WO2016013643A1 - 電子部品及びその製造方法 - Google Patents

電子部品及びその製造方法 Download PDF

Info

Publication number
WO2016013643A1
WO2016013643A1 PCT/JP2015/071057 JP2015071057W WO2016013643A1 WO 2016013643 A1 WO2016013643 A1 WO 2016013643A1 JP 2015071057 W JP2015071057 W JP 2015071057W WO 2016013643 A1 WO2016013643 A1 WO 2016013643A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic component
resin
coating film
magnetic powder
component
Prior art date
Application number
PCT/JP2015/071057
Other languages
English (en)
French (fr)
Inventor
博信 久保田
光典 井上
智彦 森
剛太 篠原
西山 健次
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=55163166&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2016013643(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2016535982A priority Critical patent/JP6176405B2/ja
Priority to CN201580023485.9A priority patent/CN106463239B/zh
Priority to KR1020177001002A priority patent/KR101932360B1/ko
Publication of WO2016013643A1 publication Critical patent/WO2016013643A1/ja
Priority to US15/366,816 priority patent/US10553343B2/en
Priority to US16/031,481 priority patent/US10475567B2/en
Priority to US16/031,638 priority patent/US10650955B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/255Magnetic cores made from particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/23Corrosion protection
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K13/00Etching, surface-brightening or pickling compositions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K13/00Etching, surface-brightening or pickling compositions
    • C09K13/04Etching, surface-brightening or pickling compositions containing an inorganic acid
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K13/00Etching, surface-brightening or pickling compositions
    • C09K13/04Etching, surface-brightening or pickling compositions containing an inorganic acid
    • C09K13/06Etching, surface-brightening or pickling compositions containing an inorganic acid with organic material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K13/00Etching, surface-brightening or pickling compositions
    • C09K13/04Etching, surface-brightening or pickling compositions containing an inorganic acid
    • C09K13/08Etching, surface-brightening or pickling compositions containing an inorganic acid containing a fluorine compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/012Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials adapted for magnetic entropy change by magnetocaloric effect, e.g. used as magnetic refrigerating material
    • H01F1/015Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/0302Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity characterised by unspecified or heterogeneous hardness or specially adapted for magnetic hardness transitions
    • H01F1/0306Metals or alloys, e.g. LAVES phase alloys of the MgCu2-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • H01F1/26Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated by macromolecular organic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/02Casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2823Wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/29Terminals; Tapping arrangements for signal inductances
    • H01F27/292Surface mounted devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/041Printed circuit coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics

Definitions

  • the present invention relates to an electronic component and a manufacturing method thereof, and more particularly, to an electronic component using an insulator containing a metal magnetic powder and a manufacturing method thereof.
  • a coil component described in Patent Document 1 As an electronic component using an insulator containing metal magnetic powder, a coil component described in Patent Document 1 is known.
  • a conventional electronic component an internal circuit element is covered with an insulator containing metal magnetic powder.
  • the chemical conversion process by a phosphate is performed for the purpose of the rust prevention of the metal magnetic powder contained in an insulator.
  • the coating film formed by the chemical conversion treatment with phosphate is generally thin and has insufficient moisture resistance, chemical resistance, and the like for the quality of the coating film required for electronic components.
  • An object of the present invention is to provide an electronic component using an insulator containing metal magnetic powder, an electronic component having a resin coating film on the insulator, and a method for manufacturing the same.
  • An electronic component according to the present invention includes a main body including an element body formed of a metal magnetic powder and an insulating resin, an inner conductor positioned inside the element body, a coating film covering the main body, and an inner conductor.
  • the coating film is an electronic component including a cation of an element constituting the metal magnetic powder and a resin.
  • the metal magnetic powder is preferably Fe or Fe alloy powder
  • the internal conductor is preferably Cu or Ag.
  • a method of manufacturing an electronic component comprising: a step of preparing a body including an element body formed of a metal magnetic powder and an insulating resin; and an inner conductor positioned inside the element body; A step of preparing a resin emulsion containing an etching component that ionizes the metal constituting the magnetic powder, an anionic surfactant, and a resin component, a step of applying the resin emulsion to the main body and drying, and a connection to the internal conductor Forming an external electrode to be manufactured.
  • An electronic component manufacturing method comprising:
  • the metal magnetic powder is preferably Fe or Fe alloy powder, and the internal conductor is preferably Cu or Ag.
  • the etching component is preferably hydrofluoric acid, sulfuric acid, acetic acid, nitric acid or hydrochloric acid.
  • the anionic surfactant preferably has a sulfonic acid group.
  • the resin emulsion further contains an oxidizing agent as an etching promoting component.
  • the resin emulsion further contains iron fluoride as an additive.
  • the coating film covering the main body is composed of a cationic element contained in the resin and the insulator.
  • the coating film having such a configuration is generally superior in moisture resistance, chemical resistance, and the like than a coating film formed by a phosphate chemical conversion treatment.
  • the metal magnetic powder is Fe or Fe alloy powder and the internal conductor is Cu or Ag
  • Fe has a higher ionization tendency than Cu or Ag.
  • a coating film can be easily applied selectively to the metal magnetic powder contained in the element body.
  • the coating film is formed on the internal conductor, the electrical conductivity between the internal conductor and the external electrode is lowered.
  • a step of preparing a main body including an element body formed of a metal magnetic powder and an insulating resin, and an internal conductor positioned inside the element body, and a metal A step of preparing a resin emulsion containing an etching component that ionizes the metal constituting the magnetic powder, an anionic surfactant, and a resin component, a step of applying the resin emulsion to the main body and drying, and a connection to the internal conductor Forming an external electrode to be manufactured, an electronic component having excellent moisture resistance and chemical resistance can be obtained.
  • the metal magnetic powder when the metal magnetic powder is Fe or Fe alloy powder and the internal conductor is Cu or Ag, Fe has a higher ionization tendency than Cu or Ag.
  • a coating film can be selectively attached to the metal magnetic powder contained in the element body rather than the inner conductor.
  • the etching component when the etching component is hydrofluoric acid, sulfuric acid, acetic acid, nitric acid or hydrochloric acid, the film formability of the coating film is improved.
  • the surfactant when the surfactant is not easily deactivated, a coating film is not formed, and when the surfactant is too deactivated, the resin emulsion becomes too unstable and difficult to handle.
  • the degree of deactivation of the surfactant is suitable. Furthermore, in the method for manufacturing an electronic component according to the present invention, when the resin emulsion further contains an oxidizing agent as an etching promoting component, the ionization of the metal is likely to proceed and the formation of the coating film is promoted. Further, in the method of manufacturing an electronic component according to the present invention, when the resin emulsion further contains iron fluoride as an additive, the balance between deactivation of cations generated by etching with the resin emulsion and the surfactant is good and uniform. A coating film can be formed.
  • a resin coating film can be obtained on the insulator, and an electronic component excellent in moisture resistance, chemical resistance, etc. can be obtained. Can do.
  • FIG. 27 is a cross-sectional view taken along the line II of FIG. 26 showing an electronic component according to a third embodiment.
  • a direction orthogonal to the bottom surface of the electronic component 1 is defined as a z-axis direction.
  • the direction along the long side of the electronic component 1 is defined as the x-axis direction
  • the direction along the short side of the electronic component 1 is defined as the y-axis direction. Note that the x-axis, y-axis, and z-axis are orthogonal to each other.
  • the electronic component 1 includes a main body 10 and external electrodes 20 and 25 as shown in FIG. Furthermore, the electronic component 1 includes a coating film 9 and a circuit element 30 that cover the main body 10. Moreover, the electronic component 1 has a substantially rectangular parallelepiped shape.
  • the main body 10 has an element body composed of insulator layers 11 to 14, an insulator substrate 16, and a magnetic path 18. Further, in the main body 10, the insulator layers 11 and 12, the insulator substrate 16, and the insulator layers 13 and 14 are laminated in this order from the positive direction side in the z-axis direction to the negative direction side.
  • the insulator layers 11 and 14 are made of an epoxy resin or the like containing metal magnetic powder.
  • the insulator layers 11 and 14 contain two types of metal magnetic powder from which a particle size differs. Specifically, it is a mixed powder of a magnetic powder made of an Fe—Si—Cr alloy having an average particle size of 80 ⁇ m (maximum particle size 100 ⁇ m) and a magnetic powder made of carbonyl Fe having an average particle size of 3 ⁇ m.
  • the metal magnetic powder may include Fe or an alloy powder containing Fe. Examples of the Fe alloy include an Fe—Si alloy, an Fe—Si—Cr alloy, and an Fe—Si—Al alloy.
  • an insulating coating made of a metal oxide is preliminarily applied as an insulating film to these powders by chemical conversion treatment.
  • the insulating film is made of, for example, silicon resin, glass, or metal oxide.
  • the metal magnetic powder is contained in an amount of 90 wt% or more with respect to the insulator layers 11 and 14.
  • the resin contained in the insulator layers 11 and 14 may be an insulating inorganic material such as glass ceramics or a polyimide resin. It is also possible to use only metal magnetic powder as the material for the insulator layers 11 and 14.
  • the insulator layer 11 is located at the end of the main body 10 on the positive side in the z-axis direction.
  • the insulator layer 14 is positioned at the end of the electronic component 1 on the negative direction side in the z-axis direction, and the bottom surface S1, which is the surface of the insulator layer 14 on the negative direction side in the z-axis direction, It is a mounting surface when mounted on a circuit board.
  • the thickness of the insulator layers 11 and 14 in this Embodiment is about 60 micrometers, and is smaller than the largest particle size of the metal magnetic powder contained in this insulator layers 11 and 14.
  • the insulator layers 12 and 13 are made of epoxy resin or the like.
  • the insulator layer 12 is positioned on the negative direction side in the z-axis direction with respect to the insulator layer 11, and the insulator layer 13 is positioned on the positive direction side of the z-axis with respect to the insulator layer 14.
  • the material of the insulator layers 12 and 13 may be an insulating resin such as benzodiclobutene, or an insulating inorganic material such as glass ceramics.
  • the insulator substrate 16 is a printed wiring board in which a glass cloth is impregnated with an epoxy resin, and is sandwiched between the insulator layer 12 and the insulator layer 13 in the z-axis direction.
  • the material of the insulating substrate 16 may be an insulating resin such as benzodicrobbutene, or an insulating inorganic material such as glass ceramics.
  • the magnetic path 18 is made of a resin containing magnetic powder that is located at the approximate center inside the main body 10.
  • 90 wt% or more of magnetic powder is included in consideration of the L value of the electronic component 1 and the DC superposition characteristics.
  • two kinds of powders having different particle sizes are mixed as the magnetic powder.
  • the magnetic path 18 penetrates the insulator layers 12 and 13 and the insulator substrate 16 in the z-axis direction, and forms a columnar shape with an oval cross section. Further, the magnetic path 18 is provided so as to be positioned on the inner periphery of coils 32 and 37 described later.
  • the coating film 9 does not exist at the interface between the insulator layers 11 and 14 and the external electrodes 20 and 25 described later.
  • the coating film 9 contains Fe, which is a constituent element of the magnetic metal powder contained in the acrylic resin and the insulator layers 11 and 14.
  • the acrylic resin contained in the coating film 9 has a crosslinked structure. In consideration of using solder when the electronic component 1 is mounted on the circuit board, it is preferable that the thermal decomposition temperature is higher.
  • the thermal decomposition temperature is 240 ° C. or higher.
  • the thermal decomposition temperature can be measured by the following analyzer and analysis conditions. ⁇ Analyzer: TG-DTA 2000SA (manufactured by Netch Japan) ⁇ Analysis conditions Temperature profile: RT ⁇ 300 °C (10 °C / min) Measurement atmosphere: reduced pressure (using a rotary pump: 0.1 Pa) Sample container (cell) material: Al Measurement sample weight: 100 mg
  • X-ray photoelectron spectroscopic analysis is mentioned as one of the analysis methods which confirm the ion (cation) of the element which comprises the metal magnetic powder contained in the coating film 9.
  • the resin component contained in the coating film 9 is an epoxy resin, a polyimide resin, a silicone resin, a polyamideimide resin, a polyether ether ketone resin, a fluorine resin, or an acrylic silicone resin. It may be a resin or the like.
  • examples of the resin component contained in the coating film 9 include acrylic resin emulsions such as methyl methacrylate resin, acrylonitrile-styrene-acrylic copolymer, and styrene-acrylic copolymer. .
  • the monomer used for the resin component contained in the coating film 9 is not particularly limited, and (meth) acrylic acid, methyl acrylate, ethyl acrylate, n-butyl acrylate, isobutyl acrylate, t-acrylic acid t- Butyl, dodecyl acrylate, stearyl acrylate, 2-ethylhexyl acrylate, tetrahydrofurfuryl acrylate, diethylaminoethyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, methacrylic acid, methyl methacrylate, methacrylic acid Propyl, n-butyl methacrylate, isobutyl methacrylate,
  • Vinyl esters such as alkyl vinyl ethers, vinyl acetate, N-alkyl substituted (meth) acrylamides such as N-methylacrylamide, N-ethylacrylamide, N-methylmethacrylamide, N-ethylmethacrylamide, acrylonitrile, methacrylonitrile, etc.
  • Styrene monomers such as nitriles, styrene, ethylene, butadiene, vinyl chloride, vinylidene chloride, vinyl acetate, p-methylstyrene, ⁇ -methylstyrene It is done. These other monomers may be used alone or in combination of two or more.
  • (Meth) acryl means acryl or methacryl.
  • the coating film 9 also enters the concave portion C generated by the metal magnetic powder contained in the insulating layers 11 and 14 being dropped from the insulating layers 11 and 14, and substantially fills the concave portion C.
  • the thickness d1 of the coating film 9 in the recess C is thicker than the thickness d2 of the coating film 9 in other portions on the surface of the main body 10.
  • the external electrode 20 When viewed from the outside of the main body 10, the external electrode 20 is provided on the bottom surface S 1 and the side surface S 2 on the positive side of the main body 10 in the x-axis direction, as shown in FIG.
