WO2022244335A1 - 電子部品及びその製造方法 - Google Patents

電子部品及びその製造方法 Download PDF

Info

Publication number
WO2022244335A1
WO2022244335A1 PCT/JP2022/004716 JP2022004716W WO2022244335A1 WO 2022244335 A1 WO2022244335 A1 WO 2022244335A1 JP 2022004716 W JP2022004716 W JP 2022004716W WO 2022244335 A1 WO2022244335 A1 WO 2022244335A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor
interlayer connection
thickness direction
electronic component
hole
Prior art date
Application number
PCT/JP2022/004716
Other languages
English (en)
French (fr)
Inventor
裕史 大家
喜人 大坪
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2022244335A1 publication Critical patent/WO2022244335A1/ja
Priority to US18/510,766 priority Critical patent/US20240087793A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F17/0013Printed inductances with stacked layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2804Printed windings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof
    • H01F27/327Encapsulating or impregnating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/041Printed circuit coils
    • H01F41/043Printed circuit coils by thick film techniques
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/224Housing; Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/33Thin- or thick-film capacitors 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/38Multiple capacitors, i.e. structural combinations of fixed capacitors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F17/0013Printed inductances with stacked layers
    • H01F2017/002Details of via holes for interconnecting the layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/29Terminals; Tapping arrangements for signal inductances

