WO2012108381A1 - 樹脂多層基板およびその製造方法 - Google Patents

樹脂多層基板およびその製造方法 Download PDF

Info

Publication number
WO2012108381A1
WO2012108381A1 PCT/JP2012/052611 JP2012052611W WO2012108381A1 WO 2012108381 A1 WO2012108381 A1 WO 2012108381A1 JP 2012052611 W JP2012052611 W JP 2012052611W WO 2012108381 A1 WO2012108381 A1 WO 2012108381A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor
multilayer substrate
resin
metal foil
region
Prior art date
Application number
PCT/JP2012/052611
Other languages
English (en)
French (fr)
Inventor
酒井 範夫
喜人 大坪
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN201280006337.2A priority Critical patent/CN103329637B/zh
Priority to JP2012556872A priority patent/JP5652481B2/ja
Publication of WO2012108381A1 publication Critical patent/WO2012108381A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/4038Through-connections; Vertical interconnect access [VIA] connections
    • H05K3/4053Through-connections; Vertical interconnect access [VIA] connections by thick-film techniques
    • H05K3/4069Through-connections; Vertical interconnect access [VIA] connections by thick-film techniques for via connections in organic insulating substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • H05K1/115Via connections; Lands around holes or via connections
    • H05K1/116Lands, clearance holes or other lay-out details concerning the surrounding of a via
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/095Conductive through-holes or vias
    • H05K2201/09563Metal filled via
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/095Conductive through-holes or vias
    • H05K2201/096Vertically aligned vias, holes or stacked vias
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09654Shape and layout details of conductors covering at least two types of conductors provided for in H05K2201/09218 - H05K2201/095
    • H05K2201/09709Staggered pads, lands or terminals; Parallel conductors in different planes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/42Plated through-holes or plated via connections
    • H05K3/429Plated through-holes specially for multilayer circuits, e.g. having connections to inner circuit layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4614Manufacturing multilayer circuits by laminating two or more circuit boards the electrical connections between the circuit boards being made during lamination
    • H05K3/4617Manufacturing multilayer circuits by laminating two or more circuit boards the electrical connections between the circuit boards being made during lamination characterized by laminating only or mainly similar single-sided circuit boards

