  • the convex portion 101c is formed because the portion where the mask 130 is disposed is slower in etching than the portion where the mask 130 is not disposed.
  • the peripheral edge 103c of the through electrode 103 has a structure in which the side surface 103d side and the second surface 101b side are both covered with the base body 101.
  • FIG. 9 is a cross-sectional view of the through electrode substrate 110 in which the wiring layer 104 is formed on the second surface 101 b of the base body 101 and the second surface 103 b of the through electrode 103.
  • a conductive material is used for the wiring layer 104.
  • the conductive material for example, a metal material is applied to the second surface 101b side of the substrate 101, and is formed by a patterning method using photolithography.
  • an electronic component or the like may be mounted in addition to the wiring layer 104.
  • FIG. 10 shows a cross section of the through electrode substrate 120 in which the insulating layer 105 is further formed from FIG. 9, and is a cross sectional view seen from the B-B ′ direction of FIG.
  • a photosensitive resin is used for the insulating layer 105.
  • patterning by photolithography is performed and baking is performed, whereby the insulating layer 105 is formed.
  • an opening 106 reaching the wiring layer 104 is formed in the insulating layer 105.
  • FIG. 11 is a top view of the through electrode substrate 120 as viewed from the insulating layer 105 side.
  • the wiring layer 104 is formed so as to surround the peripheral edge 103 c of the circular through electrode 103.
  • the wiring layer 104 is further extended from the through electrode 103 in the direction of the opening 106 so as to surround the region where the opening 106 is formed in a rectangular shape.
  • a circle shown inside the circle indicating the peripheral edge 103 c of the through electrode 103 indicates a region exposed from the second surface 101 b side of the base 101 on the second surface 103 b of the through electrode 103.
  • the through electrode substrate 100 As described above, in the formation of the through electrode substrate 100 according to the first embodiment, there is a step of leaving the base body 101 near the periphery 103c of the through electrode 103, but the second surface 103b of the through electrode 103 and the base body 101 are left. There is no step of polishing the second surface 101b. Therefore, as described with reference to FIGS.
  • the substrate 801 is broken due to the polishing of the surface 803b of the through electrode 803 and the surface 801b of the substrate 801, the wiring 804 is disconnected due to the defect of the substrate 801, the substrate 801 and Problems such as a decrease in reliability of the connection of the wiring 804 due to the generation of a space between the through electrode 103 do not occur in the through electrode substrate 100 according to the first embodiment.
  • the periphery 103c of the second surface 103b of the through electrode 103 is covered with the base body 101 on both the side surface 103d side and the second surface 103b side.
  • the peripheral edge 903c of the through electrode 903 is covered with the base body 901 and the upper surface is covered with the insulating layer 930.
  • the insulating layer 930 is undercut to form a gap and structurally lack stability.
  • the through electrode substrate 100 according to the first embodiment does not have a structure corresponding to the insulating layer 930 in the conventional through electrode substrate, and there is no formation process thereof, and thus occurs in the formation process of the insulating layer 930.
  • the above problem does not occur.
  • the through electrode substrate 100 according to the first embodiment and the manufacturing method thereof can provide a structurally stable through electrode substrate.
  • a bottomed hole 102 is formed on the first surface 101a side of the base 101 having the first surface 101a and the second surface 101b facing each other, and the bottomed hole 102 is filled with the through electrode 103. Etching was performed from the second surface 101b side of the base 101 to expose the through electrode 103. In the modification, after the bottomed hole 102 is formed on the first surface 101 a side of the base 101, the through electrode 103 is not formed in the bottomed hole 102, and etching is first performed from the second surface 101 b side of the base 101. .
  • FIG. 12 shows a state in which a bottomed hole 102 is formed in the base 101 and etching is performed from the second surface 101b side of the base 101 to penetrate the bottomed hole 102.
  • the etching performed in the first modification is the same as the method described in the first embodiment. That is, FIG. 12 can be said to be a state in which the formation process of the through electrode 103 shown in FIG. 2 is omitted and the etching process shown in FIGS.
  • the through electrode 103 is formed by filling the metal from the original opening side of the bottomed hole 102. Since the metal is filled after passing through the bottomed hole 102, unnecessary gas is easily released when the metal is filled, and bubbles are hardly generated in the through electrode 103.
  • the through electrode substrate 100 similar to that described in FIG. 7 in the first embodiment is formed.
  • FIG. 14 is a diagram illustrating a state in which the second surface 103b is flattened and a through electrode substrate 100a according to a modification of the first embodiment is formed.
  • FIG. 18 is a schematic diagram of a cross section when viewed in the AA ′ direction in FIG.
  • the through electrode 103 is disposed on the base 101.
  • the base 101 has a first surface 101a and a second surface 101b that face each other.
  • the first surface 103 a is exposed from the first surface 101 a side of the base 101
  • the second surface 103 b is exposed from the second surface 101 b side of the base 101.
  • the side surface 103 d of the through electrode 103 is in contact with the base body 101.
  • the peripheral edge 103c of the through electrode 103 is covered with the base body 101 on both the side surface 103d side and the second surface 103b side.
  • the base body 101 has a constant thickness over almost the whole, but the thickness of the portion covering the second surface of the through electrode 103 is thin to form a thin area (area where the thickness is reduced) 101e. is doing.
  • the manufacturing method for forming the bottomed hole 102 in the base 101 and filling the through electrode 103 in the second embodiment is the same as the manufacturing method of the through electrode substrate 100 in the first embodiment described with reference to FIGS. 1 and 2. It is the same.
  • FIG. 15 is a diagram showing a state where etching has been performed over the entire surface of the second surface 101b from the second surface 101b side of the base 101 from the state of FIG.
  • Etching may be performed by wet etching, dry etching, laser processing, or the like.
  • a dotted line 101b ' indicates the position of the second surface 101b of the base 101 before etching. Etching is not performed until the second surface 103 b of the through electrode 103 is exposed, and a thickness a is left between the second surface 101 b of the base 101 and the second surface 103 b of the through electrode 103.
  • the etching process is performed by isotropic wet etching, for example, hydrofluoric acid is used as an etchant, and a protective layer is formed so that the first surface 101a side of the substrate 101 is not etched.
  • the etching is performed so that the thickness a is, for example, 30 ⁇ m or less. This is because, in the etching process after masking, which will be described later, if the thickness a is increased, the influence of the progress of the etching in the lateral direction in addition to the etching in the thickness direction of the substrate 101 cannot be ignored.
  • etching is performed by wet etching, uneven etching occurs, so that the thickness a is desirably 1 ⁇ m or more.
  • the thickness a is preferably 1 ⁇ m or more.
  • FIG. 16 is a cross-sectional view showing a state where the mask 131 is formed on the second surface 101 b of the base 101.
  • the mask arrangement shown in FIG. 16 shows mask formation when the etching process after mask formation is performed by anisotropic etching.
  • the mask 131 in order to expose the second surface 103b of the through electrode 103 from the base 101, the mask 131 is not formed in the region of the second surface 103b of the through electrode 103 to be exposed, and the mask is formed in the other portions. 131 is formed. More specifically, the mask 131 is formed from the side where the through electrode 103 does not exist to the portion beyond the peripheral edge 103c of the through electrode 103 when seen through the second surface 101b side of the base 101, It forms so that the periphery 103c may overlap.
  • the mask 131 is performed by, for example, resist patterning.
  • FIG. 17 is a view showing a state after anisotropic etching is performed from the state shown in FIG. 16 and showing a cross-sectional view of the through electrode substrate 200 according to the second embodiment of the present invention. .
  • the substrate 101 on which the mask 131 is not arranged is etched by anisotropic etching.
  • the mask 131 since the mask 131 is formed so as to overlap with the peripheral edge 103c, the second surface 103b of the through electrode 103 is exposed from the base body 101 leaving a portion near the peripheral edge 103c. Since the mask 131 is disposed up to the portion beyond the periphery 103c of the through electrode 103, the base 101 is not etched in the vicinity of the periphery 103c on the side surface 103d side and the second surface 103b side. A portion where the mask 131 is disposed is indicated by 131 'in the drawing. After the anisotropic etching step is completed, the mask 131 is peeled off.