Definitions

  • the present invention relates to an electronic component including a plurality of insulating layers laminated in the thickness direction and interlayer connection conductors filled in through-holes passing through the insulating layers in the thickness direction, and a method for manufacturing the same.
  • a high-frequency component as an example of an electronic component including an insulating layer, a plurality of insulating layers laminated in the thickness direction, and an interlayer connection conductor filled in a through-hole penetrating the insulating layer in the thickness direction is disclosed in Patent Document 1. disclosed.
  • the high-frequency component disclosed in Patent Document 1 includes a ceramic substrate on which a plurality of ceramic layers (corresponding to insulating layers) are laminated, wiring electrodes formed inside the ceramic substrate, and external electrodes formed on the lower surface of the ceramic substrate. and an electrode. The wiring electrodes and the external electrodes are connected through via conductors (corresponding to interlayer connection conductors) formed in the ceramic layers.
  • Insulating layers on which interlayer connection conductors are formed are stacked on each other in the manufacturing process of electronic components.
  • the interlayer connection conductor and the insulating layer are deformed by being crimped or the like. Since the interlayer connection conductor and the insulating layer are made of different materials, the interlayer connection conductor and the insulating layer have different contraction rates. Therefore, the above deformation may cause the interlayer connection conductor to protrude from the insulating layer.
  • a raised interlayer connection conductor may short-circuit with another conductor that is separated from the interlayer connection conductor through an insulating layer in a normal state.
  • the interlayer connection conductors formed in each of the plurality of insulating layers are continuous in the thickness direction, the amount of protrusion of these continuous interlayer connection conductors as a whole increases, increasing the possibility of occurrence of the aforementioned short circuit. Also, when the thickness of the insulating layer is thin, the possibility of occurrence of the short circuit is increased.
  • an object of the present invention is to solve the above problems, and to provide an electronic component capable of suppressing protrusion of a conductor penetrating the insulating layer from the insulating layer.
  • An electronic component comprises a plurality of insulating layers laminated in a thickness direction; a first conductor filled in a through-hole provided in at least one of the plurality of insulating layers and penetrating in the thickness direction; a second conductor formed via the first conductor and at least one insulating layer at a position at least partially overlapping the first conductor when viewed in the thickness direction;
  • the first conductor has a cavity, The hollow portion is formed so as to be biased toward either the second conductor side or the side opposite to the second conductor in the thickness direction of the through hole.
  • the present invention it is possible to suppress the protrusion of the first conductor penetrating the insulating layer from the insulating layer.
  • FIG. 2 is a bottom view of the electronic component according to the first embodiment of the present invention
  • FIG. 2 is a sectional view showing the AA section of FIG. 1
  • FIG. 4 is a cross-sectional view when a through-hole is formed in the substrate in the method for manufacturing an electronic component according to the first embodiment of the present invention
  • FIG. 4 is a cross-sectional view when an interlayer connection conductor is formed in the through-hole of the substrate of FIG. 3
  • FIG. 4 is a cross-sectional view when an interlayer connection conductor is formed in the through-hole of the substrate of FIG. 3
  • FIG. 5 is a cross-sectional view when internal electrodes are formed on the substrate of FIG. 4 ;
  • FIG. 5 is a cross-sectional view when internal electrodes are formed on the substrate of FIG. 4 ;
  • FIG. 6 is a cross-sectional view when external electrodes are formed on the substrate of FIG. 5 ;
  • FIG. 4 is a cross-sectional view when a plurality of base materials are laminated to form an element body in the method for manufacturing an electronic component according to the first embodiment of the present invention;
  • FIG. 2 is a cross-sectional view of an electronic component according to a second embodiment of the present invention at a position corresponding to the AA cross section of FIG. 1; Sectional drawing when the through-hole is formed in the base material in the manufacturing method of the electronic component which concerns on 2nd Embodiment of this invention.
  • FIG. 11 is a cross-sectional view when an interlayer connection conductor is formed in the through-hole of the substrate of FIG. 10;
  • FIG. 11 is a cross-sectional view when an interlayer connection conductor is formed in the through-hole of the substrate of FIG. 10; The enlarged view of the part corresponding to the part surrounded by the dashed-dotted line of FIG. 2 in the electronic component which concerns on 3rd Embodiment of this invention.
  • An electronic component comprises a plurality of insulating layers laminated in a thickness direction; a first conductor filled in a through-hole provided in at least one of the plurality of insulating layers and penetrating in the thickness direction; a second conductor formed via the first conductor and at least one insulating layer at a position at least partially overlapping the first conductor when viewed in the thickness direction;
  • the first conductor has a cavity, The hollow portion is formed so as to be biased toward either the second conductor side or the side opposite to the second conductor in the thickness direction of the through hole.
  • the first conductor has a cavity. Therefore, when the first conductor is deformed, the deformation of the first conductor can enter the cavity. Therefore, it is possible to suppress the protrusion from the insulating layer of the first conductor. As a result, it is possible to reduce the possibility of a short circuit between the first conductor and the second conductor due to the protrusion of the first conductor.
  • the through hole may have a tapered shape in which the diameter decreases from one end in the thickness direction toward the other end,
  • the hollow portion may be formed so as to be biased toward one end portion side of the through hole in the thickness direction.
  • the first conductor can be electrically connected to another first conductor formed on another insulating layer and other conductors such as pad electrodes formed on the main surface of the insulating layer.
  • other conductors such as pad electrodes formed on the main surface of the insulating layer.
  • the contact area between the first conductor and the other conductor is reduced by the cavity. This may cause a connection failure between the first conductor and other conductors.
  • the hollow portion of the first conductor is biased toward the large diameter side of the tapered through hole. Therefore, the contact area between the first conductor and the other conductor can be increased compared to the configuration in which the hollow portion of the first conductor is biased toward the smaller diameter side of the tapered through hole. As a result, it is possible to reduce the possibility of occurrence of connection failure as described above.
  • the hollow portion may be formed in the central portion of the first conductor when viewed from the thickness direction.
  • the protruding amount of the central portion of the first conductor when viewed from the thickness direction is larger than the protruding amount of the outer edge portion of the first conductor when viewed from the thickness direction. According to this configuration, the hollow portion is formed in the central portion where the amount of protrusion is large. As a result, protrusion from the insulating layer of the first conductor can be suppressed.
  • the electronic component may comprise two first conductors formed on each of the two insulating layers adjacent to each other, At least a part of the two first conductors may overlap each other when viewed in the thickness direction and may be electrically connected to each other.
  • the two first conductors are continuous in the thickness direction.
  • the amount of protrusion of the two first conductors from the insulating layer as a whole is greater than the amount of protrusion of the first conductor from the insulating layer when the first conductors are not continuous in the thickness direction.
  • each of the two first conductors has a cavity. Therefore, it is possible to increase the volume of the hollow portion as a whole of the two first conductors. As a result, the protrusion of the first conductor from the insulating layer can be suppressed.
  • the electronic component may further include a third conductor interposed between the two first conductors and electrically connecting the two first conductors.
  • the third conductor is interposed between the two first conductors. Therefore, the electrical connection between the two first conductors can be strengthened.
  • a plurality of sealed spaces may be formed in the first conductor,
  • the cavity may form a sealed space having the largest volume among the plurality of sealed spaces.
  • the first conductor and the second conductor may constitute at least part of an inductor.
  • the first conductor and the second conductor constitute at least a part of the inductor
  • the number and direction of the magnetic flux penetrating the inductor change, resulting in variations in the characteristics of the inductor. occur.
  • the first conductor since the first conductor has the hollow portion, it is possible to suppress the protrusion of the first conductor from the insulating layer. Therefore, variations in inductor characteristics can be suppressed.
  • the first conductor and the second conductor may constitute at least part of a capacitor.
  • the first conductor and the second conductor constitute at least part of the capacitor
  • the gap between the first conductor and the second conductor changes, resulting in variations in the characteristics of the capacitor.
  • the first conductor since the first conductor has the hollow portion, it is possible to suppress the protrusion of the first conductor from the insulating layer. Therefore, variations in capacitor characteristics can be suppressed.
  • a method for manufacturing an electronic component comprises: a through-hole forming step of forming a through-hole penetrating through the insulating layer in a thickness direction in at least one of a plurality of insulating layers; forming a first conductor by filling the through-hole with a conductive material so that a recess recessed in the thickness direction is formed on an end surface of the through-hole on one end side in the thickness direction; process and a second conductor forming step of forming a conductive second conductor on at least one of the plurality of insulating layers; When viewed from the thickness direction, at least a portion of the first conductor and the second conductor overlap each other, and at least one insulating layer is interposed between the first conductor and the second conductor. and a stacking step of stacking the insulating layer of in the thickness direction.
  • the concave portion is formed in the first conductor in the first conductor forming step.
  • the opening of the recess is covered with at least one of the stacked insulating layer, the first conductor, and the second conductor, so that the space formed by the recess is A plurality of the insulating layers may be laminated so as to form a hermetically sealed cavity.
  • the deformation of the first conductor prevents the electrode or the like formed on another base material laminated on the first conductor from entering the concave portion.
  • the first conductor may protrude from the insulating layer.
  • the space formed by the recess is not completely eliminated, and the remaining space forms the cavity. As a result, it is possible to suppress the protrusion of the first conductor from the insulating layer.
  • the through-hole in the manufacturing method, in the through-hole forming step, may be formed so that the diameter of the through-hole decreases from one end toward the other end in the thickness direction.
  • the diameter of the through hole at one end in the thickness direction is larger than the diameter at the other end in the thickness direction of the through hole, and the concave portion of the first conductor is formed at the one end of the through hole in the thickness direction. It is formed on the side end face, that is, the end face on the side with the larger diameter.
  • the through holes may be formed in a plurality of the insulating layers in the through hole forming step
  • the first conductor may be formed in each of the through holes
  • the plurality of insulating layers may be laminated in the thickness direction such that at least a portion of the plurality of first conductors overlap and are electrically connected to each other when viewed in the thickness direction.
  • the first conductor can be formed continuously in the thickness direction in the lamination step.
  • the manufacturing method may further include a third conductor forming step of forming a third conductor on the main surface of at least one of the plurality of insulating layers so as to cover at least a portion of the first conductor, In the laminating step, the plurality of insulating layers are formed in the thickness direction such that the third conductor is interposed between two adjacent first conductors and electrically connects the two first conductors. It may be laminated.
  • a plurality of insulating layers are laminated such that the third conductor is interposed between the two first conductors. Therefore, the electrical connection between the two first conductors can be strengthened.
  • FIG. 1 is a bottom view of the electronic component according to the first embodiment of the invention.
  • FIG. 2 is a cross-sectional view showing the AA cross section of FIG.
  • An electronic component has an interlayer connection conductor, an internal electrode, and an external electrode provided in a base body. Electronic components can be mounted on a mother board or the like via external electrodes.
  • the electronic component 10 includes a base body 20, interlayer connection conductors 30, internal electrodes 40, external electrodes 50, and plating layers 60.
  • the element body 20 has a rectangular parallelepiped shape as a whole.
  • the shape of the element body 20 is not limited to a rectangular parallelepiped shape.
  • the body 20 is formed by integrating seven layers of substrates 21-27 laminated in the thickness direction of the substrates 21-27. Note that the number of layers of the base material forming the base body 20 is not limited to seven.
  • Each of the substrates 21-27 is insulative and plate-shaped.
  • the base materials 21-27 are examples of insulating layers.
  • the element body 20 (each base material 21 to 27) is made of LTCC (Low Temperature Co-fired Ceramics).
  • the base body 20 is not limited to LTCC, and may be made of ceramics other than LTCC such as alumina, or may be made of resin such as glass epoxy, Teflon (registered trademark), or paper phenol.
  • the base body 20 has main surfaces 20A and 20B and side surfaces 20C.
  • the main surface 20A is the main surface of the base material 21 and faces the outside of the element body 20 .
  • the main surface 20B is the main surface of the base material 27 and faces the outside of the element body 20 .
  • the principal surface 20B faces away from the principal surface 20A.
  • the side surface 20C is composed of the side surfaces of the substrates 21-27. The side surface 20C connects the main surfaces 20A and 20B.
  • the interlayer connection conductor 30 is formed inside the element body 20 .
  • the interlayer connection conductor 30 can be formed on at least one of the substrates 21-27. In the first embodiment, the interlayer connection conductors 30 are formed on the substrates 21-26.
  • the interlayer connection conductor 30 is made of ceramic (LTCC ) and co-fired.
  • the conductive paste contains conductive powder such as copper.
  • the conductive powder contained in the conductive paste is not limited to copper, and may be silver, for example.
  • the interlayer connection conductor 30 is formed by plating a conductive metal made of copper, silver, or the like.
  • the diameter of the through hole 20D decreases from the main surface 20B toward the main surface 20A along the thickness direction. That is, the through hole 20D has a tapered shape in which the diameter decreases from one end (the end on the main surface 20B side) in the thickness direction to the other end (the end on the main surface 20A side). Therefore, in the first embodiment, the interlayer connection conductor 30 has a truncated cone shape.
  • the positional relationship between the small diameter portion and the larger diameter portion may be reversed from that shown in FIG. 2 . That is, in FIG.
  • the diameter of the through-hole 20D decreases toward the bottom of the paper, but conversely, the diameter of the through-hole 20D decreases toward the top of the paper. good too.
  • Such a configuration can be realized, for example, by reversing the stacking order of the substrates 21-27.
  • the interlayer connection conductors 30 include eight interlayer connection conductors 31 and two interlayer connection conductors 32, as shown in FIG.
  • the interlayer connection conductor 31 is an example of a first conductor. Two interlayer connection conductors 31 are provided on each of the substrates 22 , 24 and 25 , and one interlayer connection conductor 31 is provided on each of the substrates 23 and 26 . Two interlayer connection conductors 32 are provided on the substrate 21 .
  • the numbers of interlayer connection conductors 31 and 32 are not limited to the numbers described above.
  • the eight interlayer connection conductors 31 include four continuous interlayer connection conductors 311 , one interlayer connection conductor 312 and three continuous interlayer connection conductors 313 .
  • four interlayer connection conductors 311 and one interlayer connection conductor 32 are formed side by side in the thickness direction.
  • one interlayer connection conductor 312 and one interlayer connection conductor 32 are formed side by side in the thickness direction.
  • three interlayer connection conductors 313 are formed side by side in the thickness direction. That is, as shown in FIG. 2, the electronic component 10 includes two interlayer connection conductors 30 formed on each of two layers of substrates adjacent to each other. Two adjacent interlayer connection conductors 30 among the interlayer connection conductors 30 formed side by side in the thickness direction are at least partially overlapped and electrically connected to each other when viewed from the thickness direction.
  • the length in the thickness direction of the five continuous interlayer connection conductors 31 and 32 consisting of the four interlayer connection conductors 311 and one interlayer connection conductor 32 is longer than the thickness of the base material 26 .
  • the length in the thickness direction of the two continuous interlayer connection conductors 31 and 32 consisting of one interlayer connection conductor 312 and one interlayer connection conductor 32 is longer than the thickness of the base material 23 .
  • the thickness direction length of the three continuous interlayer connection conductors 313 is longer than the thickness of the base material 23 .
  • the interlayer connection conductor 31 has a hollow portion 31A.
  • interlayer connection conductor 32 does not have cavity 31A.
  • the hollow portion 31A forms a closed space.
  • part of the cavity 31A is partitioned by the interlayer connection conductor 31 in which the cavity 31A is formed.
  • the remainder of the cavity 31A is partitioned by the interlayer connection conductor 31 adjacent to the interlayer connection conductor 31 in which the cavity 31A is formed, or by the internal electrode 40 .
  • the rest of the hollow portion 31A may be partitioned by, for example, the external electrodes 50 other than the adjacent interlayer connection conductors 31 and the internal electrodes 40 described above.
  • the entire cavity 31A may be partitioned by the interlayer connection conductor 31 in which the cavity 31A is formed.
  • the cavity 31A of each interlayer connection conductor 31 is formed to be biased toward the main surface 20B in the thickness direction.
  • the hollow portion 31A of each interlayer connection conductor 31 is formed so as to be biased toward one end portion in the thickness direction of the through hole 20D (the side where the through hole 20D has a larger diameter).
  • the hollow portion 31A of each interlayer connection conductor 31 may be formed so as to be biased toward the main surface 20A in the thickness direction.
  • a hollow portion 31A of each interlayer connection conductor 31 is formed in the central portion of the interlayer connection conductor 31 when viewed from the thickness direction.
  • the internal electrodes 40 are formed inside the element body 20 and are not exposed to the outside of the element body 20 .
  • the internal electrode 40 can be formed on at least one of the substrates 21-27.
  • the internal electrodes 40 are formed on the main surfaces of the substrate (in the first embodiment, the main surfaces 23A, 24A, 26A, and 27A).
  • the paste is printed and co-fired with the substrate.
  • the conductive paste is composed of copper or silver, for example.
  • the internal electrodes 40 are formed on the main surface of the base material by known means such as etching a metal foil.
  • the electronic component 10 includes four internal electrodes 40 (internal electrodes 41, 42, 43, 44).
  • the internal electrodes 41 are formed on the main surface 23A of the base material 23.
  • the internal electrode 41 is in contact with the interlayer connection conductor 312 and electrically connected to the interlayer connection conductor 312 .
  • part of the internal electrode 41 overlaps the interlayer connection conductor 313 formed on the base material 24 .
  • the internal electrodes 42 are formed on the main surface 24A of the base material 24.
  • the internal electrode 42 is in contact with an interlayer connection conductor 313 formed on the base material 24 and electrically connected to the interlayer connection conductor 313 .
  • a part of the internal electrode 42 overlaps the interlayer connection conductor 312 when viewed in the thickness direction.
  • the internal electrodes 43 are formed on the main surface 26A of the base material 26.
  • the internal electrode 43 is in contact with an interlayer connection conductor 311 formed on the substrate 25 and electrically connected to the interlayer connection conductor 311 .
  • the internal electrodes 44 are formed on the main surface 27A of the base material 27.
  • the internal electrode 44 is in contact with an interlayer connection conductor 313 formed on the base material 26 and electrically connected to the interlayer connection conductor 313 .
  • part of the internal electrode 44 overlaps the interlayer connection conductor 311 formed on the base material 25 .
  • each of the internal electrodes 40 (internal electrodes 41 to 44) are not limited to those shown in FIG.
  • all of the internal electrodes 41 may overlap the interlayer connection conductors 313 formed on the substrate 24 when viewed in the thickness direction.
  • the internal electrodes 41 are smaller than the size shown in FIG. The same is true for the internal electrodes 42 and 44 as well.
  • the internal electrode 41 is formed at a position facing the interlayer connection conductor 313 with the substrate 23 interposed therebetween.
  • the internal electrode 41 may be formed at a position facing the interlayer connection conductor 313 via a plurality of base materials.