Definitions

  • the present invention relates to a resin multilayer substrate and a method for producing the same.
  • Patent Document 1 An example of a passive element built-in substrate formed by alternately laminating a resin film and a conductor pattern is described in JP-A-2003-332749 (Patent Document 1).
  • a conductor pattern is formed on one surface of a resin film, and a via hole is formed so as to penetrate the resin film.
  • each via hole has a shape in which one end is completely closed by the conductor pattern.
  • the via hole is filled with a conductor paste, and the conductor paste is cured to form a via conductor.
  • a plurality of resin films produced in this way are laminated and integrated by heat fusion to form a multilayer substrate.
  • the conductor pattern connected to the via conductor is formed as a pad portion larger than the via conductor.
  • the reason why the pad portion is formed larger than the via conductor is to ensure electrical connection between the via conductor and the conductor pattern.
  • the “upper surface” here is not an absolute upper and lower upper surface but means a surface on the side where the inner diameter of the via hole 6 as a through hole is widened.
  • the via hole 6 becomes a tapered through hole having an increased inner diameter on the side on which the laser beam is incident.
  • a dent is formed on the upper surface of the via conductor 3, there is a possibility that the electrical connection between the upper surface of the via conductor and another conductor may not be sufficiently achieved during subsequent lamination. For example, as shown in FIG. 19, a gap is likely to occur in a portion where the recess of the via conductor 3 and the metal foil 4 face each other, or in a portion where the recess of the via conductor 3 faces each other, resulting in poor electrical connection. Can occur.
  • vacuum printing method is a method of printing in a vacuum environment. However, since the equipment for printing in vacuum is expensive, this method is difficult to adopt.
  • an object of the present invention is to provide a resin multilayer substrate and a method for manufacturing the same, which can ensure electrical connection between a via conductor and another conductor.
  • a resin multilayer substrate includes a plurality of resin layers each having a main surface and laminated together, and a conductor pattern arranged to cover a part of the main surface. .
  • Via conductors are formed so as to penetrate each of the plurality of resin layers in the thickness direction.
  • the via conductor and the conductor pattern are electrically connected by partially covering the via conductor exposed area in one via conductor exposed area, which is an area where the via conductor is exposed on the main surface. It is connected to the.
  • the via conductor is electrically connected to another conductor adjacent in the thickness direction through at least a region of the via conductor exposed region that is not covered with the conductor pattern.
  • the conductor pattern covers only the via conductor exposed region, and the via conductor is adjacent in the thickness direction through the region of the via conductor exposed region that is not covered by the conductor pattern. Is electrically connected to other conductors. That is, the via conductor and the other conductor are in direct contact with each other and are electrically connected. Therefore, electrical connection can be made more reliable, and a highly reliable product can be obtained.
  • the conductive pattern is preferably made of a metal foil.
  • a finer conductor pattern can be formed with a thin film, and a small and high-performance product can be obtained.
  • the conductor pattern is a wiring
  • the diameter of the via conductor exposed region is larger than the width of the wiring at a location where the via conductor and the conductor pattern are electrically connected.
  • the wiring crosses the via conductor exposed region at a location where the via conductor and the conductor pattern are electrically connected.
  • the via conductor is located at a position in the middle of the wiring, an area that is not covered by the conductor pattern is formed in a part of the via conductor exposed area. Therefore, the electrical connection between the via conductor and another conductor adjacent in the thickness direction can be made more reliable, and a highly reliable product can be obtained.
  • the plurality of conductor patterns partially cover only one via conductor exposed region, whereby the via conductor and the plurality of conductor patterns are electrically connected. It is connected.
  • the method for producing a resin multilayer substrate according to the present invention is such that a conductor film is formed on the main surface of the resin layer, while the conductor film remains and penetrates the resin layer in the thickness direction. Patterning the conductor film so that the conductor film only partially covers the via hole opening region in the step of forming the via hole and the via hole opening region where the via hole is exposed to the main surface. Forming the conductor pattern, filling the via hole in the resin layer on which the conductor pattern is formed, and filling the via hole with the resin layer after completing the conductor filling step. It is obtained by the stacking step and the stacking step so that the region where the conductors face each other and not through the conductor pattern is generated. And a step of crimping the laminate. By adopting this method, the electrical connection between the via conductor and the other conductor can be made more reliable, and a highly reliable product can be obtained.
  • the method includes a step of sucking the conductor disposed in the via hole from the side of the resin layer on which the conductor pattern is disposed after the step of filling the conductor.
  • a sufficient amount of conductor can be more reliably filled in the via hole by the sucking step, and a phenomenon in which a dent is formed on the upper surface of the cured via conductor can be prevented. Therefore, the electrical connection between the via conductor and the other conductor can be made more reliable, and the obtained resin multilayer substrate can be made more reliable.
  • the conductor pattern is made of a metal foil.
  • a finer conductor pattern can be formed with a thin film, and a small and high-performance product can be obtained.
  • the resin multilayer substrate 1 in Embodiment 1 based on this invention includes a plurality of resin layers 2 each having a main surface 2a and stacked together, and a metal foil 4 arranged so as to cover a part of the main surface 2a.
  • Via conductors 3 are formed so as to penetrate each of the plurality of resin layers 2 in the thickness direction.
  • the via conductor 3 and the metal foil 4 are electrically connected by partially covering the via conductor exposed region 5 in one via conductor exposed region 5 which is a region where the via conductor 3 is exposed to the main surface 2a. Connected.
  • the via conductor 3 is electrically connected to another conductor adjacent in the thickness direction through at least a region of the via conductor exposed region 5 that is not covered with the metal foil 4.
  • the via conductor 3 arranged in the resin layer 2 is an area that is not covered with at least the metal foil 4 in the via conductor exposed area 5.
  • the via conductors 10 as “other conductors” that are adjacent to each other in the thickness direction are electrically connected.
  • the “other conductor” means a via conductor 10 formed in the resin layer adjacent to the resin layer 2 or a wiring (not shown) disposed at the interface between the resin layer 2 and the adjacent resin layer. To do.
  • the resin layer 2 may be a thermoplastic resin layer.
  • the resin layer 2 may be, for example, a liquid crystal polymer (LCP) or polyether ether ketone (PEEK) layer.
  • the metal foil 4 may be a copper foil.
  • the metal foil 4 may have a multilayer structure in which a Cu layer and another metal layer are combined.
  • the resin multilayer substrate 1 when the resin multilayer substrate 1 is provided with “a plurality of resin layers 2”, not all resin layers included in the resin multilayer substrate 1 correspond to “resin layers 2”. As illustrated by the fact that the resin multilayer substrate 1 shown in FIG. 1 includes a resin layer 9 in addition to the plurality of resin layers 2, the resin multilayer substrate 1 includes “resin layers” in addition to “resin layers 2”. A resin layer not corresponding to “Layer 2” may be included. It suffices if the resin multilayer substrate 1 includes a plurality of resin layers that can be regarded as “a plurality of resin layers 2”. Therefore, for example, the resin multilayer substrate 1 may include a resin layer in which the via conductor 3 penetrating in the thickness direction is not formed.
  • the metal foil 4 is in a state of partially covering the via conductor exposed region 5, and the via conductor 3 covers at least the metal foil 4 in the via conductor exposed region 5. It is electrically connected to other conductors adjacent in the thickness direction through the undisclosed region. That is, the via conductor 3 and the other conductor include a portion that is in direct contact with and electrically connected to each other. Since the via conductor and the metal foil are different materials, the connection between them is unstable, but since the via conductor and the other conductor are both formed of a conductor paste, the connectivity between them is Is excellent. Therefore, electrical connection can be made more reliable, and a highly reliable product can be obtained.