  • FIG. 18 shows a cross-sectional view of the through electrode substrate 220 in which the wiring layer 104 is formed on the through electrode substrate 200 shown in FIG. 17 and the insulating layer 105 is further formed.
  • a method of forming the wiring layer 104 and forming the insulating layer 105 after the etching is completed is the same as that of the first embodiment.
  • the peripheral edge 103c of the second surface 103b of the through electrode 103 is covered by the base 101 on both the side surface 103d side and the second surface 103b side. Is called.
  • the manufacturing method of the through electrode substrate 200 in the second embodiment does not cause a problem in the manufacturing process in the prior art described with reference to FIGS. 25 to 28, similarly to the manufacturing method of the through electrode substrate 200 in the first embodiment. . Therefore, the through electrode substrate 200 can provide a structurally stable through electrode substrate as in the first embodiment.
  • the second surface 103b of the through electrode 103 is entirely exposed from the base body 101 except for the vicinity of the peripheral edge 103c.
  • the present invention is not limited to this.
  • a part of the substrate 101 may be left without being removed by resist processing.
  • FIG. 19 shows a plan view and a cross-sectional view of a through electrode substrate 300 according to the third embodiment.
  • a circular island-shaped substrate 101 d is arranged near the center of the through electrode 103.
  • the second surface 103b of the through electrode 103 has an opening formed in a ring shape.
  • FIG. 20 shows a plan view and a cross-sectional view of the through electrode substrate 400 according to the third embodiment.
  • the ring-shaped substrate 101 f is disposed near the center of the through electrode 103.
  • the second surface 103b of the through electrode 103 includes a ring-shaped opening located outside the base 101f remaining in a ring shape and a circular opening positioned inside the base 101f remaining in a ring shape. Is formed.
  • the opening of the second surface 103b of the through electrode 103 is formed in a predetermined shape by appropriately selecting a pattern for masking the second surface 101b of the substrate 101 with a resist. You can do it.
  • the area of the second surface 103b of the through electrode 103 is smaller than that of the first and second embodiments in order to facilitate the formation of the opening of the second surface 103b of the through electrode 103. It can be widely taken.
  • the third embodiment by appropriately setting the shape and the width of the opening of the second surface 103b of the through electrode 103, the through electrode 103, the second surface 103b of the through electrode 103, and the base 101 are formed. It becomes possible to adjust the resistance value between the wiring layer (not shown) arranged on the second surface 101b.
  • a wiring layer is arranged or another insulating layer is laminated. Adhesiveness is improved when it is turned into a solid.
  • the base 101 and the through electrode 103 are formed up to the state shown in FIG. 8 in the first embodiment.
  • the first wiring 505 is formed on the second surface 101b of the left base 101 in FIG. 21 and part of the second surface 103b of the adjacent through electrode 103.
  • the insulating layer 507 is formed on a part of the first wiring 505 and the second surface 103b of the through-electrode 103 adjacent thereto.
  • the second wiring 506 is formed on the insulating layer 507, the second surface 103b of the through electrode 103, and the second surface 101b of the right base 101.
  • the first wiring 505 and the second wiring 506 are electrically connected to each other through the through electrode 103, but are formed through the insulating layer 507, so that the other parts are electrically connected to each other. Not connected.
  • the manufacturing method of the through electrode substrate 500 according to the fourth embodiment is not limited to the manufacturing method described above.
  • the first wiring 505, the insulating layer 507, and the second wiring 506 may be similarly formed on the through electrode substrate 200 described in the second embodiment.
  • two openings are formed on the second surface 103b of the through electrode 103 so that the first wiring 505 and the second wiring 506 are connected to the formed openings, respectively. It may be formed.
  • a wiring layer and an insulating layer may be formed on the second surface 103b of the through electrode 103 so that three or more wirings are connected.
  • the through electrode substrate 500 according to the fourth embodiment since a plurality of wirings are connected via the through electrodes 103, it is possible to realize branching of the wirings on the through electrodes 103.
  • FIG. 22 is a diagram showing a semiconductor device 1000 according to the fifth embodiment of the present invention.
  • the through electrode substrate 610 is formed with a semiconductor element such as a DRAM, for example, and has connection terminals 611 and 612 formed of a wiring layer 104 (not shown) or the like.
  • One or more of the three through electrode substrates 610, 620, and 630 may be a through electrode substrate formed of a substrate formed of glass, sapphire, or the like.
  • the connection terminal 612 is connected to the connection terminal 701 of the LSI substrate 700 by the bump 751.
  • connection terminal 611 is connected to the connection terminal 622 of the through electrode substrate 620 by the bump 752.
  • the connection terminal 621 of the through electrode substrate 620 is connected to the connection terminal 632 of the through electrode substrate 630 by the bump 753.
  • a metal such as indium, copper, or gold is used for the bumps 751, 752, and 753, for example.
  • connection between the through-electrode substrate and another substrate is not limited to using bumps, and other bonding techniques such as eutectic bonding may be used.
  • polyimide, epoxy resin, or the like may be applied and baked to bond the through electrode substrate and another substrate.
  • FIG. 23 is a diagram showing another example of the semiconductor device according to the fifth embodiment of the present invention.
  • semiconductor chips (LSI chips) 710 and 720 such as a MEMS device, a CPU, and a memory, and a through electrode substrate 600 are stacked and connected to the LSI substrate 700.
  • the through electrode substrate 600 is disposed between the semiconductor chip 710 and the semiconductor chip 720 and connected by bumps 754 and 755.
  • a semiconductor chip 710 is placed on the LSI substrate 700, and the LSI substrate 700 and the semiconductor chip 720 are connected by a wire 705.
  • the through electrode substrate 600 is used as an interposer for stacking a plurality of semiconductor chips and three-dimensionally mounting them, and manufacturing a multi-functional semiconductor device by stacking a plurality of semiconductor chips having different functions. can do.
  • the semiconductor chip 710 as a three-axis acceleration sensor and the semiconductor chip 720 as a two-axis magnetic sensor, a semiconductor device in which a five-axis motion sensor is realized with one module can be manufactured.
  • the sensing result may be output as an analog signal.
  • a low-pass filter, an amplifier, and the like may also be formed on the semiconductor chip or the through electrode substrate 600.
  • FIG. 24 is a diagram showing another example of the semiconductor device according to the fifth embodiment of the present invention.
  • the above two examples (FIGS. 22 and 23) are three-dimensional mounting, but this example is an example applied to the combined mounting of two dimensions and three dimensions.
  • six through electrode substrates 610, 620, 630, 640, 650, and 660 are stacked and connected to the LSI substrate 700.
  • all the through electrode substrates are not only stacked and arranged, but also arranged in the in-plane direction of the LSI substrate 700.
  • One or more of these through electrode substrates 610, 620, 630, 640, 650, and 660 may be a through electrode substrate made of a substrate formed of glass, sapphire, or the like.
  • the through electrode substrates 610 and 650 are connected to the LSI substrate 700, the through electrode substrates 620 and 640 are connected to the through electrode substrate 610, and the through electrode substrate 630 is connected to the through electrode substrate 620.
  • the through electrode substrate 660 is connected to the through electrode substrate 650.
  • the through electrode substrates 630, 640, 660, etc. may be replaced with semiconductor chips.
  • Semiconductor devices 1000, 1000a, and 1000b manufactured as described above include, for example, mobile terminals (mobile phones, smartphones, notebook personal computers, and the like), information processing devices (desktop personal computers, servers, car navigation systems, and the like), home appliances, and the like. And so on. These electrical devices have a control unit configured by a CPU or the like that executes various applications to realize various functions, and various functions include a function that uses an output signal from the semiconductor device 1000.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Geometry (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Manufacturing Of Printed Circuit Boards (AREA)
  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)