  • the external electrode 20 includes a bottom electrode 21 made of a composite material of metal and resin, and a columnar electrode 23 made of Cu. Other materials that can be used for the columnar electrode 23 include Au, Ag, Pd, Ni, and the like.
  • the external electrode 20 may be one produced by an existing external electrode forming method such as plating or sputtering.
  • the bottom electrode 21 is a so-called resin electrode in which a metal powder having a low resistance to a phenol-based resin, in this embodiment, an Ag-coated Cu powder having an average particle diameter of 100 nm is dispersed.
  • the bottom electrode 21 is a flat electrode provided in a region on the positive side in the x-axis direction on the bottom surface S1 of the insulator layer 14. Further, when the bottom electrode 21 is viewed in plan from the negative direction side in the z-axis direction, it has a rectangular shape.
  • the columnar electrode 23 is basically an electrode provided in a region on the positive direction side in the x-axis direction in the main body 10 and extending through the insulator layer 14 in the z-axis direction as shown in FIG. is there.
  • the side surface S4 on the positive side in the x-axis direction of the columnar electrode 23 is exposed on the side surface S2 of the main body 10 as shown in FIG.
  • the columnar electrode 23 has an outer edge L1 exposed on the side surface S2 as an upper bottom and an outer edge L2 located on the innermost side of the main body 10 as shown in FIG. It has a trapezoidal shape with a bottom.
  • the outer edge L2 is longer than the outer edge L1.
  • the columnar electrode 23 when the columnar electrode 23 is viewed in plan from the z-axis direction, the columnar electrode 23 is accommodated in the bottom electrode 21. In addition, the area of the side surface S4 of the columnar electrode 23 is smaller than the area of the bottom electrode 21.
  • the surface on the negative direction side in the z-axis direction of the columnar electrode 23 (hereinafter, the “surface on the negative direction side in the z-axis direction” is referred to as the lower surface) is the z-axis of the bottom electrode 21.
  • the surface is in contact with the surface on the positive direction side (hereinafter, the “surface on the positive direction side in the z-axis direction” is referred to as the upper surface).
  • the external electrode 25 is an electrode having the same shape as the external electrode 20, and is disposed symmetrically with the external electrode 20 with respect to a plane S10 that passes through the center point P1 of the bottom surface S1 and is parallel to the z axis and the y axis. That is, when viewed from the outside of the main body 10, as shown in FIG.
  • the external electrode 25 includes a bottom electrode 26 made of the same material as the bottom electrode and a columnar electrode 28 made of Cu or the like.
  • the circuit element 30 which is an inner conductor is located inside the element body of the main body 10 and is made of a conductive material such as Au, Ag, Cu, Pd, Ni.
  • the circuit element 30 that is an internal conductor includes a coil 32, a via conductor 33, a coil 37, and via conductors 38 and 39.
  • the coil 32 is provided on the upper surface of the insulator substrate 16, and when viewed in plan from the positive side in the z-axis direction, the coil 32 turns spirally and approaches the center while turning clockwise. It is. Further, one end on the outer peripheral side of the coil 32 extends toward the side surface S ⁇ b> 2 of the main body 10. Note that the cross-sectional area of the cross section orthogonal to the circumferential direction of the coil 32 is smaller than the cross-sectional area of the cross section orthogonal to the z-axis direction that is the extending direction of the columnar electrodes 23 and 28.
  • the via conductor 33 connects one end on the outer peripheral side of the coil 32 and the columnar electrode 23. Therefore, the via conductor 33 penetrates the insulator substrate 16 and the insulator layer 13 in the z-axis direction.
  • the coil 37 is provided on the lower surface of the insulating substrate 16, that is, the upper surface of the insulating layer 13, and turns from the center to the outside while turning clockwise when viewed from the positive side in the z-axis direction. It is a spiral conductor. Further, one end on the outer peripheral side of the coil 37 extends toward the side surface S ⁇ b> 3 of the main body 10. Further, the other end on the inner peripheral side of the coil 37 is provided so as to overlap the other end on the inner peripheral side of the coil 32 when viewed from the z-axis direction.
  • the cross-sectional area of the cross section orthogonal to the circumferential direction of the coil 37 is smaller than the cross-sectional area of the cross section orthogonal to the z-axis direction that is the extending direction of the columnar electrodes 23 and 28.
  • the via conductor 38 connects one end on the outer peripheral side of the coil 37 and the columnar electrode 28. Therefore, the via conductor 38 penetrates the insulator layer 13 in the z-axis direction.
  • the via conductor 39 penetrates the insulator substrate 16 in the z-axis direction, and connects the other end on the inner peripheral side of the coil 32 and the other end on the inner peripheral side of the coil 37.
  • a signal input from the external electrode 20 or the external electrode 25 is output from the external electrode 20 or the external electrode 25 via the circuit element 30, thereby serving as an inductor. Function.
  • the z-axis direction used in the description of the manufacturing method is a direction orthogonal to the bottom surface of the electronic component 1 manufactured by the manufacturing method.
  • a mother insulator substrate 116 to be a plurality of insulator substrates 16 is prepared. Then, as shown in FIG. 6, a plurality of through holes H1 for providing the via conductors 39 in the mother insulator substrate 116 are formed by laser processing or the like. In order to increase the acquisition efficiency of the inductance value, the thickness of the insulator substrate is preferably 60 ⁇ m or less.
  • Cu plating is applied to the upper and lower surfaces of the mother insulator substrate 116 in which a plurality of through holes are formed. At this time, the through-holes are also plated and a plurality of via conductors 39 are provided. Thereafter, a plurality of conductor patterns 132 and 137 corresponding to the coils 32 and 37 are formed on the upper and lower surfaces of the mother insulator substrate 116 by photolithography.
  • Cu plating is further performed to obtain a plurality of coils 32 and 37 having a sufficient thickness as shown in FIG.
  • the mother insulator substrate 116 on which the plurality of coils 32 and 37 are formed is sandwiched from the z-axis direction by the insulator sheets 112 and 113 to be the plurality of insulator layers 12 and 13. .
  • the step of sandwiching between the insulator sheets 112 and 113 is preferably performed in a vacuum for the purpose of causing the insulator sheet to enter a minute gap between the coils.
  • the relative dielectric constant of the insulator sheets 112 and 113 is 4 or less.
  • a plurality of through holes H2 for forming via conductors 33 and 38 are formed in the insulator sheet 113 by laser processing or the like. Further, a desmear process is performed in order to remove smear generated by forming the through hole.
  • the insulator sheet 113 is first subjected to electroless Cu plating.
  • This electroless plating is intended to form a seed layer for subsequent Cu electrolytic plating.
  • Cu electrolytic plating is applied to the insulator sheet 113. Thereby, the surface of the insulator sheet 113 and the inside of the through hole are plated, and a plurality of via conductors 33 and 38 are provided.
  • a plurality of conductor patterns 123 having a sufficient thickness corresponding to the columnar electrodes 23 and 28 are formed on the insulator sheet 113 by photolithography and Cu plating as shown in FIG.
  • one conductor pattern 123 when viewed from the z-axis direction, one conductor pattern 123 is connected at the upper bases where two line-symmetric trapezoids ⁇ and ⁇ are their target axes ⁇ . It has a shape.
  • a plurality of through holes ⁇ penetrating the mother insulator substrate 116 and the insulator sheets 112 and 113 in the z-axis direction are formed by laser processing or the like.
  • the position where the through hole ⁇ is formed is on the inner peripheral side of each of the plurality of coils 32 and 37 provided on the mother insulator substrate 116 in the xy plane.
  • seat 113 is the resin sheet 111 containing a metal magnetic powder corresponding to the insulator layers 11 and 14, as shown in FIG. , 114 are sandwiched from the z-axis direction and crimped in the same manner as the insulator sheets 112, 113 shown in FIG. At this time, the resin sheet 111 containing metal magnetic powder is pressed from the insulator sheet 112 side, and the resin sheet 114 containing metal magnetic powder is pressed from the insulator sheet 113 side.
  • the resin sheets 111 and 114 containing metal magnetic powder enter the plurality of through holes ⁇ , and a plurality of magnetic paths 18 are provided. Then, it hardens
  • the surface of the resin sheet 114 is ground by buffing, lapping, or a grinder. Thereby, as shown in FIG. 15, the conductor pattern 123 is exposed on the surface of the resin sheet 114. In addition, in the grinding process with respect to the resin sheet 114, you may grind the surface of the resin sheet 111 as adjustment of thickness.
  • a conductive resin 123 exposed on the surface of the resin sheet 114 is coated with a phenolic resin in which an Ag-coated Cu powder having an average particle diameter of 100 nm is dispersed by screen printing, and dried.
  • a plurality of resin electrode patterns 121 corresponding to the bottom electrodes 21 and 26 are provided on the surface of the resin sheet 114 as shown in FIG. Thereby, the mother substrate 101 which is an aggregate of a plurality of electronic components is completed.
  • the mother board 101 is divided into a plurality of electronic components. Specifically, when viewed from the z-axis direction, the mother substrate 101 is cut with a dicer or the like so that the target axis ⁇ shown in FIG. 12 positioned at the center of the conductor pattern 123 overlaps the cut line, and shown in FIG. Thus, the mother board 101 is divided into a plurality of electronic components. At this time, the conductor pattern 123 is divided into two parts around the target axis ⁇ , and these become the columnar conductors 23 and 28. Further, the resin electrode pattern 121 is also divided into the bottom electrodes 21 and 26.
  • a plurality of electronic components obtained in the previous process are immersed in a mixed solution (resin emulsion) containing a commercially available latex in which an etching component and a resin component are dispersed in an aqueous solvent and an etching accelerator and a surfactant added.
  • a mixed solution resin emulsion
  • Table 1 An example of a specific composition of the mixed solution is shown in Table 1.
  • sulfuric acid is an etching component
  • hydrogen peroxide is an etching promoting component.
  • metal ionization easily proceeds, and the formation of the coating film 9 is promoted.
  • the etching promoting component is not necessarily included in the mixed solution.
  • this etching ionizes Fe, which is a cationic element, which is a constituent element of the insulator layers 11 and 14. Furthermore, the ionized cationic element reacts with the resin component contained in the acrylic-ester copolymer (NipolLATEX SX-1706A (manufactured by ZEON Corporation)) in the mixed solution. As a result, the resin component in the mixed solution is neutralized, settles on the surface of the main body 10 constituting the electronic component, and the main body 10 is covered with the coating film 9. However, the external electrodes 20 and 25 are not covered with the coating film 9.
  • a conductive material such as Cu which is a constituent element of the external electrodes 20 and 25, is a noble element with respect to Fe, so that it is difficult to be ionized and as a result, it is difficult to react with a resin component.
  • the material of the circuit element 30 which is an internal conductor is also a conductive material such as Cu, it is not covered with the coating film 9 like the external electrodes 20 and 25.
  • Eleminol JS-2 (manufactured by Sanyo Chemical Co., Ltd.) contained in the mixed solution is a surfactant that adjusts the reaction amount of Fe and the resin component.
  • the coating film 9 is subjected to heat treatment after being washed with pure water and drained.
  • the resin component contained in the coating film 9 is crosslinked through Fe or between the resin components.
  • the resin component used for producing the coating film 9 is an epoxy resin, a polyimide resin, a silicone resin, a polyamideimide resin, a polyether ether ketone resin, a fluorine resin, an acrylic resin. Silicone resin or the like may be used.
  • examples of the resin component contained in the coating film 9 include acrylic resin emulsions such as methyl methacrylate resin, acrylonitrile-styrene-acrylic copolymer, and styrene-acrylic copolymer. .
  • the monomer used for the resin component contained in the coating film 9 is not particularly limited, and (meth) acrylic acid, methyl acrylate, ethyl acrylate, n-butyl acrylate, isobutyl acrylate, t-acrylic acid t- Butyl, dodecyl acrylate, stearyl acrylate, 2-ethylhexyl acrylate, tetrahydrofurfuryl acrylate, diethylaminoethyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, methacrylic acid, methyl methacrylate, methacrylic acid Propyl, n-butyl methacrylate, isobutyl methacryl
  • Vinyl esters such as alkyl vinyl ethers, vinyl acetate, N-alkyl substituted (meth) acrylamides such as N-methylacrylamide, N-ethylacrylamide, N-methylmethacrylamide, N-ethylmethacrylamide, acrylonitrile, methacrylonitrile, etc.
  • Styrene monomers such as nitriles, styrene, ethylene, butadiene, vinyl chloride, vinylidene chloride, vinyl acetate, p-methylstyrene, ⁇ -methylstyrene It is done. These other monomers may be used alone or in combination of two or more.
  • (Meth) acryl means acryl or methacryl.
  • the polymerization initiator used in the manufacturing process of the mixed solution (resin emulsion) does not affect the properties of the coating film 9.
  • the polymerization initiator is not particularly limited, and any known polymerization initiator can be used.
  • the polymerization initiator include ammonium persulfate, potassium persulfate, t-butyl hydroperoxide, potassium persulfate, benzoyl peroxide, lauroyl peroxide, di-t-butylperoxyhexahydroterephthalate, t-butyl.
  • peroxides such as baroxyisobutyrate and azos such as azobisisovaleronitrile and 2,2-azobis- (2-methylpropionate).
  • the polymerization at the time of production can be carried out by heating at 40 ° C. or more and 90 ° C. or less for 2 hours or more and 20 hours or less.
  • Examples of the polymerization method include emulsion polymerization, soap-free emulsion polymerization, suspension polymerization method and the like.
  • the aqueous solvent is not particularly limited.
  • water, water and a water-soluble organic medium methanol, ethanol, propanol, butanol, ethylene glycol, glycerin, 2,2,4-trimethylpentane-1,3-diol mono And alcohols such as isobutyrate, glycol ethers such as ethylene glycol monoethyl ether and ethylene glycol monobutyl ether, esters such as 2-ethoxyethyl acetate, and ketones such as methyl ethyl ketone).