  • the bottom of the via hole is not completely covered with the metal foil 4, so that when the conductor paste is filled in the via hole in each resin layer, the bottom of the via hole is necessary if necessary. It can also be aspirated. Therefore, a sufficient amount of conductor paste can be filled in the via hole, and the probability of occurrence of a phenomenon that the upper surface of the via conductor is recessed can be reduced. As a result, the electrical connection between the upper surface of the via conductor and the other conductor can be further ensured.
  • the resin multilayer substrate 1 may have a configuration as shown in FIG. 2 in any layer.
  • FIG. 2 is a plan view showing the geometric relationship between the metal foil 4 and the via conductor exposed region 5 on the main surface 2a of a certain resin layer. That is, the metal foil 4 is a wiring, and the via conductor exposed region 5 may have a diameter larger than the width of the wiring where the via conductor 3 and the metal foil 4 are electrically connected.
  • the resin multilayer substrate 1 may have a configuration as shown in FIG. That is, the wiring may traverse the via conductor exposed region 5 at a location where the via conductor 3 and the metal foil 4 are electrically connected.
  • the resin multilayer substrate 1 may have the configuration shown in FIG. That is, in the via conductor exposed region 5, the plurality of metal foils 4 a and 4 b partially cover one via conductor exposed region 5, whereby the via conductor 3 and the plurality of metal foils 4 are electrically connected.
  • FIG. 4 shows an example in which two metal foils 4a and 4b on the same straight line are arranged. However, for example, an arrangement that is not on the same straight line as shown in FIGS. As shown in FIG. 7, three or more metal foils 4 may overlap one via conductor exposed region 5. In FIG. 7, three metal foils 4a, 4b, and 4c are shown. It is only necessary to leave a region that is not covered by any metal foil when one via conductor exposed region 5 is noted.
  • the width of the metal foil 4 is smaller than the diameter of the via conductor exposed region 5
  • the configuration is not limited thereto.
  • the width of the metal foil 4 may be larger than the diameter of the via conductor exposed region 5, and for example, an arrangement as shown in FIGS. When attention is paid to one via conductor exposed region 5, it is sufficient that a part of the via conductor exposed region 5 is covered with the metal foil 4 and the other part is not covered with any metal foil.
  • a sheet 31 with a metal foil is prepared.
  • the sheet 31 with metal foil is obtained by stretching a metal foil 40 on the main surface 2a of the resin layer 2 which is an insulating layer made of a thermoplastic resin having a melting point of 250 ° C. or higher.
  • thermoplastic resin having a melting point of 250 ° C. or higher include liquid crystal polymer (LCP) and polyether ether ketone (PEEK).
  • the metal foil 40 may be a copper foil, for example. At this point, the metal foil 40 may cover the entire main surface 2a.
  • a commercially available one may be used as the sheet 31 with metal foil.
  • via holes 6 are formed at predetermined positions of the resin layer 2 by laser processing.
  • This laser processing is performed by irradiating a laser beam from the surface on which the metal foil 40 is not formed.
  • a via hole 6 as a through hole is formed so as to reach the back surface of the metal foil 40.
  • the metal foil 40 has not yet been patterned.
  • a resist pattern 7 is formed on the metal foil 40.
  • the method for forming the resist pattern 7 may be printing.
  • the resist pattern 7 is disposed so as to partially cover the opening region of the via hole 6 on the main surface 2a side (hereinafter referred to as “via hole opening region”).
  • via hole opening region the opening region of the via hole 6 is completely covered and hidden by the metal foil 40 on the main surface 2a side, but the presence of the metal foil 40 may be ignored in designing the arrangement of the resist pattern 7. .
  • the resist pattern 7 only needs to partially cover the via hole opening region.
  • Etching is performed using the resist pattern 7 as a mask. As a result, the metal foil 4 having a desired pattern is formed as shown in FIG. The metal foil 4 is formed with a part of the metal foil 40. The resist pattern 7 is removed to obtain the structure shown in FIG. Metal foil 4 is formed so as to partially cover the via hole opening region.
  • a method of attaching a previously patterned metal foil to a predetermined position may be employed.
  • the metal foil is patterned after the via hole 6 is first formed by laser processing, but instead, the via hole 6 may be formed by laser processing after the metal foil is patterned. .
  • a conductive paste as a conductor 8 is filled in the via hole 6 of each resin layer 2.
  • the conductive paste may be mainly composed of Ag particles.
  • the conductor 8 may be other than the conductive paste as long as the via hole 6 can be filled.
  • the resin layers 2 are laminated in a predetermined order to form a laminate.
  • the resin layers 2 having different patterns may be mixed and laminated.
  • Some metal foil may be separately disposed on the surface that becomes the outermost layer after the lamination.
  • the pressure bonding temperature may be, for example, 250 ° C. to 350 ° C.
  • the pressure bonding temperature is a temperature at which the material of the metal foil 4 does not melt.
  • the conductor 8 becomes the via conductor 3, and the via conductor 3 and the metal foil 4 are electrically joined.
  • FIG. 17 shows a flowchart of a method for manufacturing a resin multilayer substrate in the present embodiment.
  • the metal foil is formed on the main surface of the resin layer, and the via foil is formed so as to penetrate the resin layer in the thickness direction while leaving the metal foil.
  • Step S1 and in the via hole opening region where the via hole is exposed to the main surface, the step of patterning the metal foil so that the metal foil only partially covers the via hole opening region, Step S3 of filling the via hole of the resin layer with the conductor patterned after the step of patterning the metal foil, and the step of filling the via hole with the conductor layer filling the conductor layer with the conductor filled with the metal foil.
  • the via hole opening region finally becomes the via conductor exposed region 5 shown in FIG. 1 by filling the via hole with the conductor.
  • the product obtained is in a state in which the metal foil 4 partially covers the via conductor exposed region 5, and the via conductor 3 is a via conductor exposed region. 5 is electrically connected to another conductor adjacent in the thickness direction through at least a region not covered with the metal foil 4. That is, the via conductor 3 and the other conductor have a structure including a portion that is in direct contact with and electrically connected to each other without the metal foil 4 interposed therebetween. Since the via conductor and the metal foil are different materials, the connection between them is unstable, but since the via conductor and the other conductor are both formed of a conductor paste, the connectivity between them is Is excellent. Therefore, according to this manufacturing method, electrical connection can be made more reliable, and a highly reliable product can be obtained.
  • step S3 of filling the via hole with the conductor it is preferable not only to supply the conductor toward the via hole but also to suck from the upper side in FIG. That is, in the method for manufacturing a resin multilayer substrate in the present embodiment, after the step S3 of filling the conductor, the conductor arranged in the via hole is sucked from the side of the resin layer on which the metal foil is arranged. It is preferable to include step S6. In order to effectively suck the conductor in each resin layer 2, the sucking step S6 is preferably performed between the filling step S3 and the stacking step S4 in the flowchart shown in FIG. .
  • the suction step S6 if the suction step S6 is performed, the side in which the conductor 8 in the via hole 6 sucks through the portion not covered with the metal foil 4 in the via hole opening region. Therefore, the gap remaining in the via hole 6 can be eliminated, and a sufficient amount of the conductor 8 can be more reliably filled in the via hole 6. As a result, it is possible to prevent a phenomenon that a dent is formed on the upper surface of the via conductor after curing (see FIG. 18), and it is possible to further ensure electrical connection between the upper surface of the via conductor and another conductor. . Therefore, the obtained resin multilayer substrate can be made more reliable.
  • the material for the resin layer 2 may be polyimide or polyphenylene sulfide (PPS) in addition to those described above.
  • the material of the resin layer 2 is not limited to a thermoplastic resin, and may be a thermosetting resin.
  • the material of the conductor 8 may be a conductive paste based on a conductive material such as a metal such as copper, silver, aluminum, stainless steel, nickel, gold, or an alloy containing these metals, in addition to the above-described materials. .
  • the description has been made on the assumption that a metal foil is used as the conductor pattern, but the conductor pattern is not limited to the metal foil.
  • the conductor pattern may be formed by, for example, applying a conductive paste to the surface of the resin layer.
  • the present invention can be used for a resin multilayer substrate and a manufacturing method thereof.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)