  • the internal electrode 41 corresponds to the second conductor when the interlayer connection conductor 313 corresponds to the first conductor.
  • the internal electrode 42 is formed at a position facing the interlayer connection conductor 312 with the substrate 23 interposed therebetween.
  • the internal electrode 42 may be formed at a position facing the interlayer connection conductor 312 via a plurality of base materials.
  • the internal electrode 42 corresponds to the second conductor when the interlayer connection conductor 312 corresponds to the first conductor.
  • the internal electrode 44 is formed at a position facing the interlayer connection conductor 311 with the base material 26 interposed therebetween.
  • the internal electrode 44 may be formed at a position facing the interlayer connection conductor 311 via a plurality of base materials.
  • the internal electrode 44 corresponds to the second conductor when the interlayer connection conductor 311 corresponds to the first conductor.
  • the internal electrode 40 is formed at a position where at least a part overlaps the interlayer connection conductor 31 when viewed in the thickness direction, with the interlayer connection conductor 31 and at least one layer of base material interposed therebetween.
  • the interlayer connection conductor 31 and the internal electrode 40 formed through at least one layer of base material are at different potentials.
  • the interlayer connection conductor 311 and the internal electrode 44 formed on the substrate 25 are different potentials.
  • these interlayer connection conductors 31 and internal electrodes 40 may be at the same potential.
  • the cavity 31A of the interlayer connection conductor 311 is formed biased toward the internal electrode 44 (corresponding to the second conductor when the interlayer connection conductor 311 corresponds to the first conductor) in the thickness direction of the through hole 20D. Further, the cavity 31A of the interlayer connection conductor 312 is formed biased toward the internal electrode 42 (corresponding to the second conductor when the interlayer connection conductor 312 corresponds to the first conductor) in the thickness direction of the through hole 20D. Conversely, the cavity 31A of the interlayer connection conductor 313 is located on the opposite side of the internal electrode 41 (corresponding to the second conductor when the interlayer connection conductor 313 corresponds to the first conductor) in the thickness direction of the through hole 20D. formed biased toward
  • the cavity portion 31A of the interlayer connection conductor 31 is formed to be biased toward either the second conductor side or the side opposite to the second conductor in the thickness direction of the through hole 20D.
  • the internal electrodes 43 and 44 face each other in the thickness direction with the substrate 26 interposed therebetween. Thereby, the internal electrodes 43 and 44 form a capacitor with the substrate 26 interposed therebetween.
  • the interlayer connection conductor 311 is electrically connected to part of the internal electrode 43 .
  • the interlayer connection conductor 311 and the internal electrode 44 form part of the aforementioned capacitor.
  • the interlayer connection conductors 311 and the internal electrodes 44 constitute the entire capacitor with the substrate 26 interposed therebetween.
  • the internal electrodes 41 and 42 face each other in the thickness direction with the substrate 23 interposed therebetween. As a result, the internal electrodes 41 and 42 form a capacitor with the substrate 23 interposed therebetween.
  • the interlayer connection conductor 312 is electrically connected to part of the internal electrode 41 .
  • the interlayer connection conductor 312 and the internal electrode 42 form part of the aforementioned capacitor.
  • the interlayer connection conductor 313 is electrically connected to part of the internal electrode 42 .
  • the interlayer connection conductor 313 and the internal electrode 41 form part of the aforementioned capacitor.
  • the interlayer connection conductors 312 and the internal electrodes 42 constitute the entire capacitor with the substrate 23 interposed therebetween.
  • the interlayer connection conductors 313 and the internal electrodes 41 constitute the entire capacitor with the substrate 23 interposed therebetween.
  • the interlayer connection conductor 31 and the internal electrode 40 constitute at least part of the capacitor.
  • the interlayer connection conductor 31 and the internal electrode 40 may constitute at least part of the inductor.
  • the interlayer connection conductors 313 and 314 and the internal electrode 42 , 44 form a closed loop.
  • This closed loop functions as a coil. That is, in this case, the interlayer connection conductors 313, 314 and the internal electrodes 42, 44 constitute the entire inductor.
  • the inductor configured by the interlayer connection conductor 31 and the internal electrode 40 is not limited to the closed loop coil as described above.
  • the inductor may be a helical coil extending in the depth direction of the paper surface of FIG. 2, and the interlayer connection conductor 31 and the internal electrode 40 may form part or all of the helical coil.
  • the external electrode 50 is formed outside the element body 20 .
  • the external electrodes 50 are formed on the principal surface of the base material 21 , that is, the principal surface 20A of the element body 20 .
  • the external electrodes 50 may be formed on the main surface of the base material 28 , that is, on the main surface 20B of the element body 20 .
  • the external electrode 50 is configured in the same manner as the internal electrode 40 . That is, in the first embodiment, the external electrodes 50 are formed by printing a conductive paste on the main surface 20A of the element body 20 and co-firing it with the substrates 21-27.
  • the external electrode 50 has two external electrodes 51 and 52 .
  • the external electrode 51 is in contact with the interlayer connection conductor 311 and the adjacent interlayer connection conductor 32 and is electrically connected to the interlayer connection conductor 32 .
  • the external electrode 52 is in contact with the interlayer connection conductor 312 and the adjacent interlayer connection conductor 32 and is electrically connected to the interlayer connection conductor 32 .
  • the plating layer 60 covers the external electrodes 50 .
  • the plating layer 60 suppresses the influence of the atmosphere, moisture, etc. on the external electrodes 51 and 52 .
  • the plated layer 60 is, for example, a film made of Ni—Sn, Ni—electroless Au, or the like.
  • the electronic component 10 has six plating layers 60, as shown in FIG. Note that the number of plating layers 60 included in the electronic component 10 is not limited to six. In FIG. 2, two plating layers 61 and 62 of the six plating layers 60 are depicted.
  • the plating layer 61 covers the external electrodes 51 .
  • the plating layer 62 covers the external electrodes 52 .
  • the interlayer connection conductor 31 has a hollow portion 31A.
  • the deformation of the interlayer connection conductor 31 can enter the hollow portion 31A. Therefore, it is possible to prevent the interlayer connection conductor 31 from rising from the substrates 22 to 26 . As a result, the possibility of short-circuiting between the interlayer connection conductor 31 and the internal electrodes 41, 42, 44 due to the protrusion of the interlayer connection conductor 31 can be reduced.
  • the interlayer connection conductor 31 can be electrically connected to another interlayer connection conductor 31 formed on another base material and other conductors such as pad electrodes formed on the main surface of the base material.
  • the interlayer connection conductor 31 has the cavity 31A, the contact area between the interlayer connection conductor 31 and other conductors is reduced by the cavity 31A. This may cause connection failure between the interlayer connection conductor 31 and other conductors.
  • the hollow portion 31A of the interlayer connection conductor 31 is formed biased toward the large diameter side of the tapered through hole 20D. Therefore, the contact area between the interlayer connection conductor 31 and other conductors can be increased compared to the configuration in which the cavity 31A of the interlayer connection conductor 31 is biased toward the smaller diameter side of the tapered through hole 20D. can. As a result, it is possible to reduce the possibility of occurrence of connection failure as described above.
  • the amount of protrusion of the central portion of the interlayer connection conductor 31 when viewed in the thickness direction is equal to the protrusion of the outer edge portion of the interlayer connection conductor 31 when viewed in the thickness direction. greater than quantity.
  • the hollow portion 31A is formed in the central portion where the amount of protrusion is large. As a result, the interlayer connection conductor 31 can be prevented from protruding from the substrates 22 to 26 .
  • two interlayer connection conductors 31 are continuous in the thickness direction.
  • the total protrusion amount of the two interlayer connection conductors 31 from the base material is larger than the protrusion amount of the interlayer connection conductors 31 from the base material when the interlayer connection conductors 31 are not continuous in the thickness direction.
  • each of the two interlayer connection conductors 31 has a cavity 31A. Therefore, the volume of the hollow portion 31A as a whole of the two interlayer connection conductors 31 can be increased. As a result, it is possible to suppress the protrusion of the interlayer connection conductor 31 from the base material.
  • the interlayer connection conductor 31 and the internal electrodes 41, 42, and 44 constitute at least a part of the inductor
  • the interlayer connection conductor 31 protrudes from the substrate, the number and direction of the magnetic flux passing through the inductor change. Variation occurs in inductor characteristics.
  • the interlayer connection conductor 31 by providing the interlayer connection conductor 31 with the hollow portion 31A, the interlayer connection conductor 31 can be prevented from protruding from the base material. Therefore, variations in inductor characteristics can be suppressed.
  • the interlayer connection conductor 31 and the internal electrodes 41, 42, 44 constitute at least a part of the capacitor, if the interlayer connection conductor 31 protrudes from the substrate, the distance between the interlayer connection conductor 31 and the internal electrodes 41, 42, 44 becomes As a result, the characteristics of the capacitor will vary.
  • the interlayer connection conductor 31 by providing the interlayer connection conductor 31 with the hollow portion 31A, the interlayer connection conductor 31 can be prevented from protruding from the base material. Therefore, variations in capacitor characteristics can be suppressed.
  • the cavity 31A is formed biased toward the principal surface 20B in the thickness direction, but may be formed biased toward the principal surface 20A in the thickness direction.
  • the hollow portion 31A of each interlayer connection conductor 31 may be formed so as to be biased toward the other end in the thickness direction of the through hole 20D (the side where the through hole 20D has a smaller diameter).
  • all the hollow portions 31A are formed to be biased toward the main surface 20B in the thickness direction. However, a part of the hollow portion 31A is biased toward the principal surface 20B in the thickness direction, and the portions other than the hollow portion 31A of each interlayer connection conductor 31 are biased toward the principal surface 20A in the thickness direction. may have been
  • the hollow portion 31A is formed in the central portion of the interlayer connection conductor 31 when viewed from the thickness direction, but is formed in a portion other than the central portion of the interlayer connection conductor 31, for example, the outer edge portion of the interlayer connection conductor 31. may have been
  • the through-hole 20D may have a smaller diameter from the main surface 20A toward the main surface 20B along the thickness direction, like an electronic component 10A (see FIG. 9) according to a second embodiment to be described later.
  • the interlayer connection conductor 30 has a truncated cone shape in the opposite direction.
  • the through hole 20D is not limited to a tapered shape.
  • the through holes 20D may have the same diameter regardless of their position in the thickness direction.
  • the interlayer connection conductor 30 has a cylindrical shape.
  • the shape of the interlayer connection conductor 30 is not limited to a columnar shape, and may be other shapes such as a square columnar shape.
  • FIG. 3 is a cross-sectional view when a through-hole is formed in the substrate in the method of manufacturing the electronic component according to the first embodiment of the present invention.
  • FIG. 4 is a cross-sectional view when an interlayer connection conductor is formed in the through-hole of the substrate of FIG. 5 is a cross-sectional view when an interlayer connection conductor is formed in the through-hole of the base material of FIG. 3.
  • FIG. FIG. 6 is a cross-sectional view when internal electrodes are formed on the substrate of FIG. FIG.
  • FIG. 7 is a cross-sectional view when external electrodes are formed on the substrate of FIG.
  • FIG. 8 is a cross-sectional view of a base body formed by laminating a plurality of base materials in the method of manufacturing an electronic component according to the first embodiment of the present invention.
  • the electronic component 10 is manufactured by singulating the laminate into a plurality of element bodies 20 .
  • the laminate is formed by integrating a plurality of element bodies 20 in an arrayed state. 3 to 8 show only a portion of the laminate corresponding to one element body 20 for convenience of explanation.
  • a sheet forming process is performed.
  • the base materials 21 to 27 shown in FIG. 2 are individually formed.
  • the base materials 21 to 27 formed in the sheet forming process are prepared by mixing mainly raw materials including a main agent, a plasticizer, a binder, etc. corresponding to each base material 21 to 27, thereby forming a slurry constituting each base material 21 to 27. is produced.
  • Each of the substrates 21 to 27 at this stage is a green sheet made of slurry.
  • sinterable ceramic powder or the like is used as a main agent.
  • a plasticizer for example, a phthalate ester, di-n-butyl phthalate, or the like is used.
  • the binder for example, acrylic resin, polyvinyl butyral, or the like is used.
  • the slurry forming each of the base materials 21 to 27 is formed into a sheet on a carrier film 71 as shown in FIG. 3 using, for example, a lip coater or doctor blade. That is, each of seven substrates 21 to 27 is formed on each of seven carrier films 71 .
  • a carrier film 71 for example, a PET (polyethylene terephthalate) film or the like is used.
  • the thickness of each base material 21-27 is, for example, 5-100 ⁇ m.
  • FIG. 3 shows the carrier film 71 and the base material 21 molded on the carrier film 71 .
  • a through-hole forming step is performed.
  • through-holes 20D are formed through the substrates 21 to 27 and carrier films 71 corresponding to the substrates 21 to 27 in the thickness direction.
  • Through holes 20D are formed in at least one layer of substrates 21-27.
  • the through-hole 20D is formed so that the diameter of the through hole 20D becomes smaller from one end toward the other end in the thickness direction.
  • one end in the thickness direction of the through-hole 20D is the end on the carrier film 71 side, and the other end in the thickness direction of the through-hole 20D. is the end portion on the base material 21 to 27 side.
  • the shape of the through hole 20D is not limited to the tapered shape as shown in FIG.
  • the number of through holes 20D formed in each of the substrates 21 to 27 is not limited to two. Also, the number of through holes 20D formed in each of the base materials 21 to 27 may be the same or different. Also, the positions of the through holes 20D formed in the base materials 21 to 27 may be the same or different.
  • the number and positions of the through holes 20D formed in the base materials 21 to 27 are finally formed so that the element body 20 as shown in FIG. is determined. That is, in the method for manufacturing the electronic component 10 according to the first embodiment, two through holes 20D are formed in each of the base materials 21, 22, 24, and 25, and one through hole 20D is formed in each of the base materials 23 and 26. is formed.
  • an interlayer connection conductor forming step is performed.
  • the interlayer connection conductor forming step corresponds to the first conductor forming step.
  • each of the through holes 20D formed in the substrates 21 to 27 and the carrier film 71 in the through hole forming step is filled with a conductive paste 73. be done.
  • the paste 73 is filled into the through holes 20D from the carrier film 71 side.
  • the filling is performed, for example, by applying a paste 73 to the surface of the carrier film 71 and wiping off the applied paste 73 .
  • the paste 73 is made, for example, by mixing raw materials including conductive powder, a plasticizer, and a binder.
  • Paste 73 is an example of a conductive material.
  • the interlayer connection conductor forming step recesses 73A are formed in the paste 73 filled in some of the through holes 20D, and recesses 73A are formed in the paste 73 filled in the through holes 20D other than the part of the through holes 20D. not formed.
  • the paste 73 filled in the through holes 20D of the base materials 22 to 26 is formed with recesses 73A, and the paste 73 filled in the through holes 20D of the base material 21 is formed. is not formed with the recess 73A.
  • the interlayer connection conductor 31 is formed by the paste 73 in which the recess 73A is formed.
  • the interlayer connection conductor 32 is formed by the paste 73 in which the concave portion 73A is not formed.
  • the recess 73A is formed in an end surface 73B on the one end side (carrier film 71 side) in the thickness direction of the through hole 20D.
  • the end surface 73B is a surface on the filling inlet side of the paste 73 when the paste 73 is filled into the through hole 20D.
  • the depth of the concave portion 73A of the paste 73 filled in the through hole 20D can be adjusted.
  • the filling conditions are, for example, the drying conditions and the composition of the paste 73 .
  • the drying conditions are the drying temperature, drying time, etc. when drying the paste 73 filled in the through holes 20D.
  • the higher the drying temperature the greater the shrinkage of the paste 73 to be dried, and the deeper the concave portions 73A are likely to be formed.
  • the longer the drying time the easier it is for the concave portion 73A to be formed deeper.
  • the composition of the paste 73 is, for example, the particle size of the conductive powder (for example, copper powder) contained in the paste 73.
  • the conductive powder for example, copper powder
  • the composition of the paste 73 is the ratio of the conductive powder contained in the paste 73 .
  • the paste 73 contains the conductive powder and a solvent. The more the solvent, the easier it is for the hole to be formed in the paste 73, and the deeper the recess 73A to be easily formed.
  • the more the number of fillings of the paste 73 (for example, the number of times of printing when the paste 73 is screen-printed), the more difficult it is to form the concave portions 73A.
  • the recesses 73A are formed as shown in the upper part of FIG. 4 by adjusting the drying conditions and paste composition described above.
  • a substrate 24 is shown as a representative of the substrates 22-26.
  • the concave portion 73A becomes deeper.
  • the recess 73A reaches from the portion of the through hole 20D formed in the carrier film 71 to the portion of the through hole 20D formed in the substrates 22-26.
  • the above-described drying conditions, the composition of the paste, etc. are adjusted so that the concave portion 73A is not formed or only slightly formed as shown in the upper part of FIG. be done.
  • the paste 73 shrinks to form a concave portion 73A as shown in the lower part of FIG.
  • the recessed portion 73A remains at a depth up to the portion of the through-hole 20D formed in the carrier film 71 and does not reach the portion of the through-hole 20D formed in the base material 21 .
  • an internal electrode forming process is performed.
  • the internal electrode forming process corresponds to the second conductor forming process.
  • the internal electrodes 40 are formed on at least one layer of the substrates 21-27.
  • the paste 75 is formed on the main surface 24A of the base material 24, as shown in FIG.
  • the paste 75 is formed by screen printing, inkjet printing, gravure printing, or the like, for example.
  • the paste 75 is made by mixing raw materials including conductive powder, plasticizer, and binder in the same manner as the paste 73 described above.
  • the paste 75 may be made of the same raw material as the paste 73 or may be made of a different raw material from that of the paste 73, provided that it contains a conductive raw material.
  • the paste 75 is formed on the main surfaces 23A, 24A, 26A and 27A of the base materials 23, 24, 26 and 27.
  • the paste 75 formed on the main surface 24A of the base material 24 corresponds to the internal electrodes 42 of the internal electrodes 40 (see FIG. 6).
  • the paste 75 formed on the main surface 23A of the base material 23 corresponds to the internal electrodes 41 of the internal electrodes 40 .
  • the paste 75 formed on the main surface 26A of the base material 26 corresponds to the internal electrodes 43 of the internal electrodes 40 .
  • the paste 75 formed on the main surface 27A of the base material 27 corresponds to the internal electrodes 44 of the internal electrodes 40 .
  • an external electrode forming step is performed.
  • the external electrode forming process may be performed after the interlayer connection conductor forming process and before the internal electrode forming process, or may be performed in parallel with the internal electrode forming process.
  • the external electrodes 50 are formed in the same manner as the internal electrodes 40 are formed in the internal electrode forming process.
  • the paste 75 is formed on the main surface 21A of the base material 21, as shown in FIG. A part of the paste 75 covers the end surface 73C of the interlayer connection conductor 32 exposed on the main surface 21A and is electrically connected to the interlayer connection conductor 32 .
  • the paste 75 covering one of the two interlayer connection conductors 32 corresponds to the external electrode 51 of the external electrodes 50 and covers the other of the two interlayer connection conductors 32.
  • the covering paste 75 corresponds to the external electrodes 52 of the external electrodes 50 .
  • the seven layers of substrates 21 to 27 are arranged in order from substrates with smaller numerical values to substrates with larger numerical values, specifically substrates 21, 22, 23, 24, 25, 26, and 27. Laminated in order.
  • the main surface 21A of the base material 21 and the main surface of the base material 27 become the outer surface of the element body 20 . That is, the main surface 21A of the base material 21 is the main surface 20A of the element body 20, and the main surface of the base material 27 is the main surface 20B of the element body 20.
  • FIG. In FIG. 8, the opening of the concave portion 73A is laminated so that the opening of the concave portion 73A faces the upper side of the paper surface of FIG. It is also possible to laminate so that 8 faces the lower side of the page.
  • the external electrodes 50 enter into the base material 21 by pressing the base materials 21 to 27 together.
  • the lamination step by laminating the base materials 21 to 27, at least a portion of the plurality of interlayer connection conductors 31 are overlapped and electrically connected to each other when viewed from the thickness direction.