  • methanol, ethanol, propanol, butanol ethylene glycol, glycerin, 2,2,4-trimethylpentane-1,3-diol mono
  • alcohols such as isobutyrate
  • glycol ethers such as ethylene glycol monoethyl ether and ethylene glycol monobutyl ether
  • esters such as 2-ethoxyethyl acetate
  • Etching components may be sulfuric acid, hydrofluoric acid, nitric acid, hydrochloric acid, phosphoric acid and carboxylic acid (eg acetic acid). Among these, it is particularly preferable to use sulfuric acid, nitric acid, hydrochloric acid, hydrofluoric acid and acetic acid because the film formability of the coating film 9 is improved.
  • the etching component may be two or more selected from hydrofluoric acid, sulfuric acid, acetic acid, nitric acid, and hydrochloric acid.
  • an oxidizing agent is included as an etching acceleration
  • Peroxodisulfate is, for example, sodium peroxodisulfate.
  • iron fluoride may be mixed as an additive. When iron fluoride is included as an additive, the balance between the cations generated by etching with the resin emulsion and the deactivation of the surfactant is good, and a uniform coating film can be formed.
  • an anionic surfactant or a nonionic surfactant is used, and an anionic surfactant is particularly preferable.
  • the anionic surfactant include fatty acid oils such as sodium oleate and castor oil potassium, alkyl sulfate salts such as sodium lauryl sulfate and ammonium lauryl sulfate, alkylbenzene sulfonates such as sodium dodecylbenzenesulfonate, and alkylnaphthalene sulfone.
  • Acid salts alkane sulfonates, dialkyl sulfosuccinates, alkyl phosphate esters, naphthalene sulfonate formalin condensates, polyoxyethylene alkyl phenyl ether sulfates, polyoxyethylene alkyl sulfates and the like.
  • the anionic surfactant has a sulfonic acid group
  • the degree of deactivation of the surfactant is suitable. If the surfactant is not easily deactivated, a coating film is not formed. If the surfactant is too deactivated, the resin emulsion becomes too unstable and difficult to handle.
  • nonionic surfactants include polyoxyethylene alkyl ether (alkyl group; octyl, decyl, lauryl, stearyl, oleyl, etc.), polyoxyethylene alkylphenyl ether (alkyl group; octyl, nonyl, etc.), polyoxyethylene -A polyoxypropylene block copolymer etc. are mentioned.
  • the water-soluble resin which has a sulfonic acid group and its salt, a carboxyl group and its salt, a phosphoric acid group, its salt, etc. is mentioned.
  • a curing agent may be added and a heat treatment may be added.
  • Ni / Sn plating is applied to the surfaces of the external electrodes 20 and 25.
  • the electronic component 1 is completed through the above steps.
  • the coating film 9 covering the main body 10 is composed of a cationic element contained in the resin and the insulator layers 11 and 14.
  • the coating film 9 having such a structure is thicker than the coating film formed by the chemical conversion treatment of phosphate, and is excellent in wear resistance, insulation, moisture resistance, chemical resistance, and the like.
  • Cationic elements can be analyzed by mapping diagrams and ion intensity profiles obtained by time-of-flight secondary ion mass spectrometry.
  • the metal magnetic powder contained in the insulator layers 11 and 14 is previously coated with an insulating coating made of a metal oxide by chemical conversion treatment.
  • the insulating coating may be peeled off in a grinding process which is one of the manufacturing processes of the electronic component 1.
  • the coating film 9 that covers the main body 10 is composed of a resin and a cationic element, and the cationic element is ionized from the metal magnetic powder contained in the insulator layers 11 and 14. It is caused by doing. Therefore, even when the insulating coating applied to the metal magnetic powder is peeled off by a grinding process or the like, the cationic element is dissolved from the metal magnetic powder by the subsequent process, and this forms the coating film 9. As a result, the electronic component 1 is more excellent in insulation and rust prevention.
  • the coating film 9 is formed on the metal magnetic powder by the subsequent process. Contributes to downsizing and low profile. Specifically, in order to reduce the size and height of the electronic component 1, it is necessary to make the insulator layers 11 and 14 as thin as possible. Therefore, a grinding process is an essential process for thinning the insulator layers 11 and 14.
  • the insulating layer containing the metal magnetic powder has been made thicker than the particle size of the metal magnetic powder because the insulating coating by the chemical conversion treatment is peeled off from the metal magnetic powder.
  • the thickness of the insulator layers 11 and 14 can be made smaller than the particle diameter of the metal magnetic powder. As a result, the electronic component 1 can be reduced in size and height.
  • the electronic component 1 uses a coating film 9 composed of a cationic element and a resin dissolved from the insulator layers 11 and 14 instead of the coating film formed by the phosphate chemical conversion treatment. Since such a coating film 9 is thicker than the coating film formed by the phosphate chemical conversion treatment, it is possible to fill the recess C generated by the degranulation of the metal magnetic powder. Therefore, in the electronic component 1, corrosion of the circuit element 30 can be suppressed. That is, the electronic component 1 is excellent in moisture resistance.
  • the present inventor conducted an experiment to clarify the effect of the electronic component 1 on the moisture resistance.
  • 50 samples each of the first sample corresponding to the electronic component 1 and the second sample obtained by replacing the coating film 9 of the electronic component 1 with the coating film formed by the phosphate chemical conversion treatment were used at a high temperature. It was confirmed whether each sample normally energized under high humidity.
  • the specific condition of the experiment was that a current of 6 A was kept flowing under a temperature of 85 ⁇ 2 ° C. and a humidity of 85 ⁇ 2%. And 24 hours after the experiment start, the energization state of each sample was confirmed.
  • each sample that was energized 24 hours after the start of the experiment was determined as a non-defective product, and a part that was not energized 24 hours after the start of the experiment was determined as a defective product.
  • 1 out of 50 samples were not energized, and 16 out of 50 samples were not energized in the second sample. That is, the defect rate of the first sample was 2%, and the defect rate of the second sample was 32%.
  • filling the recess C generated by the detachment of the metal magnetic powder with the coating film 9 contributes to the connection reliability between the external electrodes 20 and 25 of the electronic component 1 and the circuit board on which the electronic component 1 is mounted.
  • the recess C when the recess C is present on the surface of the main body 10 in the vicinity of the external electrodes 20 and 25, the recess C cannot be filled with the coating film formed by the phosphate chemical conversion treatment.
  • Ni / Sn plating is applied to the external electrodes 20 and 25, the plating solution enters the interface between the external electrodes 20 and 25 and the main body 10 from the recess C in the vicinity of the external electrodes 20 and 25. 25 are lifted from the main body 10.
  • the fixing force of the electronic component to the circuit board becomes insufficient, and the connection reliability between the external electrodes 20 and 25 and the circuit board is impaired.
  • the coating film 9 fills the concave portion C generated by the detachment of the metal magnetic powder, the connection reliability between the external electrodes 20 and 25 and the circuit board is maintained. Can do.
  • the present inventor conducted an experiment to confirm the effect on the connection reliability of the electronic component 1.
  • 50 first samples and 50 second samples were prepared.
  • each sample was soldered to the circuit board B1, and as shown in FIG. 18, the circuit board B1 was set up vertically, and a force F was applied vertically downward with respect to the side surface of each sample. And the force F added to the side surface of each sample when each sample removed from circuit board B1 was measured.
  • the minimum force in the first sample was 32N
  • the minimum force in the second sample was 25N.
  • this result shows that the coating film 9 composed of the cationic element and the resin contributes to the connection reliability between the external electrodes 20 and 25 of the electronic component 1 and the circuit board on which the electronic component 1 is mounted. Show.
  • a mixed solution containing a commercially available latex in which an etching component and a resin component are dispersed in an aqueous solvent and an etching promoting component and a surfactant added thereto is used.
  • the coating film 9 can be formed simultaneously with the etching. Therefore, the manufacturing process of the electronic component 1 is simpler than the manufacturing process using a solution containing only the etching component and a solution containing only the resin component.
  • the coating film 9 when the coating film 9 is formed, Fe contained in the insulator layers 11 and 14 is ionized, but the external electrodes 20 and 25, the circuit element 30 that is an internal conductor, and the like.
  • the conductive material such as Cu contained therein is hardly ionized.
  • the external electrodes 20 and 25 and the circuit element 30 are not covered with the coating film 9. That is, in the manufacturing method of the electronic component 1, it is possible to selectively form the coating film 9 only on the portion that needs to be coated by mainly utilizing the difference in solubility due to the etching component.
  • the difference between the electronic component 1A according to the second embodiment and the electronic component 1 according to the first embodiment is that the configuration of the external electrodes 20 and 25, the configuration of the circuit element 30, and the insulation layers 12 and 13 This is the position where the material, the material of the insulator substrate 16 and the coating film 9 are formed. This will be specifically described below.
  • the external electrode 20 is provided so as to cover the side surface S2 of the main body 10 on the positive direction side in the x-axis direction and a part of the surrounding surface.
  • the external electrode 25 is provided so as to cover the side surface S3 on the negative direction side in the x-axis direction of the main body 10 and a part of the surrounding surface.
  • the via conductor 33 does not exist in the electronic component 1A as shown in FIG. Instead, as shown in FIG. 21, one end 32 a on the outer peripheral side of the coil 32, which is an internal conductor, is exposed from the side surface S ⁇ b> 2 of the main body 10. Thereby, the coil 32 and the external electrode 20 are connected.
  • the via conductor 38 does not exist in the electronic component 1A. Instead, one end 37a on the outer peripheral side of the coil 37, which is an internal conductor, is exposed from the side surface S3 of the main body 10, as shown in FIG. Thereby, the coil 37 and the external electrode 25 are connected.
  • the material of the insulator layers 12 and 13 and the material of the insulator substrate 16 are made of the same resin containing metal magnetic powder as the insulator layers 11 and 14.
  • the configuration of the external electrodes 20, 25 and the like are different from those of the electronic component 1, and therefore the manufacturing method thereof is partially different.
  • the mother insulator substrate 116 on which the plurality of coils 32 and 37 are formed is sandwiched between the insulator sheets 112 and 113 as in FIG. A through-hole ⁇ for forming is formed.
  • the material constituting the mother insulator substrate 116 and the insulator sheets 112 and 113 is a resin containing metal magnetic powder.
  • the laminate in which the insulator sheet 112, the mother insulator substrate 116, and the insulator sheet 113 are laminated in this order is replaced with resin sheets 111 and 114 as shown in FIG. 23, and the insulator sheet shown in FIG. As in the case of 112 and 113, they are sandwiched from the z-axis direction and crimped.
  • resin sheets 111 and 114 containing metal magnetic powder enter the plurality of through holes ⁇ , and a plurality of magnetic paths 18 are provided. Then, it hardens
  • the surfaces of the resin sheets 111 and 114 are ground by buffing, lapping, grinders or the like. Thereby, a mother substrate that is an aggregate of a plurality of electronic components is completed.
  • the mother board is cut with a dicer or the like and divided into a plurality of electronic components. By this division, one end 32a on the outer peripheral side of the coil 32 and one end 37a on the outer peripheral side of the coil 37 are exposed on the cut surface.
  • a plurality of electronic components obtained in the previous process are immersed in a mixed solution (resin emulsion) containing a commercially available latex in which an etching component and a resin component are dispersed in an aqueous solvent and an etching accelerator and a surfactant added.
  • a mixed solution resin emulsion
  • the etching promoting component is not necessarily included in the mixed solution.
  • the surface of the main body 10 constituting the electronic component is covered with the coating film 9.
  • one end 32 a on the outer peripheral side of the coil 32 and one end 37 a on the outer peripheral side of the coil 37 are not covered with the coating film 9.
  • a conductive material such as Cu which is a constituent element of the coils 32 and 37 that are the internal conductors, is a noble element with respect to Fe, so that it is hardly ionized and as a result, it is difficult to react with the resin component. is there.
  • the coating film 9 is subjected to heat treatment after being washed with pure water and drained.
  • the resin component contained in the coating film 9 is crosslinked through Fe or between the resin components.
  • external electrodes 20 and 25 are formed.
  • an electrode paste made of a conductive material containing Ag as a main component is applied to the main body 10 covered with the coating film 9.
  • the applied electrode paste is heat-treated at a temperature of 80 to 200 ° C. for 5 to 12 minutes, for example.
  • the external electrodes 20 and 25 are formed by performing Cu / Ni / Sn plating on the surface of the base electrode of the formed external electrodes 20 and 25.
  • the electronic component 1A is completed.
  • a part of the metal magnetic powder on the processed surface is degranulated by processing such as cutting, and a recess C is generated on the surface of the main body 10.
  • a recess C is generated on the surface of the main body 10.
  • the external electrodes 20 and 25 are formed directly on the recess C, the coating of the Ag base electrode by Cu / Ni / Sn plating becomes insufficient.
  • so-called solder erosion occurs in which most of the Cu / Ni / Sn plating on the recess C melts into the solder.
  • the Ag base electrode When the solder erosion occurs, the Ag base electrode is exposed, and the connection by solder cannot be performed or is insufficient, and the connection reliability between the external electrodes 20 and 25 and the circuit board on which the electronic component 1A is mounted is impaired.
  • the Ag base electrode since the recess C is filled with the coating film 9, the Ag base electrode is sufficiently covered by Cu / Ni / Sn plating. Therefore, in the electronic component 1A, since the coating film 9 exists at the interface between the main body 10 and the external electrodes 20 and 25, the external electrodes 20 and 25 of the electronic component 1A and the circuit board on which the electronic component 1A is mounted are connected. Connection reliability can be improved.
  • the inventor of this application has confirmed the effect on the connection reliability of the electronic component 1A by using 50 third samples corresponding to the electronic component 1A.
  • the experiment for confirming the connection reliability was the same as the experiment performed on the first sample and the second sample.
  • the minimum force in the third sample was 35N.
  • this result shows that the coating film 9 composed of the cationic element and the resin improves the connection reliability between the external electrodes 20 and 25 of the electronic component 1A and the circuit board on which the electronic component 1A is mounted. Show.