Abstract

 貫通電極の周縁付近に配置された絶縁部分に境界があることに伴う不具合を解消し、構造的に安定した貫通電極基板及びその製造方法を提供することを目的とする。貫通電極基板は、互いに対向する第1面と第2面とを有する基体と、前記基体の前記第1面から前記第2面を貫通する貫通孔に配置された貫通電極と、を有し、前記貫通電極は、前記第1面及び前記第2面において前記基体から露出される第1面側の端面及び第2面側の端面を有し、前記第1面側の端面及び前記第2面側の端面の一方又は双方は、周縁が前記基体で覆われていることを特徴とする。

Description

貫通電極基板及びその製造方法、並びに貫通電極基板を用いた半導体装置
 本発明は貫通電極基板及びその製造方法、並びに貫通電極基板を用いた半導体装置に関する。
 近年、LSIチップ間のインターポーザとして基板の表面と裏面を導通する導通部を備えた貫通電極基板の開発が進んできている。このような貫通電極基板では、貫通孔内部に電解めっきなどによって導電材を充填することで貫通電極が形成されている。貫通電極基板の従来技術としては、例えば、SOIウエハを用いて作製された貫通電極基板が開示されている(特許文献1参照。)。この貫通電極基板は、SOIウエハの支持基板層に、埋め込み絶縁層に達する深さを有するブラインドビアホールを設け、そのビアホールの内壁に内壁絶縁層を施して貫通電極が設けられている。また、シリコン層が除去されて露出した埋め込み絶縁層には、貫通電極に対応する部分にコンタクトホールが設けられている。
特開2005-38942号公報
 特許文献1に記載されているように、従来の貫通電極基板は、表面に絶縁層が設けられ、その絶縁層に設けられたコンタクトホールによって貫通電極が露出され導通がとれる構造を有している。図25及び図26は、このような貫通電極基板800の構造を断面図で示したものである。基体801は互いに対向する表面801aと表面801bを有し、表面801aと表面801bを貫通する貫通孔に、貫通電極803が配置される。ここで、基体801の表面801bと、貫通電極803の表面803bは、同一面を形成していることがわかる。基体801の表面801b及び貫通電極803の表面803b上には、配線804が配置されている。
 図26は、図25で示した貫通電極基板800の点線で囲んだ付近の拡大図であり、貫通電極803の表面803b側の、周縁803c付近を示している。貫通電極基板800の形成においては、基体801に設けられた穴に電解めっきにより充填された貫通電極803が形成されるが、貫通電極803の側面803dと基体801との間に、微小の空間が発生する場合がある。また、基体801に貫通電極803が配置された後に、基体801の表面801b及び貫通電極803の表面803bはCMPなどによって研磨されるが、その際、表面803b側の周縁803c付近の基体801が削られてしまい、空間が発生する場合もある。このような原因によって生じた空間881が存在すると、配線804が断線してしまい、貫通電極803と接続不良が発生してしまう。あるいは、空間881にガスが充満することによって、配線804の接続の信頼性が低下してしまう。
 図27及図28は、別形態の貫通電極基板900の断面図である。図28は、貫通電極基板900の形成過程を示した図であり、図27の点線で囲んだ付近の拡大図である。図27を参照すると、基体901の表面901aと表面901bを貫通する貫通電極903が配置されている。ここで、基体901の表面901a側と表面901b側に露出する貫通電極903を、それぞれ表面903aと表面903bとする。また、貫通電極903の基体901と接する面を、側面903dとする。絶縁層930は、基体901の表面901b上と、表面901bから貫通電極903の表面903b上の一部にかけて配置される。絶縁層930上と、絶縁層930が形成されていない貫通電極903の表面903b上に、配線904が配置されている。
 図27では基体901の表面901b上及び貫通電極903の表面903b上の一部に絶縁層930が形成されている。絶縁層930が貫通電極903の周縁903c付近にも形成されているので、周縁903cは、側面903d側は基体901に覆われ、表面903b側は絶縁層930で覆われている。
 絶縁層930を形成することによって貫通電極903の周縁903cは被覆される。しかし絶縁層930と貫通電極903との密着性が悪いと、製造工程の途中で絶縁層930がアンダーカットされて隙間が生じてしまう。そうすると、絶縁層930は構造的に安定性を欠くことになるので、配線904が断線する原因となる。
 本発明は、上述の課題に鑑みてなされたものであり、貫通電極と基体との境界部で発生する構造起因の不具合を解消し、構造的に安定した貫通電極基板を提供することを目的とする。
 本発明の一実施形態によると、互いに対向する第1面と第2面とを有する基体と、基体の前記第1面と第2面とを貫通する貫通孔に配置された貫通電極と、を有し、貫通電極は、第1面及び第2面において基体から露出される第1面側の端面及び第2面側の端面を有し、第1面側の端面及び第2面側の端面の一方又は双方は、周縁が基体で覆われていることを特徴とする、貫通電極基板が提供される。
 また、基体は貫通電極の周縁又は周縁の外側に位置し、前記周縁に沿う環状の凸部を有してもよい。
 また、基体はガラスを含んでもよい。
 また、基体はシリコンを含み、貫通孔の内壁面に絶縁膜が配置されてもよい。
 また、周縁が基体で覆われた第1面側の端面及び第2面側の端面の一方又は双方の内側に、基体と同じ材質の部材が配置されてもよい。
 また、周縁が基体で覆われた第1面側の端面及び第2面側の端面の一方又は双方に、複数の配線が配置されてもよい。
 また、本発明の別の一実施形態によると、互いに対向する第1面と第2面とを有する基体の第1面に、第2面に至らない深さで開口部を形成し、開口部を導電性材料で充填して電極を形成し、基体の第2面に、電極の内側領域の一部に開口を有し、電極の周縁を覆うマスクを形成し、マスクが設けられた状態で基体の第2面をエッチングし、電極の内側領域の一部を露出させ、かつ前記電極の周縁に前記基体の一部を残存させることを特徴とする、貫通電極基板の製造方法が提供される。
 また、マスクは環状に形成されてもよい。
 また、マスクは少なくとも一部に等方性エッチングを含んでもよい。
 また、エッチングマスクはエッチングが進行するにつれて取り除かれてもよい。
 また、本発明の別の一実施形態によると、上述の貫通電極基板を有する半導体装置が提供される。
 本発明によると、基体の互いに対向する2面を貫通する貫通電極が配置され、貫通電極の少なくとも一方の面の周縁が基体で覆われているので、構造的に安定した貫通電極基板を提供することができる。
本発明の第1実施形態に係る貫通電極基板の製造方法において、有底孔が設けられた基板の断面を示す模式図である。 本発明の第1実施形態に係る貫通電極基板の製造方法において、貫通電極が設けられた基板の断面を示す模式図である。 本発明の第1実施形態に係る貫通電極基板の製造方法において、マスクが形成された基板の断面を示す模式図である。 本発明の第1実施形態に係る貫通電極基板の製造方法において、エッチング途中の基板の断面を示す模式図である。 本発明の第1実施形態に係る貫通電極基板の製造方法において、エッチング途中の基板の断面を示す模式図である。 本発明の第1実施形態に係る貫通電極基板の製造方法において、エッチング途中の基板の断面を示す模式図である。 本発明の第1実施形態に係る貫通電極基板の製造方法において、エッチングが完了した基板の断面を示す模式図である。 本発明の第1実施形態に係る貫通電極基板の製造方法において、エッチングが完了した基板の平面図及び斜視図を示したものである。 本発明の第1実施形態に係る貫通電極基板の製造方法において、配線層が形成された基板の断面を示す模式図である。 本発明の第1実施形態に係る貫通電極基板の製造方法において、絶縁層が形成された基板の断面を示す模式図である。 本発明の第1実施形態に係る貫通電極基板の貫通電極を説明する上面図である。 本発明の第1実施形態の変形例に係る貫通電極基板の製造方法において、エッチングが完了した基板の断面を示す模式図である。 本発明の第1実施形態の変形例に係る貫通電極基板の製造方法において、貫通電極が基体の凸部よりもせり出した状態を示した模式図である。 本発明の第1実施形態の変形例に係る貫通電極基板の製造方法において、基体の凸部よりもせり出した貫通電極を平坦化した状態を示した模式図である。 本発明の第2実施形態に係る貫通電極基板の製造方法において、エッチング途中の基板の断面を示す模式図である。 本発明の第2実施形態に係る貫通電極基板の製造方法において、マスクが形成された基板の断面を示す模式図である。 本発明の第2実施形態に係る貫通電極基板の製造方法において、エッチングが完了した基板の断面を示す模式図である。 本発明の第2実施形態に係る貫通電極基板の製造方法において、配線層及び絶縁層が形成された基板の断面を示す模式図である。 本発明の第3実施形態に係る貫通電極基板の上面及び断面を示す模式図である。 本発明の第3実施形態に係る貫通電極基板の上面及び断面を示す模式図である。 本発明の第4実施形態に係る貫通電極基板の断面を示す模式図である。 本発明の第5実施形態に係る半導体装置を示す図である。 本発明の第5実施形態に係る半導体装置の別の例を示す図である。 本発明の第5実施形態に係る半導体装置のさらに別の例を示す図である。 従来技術に係る貫通電極基板の断面を示す模式図である。 従来技術に係る貫通電極基板の断面を示す模式図である。 従来技術に係る貫通電極基板の断面を示す模式図である。 従来技術に係る貫通電極基板の断面を示す模式図である。