  • the substrates 21 to 27 are laminated to form one interlayer connection conductor 32 formed on the substrate 21 and electrically connected to the external electrode 51.
  • four interlayer connection conductors 31 formed on the substrates 22 to 25 are continuously arranged in the thickness direction.
  • one interlayer connection conductor 32 and four interlayer connection conductors 31 at least parts of two adjacent interlayer connection conductors overlap each other when viewed in the thickness direction.
  • one interlayer connection conductor 32 and four interlayer connection conductors 31 are electrically connected to each other.
  • Each of the four interlayer connection conductors 31 corresponds to an interlayer connection conductor 311 .
  • one interlayer connection conductor 32 formed on the base material 21 and electrically connected to the external electrode 52 is formed.
  • one interlayer connection conductor 31 formed on the base material 22 are continuously arranged in the thickness direction. At least parts of one interlayer connection conductor 32 and one interlayer connection conductor 31 overlap each other when viewed in the thickness direction. Thereby, one interlayer connection conductor 32 and one interlayer connection conductor 31 are electrically connected to each other.
  • One interlayer connection conductor 31 corresponds to the interlayer connection conductor 312 .
  • the three interlayer connection conductors 31 formed on the base materials 24 to 26 are continuous in the thickness direction by laminating the base materials 21 to 27. line up.
  • the three interlayer connection conductors 31 at least parts of two adjacent interlayer connection conductors 31 overlap each other when viewed from the thickness direction. Thereby, the three interlayer connection conductors 31 are electrically connected to each other.
  • Each of the three interlayer connection conductors 31 corresponds to an interlayer connection conductor 313 .
  • the substrates 21 to 27 are laminated, so that the openings of the recesses 73A of the interlayer connection conductors 31 are formed in the laminated substrates, the internal electrodes 40 on the substrates, and the substrates. covered with at least one of the interlayer connection conductors 30 .
  • the space formed by the recess 73A is sealed to form the cavity 31A.
  • the base material 24 is laminated on the base material 23, so that the opening of the concave portion 73A of the interlayer connection conductor 31 formed in the base material 23 is laminated. It is covered with an interlayer connection conductor 31 formed on the base material 24 . Further, for example, by laminating the base material 27 on the base material 26, the opening of the concave portion 73A of the interlayer connection conductor 31 formed in the base material 26 becomes the laminated base material 27 (specifically, the base material 27). It is covered with an internal electrode 44) formed on the main surface 27A. The same applies to the recesses 73A of the other interlayer connection conductors 31 as well.
  • the base material covering the recess 73A, the internal electrode 40, etc. may enter the recess 73A, or the recess 73A may be deformed due to the deformation of the interlayer connection conductor 31 or the like. I have something to do.
  • the shape and size of the formed cavity 31A can be different from those of the recess 73A.
  • this allows one recess 73A to be divided to form a plurality of cavities 31A.
  • the hollow portion 31A is not formed due to other base material or the like entering the concave portion 73A.
  • the lamination step by laminating the respective base materials 21 to 27, at least a part of the interlayer connection conductor 31 and the internal electrode 40 overlap each other when viewed from the thickness direction, and the interlayer connection conductor 31 and the internal electrode 40, at least one insulating layer is interposed.
  • the substrates 25 to 27 are laminated so that all the interlayer connection conductors 311 formed on the substrate 25 and the main surface 27A of the substrate 27 are formed. and a part of the internal electrodes 44 overlap each other when viewed from the thickness direction. Also, the base material 26 is interposed between the interlayer connection conductors 311 formed on the base material 25 and the internal electrodes 44 formed on the main surface 27A of the base material 27 .
  • the substrates 22 to 24 are laminated so that all of the interlayer connection conductors 312 formed on the substrate 22 and the main surface 24A of the substrate 24 are formed. and a part of the internal electrodes 42 overlap each other when viewed from the thickness direction. Also, the base material 23 is interposed between the interlayer connection conductors 312 formed on the base material 22 and the internal electrodes 42 formed on the main surface 24A of the base material 24 .
  • the substrates 23 and 24 are laminated so that all of the interlayer connection conductors 313 formed on the substrate 24 and the main surface 23A of the substrate 23 are formed. A part of the internal electrode 41 thus formed overlaps with each other when viewed from the thickness direction. Also, the base material 23 is interposed between the interlayer connection conductors 313 formed on the base material 24 and the internal electrodes 41 formed on the main surface 23A of the base material 23 .
  • all of the interlayer connection conductors 31 and part of the internal electrodes 40 overlap each other when viewed from the thickness direction.
  • part of the interlayer connection conductor 31 and all of the internal electrodes 40 may overlap each other when viewed in the thickness direction, or all of the interlayer connection conductors 31 and all of the internal electrodes 40 may overlap when viewed in the thickness direction.
  • a portion of the interlayer connection conductor 31 and a portion of the internal electrode 40 may overlap each other when viewed in the thickness direction.
  • one layer of base material is interposed between all of the interlayer connection conductors 31 and part of the internal electrodes 40 .
  • a plurality of layers of base materials may be interposed between all of the interlayer connection conductors 31 and part of the internal electrodes 40 .
  • a singulation process is performed.
  • a laminate in which a plurality of element bodies 20 are arranged is cut into a plurality of element bodies 20 .
  • a dicing saw, a guillotine cutter, a laser, or the like, for example, is used to cut the laminate.
  • the corners and edges of the blank 20 may be polished, such as by barreling. Note that the polishing may be performed after the firing process.
  • each of the base materials 21 to 27 forming the element body 20 is cured. That is, each of the base materials 21 to 27, which are flexible green sheets, are cured and transformed into substrates.
  • plating layer lamination process Next, a plating layer lamination process is performed.
  • the external electrodes 51 and 52 are subjected to a known plating process. Thereby, the plating layer 60 is laminated so as to cover the external electrodes 51 and 52 .
  • the recess 73A is formed in the interlayer connection conductor 31 in the interlayer connection conductor forming step.
  • the deformation of the interlayer connection conductor 31 causes the electrode or the like formed on another base material laminated on the interlayer connection conductor 31 to enter the recess 73A. can let As a result, it is possible to prevent the interlayer connection conductor 31 from protruding from the base material.
  • the deformation of the interlayer connection conductor 31 prevents the electrode or the like formed on another base material laminated on the interlayer connection conductor 31 from entering the recess 73A. .
  • the interlayer connection conductor 31 may rise from the substrate.
  • the cavity 31A is formed by the remaining space without completely eliminating the space formed by the recess 73A. As a result, it is possible to prevent the interlayer connection conductor 31 from protruding from the base material.
  • the diameter of the through-hole 20D at one end in the thickness direction is larger than the diameter at the other end in the thickness direction of the through-hole 20D, and the recess 73A of the interlayer connection conductor 31 is the same as the through-hole 20D. It is formed on the end face 73B on the one end side in the thickness direction, that is, on the end face on the larger diameter side. Thereby, the recess 73A formed in the interlayer connection conductor 31 can be enlarged. As a result, when the interlayer connection conductor 31 is deformed, an electrode or the like formed on another base material can be inserted into the recess 73A by the deformation of the interlayer connection conductor 31 more.
  • the interlayer connection conductor 31 can be formed continuously in the thickness direction in the lamination process.
  • FIG. 9 is a cross-sectional view of the electronic component according to the second embodiment of the present invention at a position corresponding to the AA cross section of FIG.
  • the electronic component 10A according to the second embodiment is different from the electronic component 10 according to the first embodiment in that the through hole 20E extends from the other end (the end on the main surface 20A side) in the thickness direction to the one end (the main surface 20B). and the inner electrode 45 interposed between the two interlayer connection conductors 80 and electrically connecting the two interlayer connection conductors 80 is further provided.
  • Differences from the first embodiment will be described below. Points in common with the electronic component 10 according to the first embodiment are denoted by the same reference numerals, and descriptions thereof are omitted in principle, and will be described as necessary.
  • an electronic component 10A according to the second embodiment includes a base body 90, interlayer connection conductors 80, internal electrodes 40, external electrodes 50, and plating layers 60.
  • the external electrodes 50 and the plating layers 60 are configured similarly to the electronic component 10 according to the first embodiment.
  • the shape of the through hole 20E of the base body 90 is opposite to the through hole 20D of the base body 20 (see FIG. 2) in the thickness direction. Otherwise, the base body 90 has the same configuration as the base body 20 .
  • the diameter of the through-hole 20E decreases from the main surface 20A toward the main surface 20B along the thickness direction. That is, the through hole 20E has a tapered shape in which the diameter decreases from the other end (the end on the main surface 20A side) in the thickness direction to the one end (the end on the main surface 20B side).
  • the interlayer connection conductor 80 has the same truncated cone shape as the interlayer connection conductor 30 (see FIG. 2), but the thickness direction of the interlayer connection conductor 30 is opposite to that of the interlayer connection conductor 30 . That is, while the interlayer connection conductor 30 has a smaller diameter toward the main surface 20A, the interlayer connection conductor 80 has a larger diameter toward the main surface 20A.
  • the positional relationship between the small-diameter portion and the large-diameter portion may be reversed from that in FIG. That is, in FIG.
  • the diameter of the interlayer connection conductor 80 decreases toward the top of the page, but conversely, the interlayer connection conductor 80 is configured to decrease in diameter toward the bottom of the page.
  • Such a configuration can be realized, for example, by reversing the stacking order of the substrates 21-27.
  • the interlayer connection conductors 80 include eight interlayer connection conductors 81 and two interlayer connection conductors 82 .
  • the interlayer connection conductor 81 corresponds to the first conductor.
  • the interlayer connection conductor 81 corresponds to the interlayer connection conductor 31 of the electronic component 10 according to the first embodiment, and has the same configuration as the interlayer connection conductor 31 and is provided at the same position.
  • the interlayer connection conductor 82 corresponds to the interlayer connection conductor 32 of the electronic component 10 according to the first embodiment, and has the same configuration as the interlayer connection conductor 32 and is provided at the same position.
  • the interlayer connection conductor 81 has a hollow portion 81A.
  • the cavity portion 81A corresponds to the cavity portion 31A of the electronic component 10 according to the first embodiment, and has the same configuration and position as the cavity portion 31A. In the second embodiment, the cavity 81A forms a closed space.
  • the cavity 81A of each interlayer connection conductor 81 is formed biased toward the main surface 20A in the thickness direction, contrary to the cavity 31A of the electronic component 10 according to the first embodiment.
  • the hollow portion 81A of each interlayer connection conductor 81 is formed biased toward the other end portion in the thickness direction of the through hole 20E (the side where the through hole 20E has a larger diameter).
  • the internal electrode 40 includes an internal electrode 45 in addition to the internal electrodes 41 to 44 (see FIG. 2).
  • the internal electrode 45 is an example of a third conductor.
  • the internal electrode 45 is formed on at least one of the substrates 21-27 in the same manner as the other internal electrodes 41-44.
  • the internal electrodes 45 are formed on the main surfaces of the substrates 22-26. Specifically, two internal electrodes 45 are formed on the main surfaces 22A, 25A of the substrates 22, 25, respectively, and one internal electrode 45 is formed on the main surfaces 23A, 24A, 26A of the substrates 23, 24, 26, respectively.
  • An electrode 45 is formed.
  • the internal electrode 45 is interposed between two interlayer connection conductors 80 provided on each of two adjacent layers of base material and arranged in the thickness direction.
  • the internal electrode 45 is in contact with each of the two interlayer connection conductors 80 . That is, the internal electrode 45 electrically connects the two interlayer connection conductors 80 .
  • the internal electrode 45 is interposed between the two interlayer connection conductors 80 . Therefore, the electrical connection between the two interlayer connection conductors 80 can be strengthened.
  • FIG. 10 is a cross-sectional view when through-holes are formed in the substrate in the method for manufacturing an electronic component according to the second embodiment of the present invention.
  • 11 is a cross-sectional view when an interlayer connection conductor is formed in the through-hole of the base material of FIG. 10.
  • FIG. 12 is a cross-sectional view when an interlayer connection conductor is formed in the through-hole of the base material of FIG. 10.
  • Differences from the method of manufacturing the electronic component 10 according to the first embodiment will be described below. Points in common with the manufacturing method of the electronic component 10 according to the first embodiment are denoted by the same reference numerals, and descriptions thereof are omitted in principle, and will be described as necessary.
  • the sheet forming step, the through hole forming step, the interlayer connection conductor forming step, An internal electrode forming process, an external electrode forming process, a stacking process, a singulation process, a firing process, and a plating layer stacking process are performed.
  • the sheet forming process is executed.
  • the sheet forming process is the same as the method for manufacturing the electronic component 10 according to the first embodiment.
  • FIG. 10 shows carrier film 71 and substrate 21 molded on carrier film 71 .
  • the through holes 20E are not formed in the carrier film 71 unlike the through holes 20D in the method for manufacturing the electronic component 10 according to the first embodiment.
  • the through-holes 20E are formed by laser, the through-holes 20E are formed in the ceramic or the like that constitutes the base material 21, while the through-holes 20E are not formed in the PET film or the like that constitutes the carrier film 71. , the wavelength of the laser is tuned.
  • an interlayer connection conductor forming step is performed.
  • the paste 73 is filled from the substrate side (the side opposite to the carrier film 71). That is, in the method for manufacturing the electronic component 10A according to the second embodiment, the filling inlet is opposite to the method for manufacturing the electronic component 10 according to the first embodiment.
  • each of the through holes 20E formed in the substrates 21 to 26 in the through hole forming step is filled with a conductive paste 73.
  • the paste 73 is formed not only inside the through hole 20E but also in the through hole 20E and its periphery on the main surface of the substrate.
  • the paste 73 is formed, for example, by printing from the surface of the base material 24 with a screen printing plate.
  • the interlayer connection conductor 80 is formed by the paste 73 formed inside the through hole 20E.
  • the internal electrodes 45 are formed by the paste 73 formed around the through holes 20E on the main surface of the base material.
  • the interlayer connection conductor forming step corresponds to the first conductor forming step and also to the third conductor forming step.
  • recesses 73A are formed in the paste 73 filled in the through holes 20E of the substrates 22 to 26, similarly to the manufacturing method of the electronic component 10 according to the first embodiment.
  • the recess 73A is not formed in the paste 73 filled in the through hole 20E.
  • the interlayer connection conductor 81 is formed by the paste 73 in which the recess 73A is formed.
  • the interlayer connection conductor 82 is formed by the paste 73 in which the concave portion 73A is not formed.
  • the internal electrode 45 covers part of the interlayer connection conductor 81 (the part excluding the recess 73A).
  • the internal electrode 45 covers the entire interlayer connection conductor 82 .
  • the drying conditions and paste composition described in the first embodiment are adjusted so that the concave portions 73A are formed as shown in the upper part of FIG. is formed.
  • a substrate 24 is shown as a representative of the substrates 22-26.
  • the recesses 73A are formed as shown in the upper part of FIG. not or rarely formed. After that, even if the filled paste 73 dries, the concave portion 73A is not formed or hardly formed.
  • an internal electrode forming process is performed.
  • internal electrodes 41 to 44 are formed in the same manner as in the method of manufacturing the electronic component 10 according to the first embodiment.
  • the internal electrode 45 may be formed in the same manner as the internal electrodes 41 to 44 in the internal electrode forming process instead of the through hole forming process.
  • the internal electrode forming process corresponds to the third conductor forming process.
  • the internal electrode forming process may be performed in parallel with the interlayer connection conductor forming process.
  • the internal electrodes 41 to 44 are formed in the same manner as the internal electrode 45 is formed in the interlayer connection conductor forming step.
  • the external electrode forming process is the same as the method for manufacturing the electronic component 10 according to the first embodiment.
  • the external electrode forming step may be performed in parallel with the interlayer connection conductor forming step, may be performed after the interlayer connection conductor forming step and before the internal electrode forming step, or may be performed in parallel with the internal electrode forming step. may be executed as
  • the lamination process is executed.
  • the base materials 21 to 27 except for the carrier film 71 are laminated in the thickness direction and pressed in a mold.
  • the base body 90 is obtained.
  • Lamination is performed in the same manner as in the method for manufacturing the electronic component 10 according to the first embodiment.
  • the stacking order of the substrates 21 to 27 is the same as that of the electronic component 10 according to the first embodiment.
  • the interlayer connection conductors 80 are oriented in the opposite thickness direction to the interlayer connection conductors 30 (see FIG. 2) of the electronic component 10 according to the first embodiment.
  • the interlayer connection conductor 80 is arranged in the thickness direction of the interlayer connection conductor 30 of the electronic component 10 according to the first embodiment. be in the same direction.
  • the base materials 21 to 27 are laminated so that the surfaces 45A (see FIG. 11) of the internal electrodes 45 are formed on other base materials.
  • the interlayer connection conductors 80 overlap.
  • the internal electrode 45 is interposed between two adjacent interlayer connection conductors 80 .
  • the internal electrode 45 electrically connects the two adjacent first conductors.
  • a singulation process, a firing process, and a plating layer lamination process are performed. These steps are the same as in the method for manufacturing the electronic component 10 according to the first embodiment.
  • 10 A of electronic components are completed by performing a plating layer lamination process and laminating
  • the plurality of base materials 21 to 27 are laminated such that the internal electrodes 45 are interposed between the two interlayer connection conductors 80 in the lamination process. Therefore, the electrical connection between the two interlayer connection conductors 80 can be strengthened.
  • FIG. 13 is an enlarged view of a portion of the electronic component according to the third embodiment of the invention, which corresponds to the portion surrounded by the dashed-dotted line in FIG.
  • An electronic component 10B according to the third embodiment differs from the electronic component 10 according to the first embodiment in that an interlayer connection conductor 31 has a plurality of sealed spaces 31B. Differences from the first embodiment will be described below. Points in common with the electronic component 10 according to the first embodiment are denoted by the same reference numerals, and descriptions thereof are omitted in principle, and will be described as necessary.
  • each interlayer connection conductor 31 has one cavity 31A forming one closed space.
  • at least one interlayer connection conductor 31 has a plurality of closed spaces 31B as shown in FIG. In FIG. 13, the interlayer connection conductor 31 has three sealed spaces 31Ba, 31Bb and 31Bc. In this case, the sealed space 31Ba having the largest volume among the plurality of sealed spaces 31B corresponds to the cavity 31A.
  • Each interlayer connection conductor 31 can have voids forming sealed spaces in addition to sealed spaces 31Ba, 31Bb, and 31Bc as shown in FIG. Even in this case, the sealed space 31Ba, which is the largest among the three sealed spaces 31Ba, 31Bb, and 31Bc, has a larger volume than the void, so the sealed space 31Ba corresponds to the cavity 31A.
  • each interlayer connection conductor 31 has a plurality of sealed spaces 31B
  • all of the plurality of sealed spaces 31B may correspond to the cavity 31A.
  • the plurality of sealed spaces 31B of the interlayer connection conductor 31 are formed to be biased toward either the main surface 20B side or the main surface 20A side in the thickness direction of the through hole 20D.
  • the total volume of the closed spaces 31Ba and 31Bb located on the main surface 20B side (upper side of the paper surface of FIG. 13) from the central position CL in the thickness direction of the through hole 20D is the main surface 20A side from the central position CL ( larger than the total volume of the closed space 31Bc located on the lower side of the paper surface of FIG. 13).
  • the plurality of sealed spaces 31Ba, 31Bb, 31Bc are biased toward the main surface 20B in the thickness direction of the through hole 20D.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

