WO2023048212A1 - 電子部品 - Google Patents

電子部品 Download PDF

Info

Publication number
WO2023048212A1
WO2023048212A1 PCT/JP2022/035327 JP2022035327W WO2023048212A1 WO 2023048212 A1 WO2023048212 A1 WO 2023048212A1 JP 2022035327 W JP2022035327 W JP 2022035327W WO 2023048212 A1 WO2023048212 A1 WO 2023048212A1
Authority
WO
WIPO (PCT)
Prior art keywords
shield conductor
protective layer
conductor
electronic component
shield
Prior art date
Application number
PCT/JP2022/035327
Other languages
English (en)
French (fr)
Inventor
裕史 大家
昌弘 寺本
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2023048212A1 publication Critical patent/WO2023048212A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/29Terminals; Tapping arrangements for signal inductances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F27/36Electric or magnetic shields or screens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G2/00Details of capacitors not covered by a single one of groups H01G4/00-H01G11/00
    • H01G2/22Electrostatic or magnetic shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/40Structural combinations of fixed capacitors with other electric elements, the structure mainly consisting of a capacitor, e.g. RC combinations
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields

Definitions

  • the present invention relates to an electronic component comprising a base body and a shield formed on the outer surface of the base body.
  • Patent Document 1 discloses an electronic component in which a shield is formed on the outer surface of the element.
  • a multilayer electronic component disclosed in Patent Document 1 includes a laminate including a plurality of laminated dielectric layers.
  • a laminate includes an inductor and a capacitor.
  • a shield is formed on the laminate.
  • the shield for example, suppresses the influence of electromagnetic noise from outside the multilayer electronic component on the inductor and capacitor.
  • the shield is formed on the laminate by a sputtering method.
  • the adhesion between the shield and the laminate is determined by the surface roughness of the laminate and the material of the laminate. Therefore, depending on the surface roughness of the laminate and the material of the laminate, the adhesion between the shield and the laminate may decrease. If the adhesion between the shield and the laminate is low, even if the adhesion between the shield and the laminate can be maintained in the initial state immediately after the shield is formed on the laminate, thermal shock, etc. will occur after that, and the laminated electronic component will be damaged. The shield is likely to delaminate from the laminate if it is acted upon.
  • the laminate includes an inductor.
  • the shield covers the upper surface and side surfaces of the multilayer body. In this case, the shield has a high shielding property against electromagnetic noise. However, the magnetic flux generated in the inductor is blocked by the shield. Inductor characteristics may deteriorate.
  • An electronic component comprises an element body having a plurality of insulating substrates laminated in a thickness direction and having a pair of main surfaces facing opposite to each other and a side surface connecting the pair of main surfaces; an LC resonator having an inductor conductor formed on at least one of the plurality of substrates and a capacitor conductor formed on at least one of the plurality of substrates and electrically connected to the inductor conductor; a shield conductor formed on at least one of the pair of main surfaces and the side surfaces and electrically connected to a ground; an electrode formed on the other of the pair of main surfaces and at least one of the side surfaces and electrically connected to the LC resonator; When viewed from the thickness direction, the shield conductor formed on one of the pair of principal surfaces straddles at least a portion of the interface between the shield conductor formed on one of the pair of principal surfaces and the element body. a protective layer covering at least a portion and
  • the adhesion of the shield conductor formed on the outer surface of the element body to the element body can be enhanced while suppressing deterioration of the characteristics of the LC resonator formed in the element body.
  • FIG. 1 is a perspective view of an electronic component according to a first embodiment of the invention
  • FIG. FIG. 2 is a sectional view showing the AA section of FIG. 1
  • FIG. 3 is a sectional view showing a BB section of FIG. 2
  • FIG. 4 is a cross-sectional view when an interlayer connection conductor is formed on a substrate in the manufacturing process of the electronic component according to the embodiment of the present invention
  • FIG. 4 is a cross-sectional view when external electrodes are printed on a substrate in the manufacturing process of the electronic component according to the embodiment of the present invention
  • FIG. 4 is a cross-sectional view when a shield conductor is printed on a substrate in the manufacturing process of the electronic component according to the embodiment of the present invention
  • FIG. 4 is a cross-sectional view when a protective layer is printed on the base material and the shield conductor in the manufacturing process of the electronic component according to the embodiment of the present invention
  • FIG. 4 is a cross-sectional view of a base material formed by laminating a plurality of base materials in the manufacturing process of the electronic component according to the embodiment of the present invention
  • FIG. 4 is a cross-sectional view when the element body is crimped in the manufacturing process of the electronic component according to the embodiment of the present invention
  • FIG. 3 is a sectional view corresponding to the BB section of FIG. 2 in the electronic component according to the modification of the first embodiment of the present invention
  • FIG. 3 is a sectional view corresponding to the BB section of FIG.
  • FIG. 2 is a sectional view corresponding to the AA section of FIG. 1 in an electronic component according to a third embodiment of the present invention
  • FIG. 11 is a sectional view corresponding to the AA section of FIG.
  • FIG. 21 is a sectional view showing a DD section of FIG. 20;
  • FIG. 21 is a cross-sectional view corresponding to the DD cross section of FIG. 20 in an electronic component according to a modification of the fifth embodiment of the present invention;
  • Sectional drawing which shows some electronic components of 6th Embodiment of this invention.
  • An electronic component comprises an element body having a plurality of insulating substrates laminated in a thickness direction and having a pair of main surfaces facing opposite to each other and a side surface connecting the pair of main surfaces; an LC resonator having an inductor conductor formed on at least one of the plurality of substrates and a capacitor conductor formed on at least one of the plurality of substrates and electrically connected to the inductor conductor; a shield conductor formed on at least one of the pair of main surfaces and the side surfaces and electrically connected to a ground; an electrode formed on the other of the pair of main surfaces and at least one of the side surfaces and electrically connected to the LC resonator; When viewed from the thickness direction, the shield conductor formed on one of the pair of principal surfaces straddles at least a portion of the interface between the shield conductor formed on one of the pair of principal surfaces and the element body. a protective layer covering at least a portion and at least a portion of one of the pair of main surfaces.
  • the protective layer covers the shield conductor across the interface between the shield conductor and the element. Thereby, the adhesion of the shield conductor to the element can be reinforced by the protective layer.
  • the electronic component has an LC resonator.
  • the shield conductor is formed on at least one of the pair of main surfaces among the outer surfaces of the element body. Therefore, the electronic component can be configured such that the shield conductor is not formed on the other of the pair of main surfaces and at least one of the side surfaces. In this case, blocking of the magnetic flux of the LC resonator by the shield conductor can be reduced.
  • a portion of the shield conductor covered with the protective layer may be sandwiched between the element and the protective layer inside the element.
  • the part of the shield conductor covered with the protective layer is embedded in the element body so as to be pushed into the protective layer, and sandwiched between the element body and the protective layer.
  • the adhesion of the shield conductor to the element body can be enhanced.
  • an interface between the shield conductor formed on one of the pair of main surfaces and the element is between a first interface and the first interface when viewed from the thickness direction.
  • the protective layer may have a first portion straddling the first interface, a second portion straddling the second interface, and the first and a third portion connecting the first portion and the second portion across the shield conductor sandwiched between the interface and the second interface.
  • the third portion of the protective layer is formed across the shield conductor.
  • the adhesion of the shield conductor to the element body can be enhanced.
  • an interlayer connection conductor penetrating through the substrate may be formed in the substrate on which the shield conductor is formed, of the plurality of substrates, and the shield conductor may be the interlayer connection. It may be electrically connected to the ground via a conductor.
  • the contact area of the inner conductor with the shield conductor depends on the thickness of the inner conductor. It is difficult to increase the thickness of the inner conductor. Therefore, it is difficult to increase the contact area between the inner conductor and the shield conductor.
  • the interlayer connection conductor formed on the base material is electrically connected to the shield conductor.
  • the contact area between the interlayer connection conductor and the shield conductor depends on the size of the diameter of the through hole formed in the substrate and filled with the interlayer connection conductor. Increasing the diameter of the through hole is easier than increasing the thickness of the inner conductor. Therefore, increasing the contact area between the interlayer connection conductor and the shield conductor is easier than increasing the contact area between the inner conductor and the shield conductor. Therefore, the connection reliability between the interlayer connection conductor and the shield conductor can be improved.
  • a plurality of the interlayer connection conductors may be formed on the substrate on which the shield conductor is formed among the plurality of substrates, and the shield conductor may be formed on the plurality of the interlayer connection conductors. may be electrically connected to the ground via
  • the number of interlayer connection conductors electrically connected to the shield conductor can be increased.
  • unwanted resonance in the LC resonator can be suppressed.
  • At least one of the interlayer connection conductors may be located at an outer edge of the shield conductor, It may be formed at a position overlapping at least part of the connection conductor and straddling the interlayer connection conductor and the shield conductor.
  • the outer edge of the shield conductor is separated from the element body due to contraction of the base material and outgassing from the interlayer connection conductor during the firing process of the element body. It may float.
  • the protective layer is formed right above the interlayer connection conductor covered by the outer edge of the shield conductor when viewed in the thickness direction. As a result, the protective layer can reduce the lifting of the outer edge of the shield conductor from the element body.
  • the shield conductor may be formed on one of the pair of main surfaces and may not be formed on the other of the pair of main surfaces and the side surface.
  • the electronic component is equipped with an LC resonator.
  • the shield conductor is formed only on one of the pair of main surfaces of the outer surfaces of the element. In this case, blocking of the magnetic flux of the LC resonator by the shield conductor can be reduced.
  • the formation position of the LC resonator is limited to a position away from the side surface of the element body, for example, the central portion of the element body when viewed from the thickness direction. According to this configuration, since the shield conductor is not formed on the side surface of the element body, the LC resonator can be formed near the side surface of the element body. In other words, there is no restriction on the formation position of the LC resonator as described above.
  • an internal circuit including the LC resonator may be formed on at least one of the plurality of substrates, and when viewed from the thickness direction, the protective layer includes: It may be formed at a position away from the portion closest to one of the pair of main surfaces in the thickness direction.
  • the part of the shield conductor that is covered with the protective layer is likely to be pushed into the protective layer and enter the interior of the element.
  • the distance in the thickness direction between the relevant part of the shield conductor and the internal circuit becomes short, and the parasitic that occurs between the relevant part of the shield conductor and the internal circuit. Larger capacity.
  • the protective layer is formed at a position away from the portion of the internal circuit that is closest in the thickness direction to one of the pair of main surfaces. As a result, it is possible to prevent the distance between the shield conductor and the internal circuit from being shortened in the thickness direction. As a result, it is possible to reduce the occurrence of large parasitic capacitance between the shield conductor and the internal circuit.
  • an identification mark may be formed on the surface of the shield conductor formed on one of the pair of main surfaces.
  • the identification mark is formed on the surface of the shield conductor. Therefore, the visibility of the identification mark can be improved as compared with the configuration in which the identification mark is covered with the shield conductor.
  • the material of the identification mark may be the same as the material of the protective layer.
  • the process of forming the identification mark on the surface of the shield conductor and the process of forming the protective layer on the surface of the shield conductor are separate processes.
  • the identification mark and the protective layer can be simultaneously formed on the surface of the shield conductor by printing or the like. As a result, the number of manufacturing processes for electronic components can be reduced.
  • At least a part of the protective layer formed around the interface between the shield conductor formed on one of the pair of main surfaces and the element body includes: It may be thicker in the thickness direction than the shield conductor formed on one of the pair of main surfaces.
  • the amount of pressing of the shield conductor into the element by the protective layer increases.
  • the adhesion of the shield conductor to the element body can be enhanced.
  • FIG. 1 is a perspective view of an electronic component according to a first embodiment of the invention.
  • FIG. 2 is a cross-sectional view showing the AA cross section of FIG.
  • An electronic component has a shield conductor provided in an element body, and at least a part of the shield conductor is covered with a protective layer.
  • an internal electrode and an external electrode are provided on the element body.
  • Electronic components can be mounted on a mother board or the like via external electrodes.
  • the electronic component 10 includes a base body 20, an interlayer connection conductor 30, an internal electrode 40, an external electrode 50, a shield conductor 60, and a protective layer 70. and a plating layer 80 .
  • the element body 20 has a rectangular parallelepiped shape as a whole.
  • the shape of the element body 20 is not limited to a rectangular parallelepiped shape.
  • the element body 20 is formed by integrating the base materials 21 to 29 laminated in the thickness direction 100 . That is, in the first embodiment, the base body 20 is formed by integrating nine base materials. The number of base materials forming the base body 20 is not limited to nine.
  • Each of the substrates 21-29 is insulative and plate-shaped.
  • the element body 20 (each base material 21 to 29) is made of LTCC (Low Temperature Co-fired Ceramics).
  • the base body 20 is not limited to LTCC, and may be made of ceramics other than LTCC such as alumina, or may be made of resin such as glass epoxy, Teflon (registered trademark), or paper phenol.
  • the base body 20 has a pair of main surfaces 20A, 20B and a side surface 20C.
  • the main surface 20A is the main surface of the base material 21 and faces the outside of the element body 20 .
  • the main surface 20B is the main surface of the base material 29 and faces the outside of the element body 20 .
  • the principal surface 20B faces away from the principal surface 20A.
  • the side surface 20C is composed of the side surfaces of the substrates 21-29.
  • the side surface 20C connects the main surfaces 20A and 20B.
  • the principal surface 20B corresponds to one of the pair of principal surfaces
  • the principal surface 20A corresponds to the other of the pair of principal surfaces.
  • the pair of main surfaces 20A and 20B are orthogonal to the thickness direction 100.
  • the interlayer connection conductor 30 is formed inside the element body 20. As shown in FIG. 2, the interlayer connection conductor 30 can be formed on at least one of the substrates 21-29. In the first embodiment, the interlayer connection conductors 30 are formed on the substrates 21-29.
  • the interlayer connection conductor 30 has a through hole 20D that penetrates at least one of the plurality of base materials 21 to 29 in the thickness direction 100 and is filled with a conductive paste. morphology is co-fired with LTCC).
  • the conductive paste contains conductive powder such as copper.
  • the conductive powder contained in the conductive paste is not limited to copper, and may be silver, for example.
  • the interlayer connection conductor 30 is formed by plating a conductive metal made of copper or the like.
  • the through hole 20D is cylindrical, the interlayer connection conductor 30 is cylindrical.
  • the shape of the through-hole 20 ⁇ /b>D is not limited to a cylindrical shape, and may be, for example, a quadrangular prism shape.
  • the interlayer connection conductor 30 includes five interlayer connection conductors 31-35.
  • the interlayer connection conductors 31 and 32 are filled in the through holes 20D penetrating through the substrates 25-29.
  • the interlayer connection conductor 33 is filled in the through hole 20D penetrating through the substrates 21-24.
  • the interlayer connection conductor 34 is filled in the through hole 20 ⁇ /b>D passing through the substrates 21 and 22 .
  • the interlayer connection conductor 35 is filled in the through hole 20D penetrating through the substrates 21-23.
  • the number of interlayer connection conductors 30 is not limited to five.
  • the length in the thickness direction 100 of each of the interlayer connection conductors 31 to 35 (the number of substrates to be penetrated) is not limited to the length described above.
  • FIG. 3 is a sectional view showing the BB section of FIG.
  • the internal electrodes 40 are formed inside the element body 20 and are not exposed to the outside of the element body 20 .
  • the internal electrode 40 can be formed on at least one of the substrates 21-29. In the first embodiment, the internal electrodes 40 are formed on the substrates 23-25.
  • the internal electrodes 40 are formed by printing a conductive paste on the main surface of the substrate (the substrates 23 to 25 in the first embodiment), It is co-fired with the substrate.
  • the conductive paste is composed of copper or silver, for example.
  • the internal electrodes 40 are formed on the main surface of the base material by known means such as etching a metal foil.
  • the internal electrode 40 includes five internal electrodes 41-45.
  • the internal electrodes 41 are formed on the base material 25 .
  • the internal electrodes 42, 43, 45 are formed on the substrate 24 (see FIG. 3).
  • the internal electrodes 44 are formed on the base material 23 .
  • Each of the internal electrodes 40 is electrically connected to other internal electrodes 40 , external electrodes 50 (external electrodes 51 , 52 , 53 ), or shield conductors 60 .
  • the internal electrode 41 is electrically connected to the shield conductor 60 via the interlayer connection conductors 31 and 32, and is electrically connected to the external electrode 51 via the interlayer connection conductor 33. electrically connected.
  • the internal electrode 42 is electrically connected to the external electrode 53 via the interlayer connection conductor 35 .
  • the internal electrodes 42 and 43 are electrically connected to each other via an internal electrode 45 .
  • the internal electrodes 44 are electrically connected to the external electrodes 52 via the interlayer connection conductors 34 .
  • the external electrode 50 is formed outside the element body 20 . That is, the external electrodes 50 are exposed outside the element body 20 .
  • the external electrodes 50 are formed on the main surface of the base material 21 (the main surface 20A of the element body 20).
  • the external electrode 50 is formed on at least one of the main surface 20B of the element body 20 and the side surface 20C of the element body 20 instead of or in addition to the main surface 20A of the element body 20.
  • the external electrode 50 is configured in the same manner as the internal electrode 40 . That is, in the first embodiment, the external electrodes 50 are formed by printing a conductive paste on the main surface 20A of the element body 20 and co-firing it with the substrates 21-29. In the first embodiment, the external electrode 50 comprises three external electrodes 51-53.
  • the external electrode 51 is electrically connected to the internal electrode 41 through the interlayer connection conductor 33
  • the external electrode 52 is electrically connected to the internal electrode 44 through the interlayer connection conductor 34
  • the external electrode 53 is electrically connected to the internal electrode 42 via the interlayer connection conductor 35 .
  • the external electrode 51 is grounded by being electrically connected to the ground.
  • the external electrode 51 is electrically connected to a ground potential electrode provided on another substrate (for example, a mother substrate) on which the electronic component 10 is mounted.
  • the external electrodes 52, 53 are electrically connected to the internal electrodes 42, 44.
  • the internal electrode 42 functions as an inductor that the LC resonator 91 has, and the internal electrode 44 functions as a capacitor that the LC resonator 91 has. That is, the external electrodes 52 and 53 are electrically connected to the LC resonator 91 described below.
  • the external electrodes 52 and 53 are examples of electrodes.
  • At least part of the internal electrode 40 and at least part of the interlayer connection conductor 30 constitute an LC resonator 91 having an inductor and a capacitor.
  • the internal electrodes 42 meander when viewed from the thickness direction 100 .
  • the internal electrode 42 forms a meandering coil and functions as an inductor.
  • the internal electrode 42 is an example of an inductor conductor.
  • the internal electrodes 43 and 44 face each other in the thickness direction 100 with the substrate 23 interposed therebetween. Thereby, the internal electrodes 43 and 44 form a capacitor and function as a capacitor.
  • the internal electrodes 43 and 44 are an example of capacitor conductors.
  • the internal electrode 42 forming the coil and the internal electrode 43 forming the capacitor are electrically connected via the internal electrode 45 .
  • the internal electrodes 42 to 45 constitute an LC resonator 91 in which the coil and the capacitor are electrically connected.
  • the inductor conductor (internal electrode 42) is formed on the substrate 24, and the capacitor conductors (internal electrodes 43, 44) are formed on the substrates 23, 24.
  • the inductor conductors and capacitor conductors may be formed on any of the substrates 21 to 29 included in the body 20.
  • FIG. In other words, the inductor conductor and the capacitor conductor need only be formed on at least one of the substrates 21 to 29 included in the element body 20 .
  • the shield conductor 60 is formed on the main surface 20B of the element body 20. As shown in FIG.
  • the shield conductor 60 is formed by printing in the same manner as the internal electrode 40 and the external electrode 50 . Formation of the shield conductor 60 is not limited to printing.
  • the shield conductor 60 may be formed by sputtering or vapor deposition.
  • the shield conductor 60 has conductivity. Typically, at least part of the shield conductor 60 is made of metal. In the first embodiment, the shield conductor 60 is made of a conductive member such as copper. A portion of the shield conductor 60 may be made of a conductive member. For example, the shield conductor 60 may be one in which a conductive material is contained in another material such as resin.
  • the shield conductor 60 is embedded in the element body 20 . Therefore, in FIG. 2, the shield conductor 60 forms part of the main surface 20B. Note that the shield conductor 60 does not have to be embedded in the element body 20 .