 以下、図面を参照して、本発明の貫通電極基板を詳細に説明する。なお、本発明の貫通電極基板は以下の実施形態に限定されることはなく、種々の変形を行ない実施することが可能である。全ての実施形態においては、同じ構成要素には同一符号を付して説明する。また、図面の寸法比率は説明の都合上実際の比率とは異なったり、構成の一部が図面から省略されたりする場合がある。
<第1実施形態>
 以下、図1乃至図11を参照して、本発明の第1実施形態に係る貫通電極基板100の構成及び製造方法について説明する。
(全体構成)
 はじめに、貫通電極基板100の構成の概要について、図7及び図8を用いて説明する。図8は、本発明の第1実施形態に係る貫通電極基板100の平面図及び斜視図である。図8(a)は貫通電極基板100を構成する基体101の第2面101b側から見た平面図であり、図8(b)は基体101の第2面101b側の斜め方向から見た斜視図である。また、図7は、図8(a)のA-A’方向に見た場合の断面の模式図を示している。
 貫通電極基板100は、基体101に貫通電極103が配置される。基体101は、互いに対向する第1面101aと第2面101bを有する。貫通電極103は、基体101の第1面101a側からは第1面103aが露出し、基体101の第2面101b側からは第2面103bが露出する。また、貫通電極103の側面103dは、基体101と接している。
 貫通電極103の第2面103bは、周縁103c及びその周辺が基体101で覆われ、それ以外の内側の領域が基体101から露出する。すなわち、周縁103cは、側面103d側及び第2面103b側が、いずれも基体101によって覆われている。基体101が貫通電極103の周縁103c及びその周辺の第2面103bを覆う部分は、その他の部分と比較して、厚さが薄くなっており、薄肉領域(厚さが薄くなった領域)101eが形成されている。
(貫通電極基板100の製造方法)
 次に、図1乃至8を用いて、本発明の第1実施形態に係る貫通電極基板100の製造方法を説明する。
 図1は、貫通電極基板100の製造方法において、基体101に有底孔102が設けられた基板の断面を示している。基体101は、少なくとも表面が絶縁性を有する。基体101としては、例えばガラス(青板ガラス、低膨張ガラス、無アルカリガラス等)、サファイア、樹脂などが用いられる。この場合、基体101の厚さを100μm~1mmの範囲内で形成してもよい。
 また、基体101として、導電性を有する基板の表面に絶縁膜が設けられた、表面が絶縁性を有する基体であってもよい。例えば、シリコン等の導電性を有する基板の表面に、絶縁膜を形成してもよい。この場合、絶縁膜の厚さを0.1μm~5μmの範囲内で形成してもよい。なお、基体101としてシリコンを含む基板を用いる場合、有底孔102の内壁面に絶縁膜を形成することにより、最終的な貫通孔の内壁面に絶縁膜を設ける構成とすることが好ましい。ただし、その場合、後述する図7において絶縁膜を除去するためのエッチングプロセスが必要となる。
 基体101は、互いに対向する第1面101aと第2面101bを有する。基体101の第1面101a側にマスク(図示せず)を形成し、エッチングにより有底孔102を形成する。エッチングの方法としては、RIE(Reactive Ion Etching:反応性イオンエッチング)、DRIE(Deep RIE:深掘り反応性イオンエッチング)等のドライエッチング加工、ウェットエッチング加工、レーザー加工等によって、基体101の第2面101b側に貫通しない、有底孔102を形成することができる。
 有底孔102の深さは、基体101の厚さにもよるが、例えば100μm~500μmとすることができる。有底孔102の開口の大きさは特に制限はなく、例えば10μm~100μmとすることができる。また、有底孔102の形状は、典型的には各図に示すように基体101の厚さ方向にストレートな形状を示すが、これに限られない。例えば、第1面101a側の開口部を広く、第2面101b側の底部を狭く、テーパ形状にしてもよい。また、有底孔102の中央部を凸状、凹状、またはこれらを組み合わせた形状にしてもよい。なお、有底孔102の平面図上での形状についても特に制限はなく、典型的には円形であるが、円形以外にも矩形や多角形であってもよい。
 次に、貫通電極103の形成について説明する。図2は、有底孔102に貫通電極103が形成された状態を示した断面図である。貫通電極103は、有底孔102を埋め込むように導電性材料を設けることで形成される。導電性の材料としては、例えばCuなどの金属が用いられる。貫通電極103としてCuなどの金属を用いる場合は、電解めっき充填法を用いることができる。電解めっきする場合は、シード層すなわちめっき形成の下地層を形成した後に電解めっきを施す(図示せず)。また、該電解めっきをパターン形成する場合は、リソグラフィー法で作製したレジストで、めっき形成する部分を露出させる。貫通電極103を充填した後に、基体101の第1面101a及び貫通電極103の第1面103aを、CMP(Chemical Mechanical Polishing)等によって平坦化する。
 ここで、有底孔102に配置された貫通電極103の、有底孔102の開口側(基体101の第1面101a側)を第1面103aとし、有底孔102の底側(基体101の第2面101b側)を第2面103bとする。第2面103bの端部を、周縁103cとする。また、第1面103aと第2面103b以外で、基体101と接する面を側面103dとする。
 次に、マスク130の形成について説明する。図3は、基体101の第2面101b側に、エッチングのためのマスク130が形成された状態を示した断面図である。マスク130は、基体101の第2面101bに、第2面101b側から透視したときに、貫通電極103の第2面103bの周縁103c付近に配置される。このとき、マスク130の少なくとも一部が周縁103cよりも内側に位置するように配置される。このようにマスク130を配置するのは、マスク130配置後に基体101の第2面101bを等方性エッチングしたときに、貫通電極103の第2面103bの周縁103c付近のエッチングを遅らせ、貫通電極103の第2面103bの周縁103cが露出されないようにするためである。
 貫通電極103が円柱状の形状を有する場合、マスク130は基体101の第2面101b上に、貫通電極103の周縁103cに倣ってリング状に配置される。貫通電極103が円柱以外の形状を有する場合、貫通電極103の第2面103bの平面上の形状に沿ってマスク130が配置される。
 マスク130を設けた後、有底孔102を形成した基体101の第1面101aの反対側、すなわち有底孔102の底側である基体101の第2面101b側から、等方性のエッチングを行う。等方性エッチングの一例として、ウェットエッチングの工程について説明する。基体101がガラスである場合、エッチング液には、例えばフッ酸が用いられる。この場合、マスク130には、フッ酸に耐性のある材料が用いられ、例えばクロム、銅等を、レジスト製版エッチング工程により、パターニングして形成する。なお、ウェットエッチングを行う前に、基体101の第1面101a側がエッチングされないように、保護層を形成しておく。
 図4乃至図7は、等方性エッチングが進行する状態を示した断面図である。特に、図7は等方性エッチングが完了した状態を示した断面図であり、本発明の第1実施形態に係る貫通電極基板100を示している。
 図4及び図5を参照すると、初期の等方性エッチング時においては、基体101の第2面101bでマスク130が配置されている部分は、エッチングされていないことがわかる。ただし、等方性のウェットエッチングが進行するにつれて、マスク130が配置されていない部分から、横方向にエッチングが入り込むので、マスク130が配置されている部分も徐々にエッチングが進行する。図6は、マスク130と、基体101の第2面101bとが接する部分が、全てエッチングされて、マスク130が剥離した状態を示している。
 図6からさらにエッチングを進行させ、最終的に図7に示す状態までエッチングを行う。図7を参照すると、貫通電極103の第2面103bの周縁103c付近には基体101が完全にエッチングされず、薄肉領域101eとして基体101の一部が残っている。一方、貫通電極103の周縁103c付近以外の第2面103bは、エッチングが進み、基体101から露出している。すなわち、貫通電極103は、基体101の第1面101aと第2面103bとの間を貫通する貫通孔に配置された状態となる。このように、貫通電極103の周縁103c付近の基体101の一部が完全にエッチングされないことによって、貫通電極103の周縁103c及びその付近の第2面103bは、基体101に覆われた構造となる。
 ここで、再度図8を用いて、図7で示した等方性エッチングが完了した基板の状態を説明する。図8(a)は、基体101の第2面101b側から見た平面図である。貫通電極103の第2面103bは、周縁103c及びその付近が、基体101の第2面101bの一部によって覆われている。一方、貫通電極103の第2面103bの内側の領域は、基体101の第2面101bから露出している。
 図8(b)は、基体101の第2面101b側の斜め方向から見た斜視図である。図8(b)を参照すると、円形に形成された貫通電極103の周縁103cの配置された部分と、その外側に位置する部位にかけて、環状の凸部101cが形成されていることがわかる。凸部101cは、マスク130が配置された部分が、マスク130の配置されない部分と比較してエッチングの進行が遅くなったために、形成されたものである。凸部101cが形成されることによって、貫通電極103の周縁103cは、その側面103d側及び第2面101b側が、いずれも基体101に覆われた構造となる。