Abstract

 樹脂多層基板(1)は、それぞれ主表面(2a)を有し互いに積層された複数の樹脂層(2)と、主表面(2a)の一部を覆うように配置された金属箔(4)とを備える。複数の樹脂層(2)の各々を厚み方向に貫通するようにビア導体(3)が形成されている。ビア導体(3)と金属箔(4)とは、ビア導体(3)が主表面(2a)に露出する領域である1つのビア導体露出領域(5)において、金属箔(4)がビア導体露出領域(5)を部分的にのみ覆うことによって電気的に接続されている。ビア導体(3)は、ビア導体露出領域(5)のうち少なくとも金属箔(4)に覆われない領域を通じて、厚み方向に隣接する他の導体としてのビア導体(10)と電気的に接続されている。

Description

樹脂多層基板およびその製造方法
 本発明は、樹脂多層基板およびその製造方法に関するものである。
 樹脂フィルムと導体パターンとが交互に積層されることによって形成された受動素子内蔵基板の一例が特開2003-332749号公報(特許文献1)に記載されている。この文献によれば、樹脂フィルムの一方の表面に導体パターンが形成され、さらに樹脂フィルムを貫通するようにビアホールが形成されている。ただし、いずれのビアホールも導体パターンによって一方の端が完全に塞がれた形となっている。この状態でビアホールに導体ペーストが充填され、この導体ペーストが硬化することによってビア導体が形成される。その後に、このように作製された複数の樹脂フィルムが積層され、熱融着されることによって一体化し、多層基板が形成されている。
特開2003-332749号公報
 特許文献1に記載されているように、ビア導体と接続される導体パターンは、ビア導体より大きいパッド部として形成される。パッド部がビア導体より大きく形成されるのは、ビア導体と導体パターンとの間の電気的接続を確実にするためである。
 導体ペーストをビアホールに充填する際には、ビアホール内に導体ペーストを充填したかのように見えても、その後に導体ペーストが硬化する際には収縮が生じるので、図18に示すように、ビアホール6内のビア導体3の上面が凹んだ状態となって仕上がるという現象が見受けられる。ただし、ここでいう「上面」とは絶対的な上下における上面ではなく、貫通孔としてのビアホール6の内径が広くなっている側の面という程度の意味である。たとえばビアホール6形成のためにレーザ照射を用いた場合、ビアホール6は、レーザ光が入射した側の内径が大きくなったテーパ状の貫通孔となる。
 ビア導体3の上面に凹みが生じると、その後の積層の際にこのビア導体上面と他の導体との間の電気的な接続が十分にされなくなるおそれがある。たとえば図19に示すように、ビア導体3の凹みと金属箔4とが対向する部分、あるいは、ビア導体3の凹み同士が対向する部分において、空隙が生じやすく、その結果、電気的接続の不良が生じ得る。
 ビア導体の上面が凹むという現象を防ぐためには予め十分な量の導体ペーストをビアホール内に充填することが必要である。そのためには、真空印刷法によって導体ペーストを供給することが考えられる。「真空印刷法」とは、真空環境下で印刷をするという方法である。しかし、真空中で印刷をするための設備は高価であるので、この方法は採用しにくい。
 予め十分な量の導体ペーストをビアホール内に充填するための他の方法としては、充填の際にビアホールの一方の側から導体ペーストを吸引することが考えられる。しかし、ビアホールの一方の端が導体パターンによって完全に塞がれている状態では、導体パターンに遮られてビアホール内の導体ペーストを十分に吸引することができなかった。
 そこで、本発明は、ビア導体と他の導体との間の電気的接続をより確実にすることができる樹脂多層基板およびその製造方法を提供することを目的とする。
 上記目的を達成するため、本発明に基づく樹脂多層基板は、それぞれ主表面を有し互いに積層された複数の樹脂層と、上記主表面の一部を覆うように配置された導体パターンとを備える。上記複数の樹脂層の各々を厚み方向に貫通するようにビア導体が形成されている。上記ビア導体と上記導体パターンとは、上記ビア導体が上記主表面に露出する領域である1つのビア導体露出領域において、上記導体パターンが上記ビア導体露出領域を部分的にのみ覆うことによって電気的に接続されている。上記ビア導体は、上記ビア導体露出領域のうち少なくとも上記導体パターンに覆われない領域を通じて、厚み方向に隣接する他の導体と電気的に接続されている。この構成を採用することにより、導体パターンがビア導体露出領域を部分的にのみ覆う状態となっており、ビア導体は、ビア導体露出領域のうち導体パターンに覆われない領域を通じて、厚み方向に隣接する他の導体と電気的に接続されている。すなわち、ビア導体と他の導体とは、互いに直接当接して電気的に接続されている。したがって、電気的接続をより確実にすることができ、信頼性の高い製品とすることができる。
 上記構成において好ましくは、上記導体パターンは金属箔からなる。この構成を採用することにより、薄膜でより微細な導体パターンを形成することができ、小型で高性能な製品とすることができる。
 上記構成において好ましくは、上記導体パターンは配線であり、上記ビア導体と上記導体パターンとが電気的に接続されている箇所では、上記ビア導体露出領域の径が上記配線の幅より大きい。この構成を採用することにより、配線の構造を利用してビア導体露出領域の一部に導体パターンに覆われない領域を形成することができるので、ビア導体と厚み方向に隣接する他の導体との電気的接続をより確実にすることができ、信頼性の高い製品とすることができる。
 上記構成において好ましくは、上記ビア導体と上記導体パターンとが電気的に接続されている箇所では、上記配線が上記ビア導体露出領域を横断している。この構成を採用することにより、この構成を採用することにより、配線の途中の位置にビア導体が位置する場合であっても、ビア導体露出領域の一部に導体パターンに覆われない領域を形成することができるので、ビア導体と厚み方向に隣接する他の導体との電気的接続をより確実にすることができ、信頼性の高い製品とすることができる。
 上記構成において好ましくは、上記ビア導体露出領域において、複数の上記導体パターンが1つの上記ビア導体露出領域を部分的にのみ覆うことによって、上記ビア導体と上記複数の上記導体パターンとが電気的に接続されている。この構成を採用することにより、1つのビア導体と複数の導体パターンとの間の電気的接続を図りつつ、ビア導体と厚み方向に隣接する他の導体との電気的接続をより確実にすることができ、信頼性の高い製品とすることができる。
 上記目的を達成するため、本発明に基づく樹脂多層基板の製造方法は、樹脂層の主表面に導体膜が形成されたものに対して、上記導体膜は残して上記樹脂層を厚み方向に貫通するようにビアホールを形成する工程と、上記ビアホールが上記主表面に露出する領域であるビアホール開口領域において、上記導体膜が上記ビアホール開口領域を部分的にのみ覆うように、上記導体膜をパターニングして導体パターンを形成する工程と、上記導体パターンが形成された上記樹脂層の上記ビアホールに導体を充填する工程と、上記導体を充填する工程を終えた上記樹脂層を、上記ビアホールに充填された上記導体が上記導体パターンを介さずに他の導体と互いに対向する領域が生じるように、積み重ねる工程と、上記積み重ねる工程によって得られた積層体を圧着する工程とを含む。この方法を採用することにより、ビア導体と他の導体との間の電気的接続をより確実にすることができ、信頼性の高い製品を得ることができる。
 上記方法において好ましくは、上記導体を充填する工程の後に、上記樹脂層の上記導体パターンが配置されている側から上記ビアホール内に配置された上記導体を吸引する工程を含む。この方法を採用することにより、吸引する工程によって、ビアホール内に十分な量の導体をより確実に充填することができ、硬化後のビア導体の上面に凹みが生じる現象を予防することができる。したがって、ビア導体と他の導体との間の電気的な接続をより確実にすることができ、得られる樹脂多層基板はさらに信頼性の高いものとすることができる。