  • the shield conductor 60 may have a multilayer structure.
  • the shield conductor 60 includes an adhesive layer in contact with the base material 29, a conductive layer in contact with the adhesive layer and made of a metal with high conductivity, and a conductive layer in contact with the conductive layer, which is oxidized or corroded. It may have a rust prevention layer that prevents
  • the conductive layer has a function of shielding electromagnetic waves, and is made of, for example, copper (Cu), silver (Ag), aluminum (Al), or the like.
  • the adhesion layer is provided to improve adhesion between the base material 29 and the conductive layer, and is made of, for example, titanium (Ti), chromium (Cr), stainless steel (SUS), or the like.
  • the shield conductor 60 shields electromagnetic waves from the outside of the electronic component 10 via the main surface 20B. Therefore, the LC resonator 91 is less likely to be affected by electromagnetic waves from the outside through the main surface 20B. In addition, the shield conductor 60 shields the electromagnetic waves radiated by the LC resonator 91 from being radiated to the outside through the main surface 20B. Therefore, the electromagnetic waves radiated from the LC resonator 91 are less likely to affect other components outside the electronic component 10 .
  • the shield conductor 60 is not formed on the outer edge portion of the main surface 20B of the element body 20 when viewed from the thickness direction 100 . That is, in the first embodiment, the shield conductor 60 is formed on part of the principal surface 20B of the element body 20. As shown in FIG.
  • FIG. 1 when viewed from the thickness direction 100, a portion outside the shield conductor 60 is covered with a protective layer 70, which will be described later.
  • the main surface 20B of the element body 20 is exposed outside the portion covered with the protective layer 70 in the main surface 20B of the element body 20.
  • the region where the shield conductor 60 is not formed is not limited to the outer edge portion of the main surface 20B of the element body 20 viewed from the thickness direction 100.
  • the region where the shield conductor 60 is not formed may be the central portion of the main surface 20B of the element body 20 viewed from the thickness direction 100.
  • the shield conductor 60 may be formed over the entire main surface 20B of the element body 20 .
  • the shield conductor 60 is not formed on the main surface 20A and the side surface 20C of the element body 20. Therefore, it is possible to prevent the magnetic flux of the inductor conductor (internal electrode 42 ) of the LC resonator 91 from being interrupted at the main surface 20 ⁇ /b>A and the side surface 20 ⁇ /b>C of the element body 20 .
  • the shield conductor 60 is electrically connected to the internal electrode 41 via the interlayer connection conductors 31 and 32 . Further, as described above, the internal electrode 41 is electrically connected to the external electrode 51 via the interlayer connection conductor 33, and the external electrode 51 is electrically connected to the ground. In other words, the shield conductor 60 is electrically connected to the ground through the interlayer connection conductors 31 to 33 and the internal electrode 41 .
  • the configuration in which the shield conductor 60 is electrically connected to the ground is not limited to the configuration via the interlayer connection conductors 31 to 33 and the internal electrode 41 .
  • the shield conductor 60 may be electrically connected to an external ground via a wire or the like.
  • the protective layer 70 straddles the interface 60A.
  • the interface 60A is a boundary between the shield conductor 60 formed on the main surface 20B of the element body 20 and the base material 29 of the element body 20 when viewed from the thickness direction 100 .
  • the base material 29 of the element body 20 is a portion of the base material 29 that is not covered with the shield conductor 60 when viewed from the thickness direction 100 .
  • the protective layer 70 is formed around the interface 60A.
  • the peripheral portion of the interface 60A is the interface 60A and the area around the interface 60A. Specifically, when viewed from the thickness direction 100, the peripheral portion of the interface 60A includes the outer edge portion of the shield conductor 60 positioned inside the interface 60A and the vicinity of the interface 60A of the base material 29 positioned outside the interface 60A. It is an area that spans
  • the protective layer 70 straddles the entire interface 60A of the shield conductor 60, but may straddle only a part of the interface 60A of the shield conductor 60.
  • the protective layer 70 covers only the outer edge of the shield conductor 60 formed on the main surface 20B of the element body 20, that is, only part of the shield conductor 60.
  • the protective layer 70 may cover all of the shield conductors 60 formed on the main surface 20B of the element body 20 .
  • the protective layer 70 covers the portion near the interface 60A of the base material 29 located outside the shield conductor 60 when viewed in the thickness direction 100, and further outside the portion near the interface 60A. portion (the outer edge of the main surface 20B of the base body 20) is not covered. That is, the protective layer 70 covers only a portion of the base material 29 positioned outside the shield conductor 60 when viewed in the thickness direction 100 . However, the protective layer 70 may cover all of the base material 29 located outside the shield conductor 60 when viewed in the thickness direction 100 .
  • the thickness T1 of the portion of the protective layer 70 that overlaps the interface 60A when viewed in the thickness direction 100 is thicker than the thickness T2 of the shield conductor 60 formed on the main surface 20B.
  • Thickness T1 is the thickness of the thickest portion of protective layer 70 .
  • Thickness T2 is the thickness of the thickest portion of shield conductor 60 .
  • the thickness of the portion of the protective layer 70 that overlaps the interface 60A when viewed from the thickness direction 100 is thicker than the thickness of the shield conductor 60 .
  • the thickness of the protective layer 70 may be thicker than the shield conductor 60 at any portion around the interface 60A. That is, at least a portion of the protective layer 70 formed around the interface 60A should be thicker in the thickness direction 100 than the shield conductor 60 formed on the main surface 20B.
  • the portion of the protective layer 70 that overlaps the interface 60A when viewed in the thickness direction 100 is the thickest portion of the protective layer 70.
  • the thickest part of the protective layer 70 may be the part other than the part overlapping the interface 60A.
  • the protective layer 70 is formed by printing in the same manner as the internal electrode 40, the external electrode 50, and the shield conductor 60. Formation of the protective layer 70 is not limited to printing. For example, the protective layer 70 may be formed by a transfer method as described later.
  • the protective layer 70 is made of LTCC.
  • the protective layer 70 is made of the same material as the element body 20 .
  • the material of the protective layer 70 is not limited to LTCC.
  • the protective layer 70 may be made of a ceramic other than LTCC, or may be made of a material other than ceramic (for example, a resin material such as polyimide).
  • the protective layer 70 may be made of a material different from that of the base body 20 .
  • the outer edge of the shield conductor 60 that is, the portion of the shield conductor 60 covered with the protective layer 70 is embedded in the element body 20 to a greater extent than the portion other than the outer edge of the shield conductor 60 .
  • the outer edge of the shield conductor 60 is sandwiched between the element body 20 and the protective layer 70 inside the element body 20 .
  • the plating layer 80 covers the external electrodes 50 and the shield conductors 60 .
  • the plating layer 80 suppresses the influence of the atmosphere, moisture, etc. on the external electrodes 50 and the shield conductors 60 .
  • the plating layer 80 is a film made of, for example, Ni (nickel)--Sn (tin) or Ni (nickel)--electroless Au (gold).
  • the plating layer 80 comprises an inner layer 81 made of nickel and an outer layer 82 made of gold.
  • the inner layer 81 is formed on the surfaces of the external electrode 50 and the shield conductor 60 .
  • the outer layer 82 is formed on the opposite side of the inner layer 81 to the external electrode 50 and the shield conductor 60 .
  • the plating layer 80 is composed of two layers (the inner layer 81 and the outer layer 82), but the plating layer 80 may be composed of one layer or three or more layers.
  • the plating layer 80 is formed on the surface of the metal material. Therefore, the plating layer 80 is not formed on the surface of the protective layer 70 which is made of non-metallic material. Thereby, protective layer 70 is exposed to the outside of electronic component 10 without being covered with plating layer 80 .
  • the protective layer 70 covers the shield conductor 60 across the interface 60A between the shield conductor 60 and the element body 20 . Thereby, the adhesion of the shield conductor 60 to the element body 20 can be reinforced by the protective layer 70 .
  • the portion of the shield conductor 60 covered with the protective layer 70 is embedded in the element body 20 so as to be pushed into the protective layer 70 and sandwiched between the element body 20 and the protective layer 70 . is Thereby, the adhesion of the shield conductor 60 to the element body 20 can be enhanced.
  • the contact area of the inner conductor with the shield conductor depends on the thickness of the inner conductor. It is difficult to increase the thickness of the inner conductor. Therefore, it is difficult to increase the contact area between the inner conductor and the shield conductor.
  • the interlayer connection conductors 31 and 32 formed on the base material 29 are electrically connected to the shield conductor 60 .
  • the contact area between the interlayer connection conductors 31 and 32 and the shield conductor 60 depends on the size of the diameter of the through hole formed in the substrate 29 and filled with the interlayer connection conductors 31 and 32 . Increasing the diameter of the through-hole is easier than increasing the thickness of the internal electrode 40 . Therefore, increasing the contact area between the interlayer connection conductors 31 and 32 and the shield conductor 60 is easier than increasing the contact area between the internal electrode 40 and the shield conductor 60 . Therefore, the connection reliability between the interlayer connection conductors 31 and 32 and the shield conductor 60 can be improved.
  • the number of interlayer connection conductors 30 electrically connected to the shield conductors 60 can be increased.
  • generation of unnecessary resonance in LC resonator 91 can be suppressed.
  • the electronic component 10 has the LC resonator 91 .
  • the shield conductor 60 is formed on at least the main surface 20B of the outer surface of the element body 20, but is not formed on the main surface 20A and side surfaces 20C of the element body 20. As shown in FIG. As a result, blocking of the magnetic flux of the LC resonator 91 by the shield conductor 60 can be reduced.
  • the shield conductor 60 were formed not only on the main surface 20B of the element body 20 but also on the side surface 20C of the element body 20, the magnetic flux of the LC resonator 91 would pass through the shield conductor 60 formed on the side surface 20C of the element body 20. blocked by Therefore, the formation position of the LC resonator 91 is limited to a position away from the side surface 20C of the element body 20, for example, the central portion of the element body 20 when viewed from the thickness direction 100.
  • FIG. According to the first embodiment, since the shield conductor 60 is not formed on the side surface 20C of the element body 20, the LC resonator 91 can be formed near the side surface 20C of the element body 20. FIG. In other words, there is no restriction on the formation position of the LC resonator 91 as described above.
  • the thickness T1 of the protective layer 70 is greater than the thickness T2 of the shield conductor 60 formed on the main surface 20B. This increases the amount of pressing of the shield conductor 60 into the element body 20 by the protective layer 70 having the thickness T1. Thereby, the adhesion of the shield conductor 60 to the element body 20 can be enhanced.
  • FIG. 4 is a cross-sectional view when an interlayer connection conductor is formed on a substrate in the manufacturing process of the electronic component according to the embodiment of the present invention.
  • FIG. 5 is a cross-sectional view when the external electrodes are printed on the substrate in the manufacturing process of the electronic component according to the embodiment of the present invention.
  • FIG. 6 is a cross-sectional view when the shield conductor is printed on the substrate in the manufacturing process of the electronic component according to the embodiment of the present invention.
  • FIG. 7 is a cross-sectional view when a protective layer is printed on a base material and a shield conductor in the manufacturing process of the electronic component according to the embodiment of the present invention.
  • FIG. 8 is a cross-sectional view showing a base body formed by laminating a plurality of base materials in the manufacturing process of the electronic component according to the embodiment of the present invention.
  • FIG. 9 is a cross-sectional view when the element body is crimped in the manufacturing process of the electronic component according to the embodiment of the present invention.
  • the electronic component 10 is manufactured by singulating the laminate into a plurality of element bodies 20 .
  • the laminate is formed by integrating a plurality of element bodies 20 in an arrayed state. 4 to 9 show only a portion of the laminate corresponding to one element body 20 for convenience of explanation.
  • the method for manufacturing the electronic component 10 according to the first embodiment includes a sheet forming process, an interlayer connection conductor forming process, an electrode forming process, a shield conductor forming process, a protective layer forming process, an element forming process, a crimping process, and a singulation process. , a firing process, and a plating layer lamination process.
  • a sheet forming process is performed.
  • the base materials 21 to 29 shown in FIG. 2 are individually formed.
  • the base materials 21 to 29 formed in the sheet forming process are mixed with raw materials including a main agent, a plasticizer, a binder, and the like according to each base material 21 to 29 to form a slurry constituting each base material 21 to 29. is made.
  • Each of the substrates 21 to 29 at this stage is a green sheet made of slurry.
  • sinterable ceramic powder or the like is used as a main agent.
  • a plasticizer for example, a phthalate ester, di-n-butyl phthalate, or the like is used.
  • the binder for example, acrylic resin, polyvinyl butyral, or the like is used.
  • each of the base materials 21 to 29 is formed into a sheet on the carrier film 101 shown in FIG. 4 using, for example, a lip coater or doctor blade. That is, each of the nine substrates 21 to 29 is molded on each of the nine carrier films 101 .
  • the carrier film 101 for example, a PET (polyethylene terephthalate) film or the like is used.
  • the thickness of each base material 21-29 is, for example, 5-100 ( ⁇ m).
  • FIG. 4 shows the carrier film 101 and the substrate 28 molded on the carrier film 101.
  • through-holes 20D are formed through the substrates 21 to 29 and the carrier film 101 in the thickness direction.
  • the number of through holes 20D formed in each of the substrates 21 to 29 is not limited to two. Also, the number of through holes 20D formed in the base materials 21 to 29 may be the same or different. Further, the positions of the through holes 20D formed in the base materials 21 to 29 may be the same or different.
  • nine substrates 21 to 29 and the carrier film 101 are formed so that the element body 20 as shown in FIG. 2 is finally formed.
  • the number and positions of through holes 20D are determined.
  • interlayer connection conductor forming step Next, an interlayer connection conductor forming step is performed.
  • the through holes 20D formed in the base materials 21 to 29 and the carrier film 101 in the sheet forming process are filled with the conductive paste 102 (see FIG. 4).
  • the paste 102 filled in the through holes 20 ⁇ /b>D corresponds to the interlayer connection conductors 30 .
  • the paste 102 is produced, for example, by mixing raw materials including conductive powder, a plasticizer, and a binder.
  • Electrode forming step Next, an electrode forming process is performed. In the electrode forming process, the internal electrodes 40 and the external electrodes 50 are formed.
  • the paste is formed by screen printing, inkjet printing, gravure printing, or the like, for example.
  • the internal electrodes 40 are formed on each of the substrates 21 to 29 in the same manner as the external electrodes 50 are formed.
  • the pastes corresponding to the internal electrodes 40 and the external electrodes 50 are prepared by mainly mixing raw materials including conductive powder, plasticizer, and binder, similarly to the paste 102 described above.
  • the paste corresponding to the internal electrodes 40 and the external electrodes 50 may be made of the same material as the paste 102 or may be made of a material different from that of the paste 102 .
  • shield conductor forming process Next, a shield conductor forming step is performed. In the shield conductor forming process, the shield conductor 60 is formed.
  • paste corresponding to the shield conductor 60 is formed on the main surface of the base material 29 as shown in FIG.
  • the paste corresponding to the shield conductor 60 is formed by, for example, screen printing, inkjet printing, gravure printing, sputtering method, vapor deposition method, transfer method, or the like.
  • the shield conductor is printed after the protective layer is printed, as will be described later.
  • the paste corresponding to the shield conductor is prepared by mainly mixing raw materials including conductive powder, a plasticizer, and a binder, similarly to the above-described paste (the paste corresponding to the internal electrode 40 and the external electrode 50 and the paste 102). be done.
  • the paste corresponding to the shield conductor may be composed of the same material as the paste described above, or may be composed of a material different from the paste described above.
  • the shield conductor forming process may be performed before the electrode forming process, or may be performed in parallel with the electrode forming process.
  • a protective layer forming step is performed.
  • a protective layer 70 is formed.
  • a paste corresponding to the protective layer 70 is formed on the shield conductor 60 formed on the main surface of the base material 29 in the shield conductor forming step. be done.
  • the paste corresponding to the protective layer 70 is formed by, for example, screen printing, inkjet printing, gravure printing, transfer method, or the like.
  • the paste corresponding to the protective layer 70 is made of the material forming the protective layer 70 described above.
  • the paste corresponding to the protective layer 70 is paste-like LTCC.
  • a protective layer is printed on the outer edge of the transfer sheet, and then a shield conductor is printed on the transfer sheet on the center of the transfer sheet.
  • the outer edge of the shield conductor is printed over the inner edge of the protective layer. That is, the shield conductor and the protective layer partially overlap.
  • the transfer sheet is laminated on the base material 29 so that the shield conductor is on the base material 29 side.
  • the thickness T1 of the protective layer 70 is greater than the thickness T2 of the shield conductor 60 formed on the main surface 20B.
  • the paste corresponding to the protective layer 70 may be printed multiple times.
  • the protective layer 70 is formed thicker than the shield conductor 60 .
  • the means for making the protective layer 70 thicker than the shield conductor 60 is not limited to printing the paste corresponding to the protective layer 70 a plurality of times.
  • the viscosity and specific gravity of the paste corresponding to the protective layer 70 may be adjusted so that the protective layer 70 is thicker than the shield conductor 60 .
  • a body forming step is performed.
  • the element forming step as shown in FIG. 8, each of the substrates 21 to 29 excluding the carrier film 101 is laminated. Thus, the base body 20 is obtained.
  • the nine base materials 21 to 29 are arranged in order from the base material with the smaller number to the base material with the larger number, specifically the base materials 21, 22, 23, 24, 25, 26, and 27. , 28 and 29 are stacked in this order.
  • the main surface of the base material 21 becomes the main surface 20A of the element body 20
  • the main surface of the base material 29 becomes the main surface 20B of the element body 20 .
  • the side surfaces of the base materials 21 to 29 are the side surfaces 20C of the element body 20. As shown in FIG.
  • some of the nine base materials 21 to 29 are reversed and laminated with respect to base materials other than the part of the nine base materials 21 to 29. be done.
  • the substrates 21 to 25 are laminated with the carrier film 101 side facing upward, while the substrates 26 to 29 are laminated with the carrier film 101 side facing downward.
  • the internal electrodes 40 and the external electrodes 50 formed on the substrates 21, 23 to 25 are positioned below the substrates 21, 23 to 25, respectively, and the electrodes formed on the substrate 29 are positioned below the respective substrates 21, 23 to 25.
  • a shielded conductor 60 is located above the substrate 29 .
  • the nine base materials 21 to 29 may be laminated without being reversed. For example, when a transfer method is used for printing shield conductors and protective layers, the nine substrates 21 to 29 are laminated without being reversed.
  • the protective layer 70 pushes the outer edge portion of the shield conductor 60 seen from the thickness direction 100 into the base material 29 .
  • the outer edge of the shield conductor 60 penetrates deeper into the base material 29 than the portion other than the outer edge of the shield conductor 60 and is covered with the protective layer 70 .
  • the outer edge of the shield conductor 60 is sandwiched between the element body 20 and the protective layer 70 inside the element body 20 .
  • a singulation process is performed.
  • a laminate in which a plurality of element bodies 20 are arranged is cut into a plurality of element bodies 20 .
  • a dicing saw, a guillotine cutter, a laser, or the like, for example, is used to cut the laminate.
  • the corners and edges of the blank 20 may be polished, such as by barreling (see FIG. 2). Said polishing may be performed after the firing step.
  • firing process Next, a firing process is performed.
  • the substrates 21 to 29 are fired to form the element body 20, which is a sintered body (see FIG. 2).
  • plating layer lamination process Next, a plating layer lamination process is performed.
  • the external electrodes 50 and the shield conductors 60 are subjected to a known plating process. Thereby, as shown in FIG. 2, the plating layer 80 is laminated so as to cover the external electrodes 50 and the shield conductors 60 .
  • the internal electrode 42 functioning as an inductor forms a meandering coil.
  • the inductor included in the LC resonator 91 is not limited to the meander coil.
  • the internal electrode 42 may be a spiral coil in plan view.
  • FIG. 10 is a sectional view corresponding to the BB section of FIG. 2 in the electronic component according to the modification of the first embodiment of the present invention.
  • the internal electrode 42 may be a spiral coil in a side view.
  • FIG. 11 is a sectional view corresponding to the BB section of FIG. 2 in the electronic component according to the modification of the first embodiment of the present invention.
  • the internal electrodes 42 indicated by dashed lines in FIG. 11 are formed on a base material (for example, the base material 23) different from the base material 24.
  • the internal electrodes 42 indicated by solid lines and the internal electrodes 42 indicated by dashed lines are electrically connected by interlayer connection conductors (not shown). Thereby, the internal electrode 42 shown in FIG. 11 constitutes a spiral coil.
  • the winding axis of the coil formed by the internal electrodes 42 extends in the thickness direction 100.
  • the winding axis of the coil may extend in directions other than the thickness direction 100 .
  • the winding axis of the coil formed by the internal electrodes 42 extends in the direction along the main surface of the base material 24 (in other words, the direction perpendicular to the thickness direction 100). .
  • the shield conductor 60 is formed on the main surface 20B of the element body 20, but is not formed on the main surface 20A and the side surfaces 20C of the element body 20.
  • the shield conductor 60 may be formed on at least one of the main surface 20A and the side surface 20C of the element body 20 in addition to the main surface 20B of the element body 20 .
  • the shield conductor 60 should be formed at least on the main surface 20B of the outer surface of the element body 20.