電子部品は、厚み方向に積層された複数の基材と、基材に設けられて厚み方向に貫通する貫通孔に充填された層間接続導体と、厚み方向から見て層間接続導体と重なる位置に、層間接続導体と基材を介して形成された内部電極とを備える。層間接続導体は、空洞部を有する。空洞部は、貫通孔の厚み方向の内部電極側に偏って形成されている。

Description

電子部品及びその製造方法
 本発明は、厚み方向に積層された複数の絶縁層と、絶縁層を厚み方向に貫通する貫通孔に充填された層間接続導体とを備える電子部品、及びその製造方法に関する。
 絶縁層と、厚み方向に積層された複数の絶縁層と、絶縁層を厚み方向に貫通する貫通孔に充填された層間接続導体とを備える電子部品の一例としての高周波部品が、特許文献1に開示されている。特許文献1に開示された高周波部品は、複数のセラミック層(絶縁層に対応)が積層されたセラミック基板と、セラミック基板の内部に形成された配線電極と、セラミック基板の下面に形成された外部電極とを備える。配線電極と外部電極とは、セラミック層に形成されたビア導体(層間接続導体に対応)を介して接続されている。
国際公開第2017/179325号公報
 電子部品の製造過程において、層間接続導体が形成された各絶縁層は、互いに積層される。この積層過程において、層間接続導体及び絶縁層は圧着されること等によって変形する。層間接続導体及び絶縁層の材質は異なるため、層間接続導体及び絶縁層の収縮率は異なる。そのため、前記の変形によって、層間接続導体が絶縁層から隆起するおそれがある。
 隆起した層間接続導体は、通常状態において絶縁層を介して層間接続導体から離隔している他の導体と短絡するおそれがある。複数の絶縁層の各々に形成された層間接続導体が厚み方向に連続している場合、これら連続した層間接続導体の全体としての隆起量は大きくなるため、前記の短絡の発生可能性が高まる。また、絶縁層の厚みが薄い場合も、前記の短絡の発生可能性が高まる。
 従って、本発明の目的は、前記課題を解決することにあって、絶縁層を貫通する導体の絶縁層からの隆起を抑制することができる電子部品を提供することにある。
 前記目的を達成するために、本発明は以下のように構成する。
 本発明の一態様に係る電子部品は、
 厚み方向に積層された複数の絶縁層と、
 複数の前記絶縁層の少なくとも1層に設けられて前記厚み方向に貫通する貫通孔に充填された第1導体と、
 前記厚み方向から見て少なくとも一部が前記第1導体と重なる位置に、前記第1導体と少なくとも1層の前記絶縁層を介して形成された第2導体と、を備え、
 前記第1導体は、空洞部を有し、
 前記空洞部は、前記貫通孔の前記厚み方向の前記第2導体側及び前記第2導体とは反対側のいずれか一方に偏って形成される。
 本発明によれば、絶縁層を貫通する第1導体の絶縁層からの隆起を抑制することができる。
本発明の第1実施形態に係る電子部品の底面図。 図1のA-A断面を示す断面図。 本発明の第1実施形態に係る電子部品の製造方法において基材に貫通孔が形成されたときの断面図。 図3の基材の貫通孔に層間接続導体が形成されたときの断面図。 図3の基材の貫通孔に層間接続導体が形成されたときの断面図。 図4の基材に内部電極が形成されたときの断面図。 図5の基材に外部電極が形成されたときの断面図。 本発明の第1実施形態に係る電子部品の製造方法において複数の基材が積層されて素体が形成されたときの断面図。 本発明の第2実施形態に係る電子部品における図1のA-A断面に対応する位置の断面図。 本発明の第2実施形態に係る電子部品の製造方法において基材に貫通孔が形成されたときの断面図。 図10の基材の貫通孔に層間接続導体が形成されたときの断面図。 図10の基材の貫通孔に層間接続導体が形成されたときの断面図。 本発明の第3実施形態に係る電子部品における図2の一点鎖線で囲まれた部分に対応する部分の拡大図。
 本発明の一態様に係る電子部品は、
 厚み方向に積層された複数の絶縁層と、
 複数の前記絶縁層の少なくとも1層に設けられて前記厚み方向に貫通する貫通孔に充填された第1導体と、
 前記厚み方向から見て少なくとも一部が前記第1導体と重なる位置に、前記第1導体と少なくとも1層の前記絶縁層を介して形成された第2導体と、を備え、
 前記第1導体は、空洞部を有し、
 前記空洞部は、前記貫通孔の前記厚み方向の前記第2導体側及び前記第2導体とは反対側のいずれか一方に偏って形成される。
 この構成によれば、第1導体は空洞部を有する。これにより、第1導体が変形した場合に、第1導体の変形分を空洞部に入り込ませることができる。そのため、第1導体の絶縁層から隆起を抑制することができる。その結果、第1導体が隆起することによる第1導体と第2導体との短絡の発生可能性を低くすることができる。
 前記電子部品において、前記貫通孔は、前記厚み方向の一端部から他端部へ向かうにしたがって小径となるテーパ形状であってもよく、
 前記空洞部は、前記貫通孔の前記厚み方向の一端部側に偏って形成されてもよい。
 第1導体は、他の絶縁層に形成された別の第1導体、及び絶縁層の主面に形成されたパッド電極等の他の導体と電気的に接続され得る。しかし、第1導体が空洞部を備える場合、第1導体と他の導体との接触面積が空洞部の分だけ小さくなる。これにより、第1導体と他の導体との接続不良が発生するおそれがある。
 この構成によれば、第1導体の空洞部は、テーパ形状の貫通孔の大径となる側に偏って形成されている。そのため、第1導体の空洞部がテーパ形状の貫通孔の小径となる側に偏って形成された構成と比べて、第1導体と他の導体との接触面積を大きくすることができる。その結果、前記のような接続不良の発生可能性を低くすることができる。
 前記電子部品において、前記厚み方向から見て、前記空洞部は、前記第1導体の中央部に形成されていてもよい。
 第1導体が絶縁層から隆起する場合、厚み方向から見た場合の第1導体の中央部の隆起量は、厚み方向から見た場合の第1導体の外縁部の隆起量より大きい。この構成によれば、隆起量が大きくなる当該中央部に空洞部が形成されている。これにより、第1導体の絶縁層から隆起を抑制することができる。
 前記電子部品において、互いに隣接する2層の前記絶縁層の各々に形成された2つの前記第1導体を備えていてもよく、
 2つの前記第1導体は、前記厚み方向からみて少なくとも一部が互いに重なり且つ互いに電気的に接続されていてもよい。
 この構成によれば、2つの第1導体が厚み方向に連続している。この場合、2つの第1導体の全体としての絶縁層からの隆起量は、第1導体が厚み方向に連続していない場合の第1導体の絶縁層からの隆起量より大きい。この構成によれば、2つの第1導体の各々が空洞部を備えている。そのため、2つの第1導体の全体としての空洞部の体積を大きくすることができる。その結果、第1導体の絶縁層からの隆起を抑制することができる。
 前記電子部品は、2つの前記第1導体の間に介在して、2つの前記第1導体を電気的に接続する第3導体を更に備えていてもよい。
 この構成によれば、2つの第1導体の間に、第3導体が介在される。そのため、2つの第1導体の間の電気的な接続を強化することができる。
 前記電子部品において、前記第1導体に複数の密閉空間が形成されていてもよく、
 前記空洞部は、前記複数の密閉空間のうちの最も体積が大きい密閉空間を形成するものであってもよい。
 前記電子部品において、前記第1導体及び前記第2導体は、インダクタの少なくとも一部を構成してもよい。
 第1導体及び第2導体がインダクタの少なくとも一部を構成する場合、第1導体が絶縁層から隆起すると、インダクタを貫通する磁束の数及び向き等が変化することにより、インダクタの特性にばらつきが生じる。この構成によれば、第1導体が空洞部を備えることによって、第1導体の絶縁層からの隆起を抑制することができる。そのため、インダクタの特性のばらつきを抑制することができる。
 前記電子部品において、前記第1導体及び前記第2導体は、コンデンサの少なくとも一部を構成してもよい。
 第1導体及び第2導体がコンデンサの少なくとも一部を構成する場合、第1導体が絶縁層から隆起すると、第1導体と第2導体との間隔が変わるため、コンデンサの特性にばらつきが生じる。この構成によれば、第1導体が空洞部を備えることによって、第1導体の絶縁層からの隆起を抑制することができる。そのため、コンデンサの特性のばらつきを抑制することができる。
 本発明の一態様に係る電子部品の製造方法は、
 複数の絶縁層の少なくとも1層に、前記絶縁層を厚み方向に貫通する貫通孔を形成する貫通孔形成工程と、
 前記貫通孔の前記厚み方向の一端部側の端面に前記厚み方向に凹んだ凹部が形成されるように、前記貫通孔に導電性材料を充填して、第1導体を形成する第1導体形成工程と、
 複数の絶縁層の少なくとも1層に、導電性の第2導体を形成する第2導体形成工程と、
 前記厚み方向から見て前記第1導体及び前記第2導体の少なくとも一部が互いに重なり、且つ前記第1導体及び前記第2導体の間に少なくとも1層の前記絶縁層が介在するように、複数の前記絶縁層を前記厚み方向に積層する積層工程と、を含む。
 この製造方法によれば、第1導体形成工程において、第1導体に凹部が形成される。これにより、その後の積層工程等において、第1導体が変形した場合の第1導体の変形分、第1導体に積層される他の基材に形成される電極等を凹部に入り込ませることができる。これにより、第1導体の絶縁層からの隆起を抑制することができる。
 前記製造方法では、前記積層工程において、前記凹部の開口が積層された前記絶縁層、前記第1導体、及び前記第2導体の少なくとも1つに覆われることによって、前記凹部によって形成される空間が密閉されて空洞部が形成されるように、複数の前記絶縁層が積層されてもよい。
 積層工程において凹部の変形等によって凹部がなくなると、第1導体の変形分、第1導体に積層される他の基材に形成される電極等が凹部に入り込むことができなくなる。これにより、第1導体が絶縁層から隆起するおそれがある。この製造方法によれば、凹部によって形成される空間が完全になくならずに、残った空間によって空洞部が形成される。これにより、第1導体の絶縁層からの隆起を抑制することができる。
 前記製造方法では、前記貫通孔形成工程において、前記貫通孔は、前記厚み方向の一端部から他端部へ向かって小径となるように形成されてもよい。
 この製造方法によれば、貫通孔の厚み方向の一端部側の径は、貫通孔の厚み方向の他端部側の径より大きく、第1導体の凹部は、貫通孔の厚み方向の一端部側の端面、つまり径が大きい側の端面に形成される。これにより、第1導体に形成される凹部を大きくすることができる。その結果、第1導体が変形するときに、より多くの第1導体の変形分、他の基材に形成される電極等を凹部に入り込ませることができる。
 前記製造方法では、前記貫通孔形成工程において、複数の前記絶縁層に前記貫通孔が形成されてもよく、
 前記第1導体形成工程において、前記貫通孔の各々に前記第1導体が形成されてもよく、
 前記積層工程において、前記厚み方向から見て複数の前記第1導体の少なくとも一部が重なって互いに電気的に接続されるように、複数の前記絶縁層が前記厚み方向に積層されてもよい。
 この製造方法によれば、積層工程において、厚み方向に連続して第1導体を形成することができる。
 前記製造方法は、複数の前記絶縁層の少なくとも1層の主面に、前記第1導体の少なくとも一部を覆うように第3導体を形成する第3導体形成工程を更に含んでもよく、
 前記積層工程において、前記第3導体が隣り合う2つの前記第1導体の間に介在して、2つの前記第1導体を電気的に接続するように、複数の前記絶縁層が前記厚み方向に積層されてもよい。
 この製造方法によれば、積層工程において、第3導体が2つの第1導体の間に介在するように、複数の絶縁層が積層される。そのため、2つの第1導体の間の電気的な接続を強化することができる。
 <第1実施形態>
 図1は、本発明の第1実施形態に係る電子部品の底面図である。図2は、図1のA-A断面を示す断面図である。電子部品は、素体に層間接続導体と内部電極と外部電極とが設けられたものである。電子部品は、外部電極を介してマザー基板等に実装され得る。
 図1及び図2に示すように、第1実施形態に係る電子部品10は、素体20と、層間接続導体30と、内部電極40と、外部電極50と、めっき層60とを備える。
 素体20は、全体として直方体形状である。素体20の形状は、直方体形状に限らない。第1実施形態において、素体20は、各基材21~27の厚み方向に積層された7層の基材21~27が一体化されたものである。なお、素体20を構成する基材の層数は7層に限らない。基材21~27の各々は、絶縁性であり、板状である。基材21~27は、絶縁層の一例である。第1実施形態において、素体20(各基材21~27)は、LTCC(Low Temperature Co-fired Ceramics)で構成されている。素体20は、LTCCに限らず、例えばアルミナ等のLTCC以外のセラミックで構成されていてもよいし、ガラスエポキシ、テフロン(登録商標)、紙フェノール等の樹脂で構成されていてもよい。
 図2に示すように、素体20は、主面20A,20Bと側面20Cとを備える。主面20Aは、基材21の主面であって素体20の外部に面している。主面20Bは、基材27の主面であって素体20の外部に面している。主面20Bは、主面20Aと反対を向いている。側面20Cは、基材21~27の側面で構成されている。側面20Cは、主面20A,20Bを繋いでいる。
 層間接続導体30は、素体20の内部に形成されている。層間接続導体30は、基材21~27の少なくとも1つに形成され得る。第1実施形態では、層間接続導体30は、基材21~26に形成されている。
 層間接続導体30は、複数の基材21~27の少なくとも1層を基材21~27の厚み方向に貫通する貫通孔20Dに、導電性のペーストが充填され、セラミック(第1実施形態ではLTCC)と共焼成されたものである。導電性のペーストは、例えば銅等の導電性粉末を含んでいる。導電性ペーストが含む導電性粉末は、銅に限らず、例えば銀でもよい。素体20が樹脂で構成されている場合、層間接続導体30は、銅や銀などで構成された導電性金属がメッキ形成されたものである。
 第1実施形態では、貫通孔20Dは、厚み方向に沿って主面20Bから主面20Aへ向かうにしたがって小径となっている。つまり、貫通孔20Dは、厚み方向の一端部(主面20B側の端部)から他端部(主面20A側の端部)へ向かうにしたがって小径となるテーパ形状である。そのため、第1実施形態では、層間接続導体30は円錐台形状である。なお、貫通孔20Dにおいて、小径となる部分と当該小径よりも大径となる部分との位置関係が、図2とは逆であってもよい。つまり、図2では、貫通孔20Dは紙面の下方へ向かうにしたがって小径となっているが、これとは逆に、貫通孔20Dは紙面の上方へ向かうにしたがって小径となるように構成されていてもよい。このような構成は、例えば、基材21~27の積層順序を逆にすることによって実現可能である。
 第1実施形態では、図2に示すように、層間接続導体30は、8つの層間接続導体31と、2つの層間接続導体32とを備える。層間接続導体31は、第1導体の一例である。基材22,24,25にそれぞれ2つの層間接続導体31が設けられ、基材23,26にそれぞれ1つの層間接続導体31が設けられる。2つの層間接続導体32は、基材21に設けられている。層間接続導体31,32の数は、それぞれ前述した数に限らない。
 8つの層間接続導体31は、4つの連続した層間接続導体311と、1つの層間接続導体312と、3つの連続した層間接続導体313とを備える。図2では、4つの層間接続導体311と1つの層間接続導体32とが厚み方向に並んで形成されている。また、1つの層間接続導体312と1つの層間接続導体32とが厚み方向に並んで形成されている。また、3つの層間接続導体313が厚み方向に並んで形成されている。つまり、図2に示すように、電子部品10は、互いに隣接する2層の基材の各々に形成された2つの層間接続導体30を備える。また、厚み方向に並んで形成された層間接続導体30のうち隣り合う2つの層間接続導体30は、厚み方向から見て少なくとも一部が互いに重なり且つ互いに電気的に接続されている。
 第1実施形態において、4つの層間接続導体311と1つの層間接続導体32とからなる5つの連続した層間接続導体31,32の厚み方向の長さは、基材26の厚みより長い。1つの層間接続導体312と1つの層間接続導体32とからなる2つの連続した層間接続導体31,32の厚み方向の長さは、基材23の厚みより長い。3つの連続した層間接続導体313の厚み方向の長さは、基材23の厚みより長い。
 層間接続導体31は、空洞部31Aを有する。一方、層間接続導体32は、空洞部31Aを有さない。空洞部31Aは、密閉空間を形成している。
 第1実施形態において、空洞部31Aの一部は、当該空洞部31Aが形成された層間接続導体31によって区画されている。空洞部31Aの残りは、当該空洞部31Aが形成された層間接続導体31と隣接する層間接続導体31、または内部電極40によって区画されている。
 なお、空洞部31Aの残りは、前述した隣接する層間接続導体31及び内部電極40以外、例えば外部電極50によって区画されていてもよい。また、空洞部31Aの全部が、当該空洞部31Aが形成された層間接続導体31によって区画されていてもよい。
 第1実施形態では、各層間接続導体31の空洞部31Aは、厚み方向において主面20B側に偏って形成されている。言い換えると、各層間接続導体31の空洞部31Aは、貫通孔20Dの厚み方向の一端部側(貫通孔20Dが大径となる側)に偏って形成されている。なお、各層間接続導体31の空洞部31Aは、厚み方向において主面20A側に偏って形成されていてもよい。
 厚み方向から見て、各層間接続導体31の空洞部31Aは、層間接続導体31の中央部に形成されている。
 図2に示すように、内部電極40は、素体20の内部に形成されており、素体20の外部に露出していない。内部電極40は、基材21~27の少なくとも1つに形成され得る。
 第1実施形態のように素体20がセラミックで構成されている場合、内部電極40は、基材の主面(第1実施形態では、主面23A,24A,26A,27A)に導電性のペーストを印刷し、基材と共焼成されたものである。導電性のペーストは、例えば銅や銀で構成されている。素体20が樹脂で構成されている場合、内部電極40は、金属箔をエッチング等の公知の手段によって、基材の主面に形成されている。
 第1実施形態では、電子部品10は、4つの内部電極40(内部電極41,42,43,44)を備える。
 内部電極41は、基材23の主面23Aに形成されている。内部電極41は、層間接続導体312と接触し、当該層間接続導体312と電気的に接続されている。厚み方向に見て、内部電極41の一部は、基材24に形成された層間接続導体313と重なっている。
 内部電極42は、基材24の主面24Aに形成されている。内部電極42は、基材24に形成された層間接続導体313と接触し、当該層間接続導体313と電気的に接続されている。厚み方向に見て、内部電極42の一部は、層間接続導体312と重なっている。
 内部電極43は、基材26の主面26Aに形成されている。内部電極43は、基材25に形成された層間接続導体311と接触し、当該層間接続導体311と電気的に接続されている。
 内部電極44は、基材27の主面27Aに形成されている。内部電極44は、基材26に形成された層間接続導体313と接触し、当該層間接続導体313と電気的に接続されている。厚み方向に見て、内部電極44の一部は、基材25に形成された層間接続導体311と重なっている。
 なお、内部電極40(内部電極41~44)の各々の大きさ、形状、及び位置は、図2に示す大きさ、形状、及び位置に限らない。例えば、厚み方向に見て、内部電極41の全部が基材24に形成された層間接続導体313と重なっていてもよい。この場合、内部電極41は、図2に示す大きさより小さい。内部電極42,44についても同様である。
 内部電極41は、基材23を介して層間接続導体313と対向する位置に形成されている。内部電極41は、複数の基材を介して層間接続導体313と対向する位置に形成されていてもよい。内部電極41は、層間接続導体313が第1導体に相当するときに第2導体に相当する。
 内部電極42は、基材23を介して層間接続導体312と対向する位置に形成されている。内部電極42は、複数の基材を介して層間接続導体312と対向する位置に形成されていてもよい。内部電極42は、層間接続導体312が第1導体に相当するときに第2導体に相当する。
 内部電極44は、基材26を介して層間接続導体311と対向する位置に形成されている。内部電極44は、複数の基材を介して層間接続導体311と対向する位置に形成されていてもよい。内部電極44は、層間接続導体311が第1導体に相当するときに第2導体に相当する。
 以上より、内部電極40は、厚み方向から見て少なくとも一部が層間接続導体31と重なる位置に、層間接続導体31と少なくとも1層の基材を介して形成されている。