 上記方法において好ましくは、上記導体パターンは金属箔からなる。この方法を採用することにより、薄膜でより微細な導体パターンを形成することができ、小型で高性能な製品を得ることができる。
本発明に基づく実施の形態1における樹脂多層基板の断面図である。 本発明に基づく実施の形態1における樹脂多層基板が備え得る金属箔とビア導体露出領域との幾何学的関係の第1の例の平面図である。 本発明に基づく実施の形態1における樹脂多層基板が備え得る金属箔とビア導体露出領域との幾何学的関係の第2の例の平面図である。 本発明に基づく実施の形態1における樹脂多層基板が備え得る金属箔とビア導体露出領域との幾何学的関係の第3の例の平面図である。 本発明に基づく実施の形態1における樹脂多層基板が備え得る金属箔とビア導体露出領域との幾何学的関係の第4の例の平面図である。 本発明に基づく実施の形態1における樹脂多層基板が備え得る金属箔とビア導体露出領域との幾何学的関係の第5の例の平面図である。 本発明に基づく実施の形態1における樹脂多層基板が備え得る金属箔とビア導体露出領域との幾何学的関係の第6の例の平面図である。 本発明に基づく実施の形態1における樹脂多層基板が備え得る金属箔とビア導体露出領域との幾何学的関係の第7の例の平面図である。 本発明に基づく実施の形態1における樹脂多層基板が備え得る金属箔とビア導体露出領域との幾何学的関係の第8の例の平面図である。 本発明に基づく実施の形態2における樹脂多層基板の製造方法の第1の工程の説明図である。 本発明に基づく実施の形態2における樹脂多層基板の製造方法の第2の工程の説明図である。 本発明に基づく実施の形態2における樹脂多層基板の製造方法の第3の工程の説明図である。 本発明に基づく実施の形態2における樹脂多層基板の製造方法の第4の工程の説明図である。 本発明に基づく実施の形態2における樹脂多層基板の製造方法の第5の工程の説明図である。 本発明に基づく実施の形態2における樹脂多層基板の製造方法の第6の工程の説明図である。 本発明に基づく実施の形態2における樹脂多層基板の製造方法の第7の工程の説明図である。 本発明に基づく実施の形態2における樹脂多層基板の製造方法のフローチャートである。 従来技術に基づく樹脂多層基板の製造方法においてビアホール内のビア導体の上面が凹んだ状態の断面図である。 従来技術に基づく樹脂多層基板において内部に空隙が生じた状態の断面図である。
 (実施の形態1)
 図1を参照して、本発明に基づく実施の形態1における樹脂多層基板1について説明する。本実施の形態における樹脂多層基板1は、それぞれ主表面2aを有し互いに積層された複数の樹脂層2と、主表面2aの一部を覆うように配置された金属箔4とを備える。複数の樹脂層2の各々を厚み方向に貫通するようにビア導体3が形成されている。ビア導体3と金属箔4とは、ビア導体3が主表面2aに露出する領域である1つのビア導体露出領域5において、金属箔4がビア導体露出領域5を部分的にのみ覆うことによって電気的に接続されている。ビア導体3は、ビア導体露出領域5のうち少なくとも金属箔4に覆われない領域を通じて、厚み方向に隣接する他の導体と電気的に接続されている。
 図1に示した例では、上から2番目の樹脂層2に注目した場合、この樹脂層2に配置されたビア導体3は、ビア導体露出領域5のうち少なくとも金属箔4に覆われない領域を通じて、厚み方向に隣接する「他の導体」としてのビア導体10と電気的に接続されている。
 なお、「他の導体」とは、樹脂層2に隣接する樹脂層に形成されるビア導体10や、樹脂層2と隣接する樹脂層との界面に配置される配線(図示せず)を意味するものである。
 なお、樹脂層2は熱可塑性樹脂の層であってよい。樹脂層2は、たとえば液晶ポリマー(LCP)や、ポリエーテルエーテルケトン(PEEK)の層であってもよい。金属箔4は銅箔であってよい。金属箔4は、Cu層と他の金属層とを組み合わせた多層構造であってもよい。
 なお、樹脂多層基板1が「複数の樹脂層2」を備えているという場合、樹脂多層基板1に含まれるすべての樹脂層が「樹脂層2」に該当するとは限らない。図1に示した樹脂多層基板1が複数の樹脂層2の他に樹脂層9を備えていることに例示されるように、樹脂多層基板1は「複数の樹脂層2」の他に「樹脂層2」に該当しない樹脂層を含んでいてもよい。樹脂多層基板1の中に「複数の樹脂層2」とみなせる複数の樹脂層が含まれていれば足りる。したがって、たとえば樹脂多層基板1には厚み方向に貫通するビア導体3が形成されていない樹脂層が含まれていてもよい。
 本実施の形態における樹脂多層基板1では、金属箔4がビア導体露出領域5を部分的にのみ覆う状態となっており、ビア導体3は、ビア導体露出領域5のうち少なくとも金属箔4に覆われない領域を通じて、厚み方向に隣接する他の導体と電気的に接続されている。すなわち、ビア導体3と前記他の導体とは、互いに直接当接して電気的に接続されている部分を備える。ビア導体と金属箔とは異種材料であるので、これらの間の接続は不安定であるが、ビア導体と前記他の導体とはともに導体ペーストで形成されているため、これらの間の接続性は優れている。したがって、電気的接続をより確実にすることができ、信頼性の高い製品とすることができる。また、この構造であれば、ビアホールの底が金属箔4で完全に塞がれているわけではないので、各樹脂層においてビアホールに導体ペーストを充填した際に、必要に応じて底の側から吸引することもできる。したがって、ビアホール内に十分な量の導体ペーストを充填することができ、ビア導体の上面が凹むという現象が発生する確率を低減することができる。その結果、ビア導体上面と他の導体との間の電気的接続をより確実にすることができる。
 なお、本実施の形態においてより詳細にいえば、樹脂多層基板1は、いずれかの層において図2に示すような構成を備えていてもよい。図2はある樹脂層の主表面2aにおける金属箔4とビア導体露出領域5との幾何学的関係を平面図で示したものである。すなわち、金属箔4は配線であり、ビア導体3と金属箔4とが電気的に接続されている箇所では、ビア導体露出領域5の径が前記配線の幅より大きい構成であってもよい。
 あるいは、樹脂多層基板1は、図3に示すような構成を備えていてもよい。すなわち、ビア導体3と金属箔4とが電気的に接続されている箇所では、前記配線がビア導体露出領域5を横断していてもよい。
 あるいは、樹脂多層基板1は、図4に示す構成であってもよい。すなわち、ビア導体露出領域5において、複数の金属箔4a,4bが1つのビア導体露出領域5を部分的にのみ覆うことによって、ビア導体3と複数の金属箔4とが電気的に接続されていてもよい。図4では、同一直線上にある2つの金属箔4a,4bが配置された例を示したが、たとえば図5、図6に示すように同一直線上にない配置であってもよい。図7に示すように1つのビア導体露出領域5に3以上の金属箔4が重なっていてもよい。図7では3つの金属箔4a,4b,4cが示されている。1つのビア導体露出領域5に注目したときにいずれの金属箔にも覆われない領域が残っていればよい。
 なお、本実施の形態では、金属箔4の幅がビア導体露出領域5の径より小さな例を示して説明してきたが、そのような構成に限られない。金属箔4の幅の方がビア導体露出領域5の径より大きくてもよく、たとえば図8、図9に示すような配置であってもよい。1つのビア導体露出領域5に注目したときに、ビア導体露出領域5の一部が金属箔4に覆われ、他の一部はいずれの金属箔にも覆われない状態であればよい。
 (実施の形態2)
 図10~図17を参照して、本発明に基づく実施の形態2における樹脂多層基板の製造方法について説明する。