  • the shield conductor 60 may include main surface conductors 60B formed on the main surface 20B of the element body 20 and side conductors 60C formed on the side surfaces 20C of the element body 20. good.
  • the shield conductors 60 formed on the main surface 20B and the side surfaces 20C of the element body 20 are covered with the plating layer 80, as shown in FIG. Cover 20C.
  • FIG. 12 is a perspective view of an electronic component according to a modification of the first embodiment of the invention.
  • FIG. 13 is a sectional view showing a CC section of FIG. 12.
  • the side conductors 60C are formed by known means such as a dipping method after the singulation process and before the firing process.
  • the main surface conductor 60B is formed in the shield conductor forming step.
  • the side conductors 60C are formed on the side surfaces 20C of the element body 20 and the outer edge of the main surface 20B of the element body 20 by known means such as the dipping method (see FIG. 13).
  • a side conductor 60C formed on the outer edge of the main surface 20B of the element body 20 is electrically connected to the main surface conductor 60B.
  • the side conductor 60C and the main surface conductor 60B are not connected because the protective layer 70 is present between the side surface conductor 60C and the main surface conductor 60B.
  • the side conductor 60C and the main conductor 60B are electrically connected via a portion 70A (see FIG. 12) where the protective layer 70 is not formed.
  • the external electrodes 50, the main surface conductors 60B, and the side surface conductors 60C are subjected to a known plating process in the plating layer lamination process.
  • the plating layer 80 is laminated so as to cover the external electrodes 50, main surface conductors 60B, and side surface conductors 60C.
  • the two interlayer connection conductors 31 and 32 are formed on the substrates 25 to 29 including the substrate 29 on which the shield conductor 60 is formed. It is electrically connected to the ground through interlayer connection conductors 31 and 32 .
  • the number of interlayer connection conductors 30 formed on a substrate including the substrate 29 on which the shield conductor 60 is formed and electrically connecting the shield conductor 60 and the ground is not limited to two.
  • one interlayer connection conductor 30 may be formed on the substrate 29 on which the shield conductor 60 is formed, and the shield conductor 60 may be electrically connected to the ground via the one interlayer connection conductor 30.
  • FIG. 14 is a plan view of an electronic component according to a modification of the first embodiment of the invention.
  • the electronic component 10A shown in FIG. 14 includes six LC resonators 91. 14, seven interlayer connection conductors 30 are formed on the base material 29 of the electronic component 10A.
  • the shield conductor 60 is electrically connected to the seven interlayer connection conductors 30 .
  • the seven interlayer connection conductors 30 are electrically connected via at least one of the internal electrodes 40 and other interlayer connection conductors 30 to an external electrode 51 electrically connected to the ground. That is, in the electronic component 10A shown in FIG. 14, the shield conductor 60 is electrically connected to the ground through the seven interlayer connection conductors 30. As shown in FIG.
  • FIG. 15 is a perspective view of an electronic component according to a second embodiment of the invention.
  • the difference between the electronic component 10B according to the second embodiment and the electronic component 10 according to the first embodiment is that the protective layer 70 is formed not only around the interface 60A, but also outside the peripheral part. . Differences from the first embodiment will be described below. Points in common with the electronic component 10 according to the first embodiment are denoted by the same reference numerals, and descriptions thereof are omitted in principle, and will be described as necessary.
  • the interface 60A has four parts.
  • the four parts are interfaces 60Aa, 60Ab, 60Ac and 60Ad.
  • the interfaces 60Aa and 60Ab face each other in the direction along the main surface 20B with the plating layer 80 interposed therebetween.
  • the interfaces 60Ac and 60Ad face each other in the direction along the main surface 20B with the plating layer 80 interposed therebetween.
  • the plating layer 80 covers the shield conductor 60 . That is, the interfaces 60Aa and 60Ab sandwich the shield conductor 60, and the interfaces 60Ac and 60Ad sandwich the shield conductor 60 therebetween.
  • Interface 60Aa is an example of a first interface.
  • Interface 60Ab is an example of a second interface.
  • the interface 60Ac connects one end of the interface 60Aa and one end of the interface 60Ab.
  • the interface 60Ad connects the other end of the interface 60Aa and the other end of the interface 60Ab.
  • the protective layer 70 includes a first portion 71 , a second portion 72 , a third portion 73 , a fourth portion 74 and a fifth portion 75 .
  • the first portion 71 straddles the interface 60Aa.
  • the second portion 72 straddles the interface 60Ab.
  • the fourth portion 74 straddles the interface 60Ac.
  • the fifth portion 75 straddles the interface 60Ad.
  • the first portion 71 and the second portion 72 face each other in the direction along the main surface 20B.
  • the fourth portion 74 and the fifth portion 75 face each other in the direction along the main surface 20B.
  • the fourth portion 74 connects one end of the first portion 71 and one end of the second portion 72 .
  • the fifth portion 75 connects the other end of the first portion 71 and the other end of the second portion 72 .
  • the third portion 73 connects the first portion 71 and the second portion 72 across the shield conductor 60 sandwiched between the interfaces 60Aa and 60Ab when viewed from the thickness direction 100 .
  • the third portion 73 is formed on the shield conductor 60 in the protective layer forming step, like the other portions of the protective layer 70 .
  • the third portion 73 of the protective layer 70 is formed across the shield conductor 60 . Thereby, the adhesion of the shield conductor 60 to the element body 20 can be improved.
  • FIG. 16 is a sectional view corresponding to the AA section of FIG. 1 in the electronic component according to the third embodiment of the invention.
  • the difference between the electronic component 10C according to the third embodiment and the electronic component 10 according to the first embodiment is that, when viewed from the thickness direction 100, the protective layer 70 of the internal circuit 90 extends in the thickness direction with respect to the main surface 20B. It is formed at a position away from the internal electrode 92 which is the portion closest to 100 . Differences from the first embodiment will be described below. Points in common with the electronic component 10 according to the first embodiment are denoted by the same reference numerals, and descriptions thereof are omitted in principle, and will be described as necessary.
  • the electronic component 10C has an internal circuit 90 inside the base body 20.
  • the internal circuit 90 includes, for example, elements such as resistors, terminals, and wiring in addition to inductors and capacitors.
  • the internal circuit 90 is a circuit in which these elements are combined.
  • the internal circuit 90 is composed of the interlayer connection conductors 30, the internal electrodes 40, and the like.
  • the internal circuit 90 is formed on at least one of the substrates 21-29.
  • the internal circuit 90 includes an LC resonator 91, internal electrodes 92 and 93, and an interlayer connection conductor (not shown) and internal electrodes (not shown) electrically connecting them.
  • the internal electrodes 92 are formed on the base material 28 .
  • the internal electrodes 93 are formed on the base material 26 .
  • the distance in thickness direction 100 between internal electrode 92 and main surface 20B is shorter than the distance in thickness direction 100 between LC resonator 91 and main surface 20B.
  • the distance in the thickness direction 100 between the internal electrode 92 and the main surface 20B is shorter than the distance in the thickness direction 100 between the internal electrode 93 and the main surface 20B. That is, the internal electrode 92 is the portion of the internal circuit 90 that is closest to the main surface 20B in the thickness direction 100 .
  • the protective layer 70 and the internal electrode 92 do not overlap when viewed from the thickness direction 100 .
  • the protective layer 70 is formed at a position separated from the internal electrode 92 when viewed in the thickness direction 100 .
  • FIG. 17 is a sectional view corresponding to the AA section of FIG. 1 in the electronic component according to the modification of the third embodiment of the present invention.
  • the aspect in which the protective layer 70 and the internal electrode 92 do not overlap when viewed from the thickness direction 100 is not limited to the aspect shown in FIG.
  • a configuration is realized in which the protective layer 70 is formed at a position separated from the internal electrode 92. may be
  • a portion of the shield conductor 60 covered with the protective layer 70 is likely to be pushed into the protective layer 70 and enter the element body 20 .
  • the internal circuit 90 is formed in the vicinity directly under the relevant portion of the shield conductor 60, the distance in the thickness direction 100 between the relevant portion of the shield conductor 60 and the internal circuit 90 becomes short, and the relevant portion of the shield conductor 60 and the internal circuit become closer.
  • the parasitic capacitance generated between 90 and 90 increases.
  • the protective layer 70 when viewed from the thickness direction 100, the protective layer 70 is formed at a position away from the portion (the internal electrode 92) of the internal circuit 90 that is closest to the main surface 20B in the thickness direction 100.
  • FIG. 18 is a plan view of an electronic component according to a fourth embodiment of the invention.
  • Electronic component 10 ⁇ /b>D according to the fourth embodiment differs from electronic component 10 according to the first embodiment in that protective layer 70 overlaps interlayer connection conductor 30 formed on base material 29 when viewed from thickness direction 100 . It is that you are. Differences from the first embodiment will be described below. Points in common with the electronic component 10 according to the first embodiment are denoted by the same reference numerals, and descriptions thereof are omitted in principle, and will be described as necessary.
  • interlayer connection conductors 30 are formed on the base material 29 of the element body 20 .
  • the six interlayer connection conductors 30 are electrically connected to shield conductors 60 formed on the main surface 20B of the element body 20 .
  • the six interlayer connection conductors 30 are indicated by dashed lines. As shown in FIG. 18 , the six interlayer connection conductors 30 are positioned at the outer edge portion 60D of the shield conductor 60 when viewed in the thickness direction 100 .
  • the outer edge portion 60D of the shield conductor 60 is a portion excluding the center portion of the shield conductor 60 when viewed from the thickness direction 100.
  • the outer edge portion 60 ⁇ /b>D of the shield conductor 60 is a peripheral portion of the rectangular side of the shield conductor 60 that is rectangular when viewed in the thickness direction 100 .
  • the outer edge portion 60D of the shield conductor 60 is a portion closer to the sides of the rectangle than the center of the rectangle.
  • all the interlayer connection conductors 30 formed on the base material 29 are positioned at the outer edge 60D of the shield conductor 60, but some of the interlayer connection conductors 30 formed on the base material 29 may be located at the outer edge portion 60D of the shield conductor 60 only.
  • the protective layer 70 straddles part of the interface 60A of the shield conductor 60.
  • the formation position of the protective layer 70 is not limited to the position shown in FIG.
  • the protective layer 70 may straddle the entire interface 60A of the shield conductor 60 .
  • the protective layer 70 When viewed from the thickness direction 100 , the protective layer 70 partially overlaps each of the six interlayer connection conductors 30 formed on the base material 29 . Moreover, when viewed from the thickness direction 100 , the protective layer 70 straddles each of the six interlayer connection conductors 30 and the shield conductor 60 .
  • FIG. 19 is a plan view of an electronic component according to a modification of the fourth embodiment of the invention.
  • the protective layer 70 partially overlaps the interlayer connection conductors 30 formed on the substrate 29 . That is, the interlayer connection conductor 30 formed on the base material 29 is composed of a portion overlapping the protective layer 70 and a portion not overlapping the protective layer 70 when viewed in the thickness direction 100 .
  • the protective layer 70 may overlap all of the interlayer connection conductors 30 formed on the base material 29 . That is, as shown in FIGS. 18 and 19, the protective layer 70 may overlap at least a portion of the interlayer connection conductor 30 formed on the base material 29 when viewed from the thickness direction 100 .
  • the protective layer 70 is formed right above the interlayer connection conductor 30 covered by the outer edge portion 60D of the shield conductor 60 when viewed from the thickness direction 100 .
  • the protective layer 70 can reduce the floating of the outer edge portion 60 ⁇ /b>D of the shield conductor 60 from the element body 20 .
  • FIG. 20 is a perspective view of an electronic component according to a fifth embodiment of the invention.
  • 21 is a cross-sectional view showing a DD cross section of FIG. 20.
  • FIG. The electronic component 10 ⁇ /b>E according to the fifth embodiment differs from the electronic component 10 according to the first embodiment in that an identification mark 5 is formed on the surface of the shield conductor 60 . Differences from the first embodiment will be described below. Points in common with the electronic component 10 according to the first embodiment are denoted by the same reference numerals, and descriptions thereof are omitted in principle, and will be described as necessary.
  • the identification mark 5 is formed on the surface of the shield conductor 60 formed on the main surface 20B of the base body 20. As shown in FIGS. The identification mark 5 is for indicating the posture and direction of the electronic component 10 .
  • the electronic component 10 has one identification mark 5 in the fifth embodiment, it may have a plurality of identification marks 5 .
  • the identification mark 5 has a square shape when viewed from the thickness direction 100, but is not limited to a square shape.
  • the color of the identification mark 5 is shown in white, but the color of the identification mark 5 is not limited to white, and may be other colors such as black, gray, and red.
  • the color of the identification mark 5 is preferably different from that of the surroundings of the identification mark 5 (the plating layer 80 in the fifth embodiment).
  • the identification mark 5 is made of a non-metallic material. Thereby, the identifiability of the identification mark 5 can be improved with respect to the plating layer 80 made of a metal material.
  • the identification mark 5 is made of the same material as the element body 20 and the protective layer 70 .
  • the material of the identification mark 5 is arbitrary on the condition that it can be distinguished from the surroundings of the identification mark 5 (plated layer 80 in the fifth embodiment).
  • the identification mark 5 may be made of resin.
  • the visibility of the identification mark 5 may be improved by coloring the identification mark 5 with a different color from the plating layer 80 .
  • the identification mark 5 may be made of a material different from that of the base body 20 and the protective layer 70 .
  • the identification mark 5 may be made of a mixture of multiple types of materials.
  • the identification mark 5 may include aluminum (Al), zinc (Zn), zirconium (Zr), titanium (Ti), cobalt (Co), magnesium (Mg), manganese (Mn), calcium (Ca), silicon (Si ), iron (Fe), nickel (Ni), chromium (Cr), barium (Ba), and tungsten (W).
  • the identification mark 5 is embedded in the shield conductor 60 and embedded in the base body 20 together with the shield conductor 60 . Note that the identification mark 5 does not have to enter the shield conductor 60 and the element body 20 .
  • the identification mark 5 there is no inter-layer connection conductor 30 directly below the identification mark 5 .
  • the identification mark 5 and the interlayer connection conductor 30 do not overlap when viewed from the thickness direction 100 .
  • the identification mark 5 is formed at a position separated from the interlayer connection conductor 30 when viewed in the thickness direction 100 .
  • the configuration of plating layer 80 can be determined based on the contrast with identification mark 5 .
  • the identification mark 5 is composed of a black ceramic paste containing zinc oxide (ZnO)
  • the outermost layer (for example, the outer layer 82) of the plating layer 80 is composed of gold.
  • the black identification mark 5 can secure a contrast against the surrounding gold color.
  • the identification mark 5 is composed of a white ceramic paste containing aluminum oxide (Al 2 O 3 )
  • the outermost layer (for example, the outer layer 82) of the plating layer 80 is composed of gray tin.
  • the white identification mark 5 can ensure a contrast against the surrounding gray. As described above, the visibility of the identification mark 5 can be improved.
  • the thickness of the plating layer 80 (the length in the thickness direction 100) is thicker than the thickness of the identification mark 5.
  • the identification mark 5 is positioned at the back of the recess 83 formed by the plating layer 80 .
  • the thickness of the plating layer 80 is greater than the thickness of the identification mark 5, even if the identification mark 5 is not embedded in the shield conductor 60, the identification mark 5 is not embedded in the recess 83.
  • the identification mark forming process for forming the identification mark 5 is executed after the shield conductor forming process and before the element forming process.
  • the identification mark 5 is made of the same material as the protective layer 70 . Therefore, the identification mark 5 is formed on the shield conductor 60 together with the protective layer 70 in the protective layer forming process. That is, in the fifth embodiment, the identification mark forming process is included in the protective layer forming process. If the identification mark 5 is made of a material different from that of the protective layer 70, the identification mark forming step is performed separately from the protective layer forming step.
  • FIG. 22 is a sectional view corresponding to the DD section of FIG. 20 in the electronic component according to the modification of the fifth embodiment of the present invention.
  • the identification mark 5 is wholly embedded in the base body 20 , and the identification mark 5 is positioned deep inside the recess 83 formed by the plating layer 80 .
  • the identification mark 5 may protrude from the plating layer 80 as shown in FIG.
  • the configuration in which the identification mark 5 protrudes from the plating layer 80 is realized by forming the identification mark 5 thickly in the identification mark forming process.
  • the identification mark 5 is formed thickly by being printed multiple times in the identification mark forming process.
  • the identification mark 5 is formed on the surface of the shield conductor 60. Therefore, the visibility of the identification mark 5 can be improved compared to the configuration in which the identification mark 5 is covered with the shield conductor 60 .
  • the step of forming the identification mark 5 on the surface of the shield conductor 60 and the step of forming the protective layer 70 on the surface of the shield conductor 60 are separate steps. becomes.
  • the identification mark 5 and the protective layer 70 can be simultaneously formed on the surface of the shield conductor 60 by printing or the like. Thereby, the manufacturing process of the electronic component 10E can be reduced.
  • FIG. 23 is a sectional view showing part of an electronic component according to a sixth embodiment of the invention.
  • the electronic component 10F according to the sixth embodiment is different from the electronic component 10 according to the first embodiment in that the protective layer 70 is formed on the main surface 20B of the base body 20 in addition to the outer edge portion of the shield conductor 60, which is formed on the central portion. and that the thickness of the outer edge portion of the protective layer 70 is thicker than the thickness of the central portion of the protective layer 70 .
  • Differences from the first embodiment will be described below. Points in common with the electronic component 10 according to the first embodiment are denoted by the same reference numerals, and descriptions thereof are omitted in principle, and will be described as necessary.
  • the protective layer 70 included in the electronic component 10F covers the entire shield conductor 60 formed on the main surface 20B of the base body 20. As shown in FIG. The thickness T1 of the outer edge portion of the protective layer 70 provided in the electronic component 10F is thicker than the thickness T3 of the central portion of the protective layer 70 provided in the electronic component 10F.
  • the protective layer 70 included in the electronic component 10F may be formed not only on the outer edge of the shield conductor 60 but also on the central portion of the shield conductor 60, and is not necessarily formed on the main surface 20B of the element body 20. It is not necessary to cover all of the For example, as shown in FIG. 15, the protective layer 70 is formed in the center of the shield conductor 60 in addition to the outer edge of the shield conductor 60 (the first portion 71, the second portion 72, the fourth portion 74, and the fifth portion 75). A part of the portion (the third portion 73) may be covered.
  • the configuration in which the thickness of the outer edge portion of the protective layer 70 is thicker than the thickness of the central portion is, for example, that the outer edge portion of the protective layer 70 is printed more times than the central portion of the protective layer 70 in the protective layer forming process. It can be realized by
  • the number of prints on the center portion of the shield conductor 60 may be greater than the number of prints on the outer edge portion of the shield conductor 60 .
  • the thickness of the central portion of the shield conductor 60 is thicker than the thickness of the outer edge portion of the shield conductor 60 .
  • more paste is laminated on the outer edge of the shield conductor 60 in the subsequent protective layer forming process.
  • the thickness of the outer edge portion of the protective layer 70 becomes thicker than the thickness of the central portion.
  • the thickness of the outer edge of the protective layer 70 is thicker than the thickness of the central portion of the protective layer 70, the adhesion of the outer edge of the protective layer 70 to the shield conductor 60 and the element body 20 is controlled by the thickness of the protective layer 70. can be made stronger than the close contact with the shield conductor 60 at the central portion of the .
  • the protective layer 70 When the protective layer 70 is crimped toward the base body 20 in the crimping process, if the protective layer 70 is thick, the amount of pressing against the base body 20 is increased. As a result, the relative distances among the interlayer connection conductors 30, the internal electrodes 40, the shield conductors 60, etc. formed inside the element body 20 change. As a result, noise to the internal circuit 90 may increase. According to the sixth embodiment, the thickness of the central portion of the protective layer 70 is thinner than the thickness of the outer edge portion of the protective layer 70 . Therefore, since the pressing amount during the crimping process is reduced in the central portion of the protective layer 70, the noise can be suppressed.
  • the protective layer 70 covers all the shield conductors 60 formed on the main surface 20B of the element body 20 as in the sixth embodiment, the following effects are obtained. Since the plating layer 80 covering the shield conductor 60 becomes unnecessary, the cost can be reduced. Also, the adhesion strength of the shield conductor 60 to the element body 20 can be increased. Moreover, the possibility that the shield conductor 60 will be peeled off from the element body 20 can be reduced.
  • identification mark 10 electronic component 20 base body 20A main surface 20B main surface 20C side surface 21 base material 22 base material 23 base material 24 base material 25 base material 26 base material 27 base material 28 base material 29 base material 30 interlayer connection conductor 42 inside Electrode (inductor conductor) 43 internal electrode (capacitor conductor) 44 internal electrode (capacitor conductor) 52 external electrode (electrode) 53 external electrode (electrode) 60 shield conductor 60A interface 60Aa interface (first interface) 60Ab interface (second interface) 60D outer edge portion 70 protective layer 71 first portion 72 second portion 73 third portion 90 internal circuit 91 LC resonator 100 thickness direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