 第1実施形態において、少なくとも1層の基材を介して形成された層間接続導体31と内部電極40とは異電位である。例えば、基材25に形成された層間接続導体311と内部電極44、基材22に形成された層間接続導体312と内部電極42、基材24に形成された層間接続導体313と内部電極41は、それぞれ異電位である。もちろん、これらの層間接続導体31と内部電極40とは、同電位であってもよい。
 層間接続導体311の空洞部31Aは、貫通孔20Dの厚み方向の内部電極44(層間接続導体311が第1導体に相当するときに第2導体に相当)側に偏って形成される。また、層間接続導体312の空洞部31Aは、貫通孔20Dの厚み方向の内部電極42(層間接続導体312が第1導体に相当するときに第2導体に相当)側に偏って形成される。層間接続導体313の空洞部31Aは、前記とは逆に、貫通孔20Dの厚み方向の内部電極41(層間接続導体313が第1導体に相当するときに第2導体に相当)とは反対側に偏って形成される。
 以上より、層間接続導体31の空洞部31Aは、貫通孔20Dの厚み方向の第2導体側及び第2導体とは反対側のいずれか一方に偏って形成される。
 内部電極43,44は、互いに厚み方向に基材26を介して対向している。これにより、内部電極43,44は、基材26を間に挟んだコンデンサを構成している。ここで、層間接続導体311は、内部電極43の一部と電気的に接続されている。これにより、層間接続導体311及び内部電極44は、前述したコンデンサの一部を構成している。
 なお、電子部品10が内部電極43を備えていない場合、層間接続導体311及び内部電極44は、基材26を間に挟んだコンデンサの全部を構成している。
 内部電極41,42は、互いに厚み方向に基材23を介して対向している。これにより、内部電極41,42は、基材23を間に挟んだコンデンサを構成している。ここで、層間接続導体312は、内部電極41の一部と電気的に接続されている。これにより、層間接続導体312及び内部電極42は、前述したコンデンサの一部を構成している。同様に、層間接続導体313は、内部電極42の一部と電気的に接続されている。これにより、層間接続導体313及び内部電極41は、前述したコンデンサの一部を構成している。
 なお、電子部品10が内部電極41を備えていない場合、層間接続導体312及び内部電極42は、基材23を間に挟んだコンデンサの全部を構成している。同様に、電子部品10が内部電極42を備えていない場合、層間接続導体313及び内部電極41は、基材23を間に挟んだコンデンサの全部を構成している。
 以上より、層間接続導体31及び内部電極40は、コンデンサの少なくとも一部を構成する。
 層間接続導体31及び内部電極40は、インダクタの少なくとも一部を構成してもよい。例えば、図2に破線で示すように、互いに電気的に接続された3つの層間接続導体314がそれぞれ基材24,25,26に形成されている場合、層間接続導体313,314と内部電極42,44とによって、閉ループが形成される。この閉ループがコイルとして機能する。つまり、この場合、層間接続導体313,314と内部電極42,44とは、インダクタの全部を構成する。層間接続導体31及び内部電極40によって構成されるインダクタは、前述したような閉ループのコイルに限らない。例えば、インダクタは、図2の紙面奥行方向に延びた螺旋形状のコイルであってもよく、層間接続導体31及び内部電極40が当該螺旋形状のコイルの一部または全部を構成してもよい。
 外部電極50は、素体20の外部に形成されている。第1実施形態では、外部電極50は、基材21の主面、つまり素体20の主面20Aに形成されている。なお、外部電極50は、基材28の主面、つまり素体20の主面20Bに形成されていてもよい。
 外部電極50は、内部電極40と同様にして構成されている。つまり、第1実施形態では、外部電極50は、素体20の主面20Aに導電性のペーストを印刷し、基材21~27と共焼成されたものである。
 図2では、外部電極50は、2つの外部電極51,52を備えている。第1実施形態において、外部電極51は、層間接続導体311と隣り合う層間接続導体32と接触し、当該層間接続導体32と電気的に接続されている。外部電極52は、層間接続導体312と隣り合う層間接続導体32と接触し、当該層間接続導体32と電気的に接続されている。
 めっき層60は、外部電極50を覆っている。めっき層60は、外部電極51,52に対する雰囲気や水分等の影響を抑制する。めっき層60は、例えば、Ni-SnやNi-無電解Au等で構成された膜である。
 第1実施形態では、図1に示すように、電子部品10は、6つのめっき層60を備えている。なお、電子部品10が備えるめっき層60の数は、6つに限らない。図2では、6つのめっき層60のうち、2つのめっき層61,62が描かれている。めっき層61は、外部電極51を覆っている。めっき層62は、外部電極52を覆っている。
 第1実施形態によれば、層間接続導体31は空洞部31Aを有する。これにより、層間接続導体31が変形した場合に、層間接続導体31の変形分を空洞部31Aに入り込ませることができる。そのため、層間接続導体31の基材22~26から隆起を抑制することができる。その結果、層間接続導体31が隆起することによる層間接続導体31と内部電極41,42,44との短絡の発生可能性を低くすることができる。
 層間接続導体31は、他の基材に形成された別の層間接続導体31、及び基材の主面に形成されたパッド電極等の他の導体と電気的に接続され得る。しかし、層間接続導体31が空洞部31Aを備える場合、層間接続導体31と他の導体との接触面積が空洞部31Aの分だけ小さくなる。これにより、層間接続導体31と他の導体との接続不良が発生するおそれがある。
 第1実施形態によれば、層間接続導体31の空洞部31Aは、テーパ形状の貫通孔20Dの大径となる側に偏って形成されている。そのため、層間接続導体31の空洞部31Aがテーパ形状の貫通孔20Dの小径となる側に偏って形成された構成と比べて、層間接続導体31と他の導体との接触面積を大きくすることができる。その結果、前記のような接続不良の発生可能性を低くすることができる。
 層間接続導体31が基材22~26から隆起する場合、厚み方向から見た場合の層間接続導体31の中央部の隆起量は、厚み方向から見た場合の層間接続導体31の外縁部の隆起量より大きい。第1実施形態によれば、隆起量が大きくなる当該中央部に空洞部31Aが形成されている。これにより、層間接続導体31の基材22~26から隆起を抑制することができる。
 第1実施形態によれば、2つの層間接続導体31が厚み方向に連続している。この場合、2つの層間接続導体31の全体としての基材からの隆起量は、層間接続導体31が厚み方向に連続していない場合の層間接続導体31の基材からの隆起量より大きい。第1実施形態によれば、2つの層間接続導体31の各々が空洞部31Aを備えている。そのため、2つの層間接続導体31の全体としての空洞部31Aの体積を大きくすることができる。その結果、層間接続導体31の基材からの隆起を抑制することができる。
 層間接続導体31及び内部電極41,42,44がインダクタの少なくとも一部を構成する場合、層間接続導体31が基材から隆起すると、インダクタを貫通する磁束の数及び向き等が変化することにより、インダクタの特性にばらつきが生じる。第1実施形態によれば、層間接続導体31が空洞部31Aを備えることによって、層間接続導体31の基材からの隆起を抑制することができる。そのため、インダクタの特性のばらつきを抑制することができる。
 層間接続導体31及び内部電極41,42,44がコンデンサの少なくとも一部を構成する場合、層間接続導体31が基材から隆起すると、層間接続導体31と内部電極41,42,44との間隔が変わるため、コンデンサの特性にばらつきが生じる。第1実施形態によれば、層間接続導体31が空洞部31Aを備えることによって、層間接続導体31の基材からの隆起を抑制することができる。そのため、コンデンサの特性のばらつきを抑制することができる。
 第1実施形態では、空洞部31Aは、厚み方向において主面20B側に偏って形成されているが、厚み方向において主面20A側に偏って形成されていてもよい。言い換えると、各層間接続導体31の空洞部31Aは、貫通孔20Dの厚み方向の他端部側(貫通孔20Dが小径となる側)に偏って形成されていてもよい。
 第1実施形態では、全ての空洞部31Aが、厚み方向において主面20B側に偏って形成されている。しかし、空洞部31Aの一部が、厚み方向において主面20B側に偏って形成され、各層間接続導体31の空洞部31Aの当該一部以外が、厚み方向において主面20A側に偏って形成されていてもよい。
 第1実施形態では、厚み方向から見て、空洞部31Aは、層間接続導体31の中央部に形成されているが、層間接続導体31の中央部以外、例えば層間接続導体31の外縁部に形成されていてもよい。
 貫通孔20Dは、後述する第2実施形態に係る電子部品10A(図9参照)のように、厚み方向に沿って主面20Aから主面20Bへ向かうにしたがって小径となっていてもよい。この場合、層間接続導体30は、前記とは逆向きの円錐台形状となる。また、貫通孔20Dは、テーパ形状に限らない。例えば、貫通孔20Dは、厚み方向の位置にかかわらず、同じ径であってもよい。この場合、層間接続導体30は、円柱形状となる。層間接続導体30の形状は、円柱形状に限らず、例えば四角柱等の他の形状であってもよい。
 <第1実施形態に係る電子部品の製造方法>
 以下に、第1実施形態に係る電子部品10の製造方法が、図3~図8が参照されつつ説明される。図3は、本発明の第1実施形態に係る電子部品の製造方法において基材に貫通孔が形成されたときの断面図である。図4は、図3の基材の貫通孔に層間接続導体が形成されたときの断面図である。図5は、図3の基材の貫通孔に層間接続導体が形成されたときの断面図である。図6は、図4の基材に内部電極が形成されたときの断面図である。図7は、図5の基材に外部電極が形成されたときの断面図である。図8は、本発明の第1実施形態に係る電子部品の製造方法において複数の基材が積層されて素体が形成されたときの断面図である。
 電子部品10は、積層体を複数の素体20に個片化することにより製造される。積層体は、複数の素体20が配列された状態で一体化されたものである。図3~図8では、説明の便宜上、積層体のうち1つの素体20に対応する部分のみが示される。
(シート成形工程)
 最初に、シート成形工程が実行される。シート成形工程では、図2に示す基材21~27が個別に成形される。シート成形工程において成形される基材21~27は、各基材21~27に応じた主剤、可塑剤、バインダ等を含む原料を主として混合することにより、各基材21~27を構成するスラリが作製される。この段階での各基材21~27は、スラリで構成されたグリーンシートである。
 各基材21~27には、主剤として、例えば焼結性セラミック粉末等が使用される。可塑剤としては、例えば、フタル酸エステルやジ-n-ブチルフタレート等が使用される。バインダとしては、例えば、アクリル樹脂やポリビニルブチラール等が使用される。
 各基材21~27を構成するスラリは、例えばリップコータやドクターブレード等を用いて、図3に示すように、キャリアフィルム71上にシート状に成形される。つまり、7枚の基材21~27の各々が、7枚のキャリアフィルム71の各々の上に成形される。キャリアフィルム71としては、例えば、PET(ポリエチレンテレフタレート)フィルム等が使用される。各基材21~27の厚さは、例えば5~100μmである。
 図3では、キャリアフィルム71と、キャリアフィルム71上に成形された基材21とが示されている。
(貫通孔形成工程)
 次に、貫通孔形成工程が実行される。貫通孔形成工程では、図3に示すように、各基材21~27と各基材21~27に対応するキャリアフィルム71とを厚み方向に貫通する貫通孔20Dが形成される。貫通孔20Dは、基材21~27の少なくとも1層に形成される。
 第1実施形態に係る電子部品10の製造方法の貫通孔形成工程では、貫通孔20Dは、厚み方向の一端部から他端部へ向かって小径となるように形成される。第1実施形態に係る電子部品10の製造方法の貫通孔形成工程では、貫通孔20Dの厚み方向の一端部は、キャリアフィルム71側の端部であり、貫通孔20Dの厚み方向の他端部は、基材21~27側の端部である。なお、貫通孔20Dの形状は、図3に示すようなテーパ形状に限らない。
 なお、図3では、2つの貫通孔20Dが基材21及びキャリアフィルム71に形成されているが、各基材21~27に形成される貫通孔20Dの数は2つに限らない。また、各基材21~27に形成される貫通孔20Dの数は、同数であってもよいし、異なる数であってもよい。また、また、各基材21~27に形成される貫通孔20Dの位置は、同じ位置であってもよいし、異なる位置であってもよい。
 第1実施形態に係る電子部品10の製造方法では、最終的に、図2に示すような素体20が形成されるように、基材21~27に形成される貫通孔20Dの数及び位置が決定される。つまり、第1実施形態に係る電子部品10の製造方法では、基材21,22,24,25の各々に2つの貫通孔20Dが形成され、基材23,26の各々に1つの貫通孔20Dが形成される。
(層間接続導体形成工程)
 次に、層間接続導体形成工程が実行される。層間接続導体形成工程は、第1導体形成工程に相当する。層間接続導体形成工程では、図4及び図5に示すように、貫通孔形成工程において各基材21~27及びキャリアフィルム71に形成された貫通孔20Dの各々に、導電性のペースト73が充填される。ペースト73は、キャリアフィルム71側から貫通孔20Dに充填される。充填は、例えば、キャリアフィルム71の表面に、ペースト73が塗布され、塗布されたペースト73がふき取られることによって実行される。
 ペースト73は、例えば、導電性粉末と可塑剤とバインダとを含む原料を混合することにより作製される。ペースト73は、導電性材料の一例である。
 層間接続導体形成工程では、一部の貫通孔20Dに充填されるペースト73には凹部73Aが形成され、当該一部の貫通孔20D以外の貫通孔20Dに充填されるペースト73には凹部73Aが形成されない。第1実施形態に係る電子部品10の製造方法では、基材22~26の貫通孔20Dに充填されるペースト73には凹部73Aが形成され、基材21の貫通孔20Dに充填されるペースト73には凹部73Aが形成されない。凹部73Aが形成されるペースト73によって、層間接続導体31が形成される。凹部73Aが形成されないペースト73によって、層間接続導体32が形成される。
 凹部73Aは、貫通孔20Dの厚み方向の一端部側(キャリアフィルム71側)の端面73Bに形成される。端面73Bは、ペースト73が貫通孔20Dに充填されるときのペースト73の充填入口側の面である。
 ペースト73の充填条件を適宜設定することによって、貫通孔20Dに充填されたペースト73の凹部73Aの深さを調整することができる。充填条件は、例えば、乾燥条件、ペースト73の組成である。
 乾燥条件は、貫通孔20Dに充填されたペースト73を乾燥させるときの乾燥温度、乾燥時間等である。乾燥温度が高い程、乾燥されるペースト73が大きく収縮するため、凹部73Aが深く形成されやすい。同様に、乾燥時間が長い程、凹部73Aが深く形成されやすい。
 ペースト73の組成は、例えば、ペースト73に含まれる導電性粉末(例えば銅紛)の粒径である。貫通孔20Dに充填されたペースト73を乾燥させるときに、当該導電性粉末の粒径が小さい程、当該粉末の目減り量が大きくなるため、凹部73Aが深く形成されやすい。
 また、例えば、ペースト73の組成は、ペースト73に含まれる導電性粉末の比率である。ペースト73は、当該導電性粉末と溶剤とを含むが、溶剤の割合が多い方が、ペースト73に穴が形成されやすいため、凹部73Aが深く形成されやすい。
 また、例えば、ペースト73の充填回数(例えば、ペースト73をスクリーン印刷する場合、印刷回数)を多くするほど、凹部73Aが形成されにくくなる。
 基材22~26の貫通孔20Dにペースト73が充填されるとき、前述した乾燥条件及びペーストの組成等が調整されることによって、図4の上段に示すように、凹部73Aが形成される。なお、図4では、基材22~26を代表して、基材24が記されている。その後、充填されたペースト73が乾燥すると、ペースト73が収縮して、図4に下段に示すように、凹部73Aが深くなる。このとき、凹部73Aは、貫通孔20Dのうちのキャリアフィルム71に形成された部分から、貫通孔20Dのうちの基材22~26に形成された部分に達する。
 基材21の貫通孔20Dにペースト73が充填されるとき、前述した乾燥条件及びペーストの組成等が調整されることによって、図5の上段に示すように、凹部73Aは形成されないまたは僅かのみ形成される。その後、充填されたペースト73が乾燥すると、ペースト73が収縮して、図5に下段に示すように、凹部73Aが形成される。このとき、凹部73Aは、貫通孔20Dのうちのキャリアフィルム71に形成された部分までの深さに止まり、貫通孔20Dのうちの基材21に形成された部分に達しない。
(内部電極形成工程)
 次に、内部電極形成工程が実行される。内部電極形成工程は、第2導体形成工程に相当する。内部電極形成工程では、基材21~27の少なくとも1層に内部電極40が形成される。
 第1実施形態に係る電子部品10の製造方法では、図6に示すように、基材24の主面24Aに、ペースト75が形成される。ペースト75は、例えば、スクリーン印刷、インクジェット印刷、グラビア印刷等により形成される。
 ペースト75は、前述したペースト73と同様に、導電性粉末と可塑剤とバインダとを含む原料を混合することにより作製される。なお、ペースト75は、導電性の原料を含むことを条件として、ペースト73と同じ原料で構成されていてもよいし、ペースト73と異なる原料で構成されていてもよい。
 第1実施形態に係る電子部品10の製造方法では、基材23,24,26,27の主面23A,24A,26A,27Aにペースト75が形成される。
 第1実施形態に係る電子部品10の製造方法では、基材24の主面24Aに形成されたペースト75は、内部電極40のうちの内部電極42に対応する(図6参照)。基材23の主面23Aに形成されたペースト75は、内部電極40のうちの内部電極41に対応する。基材26の主面26Aに形成されたペースト75は、内部電極40のうちの内部電極43に対応する。基材27の主面27Aに形成されたペースト75は、内部電極40のうちの内部電極44に対応する。
(外部電極形成工程)
 次に、外部電極形成工程が実行される。外部電極形成工程は、層間接続導体形成工程より後且つ内部電極形成工程より前に実行されてもよいし、内部電極形成工程と並行して実行されてもよい。
 外部電極形成工程では、内部電極形成工程における内部電極40の形成と同様にして、外部電極50が形成される。
 第1実施形態に係る電子部品10の製造方法では、図7に示すように、基材21の主面21Aにペースト75が形成される。ペースト75の一部は、主面21Aに露出した層間接続導体32の端面73Cを覆い、層間接続導体32と電気的に接続される。
 第1実施形態に係る電子部品10の製造方法では、2つの層間接続導体32の一方を覆うペースト75は、外部電極50のうちの外部電極51に対応し、2つの層間接続導体32の他方を覆うペースト75は、外部電極50のうちの外部電極52に対応する。
(積層工程)
 次に、積層工程が実行される。積層工程では、図8に示すように、キャリアフィルム71を除いた各基材21~27が厚み方向に積層され、金型内で圧着される。これにより、素体20が得られる。
 積層工程では、7層の基材21~27が、数値の小さい基材から数値の大きい基材への順序で、具体的には基材21,22,23,24,25,26,27の順序で積層される。これにより、基材21の主面21Aと基材27の主面とが、素体20の外面となる。つまり、基材21の主面21Aが素体20の主面20Aとなり、基材27の主面が素体20の主面20Bとなる。なお、図8では、凹部73Aの開口が図8の紙面上側を向くように積層されているが、各基材21~27を厚み方向に逆向きに積層することにより、凹部73Aの開口が図8の紙面下側を向くように積層することも可能である。
 積層工程では、各基材21~27が圧着されることによって、外部電極50が基材21内へ入り込む。
 積層工程では、各基材21~27が積層されることによって、厚み方向から見て複数の層間接続導体31の少なくとも一部が重なって互いに電気的に接続される。
 第1実施形態に係る電子部品10の製造方法では、各基材21~27が積層されることによって、基材21に形成されて外部電極51と電気的に接続された1つの層間接続導体32と、基材22~25に形成された4つの層間接続導体31とが、厚み方向に連続して並ぶ。1つの層間接続導体32と4つの層間接続導体31とにおいて、隣り合う2つの層間接続導体の少なくとも一部同士は、厚み方向から見て互いに重なる。これにより、1つの層間接続導体32と4つの層間接続導体31とは、互いに電気的に接続される。4つの層間接続導体31の各々は、層間接続導体311に対応する。