 まず、図10に示すように、金属箔付きシート31を用意する。金属箔付きシート31は、たとえば250℃以上の融点を持つ熱可塑性樹脂からなる絶縁層である樹脂層2の主表面2aに金属箔40が張られたものである。250℃以上の融点を持つ熱可塑性樹脂の例としては、たとえば液晶ポリマー(LCP)や、ポリエーテルエーテルケトン(PEEK)などが挙げられる。金属箔40はたとえば銅箔であってよい。この時点では金属箔40は主表面2aの全面を覆っていてよい。金属箔付きシート31としては、市販されているものを使用してよい。
 図11に示すように、レーザ加工により、樹脂層2の所定の位置にビアホール6を形成する。このレーザ加工は、金属箔40が形成されていない側の面からレーザ光を照射して行なう。このレーザ加工によって、金属箔40の裏面に達するように貫通孔としてのビアホール6を形成する。この時点では、金属箔40はまだパターニングされていない。
 図12に示すように、金属箔40上にレジストパターン7を形成する。レジストパターン7の形成方法は印刷であってもよい。ただし、レジストパターン7は、ビアホール6の主表面2a側の開口領域(以下、「ビアホール開口領域」という。)を部分的にのみ覆うように配置する。実際には、主表面2a側ではビアホール6の開口領域は金属箔40に完全に覆われて隠れているが、レジストパターン7の配置を設計する上では、金属箔40の存在は無視してよい。レジストパターン7と、金属箔40の下に隠れたビアホール開口領域との幾何学的位置関係を考えたときに、レジストパターン7がビアホール開口領域を部分的に覆うようになっていればよい。
 レジストパターン7をマスクとしてエッチングを行なう。その結果、図13に示すように、所望のパターンの金属箔4を形成する。金属箔4は金属箔40の一部を以ってそれぞれ形成されたものである。レジストパターン7を除去して図14に示す構造を得る。金属箔4は、ビアホール開口領域を部分的にのみ覆うように形成される。
 なお、金属箔4を形成するにあたっては、レジストパターンをマスクとしてエッチングする方法の他に、予めパターン化した金属箔を所定位置に張り付ける方法を採用してもよい。
 ここでは、レーザ加工によるビアホール6の形成を先に行なってから金属箔のパターニングを行なったが、その代わりに、金属箔のパターニングを行なってから、レーザ加工によるビアホール6の形成を行なってもよい。
 図15に示すように、各樹脂層2のビアホール6に対して、導体8としての導電性ペーストを充填する。導電性ペーストは、Ag粒子を主成分とするものであってよい。導体8は、ビアホール6に充填することができるものであれば、導電性ペースト以外のものであってもよい。
 図16に示すように、各樹脂層2を所定の順に積層し、積層体とする。図16に示すように、異なるパターンを有する樹脂層2を混在させて積層してよい。また、一部の樹脂層2は故意に表裏逆として積層してもよい。積層した後に最外層となる面には、別途、何らかの金属箔を配置するようにしてよい。
 この積層体に真空プレスを施すことによって、積層体を圧着する。圧着の際には、導体8としての導電性ペースト中の金属粒子の融点よりも低い温度であって、かつ、樹脂層2の材料である熱可塑性樹脂が可塑性を示すが溶融はしない温度とする。金属粒子はこの場合、たとえばAg粒子であるので、圧着温度はたとえば250℃~350℃であってよい。圧着温度は、金属箔4の材料が溶融しない温度である。圧着については、全ての樹脂層2を積み重ねてから一括して圧着させてもよく、新たな1層を積み重ねるごとに圧着する作業を繰り返してもよい。1層積み重ねるごとに圧着するのではなく、新たな所定枚数の樹脂層2を積み重ねるごとに圧着する作業を繰り返してもよい。
 このように積層および圧着の工程を経て、樹脂層2同士の間の圧着による接合が完了し、全体が完全に一体化する。導体8はビア導体3となり、ビア導体3と金属箔4とは電気的に接合される。
 本実施の形態における樹脂多層基板の製造方法のフローチャートを図17に示す。本実施の形態における樹脂多層基板の製造方法は、樹脂層の主表面に金属箔が形成されたものに対して、前記金属箔は残して前記樹脂層を厚み方向に貫通するようにビアホールを形成する工程S1と、前記ビアホールが前記主表面に露出する領域であるビアホール開口領域において、前記金属箔が前記ビアホール開口領域を部分的にのみ覆うように、前記金属箔をパターニングする工程S2と、前記金属箔をパターニングする工程を終えた前記樹脂層の前記ビアホールに導体を充填する工程S3と、前記導体を充填する工程を終えた前記樹脂層を、前記ビアホールに充填された前記導体が前記金属箔を介さずに他の導体と互いに対向する領域が生じるように、積み重ねる工程S4と、前記積み重ねる工程によって得られた積層体を圧着する工程S5とを含む。
 ビアホール開口領域は、ビアホールに導体が充填されることにより、最終的に図1に示したビア導体露出領域5となる。
 本実施の形態における樹脂多層基板の製造方法によれば、得られる製品は、金属箔4がビア導体露出領域5を部分的にのみ覆う状態となっており、ビア導体3は、ビア導体露出領域5のうち少なくとも金属箔4に覆われない領域を通じて、厚み方向に隣接する他の導体と電気的に接続されている。すなわち、ビア導体3と他の導体とは金属箔4を介さずに互いに直接当接して電気的に接続される部分を備える構造となる。ビア導体と金属箔とは異種材料であるので、これらの間の接続は不安定であるが、ビア導体と前記他の導体とはともに導体ペーストで形成されているため、これらの間の接続性は優れている。したがって、この製造方法によれば、電気的接続をより確実にすることができ、信頼性の高い製品を得ることができる。
 なお、ビアホールに導体を充填する工程S3においては、単に導体をビアホールに向けて供給するだけでなく、図15における上側から吸引することが好ましい。すなわち、本実施の形態における樹脂多層基板の製造方法は、前記導体を充填する工程S3の後に、前記樹脂層の前記金属箔が配置されている側から前記ビアホール内に配置された前記導体を吸引する工程S6を含むことが好ましい。各樹脂層2において、導体の吸引を効果的に行なうためには、吸引する工程S6は、図17に示したフローチャートにおいては、充填する工程S3と積み重ねる工程S4との間に行なわれることが好ましい。
 本実施の形態における樹脂多層基板の製造方法において、吸引する工程S6を行なうこととすれば、ビアホール開口領域のうち、金属箔4に覆われていない部分を通じてビアホール6内の導体8が吸引する側に引き寄せられるので、ビアホール6内に残る空隙をなくすことができ、ビアホール6内に十分な量の導体8をより確実に充填することができる。その結果、硬化後のビア導体の上面に凹みが生じる現象(図18参照)を予防することができ、ビア導体上面と他の導体との間の電気的な接続をより確実にすることができる。したがって、得られる樹脂多層基板はさらに信頼性の高いものとすることができる。
 なお、樹脂層2の材料としては、上述したものの他に、ポリイミド、ポリフェニレンサルファイド(PPS)であってもよい。樹脂層2の材料は、熱可塑性樹脂に限らず、熱硬化性樹脂であってもよい。導体8の材料は、上述したものの他に、銅、銀、アルミニウム、ステンレス、ニッケル、金などの金属、あるいは、これらの金属を含む合金などの導電性材料に基づく導電性ペーストであってもよい。
 なお、上記各実施の形態では、導体パターンとして金属箔を用いる例を前提に説明したが、導体パターンは金属箔に限られない。導体パターンは、たとえば導電性ペーストを樹脂層の表面に塗布して形成されたものであってもよい。
 なお、今回開示した上記実施の形態はすべての点で例示であって制限的なものではない。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更を含むものである。
 本発明は、樹脂多層基板およびその製造方法に利用することができる。
 1 樹脂多層基板、2 樹脂層、2a 主表面、3 ビア導体、4,4a,4b,4c 金属箔、5 ビア導体露出領域、6 ビアホール、7 レジストパターン、8 導体、9 樹脂層、10 (他の導体としての)ビア導体、31 金属箔付きシート、40 金属箔。