素体に形成されたLC共振器の特性悪化を抑制しつつ、素体の外面に形成されたシールド導体の素体に対する密着性を高めることができる電子部品を提供する。電子部品は、積層された絶縁性の基材を有し、主面及び側面を有する素体と、基材に形成されたインダクタ導体、及び基材に形成され且つインダクタ導体と電気的に接続されたキャパシタ導体を有するLC共振器と、主面に形成され且つグランドと電気的に接続されるシールド導体と、主面に形成され、LC共振器と電気的に接続される外部電極と、主面に形成されたシールド導体と素体との界面を跨いで、主面に形成されたシールド導体と主面とを覆う保護層とを備える。

Description

電子部品
 本発明は、素体と当該素体の外面に形成されたシールドとを備える電子部品に関する。
 素体の外面にシールドが形成された電子部品が特許文献1に開示されている。
 特許文献1に開示された積層型電子部品は、積層された複数の誘電体層を含む積層体を備えている。積層体は、インダクタとキャパシタとを含んでいる。
 特許文献1に開示された積層型電子部品では、積層体に、シールドが形成されている。シールドは、例えば、積層型電子部品の外部からインダクタとキャパシタへの電磁ノイズの影響を抑制する。シールドは、スパッタ法によって積層体に形成されている。
特開2018-186205号公報
 シールドがスパッタ法によって積層体に形成される場合、積層体の表面粗さ及び積層体の材質等によってシールドと積層体との密着性が決まる。そのため、積層体の表面粗さ及び積層体の材質によっては、シールドと積層体との密着性が低くなるおそれがある。シールドと積層体との密着性が低い場合、仮にシールドが積層体に形成された直後の初期状態においてシールドと積層体との密着が保てたとしても、その後に熱衝撃等が積層型電子部品に作用した場合に、シールドが積層体から剥がれる可能性が高い。
 特許文献1に開示された積層型電子部品では、積層体がインダクタを含んでいる。また、特許文献1に開示された積層型電子部品では、シールドは、積層体の上面と側面とを覆っている。この場合、シールドによる電磁ノイズの遮断性は高い。しかし、インダクタにおいて発生する磁束がシールドによって遮られてしまい。インダクタの特性が悪化するおそれがある。
 従って、本発明の目的は、前記課題を解決することにあって、素体に形成されたLC共振器の特性悪化を抑制しつつ、素体の外面に形成されたシールド導体の素体に対する密着性を高めることができる電子部品を提供することにある。
 前記目的を達成するために、本発明は以下のように構成する。
 本発明の一態様に係る電子部品は、
 厚み方向に積層された複数の絶縁性の基材を有し、互いに反対を向く一対の主面及び前記一対の主面を繋ぐ側面を有する素体と、
 複数の前記基材の少なくとも1つに形成されたインダクタ導体、及び複数の前記基材の少なくとも1つに形成され且つ前記インダクタ導体と電気的に接続されたキャパシタ導体を有するLC共振器と、
 前記一対の主面及び前記側面のうちの少なくとも前記一対の主面の一方に形成され且つグランドと電気的に接続されるシールド導体と、
 前記一対の主面の他方及び前記側面の少なくとも一方に形成され、前記LC共振器と電気的に接続される電極と、
 前記厚み方向から見て、前記一対の主面の一方に形成された前記シールド導体と前記素体との界面の少なくとも一部を跨いで、前記一対の主面の一方に形成されたシールド導体の少なくとも一部と前記一対の主面の一方の少なくとも一部とを覆う保護層と、を備える。
 本発明によれば、素体に形成されたLC共振器の特性悪化を抑制しつつ、素体の外面に形成されたシールド導体の素体に対する密着性を高めることができる。
本発明の第1実施形態に係る電子部品の斜視図。 図1のA-A断面を示す断面図。 図2のB-B断面を示す断面図。 本発明の実施形態に係る電子部品の製造過程において基材に層間接続導体が形成されたときの断面図。 本発明の実施形態に係る電子部品の製造過程において基材に外部電極が印刷されたときの断面図。 本発明の実施形態に係る電子部品の製造過程において基材にシールド導体が印刷されたときの断面図。 本発明の実施形態に係る電子部品の製造過程において基材及びシールド導体に保護層が印刷されたときの断面図。 本発明の実施形態に係る電子部品の製造過程において複数の基材が積層されて素体が形成されたときの断面図。 本発明の実施形態に係る電子部品の製造過程において素体が圧着されたときの断面図。 本発明の第1実施形態の変形例に係る電子部品において図2のB-B断面に対応する断面図。 本発明の第1実施形態の変形例に係る電子部品において図2のB-B断面に対応する断面図。 本発明の第1実施形態の変形例に係る電子部品の斜視図。 図12のC-C断面を示す断面図。 本発明の第1実施形態の変形例に係る電子部品の平面図。 本発明の第2実施形態に係る電子部品の斜視図。 本発明の第3実施形態に係る電子部品において図1のA-A断面に対応する断面図。 本発明の第3実施形態の変形例に係る電子部品において図1のA-A断面に対応する断面図。 本発明の第4実施形態に係る電子部品の平面図。 本発明の第4実施形態の変形例に係る電子部品の平面図。 本発明の第5実施形態に係る電子部品の斜視図。 図20のD-D断面を示す断面図。 本発明の第5実施形態の変形例に係る電子部品において図20のD-D断面に対応する断面図。 本発明の第6実施形態の電子部品の一部を示す断面図。
 本発明の一態様に係る電子部品は、
 厚み方向に積層された複数の絶縁性の基材を有し、互いに反対を向く一対の主面及び前記一対の主面を繋ぐ側面を有する素体と、
 複数の前記基材の少なくとも1つに形成されたインダクタ導体、及び複数の前記基材の少なくとも1つに形成され且つ前記インダクタ導体と電気的に接続されたキャパシタ導体を有するLC共振器と、
 前記一対の主面及び前記側面のうちの少なくとも前記一対の主面の一方に形成され且つグランドと電気的に接続されるシールド導体と、
 前記一対の主面の他方及び前記側面の少なくとも一方に形成され、前記LC共振器と電気的に接続される電極と、
 前記厚み方向から見て、前記一対の主面の一方に形成された前記シールド導体と前記素体との界面の少なくとも一部を跨いで、前記一対の主面の一方に形成されたシールド導体の少なくとも一部と前記一対の主面の一方の少なくとも一部とを覆う保護層と、を備える。
 この構成によれば、保護層が、シールド導体と素体との界面を跨いでシールド導体を覆っている。これにより、シールド導体の素体に対する密着性を保護層によって補強することができる。
 この構成によれば、電子部品はLC共振器を備えている。また、シールド導体は、素体の外面のうちの少なくとも一対の主面の一方に形成されている。そのため、シールド導体が一対の主面の他方及び側面の少なくとも一方に形成されないように、電子部品は構成され得る。この場合、シールド導体によるLC共振器の磁束の遮断を低減することができる。
 前記電子部品において、前記シールド導体のうち前記保護層に覆われている部分は、前記素体の内部において前記素体と前記保護層とによって挟まれていてもよい。
 この構成によれば、シールド導体のうち保護層に覆われている部分は、保護層に押し込まれるようにして素体に埋設され、素体と保護層とによって挟まれている。これにより、シールド導体の素体に対する密着性を高めることができる。
 前記電子部品において、前記一対の主面の一方に形成された前記シールド導体と前記素体との界面は、第1界面と、前記厚み方向から見て前記第1界面との間に前記シールド導体を挟む第2界面とを有していてもよく、前記保護層は、前記第1界面を跨ぐ第1部分と、前記第2界面を跨ぐ第2部分と、前記厚み方向から見て前記第1界面及び前記第2界面に挟まれた前記シールド導体を横断して前記第1部分と前記第2部分とを接続する第3部分と、を備えていてもよい。
 この構成によれば、保護層の第3部分がシールド導体を横断するように形成されている。これにより、シールド導体の素体に対する密着性を高めることができる。
 前記電子部品において、複数の前記基材のうちの前記シールド導体が形成された前記基材に、前記基材を貫通する層間接続導体が形成されていてもよく、前記シールド導体は、前記層間接続導体を介してグランドと電気的に接続されていてもよい。
 従来構成では、例えば、素体の内部に位置する基材の主面に形成された内部導体が、基材の側縁部において素体の側面に形成されたシールド導体と電気的に接続される。この場合、内部導体のシールド導体との接触面積は、内部導体の厚みに依存する。内部導体の厚みを厚くすることは困難である。そのため、内部導体のシールド導体との接触面積を大きくすることは困難である。
 これに対して、この構成によれば、基材に形成された層間接続導体が、シールド導体と電気的に接続される。この場合、層間接続導体のシールド導体との接触面積は、基材に形成されて層間接続導体が充填される貫通孔の直径の大きさに依存する。貫通孔の直径を大きくすることは、内部導体の厚みを厚くするより容易である。そのため、層間接続導体のシールド導体との接触面積を大きくすることは、内部導体のシールド導体との接触面積を大きくすることより容易である。よって、層間接続導体とシールド導体との接続信頼性を高くすることができる。
 前記電子部品において、複数の前記基材のうちの前記シールド導体が形成された前記基材に、複数の前記層間接続導体が形成されていてもよく、前記シールド導体は、複数の前記層間接続導体を介してグランドと電気的に接続されていてもよい。
 この構成によれば、シールド導体と電気的に接続される層間接続導体の数を多くすることができる。シールド導体と電気的に接続される層間接続導体の数を多くすることによって、LC共振器における不要な共振の発生を抑制することができる。
 前記電子部品において、前記厚み方向から見て、前記層間接続導体の少なくとも1つは、前記シールド導体の外縁部に位置していてもよく、前記厚み方向から見て、前記保護層は、前記層間接続導体の少なくとも一部と重なり且つ前記層間接続導体と前記シールド導体とを跨ぐ位置に形成されていてもよい。
 厚み方向から見て層間接続導体がシールド導体の外縁部に形成された構成では、素体の焼成過程における基材の収縮及び層間接続導体からのアウトガス等によって、シールド導体の外縁部が素体から浮き上がるおそれがある。この構成によれば、厚み方向から見て、シールド導体の外縁部によって覆われた層間接続導体の真上に保護層が形成されている。これにより、シールド導体の外縁部の素体からの浮き上がりを、保護層によって低減することができる。
 前記電子部品において、前記シールド導体は、前記一対の主面の一方に形成されており、前記一対の主面の他方及び前記側面に形成されていなくてもよい。
 電子部品は、LC共振器を備えている。この構成によれば、シールド導体は、素体の外面のうちの一対の主面の一方のみに形成されている。この場合、シールド導体によるLC共振器の磁束の遮断を低減することができる。
 仮に、シールド導体が素体の一対の主面の一方に加えて素体の側面にも形成されている場合、LC共振器の磁束が素体の側面に形成されたシールド導体によって遮断される。そのため、LC共振器の形成位置は、素体の側面から離れた位置、例えば厚み方向から見て素体の中央部に制限されてしまう。この構成によれば、素体の側面にシールド導体が形成されていないため、LC共振器を素体の側面の近傍に形成することができる。つまり、前述したようなLC共振器の形成位置の制限はない。
 前記電子部品において、前記LC共振器を含む内部回路が、複数の前記基材の少なくとも1つに形成されていてもよく、前記厚み方向から見て、前記保護層は、前記内部回路のうち、前記一対の主面の一方に対して前記厚み方向に最も近い部分から外れた位置に形成されていてもよい。
 シールド導体のうち、保護層に覆われている部分は、保護層に押し込まれて素体の内部に入り込む可能性が高い。シールド導体の当該部分の直下近傍に内部回路が形成されている場合、シールド導体の当該部分と内部回路との厚み方向の距離が近くなり、シールド導体の当該部分と内部回路との間に生じる寄生容量が大きくなる。この構成によれば、厚み方向から見て、保護層は、内部回路のうちの一対の主面の一方に対して厚み方向に最も近い部分から外れた位置に形成されている。これにより、シールド導体と内部回路との厚み方向の距離が近くなることを抑制することができる。その結果、シールド導体と内部回路との間に大きな寄生容量が生じることを低減することができる。
 前記電子部品において、前記一対の主面の一方に形成された前記シールド導体の表面に、識別マークが形成されていてもよい。
 この構成によれば、識別マークがシールド導体の表面に形成されている。そのため、識別マークがシールド導体に覆われている構成に比べて、識別マークの視認性を向上させることができる。
 前記電子部品において、前記識別マークの材料は、前記保護層の材料と同じであってもよい。
 仮に、識別マークの材料が保護層の材料と異なる場合、シールド導体の表面に識別マークを形成する工程と、シールド導体の表面に保護層を形成する工程とが、別工程となる。一方、この構成によれば、シールド導体の表面に、識別マークと保護層とを印刷等によって同時に形成することができる。これにより、電子部品の製造工程を減らすことができる。
 前記電子部品において、前記厚み方向から見て、前記一対の主面の一方に形成された前記シールド導体と前記素体との界面の周囲部に形成された前記保護層の少なくとも一部は、前記一対の主面の一方に形成された前記シールド導体より前記厚み方向に厚くてもよい。
 この構成によれば、保護層によるシールド導体の素体への押し込み量が増える。これにより、シールド導体の素体に対する密着性を高めることができる。
 <第1実施形態>
 図1は、本発明の第1実施形態に係る電子部品の斜視図である。図2は、図1のA-A断面を示す断面図である。電子部品は、素体にシールド導体が設けられ、シールド導体の少なくとも一部が保護層に覆われたものである。第1実施形態に係る電子部品は、シールド導体及び保護層の他に内部電極と外部電極とが素体に設けられている。電子部品は、外部電極を介してマザー基板等に実装され得る。
 図1及び図2に示すように、第1実施形態に係る電子部品10は、素体20と、層間接続導体30と、内部電極40と、外部電極50と、シールド導体60と、保護層70と、めっき層80とを備える。
 素体20は、全体として直方体形状である。素体20の形状は、直方体形状に限らない。第1実施形態において、素体20は、厚み方向100に積層された基材21~29が一体化されたものである。つまり、第1実施形態において、素体20は、9つの基材が一体化されたものである。素体20を構成する基材の数は9つに限らない。基材21~29の各々は、絶縁性であり、板状である。第1実施形態において、素体20(各基材21~29)は、LTCC(Low Temperature Co-fired Ceramics)で構成されている。素体20は、LTCCに限らず、例えばアルミナ等のLTCC以外のセラミックで構成されていてもよいし、ガラスエポキシ、テフロン(登録商標)、紙フェノール等の樹脂で構成されていてもよい。
 図2に示すように、素体20は、一対の主面20A,20Bと側面20Cとを備える。主面20Aは、基材21の主面であって素体20の外部に面している。主面20Bは、基材29の主面であって素体20の外部に面している。主面20Bは、主面20Aと反対を向いている。側面20Cは、基材21~29の側面で構成されている。側面20Cは、主面20A,20Bを繋いでいる。第1実施形態において、主面20Bは一対の主面の一方に相当し、主面20Aは一対の主面の他方に相当する。
 第1実施形態において、一対の主面20A,20Bは、厚み方向100に直交している。
 図2に示すように、層間接続導体30は、素体20の内部に形成されている。層間接続導体30は、基材21~29の少なくとも1つに形成され得る。第1実施形態では、層間接続導体30は、基材21~29に形成されている。
 層間接続導体30は、複数の基材21~29の少なくとも1つを厚み方向100に貫通する貫通孔20Dに、導電性のペーストが充填され、素体20の構成物であるセラミック(第1実施形態ではLTCC)と共焼成されたものである。導電性のペーストは、例えば銅等の導電性粉末を含んでいる。導電性のペーストが含む導電性粉末は、銅に限らず、例えば銀でもよい。素体20が樹脂で構成されている場合、層間接続導体30は、銅などで構成された導電性金属がメッキ形成されたものである。第1実施形態では、貫通孔20Dは円柱形状であるため、層間接続導体30は円柱形状である。貫通孔20Dの形状は、円柱形状に限らず、例えば四角柱等の形状であってもよい。
 図2では、層間接続導体30は、5つの層間接続導体31~35を備えている。層間接続導体31,32は、基材25~29を貫通する貫通孔20Dに充填されている。層間接続導体33は、基材21~24を貫通する貫通孔20Dに充填されている。層間接続導体34は、基材21,22を貫通する貫通孔20Dに充填されている。層間接続導体35は、基材21~23を貫通する貫通孔20Dに充填されている。層間接続導体30の数は5つに限らない。各層間接続導体31~35の厚み方向100の長さ(貫通する基材の数)は、前述した長さに限らない。