 次に、貫通電極基板100に配線層104及び絶縁層105を形成する方法について、図9乃至図11を用いて説明する。
 図9は、基体101の第2面101b上及び貫通電極103の第2面103b上に、配線層104が形成された貫通電極基板110の断面図である。配線層104は、導電性材料が用いられる。導電性材料としては、例えば金属材料を基体101の第2面101b側に塗布し、フォトリソグラフィによるパターニングを行う方法などによって形成される。なお、図9では図示しないが、配線層104の他に電子部品等を搭載してもよい。
 次に、絶縁層105の形成について、図10を用いて説明する。図10は、図9からさらに絶縁層105が形成された貫通電極基板120の断面を示しており、図11のB-B’方向から見た断面図である。絶縁層105には、例えば感光性樹脂が用いられる。この場合、感光性樹脂を基体101の第2面101b及び配線層104上に形成した後に、フォトリソグラフィによるパターニングが行われ、焼成されることによって絶縁層105が形成される。また、絶縁層105には、配線層104に至る開口部106が形成される。
 図11は、貫通電極基板120の絶縁層105側から見た上面図である。配線層104は、円形の貫通電極103の周縁103cを囲むように形成されている。配線層104はさらに、貫通電極103から開口部106の方向にかけて延線し、開口部106が形成された領域を矩形状に取り囲むよう形成されている。なお、貫通電極103の周縁103cを示す円の内側に示した円は、貫通電極103の第2面103bにおいて、基体101の第2面101b側から露出している領域を示している。
 以上説明したように、第1実施形態に係る貫通電極基板100の形成においては、貫通電極103の周縁103c付近の基体101を残存させる工程があるが、貫通電極103の第2面103bと基体101の第2面101bを研磨する工程は存在しない。したがって、図25及び図26で説明したような、貫通電極803の表面803bと基体801の表面801bの研磨によって発生する基体801の欠損や、基体801の欠損に伴う配線804の断線、基体801と貫通電極103との間の空間の発生による配線804の接続についての信頼性の低下等の問題は、第1実施形態係る貫通電極基板100では発生しない。
 さらに、第1実施形態に係る貫通電極基板100では、貫通電極103の第2面103bの周縁103cが、側面103d側も、第2面103b側も、基体101によって覆われている。一方、図27及び図28で説明した別の従来の貫通電極基板では、貫通電極903の周縁903cは、側部が基体901で覆われ、上面が絶縁層930で覆われているが、絶縁層930の形成過程において絶縁層930がアンダーカットされて隙間が生じ、構造的に安定性を欠くことがあった。したがって、第1実施形態に係る貫通電極基板100では、従来の貫通電極基板における絶縁層930に相当する構造を有しておらず、その形成過程も存在しないので、絶縁層930の形成過程に発生する上記問題は発生しない。
 したがって、第1実施形態に係る貫通電極基板100及びその製造方法によって、構造的に安定した貫通電極基板を提供することが可能となる。
(変形例)
 次に、図12乃至14を用いて、本発明の第1実施形態における変形例を説明する。
 実施形態1では、互いに対向する第1面101aと第2面101bを有する基体101の、第1面101a側に有底孔102を形成し、有底孔102に貫通電極103を充填してから、基体101の第2面101b側からエッチングを行い、貫通電極103を露出させた。変形例では、基体101の第1面101a側に有底孔102を形成した後、有底孔102に貫通電極103は形成せずに、先に基体101の第2面101b側からエッチングを行う。
 図12は、基体101に有底孔102を形成し、基体101の第2面101b側からエッチングを行い、有底孔102を貫通させた状態を示している。変形例1で実施するエッチングは、実施形態1で説明した方法と同様である。すなわち図12は、実施形態1において、図2で示す貫通電極103の形成過程を省略し、図3乃至7で示したエッチング工程を行った状態といえる。
 エッチングによって有底孔102を貫通させてから、有底孔102の当初の開口側から金属を充填することによって、貫通電極103を形成する。有底孔102を貫通させてから金属を充填するので、金属充填時に不要な気体が抜けやすくなり、貫通電極103に気泡が発生しにくくなる。貫通電極103が形成されると、実施形態1における図7で説明したのと同様な貫通電極基板100が形成される。
 ただし、変形例1においては、図13に示すように、貫通電極103を形成したときに貫通電極103の第2面103bが凸部101cよりもせり出す場合がある(図13の103f参照)。このような場合、貫通電極103を形成した後に、第2面103bをCMP等によって平坦化する。図14は、第2面103bを平坦化し、第1実施形態の変形例に係る貫通電極基板100aが形成された状態を示した図である。CMPを実施すると、ディシング現象によって貫通電極基板100aの第2面103bの中央部分がへこむので、過度に中央部分にへこみが発生しないように適宜調整する。
<実施形態2>
 次に、図1、図2、図8(a)、並びに図15乃至18を用いて、本発明の第2実施形態に係る貫通電極基板200の構成及び製造方法について説明する。
(全体構成)
 第2実施形態に係る貫通電極基板200の上面図は、第1実施形態の説明で用いた図8(a)と同様である。また、図18は、図8(a)のA-A’方向に見た場合の断面の模式図を示している。
 貫通電極基板200は、基体101に貫通電極103が配置される。基体101は、互いに対向する第1面101aと第2面101bを有する。貫通電極103は、基体101の第1面101a側からは第1面103aが露出し、基体101の第2面101b側からは第2面103bが露出する。また、貫通電極103の側面103dは、基体101と接している。
 貫通電極103の周縁103cは、側面103d側及び第2面103b側が、いずれも基体101によって覆われている。基体101はほぼ全体にわたって一定の厚さを有しているが、貫通電極103の第2面を覆う部分の厚さが薄くなっており、薄肉領域(厚さが薄くなった領域)101eを形成している。
(貫通電極基板200の製造方法)
 第2実施形態における基体101に有底孔102を形成し、貫通電極103を充填するまでの製造方法は、図1及び図2を用いて説明した実施形態1における貫通電極基板100の製造方法と同様である。
 図15は、図2の状態から、基体101の第2面101b側から、第2面101bの全面にわたってエッチングを行った状態を示した図である。エッチングの方法としては、ウェットエッチング加工、ドライエッチング加工、レーザー加工等によって行ってよい。なお、点線101b’は、エッチングを行う前の、基体101の第2面101bの位置を示している。エッチングは、貫通電極103の第2面103bが露出するまでは行わず、基体101の第2面101bと貫通電極103の第2面103bとの間に、厚さaを残すようにする。
 エッチング工程を等方性ウェットエッチングで行う場合、エッチング液には、例えばフッ酸が用いられ、基体101の第1面101a側がエッチングされないように、保護層を形成しておく。この場合は、厚さaは、例えば30μm以下になるようにエッチングを行う。これは、後述するマスキング後のエッチング過程において、厚さaが大きくなると、基体101の厚さ方向のエッチングに加え、横方向のエッチングの進行による影響が無視できなくなるためである。また、ウェットエッチングでエッチングを行った際に、エッチングのむらが発生することから、厚さaは1μm以上であることが望ましい。
 また、エッチング工程をRIEやD-RIE等の、異方性のドライエッチングで行った場合には、厚さaの上限は特にない。ただし、厚さaは1μm以上であることが望ましい。
 次に、貫通電極103を基体101の第2面101bから露出させるための、マスク形成について説明する。図16は、基体101の第2面101bにマスク131を形成した状態を示した断面図である。なお、図16で示すマスク配置は、マスク形成後のエッチング工程が異方性エッチングで行う場合のマスク形成を示したものである。
 第2実施形態では、貫通電極103の第2面103bを基体101から露出させるために、露出させる貫通電極103の第2面103bの領域にはマスク131を形成せず、それ以外の部分にマスク131を形成する。より詳細に言うと、マスク131は、基体101の第2面101b側から透視したときに、貫通電極103が存在しない側から、貫通電極103の周縁103cを越える部分までにかけて形成し、マスク131と周縁103cが重畳するように形成する。マスク131は、例えばレジストのパターニングによって行われる。
 次に、貫通電極103を基体101の第2面101bから露出させるための、エッチングについて説明する。図17は、図16に示した状態から異方性エッチングを行った後の状態を示した図であり、本発明の第2実施形態に係る貫通電極基板200の断面図を示したものである。
 異方性エッチングによって、マスク131の配置されていない基体101がエッチングされる。上述のように、マスク131は周縁103cと重畳するように形成されているので、貫通電極103の第2面103bが、周縁103c付近の部分を残して基体101から露出される。マスク131は貫通電極103の周縁103cを越える部分まで配置されていたので、周縁103cの付近はその側面103d側及び第2面103b側も、基体101がエッチングされずに残っている。マスク131が配置されていた箇所を、図中の131’で示している。異方性エッチングの工程が終了した後に、マスク131を剥離させる。