Claims (8)

  1.  それぞれ主表面を有し互いに積層された複数の樹脂層(2)と、
     前記主表面(2a)の一部を覆うように配置された導体パターンとを備え、
     前記複数の樹脂層の各々を厚み方向に貫通するようにビア導体(3)が形成されており、
     前記ビア導体と前記導体パターンとは、前記ビア導体が前記主表面に露出する領域である1つのビア導体露出領域(5)において、前記導体パターンが前記ビア導体露出領域を部分的にのみ覆うことによって電気的に接続されており、
     前記ビア導体は、前記ビア導体露出領域のうち少なくとも前記導体パターンに覆われない領域を通じて、厚み方向に隣接する他の導体と電気的に接続されている、樹脂多層基板。
  2.  前記導体パターンは金属箔(4)からなる、請求項1に記載の樹脂多層基板。
  3.  前記導体パターンは配線であり、
     前記ビア導体と前記導体パターンとが電気的に接続されている箇所では、前記ビア導体露出領域の径が前記配線の幅より大きい、請求項1に記載の樹脂多層基板。
  4.  前記ビア導体と前記導体パターンとが電気的に接続されている箇所では、前記配線が前記ビア導体露出領域を横断している、請求項3に記載の樹脂多層基板。
  5.  前記ビア導体露出領域において、複数の前記導体パターンが1つの前記ビア導体露出領域を部分的にのみ覆うことによって、前記ビア導体と前記複数の前記導体パターンとが電気的に接続されている、請求項1に記載の樹脂多層基板。
  6.  樹脂層(2)の主表面(2a)に導体膜が形成されたものに対して、前記導体膜は残して前記樹脂層を厚み方向に貫通するようにビアホール(6)を形成する工程と、
     前記ビアホールが前記主表面に露出する領域であるビアホール開口領域において、前記導体膜が前記ビアホール開口領域を部分的にのみ覆うように、前記導体膜をパターニングして導体パターンを形成する工程と、
     前記導体パターンが形成された前記樹脂層の前記ビアホールに導体を充填する工程と、
     前記導体を充填する工程を終えた前記樹脂層を、前記ビアホールに充填された前記導体が前記導体パターンを介さずに他の導体と互いに対向する領域が生じるように、積み重ねる工程と、
     前記積み重ねる工程によって得られた積層体を圧着する工程とを含む、樹脂多層基板の製造方法。
  7.  前記導体を充填する工程の後に、前記樹脂層の前記導体パターンが配置されている側から前記ビアホール内に配置された前記導体を吸引する工程を含む、請求項6に記載の樹脂多層基板の製造方法。
  8.  前記導体パターンは金属箔(4)からなる、請求項6または7に記載の樹脂多層基板の製造方法。
PCT/JP2012/052611 2011-02-08 2012-02-06 樹脂多層基板およびその製造方法 WO2012108381A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280006337.2A CN103329637B (zh) 2011-02-08 2012-02-06 树脂多层基板及其制造方法
JP2012556872A JP5652481B2 (ja) 2011-02-08 2012-02-06 樹脂多層基板およびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011025162 2011-02-08
JP2011-025162 2011-02-08