 図3は、図2のB-B断面を示す断面図である。図2及び図3に示すように、内部電極40は、素体20の内部に形成されており、素体20の外部に露出していない。内部電極40は、基材21~29の少なくとも1つに形成され得る。第1実施形態では、内部電極40は、基材23~25に形成されている。
 第1実施形態のように素体20がセラミックで構成されている場合、内部電極40は、基材(第1実施形態では基材23~25)の主面に導電性のペーストを印刷し、基材と共焼成されたものである。導電性のペーストは、例えば銅や銀で構成されている。素体20が樹脂で構成されている場合、内部電極40は、金属箔をエッチング等の公知の手段によって、基材の主面に形成されている。
 第1実施形態では、内部電極40は、5つの内部電極41~45を備えている。内部電極41は、基材25に形成されている。内部電極42,43,45は、基材24に形成されている(図3参照)。内部電極44は、基材23に形成されている。
 内部電極40の各々は、他の内部電極40、外部電極50(外部電極51,52,53)、またはシールド導体60と電気的に接続されている。第1実施形態では、図2に示すように、内部電極41は、層間接続導体31,32を介してシールド導体60と電気的に接続されており、層間接続導体33を介して外部電極51と電気的に接続されている。また、内部電極42は、層間接続導体35を介して外部電極53と電気的に接続されている。また、図3に示すように、内部電極42,43は、内部電極45を介して互いに電気的に接続されている。また、図2に示すように、内部電極44は、層間接続導体34を介して外部電極52と電気的に接続されている。
 外部電極50は、素体20の外部に形成されている。つまり、外部電極50は、素体20の外部に露出している。第1実施形態では、外部電極50は、基材21の主面(素体20の主面20A)に形成されている。なお、外部電極50は、素体20の主面20Aの代わりにまたは素体20の主面20Aに加えて、素体20の主面20B及び素体20の側面20Cの少なくとも一方に形成されていてもよい。
 外部電極50は、内部電極40と同様にして構成されている。つまり、第1実施形態では、外部電極50は、素体20の主面20Aに導電性のペーストを印刷し、基材21~29と共焼成されたものである。第1実施形態において、外部電極50は、3つの外部電極51~53を備えている。
 前述したように、外部電極51は層間接続導体33を介して内部電極41と電気的に接続されており、外部電極52は層間接続導体34を介して内部電極44と電気的に接続されており、外部電極53は層間接続導体35を介して内部電極42と電気的に接続されている。
 第1実施形態において、外部電極51は、グランドと電気的に接続されることにより、接地されている。例えば、外部電極51は、電子部品10が実装される他の基板(例えば、マザー基板)に設けられた接地電位である電極と電気的に接続される。
 前述したように、外部電極52,53は、内部電極42,44と電気的に接続されている。以下で説明するように、内部電極42は、LC共振器91が有するインダクタとして機能し、内部電極44は、LC共振器91が有するキャパシタとして機能する。つまり、外部電極52,53は、以下で説明されるLC共振器91と電気的に接続されている。外部電極52,53は、電極の一例である。
 内部電極40の少なくとも一部及び層間接続導体30の少なくとも一部は、インダクタ及びキャパシタを有するLC共振器91を構成している。
 図3に示すように、厚み方向100から見て、内部電極42は蛇行している。これにより、内部電極42は、ミアンダ型のコイルを形成しており、インダクタとして機能する。内部電極42は、インダクタ導体の一例である。
 図2に示すように、内部電極43,44は、基材23を挟んで厚み方向100に対向している。これにより、内部電極43,44は、コンデンサを形成しており、キャパシタとして機能する。内部電極43,44は、キャパシタ導体の一例である。
 図3に示すように、コイルを形成する内部電極42とコンデンサを形成する内部電極43とは、内部電極45を介して電気的に接続されている。つまり、内部電極42~45は、コイルとコンデンサとが電気的に接続されたLC共振器91を構成している。
 第1実施形態では、図2に示すように、インダクタ導体(内部電極42)は基材24に形成され、キャパシタ導体(内部電極43,44)は基材23,24に形成されているが、インダクタ導体及びキャパシタ導体は、素体20が備える基材21~29の任意の基材に形成されてもよい。つまり、インダクタ導体及びキャパシタ導体は、素体20が備える基材21~29の少なくとも1つに形成されていればよい。
 図1及び図2に示すように、シールド導体60は、素体20の主面20Bに形成されている。シールド導体60は、内部電極40及び外部電極50と同様にして、印刷によって形成されている。なお、シールド導体60の形成は、印刷に限らない。例えば、シールド導体60は、スパッタリング法または蒸着法により形成されてもよい。
 シールド導体60は、導電性を有する。典型的には、シールド導体60の少なくとも一部は、金属で構成されている。第1実施形態において、シールド導体60は、銅等の導電性の部材で構成されている。シールド導体60の一部が導電性の部材で構成されていてもよい。例えば、シールド導体60は、導電性を有する材料が樹脂などの他の材料に含有されたものであってもよい。
 第1実施形態において、シールド導体60は、素体20に埋設されている。そのため、図2において、シールド導体60は、主面20Bの一部を構成している。なお、シールド導体60は、素体20に埋設されていなくてもよい。
 シールド導体60は、多層構造を有していてもよい。例えば、シールド導体60は、基材29に接触する密着層と、密着層に接触しており導電率の高い金属で構成された導電層と、導電層に接触しており導電層の酸化または腐食を防止する防錆層とを有していてもよい。導電層は、電磁波をシールドする機能を有し、例えば、銅(Cu)、銀(Ag)、アルミニウム(Al)などで構成される。密着層は、基材29と導電層との密着性を高めるために設けられ、例えば、チタン(Ti)、クロム(Cr)、ステンレス鋼(SUS)などで構成される。
 シールド導体60は、電子部品10の外部から主面20Bを介しての電磁波をシールドする。そのため、LC共振器91は、外部から主面20Bを介しての電磁波の影響を受けにくくなる。また、シールド導体60は、LC共振器91が輻射する電磁波が主面20Bを介して外部へ輻射されることをシールドする。そのため、LC共振器91から輻射された電磁波が電子部品10の外部にある他の部品へ影響を及ぼしにくくなる。
 第1実施形態では、厚み方向100から見て、素体20の主面20Bの外縁部に、シールド導体60は形成されていない。つまり、第1実施形態では、シールド導体60は、素体20の主面20Bの一部に形成されている。
 図1に示すように、厚み方向100から見て、シールド導体60より外側の一部は、後述する保護層70に覆われている。厚み方向100から見て、素体20の主面20Bのうち、保護層70に覆われている部分より更に外側では、素体20の主面20Bが露出している。
 なお、シールド導体60が形成されない領域は、厚み方向100から見た素体20の主面20Bの外縁部に限らない。例えば、シールド導体60が形成されない領域は、厚み方向100から見た素体20の主面20Bの中央部であってもよい。また、シールド導体60は、素体20の主面20Bの全域に形成されていてもよい。
 第1実施形態では、シールド導体60は、素体20の主面20A及び側面20Cに形成されていない。そのため、LC共振器91のインダクタ導体(内部電極42)の磁束が素体20の主面20A及び側面20Cにおいて遮断されることを防止することができる。
 図2に示すように、シールド導体60は、層間接続導体31,32を介して内部電極41と電気的に接続されている。また、前述したように、内部電極41は層間接続導体33を介して外部電極51と電気的に接続されており、外部電極51はグランドと電気的に接続されている。つまり、シールド導体60は、層間接続導体31~33及び内部電極41を介してグランドと電気的に接続されている。
 なお、シールド導体60がグランドと電気的に接続される構成は、層間接続導体31~33及び内部電極41を介する構成に限らない。例えば、シールド導体60は、ワイヤ等を介して外部のグランドと電気的に接続されていてもよい。
 図1及び図2に示すように、保護層70は、界面60Aを跨いでいる。界面60Aは、厚み方向100から見て、素体20の主面20Bに形成されたシールド導体60と素体20の基材29との境界である。ここで、前記の素体20の基材29とは、基材29のうち、厚み方向100から見たときにシールド導体60に覆われていない部分である。
 保護層70は、界面60Aの周囲部に形成されている。界面60Aの周囲部は、界面60A及び界面60Aの周囲の領域である。詳細には、界面60Aの周囲部は、厚み方向100から見て、界面60Aの内側に位置するシールド導体60の外縁部と、界面60Aの外側に位置する基材29のうちの界面60Aの近傍とに亘る領域である。
 第1実施形態では、保護層70は、シールド導体60の界面60Aの全てを跨いでいるが、シールド導体60の界面60Aの一部のみを跨いでいてもよい。
 第1実施形態では、保護層70は、素体20の主面20Bに形成されたシールド導体60の外縁部のみ、つまりシールド導体60の一部のみを覆っている。しかし、保護層70は、素体20の主面20Bに形成されたシールド導体60の全てを覆っていてもよい。
 第1実施形態では、保護層70は、厚み方向100から見て、シールド導体60の外側に位置する基材29のうち、界面60Aの近傍部分を覆っている一方で、当該近傍部分の更に外側の部分(素体20の主面20Bの外縁部)を覆っていない。つまり、保護層70は、厚み方向100から見て、シールド導体60の外側に位置する基材29の一部のみを覆っている。しかし、保護層70は、厚み方向100から見て、シールド導体60の外側に位置する基材29の全てを覆っていてもよい。
 図2に示すように、保護層70のうちの厚み方向100から見て界面60Aと重なる部分の厚みT1は、主面20Bに形成されたシールド導体60の厚みT2より厚い。厚みT1は、保護層70の最も厚い部分の厚みである。厚みT2は、シールド導体60の最も厚い部分の厚みである。
 第1実施形態では、保護層70のうちの厚み方向100から見て界面60Aと重なる部分の厚みが、シールド導体60の厚みより厚い。しかし、界面60Aの周囲部の任意の部分における保護層70の厚みが、シールド導体60より厚くてもよい。つまり、界面60Aの周囲部に形成された保護層70の少なくとも一部が、主面20Bに形成されたシールド導体60より厚み方向100に厚ければよい。また、第1実施形態では、保護層70のうちの厚み方向100から見て界面60Aと重なる部分が、保護層70において最も厚い部分であるが、保護層70のうちの厚み方向100から見て界面60Aと重なる部分以外が、保護層70において最も厚い部分であってもよい。
 保護層70は、内部電極40、外部電極50、及びシールド導体60と同様にして、印刷によって形成されている。なお、保護層70の形成は、印刷に限らない。例えば、保護層70は、後述するように転写工法により形成されてもよい。
 第1実施形態において、保護層70は、LTCCで構成されている。つまり、第1実施形態において、保護層70は、素体20と同じ材料で構成されている。なお、保護層70の材料は、LTCCに限らない。例えば、保護層70は、LTCC以外のセラミックで構成されていてもよいし、セラミック以外の材料(例えばポリイミド等の樹脂材料)で構成されていてもよい。保護層70は、素体20と異なる材料で構成されていてもよい。
 シールド導体60の外縁部、つまりシールド導体60のうち保護層70に覆われている部分は、シールド導体60の外縁部以外の部分より、素体20に大きく埋設されている。シールド導体60の外縁部は、素体20の内部において素体20と保護層70とによって挟まれている。
 図2に示すように、めっき層80は、外部電極50及びシールド導体60を覆っている。めっき層80は、外部電極50及びシールド導体60に対する雰囲気や水分等の影響を抑制する。めっき層80は、例えば、Ni(ニッケル)-Sn(スズ)やNi(ニッケル)-無電解Au(金)等で構成された膜である。第1実施形態において、めっき層80は、ニッケルで構成された内層81と、金で構成された外層82とを備える。内層81は、外部電極50及びシールド導体60の表面に形成されている。外層82は、内層81における外部電極50及びシールド導体60の反対側に形成されている。
 第1実施形態において、めっき層80は、2層(内層81及び外層82)で構成されているが、めっき層80は、1層または3層以上で構成されていてもよい。
 めっき層80は、金属材料の表面に構成される。そのため、めっき層80は、非金属の材料である保護層70の表面には形成されない。これにより、保護層70は、めっき層80に覆われることなく、電子部品10の外部に露出している。
 第1実施形態によれば、保護層70が、シールド導体60と素体20との界面60Aを跨いでシールド導体60を覆っている。これにより、シールド導体60の素体20に対する密着性を保護層70によって補強することができる。
 第1実施形態によれば、シールド導体60のうち保護層70に覆われている部分は、保護層70に押し込まれるようにして素体20に埋設され、素体20と保護層70とによって挟まれている。これにより、シールド導体60の素体20に対する密着性を高めることができる。
 従来構成では、例えば、素体の内部に位置する基材の主面に形成された内部導体が、基材の側縁部において素体の側面に形成されたシールド導体と電気的に接続される。この場合、内部導体のシールド導体との接触面積は、内部導体の厚みに依存する。内部導体の厚みを厚くすることは困難である。そのため、内部導体のシールド導体との接触面積を大きくすることは困難である。
 これに対して、第1実施形態によれば、基材29に形成された層間接続導体31,32が、シールド導体60と電気的に接続される。この場合、層間接続導体31,32のシールド導体60との接触面積は、基材29に形成されて層間接続導体31,32が充填される貫通孔の直径の大きさに依存する。貫通孔の直径を大きくすることは、内部電極40の厚みを厚くするより容易である。そのため、層間接続導体31,32のシールド導体60との接触面積を大きくすることは、内部電極40のシールド導体60との接触面積を大きくすることより容易である。よって、層間接続導体31,32とシールド導体60との接続信頼性を高くすることができる。
 第1実施形態によれば、シールド導体60と電気的に接続される層間接続導体30の数を多くすることができる。シールド導体60と電気的に接続される層間接続導体30の数を多くすることによって、LC共振器91における不要な共振の発生を抑制することができる。
 第1実施形態によれば、電子部品10はLC共振器91を備えている。また、シールド導体60は、素体20の外面のうちの少なくとも主面20Bに形成されている一方で、素体20の主面20A及び側面20Cに形成されていない。これにより、シールド導体60によるLC共振器91の磁束の遮断を低減することができる。
 仮に、シールド導体60が素体20の主面20Bに加えて素体20の側面20Cにも形成されている場合、LC共振器91の磁束が素体20の側面20Cに形成されたシールド導体60によって遮断される。そのため、LC共振器91の形成位置は、素体20の側面20Cから離れた位置、例えば厚み方向100から見て素体20の中央部に制限されてしまう。第1実施形態によれば、素体20の側面20Cにシールド導体60が形成されていないため、LC共振器91を素体20の側面20Cの近傍に形成することができる。つまり、前述したようなLC共振器91の形成位置の制限はない。
 第1実施形態によれば、保護層70の厚みT1は、主面20Bに形成されたシールド導体60の厚みT2より厚い。これにより、厚みT1である保護層70によるシールド導体60の素体20への押し込み量が増える。これにより、シールド導体60の素体20に対する密着性を高めることができる。
 <第1実施形態に係る電子部品の製造方法>
 以下に、第1実施形態に係る電子部品10の製造方法が、図4~図9が参照されつつ説明される。図4は、本発明の実施形態に係る電子部品の製造過程において基材に層間接続導体が形成されたときの断面図である。図5は、本発明の実施形態に係る電子部品の製造過程において基材に外部電極が印刷されたときの断面図である。図6は、本発明の実施形態に係る電子部品の製造過程において基材にシールド導体が印刷されたときの断面図である。図7は、本発明の実施形態に係る電子部品の製造過程において基材及びシールド導体に保護層が印刷されたときの断面図である。図8は、本発明の実施形態に係る電子部品の製造過程において複数の基材が積層されて素体が形成されたときの断面図である。図9は、本発明の実施形態に係る電子部品の製造過程において素体が圧着されたときの断面図である。