  • the inventors of the present application confirmed the effect of moisture resistance using 50 third samples.
  • the experiment for confirming the moisture resistance was the same as the experiment performed on the first sample and the second sample.
  • the defect rate of the third sample was 4%. This result shows that also in the electronic component 1A, the coating film 9 composed of the cationic element and the resin is superior in moisture resistance to the coating film formed by the phosphate chemical conversion treatment.
  • FIG. 26 is a perspective view of an electronic component according to the third embodiment
  • FIG. 27 is a cross-sectional view taken along the line II of FIG. 26 showing the electronic component according to the third embodiment.
  • the electronic component 1B includes a main body 10 and external electrodes 20 and 25 as shown in FIG.
  • the main body 10 is formed in a substantially rectangular parallelepiped shape, and has an element body 10 a formed of the same resin containing metal magnetic powder as the insulator layers 11 and 14.
  • the element body 10a includes a coil 35 that is an internal conductor.
  • the coil 35 is formed by using a conducting wire, and the end portions 35a and 35b of the conducting wire are formed by being wound in two outer windings in a spiral shape so as to be the outermost periphery. End portions 35a and 35b of the coil 35 are exposed on the surface of the main body 10 (the side surface on the positive direction side in the y-axis direction).
  • the external electrode 20 is provided so as to cover the side surface S2 of the main body 10 on the positive side in the x-axis direction and a part of the surrounding surface.
  • the external electrode 25 is provided so as to cover the side surface S3 on the negative direction side in the x-axis direction of the main body 10 and a part of the surrounding surface.
  • the external electrode 20 is connected to the end portion 35a
  • the external electrode 25 is connected to the end portion 35b.
  • the electronic component 1 ⁇ / b> B is configured so that the coating film 9 exists at the interface between the main body 10 and the external electrodes 20 and 25.
  • the coil 35 which is an internal conductor is formed and prepared using a conducting wire.
  • the coil 35 is sandwiched by the compression molding method from above and below with an insulator sheet containing the same metal magnetic powder as the insulator layers 11 and 14 that become the element body 10a, and the main body 10 is formed.
  • the end portions 35a and 35b of the coil 35 are formed so as to be exposed on the surface of the main body 10 (the side surface on the positive direction side in the y-axis direction).
  • a solution (resin emulsion) is prepared. Note that the etching promoting component is not necessarily included in the mixed solution.
  • the molded main body 10 is immersed in the prepared mixed solution. Thereby, the surface of the main body 10 constituting the electronic component is covered with the mixed solution, and the surface of the main body 10 is etched.
  • the coating film 9 is not formed on the surface of the end portion 35a (35b) of the coil 35 (see FIG. 27).
  • a conductive material such as Cu, which is a constituent element of the coil 35 that is an internal conductor, is a noble element with respect to Fe, so that it is hardly ionized and, as a result, hardly reacts with the resin component.
  • the resin component, the aqueous solvent, the etching component, and the surfactant contained in the mixed solution are naturally the same materials as those used in the method for manufacturing the electronic component 1 according to the first embodiment. it can.
  • the main body 10 whose surface has been etched is subjected to a heating (drying) process by being washed with pure water and drained and covered with the mixed solution.
  • a heating (drying) process by being washed with pure water and drained and covered with the mixed solution.
  • the resin component contained in the mixed solution is cross-linked with Fe, which is a metal magnetic powder, or between the resin components, and a coating film 9 is formed on the surface of the main body 10 as shown in FIG. .
  • the external electrodes 20 and 25 are formed on the main body 10 on which the coding film is formed.
  • an electrode paste made of a conductive material containing Ag as a main component is applied to the main body 10 covered with the coating film 9.
  • the applied electrode paste is heat-treated at a temperature of 80 to 200 ° C. for 5 to 12 minutes, for example.
  • the external electrodes 20 and 25 are formed by performing Cu / Ni / Sn plating on the surface of the base electrode of the formed external electrodes 20 and 25.
  • the electronic component 1B is completed.
  • the electronic component 1B configured as described above has the same effects as the electronic component 1 or the electronic component 1A. That is, the electronic component 1B according to the third embodiment has excellent connection reliability and moisture resistance.
  • each sample of the example and the comparative example corresponding to the electronic component 1B.
  • Each sample of the example and the comparative example varies the materials and contents of the resin component, the etching component, the surfactant, and the etching promoting component contained in the mixed solution (resin emulsion) for forming the coating film 9. It was.
  • an experiment for confirming connection reliability and moisture resistance was performed on each sample of the example and the comparative example.
  • Example 2 samples of Examples 1 to 29 shown in Table 2 were produced according to the above-described method for manufacturing an electronic component.
  • the coating film 9 was formed by being immersed in a mixed solution at room temperature for 5 minutes, washed with pure water, and cured by heating in an oven at 180 ° C. for 10 minutes.
  • Each sample corresponding to the electronic component 1B of Examples 1 to 29 was prepared for each experiment.
  • the resin component contained in the mixed solution for forming the coating film 9 is an acrylic-ester copolymer (trade name: Nipol SX1706A (manufactured by Nippon Zeon)), the etching component is sulfuric acid, and the interface
  • the activator was sodium alkylallylsulfosuccinate (trade name: Eleminol JS-2 (manufactured by Sanyo Kasei Co., Ltd.)) and contained no etching promoting component or additive.
  • the resin component contained in the mixed solution for forming the coating film 9 is an acrylic-ester copolymer (trade name: Nipol SX1706A (manufactured by Nippon Zeon)), the etching component is sulfuric acid, and the interface
  • the activator was sodium alkylallylsulfosuccinate (trade name: Eleminol JS-2 (manufactured by Sanyo Kasei Co., Ltd.)), the additive was iron (III) fluoride, and no etching promoting component was contained.
  • the resin component contained in the mixed solution for forming the coating film 9 is an acrylic-ester copolymer (trade name: Nipol SX1706A (manufactured by Zeon Corporation)), and the etching component is Sulfuric acid is used, the surfactant is sodium alkylallylsulfosuccinate (trade name: Eleminol JS-2 (manufactured by Sanyo Kasei Co., Ltd.)), the etching promoting component is hydrogen peroxide, and the content of the resin component in the mixed solution is It was changed between 0.5 g and 1.5 g, respectively.
  • the etching component is Sulfuric acid
  • the surfactant is sodium alkylallylsulfosuccinate (trade name: Eleminol JS-2 (manufactured by Sanyo Kasei Co., Ltd.)
  • the etching promoting component is hydrogen peroxide
  • the content of the resin component in the mixed solution is It was changed between 0.5 g and 1.5 g
  • the resin component contained in the mixed solution for forming the coating film 9 was an acrylic-ester copolymer (trade name: Nipol SX1706A (manufactured by Nippon Zeon)), and the etching component was Sulfuric acid is used, the surfactant is sodium alkylallylsulfosuccinate (trade name: Eleminol JS-2 (manufactured by Sanyo Chemical Co., Ltd.)), the etching promoting component is hydrogen peroxide, and the additive is iron (III) fluoride. Then, the content of the sulfuric acid as an etching component with respect to the mixed solution was changed between 0.02 g and 0.1 g. In Example 6 and Example 7, the surfactant content was 0.2 g, and in Example 8, 0.1 g.
  • the resin component contained in the mixed solution for forming the coating film 9 is an acrylic-ester copolymer (trade name: Nipol SX1706A (manufactured by Zeon Corporation)), and the etching component is Sulfuric acid is used, the surfactant is sodium alkylallylsulfosuccinate (trade name: Eleminol JS-2 (manufactured by Sanyo Chemical Co., Ltd.)), the etching promoting component is hydrogen peroxide, and the additive is iron (III) fluoride. Then, the content of the etching promoting component in the mixed solution was changed between 0.01 g and 0.3 g. In Example 9, the surfactant content was 0.5 g, and in Examples 10 and 11, the content was 0.2 g.
  • the resin component contained in the mixed solution for forming the coating film 9 was an acrylic-ester copolymer (trade name: Nipol SX1706A (manufactured by Nippon Zeon)), and the etching component was Sulfuric acid is used, the surfactant is sodium alkylallylsulfosuccinate (trade name: Eleminol JS-2 (manufactured by Sanyo Chemical Co., Ltd.)), the etching promoting component is hydrogen peroxide, and the additive is iron (III) fluoride. Then, the content of the mixed solution of iron fluoride (III) as an etching component was changed from 0 g (not contained) to 0.005 g.
  • the etching component was Sulfuric acid is used
  • the surfactant is sodium alkylallylsulfosuccinate (trade name: Eleminol JS-2 (manufactured by Sanyo Chemical Co., Ltd.)
  • the etching promoting component is hydrogen peroxid
  • the resin component contained in the mixed solution for forming the coating film 9 is an acrylic-ester copolymer (trade name: Nipol SX1706A (manufactured by Zeon Corporation)), the etching component is sulfuric acid, and the interface
  • the activator was sodium alkylallylsulfosuccinate (trade name: Eleminol JS-2 (manufactured by Sanyo Chemical Co., Ltd.)), the etching promoting component was sodium peroxodisulfate, and the additive was iron (III) fluoride.
  • the resin component contained in the mixed solution for forming the coating film 9 is an acrylic-ester copolymer (trade name: Nipol SX1706A (manufactured by ZEON Corporation)), and the etching component is Sulfuric acid was used, the etching promoting component was hydrogen peroxide, and the additive was iron (III) fluoride.
  • the surfactant contained in the mixed solution for forming the coating film 9 was ⁇ -naphthalenesulfonic acid formalin condensate sodium salt (trade name: Demol N (manufactured by Kao Corporation)).
  • Example 17 sodium dioctylsulfosuccinate (trade name: Rapisol A-80 (manufactured by NOF Corporation)) was used, and in Example 18, linear alkylbenzene sulfonate (Newlex R (manufactured by NOF Corporation)) was used. .
  • the resin component contained in the mixed solution for forming the coating film 9 is a styrene-acrylic copolymer (trade name: Neocryl A-655 (manufactured by Enomoto Kasei Co., Ltd.)).
  • An acrylic-ester copolymer (trade name: Nipol LX814 (manufactured by Nippon Zeon Co., Ltd.)) was used.
  • the etching component contained in the mixed solution for forming the coating film 9 is sulfuric acid, and the surfactant is sodium alkylallylsulfosuccinate (trade name: Eleminol JS-2 (Sanyo Chemical Industries).
  • the etching promoting component was hydrogen peroxide, and the additive was iron (III) fluoride.
  • the resin component contained in the mixed solution for forming the coating film 9 is an acrylic-ester copolymer (trade name: Nipol SX1706A (manufactured by Nippon Zeon)), and a surfactant.
  • a surfactant was sodium alkylallylsulfosuccinate (trade name: Eleminol JS-2 (manufactured by Sanyo Chemical Co., Ltd.))
  • the etching promoting component was hydrogen peroxide
  • the additive was iron (III) fluoride.
  • the etching components contained in the mixed solution for forming the coating film 9 were nitric acid in Example 21, hydrochloric acid in Example 22, and acetic acid in Example 23.
  • the resin component contained in the mixed solution for forming the coating film 9 was an acrylic-ester copolymer (trade name: Nipol SX1706A (manufactured by Nippon Zeon)), and the etching component was Hydrofluoric acid is used, the surfactant is sodium alkylallylsulfosuccinate (trade name: Eleminol JS-2 (manufactured by Sanyo Chemical Co., Ltd.)), the etching promoting component is hydrogen peroxide, and the additive is iron (III) fluoride. Then, the content of the hydrofluoric acid, which is an etching component, with respect to the mixed solution was changed between 0.02 g and 0.1 g.
  • Example 27 the resin component contained in the mixed solution for forming the coating film 9 is a silicone resin (trade name: POLON-MF-56 (manufactured by Shin-Etsu Silicone)), and Example 28 is a silicone resin. (Trade name: X-51-1318 (manufactured by Shin-Etsu Silicone)), and Example 29 was an epoxy-acrylic resin (trade name: MODEPICS-302 (manufactured by Arakawa Chemical Industries)).
  • the etching component contained in the mixed solution for forming the coating film 9 was hydrofluoric acid, and the surfactant was sodium alkylallylsulfosuccinate (trade name: Eleminol JS-2). (Manufactured by Sanyo Chemical Co., Ltd.), hydrogen peroxide as an etching promoting component, and iron (III) fluoride as an additive.
  • Comparative Example 1 the coating film 9 of the electronic component 1B was formed by phosphorylation treatment.
  • the resin component contained in the mixed solution for forming the coating film 9 is an acrylic-ester copolymer (trade name: Nipol SX1706A (manufactured by Nippon Zeon)), and the surfactant is alkyl.
  • Sodium allylsulfosuccinate (trade name: Eleminol JS-2 (manufactured by Sanyo Kasei Co., Ltd.) was used, and the additive was iron (III) fluoride, which did not contain an etching component and an etching promoting component.
  • connection reliability of the electronic component 1B An experiment was conducted to evaluate the connection reliability of the electronic component 1B.
  • the experiment (fixing force test) for confirming the connection reliability was the same as the experiment performed on the electronic component 1 according to the first embodiment and the electronic component 1A according to the second embodiment. . That is, as shown in FIG. 18, each sample was soldered to the circuit board B1, the circuit board B1 was set up vertically, and a force F was applied vertically downward to the side surface of the sample. And the force F added to the side surface of each sample when an evaluation sample removed from circuit board B1 was measured.
  • an experiment for evaluating the moisture resistance of the electronic component 1B was performed.
  • the experiment for confirming the moisture resistance was also the same as the test performed on the electronic component 1 according to the first embodiment and the electronic component 1A according to the second embodiment. That is, it was confirmed whether each sample normally energized under high temperature and high humidity.
  • the specific condition of the experiment was that a current of 6 A was kept flowing under a temperature of 85 ⁇ 2 ° C. and a humidity of 85 ⁇ 2%. Then, 24 hours after the start of the experiment, the energization state of the evaluation sample was confirmed.