Publications (1)

Publication Number Publication Date
WO2012108381A1 true WO2012108381A1 (ja) 2012-08-16

Family

ID=46638596

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/052611 WO2012108381A1 (ja) 2011-02-08 2012-02-06 樹脂多層基板およびその製造方法

Country Status (3)

Country Link
JP (1) JP5652481B2 (ja)
CN (1) CN103329637B (ja)
WO (1) WO2012108381A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016021397A1 (ja) * 2014-08-06 2016-02-11 大日本印刷株式会社 貫通電極基板及びその製造方法、並びに貫通電極基板を用いた半導体装置
WO2021112499A1 (ko) * 2019-12-04 2021-06-10 엘지이노텍 주식회사 인쇄회로기판
WO2022244335A1 (ja) * 2021-05-21 2022-11-24 株式会社村田製作所 電子部品及びその製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109156082B (zh) * 2016-05-18 2021-02-09 株式会社村田制作所 多层基板以及多层基板的制造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61214497A (ja) * 1985-03-18 1986-09-24 シャープ株式会社 プリント配線板の製造方法
JP2001203460A (ja) * 1999-11-11 2001-07-27 Shinko Electric Ind Co Ltd 多層配線基板と半導体装置
JP2004193278A (ja) * 2002-12-10 2004-07-08 Fujikura Ltd 多層配線基板、多層配線基板用基材およびその製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3241605B2 (ja) * 1996-09-06 2001-12-25 松下電器産業株式会社 配線基板の製造方法並びに配線基板
JP3633136B2 (ja) * 1996-09-18 2005-03-30 株式会社東芝 印刷配線基板
JP2001177243A (ja) * 1999-12-14 2001-06-29 Nitto Denko Corp 多層配線基板
JP2002016334A (ja) * 2000-06-30 2002-01-18 Hitachi Aic Inc プリント配線板およびその製造方法
JP2004273575A (ja) * 2003-03-05 2004-09-30 Sony Corp 多層プリント配線基板及びその製造方法
TW200505304A (en) * 2003-05-20 2005-02-01 Matsushita Electric Ind Co Ltd Multilayer circuit board and method for manufacturing the same
JP2005167094A (ja) * 2003-12-04 2005-06-23 Matsushita Electric Ind Co Ltd 回路基板及びその製造方法
JP2008270385A (ja) * 2007-04-18 2008-11-06 Matsushita Electric Ind Co Ltd プリント配線板とその製造方法とこれに用いるプリント配線板用ビアペースト
JP2009081305A (ja) * 2007-09-26 2009-04-16 Tdk Corp 基板用ワークの貫通孔充填方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61214497A (ja) * 1985-03-18 1986-09-24 シャープ株式会社 プリント配線板の製造方法
JP2001203460A (ja) * 1999-11-11 2001-07-27 Shinko Electric Ind Co Ltd 多層配線基板と半導体装置
JP2004193278A (ja) * 2002-12-10 2004-07-08 Fujikura Ltd 多層配線基板、多層配線基板用基材およびその製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016021397A1 (ja) * 2014-08-06 2016-02-11 大日本印刷株式会社 貫通電極基板及びその製造方法、並びに貫通電極基板を用いた半導体装置
JP2016039195A (ja) * 2014-08-06 2016-03-22 大日本印刷株式会社 貫通電極基板及びその製造方法、並びに貫通電極基板を用いた半導体装置
US10008442B2 (en) 2014-08-06 2018-06-26 Dai Nippon Printing Co., Ltd. Through-electrode substrate, method for manufacturing same, and semiconductor device in which through-electrode substrate is used
WO2021112499A1 (ko) * 2019-12-04 2021-06-10 엘지이노텍 주식회사 인쇄회로기판
WO2022244335A1 (ja) * 2021-05-21 2022-11-24 株式会社村田製作所 電子部品及びその製造方法

Also Published As

Publication number Publication date
CN103329637A (zh) 2013-09-25
JP5652481B2 (ja) 2015-01-14
JPWO2012108381A1 (ja) 2014-07-03
CN103329637B (zh) 2016-04-13

Similar Documents

Publication Publication Date Title
JP5743038B2 (ja) 樹脂多層基板およびその製造方法
TWI413475B (zh) 電氣結構製程及電氣結構
WO2012137626A1 (ja) 部品内蔵樹脂基板およびその製造方法
JP5757376B1 (ja) 多層基板の製造方法、多層基板および電磁石
TWI448223B (zh) 多層電路板及其製作方法
JP5962184B2 (ja) 樹脂多層基板
JP5652481B2 (ja) 樹脂多層基板およびその製造方法
JP6519714B2 (ja) 樹脂多層基板、伝送線路、モジュールおよびモジュールの製造方法
JP6696996B2 (ja) 樹脂多層基板およびその製造方法
WO2018163859A1 (ja) 多層基板、電子機器および多層基板の製造方法
JP6729754B2 (ja) 樹脂多層基板の製造方法
JP5516830B2 (ja) 部品内蔵樹脂基板
JP2013021126A (ja) 多層基板の製造方法及び多層基板
US20190373742A1 (en) Printed wiring board and method for manufacturing the same
JP2011228471A (ja) 多層基板とその製造方法
JP6319447B2 (ja) 樹脂多層基板
JP6323047B2 (ja) 樹脂多層基板およびその製造方法
JP5585035B2 (ja) 回路基板の製造方法
JP4978709B2 (ja) 電子部品内蔵配線基板
WO2013002035A1 (ja) 部品内蔵基板
JP5556984B2 (ja) 多層配線基板およびその製造方法
JP2014222686A (ja) 樹脂多層基板
JP5949978B2 (ja) 電子部品内蔵配線基板
JP5761405B2 (ja) 電子部品内蔵配線基板
JP5333634B2 (ja) 多層基板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12744519

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012556872

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12744519

Country of ref document: EP

Kind code of ref document: A1