 電子部品10は、積層体を複数の素体20に個片化することにより製造される。積層体は、複数の素体20が配列された状態で一体化されたものである。図4~図9では、説明の便宜上、積層体のうち1つの素体20に対応する部分のみが示される。第1実施形態に係る電子部品10の製造方法は、シート成形工程、層間接続導体形成工程、電極形成工程、シールド導体形成工程、保護層形成工程、素体形成工程、圧着工程、個片化工程、焼成工程、及びめっき層積層工程を含む。
 (シート成形工程)
 最初に、シート成形工程が実行される。シート成形工程では、図2に示す基材21~29が個別に成形される。シート成形工程において成形される基材21~29は、各基材21~29に応じた主剤、可塑剤、バインダ等を含む原料を混合することにより、各基材21~29を構成するスラリが作製される。この段階での各基材21~29は、スラリで構成されたグリーンシートである。
 各基材21~29には、主剤として、例えば焼結性セラミック粉末等が使用される。可塑剤としては、例えば、フタル酸エステルやジ-n-ブチルフタレート等が使用される。バインダとしては、例えば、アクリル樹脂やポリビニルブチラール等が使用される。
 各基材21~29を構成するスラリは、例えばリップコータやドクターブレード等を用いて、図4に示すキャリアフィルム101上にシート状に成形される。つまり、9枚の基材21~29の各々が、9枚のキャリアフィルム101の各々の上に成形される。キャリアフィルム101としては、例えば、PET(ポリエチレンテレフタレート)フィルム等が使用される。各基材21~29の厚さは、例えば5~100(μm)である。
 図4には、キャリアフィルム101と、キャリアフィルム101上に成形された基材28とが示されている。
 次に、各基材21~29及びキャリアフィルム101を厚み方向に貫通する貫通孔20Dが形成される。
 なお、図4では、2つの貫通孔20Dが基材28及びキャリアフィルム101に形成されているが、各基材21~29に形成される貫通孔20Dの数は2つに限らない。また、基材21~29に形成される貫通孔20Dの数は、同数であってもよいし、異なる数であってもよい。また、基材21~29に形成される貫通孔20Dの位置は、同じ位置であってもよいし、異なる位置であってもよい。
 第1実施形態に係る電子部品10の製造方法では、最終的に、図2に示すような素体20が形成されるように、9枚の基材21~29及びキャリアフィルム101に形成される貫通孔20Dの数及び位置が決定される。
 (層間接続導体形成工程)
 次に、層間接続導体形成工程が実行される。層間接続導体形成工程では、シート成形工程において各基材21~29及びキャリアフィルム101に形成された貫通孔20Dに、導電性のペースト102が充填される(図4参照)。貫通孔20Dに充填されたペースト102が、層間接続導体30に対応する。
 ペースト102は、例えば、導電性粉末と可塑剤とバインダとを含む原料を混合することにより作製される。
 (電極形成工程)
 次に、電極形成工程が実行される。電極形成工程では、内部電極40及び外部電極50が形成される。
 第1実施形態に係る電子部品10の製造方法では、例えば、図5に示すように、基材21の主面に、外部電極50(外部電極51,52,53)に対応するペーストが形成される。ペーストは、例えば、スクリーン印刷、インクジェット印刷、グラビア印刷等により形成される。なお、内部電極40は、外部電極50と同様にして、各基材21~29に形成される。
 内部電極40及び外部電極50に対応するペーストは、前述したペースト102と同様に、導電性粉末と可塑剤とバインダとを含む原料を主として混合することにより作製される。なお、内部電極40及び外部電極50に対応するペーストは、ペースト102と同じ原料で構成されていてもよいし、ペースト102と異なる原料で構成されていてもよい。
 (シールド導体形成工程)
 次に、シールド導体形成工程が実行される。シールド導体形成工程では、シールド導体60が形成される。
 第1実施形態に係る電子部品10の製造方法では、図6に示すように、基材29の主面に、シールド導体60に対応するペーストが形成される。シールド導体60に対応するペーストは、例えば、スクリーン印刷、インクジェット印刷、グラビア印刷、スパッタリング法、蒸着法、転写工法等により形成される。なお、転写工法の場合、後述するように、シールド導体の印刷は、保護層の印刷の後に実行される。
 シールド導体に対応するペーストは、前述したペースト(内部電極40及び外部電極50に対応するペースト及びペースト102)と同様に、導電性粉末と可塑剤とバインダとを含む原料を主として混合することにより作製される。なお、シールド導体に対応するペーストは、前述したペーストと同じ原料で構成されていてもよいし、前述したペーストと異なる原料で構成されていてもよい。
 シールド導体形成工程は、電極形成工程の前に実行されてもよいし、電極形成工程と並行して実行されてもよい。
 (保護層形成工程)
 次に、保護層形成工程が実行される。保護層形成工程では、保護層70が形成される。
 第1実施形態に係る電子部品10の製造方法では、図7に示すように、シールド導体形成工程において基材29の主面に形成されたシールド導体60に、保護層70に対応するペーストが形成される。保護層70に対応するペーストは、例えば、スクリーン印刷、インクジェット印刷、グラビア印刷、転写工法等により形成される。保護層70に対応するペーストは、前述した保護層70を構成する材料よりなる。第1実施形態に係る電子部品10の製造方法では、保護層70に対応するペーストは、LTCCがペースト状にされたものである。転写工法の場合、転写シートの外縁部上に保護層が印刷され、次に、転写シートの中央部上にシールド導体が転写シート上に印刷される。このとき、シールド導体の外縁部が、保護層の内縁部の上から印刷される。つまり、シールド導体と保護層とが一部重複する。その後、以下で説明する素体形成工程において、シールド導体が基材29側となるように、転写シートが基材29に積層される。
 前述したように、第1実施形態では、図2に示すように、保護層70の厚みT1は、主面20Bに形成されたシールド導体60の厚みT2より厚い。これを実現するために、例えば、保護層形成工程において、保護層70に対応するペーストは、複数回重ねて印刷されてもよい。これにより、保護層70の厚みがシールド導体60の厚みより厚く形成される。なお、保護層70の厚みをシールド導体60の厚みより厚くする手段は、保護層70に対応するペーストの複数回の印刷に限らない。例えば、保護層形成工程において、保護層70の厚みがシールド導体60より厚くなるように、保護層70に対応するペーストの粘度及び比重等が調整されてもよい。
 (素体形成工程)
 次に、素体形成工程が実行される。素体形成工程では、図8に示すように、キャリアフィルム101を除いた各基材21~29が積層される。これにより、素体20が得られる。
 素体形成工程では、9つの基材21~29が、数値の小さい基材から数値の大きい基材への順序で、具体的には基材21,22,23,24,25,26,27,28,29の順序で積層される。これにより、基材21の主面が素体20の主面20Aとなり、基材29の主面が素体20の主面20Bとなる。また、基材21~29の側面が素体20の側面20Cとなる。
 第1実施形態では、9つの基材21~29のうちの一部の基材は、9つの基材21~29のうちの当該一部の基材以外の基材に対して反転して積層される。図8に示す例では、基材21~25がキャリアフィルム101側の面を紙面上向きとして積層される一方で、基材26~29がキャリアフィルム101側の面を紙面下向きとして積層される。これにより、図8に示すように、基材21,23~25に形成された内部電極40及び外部電極50の各々が各基材21,23~25の下方に位置し、基材29に形成されたシールド導体60が基材29の上方に位置する。なお、9つの基材21~29は、反転することなく積層されてもよい。例えば、シールド導体及び保護層の印刷に転写工法が用いられる場合、9つの基材21~29は、反転することなく積層される。
 (圧着工程)
 次に、圧着工程が実行される。圧着工程では、積層された各基材21~29が金型内で圧着される。
 各基材21~29が圧着されることによって、図9に示すように、内部電極40が基材23~25内へ入り込み、外部電極50が基材21内へ入り込み、シールド導体60及び保護層70が基材29内へ入り込む。また、保護層70が、厚み方向100から見たシールド導体60の外縁部を基材29内へ押し込む。これにより、シールド導体60の外縁部は、シールド導体60の外縁部以外の部分より基材29内へ深く入り込むとともに、保護層70により覆われる。その結果、シールド導体60の外縁部は、素体20の内部において素体20と保護層70とによって挟まれる。
 (個片化工程)
 次に、個片化工程が実行される。個片化工程では、複数の素体20が配列された積層体が、複数の素体20に切断される。積層体の切断には、例えば、ダイシングソー、ギロチンカッタ、レーザ等が使用される。積層体の切断後、素体20の角部および縁部は、例えばバレル加工等により研磨されてもよい(図2参照)。前記の研磨は、焼成工程後に実行されてもよい。
 (焼成工程)
 次に、焼成工程が実行される。焼成工程では、基材21~29が焼成されて、焼結体である素体20が形成される(図2参照)。
 (めっき層積層工程)
 次に、めっき層積層工程が実行される。めっき層積層工程では、外部電極50及びシールド導体60に、公知のめっき処理が施される。これにより、図2に示すように、めっき層80が、外部電極50及びシールド導体60を覆うように積層される。
 <第1実施形態の変形例>
 前述した実施形態では、インダクタとして機能する内部電極42は、ミアンダ型のコイルを形成している。しかし、LC共振器91が備えるインダクタは、ミアンダ型のコイルに限らない。例えば、図10に示すように、内部電極42は、平面視においてスパイラル型のコイルであってもよい。図10は、本発明の第1実施形態の変形例に係る電子部品において図2のB-B断面に対応する断面図である。
 また、例えば、図11に示すように、内部電極42は、側面視においてスパイラル型のコイルであってもよい。図11は、本発明の第1実施形態の変形例に係る電子部品において図2のB-B断面に対応する断面図である。なお、図11において破線で示す内部電極42は、基材24とは異なる基材(例えば基材23)に形成されている。図11において実線で示す内部電極42と破線で示す内部電極42とは不図示の層間接続導体によって電気的に接続されている。これにより、図11に示す内部電極42は、スパイラル型のコイルを構成する。
 前述した実施形態では、内部電極42によって構成されるコイルの巻回軸は、厚み方向100に延びている。しかし、コイルの巻回軸は、厚み方向100以外の方向に延びていてもよい。例えば、図11に示す電子部品10では、内部電極42によって構成されるコイルの巻回軸は、基材24の主面に沿った方向(言い換えると厚み方向100と直交する方向)に延びている。
 前述した実施形態では、図2に示すように、シールド導体60は素体20の主面20Bに形成されている一方で素体20の主面20A及び側面20Cに形成されていない。しかし、シールド導体60は、素体20の主面20Bに加えて、素体20の主面20A及び側面20Cの少なくとも一方に形成されていてもよい。つまり、シールド導体60は、素体20の外面のうちの少なくとも主面20Bに形成されていればよい。
 例えば、図13に示すように、シールド導体60は、素体20の主面20Bに形成された主面導体60Bと、素体20の側面20Cに形成された側面導体60Cとを備えていてもよい。この場合、素体20の主面20B及び側面20Cに形成されるシールド導体60がめっき層80に覆われるため、図12に示すように、めっき層80は、素体20の主面20B及び側面20Cを覆う。図12は、本発明の第1実施形態の変形例に係る電子部品の斜視図である。図13は、図12のC-C断面を示す断面図である。
 側面導体60Cは、個片化工程の後且つ焼成工程の前に、ディップ工法等の公知の手段によって形成される。なお、シールド導体形成工程では、主面導体60Bが形成される。ディップ工法等の公知の手段によって、側面導体60Cは、素体20の側面20Cと、素体20の主面20Bの外縁部とに形成される(図13参照)。素体20の主面20Bの外縁部に形成された側面導体60Cが、主面導体60Bと電気的に接続される。なお、図13では、側面導体60Cと主面導体60Bとの間に保護層70があるため、側面導体60Cと主面導体60Bとは接続されていない。しかし、側面導体60Cと主面導体60Bとは、保護層70が形成されていない部分70A(図12参照)を介して、電気的に接続されている。
 図13に示す電子部品10では、めっき層積層工程において、外部電極50、主面導体60B、及び側面導体60Cに、公知のめっき処理が施される。これにより、図12及び図13に示すように、めっき層80が、外部電極50、主面導体60B、及び側面導体60Cを覆うように積層される。
 前述した実施形態では、図2に示すように、シールド導体60が形成された基材29を含む基材25~29に2つの層間接続導体31,32が形成され、シールド導体60は、2つの層間接続導体31,32を介してグランドと電気的に接続されている。しかし、シールド導体60が形成された基材29を含む基材に形成されて、シールド導体60とグランドとを電気的に接続する層間接続導体30は2つに限らない。
 例えば、シールド導体60が形成された基材29に1つの層間接続導体30が形成され、シールド導体60は、当該1つの層間接続導体30を介してグランドと電気的に接続されていてもよい。
 また、例えば、図14に示すように、シールド導体60が形成された基材29に3つ以上の層間接続導体30が形成され、シールド導体60は、当該3つ以上の層間接続導体30を介してグランドと電気的に接続されていてもよい。図14は、本発明の第1実施形態の変形例に係る電子部品の平面図である。
 図14に示す電子部品10Aは、6つのLC共振器91を備えている。また、図14に破線で示すように、電子部品10Aの基材29に、7つの層間接続導体30が形成されている。シールド導体60は、当該7つの層間接続導体30と電気的に接続されている。当該7つの層間接続導体30は、内部電極40及び他の層間接続導体30の少なくとも一方を介して、グランドと電気的に接続された外部電極51と電気的に接続されている。つまり、図14に示す電子部品10Aにおいて、シールド導体60は、当該7つの層間接続導体30を介してグランドと電気的に接続されている。
 <第2実施形態>
 図15は、本発明の第2実施形態に係る電子部品の斜視図である。第2実施形態に係る電子部品10Bが第1実施形態に係る電子部品10と異なることは、保護層70が界面60Aの周囲部だけでなく、当該周囲部以外にも形成されていることである。以下、第1実施形態との相違点が説明される。第1実施形態に係る電子部品10との共通点については、同一の符号が付された上で、その説明は原則省略され、必要に応じて説明される。
 図15に示すように、界面60Aは、4つの部分を備える。4つの部分は、界面60Aa,60Ab,60Ac,60Adである。界面60Aa,60Abは、めっき層80を介して、互いに主面20Bに沿った方向に対向している。界面60Ac,60Adは、めっき層80を介して、互いに主面20Bに沿った方向に対向している。ここで、めっき層80は、シールド導体60を覆っている。つまり、界面60Aa,60Abはシールド導体60を挟んでおり、界面60Ac,60Adはシールド導体60を挟んでいる。界面60Aaは第1界面の一例である。界面60Abは第2界面の一例である。界面60Acは、界面60Aaの一端部と界面60Abの一端部とを繋いでいる。界面60Adは、界面60Aaの他端部と界面60Abの他端部とを繋いでいる。
 保護層70は、第1部分71、第2部分72、第3部分73、第4部分74、及び第5部分75を備える。
 第1部分71は界面60Aaを跨ぐ。第2部分72は界面60Abを跨ぐ。第4部分74は界面60Acを跨ぐ。第5部分75は界面60Adを跨ぐ。第1部分71及び第2部分72は、互いに主面20Bに沿った方向に対向している。第4部分74及び第5部分75は、互いに主面20Bに沿った方向に対向している。第4部分74は、第1部分71の一端部と第2部分72の一端部とを繋いでいる。第5部分75は、第1部分71の他端部と第2部分72の他端部とを繋いでいる。
 第3部分73は、厚み方向100から見て界面60Aa,60Abに挟まれたシールド導体60を横断して第1部分71と第2部分72とを接続している。第3部分73は、保護層70の他の部分と同様に、保護層形成工程においてシールド導体60に形成される。