  • each sample that was energized 24 hours after the start of the experiment was determined as a non-defective product, and a part that was not energized 24 hours after the start of the experiment was determined as a defective product. And in each sample, 70% or more of the probability that a good product is contained (good product rate) was determined to be good.
  • Table 2 shows the evaluation results of Examples 1 to 29.
  • Table 3 shows the evaluation results of Comparative Example 1 and Comparative Example 2.
  • the film formability of the coating film 9 is important.
  • This film forming property is such that the adhesion of the coating film 9 to the main body 10, the uniformity of the coating film 9, and the neutralization reaction are not too slow, and the resin component constituting the coating film 9 is deposited on the main body 10 in a shorter time. It is evaluated by the precipitation property showing that. Of these, precipitation is particularly important from the viewpoint of production efficiency. From the results of this experiment, focusing on the resin component, all of the resin components in the examples had good film-forming properties.
  • an acrylic-ester copolymer (trade name: Nipol SX1706A (manufactured by Nippon Zeon Co., Ltd.) )
  • Acrylic-ester copolymer (trade name: Nipol LX814 (manufactured by Zeon Corporation)
  • styrene-acrylic copolymer (trade name: Neocryl A-655 (manufactured by Enomoto Kasei Co., Ltd.)
  • etching component all the etching components of the examples had good film forming properties, but in particular, the film forming properties (precipitation properties) in the order of hydrofluoric acid, sulfuric acid, acetic acid, nitric acid / hydrochloric acid. ) was good. Further, when focusing on the surfactant, any of the surfactants in the examples had good film-forming properties.
  • sodium alkylallylsulfosuccinate (trade name: Eleminol JS-2 (manufactured by Sanyo Chemical Co., Ltd.))
  • Sodium alkylbenzene sulfonate (Newlex R (manufactured by NOF Corporation)
  • sodium dioctylsulfosuccinate (trade name: Lapisol A-80 (manufactured by NOF Corporation)
  • sodium ⁇ -naphthalene sulfonate formalin condensate The film formability (precipitation) was favorable in the order of salt (trade name: DEMAL N (manufactured by Kao Corporation)).
  • Example 1 when Example 1 is compared with other Examples, the electronic component 1B in which the mixed solution contains iron (III) fluoride as an additive contains iron (III) fluoride.
  • the result of the adhesion strength test was better than that of the electronic component 1B that is not present.
  • the electronic component and the manufacturing method thereof according to the present invention are not limited to the above-described embodiment, and can be variously changed within the scope of the gist.
  • the mixed solution for forming the coating film 9 includes a tannin that improves corrosion resistance, a plasticizer such as dibutyl phthalate that gives the coating film 9 flexibility, and silver fluoride that improves the film formability of the coating film 9.
  • a plasticizer such as dibutyl phthalate that gives the coating film 9 flexibility
  • silver fluoride that improves the film formability of the coating film 9.
  • Metal ions and lubricants that prevent scratches on the surface of the coating film 9 and improve water resistance for example, fluorine resin lubricants, polyolefin waxes, polyolefin waxes, melamine cyanurate, and molybdenum disulfide may be added to the mixed solution. .
  • a pigment such as carbon black or phthalocyanine blue may be added to the mixed solution for forming the coating film 9 for the purpose of improving the corrosion resistance of the coating film 9 and coloring the electronic parts.
  • a polymer having an acid group containing phosphorus for example, a main chain of a phosphoric acid group, a phosphorous acid group, a phosphonic acid group, a phosphinic acid group,
  • corrosion resistance and chemical resistance can be improved by adding an organic polymer compound having a side chain.
  • fillers such as glass fiber, calcium carbonate, aramid fiber, graphite, alumina, aluminum nitride, boron nitride are added to the mixed solution. Also good.
  • the circuit element which is an internal conductor located inside the element body is not limited to an inductor. And you may combine the structure of each Example.
  • the present invention is useful for an electronic component and a method for manufacturing the same, and in particular, in an electronic component using an insulator containing metal magnetic powder, a resin coating film can be obtained on the insulator.
  • An electronic component having excellent moisture resistance and chemical resistance can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Dispersion Chemistry (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Ceramic Capacitors (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

 本発明の目的は、金属磁性粉を含む絶縁体を用いた電子部品であって、該絶縁体上に樹脂のコーティング膜を有する電子部品、及びその製造方法を提供することである。 電子部品1は、絶縁体から成る本体10と、本体10を覆うコーティング膜9と、本体10の内部に位置する回路素子30と、外部電極20,25と備えている。絶縁体は、金属磁性粉を含んでいる。コーティング膜9は、樹脂及び絶縁体に含まれるカチオン性の元素により構成されている。

Description

電子部品及びその製造方法
 本発明は、電子部品及びその製造方法、特に、金属磁性粉を含む絶縁体を用いた電子部品及びその製造方法に関する。
 金属磁性粉を含む絶縁体を用いた電子部品として、特許文献1に記載のコイル部品が知られている。この種の電子部品(以下、従来の電子部品と称す)では、内部の回路素子を、金属磁性粉を含む絶縁体で覆っている。そして、従来の電子部品では、絶縁体に含まれる金属磁性粉の防錆等を目的として、リン酸塩による化成処理が行われている。ただし、リン酸塩による化成処理によって形成されたコーティング膜は一般的に薄く、電子部品に要求されるコーティング膜の品質に対して、耐湿性、耐薬品性等が不十分である。
特開2013-225718号公報
 本発明の目的は、金属磁性粉を含む絶縁体を用いた電子部品において、該絶縁体上に樹脂のコーティング膜を有する電子部品、及びその製造方法を提供することである。
 この発明に係る電子部品は、金属磁性粉と絶縁性樹脂とから形成される素体と、素体の内部に位置する内部導体と、を備える本体と、本体を覆うコーティング膜と、内部導体と接続された外部電極と、を備え、コーティング膜は、金属磁性粉を構成する元素のカチオンと樹脂とを含む電子部品である。
 この発明に係る電子部品では、金属磁性粉は、Fe又はFe合金の粉であり、内部導体は、Cu又はAgであることが好ましい。
 また、この発明に係る電子部品の製造方法は、金属磁性粉と絶縁性樹脂とから形成される素体と、素体の内部に位置する内部導体と、を備える本体を準備する工程と、金属磁性粉を構成する金属をイオン化させるエッチング成分と、アニオン性界面活性剤と、樹脂成分とを含む樹脂エマルジョンを準備する工程と、樹脂エマルジョンを本体に塗布し、乾燥する工程と、内部導体に接続される外部電極を形成する工程と、を備えることを特徴とする、電子部品の製造方法である。
 また、この発明に係る電子部品の製造方法では、金属磁性粉は、Fe又はFe合金の粉であり、内部導体は、Cu又はAgであることが好ましい。
 さらに、この発明に係る電子部品の製造方法では、エッチング成分は、フッ化水素酸、硫酸、酢酸、硝酸又は塩酸であることが好ましい。
 また、この発明に係る電子部品の製造方法では、アニオン性界面活性剤は、スルホン酸基を有することが好ましい。
 さらにまた、この発明に係る電子部品の製造方法では、樹脂エマルジョンは、さらに、エッチング促進成分として酸化剤を含むことが好ましい。
 また、この発明に係る電子部品の製造方法では、樹脂エマルジョンは、さらに、添加剤としてフッ化鉄を含むことが好ましい。
 この発明に係る電子部品によれば、本体を覆うコーティング膜が樹脂及び絶縁体に含まれるカチオン性の元素により構成されている。このような構成のコーティング膜は、一般的にリン酸塩化成処理により形成されたコーティング膜よりも耐湿性や耐薬品性等に優れている。
 また、この発明に係る電子部品では、金属磁性粉がFe又はFe合金の粉であり、内部導体がCu又はAgである場合、Feは、CuあるいはAgよりもイオン化傾向が大きいため、内部導体よりも素体に含まれる金属磁性粉に選択的にコーティング膜がつきやすくすることができる。一方、内部導体にコーティング膜が形成されてしまうと、内部導体と外部電極との導通性が低下するところ、上述の構成であると、この導通性の低下を回避することができる。
 この発明に係る電子部品の製造方法によれば、金属磁性粉と絶縁性樹脂とから形成される素体と、素体の内部に位置する内部導体と、を備える本体を準備する工程と、金属磁性粉を構成する金属をイオン化させるエッチング成分と、アニオン性界面活性剤と、樹脂成分とを含む樹脂エマルジョンを準備する工程と、樹脂エマルジョンを本体に塗布し、乾燥する工程と、内部導体に接続される外部電極を形成する工程と、を備えるので、耐湿性や耐薬品性等に優れた電子部品を得ることができる。