 第1実施形態に係る電子部品10の製造方法では、各基材21~27が積層されることによって、基材21に形成されて外部電極52と電気的に接続された1つの層間接続導体32と、基材22に形成された1つの層間接続導体31とが、厚み方向に連続して並ぶ。1つの層間接続導体32と1つの層間接続導体31との少なくとも一部同士は、厚み方向から見て互いに重なる。これにより、1つの層間接続導体32と1つの層間接続導体31とは、互いに電気的に接続される。1つの層間接続導体31は、層間接続導体312に対応する。
 第1実施形態に係る電子部品10の製造方法では、各基材21~27が積層されることによって、基材24~26に形成された3つの層間接続導体31が、厚み方向に連続して並ぶ。3つの層間接続導体31において、隣り合う2つの層間接続導体31の少なくとも一部同士は、厚み方向から見て互いに重なる。これにより、3つの層間接続導体31は、互いに電気的に接続される。3つの層間接続導体31の各々は、層間接続導体313に対応する。
 積層工程では、各基材21~27が積層されることによって、各層間接続導体31の凹部73Aの開口が積層された基材、当該基材上の内部電極40、及び当該基材に形成された層間接続導体30の少なくとも1つに覆われる。これにより、凹部73Aによって形成される空間が密閉されて空洞部31Aが形成される。
 第1実施形態に係る電子部品10の製造方法では、例えば、基材23に基材24が積層されることによって、基材23に形成された層間接続導体31の凹部73Aの開口が、積層された基材24に形成された層間接続導体31に覆われる。また、例えば、基材26に基材27が積層されることによって、基材26に形成された層間接続導体31の凹部73Aの開口が、積層された基材27(詳細には基材27の主面27Aに形成された内部電極44)に覆われる。他の層間接続導体31の凹部73Aについても同様である。
 積層工程において各基材21~27が積層、圧着等されると、凹部73Aを覆う基材、内部電極40等が凹部73Aに入り込んだり、層間接続導体31の変形等によって凹部73Aが変形したりすることがある。これにより、形成された空洞部31Aの形状、大きさが、凹部73Aと異なり得る。また、これにより、1つの凹部73Aが分割されて、複数の空洞部31Aが形成され得る。また、これにより、凹部73Aに他の基材等が入り込むこと等によって、空洞部31Aが形成されないこともあり得る。
 積層工程では、各基材21~27が積層されることによって、層間接続導体31と内部電極40との少なくとも一部同士が厚み方向から見て互いに重なり、且つ当該層間接続導体31と当該内部電極40との間に少なくとも1層の前記絶縁層が介在する。
 第1実施形態に係る電子部品10の製造方法では、基材25~27が積層されることによって、基材25に形成された層間接続導体311の全部と、基材27の主面27Aに形成された内部電極44の一部とが、厚み方向から見て互いに重なる。また、基材25に形成された層間接続導体311と基材27の主面27Aに形成された内部電極44との間に基材26が介在する。
 第1実施形態に係る電子部品10の製造方法では、基材22~24が積層されることによって、基材22に形成された層間接続導体312の全部と、基材24の主面24Aに形成された内部電極42の一部とが、厚み方向から見て互いに重なる。また、基材22に形成された層間接続導体312と基材24の主面24Aに形成された内部電極42との間に基材23が介在する。
 第1実施形態に係る電子部品10の製造方法では、基材23,24が積層されることによって、基材24に形成された層間接続導体313の全部と、基材23の主面23Aに形成された内部電極41の一部とが、厚み方向から見て互いに重なる。また、基材24に形成された層間接続導体313と基材23の主面23Aに形成された内部電極41との間に基材23が介在する。
 前述したように、第1実施形態に係る電子部品10の製造方法では、層間接続導体31の全部と内部電極40の一部とが、厚み方向から見て互いに重なる。しかし、層間接続導体31の一部と内部電極40の全部とが、厚み方向から見て互いに重なっていてもよいし、層間接続導体31の全部と内部電極40の全部とが、厚み方向から見て互いに重なっていてもよいし、層間接続導体31の一部と内部電極40の一部とが、厚み方向から見て互いに重なっていてもよい。
 前述したように、第1実施形態に係る電子部品10の製造方法では、層間接続導体31の全部と内部電極40の一部との間に、1層の基材が介在する。しかし、層間接続導体31の全部と内部電極40の一部との間に、複数層の基材が介在してもよい。
(個片化工程)
 次に、個片化工程が実行される。個片化工程では、複数の素体20が配列された積層体が、複数の素体20に切断される。積層体の切断には、例えば、ダイシングソー、ギロチンカッタ、レーザ等が使用される。積層体の切断後、素体20の角部および縁部は、例えばバレル加工等により研磨されてもよい。なお、前記の研磨は、焼成工程後に実行されてもよい。
(焼成工程)
 次に、焼成工程が実行される。焼成工程では、素体20が焼成される。これにより、素体20を構成する各基材21~27が、硬化される。つまり、柔軟性のあるグリーンシートである各基材21~27が、硬化されて基板へ変質する。
(めっき層積層工程)
 次に、めっき層積層工程が実行される。めっき層積層工程では、図2に示すように、外部電極51,52に、公知のめっき処理が施される。これにより、めっき層60が、外部電極51,52と覆うように積層される。
 この製造方法によれば、層間接続導体形成工程において、層間接続導体31に凹部73Aが形成される。これにより、その後の積層工程等において、層間接続導体31が変形した場合の層間接続導体31の変形分、層間接続導体31に積層される他の基材に形成される電極等を凹部73Aに入り込ませることができる。これにより、層間接続導体31の基材からの隆起を抑制することができる。
 積層工程において凹部73Aの変形等によって凹部73Aがなくなると、層間接続導体31の変形分、層間接続導体31に積層される他の基材に形成される電極等が凹部73Aに入り込むことができなくなる。これにより、層間接続導体31が基材から隆起するおそれがある。この製造方法によれば、凹部73Aによって形成される空間が完全になくならずに、残った空間によって空洞部31Aが形成される。これにより、層間接続導体31の基材からの隆起を抑制することができる。
 この製造方法によれば、貫通孔20Dの厚み方向の一端部側の径は、貫通孔20Dの厚み方向の他端部側の径より大きく、層間接続導体31の凹部73Aは、貫通孔20Dの厚み方向の一端部側の端面73B、つまり径が大きい側の端面に形成される。これにより、層間接続導体31に形成される凹部73Aを大きくすることができる。その結果、層間接続導体31が変形するときに、より多くの層間接続導体31の変形分、他の基材に形成される電極等を凹部73Aに入り込ませることができる。
 この製造方法によれば、積層工程において、厚み方向に連続して層間接続導体31を形成することができる。
 <第2実施形態>
 図9は、本発明の第2実施形態に係る電子部品における図1のA-A断面に対応する位置の断面図である。第2実施形態に係る電子部品10Aが第1実施形態に係る電子部品10と異なることは、貫通孔20Eが厚み方向の他端部(主面20A側の端部)から一端部(主面20B側の端部)へ向かうにしたがって小径となること、及び、2つの層間接続導体80の間に介在して、2つの層間接続導体80を電気的に接続する内部電極45を更に備えることである。以下、第1実施形態との相違点が説明される。第1実施形態に係る電子部品10との共通点については、同一の符号が付された上で、その説明は原則省略され、必要に応じて説明される。
 図9に示すように、第2実施形態に係る電子部品10Aは、素体90と、層間接続導体80と、内部電極40と、外部電極50と、めっき層60とを備える。外部電極50、及びめっき層60は、第1実施形態に係る電子部品10と同様に構成されている。
 素体90の貫通孔20Eの形状は、素体20の貫通孔20D(図2参照)と厚み方向に逆向きである。その他において、素体90は、素体20と同構成である。
 貫通孔20Eは、厚み方向に沿って主面20Aから主面20Bへ向かうにしたがって小径となっている。つまり、貫通孔20Eは、厚み方向の他端部(主面20A側の端部)から一端部(主面20B側の端部)へ向かうにしたがって小径となるテーパ形状である。
 層間接続導体80は、層間接続導体30(図2参照)と同様に円錐台形状であるが、層間接続導体30とは厚み方向に逆向きである。つまり、層間接続導体30が主面20Aに向かうにしたがって小径となっているのに対して、層間接続導体80は主面20Aに向かって大径となっている。なお、層間接続導体80において、小径となる部分と大径となる部分との位置関係が、図9とは逆であってもよい。つまり、図9では、層間接続導体80は紙面の上方へ向かうにしたがって小径となっているが、これとは逆に、層間接続導体80は紙面の下方へ向かうにしたがって小径となるように構成されてもよい。このような構成は、例えば、基材21~27の積層順序を逆にすることによって実現可能である。
 層間接続導体80は、8つの層間接続導体81と、2つの層間接続導体82とを備える。第2実施形態において、層間接続導体81は、第1導体に相当する。層間接続導体81は、第1実施形態に係る電子部品10の層間接続導体31に対応するもので、層間接続導体31と同構成であり同位置に設けられている。層間接続導体82は、第1実施形態に係る電子部品10の層間接続導体32に対応するもので、層間接続導体32と同構成であり同位置に設けられている。
 層間接続導体81は、空洞部81Aを有する。空洞部81Aは、第1実施形態に係る電子部品10の空洞部31Aに対応するもので、空洞部31Aと同構成であり同位置に設けられている。第2実施形態において、空洞部81Aは、密閉空間を形成する。
 第3実施形態では、各層間接続導体81の空洞部81Aは、第1実施形態に係る電子部品10の空洞部31Aとは逆に、厚み方向において主面20A側に偏って形成されている。言い換えると、各層間接続導体81の空洞部81Aは、貫通孔20Eの厚み方向の他端部側(貫通孔20Eが大径となる側)に偏って形成されている。
 内部電極40は、内部電極41~44(図2参照)に加えて、内部電極45を備える。内部電極45は、第3導体の一例である。内部電極45は、他の内部電極41~44と同様にして、基材21~27の少なくとも1つに形成される。第2実施形態では、内部電極45は、基材22~26の主面に形成されている。詳細には、基材22,25の主面22A,25Aに、それぞれ2つの内部電極45が形成されており、基材23,24,26の主面23A,24A,26Aに、それぞれ1つの内部電極45が形成されている。
 内部電極45は、隣り合う2層の基材の各々に設けられて厚み方向に並んだ2つの層間接続導体80の間に介在している。内部電極45は、当該2つの層間接続導体80の各々と接触している。つまり、内部電極45は、当該2つの層間接続導体80を電気的に接続する。
 第2実施形態によれば、2つの層間接続導体80の間に、内部電極45が介在される。そのため、2つの層間接続導体80の間の電気的な接続を強化することができる。
 <第2実施形態に係る電子部品の製造方法>
 以下に、第2実施形態に係る電子部品10Aの製造方法が、図10~図12が参照されつつ説明される。図10は、本発明の第2実施形態に係る電子部品の製造方法において基材に貫通孔が形成されたときの断面図である。図11は、図10の基材の貫通孔に層間接続導体が形成されたときの断面図である。図12は、図10の基材の貫通孔に層間接続導体が形成されたときの断面図である。以下、第1実施形態に係る電子部品10の製造方法との相違点が説明される。第1実施形態に係る電子部品10の製造方法との共通点については、同一の符号が付された上で、その説明は原則省略され、必要に応じて説明される。
 第2実施形態に係る電子部品10Aの製造方法では、第1実施形態に係る電子部品10の製造方法において実行された工程と同様に、シート成形工程、貫通孔形成工程、層間接続導体形成工程、内部電極形成工程、外部電極形成工程、積層工程、個片化工程、焼成工程、めっき層積層工程が実行される。
 最初にシート成形工程が実行される。シート成形工程は、第1実施形態に係る電子部品10の製造方法と同様である。
 次に、貫通孔形成工程が実行される。貫通孔形成工程では、図10に示すように、各基材21~27を厚み方向に貫通する貫通孔20Eが形成される。図10では、キャリアフィルム71と、キャリアフィルム71上に成形された基材21とが示されている。第1実施形態に係る電子部品10の製造方法における貫通孔20Dとは異なり、貫通孔20Eは、キャリアフィルム71に形成されない。例えば、レーザによって貫通孔20Eを形成する場合に、基材21を構成するセラミック等に貫通孔20Eが形成される一方で、キャリアフィルム71を構成するPETフィルム等に貫通孔20Eが形成されないように、レーザの波長が調整される。
 次に、層間接続導体形成工程が実行される。第2実施形態に係る電子部品10Aの製造方法では、基材側(キャリアフィルム71とは反対側)からペースト73が充填される。つまり、第2実施形態に係る電子部品10Aの製造方法では、充填入口が、第1実施形態に係る電子部品10の製造方法とは逆である。
 層間接続導体形成工程では、図11及び図12に示すように、貫通孔形成工程において各基材21~26に形成された貫通孔20Eの各々に、導電性のペースト73が充填される。このとき、ペースト73は、貫通孔20Eの内部に加えて、基材の主面における貫通孔20E及びその周辺にも形成される。ペースト73は、例えば、基材24の表面からスクリーン版で印刷することによって形成される。貫通孔20Eの内部に形成されたペースト73によって層間接続導体80が形成される。基材の主面における貫通孔20E及びその周辺に形成されたペースト73によって内部電極45が形成される。この場合、層間接続導体形成工程は、第1導体形成工程に相当すると共に、第3導体形成工程にも相当する。
 層間接続導体形成工程では、第1実施形態に係る電子部品10の製造方法と同様に、基材22~26の貫通孔20Eに充填されるペースト73には凹部73Aが形成され、基材21の貫通孔20Eに充填されるペースト73には凹部73Aが形成されない。凹部73Aが形成されるペースト73によって、層間接続導体81が形成される。凹部73Aが形成されないペースト73によって、層間接続導体82が形成される。この場合、内部電極45は、層間接続導体81の一部(凹部73Aを除く部分)を覆っている。また、内部電極45は、層間接続導体82の全部を覆っている。
 基材22~26の貫通孔20Eにペースト73が充填されるとき、第1実施形態で説明した乾燥条件及びペーストの組成等が調整されることによって、図11の上段に示すように、凹部73Aが形成される。なお、図11では、基材22~26を代表して、基材24が記されている。その後、充填されたペースト73が乾燥すると、ペースト73が収縮して、図11に下段に示すように、凹部73Aが深くなる。
 基材21の貫通孔20Eにペースト73が充填されるとき、第1実施形態で説明した乾燥条件及びペーストの組成等が調整されることによって、図12の上段に示すように、凹部73Aは形成されないまたは殆ど形成されない。その後、充填されたペースト73が乾燥しても、凹部73Aが形成されないまたは殆ど形成されない。
 次に、内部電極形成工程が実行される。内部電極形成工程では、第1実施形態に係る電子部品10の製造方法と同様にして、内部電極41~44が形成される。なお、内部電極45は、貫通孔形成工程ではなくて内部電極形成工程において、内部電極41~44と同様にして形成されてもよい。この場合、内部電極形成工程は、第3導体形成工程に相当する。
 内部電極形成工程は、層間接続導体形成工程と並行して実行されてもよい。この場合、内部電極41~44は、層間接続導体形成工程における内部電極45の形成と同様にして形成される。
 次に、外部電極形成工程が実行される。外部電極形成工程は、第1実施形態に係る電子部品10の製造方法と同様である。外部電極形成工程は、層間接続導体形状工程と並行して実行されてもよいし、層間接続導体形成工程より後且つ内部電極形成工程より前に実行されてもよいし、内部電極形成工程と並行して実行されてもよい。
 次に、積層工程が実行される。積層工程では、キャリアフィルム71を除いた各基材21~27が厚み方向に積層され、金型内で圧着される。これにより、素体90が得られる。積層は、第1実施形態に係る電子部品10の製造方法と同様に実行される。本製造方法では、基材21~27の積層順序が第1実施形態に係る電子部品10と同じである。この場合、層間接続導体80は、図9に示すように、第1実施形態に係る電子部品10の層間接続導体30(図2参照)とは厚み方向に逆向きである。なお、基材21~27の積層順序が第1実施形態に係る電子部品10と逆である場合、層間接続導体80は、第1実施形態に係る電子部品10の層間接続導体30と厚み方向に同じ向きとなる。
 第3実施形態に係る電子部品10Aの製造方法の積層工程では、各基材21~27が積層されることによって、内部電極45の表面45A(図11参照)に他の基材に形成された層間接続導体80が重なる。これにより、内部電極45が隣り合う2つの層間接続導体80の間に介在する。その結果、内部電極45は、隣り合う2つの前記第1導体を電気的に接続する。
 次に、個片化工程、焼成工程、及びめっき層積層工程が実行される。これらの工程は、第1実施形態に係る電子部品10の製造方法と同様である。めっき層積層工程が実行されてめっき層60が積層されることにより、電子部品10Aが完成する(図9参照)。
 この製造方法によれば、積層工程において、内部電極45が2つの層間接続導体80の間に介在するように、複数の基材21~27が積層される。そのため、2つの層間接続導体80の間の電気的な接続を強化することができる。
 <第3実施形態>
 図13は、本発明の第3実施形態に係る電子部品における図2の一点鎖線で囲まれた部分に対応する部分の拡大図である。第3実施形態に係る電子部品10Bが第1実施形態に係る電子部品10と異なることは、層間接続導体31が複数の密閉空間31Bを有することである。以下、第1実施形態との相違点が説明される。第1実施形態に係る電子部品10との共通点については、同一の符号が付された上で、その説明は原則省略され、必要に応じて説明される。
 第1実施形態では、各層間接続導体31は、1つの密閉空間を形成する1つの空洞部31Aを有する。しかし、第3実施形態では、少なくとも1つの層間接続導体31は、図13に示すように、複数の密閉空間31Bを有する。図13では、層間接続導体31は、3つの密閉空間31Ba,31Bb,31Bcを有する。この場合、複数の密閉空間31Bのうち、最も体積が大きい密閉空間31Baが、空洞部31Aに相当する。
 各層間接続導体31は、図13に示すような密閉空間31Ba,31Bb,31Bcの他に、密閉空間を形成するボイドを有し得る。この場合であっても、3つの密閉空間31Ba,31Bb,31Bcのうち最も大きい密閉空間31Baは、ボイドより体積が大きいため、密閉空間31Baが、空洞部31Aに相当する。
 各層間接続導体31が複数の密閉空間31Bを有する場合に、当該複数の密閉空間31Bの全てが空洞部31Aに相当してもよい。この場合、層間接続導体31の複数の密閉空間31Bは、貫通孔20Dの厚み方向の主面20B側または主面20A側のいずれか一方に偏って形成されている。例えば、図13では、貫通孔20Dの厚み方向の中央位置CLより主面20B側(図13の紙面上側)に位置する密閉空間31Ba,31Bbの合計体積が、中央位置CLより主面20A側(図13の紙面下側)に位置する密閉空間31Bcの合計体積より大きい。この場合、複数の密閉空間31Ba,31Bb,31Bc(言い換えると複数の空洞部31A)は、貫通孔20Dの厚み方向の主面20B側に偏っている。
 なお、前記様々な実施形態のうちの任意の実施形態を適宜組み合わせることにより、それぞれの有する効果を奏するようにすることができる。
 本発明は、適宜図面を参照しながら好ましい実施の形態に関連して充分に記載されているが、この技術に熟練した人々にとっては種々の変形や修正は明白である。そのような変形や修正は、添付した請求の範囲による本発明の範囲から外れない限りにおいて、その中に含まれると理解されるべきである。
 10 電子部品
20D 貫通孔
 21 基材(絶縁層)
 22 基材(絶縁層)
 23 基材(絶縁層)
 24 基材(絶縁層)
 25 基材(絶縁層)
 26 基材(絶縁層)
 27 基材(絶縁層)
 31 層間接続導体(第1導体)
31A 空洞部
 41 内部電極(第2導体)
 42 内部電極(第2導体)
 44 内部電極(第2導体)
 45 内部電極(第3導体)
 73 ペースト(導電性材料)
73A 凹部