 第2実施形態によれば、保護層70の第3部分73がシールド導体60を横断するように形成されている。これにより、シールド導体60の素体20に対する密着性を高めることができる。
 <第3実施形態>
 図16は、本発明の第3実施形態に係る電子部品において図1のA-A断面に対応する断面図である。第3実施形態に係る電子部品10Cが第1実施形態に係る電子部品10と異なることは、厚み方向100から見て、保護層70は、内部回路90のうち、主面20Bに対して厚み方向100に最も近い部分である内部電極92から外れた位置に形成されていることである。以下、第1実施形態との相違点が説明される。第1実施形態に係る電子部品10との共通点については、同一の符号が付された上で、その説明は原則省略され、必要に応じて説明される。
 図16に示すように、電子部品10Cは、素体20の内部に内部回路90を備える。内部回路90は、例えば、インダクタ及びキャパシタの他、抵抗、端子、配線等の素子を含む。内部回路90は、これらの素子が組み合わされた回路である。内部回路90は、層間接続導体30及び内部電極40等によって構成される。内部回路90は、基材21~29の少なくとも1つに形成されている。第3実施形態において、内部回路90は、LC共振器91と、内部電極92,93と、これらを電気的に接続する層間接続導体(不図示)及び内部電極(不図示)を備える。
 内部電極92は、基材28に形成されている。内部電極93は、基材26に形成されている。内部電極92と主面20Bとの厚み方向100の距離は、LC共振器91と主面20Bとの厚み方向100の距離より短い。また、内部電極92と主面20Bとの厚み方向100の距離は、内部電極93と主面20Bとの厚み方向100の距離より短い。つまり、内部電極92は、内部回路90のうち、主面20Bに対して厚み方向100に最も近い部分である。
 厚み方向100から見て、保護層70と内部電極92とは重なっていない。言い換えると、厚み方向100から見て、保護層70は、内部電極92から外れた位置に形成されている。
 図17は、本発明の第3実施形態の変形例に係る電子部品において図1のA-A断面に対応する断面図である。厚み方向100から見て、保護層70と内部電極92とが重なっていない態様は、図16に示すような態様に限らない。例えば、図17に示すように、厚み方向100から見て、内部電極92と重なる位置に保護層70が形成されないことによって、保護層70が内部電極92から外れた位置に形成される構成が実現されてもよい。
 シールド導体60のうち、保護層70に覆われている部分は、保護層70に押し込まれて素体20の内部に入り込む可能性が高い。シールド導体60の当該部分の直下近傍に内部回路90が形成されている場合、シールド導体60の当該部分と内部回路90との厚み方向100の距離が近くなり、シールド導体60の当該部分と内部回路90との間に生じる寄生容量が大きくなる。第3実施形態によれば、厚み方向100から見て、保護層70は、内部回路90のうちの主面20Bに対して厚み方向100に最も近い部分(内部電極92)から外れた位置に形成されている。これにより、シールド導体60と内部電極92との厚み方向100の距離が近くなることを抑制することができる。その結果、シールド導体60と内部電極92との間に大きな寄生容量が生じることを低減することができる。
 <第4実施形態>
 図18は、本発明の第4実施形態に係る電子部品の平面図である。第4実施形態に係る電子部品10Dが第1実施形態に係る電子部品10と異なることは、厚み方向100から見て、保護層70は、基材29に形成された層間接続導体30と重なっていることである。以下、第1実施形態との相違点が説明される。第1実施形態に係る電子部品10との共通点については、同一の符号が付された上で、その説明は原則省略され、必要に応じて説明される。
 第4実施形態では、素体20の基材29に6つの層間接続導体30が形成されている。当該6つの層間接続導体30は、素体20の主面20Bに形成されたシールド導体60と電気的に接続されている。図18には、当該6つの層間接続導体30が破線で示されている。図18に示すように、厚み方向100から見て、当該6つの層間接続導体30は、シールド導体60の外縁部60Dに位置している。
 シールド導体60の外縁部60Dは、厚み方向100から見てシールド導体60の中央部を除いた部分である。言い換えると、シールド導体60の外縁部60Dは、厚み方向100から見て長方形であるシールド導体60において、当該長方形の辺の周辺部分である。例えば、シールド導体60の外縁部60Dは、当該長方形の中心よりも当該長方形の辺に近い部分である。
 なお、図18では、基材29に形成された全ての層間接続導体30がシールド導体60の外縁部60Dに位置しているが、基材29に形成された層間接続導体30のうちの一部のみがシールド導体60の外縁部60Dに位置していてもよい。
 第4実施形態では、保護層70は、シールド導体60の界面60Aの一部を跨いでいる。なお、保護層70の形成位置は、図18に示す位置に限らない。保護層70は、シールド導体60の界面60Aの全部を跨いでいてもよい。
 厚み方向100から見て、保護層70は、基材29に形成された6つの層間接続導体30の各々の一部と重なっている。また、厚み方向100から見て、保護層70は、当該6つの層間接続導体30の各々とシールド導体60とを跨いでいる。
 図19は、本発明の第4実施形態の変形例に係る電子部品の平面図である。図18では、保護層70は、基材29に形成された層間接続導体30の一部と重なっている。つまり、基材29に形成された層間接続導体30は、厚み方向100から見て保護層70と重なる部分と保護層70と重ならない部分とで構成されている。しかし、図19に示すように、保護層70は、基材29に形成された層間接続導体30の全部と重なっていてもよい。つまり、図18及び図19に示すように、厚み方向100から見て、保護層70は、基材29に形成された層間接続導体30の少なくとも一部と重なっていればよい。
 厚み方向100から見て層間接続導体30がシールド導体60の外縁部60Dに形成された構成では、素体20の焼成過程における基材21~29の収縮及び層間接続導体30からのアウトガス等によって、シールド導体60の外縁部60Dが素体20から浮き上がるおそれがある。第4実施形態によれば、厚み方向100から見て、シールド導体60の外縁部60Dによって覆われた層間接続導体30の真上に保護層70が形成されている。これにより、シールド導体60の外縁部60Dの素体20からの浮き上がりを、保護層70によって低減することができる。
 <第5実施形態>
 図20は、本発明の第5実施形態に係る電子部品の斜視図である。図21は、図20のD-D断面を示す断面図である。第5実施形態に係る電子部品10Eが第1実施形態に係る電子部品10と異なることは、シールド導体60の表面に識別マーク5が形成されていることである。以下、第1実施形態との相違点が説明される。第1実施形態に係る電子部品10との共通点については、同一の符号が付された上で、その説明は原則省略され、必要に応じて説明される。
 図20及び図21に示すように、識別マーク5は、素体20の主面20Bに形成されたシールド導体60の表面に形成されている。識別マーク5は、電子部品10の姿勢や方向を示すためのものである。
 第5実施形態では、電子部品10は、1つの識別マーク5を備えているが、複数の識別マーク5を備えていてもよい。また、第5実施形態では、図20に示すように、厚み方向100から見て、識別マーク5は、正方形であるが、正方形に限らない。また、図20において、識別マーク5の色は白で示されているが、識別マーク5の色は白に限らず、黒、グレー、赤等の他の色であってもよい。識別マーク5の色は、識別マーク5の周囲のもの(第5実施形態ではめっき層80)と異なる色であることが好ましい。
 識別マーク5は、非金属の材料で構成されている。これにより、金属の材料で構成されためっき層80に対して、識別マーク5の識別性を向上させることができる。第5実施形態において、識別マーク5は、素体20及び保護層70と同材料で構成されている。
 なお、識別マーク5の材料は、識別マーク5の周囲のもの(第5実施形態ではめっき層80)と識別可能であることを条件として任意である。例えば、識別マーク5は、樹脂で構成されていてもよい。また、識別マーク5がめっき層80と同色または類似色の材料である場合に、識別マーク5にめっき層80と異なる色を着色することによって、識別マーク5の視認性を向上させてもよい。また、識別マーク5は、素体20及び保護層70と異なる材料で構成されていてもよい。
 また、識別マーク5には、複数種類の材料が混合されていてもよい。例えば、識別マーク5に、アルミニウム(Al)、亜鉛(Zn)、ジルコニウム(Zr)、チタン(Ti)、コバルト(Co)、マグネシウム(Mg)、マンガン(Mn)、カルシウム(Ca)、シリコン(Si)、鉄(Fe)、ニッケル(Ni)、クロム(Cr)、バリウム(Ba)、タングステン(W)のいずれかの酸化物が含まれていてもよい。
 第5実施形態において、識別マーク5は、シールド導体60に入り込んでおり、シールド導体60と共に素体20に埋設されている。なお、識別マーク5は、シールド導体60及び素体20に入り込んでいなくてもよい。
 図21に示すように、識別マーク5の真下には、層間接続導体30がない。厚み方向100から見て、識別マーク5と層間接続導体30とは重なっていない。言い換えると、識別マーク5は、厚み方向100から見て層間接続導体30から外れた位置に形成されている。
 めっき層80の構成は、識別マーク5とのコントラストに基づいて決定可能である。例えば、識別マーク5が酸化亜鉛(ZnO)を含む黒系セラミックペーストで構成されている場合、めっき層80の最外層(例えば外層82)が金で構成される。これにより、黒色の識別マーク5は、周囲の金色に対してコントラストを確保できる。また、例えば、識別マーク5が酸化アルミニウム(Al)を含む白系セラミックペーストで構成されている場合、めっき層80の最外層(例えば外層82)が灰色のスズで構成される。これにより、白色の識別マーク5は、周囲の灰色に対してコントラストを確保できる。以上により、識別マーク5の視認性を向上することができる。
 第5実施形態では、めっき層80の厚み(厚み方向100の長さ)は、識別マーク5の厚みより厚い。また、識別マーク5は、めっき層80によって形成された凹部83の奥部に位置する。これにより、電子部品10Eが他の部品等と接触した場合において、識別マーク5が当該他の部品等と接触する可能性を低くすることができる。その結果、識別マーク5が傷つく可能性を低くすることができる。
 なお、第5実施形態では、めっき層80の厚みが識別マーク5の厚みより厚いため、識別マーク5がシールド導体60に埋設されていない構成であっても、識別マーク5は凹部83の奥部に位置する。
 識別マーク5が形成される識別マーク形成工程は、シールド導体形成工程の後且つ素体形成工程の前に実行される。前述したように、第5実施形態では、識別マーク5は保護層70と同材料である。そのため、識別マーク5は、保護層形成工程において、保護層70と共にシールド導体60に形成される。つまり、第5実施形態において、識別マーク形成工程は、保護層形成工程に含まれる。なお、識別マーク5が保護層70と異なる材料である場合、識別マーク形成工程は、保護層形成工程とは別に実行される。
 図22は、本発明の第5実施形態の変形例に係る電子部品において図20のD-D断面に対応する断面図である。
 図21に示す構成では、識別マーク5の全体が素体20に入り込んでおり、識別マーク5はめっき層80によって形成された凹部83の奥部に位置する。しかし、図22に示すように、識別マーク5は、めっき層80から突出していてもよい。
 識別マーク5がめっき層80から突出した構成は、識別マーク形成工程において、識別マーク5が厚く形成されることによって実現される。例えば、識別マーク5は、識別マーク形成工程において複数回重ねて印刷されることによって、厚く形成される。
 第5実施形態によれば、識別マーク5がシールド導体60の表面に形成されている。そのため、識別マーク5がシールド導体60に覆われている構成に比べて、識別マーク5の視認性を向上させることができる。
 仮に、識別マーク5の材料が保護層70の材料と異なる場合、シールド導体60の表面に識別マーク5を形成する工程と、シールド導体60の表面に保護層70を形成する工程とが、別工程となる。一方、第5実施形態によれば、シールド導体60の表面に、識別マーク5と保護層70とを印刷等によって同時に形成することができる。これにより、電子部品10Eの製造工程を減らすことができる。
 <第6実施形態>
 図23は、本発明の第6実施形態の電子部品の一部を示す断面図である。第6実施形態に係る電子部品10Fが第1実施形態に係る電子部品10と異なることは、保護層70が素体20の主面20Bに形成されたシールド導体60の外縁部に加えて中央部にも形成されていること、及び、保護層70の外縁部の厚みが保護層70の中央部の厚みより厚いことである。以下、第1実施形態との相違点が説明される。第1実施形態に係る電子部品10との共通点については、同一の符号が付された上で、その説明は原則省略され、必要に応じて説明される。
 図23に示すように、電子部品10Fが備える保護層70は、素体20の主面20Bに形成されたシールド導体60の全てを覆っている。電子部品10Fが備える保護層70の外縁部の厚みT1は、電子部品10Fが備える保護層70の中央部の厚みT3より厚い。
 なお、電子部品10Fが備える保護層70は、シールド導体60の外縁部に加えてシールド導体60の中央部に形成されていればよく、必ずしも素体20の主面20Bに形成されたシールド導体60の全てを覆っている必要はない。例えば、図15に示すように、保護層70は、シールド導体60の外縁部(第1部分71、第2部分72、第4部分74、第5部分75)に加えて、シールド導体60の中央部の一部(第3部分73)を覆っていてもよい。
 保護層70の外縁部の厚みが中央部の厚みより厚い構成は、例えば、保護層形成工程において、保護層70の外縁部の印刷回数が保護層70の中央部の印刷回数より多くされることによって実現可能である。
 また、例えば、シールド導体形成工程において、シールド導体60の中央部の印刷回数がシールド導体60の外縁部の印刷回数より多くされてもよい。この場合、シールド導体60の中央部の厚みがシールド導体60の外縁部の厚みより厚くなる。これにより、その後の保護層形成工程において、シールド導体60の外縁部により多くのペーストが積層される。その結果、保護層70の外縁部の厚みが中央部の厚みより厚くなる。
 第6実施形態によれば、保護層70の外縁部の厚みが保護層70の中央部の厚みより厚いため、保護層70の外縁部におけるシールド導体60及び素体20に対する密着を、保護層70の中央部におけるシールド導体60の対する密着より強固にすることができる。
 圧着工程において保護層70が素体20へ向けて圧着されるときに、保護層70が厚いと、素体20に対する押し量が大きくなる。これにより、素体20の内部に形成された層間接続導体30、内部電極40、及びシールド導体60等の間の相対距離が変化する。その結果、内部回路90に対するノイズが増えるおそれがある。第6実施形態によれば、保護層70の中央部の厚みが保護層70の外縁部の厚みより薄い。そのため、保護層70の中央部において圧着工程時の押し量が減るため、前記のノイズを抑制することができる。
 第6実施形態のように、保護層70が素体20の主面20Bに形成されたシールド導体60の全てを覆っている場合、以下の効果がある。シールド導体60を覆うめっき層80が不要となるため、コストを低下することができる。また、シールド導体60の素体20に対する密着強度を強くすることができる。また、シールド導体60が素体20から剥がれる可能性を低くすることができる。
 なお、前記様々な実施形態のうちの任意の実施形態を適宜組み合わせることにより、それぞれの有する効果を奏するようにすることができる。
 本発明は、適宜図面を参照しながら好ましい実施の形態に関連して充分に記載されているが、この技術に熟練した人々にとっては種々の変形や修正は明白である。そのような変形や修正は、添付した請求の範囲による本発明の範囲から外れない限りにおいて、その中に含まれると理解されるべきである。
   5 識別マーク
  10 電子部品
  20 素体
 20A 主面
 20B 主面
 20C 側面
  21 基材
  22 基材
  23 基材
  24 基材
  25 基材
  26 基材
  27 基材
  28 基材
  29 基材
  30 層間接続導体
  42 内部電極(インダクタ導体)
  43 内部電極(キャパシタ導体)
  44 内部電極(キャパシタ導体)
  52 外部電極(電極)
  53 外部電極(電極)
  60 シールド導体
 60A 界面
60Aa 界面(第1界面)
60Ab 界面(第2界面)
 60D 外縁部
  70 保護層
  71 第1部分
  72 第2部分
  73 第3部分
  90 内部回路
  91 LC共振器
 100 厚み方向