 図18は、図17に示した貫通電極基板200に配線層104が形成され、さらに絶縁層105が形成された貫通電極基板220の断面図を示したものである。エッチングが完了した後に、配線層104を形成し、絶縁層105を形成する方法は、実施形態1と同様である。
 以上説明したように、第2実施形態に係る貫通電極基板200においても、貫通電極103の第2面103bの周縁103cが、側面103d側も、第2面103b側も、いずれも基体101によって覆われる。また、第2実施形態における貫通電極基板200の製造方法は、第1実施形態における貫通電極基板200の製造方法と同様に、図25乃至図28で説明した従来技術における製造過程における問題は発生しない。したがって、貫通電極基板200は、第1実施形態と同様に構造的に安定した貫通電極基板を提供することができる。
<第3実施形態>
 次に、図19及び図20を参照して、本発明の第3実施形態に係る貫通電極基板300及び400の構成について説明する。
 第1実施形態及び第2実施形態においては、貫通電極103の第2面103bは、周縁103cの付近を残して基体101から全て露出していたが、本発明はこれに限られない。貫通電極103の周縁103c付近以外でも、基体101の一部をレジスト処理で取り除かずに残存させてもよい。
 図19は、第3実施形態に係る貫通電極基板300の平面図及び断面図を示したものである。図19(a)及び図19(b)を参照すると、円形をした島状の基体101dが、貫通電極103の中央付近に配置されていることがわかる。ここでは、貫通電極103の第2面103bは、リング状に開口部が形成される。
 図20は、第3実施形態に係る貫通電極基板400の平面図及び断面図を示したものである。図20(a)及び図20(b)を参照すると、リング状の基体101fが、貫通電極103の中央付近に配置されていることがわかる。ここでは、貫通電極103の第2面103bは、リング状に残存させた基体101fの外側に位置するリング状の開口部と、リング状に残存させた基体101fの内側に位置する円形の開口部が形成される。
 図19及び図20に示した形状以外にも、基体101の第2面101bをレジストによりマスクするパターンを適宜選択することによって、貫通電極103の第2面103bの開口部を所定の形状に形成してよい。なお、第3実施形態では、貫通電極103の第2面103bの開口部の形成を容易にするために、第1実施形態及び第2実施形態よりも貫通電極103の第2面103bの面積を広くとってもよい。
 このように、第3実施形態では、貫通電極103の第2面103bの開口部の形状及び広さを適宜設定することによって、貫通電極103と、貫通電極103の第2面103b及び基体101の第2面101b上に配置される配線層(図示せず)との間の、抵抗値を調整することが可能となる。
 また、第3実施形態では、第1実施形態及び第2実施形態と比較して、貫通電極103の第2面103b側の凹凸が増えるため、配線層を配置したり、他の絶縁層を積層化したりする際の、密着性が向上する。
<実施形態4>
 次に、図21を参照して、本発明の第4実施形態に係る貫通電極基板500の構成について説明する。第4実施形態では、貫通電極103の第2面103bに接続される、第1配線505及び第2配線506が形成されている。
 第4実施形態に係る貫通電極基板500の製造方法の一例を説明する。まず、第1実施形態における図8で示した状態まで、基体101及び貫通電極103を形成する。次に、図21の左側の基体101の第2面101b上と、隣接する貫通電極103の第2面103b上の一部に、第1配線505を形成する。次に、絶縁層507を、第1配線505及びこれに隣接する貫通電極103の第2面103b上の一部に形成する。最後に、第2配線506を、絶縁層507、貫通電極103の第2面103b及び右側の基体101の第2面101b上に形成する。ここで、第1配線505と第2配線506とは、貫通電極103を介して相互に電気的に接続されるが、絶縁層507を介して形成されるため、それ以外の部分では電気的に接続されない。
 第4実施形態に係る貫通電極基板500の製造方法は、上述した製造方法に限られない。例えば、第2実施形態で説明した貫通電極基板200上に、同様に第1配線505、絶縁層507及び第2配線506を形成してもよい。また、第3実施形態で説明したように、貫通電極103の第2面103b上に開口部を2つ形成し、形成した開口部にそれぞれ第1配線505、第2配線506が接続されるよう形成してもよい。
 また、貫通電極103の第2面103b上に、3つ以上の配線が接続されるように、配線層及び絶縁層を形成してもよい。
 第4実施形態に係る貫通電極基板500によると、貫通電極103を介して複数の配線が接続されるので、貫通電極103上で配線の分岐を実現することが可能となる。
<第5実施形態>
 第5実施形態においては、第1乃至第4実施形態における貫通電極基板を用いて製造される半導体装置1000について説明する。
 図22は、本発明の第5実施形態に係る半導体装置1000を示す図である。半導体装置1000は、3つの貫通電極基板610、620、630が積層され、LSI基板700に接続されている。貫通電極基板610は、例えば、DRAM等の半導体素子が形成され、配線層104(図示せず)等で形成された接続端子611、612を有している。これら3つの貫通電極基板610、620、630の1つ以上がガラス、サファイアなどで形成された基板からなる貫通電極基板であってもよい。接続端子612は、LSI基板700の接続端子701とバンプ751により接続されている。接続端子611は、貫通電極基板620の接続端子622とバンプ752により接続されている。貫通電極基板620の接続端子621は、貫通電極基板630の接続端子632とバンプ753により接続されている。バンプ751、752、753は、例えば、インジウム、銅、金等の金属を用いる。
 なお、貫通電極基板を積層する場合には、3層に限らず、2層であってもよいし、さらに4層以上であってもよい。また、貫通電極基板と他の基板との接続においては、バンプによるものに限らず、共晶接合など、他の接合技術を用いてもよい。また、ポリイミド、エポキシ樹脂等を塗布、焼成して、貫通電極基板と他の基板とを接着してもよい。
 図23は、本発明の第5実施形態に係る半導体装置の別の例を示す図である。図23に示す半導体装置1000aは、MEMSデバイス、CPU、メモリ等の半導体チップ(LSIチップ)710、720、および貫通電極基板600が積層され、LSI基板700に接続されている。
 半導体チップ710と半導体チップ720との間に貫通電極基板600が配置され、バンプ754、755により接続されている。LSI基板700上に半導体チップ710が載置され、LSI基板700と半導体チップ720とはワイヤ705により接続されている。この例では、貫通電極基板600は、複数の半導体チップを積層して3次元実装するためのインターポーザとして用いられ、それぞれ機能の異なる複数の半導体チップを積層することで、多機能の半導体装置を製造することができる。例えば、半導体チップ710を3軸加速度センサとし、半導体チップ720を2軸磁気センサとすることによって、5軸モーションセンサを1つのモジュールで実現した半導体装置を製造することができる。
 半導体チップがMEMSデバイスにより形成されたセンサなどである場合には、センシング結果がアナログ信号により出力されるようなときがある。この場合には、ローパスフィルタ、アンプ等についても半導体チップまたは貫通電極基板600に形成してもよい。
 図24は、本発明の第5実施形態に係る半導体装置の別の例を示す図である。上記2つの例(図22、図23)は、3次元実装であったが、この例は、2次元と3次元との併用実装に適用した例である。図24に示す半導体装置1000bでは、LSI基板700には、6つの貫通電極基板610、620、630、640、650、660が積層されて接続されている。ただし、全ての貫通電極基板が積層して配置されているだけでなく、LSI基板700の面内方向にも並んで配置されている。これらの貫通電極基板610、620、630、640、650、660の1つ以上がガラス、サファイアなどで形成された基板からなる貫通電極基板であってもよい。
 図24の例では、LSI基板700上に貫通電極基板610、650が接続され、貫通電極基板610上に貫通電極基板620、640が接続され、貫通電極基板620上に貫通電極基板630が接続され、貫通電極基板650上に貫通電極基板660が接続されている。なお、図23に示す例のように、貫通電極基板を複数の半導体チップを接続するためのインターポーザとして用いても、このような2次元と3次元との併用実装が可能である。例えば、貫通電極基板630、640、660などが半導体チップに置き換えられてもよい。
 上記のように製造された半導体装置1000、1000a、1000bは、例えば、携帯端末(携帯電話、スマートフォンおよびノート型パーソナルコンピュータ等)、情報処理装置(デスクトップ型パーソナルコンピュータ、サーバ、カーナビゲーション等)、家電等、様々な電気機器に搭載される。これらの電気機器は、アプリケーションを実行して各種機能を実現するCPU等で構成される制御部を有し、各種機能には半導体装置1000からの出力信号を用いる機能が含まれる。
100、200、300、400、500:貫通電極基板、101:基体、102:有底孔、103:貫通電極、104:配線層、105:絶縁層、106:開口部、130、131:マスク