 また、この発明に係る電子部品の製造方法では、金属磁性粉がFe又はFe合金の粉であり、内部導体がCu又はAgである場合、Feは、CuまたはAgよりもイオン化傾向が大きいため、内部導体よりも素体に含まれる金属磁性粉に選択的にコーティング膜がつきやすくすることができる。
 さらに、この発明に係る電子部品の製造方法では、エッチング成分が、フッ化水素酸、硫酸、酢酸、硝酸又は塩酸である場合、コーティング膜の成膜性が向上する。
 また、界面活性剤が失活しにくいとコーティング膜が形成されず、界面活性剤があまりに失活しやすいと、樹脂エマルジョンが不安定になりすぎて扱いにくいところ、この発明に係る電子部品の製造方法では、アニオン性界面活性剤が、スルホン酸基を有する場合、界面活性剤の失活の程度が適している。
 さらにまた、この発明に係る電子部品の製造方法では、樹脂エマルジョンが、さらに、エッチング促進成分として酸化剤を含む場合、金属のイオン化が進行しやすく、コーティング膜の形成が促進される。
 また、この発明に係る電子部品の製造方法では、樹脂エマルジョンが、さらに、添加剤としてフッ化鉄を含む場合、樹脂エマルジョンによるエッチングにより発生するカチオンと界面活性剤の失活のバランスがよく、均一なコーティング膜の形成が可能となる。
 本発明によれば、金属磁性粉を含む絶縁体を用いた電子部品において、該絶縁体上に樹脂のコーティング膜を得ることができ、耐湿性や耐薬品性等に優れた電子部品を得ることができる。
第1の実施の形態である電子部品の外観図である。 第1の実施の形態である電子部品の内部構造を示す分解斜視図である。 第1の実施の形態である電子部品の断面図である。 第1の実施の形態である電子部品を底面から平面視した図である。 第1の実施の形態の電子部品の製造過程を示す図である。 第1の実施の形態の電子部品の製造過程を示す図である。 第1の実施の形態の電子部品の製造過程を示す図である。 第1の実施の形態の電子部品の製造過程を示す図である。 第1の実施の形態の電子部品の製造過程を示す図である。 第1の実施の形態の電子部品の製造過程を示す図である。 第1の実施の形態の電子部品の製造過程を示す図である。 製造段階における柱状電極を底面から平面視した図である。 第1の実施の形態の電子部品の製造過程を示す図である。 第1の実施の形態の電子部品の製造過程を示す図である。 第1の実施の形態の電子部品の製造過程を示す図である。 第1の実施の形態の電子部品の製造過程を示す図である。 第1の実施の形態の電子部品の製造過程を示す図である。 接続信頼性試験(固着力試験)の様子を示す図である。 第2の実施の形態である電子部品の外観図である。 第2の実施の形態である電子部品の内部構造を示す分解斜視図である。 第2の実施の形態である電子部品の断面図である。 第2の実施の形態の電子部品の製造過程を示す図である。 第2の実施の形態の電子部品の製造過程を示す図である。 第2の実施の形態の電子部品の製造過程を示す図である。 第2の実施の形態の電子部品の製造過程を示す図である。 第3の実施の形態である電子部品の斜視図である。 第3の実施の形態である電子部品を示す図26のI-I断面図である。
(第1の実施の形態)
(電子部品の構成、図1~図4参照)
 第1の実施の形態である電子部品1について図面を参照しながら説明する。以下で、電子部品1の底面と直交する方向をz軸方向と定義する。また、z軸方向から平面視したとき、電子部品1の長辺に沿った方向をx軸方向と定義し、電子部品1の短辺に沿った方向をy軸方向と定義する。なお、x軸、y軸及びz軸は互いに直交している。
 電子部品1は、図1に示すように、本体10及び外部電極20,25を備えている。さらに、電子部品1は、本体10を覆うコーティング膜9及び回路素子30を備えている。また、電子部品1は、略直方体状を成している。
 本体10は、図2に示すように、絶縁体層11~14、絶縁体基板16及び磁路18から構成されている素体を有する。また、本体10において、z軸方向の正方向側から負方向側に向かって、絶縁体層11,12、絶縁体基板16、絶縁体層13,14の順に積層されている。
 絶縁体層11,14は、金属磁性粉入りのエポキシ系樹脂等からなる。本実施の形態では、絶縁体層における金属磁性粉の密度を高めるため、絶縁体層11,14は、粒径の異なる2種類の金属磁性粉を含んでいる。具体的には、平均粒径80μmのFe-Si-Cr合金からなる磁性粉(最大粒径100μm)、及び平均粒径3μmのカルボニルFeからなる磁性粉の混合粉である。なお、金属磁性粉としては、Fe又はFeを含む合金の粉を含んでもよい。Fe合金とは、例えば、Fe-Si合金、Fe-Si-Cr合金、Fe-Si-Al合金である。また、これらの粉末に対しては化成処理により、金属酸化物からなる絶縁性の被覆が絶縁膜として予め施されている。絶縁膜は、例えば、シリコン樹脂、ガラス、金属酸化物で形成されている。さらに、電子部品1のL値及び直流重畳特性を考慮して、金属磁性粉は、絶縁体層11,14に対して90wt%以上含まれている。なお、絶縁体層11,14に含まれる樹脂は、ガラスセラミックス等の絶縁性無機材料やポリイミド樹脂でもよい。また、絶縁体層11,14の材料を金属磁性粉のみとすることも可能である。
 そして、絶縁体層11は、本体10のz軸方向の正方向側の端部に位置している。また、絶縁体層14は、電子部品1のz軸方向の負方向側の端部に位置し、絶縁体層14のz軸方向の負方向側の面である底面S1は、電子部品1を回路基板に実装する際の実装面である。なお、本実施の形態における絶縁体層11,14の厚みは、約60μmであり、該絶縁体層11,14に含まれる金属磁性粉の最大粒径よりも小さい。
 絶縁体層12,13は、エポキシ樹脂等から成る。また、絶縁体層12は、絶縁体層11に対してz軸方向の負方向側に位置し、絶縁体層13は、絶縁体層14に対して、z軸の正方向側に位置する。なお、絶縁体層12,13の材料は、ベンゾジクロブテン等の絶縁性樹脂や、ガラスセラミックス等の絶縁性無機材料でもよい。
 絶縁体基板16は、ガラスクロスにエポキシ樹脂を含浸させたプリント配線基板であり、z軸方向において絶縁体層12と絶縁体層13との間に挟まれている。なお、絶縁体基板16の材料は、ベンゾジクロブテン等の絶縁性樹脂や、ガラスセラミックス等の絶縁性無機材料でもよい。
 磁路18は、本体10の内部の略中央に位置する磁性粉入りの樹脂から成る。ここで、本実施の形態では、電子部品1のL値及び直流重畳特性を考慮して、磁性粉を90wt%以上含んでいる。さらに、磁路18への充填性を高めるため、磁性粉として、粒度の異なる2種類の粉体を混在させている。また、磁路18は、絶縁体層12,13及び絶縁体基板16をz軸方向に貫き、断面がオーバル状の柱状を成している。さらに、磁路18は、後述するコイル32,37の内周に位置するように設けられている。
 ところで、本体10の表面、つまり、絶縁体層11,14の表面は、図3に示すように、その表面に露出した金属磁性粉を含めてコーティング膜9により覆われている。ただし、絶縁体層11,14と後述する外部電極20,25との界面には、コーティング膜9は存在していない。また、コーティング膜9は、アクリル系樹脂及び絶縁体層11,14に含まれる金属磁性粉の構成元素であるFeを含んでいる。そして、コーティング膜9に含まれるアクリル系樹脂は、架橋構造を成している。なお、電子部品1を回路基板に実装する際にはんだを用いることを考慮し、熱分解温度は高い方が好ましい。例えば、コーティング膜9を構成する樹脂が5%程度質量減少する温度を熱分解温度とした場合、その熱分解温度は240℃以上である。ここで、熱分解温度は以下の分析装置及び分析条件により測定できる。
・分析装置:TG-DTA 2000SA(ネッチ・ジャパン社製)
・分析条件
 温度プロファイル  :RT→300℃(10℃/min)
 測定雰囲気     :減圧(ロータリーポンプを使用:0.1Pa)
 試料容器(セル)材質:Al
 測定試料重量    :100mg
 また、コーティング膜9に含まれる金属磁性粉を構成する元素のイオン(カチオン)を確認する分析手法の一つとして、X線光電子分光分析(XPS)が挙げられる。XPSの測定条件は、以下のとおりである。
・測定装置:アルバック・ファイ社製 PHI 5000 VersaProbe
・X線源:Al-Kα線
・測定領域:100μmφ
・X線の加速エネルギー:93.9eV
・測定1ステップ当りの時間:100ms
・Fe2p積算数:500
・エネルギー補正:C1s=284.6eV
 コーティング膜9をXPSで分析すると、Fe2p3スペクトルにおいて、Feカチオンの存在を示す710eV近傍のピークを確認することができる。一方、Feメタルの存在を示す707eV近傍にはピークは確認されない。これにより、コーティング膜9に含まれる金属磁性粉を構成する元素のイオン(カチオン)の存在を証明することができる。
 なお、コーティング膜9に含まれている樹脂成分は、アクリル系樹脂以外にエポキシ系樹脂、ポリイミド系樹脂、シリコーン系樹脂、ポリアミドイミド系樹脂、ポリエーテルエーテルケトン系樹脂、フッ素系樹脂、アクリルシリコーン系樹脂等であってもよい。これら以外にも、コーティング膜9に含まれている樹脂成分は、たとえば、メタクリル酸メチル樹脂、アクリロニトリル-スチレン-アクリル系共重合体、スチレン-アクリル系共重合体等のアクリル系樹脂エマルジョンが挙げられる。具体的な製品名として、日本ゼオン社より、Nipol SX1706A,SX1503A,LX814,LX855EXが挙げられ、楠本化成社より、Neocryl A-639,A-655,A-6015等が挙げられる。
 また、コーティング膜9に含まれる樹脂成分に用いられるモノマーとしては、特に限定されず、(メタ)アクリル酸、アクリル酸メチル、アクリル酸エチル、アクリル酸n-ブチル、アクリル酸イソブチル、アクリル酸t-ブチル、アクリル酸ドデシル、アクリル酸ステアリル、アクリル酸2-エチルヘキシル、アクリル酸テトラヒドロフルフリル、アクリル酸ジエチルアミノエチル、アクリル酸2-ヒドロキシエチル、アクリル酸2-ヒドロキシプロピル、メタクリル酸、メタクリル酸メチル、メタクリル酸プロピル、メタクリル酸n-ブチル、メタクリル酸イソブチル、メタクリル酸t-ブチル、メタクリル酸n-オクチル、メタクリル酸ドデシル、メタクリル酸2-エチルヘキシル、メタクリル酸ステアリル、メタクリル酸ジエチルアミノエチル、メタクリル酸2-ヒドロキシエチル、メタクリル酸2-ヒドロキシプロピル、エチレングリコールモノ(メタ)クリレート、ポリエチレングリコールモノ(メタ)アクリレータ等の(メタ)アクリル酸のグリコールエステル類、メチルビニルエーテル、エチルビニルエーテル等のアルキルビニルエーテル類、酢酸ビニル等のビニルエステル類、N-メチルアクリルアミド、N-エチルアクリルアミド、N-メチルメタクリルアミド、N-エチルメタクリルアミド等のN-アルキル置換(メタ)アクリルアミド類、アクリロニトリル、メタアクリロニトリル等のニトリル類、スチレン、エチレン、ブタジエン、塩化ビニル、塩化ビニリデン、ビニルアセテート、p-メチルスチレン、α-メチルスチレン等のスチレン系単量体が挙げられる。これら他の単量体は、単独で使用してもよく、2種以上併用してもよい。(メタ)アクリルとは、アクリル又はメタクリルを意味する。
 また、コーティング膜9は、絶縁体層11,14に含まれる金属磁性粉が、該絶縁体層11,14から脱落したことによって生じた凹部Cにも入り込み、凹部Cを略埋め尽くしている。結果として、凹部Cにおけるコーティング膜9の厚さd1は、本体10の表面における他の部分でのコーティング膜9の厚さd2よりも厚い。
 外部電極20は、本体10の外部から見ると、図1に示すように、底面S1及び本体10のx軸方向の正方向側の側面S2に設けられている。また、外部電極20は、金属と樹脂のコンポジット材から成る底面電極21、及びCuを材料とする柱状電極23から構成されている。なお、柱状電極23に用いることが可能な他の材料として、Au,Ag,Pd,Ni等が挙げられる。なお、外部電極20は、めっきやスパッタ等、既存の外部電極形成方法により作製されたものを用いてもよい。
 底面電極21は、フェノール系の樹脂に低抵抗な金属粉体、本実施の形態ではAgコートされた平均粒径100nmのCuの粉体が分散した、いわゆる樹脂電極である。また、底面電極21は、絶縁体層14の底面S1におけるx軸方向の正方向側の領域に設けられている平板状の電極である。さらに、底面電極21を、z軸方向の負方向側から平面視すると、長方形状を成している。
 柱状電極23は、基本的に、本体10内におけるx軸方向の正方向側の領域に設けられ、図2に示すように、絶縁体層14をz軸方向に貫くように延在する電極である。ただし、柱状電極23のx軸方向の正方向側の側面S4は、図1に示すように、本体10の側面S2に露出している。また、柱状電極23は、z軸方向から平面視すると、図4に示すように、側面S2に露出している外縁L1を上底とし、本体10の最も内部側に位置している外縁L2を下底とする台形状を成している。なお、外縁L2は外縁L1よりも長い。さらに、柱状電極23を、z軸方向から平面視すると、柱状電極23は、底面電極21内に収まっている。これに加え、柱状電極23の側面S4の面積は、底面電極21の面積よりも小さい。そして、図3に示すように、柱状電極23のz軸方向の負方向側の面(以下で、「z軸方向の負方向側の面」を下面と称す)は、底面電極21のz軸方向の正方向側の面(以下で、「z軸方向の正方向側の面」を上面と称す)と接している。
 外部電極25は、外部電極20と同一形状の電極であり、底面S1の中心点P1を通り、z軸及びy軸に平行な平面S10について、外部電極20と対称に配置されている。つまり、本体10の外部から見ると、図1に示すように、底面S1及び本体10のx軸方向の負方向側の側面S3に設けられている。そして、外部電極25は、底面電極と同じ材料から成る底面電極26、及びCu等を材料とする柱状電極28から構成されている。
 内部導体である回路素子30は、本体10における素体の内部に位置し、Au,Ag,Cu,Pd,Ni等の導電性材料から成る。また、内部導体である回路素子30は、コイル32、ビア導体33、コイル37、ビア導体38,39から構成されている。
 コイル32は、図2に示すように、絶縁体基板16の上面に設けられており、z軸方向の正方向側から平面視したときに、時計回りに旋回しながら中心に近づく螺旋状の導体である。また、コイル32における外周側の一端は、本体10の側面S2に向かって延びている。なお、コイル32の周回方向と直交する断面の断面積は、柱状電極23,28の延在方向であるz軸方向と直交する断面の断面積よりも小さい。
 ビア導体33は、コイル32における外周側の一端と柱状電極23とを接続している。従って、ビア導体33は、絶縁体基板16及び絶縁体層13をz軸方向に貫通している。
 コイル37は、絶縁体基板16の下面、つまり、絶縁体層13の上面に設けられており、z軸方向の正方向側から平面視したときに、時計回りに旋回しながら中心から外側に向かう螺旋状の導体である。また、コイル37における外周側の一端は、本体10の側面S3に向かって延びている。さらに、コイル37における内周側の他端は、z軸方向から見たときに、コイル32の内周側の他端と重なるように設けられている。なお、コイル37の周回方向と直交する断面の断面積は、柱状電極23,28の延在方向であるz軸方向と直交する断面の断面積よりも小さい。