Claims (11)

  1.  厚み方向に積層された複数の絶縁性の基材を有し、互いに反対を向く一対の主面及び前記一対の主面を繋ぐ側面を有する素体と、
     複数の前記基材の少なくとも1つに形成されたインダクタ導体、及び複数の前記基材の少なくとも1つに形成され且つ前記インダクタ導体と電気的に接続されたキャパシタ導体を有するLC共振器と、
     前記一対の主面及び前記側面のうちの少なくとも前記一対の主面の一方に形成され且つグランドと電気的に接続されるシールド導体と、
     前記一対の主面の他方及び前記側面の少なくとも一方に形成され、前記LC共振器と電気的に接続される電極と、
     前記厚み方向から見て、前記一対の主面の一方に形成された前記シールド導体と前記素体との界面の少なくとも一部を跨いで、前記一対の主面の一方に形成されたシールド導体の少なくとも一部と前記一対の主面の一方の少なくとも一部とを覆う保護層と、を備える電子部品。
  2.  前記シールド導体のうち前記保護層に覆われている部分は、前記素体の内部において前記素体と前記保護層とによって挟まれている請求項1に記載の電子部品。
  3.  前記一対の主面の一方に形成された前記シールド導体と前記素体との界面は、第1界面と、前記厚み方向から見て前記第1界面との間に前記シールド導体を挟む第2界面とを有し、
     前記保護層は、
     前記第1界面を跨ぐ第1部分と、
     前記第2界面を跨ぐ第2部分と、
     前記厚み方向から見て前記第1界面及び前記第2界面に挟まれた前記シールド導体を横断して前記第1部分と前記第2部分とを接続する第3部分と、を備える請求項1または2に記載の電子部品。
  4.  複数の前記基材のうちの前記シールド導体が形成された前記基材に、前記基材を貫通する層間接続導体が形成され、
     前記シールド導体は、前記層間接続導体を介してグランドと電気的に接続されている請求項1から3のいずれか1項に記載の電子部品。
  5.  複数の前記基材のうちの前記シールド導体が形成された前記基材に、複数の前記層間接続導体が形成され、
     前記シールド導体は、複数の前記層間接続導体を介してグランドと電気的に接続されている請求項4に記載の電子部品。
  6.  前記厚み方向から見て、前記層間接続導体の少なくとも1つは、前記シールド導体の外縁部に位置し、
     前記厚み方向から見て、前記保護層は、前記層間接続導体の少なくとも一部と重なり且つ前記層間接続導体と前記シールド導体とを跨ぐ位置に形成されている請求項4または5に記載の電子部品。
  7.  前記シールド導体は、前記一対の主面の一方に形成されており、前記一対の主面の他方及び前記側面に形成されていない請求項1から6のいずれか1項に記載の電子部品。
  8.  前記LC共振器を含む内部回路が、複数の前記基材の少なくとも1つに形成され、
     前記厚み方向から見て、前記保護層は、前記内部回路のうち、前記一対の主面の一方に対して前記厚み方向に最も近い部分から外れた位置に形成されている請求項1から7のいずれか1項に記載の電子部品。
  9.  前記一対の主面の一方に形成された前記シールド導体の表面に、識別マークが形成されている請求項1から8のいずれか1項に記載の電子部品。
  10.  前記識別マークの材料は、前記保護層の材料と同じである請求項9に記載の電子部品。
  11.  前記厚み方向から見て、前記一対の主面の一方に形成された前記シールド導体と前記素体との界面の周囲部に形成された前記保護層の少なくとも一部は、前記一対の主面の一方に形成された前記シールド導体より前記厚み方向に厚い請求項1から10のいずれか1項に記載の電子部品。
PCT/JP2022/035327 2021-09-24 2022-09-22 電子部品 WO2023048212A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021156006 2021-09-24
JP2021-156006 2021-09-24

Publications (1)

Publication Number Publication Date
WO2023048212A1 true WO2023048212A1 (ja) 2023-03-30

Family

ID=85720788

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/035327 WO2023048212A1 (ja) 2021-09-24 2022-09-22 電子部品

Country Status (1)

Country Link
WO (1) WO2023048212A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002057543A (ja) * 2000-08-09 2002-02-22 Murata Mfg Co Ltd 積層型lc部品
JP2004303946A (ja) * 2003-03-31 2004-10-28 Matsushita Electric Ind Co Ltd 複合電子部品
WO2012132880A1 (ja) * 2011-03-25 2012-10-04 株式会社村田製作所 セラミック多層基板
WO2018047488A1 (ja) * 2016-09-09 2018-03-15 株式会社村田製作所 電子部品

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002057543A (ja) * 2000-08-09 2002-02-22 Murata Mfg Co Ltd 積層型lc部品
JP2004303946A (ja) * 2003-03-31 2004-10-28 Matsushita Electric Ind Co Ltd 複合電子部品
WO2012132880A1 (ja) * 2011-03-25 2012-10-04 株式会社村田製作所 セラミック多層基板
WO2018047488A1 (ja) * 2016-09-09 2018-03-15 株式会社村田製作所 電子部品

Similar Documents

Publication Publication Date Title
KR101788097B1 (ko) 적층 세라믹 콘덴서, 이것을 포함하는 적층 세라믹 콘덴서 시리즈, 및 적층 세라믹 콘덴서의 실장체
US8174349B2 (en) Electronic component and manufacturing method of electronic component
KR100627700B1 (ko) 적층형 전자부품의 제조방법 및 적층형 전자부품
KR101548862B1 (ko) 칩형 코일 부품 및 그 제조 방법
US8879234B2 (en) Laminated ceramic electronic component
US11239030B2 (en) Electronic component
US6730183B2 (en) Laminated ceramic electronic components and manufacturing method therefor
US10299383B2 (en) Composite electronic component and resistance element
US11631521B2 (en) Electronic component
US10453617B2 (en) Composite electronic component and resistance element
US10186381B2 (en) Composite electronic component and resistance element
US20200312568A1 (en) Multilayer ceramic capacitor
WO2012002133A1 (ja) 積層型セラミック電子部品およびその製造方法
KR20210130648A (ko) 적층 세라믹 콘덴서
KR20190116115A (ko) 전자 부품
KR20210131240A (ko) 적층 세라믹 콘덴서
CN107615422B (zh) 层叠陶瓷电子部件
WO2023048212A1 (ja) 電子部品
WO2023048211A1 (ja) 電子部品
US20200312554A1 (en) Multilayer ceramic capacitor
US20200066432A1 (en) Multilayer coil component
US20200075220A1 (en) Multilayer coil component and method of manufacturing multilayer coil component
US20230230738A1 (en) Coil component
US20230230742A1 (en) Multilayer coil component
CN221057223U (zh) 电子部件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22872963

Country of ref document: EP

Kind code of ref document: A1