Claims (11)

  1.  第1面と、前記第1面に対向する第2面とを有する基体と、
     前記基体の前記第1面と前記第2面とを貫通する貫通孔に配置された貫通電極と、を有し、
     前記貫通電極における前記第1面側の端面および前記第2面側の端面の一方又は双方は、周縁が前記基体の一部で覆われていることを特徴とする貫通電極基板。
  2.  前記基体は前記貫通電極の前記周縁又は前記周縁の外側に位置し、前記周縁に沿う環状の凸部を有することを特徴とする請求項1に記載の貫通電極基板。
  3.  前記基体はガラスを含むことを特徴とする請求項1に記載の貫通電極基板。
  4.  前記基体はシリコンを含み、前記貫通孔の内壁面に絶縁膜が配置されることを特徴とする請求項1に記載の貫通電極基板。
  5.  前記周縁が前記基体の一部で覆われた前記第1面側の端面及び前記第2面側の端面の一方又は双方の内側に、前記基体と同じ材質の部材が配置されることを特徴とする請求項1に記載の貫通電極基板。
  6.  前記周縁が前記基体の一部で覆われた前記第1面側の端面及び前記第2面側の端面の一方又は双方に、複数の配線が配置されることを特徴とする請求項1に記載の貫通電極基板。
  7.  互いに対向する第1面と第2面とを有する基体の前記第1面に、前記第2面に至らない深さで開口部を形成し、
     前記開口部を導電性材料で充填して電極を形成し、
     前記基体の前記第2面に、前記電極の内側領域の一部に開口を有し、前記電極の周縁を覆うマスクを形成し、
     前記マスクが設けられた状態で前記基体の前記第2面をエッチングし、前記電極の内側領域の一部を露出させ、かつ前記電極の周縁に前記基体の一部を残存させること
    を特徴とする貫通電極基板の製造方法。
  8.  前記マスクは環状に形成されることを特徴とする請求項7に記載の貫通電極基板の製造方法。
  9.  前記エッチングは少なくとも一部に等方性エッチングを含むことを特徴とする請求項7に記載の貫通電極基板の製造方法。
  10.  前記マスクは前記エッチングが進行するにつれて取り除かれることを特徴とする請求項7に記載の貫通電極基板の製造方法。
  11.  請求項1に記載の貫通電極基板を有する半導体装置。
     