 ビア導体38は、コイル37における外周側の一端と柱状電極28とを接続している。従って、ビア導体38は、絶縁体層13をz軸方向に貫通している。
 ビア導体39は、絶縁体基板16をz軸方向に貫通し、コイル32における内周側の他端とコイル37における内周側の他端とを接続している。
 以上のように構成された電子部品1は、外部電極20又は外部電極25から入力された信号が、回路素子30を経由して、外部電極20又は外部電極25から出力されることで、インダクタとして機能する。
(製造方法 図5~図17参照)
 以下に、第1の実施の形態である電子部品1の製造方法について説明する。製造方法の説明の際に用いられるz軸方向は、該製造方法で製造される電子部品1の底面と直交する方向である。
 まず、図5に示すように、複数の絶縁体基板16となるべきマザー絶縁体基板116を用意する。そして、図6に示すように、マザー絶縁体基板116にビア導体39を設けるための複数のスルーホールH1をレーザー加工等により形成する。なお、インダクタンス値の取得効率を高めるため、絶縁体基板の厚さは60μm以下が好ましい。
 次に、図7に示すように、複数のスルーホールが形成されたマザー絶縁体基板116の上面及び下面にCuめっきを施す。このとき、スルーホール内もめっきされ複数のビア導体39が設けられる。その後、フォトリソグラフィにより、マザー絶縁体基板116の上面及び下面に、コイル32,37に対応する複数の導体パターン132,137が形成される。
 複数の導体パターン132,137の形成後、さらにCuめっきを施し、図8に示すような、十分な太さの複数のコイル32,37を得る。
 そして、複数のコイル32,37が形成されたマザー絶縁体基板116に対し、図9に示すように、複数の絶縁体層12,13となるべき絶縁体シート112,113でz軸方向から挟み込む。また、絶縁体シート112,113で挟み込む工程は、コイル間の微小な隙間に絶縁体シートを入り込ませることを目的として、真空中で行うことが好ましい。これに加え、コイル32,37に起因する浮遊容量の発生を抑制するために、絶縁体シート112,113の比誘電率は、4以下が好ましい。
 次に、図10に示すように、絶縁体シート113に対して、レーザー加工等によりビア導体33,38を設けるための複数のスルーホールH2を形成する。さらに、スルーホール形成によって発生したスミアを除去するために、デスミア処理を行う。
 デスミア処理後に絶縁体シート113に対して、まず、無電解Cuめっきを施す。この無電解めっきは、その後のCu電解めっきのためのシード層の形成を目的とする。シード層形成後に、Cu電解めっきを絶縁体シート113に対して施す。これにより、絶縁体シート113の表面及びスルーホール内がめっきされ、複数のビア導体33,38が設けられる。
 その後、フォトリソグラフィ及びCuめっきにより、図11に示すように、絶縁体シート113上に、柱状電極23,28に対応する十分な太さの複数の導体パターン123が形成される。ここで、図12に示すように、一つの導体パターン123は、z軸方向から見たときに、2つの線対称な台形α,βがそれらの対象軸γである上底同士で接続された形状を成している。
 次に、磁路18を設けるために、レーザー加工等により、図13に示すように、マザー絶縁体基板116及び絶縁体シート112,113をz軸方向に貫通する複数の貫通孔δを形成する。なお、貫通孔δを形成する位置は、xy平面において、マザー絶縁体基板116に設けられた複数のコイル32,37それぞれの内周側である。
 そして、絶縁体シート112、マザー絶縁体基板116及び絶縁体シート113の順で積層された積層体を、図14に示すように、絶縁体層11,14に対応する金属磁性粉入り樹脂シート111,114で、図9で示した絶縁体シート112,113と同様に、z軸方向から挟み、圧着する。このとき、金属磁性粉入り樹脂シート111は、絶縁体シート112側から圧着され、金属磁性粉入り樹脂シート114は、絶縁体シート113側から圧着される。また、この圧着により、複数の貫通孔δに対して、金属磁性粉入り樹脂シート111,114が入り込み、複数の磁路18が設けられる。その後、オーブン等の恒温槽を用いて熱処理を施すことで硬化させる。
 次に、樹脂シート114の表面を、バフ研磨、ラップ研磨及びグラインダ等により研削する。これにより、図15に示すように、樹脂シート114の表面に導体パターン123が露出する。なお、樹脂シート114に対する研削処理の際に、厚みの調整として、樹脂シート111の表面を研削してもよい。
 樹脂シート114の表面に露出した導体パターン123上に、スクリーン印刷により、Agコートされた平均粒径100nmのCuの粉体を分散させたフェノール系の樹脂を塗布し、乾燥させることで、図16に示すような、底面電極21,26に対応する複数の樹脂電極パターン121が、樹脂シート114の表面に設けられる。これにより、複数の電子部品の集合体であるマザー基板101が完成する。
 その後、マザー基板101を複数の電子部品に分割する。具体的には、z軸方向からみたとき、導体パターン123の中心に位置する図12に示される対象軸γがカットラインと重なるように、ダイサー等でマザー基板101をカットし、図17に示すように、マザー基板101を複数の電子部品に分割する。このとき、導体パターン123は、対象軸γを中心として二つに分割され、これが柱状導体23,28となる。さらに、樹脂電極パターン121も分割され、底面電極21,26となる。
 前工程で得られた複数の電子部品を、エッチング成分と樹脂成分が水系の溶媒に分散した市販のラテックスに、エッチング促進成分と界面活性剤を添加したものを含む混合溶液(樹脂エマルジョン)に浸漬する。混合溶液の具体的な組成の一例を表1に示す。この浸漬により、各電子部品の表面がエッチングされる。このエッチングは、混合溶液に含まれる硫酸及び過酸化水素の作用によるものである。なお、硫酸は、エッチング成分であり、過酸化水素は、エッチング促進成分である。エッチング促進成分として、過酸化水素を含む場合、金属のイオン化が進行しやすく、コーティング膜9の形成が促進される。なお、エッチング促進成分は、混合溶液に必ずしも含まれていなくてもよい。
Figure JPOXMLDOC01-appb-T000001
 また、このエッチングによって、絶縁体層11,14の構成元素であるカチオン性の元素であるFeがイオン化される。さらに、イオン化したカチオン性の元素は、混合溶液中のアクリル-エステル系共重合体(NipolLATEX SX-1706A(日本ゼオン社製))に含まれている樹脂成分と反応する。その結果、混合溶液中の樹脂成分が中和され、電子部品を構成する本体10の表面に沈降し、本体10がコーティング膜9に覆われる。ただし、外部電極20,25はコーティング膜9に覆われない。これは、外部電極20,25の構成元素であるCu等の導電性材料は、Feに対して貴な元素であるためイオン化されにくく、結果として、樹脂成分と反応しにくいためである。また、内部導体である回路素子30の材料もCu等の導電性材料であるため、外部電極20,25と同様にコーティング膜9に覆われない。なお、混合溶液に含まれるエレミノールJS-2(三洋化成社製)は、Feと樹脂成分との反応量を調節する界面活性剤である。
 その後、純水による洗浄及び液きりを経て、コーティング膜9に対して加熱処理を施す。この加熱処理により、コーティング膜9に含まれる樹脂成分がFeを介して、若しくは、樹脂成分同士で架橋する。
 なお、コーティング膜9を作製するために用いられる樹脂成分は、アクリル系樹脂以外にエポキシ系樹脂、ポリイミド系樹脂、シリコーン系樹脂、ポリアミドイミド系樹脂、ポリエーテルエーテルケトン系樹脂、フッ素系樹脂、アクリルシリコーン系樹脂等であってもよい。これら以外にも、コーティング膜9に含まれている樹脂成分は、たとえば、メタクリル酸メチル樹脂、アクリロニトリル-スチレン-アクリル系共重合体、スチレン-アクリル系共重合体等のアクリル系樹脂エマルジョンが挙げられる。具体的な製品名として、日本ゼオン社より、Nipol SX1706A,SX1503A,LX814,LX855EXが挙げられ、楠本化成社より、Neocryl A-639,A-655,A-6015等が挙げられる。
 また、コーティング膜9に含まれる樹脂成分に用いられるモノマーとしては、特に限定されず、(メタ)アクリル酸、アクリル酸メチル、アクリル酸エチル、アクリル酸n-ブチル、アクリル酸イソブチル、アクリル酸t-ブチル、アクリル酸ドデシル、アクリル酸ステアリル、アクリル酸2-エチルヘキシル、アクリル酸テトラヒドロフルフリル、アクリル酸ジエチルアミノエチル、アクリル酸2-ヒドロキシエチル、アクリル酸2-ヒドロキシプロピル、メタクリル酸、メタクリル酸メチル、メタクリル酸プロピル、メタクリル酸n-ブチル、メタクリル酸イソブチル、メタクリル酸t-ブチル、メタクリル酸n-オクチル、メタクリル酸ドデシル、メタクリル酸2-エチルヘキシル、メタクリル酸ステアリル、メタクリル酸ジエチルアミノエチル、メタクリル酸2-ヒドロキシエチル、メタクリル酸2-ヒドロキシプロピル、エチレングリコールモノ(メタ)クリレート、ポリエチレングリコールモノ(メタ)アクリレータ等の(メタ)アクリル酸のグリコールエステル類、メチルビニルエーテル、エチルビニルエーテル等のアルキルビニルエーテル類、酢酸ビニル等のビニルエステル類、N-メチルアクリルアミド、N-エチルアクリルアミド、N-メチルメタクリルアミド、N-エチルメタクリルアミド等のN-アルキル置換(メタ)アクリルアミド類、アクリロニトリル、メタアクリロニトリル等のニトリル類、スチレン、エチレン、ブタジエン、塩化ビニル、塩化ビニリデン、ビニルアセテート、p-メチルスチレン、α-メチルスチレン等のスチレン系単量体が挙げられる。これら他の単量体は、単独で使用してもよく、2種以上併用してもよい。(メタ)アクリルとは、アクリル又はメタクリルを意味する。
 混合溶液(樹脂エマルジョン)の製造工程で使用される重合開始剤は、コーティング膜9の特性には影響しない。また、重合開始剤は、特に限定されず、公知の重合開始剤のいずれも使用できる。重合開始剤としては、たとえば、過硫酸アンモニウム、過硫酸カリウム、t-ブチルハイドロパーオキシドの他、過硫酸カリウム、過酸化ベンゾイル、過酸化ラウロイル、ジ-t-ブチルパーオキシヘキサハイドロテレフタレート、t-ブチルバーオキシイソブチレート等の過酸化物類、アゾビスイソバレロニトリル、2,2-アゾビス-(2-メチルプロピオネート)等のアゾ類が挙げられる。製造する際の重合は、40℃以上90℃以下で、2時間以上20時間以下加熱することにより実施できる。重合方法として、乳化重合、ソープフリー乳化重合、懸濁重合法等が挙げられる。
 水系の溶媒としては、特に限定されず、例えば、水、水と水溶性有機媒体(メタノール、エタノール、プロパノール、ブタノール、エチレングリコール、グリセリン、2,2,4-トリメチルペンタン-1,3-ジオールモノイソブチラート等のアルコール類、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル等のグリコールエーテル類、酢酸2-エトキシエチル等のエステル類、メチルエチルケトン等のケトン類)との混合媒体が挙げられる。
 エッチング成分としては、硫酸、フッ化水素酸、硝酸、塩酸、リン酸及びカルボン酸(例えば、酢酸)であってよい。この中で、硫酸、硝酸、塩酸、フッ化水素酸及び酢酸を用いることで、コーティング膜9の成膜性が向上することから、特に好ましい。また、エッチング成分は、フッ化水素酸、硫酸、酢酸、硝酸、及び塩酸から選ばれる2種以上であってもよい。
 また、エッチング促進成分として、酸化剤を含むのが好ましい。具体的な酸化剤として、過酸化水素、ペルオキソ二硫酸塩を含むことが好ましい。ペルオキソ二硫酸塩は、たとえば、ペルオキソ二硫酸ナトリウムである。
 なお、フッ化鉄は、添加剤として混合されてもよい。添加剤としてフッ化鉄を含む場合、樹脂エマルジョンによるエッチングにより発生するカチオンと界面活性剤の失活のバランスがよく、均一なコーティング膜の形成が可能となる。
 界面活性剤としては、アニオン性界面活性剤やノニオン性界面活性材が用いられるが、アニオン性界面活性剤が特に好ましい。アニオン性界面活性剤としては、例えば、オレイン酸ナトリウム、ヒマシ油カリ等の脂肪酸油、ラウリル硫酸ナトリウム、ラウリル硫酸アンモニウム等のアルキル硫酸エステル塩、ドデシルベンゼンスルホン酸ナトリウム等のアルキルベンゼンスルホン酸塩、アルキルナフタレンスルホン酸塩、アルカンスルホン酸塩、ジアルキルスルホコハク酸塩、アルキルリン酸エステル塩、ナフタレンスルホン酸ホルマリン縮合物、ポリオキシエチレンアルキルフェニルエーテル硫酸エステル塩、ポリオキシエチレンアルキル硫酸エステル塩等が挙げられる。上記界面活性剤は、単独又は2種以上を組み合わせて用いてもよい。特に、アニオン性界面活性剤にスルホン酸基を有する場合、界面活性剤の失活の程度が適している。なお、界面活性剤が失活しにくいとコーティング膜が形成されず、界面活性剤があまりに失活しやすいと、樹脂エマルジョンが不安定になりすぎて扱いにくい。
 一方、ノニオン性界面活性剤としては、ポリオキシエチレンアルキルエーテル(アルキル基;オクチル、デシル、ラウリル、ステアリル、オレイル等)、ポリオキシエチレンアルキルフェニルエーテル(アルキル基;オクチル、ノニル等)、ポリオキシエチレン・ポリオキシプロピレンブロックコポリマー等が挙げられる。
 また、スルホン酸基及びその塩、カルボキシル基及びその塩、並びにリン酸基及びその塩等を有する水溶性の樹脂が挙げられる。
 さらに、コーティング膜9の塗膜強度及び耐薬品性の向上を目的として、エチルアミン、プロピルアミン、イソプロピルアミン、ブチルアミン、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミン、トリエチルアミン、トリプロピルアミン、アリルアミン、ジアリルアミン、トリアリルアミン、ジメメルエタノールアミン、ジエエルエタノールアミン、エタノールアミン、ジエタノールアミン、トリエタノールアミン等のアミン化合物や、メラミン樹脂、グアナミン樹脂、尿素樹脂等のアミノ樹脂、フェノール樹脂、エポキシ樹脂、イソシアネート化合物等の硬化剤を加え、熱処理を行うなどの処理を追加してもよい。
 最後に、外部電極20,25のはんだ濡れ性の向上のため、外部電極20,25の表面にNi/Snめっきを施す。以上の工程により、電子部品1が完成する。
(効果)
 第1の実施の形態である電子部品1では、本体10を覆うコーティング膜9が、樹脂及び絶縁体層11,14に含まれるカチオン性の元素により構成されている。このような構成のコーティング膜9は、リン酸塩の化成処理により形成されたコーティング膜よりも厚く、耐摩耗性、絶縁性、耐湿性、耐薬品性等に優れている。なお、カチオン性の元素の分析は、飛行時間型2次イオン質量分析法により得られるマッピング図及びイオン強度プロファイルにより可能である。
 また、絶縁体層11,14に含まれる金属磁性粉は、化成処理により金属酸化物からなる絶縁性の被覆が予め施されている。しかし、電子部品1の製造過程の一つである研削工程において該絶縁性の被覆は剥離する虞がある。ここで、電子部品1では、本体10を覆うコーティング膜9が、樹脂及びカチオン性の元素により構成されており、該カチオン性の元素は、絶縁体層11,14に含まれる金属磁性粉からイオン化したことにより生じたものである。したがって、研削工程等より、金属磁性粉に施された絶縁性の被覆が剥離した場合でも、その後の工程により、該金属磁性粉からカチオン性の元素が溶け出し、これがコーティング膜9を形成する。その結果、電子部品1では、絶縁性や防錆性がより優れている。