Claims (13)

  1.  厚み方向に積層された複数の絶縁層と、
     複数の前記絶縁層の少なくとも1層に設けられて前記厚み方向に貫通する貫通孔に充填された第1導体と、
     前記厚み方向から見て少なくとも一部が前記第1導体と重なる位置に、前記第1導体と少なくとも1層の前記絶縁層を介して形成された第2導体と、を備え、
     前記第1導体は、空洞部を有し、
     前記空洞部は、前記貫通孔の前記厚み方向の前記第2導体側及び前記第2導体とは反対側のいずれか一方に偏って形成される電子部品。
  2.  前記貫通孔は、前記厚み方向の一端部から他端部へ向かうにしたがって小径となるテーパ形状であり、
     前記空洞部は、前記貫通孔の前記厚み方向の一端部側に偏って形成される請求項1に記載の電子部品。
  3.  前記厚み方向から見て、前記空洞部は、前記第1導体の中央部に形成されている請求項1または2に記載の電子部品。
  4.  互いに隣接する2層の前記絶縁層の各々に形成された2つの前記第1導体を備え、
     2つの前記第1導体は、前記厚み方向からみて少なくとも一部が互いに重なり且つ互いに電気的に接続されている請求項1から3のいずれか1項に記載の電子部品。
  5.  2つの前記第1導体の間に介在して、2つの前記第1導体を電気的に接続する第3導体を更に備える請求項4に記載の電子部品。
  6.  前記第1導体に複数の密閉空間が形成され、
     前記空洞部は、前記複数の密閉空間のうちの最も体積が大きい密閉空間を形成するものである請求項1から5のいずれか1項に記載の電子部品。
  7.  前記第1導体及び前記第2導体は、インダクタの少なくとも一部を構成する請求項1から6のいずれか1項に記載の電子部品。
  8.  前記第1導体及び前記第2導体は、コンデンサの少なくとも一部を構成する請求項1から6のいずれか1項に記載の電子部品。
  9.  複数の絶縁層の少なくとも1層に、前記絶縁層を厚み方向に貫通する貫通孔を形成する貫通孔形成工程と、
     前記貫通孔の前記厚み方向の一端部側の端面に前記厚み方向に凹んだ凹部が形成されるように、前記貫通孔に導電性材料を充填して、第1導体を形成する第1導体形成工程と、
     複数の絶縁層の少なくとも1層に、導電性の第2導体を形成する第2導体形成工程と、
     前記厚み方向から見て前記第1導体及び前記第2導体の少なくとも一部が互いに重なり、且つ前記第1導体及び前記第2導体の間に少なくとも1層の前記絶縁層が介在するように、複数の前記絶縁層を前記厚み方向に積層する積層工程と、を含む電子部品の製造方法。
  10.  前記積層工程において、前記凹部の開口が積層された前記絶縁層、前記第1導体、及び前記第2導体の少なくとも1つに覆われることによって、前記凹部によって形成される空間が密閉されて空洞部が形成されるように、複数の前記絶縁層が積層される請求項9に記載の電子部品の製造方法。
  11.  前記貫通孔形成工程において、前記貫通孔は、前記厚み方向の一端部から他端部へ向かって小径となるように形成される請求項9または10に記載の電子部品の製造方法。
  12.  前記貫通孔形成工程において、複数の前記絶縁層に前記貫通孔が形成され、
     前記第1導体形成工程において、前記貫通孔の各々に前記第1導体が形成され、
     前記積層工程において、前記厚み方向から見て複数の前記第1導体の少なくとも一部が重なって互いに電気的に接続されるように、複数の前記絶縁層が前記厚み方向に積層される請求項9から11のいずれか1項に記載の電子部品の製造方法。
  13.  複数の前記絶縁層の少なくとも1層の主面に、前記第1導体の少なくとも一部を覆うように第3導体を形成する第3導体形成工程を更に含み、
     前記積層工程において、前記第3導体が隣り合う2つの前記第1導体の間に介在して、2つの前記第1導体を電気的に接続するように、複数の前記絶縁層が前記厚み方向に積層される請求項12に記載の電子部品の製造方法。
PCT/JP2022/004716 2021-05-21 2022-02-07 電子部品及びその製造方法 WO2022244335A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/510,766 US20240087793A1 (en) 2021-05-21 2023-11-16 Electronic component and method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-086392 2021-05-21
JP2021086392 2021-05-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/510,766 Continuation US20240087793A1 (en) 2021-05-21 2023-11-16 Electronic component and method for manufacturing the same

Publications (1)

Publication Number Publication Date
WO2022244335A1 true WO2022244335A1 (ja) 2022-11-24

Family

ID=84140189

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/004716 WO2022244335A1 (ja) 2021-05-21 2022-02-07 電子部品及びその製造方法

Country Status (2)

Country Link
US (1) US20240087793A1 (ja)
WO (1) WO2022244335A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011077158A (ja) * 2009-09-29 2011-04-14 Murata Mfg Co Ltd 積層体およびこれを用いた電子部品の製造方法
WO2011058938A1 (ja) * 2009-11-10 2011-05-19 株式会社村田製作所 多層基板およびその製造方法
WO2012108381A1 (ja) * 2011-02-08 2012-08-16 株式会社村田製作所 樹脂多層基板およびその製造方法
JP2013074262A (ja) * 2011-09-29 2013-04-22 Hitachi Chemical Co Ltd 配線基板及びその製造方法
JP2013197548A (ja) * 2012-03-22 2013-09-30 Ibiden Co Ltd 配線板及びその製造方法
JP2015060981A (ja) * 2013-09-19 2015-03-30 イビデン株式会社 プリント配線板

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011077158A (ja) * 2009-09-29 2011-04-14 Murata Mfg Co Ltd 積層体およびこれを用いた電子部品の製造方法
WO2011058938A1 (ja) * 2009-11-10 2011-05-19 株式会社村田製作所 多層基板およびその製造方法
WO2012108381A1 (ja) * 2011-02-08 2012-08-16 株式会社村田製作所 樹脂多層基板およびその製造方法
JP2013074262A (ja) * 2011-09-29 2013-04-22 Hitachi Chemical Co Ltd 配線基板及びその製造方法
JP2013197548A (ja) * 2012-03-22 2013-09-30 Ibiden Co Ltd 配線板及びその製造方法
JP2015060981A (ja) * 2013-09-19 2015-03-30 イビデン株式会社 プリント配線板

Also Published As

Publication number Publication date
US20240087793A1 (en) 2024-03-14

Similar Documents

Publication Publication Date Title
JP5668627B2 (ja) 回路モジュール
JP5168234B2 (ja) 積層型コモンモードフィルタ
KR20150014390A (ko) 적층 코일
US10299383B2 (en) Composite electronic component and resistance element
US20190051463A1 (en) Composite electronic component and resistance element
JP3593964B2 (ja) 多層セラミック基板およびその製造方法
JP2008218628A (ja) 積層体およびその製造方法
JP2002015939A (ja) 積層型電子部品およびその製法
WO2022244335A1 (ja) 電子部品及びその製造方法
JP3158794B2 (ja) コンデンサアレイ
JP3264037B2 (ja) コンデンサアレイ
KR101805074B1 (ko) 세라믹 다층회로 기판의 제조방법
CN221057223U (zh) 电子部件
WO2018030192A1 (ja) セラミック電子部品
WO2022244313A1 (ja) 電子部品及びその製造方法
JP6497127B2 (ja) 積層コンデンサ
JP2013077739A (ja) 配線基板ならびにその配線基板を備えた電子装置および電子モジュール装置
JP4501524B2 (ja) セラミック多層基板およびその製造方法
JP2004095767A (ja) セラミック多層基板およびその製造方法
US8564380B2 (en) Non-reciprocal circuit device and its central conductor assembly
JP3257531B2 (ja) 積層電子部品
JP3493812B2 (ja) セラミック電子部品の製造方法
JP5838978B2 (ja) セラミック積層部品
JP2004165343A (ja) 積層型セラミック電子部品およびその製造方法
WO2023048212A1 (ja) 電子部品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22804257

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22804257

Country of ref document: EP

Kind code of ref document: A1