     
PCT/JP2015/070636 2014-08-06 2015-07-21 貫通電極基板及びその製造方法、並びに貫通電極基板を用いた半導体装置 WO2016021397A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580040076.XA CN106664794B (zh) 2014-08-06 2015-07-21 贯通电极基板及其制造方法以及使用贯通电极基板的半导体装置
US15/422,990 US10008442B2 (en) 2014-08-06 2017-02-02 Through-electrode substrate, method for manufacturing same, and semiconductor device in which through-electrode substrate is used

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014160122A JP5994825B2 (ja) 2014-08-06 2014-08-06 貫通電極基板及びその製造方法、並びに貫通電極基板を用いた半導体装置
JP2014-160122 2014-08-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/422,990 Continuation US10008442B2 (en) 2014-08-06 2017-02-02 Through-electrode substrate, method for manufacturing same, and semiconductor device in which through-electrode substrate is used

Publications (1)

Publication Number Publication Date
WO2016021397A1 true WO2016021397A1 (ja) 2016-02-11

Family

ID=55263669

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/070636 WO2016021397A1 (ja) 2014-08-06 2015-07-21 貫通電極基板及びその製造方法、並びに貫通電極基板を用いた半導体装置

Country Status (4)

Country Link
US (1) US10008442B2 (ja)
JP (1) JP5994825B2 (ja)
CN (1) CN106664794B (ja)
WO (1) WO2016021397A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106664794A (zh) * 2014-08-06 2017-05-10 大日本印刷株式会社 贯通电极基板及其制造方法以及使用贯通电极基板的半导体装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9893058B2 (en) 2015-09-17 2018-02-13 Semiconductor Components Industries, Llc Method of manufacturing a semiconductor device having reduced on-state resistance and structure
JP7423907B2 (ja) * 2019-05-24 2024-01-30 Toppanホールディングス株式会社 配線基板の製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0493096A (ja) * 1990-08-08 1992-03-25 Shinko Electric Ind Co Ltd 多層セラミック基板
JP2007184314A (ja) * 2005-12-30 2007-07-19 Murata Mfg Co Ltd セラミック多層基板の製造方法およびセラミック多層基板
WO2012108381A1 (ja) * 2011-02-08 2012-08-16 株式会社村田製作所 樹脂多層基板およびその製造方法
JP2013033894A (ja) * 2011-06-27 2013-02-14 Shinko Electric Ind Co Ltd 配線基板及びその製造方法、半導体装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4069028B2 (ja) 2003-07-16 2008-03-26 株式会社フジクラ 貫通電極付き基板、その製造方法及び電子デバイス
JP2008066601A (ja) 2006-09-08 2008-03-21 Ebara Corp 基板処理方法、基板処理装置及び半導体装置
JP2011228495A (ja) 2010-04-20 2011-11-10 Asahi Glass Co Ltd 半導体デバイス貫通電極形成用のガラス基板の製造方法および半導体デバイス貫通電極形成用のガラス基板
US8853072B2 (en) 2011-06-06 2014-10-07 Micron Technology, Inc. Methods of forming through-substrate interconnects
US9161461B2 (en) * 2012-06-14 2015-10-13 Zhuhai Advanced Chip Carriers & Electronic Substrate Solutions Technologies Co. Ltd. Multilayer electronic structure with stepped holes
JP5994825B2 (ja) * 2014-08-06 2016-09-21 大日本印刷株式会社 貫通電極基板及びその製造方法、並びに貫通電極基板を用いた半導体装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0493096A (ja) * 1990-08-08 1992-03-25 Shinko Electric Ind Co Ltd 多層セラミック基板
JP2007184314A (ja) * 2005-12-30 2007-07-19 Murata Mfg Co Ltd セラミック多層基板の製造方法およびセラミック多層基板
WO2012108381A1 (ja) * 2011-02-08 2012-08-16 株式会社村田製作所 樹脂多層基板およびその製造方法
JP2013033894A (ja) * 2011-06-27 2013-02-14 Shinko Electric Ind Co Ltd 配線基板及びその製造方法、半導体装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106664794A (zh) * 2014-08-06 2017-05-10 大日本印刷株式会社 贯通电极基板及其制造方法以及使用贯通电极基板的半导体装置
CN106664794B (zh) * 2014-08-06 2019-03-29 大日本印刷株式会社 贯通电极基板及其制造方法以及使用贯通电极基板的半导体装置

Also Published As

Publication number Publication date
CN106664794A (zh) 2017-05-10
JP2016039195A (ja) 2016-03-22
US10008442B2 (en) 2018-06-26
US20170148719A1 (en) 2017-05-25
CN106664794B (zh) 2019-03-29
JP5994825B2 (ja) 2016-09-21

Similar Documents

Publication Publication Date Title
JP6554338B2 (ja) 半導体装置
TWI497687B (zh) 半導體裝置及其製造方法
CN110329983B (zh) 用于mems传感器器件的晶片级封装及对应制造工艺
JP2011086773A (ja) 半導体装置及び回路基板並びに電子機器
US20080205014A1 (en) Three-dimensional interconnect interposer adapted for use in system in package and method of making the same
US9476949B2 (en) Semiconductor device provided with direction sensor elements
JP2009027068A (ja) 半導体装置
WO2016021397A1 (ja) 貫通電極基板及びその製造方法、並びに貫通電極基板を用いた半導体装置
JP6643213B2 (ja) リードフレーム及びその製造方法と電子部品装置
JP5379065B2 (ja) プローブカード及びその製造方法
JP2009049087A (ja) 電子部品と電子部品の製造方法
JP6263859B2 (ja) 貫通電極基板の製造方法、貫通電極基板、および半導体装置
JP6380486B2 (ja) 貫通電極基板及びその製造方法、並びに貫通電極基板を用いた半導体装置
JP2016058628A (ja) 半導体装置、及び半導体装置の製造方法
JP2016039190A (ja) 半導体装置
US10651374B2 (en) Semiconductor device, and method for manufacturing the same
JP6369653B1 (ja) 貫通電極基板および半導体装置
JP5266650B2 (ja) 半導体装置とその製造方法および電子機器
US9373597B2 (en) Chip package and method thereof
JP6341245B2 (ja) 貫通電極基板の製造方法、貫通電極基板および半導体装置
JP7056910B2 (ja) 半導体装置およびその製造方法
JP2018174343A (ja) 貫通電極基板および半導体装置
JP2007335642A (ja) パッケージ基板
JP2008300817A (ja) 電子部品パッケージの製造方法、電子部品パッケージ用ウェハの製造方法ならびに電子部品パッケージ用基礎構造物の製造方法
JP6379786B2 (ja) 貫通電極基板、配線基板および半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15829622

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15829622

Country of ref document: EP

Kind code of ref document: A1