 これに加え、研削工程等において、金属磁性粉に施された絶縁性の被覆が剥離した場合でも、その後の工程により、コーティング膜9が金属磁性粉上に形成されることは、電子部品1の小型化及び低背化に貢献する。具体的には、電子部品1を小型化及び低背化するために、絶縁体層11,14を可能な限り薄くする必要がある。そこで、絶縁体層11,14を薄くするために研削工程が必須の工程となる。ただし、従来の電子部品では、金属磁性粉から化成処理による絶縁性の被覆が剥がれることを懸念して、金属磁性粉を含む絶縁体層を該金属磁性粉の粒径よりも厚くしていた。しかし、電子部品1では、コーティング膜9によって金属磁性粉が保護されるため、絶縁体層11,14の厚さを金属磁性粉の粒径よりも薄くできる。その結果、電子部品1を小型化及び低背化することが可能となる。
 ところで、金属磁性粉含有の樹脂を絶縁体に用いると、切削等の加工により、その加工面の金属磁性粉の一部が脱粒し、本体10の表面、具体的には、絶縁体層11,14の表面に凹部Cが発生する。凹部Cが発生することにより、本体10の大気へ露出する面積が増加する。その結果、絶縁体層11,14は、大気中の水分を吸水しやすくなる。さらに、凹部Cの発生により、本体10における素体の内部に位置する回路素子30と、本体10の表面との距離が小さくなる。以上の理由から、凹部Cの発生によって、回路素子30が腐食されやすくなる。ここで、従来の電子部品のように、リン酸塩化成処理によりコーティング膜を形成した場合、形成される膜厚が薄いため、該凹部Cを埋めることは困難である。しかし、電子部品1では、リン酸塩化成処理によるコーティング膜ではなく、絶縁体層11,14から溶け出したカチオン性の元素と樹脂とで構成されるコーティング膜9を用いている。このようなコーティング膜9は、リン酸塩化成処理によるコーティング膜より厚いため、金属磁性粉の脱粒により生じた凹部Cを埋めることができる。従って、電子部品1では、回路素子30の腐食を抑制することができる。つまり、電子部品1は、耐湿性に優れている。
 ここで、本願発明者は、電子部品1の耐湿性に対する効果を明確なものとするために、実験を行った。実験では、電子部品1に相当する第1のサンプル、及び電子部品1のコーティング膜9をリン酸塩化成処理により形成したコーティング膜に置き換えた第2のサンプルそれぞれ50個を用いて、高温、かつ、高湿度の下で、各サンプルが正常に通電するか否かを確認した。実験の具体的条件は、温度が85±2℃、湿度が85±2%の下で、6Aの電流を流し続けた。そして、実験開始から24時間後に、各サンプルの通電状態を確認した。すなわち、評価基準は、実験開始から24時間後に通電した各サンプルを良品と判定し、実験開始から24時間後に通電しなかった部品を不良品と判定した。実験の結果、第1のサンプルは50個中1個で通電せず、第2のサンプルでは50個中16個で通電しなかった。つまり、第1のサンプルの不良率は2%であり、第2のサンプルの不良率は32%であった。この結果は、カチオン性の元素と樹脂とで構成されるコーティング膜9が、リン酸塩化成処理により形成されたコーティング膜よりも耐湿性に優れていることを示している。
 また、コーティング膜9が金属磁性粉の脱粒により生じた凹部Cを埋めることが、電子部品1の外部電極20,25と電子部品1を搭載する回路基板との接続信頼性に寄与する。具体的には、外部電極20,25近傍の本体10の表面に凹部Cが存在する場合、リン酸塩化成処理によるコーティング膜では、この凹部Cを埋めることができない。結果として、Ni/Snめっきを外部電極20,25に施す際に、外部電極20,25近傍の凹部Cから、外部電極20,25と本体10との界面にめっき液が浸入し、外部電極20,25が本体10から浮き上がる。この状態で、電子部品を回路基板にはんだ付けすると、電子部品の回路基板に対する固着力が不十分となり、外部電極20,25と回路基板との接続信頼性を損ねる。一方、第1の実施の形態である電子部品1では、コーティング膜9が金属磁性粉の脱粒により生じた凹部Cを埋めるため、外部電極20,25と回路基板との接続信頼性を維持することができる。
 ここで、本願発明者は、電子部品1の接続信頼性に対する効果を確認する実験を行った。実験ではまず、第1のサンプル及び第2のサンプルをそれぞれ50個用意した。次に、各サンプルを回路基板B1にはんだ付けし、図18に示すように、該回路基板B1を垂直に立て、各サンプルの側面に対して垂直方向下側に力Fを加えた。そして、各サンプルが回路基板B1から外れた際の、各サンプルの側面に加えた力Fを計測した。
 実験の結果、第1のサンプルにおける最小の力は32Nであり、第2のサンプルにおける最小の力は25Nであった。つまり、この結果は、カチオン性の元素と樹脂とで構成されるコーティング膜9が、電子部品1の外部電極20,25と電子部品1を搭載する回路基板との接続信頼性に寄与することを示している。
 ところで、電子部品1の製造工程において、エッチング成分と樹脂成分が水系の溶媒に分散した市販のラテックスに、エッチング促進成分と界面活性剤を添加したものを含む混合溶液を用いている。これにより、エッチングと同時にコーティング膜9を形成することが可能となる。従って、電子部品1の製造工程は、エッチング成分のみの溶液と、樹脂成分のみの溶液とを別々に用いた製造工程に対して簡素である。
 さらに、電子部品1の製造工程において、コーティング膜9を形成する際に、絶縁体層11,14に含まれるFeはイオン化されるものの、外部電極20,25、内部導体である回路素子30等に含まれるCu等の導電性材料はほとんどイオン化されない。結果として、外部電極20,25及び回路素子30はコーティング膜9に覆われない。つまり、電子部品1の製造方法では、主としてエッチング成分による溶解性の差を利用することによって、コーティングが必要な部分のみに選択的にコーティング膜9を形成することが可能である。
(第2の実施の形態 図19~図25参照)
 第2の実施の形態である電子部品1Aと第1の実施の形態である電子部品1との相違点は、外部電極20,25の構成、回路素子30の構成、絶縁体層12,13の材料、絶縁体基板16の材料及びコーティング膜9が形成される位置である。以下で、具体的に説明する。
 電子部品1Aでは、図19に示すように、外部電極20は、本体10のx軸方向の正方向側の側面S2及びその周囲の面の一部を覆うように設けられている。また、外部電極25は、本体10のx軸方向の負方向側の側面S3及びその周囲の面の一部を覆うように設けられている。
 さらに、電子部品1Aには、図20に示すように、ビア導体33が存在しない。その代わり、図21に示すように、内部導体であるコイル32の外周側の一端32aが、本体10の側面S2から露出している。これにより、コイル32と外部電極20とが接続されている。また、電子部品1Aには、図20に示すように、ビア導体38が存在しない。その代わり、内部導体であるコイル37の外周側の一端37aが、図21に示すように、本体10の側面S3から露出している。これにより、コイル37と外部電極25とが接続されている。
 そして、電子部品1Aでは、絶縁体層12,13の材料及び絶縁体基板16の材料が、絶縁体層11,14と同じ金属磁性粉入りの樹脂で構成されている。
 また、電子部品1Aでは、外部電極20,25等の構成が、電子部品1と異なるため、その製造方法が一部で異なる。電子部品1Aの製造では、複数のコイル32,37が形成されたマザー絶縁体基板116を、図9と同様に絶縁体シート112,113で挟み込んだ後に、図22に示すように、磁路18を形成するための貫通孔δを形成する。なお、マザー絶縁体基板116及び絶縁体シート112,113を構成する材料は、金属磁性粉入りの樹脂である。
 次に、絶縁体シート112、マザー絶縁体基板116及び絶縁体シート113の順で積層された積層体を、図23に示すように、樹脂シート111,114で、図9で示した絶縁体シート112,113と同様にz軸方向から挟み、圧着する。この圧着により、複数の貫通孔δに対して、金属磁性粉入り樹脂シート111,114が入り込み、複数の磁路18が設けられる。その後、オーブン等の恒温槽を用いて熱処理を施すことで硬化させる。
 硬化後、厚さを調整するために、樹脂シート111,114の表面を、バフ研磨、ラップ研磨及びグラインダ等により研削する。これにより、複数の電子部品の集合体であるマザー基板が完成する。
 次に、図24に示すように、マザー基板をダイサー等でカットし、複数の電子部品に分割する。この分割によって、その切断面にコイル32の外周側の一端32a及びコイル37の外周側の一端37aが露出する。
 前工程で得られた複数の電子部品を、エッチング成分と樹脂成分が水系の溶媒に分散した市販のラテックスに、エッチング促進成分と界面活性剤を添加したものを含む混合溶液(樹脂エマルジョン)に浸漬する。なお、エッチング促進成分は、混合溶液に必ずしも含まれていなくてもよい。これにより電子部品を構成する本体10の表面がコーティング膜9に覆われる。ただし、コイル32の外周側の一端32a及びコイル37の外周側の一端37aは、コーティング膜9に覆われない。これは、内部導体であるコイル32,37の構成元素であるCu等の導電性材料は、Feに対して貴な元素であるためほとんどイオン化されず、結果として、樹脂成分と反応しにくいためである。
 その後、純水による洗浄及び液きりを経て、コーティング膜9に対して加熱処理を施す。この加熱処理により、コーティング膜9に含まれる樹脂成分がFeを介して、若しくは、樹脂成分同士で架橋する。
 最後に、外部電極20,25を形成する。まず、Agを主成分とする導電性材料からなる電極ペーストをコーティング膜9で覆われた本体10に塗布する。次に、塗布した電極ペーストを、例えば、80~200℃の温度下で5~12分間熱処理する。これにより、形成された外部電極20,25の下地電極の表面にCu/Ni/Snめっきを施すことにより、外部電極20,25が形成される。以上の工程により、電子部品1Aが完成する。
(効果)
 以上のように構成された電子部品1Aでは、コーティング膜9の形成後に外部電極20,25を設けているため、図21に示すように、本体10と外部電極20,25との界面にコーティング膜9が存在している。ここで、本体10と外部電極20,25との界面にコーティング膜9が存在していることで、電子部品1Aの外部電極20,25と電子部品1Aを搭載する回路基板との接続信頼性が向上する。具体的に以下で説明する。
 金属磁性粉含有の樹脂を絶縁体に用いると、切削等の加工により、その加工面の金属磁性粉の一部が脱粒し、本体10の表面に凹部Cが発生する。例えば、第2の実施の形態では、側面S2,S3に発生する。この凹部C上に外部電極20,25を直に形成すると、Cu/Ni/SnめっきによるAg下地電極の被覆が不十分になる。結果として、凹部C上のほとんどのCu/Ni/Snめっきがはんだ内に溶け出す、いわゆるはんだ食われを生ずる。はんだ食われが生ずると、Agの下地電極が露出して、はんだによる接続ができない、又は不十分となり、外部電極20,25と電子部品1Aを搭載する回路基板との接続信頼性が損なわれる。しかし、電子部品1Aでは、コーティング膜9により凹部Cが埋まるため、Ag下地電極はCu/Ni/Snめっきにより十分に被覆される。従って、電子部品1Aでは、本体10と外部電極20,25との界面にコーティング膜9が存在していることで、電子部品1Aの外部電極20,25と電子部品1Aを搭載する回路基板との接続信頼性を向上させることができる。
 ここで、本願発明者は、電子部品1Aに相当する第3のサンプルを50個用いて、電子部品1Aの接続信頼性に対する効果を確認した。接続信頼性を確認するための実験は、第1のサンプル及び第2のサンプルに対して行われた実験と同様とした。そして、実験の結果、第3のサンプルにおける最小の力は35Nであった。つまり、この結果は、カチオン性の元素と樹脂とで構成されるコーティング膜9が、電子部品1Aの外部電極20,25と電子部品1Aを搭載する回路基板との接続信頼性を向上させることを示している。
 さらに、本願発明者は、第3のサンプルを50個用いて、耐湿性の効果を確認した。耐湿性を確認するための実験は、第1のサンプル及び第2のサンプルに対して行われた実験と同様とした。そして、実験の結果、第3のサンプルの不良率は4%であった。この結果は、電子部品1Aにおいても、カチオン性の元素と樹脂とで構成されるコーティング膜9が、リン酸塩化成処理により形成されたコーティング膜よりも耐湿性に優れていことを示している。
 (第3の実施の形態 図26および図27参照)
 さらに、本発明は、図26に示すような第3の実施の形態である電子部品に対しても適用することができる。図26は、第3の実施の形態である電子部品の斜視図であり、図27は、第3の実施の形態である電子部品を示す図26のI-I断面図である。
 電子部品1Bは、図26に示すように、本体10及び外部電極20,25を備えている。本体10は、略直方体状に形成され、絶縁体層11,14と同じ金属磁性粉入りの樹脂により形成される素体10aを有する。素体10aの内部には、内部導体であるコイル35を含む。コイル35は、導線を用いて形成され、導線の端部35a,35bが、最外周となるように渦巻き状に2段の外巻きに巻回して形成される。コイル35の端部35a,35bは、本体10の表面(y軸方向の正方向側の側面)上に露出している。
 また、電子部品1Bは、図26に示すように、外部電極20は、本体10のx軸方向の正方向側の側面S2及びその周囲の面の一部を覆うように設けられている。また、外部電極25は、本体10のx軸方向の負方向側の側面S3及びその周囲の面の一部を覆うように設けられている。これにより、外部電極20は、端部35aと接続され、外部電極25が、端部35bと接続される。そして、図27に示すように、電子部品1Bは、本体10と外部電極20,25との界面にコーティング膜9が存在するように構成される。
 次に、第3の実施の形態にかかる電子部品1Bの製造方法について説明する。
 まず、内部導体であるコイル35が、導線を用いて形成されて準備される。
 次に、コイル35が、素体10aとなる絶縁体層11,14と同じ金属磁性粉を含む絶縁体シートにより上下方向より圧縮成形法にて挟み込まれて、本体10が成形される。このとき、コイル35の端部35a,35bは、本体10の表面(y軸方向の正方向側の側面)に露出するように成形される。
 続いて、素体10aに含まれる金属磁性粉を構成する金属をイオン化させるエッチング成分と樹脂成分が水系の溶媒に分散した市販のラテックスに、エッチング促進成分と界面活性剤を添加したものを含む混合溶液(樹脂エマルジョン)が準備される。なお、エッチング促進成分は、混合溶液に必ずしも含まれていなくてもよい。そして、成形された本体10を、準備された混合溶液に浸漬する。これにより電子部品を構成する本体10の表面が混合溶液に覆われ、本体10の表面がエッチングされる。ただし、コイル35の端部35a(35b)はエッチングされないので、コイル35の端部35a(35b)の表面にはコーティング膜9は形成されない(図27を参照)。これは、内部導体であるコイル35の構成元素であるCu等の導電性材料は、Feに対して貴な元素であるためほとんどイオン化されず、結果として、樹脂成分と反応しにくいためである。
 なお、混合溶液に含まれる樹脂成分、水系の溶媒、エッチング成分および界面活性剤は、当然、第1の実施の形態の電子部品1の製造方法において用いられる材料とそれぞれ同一の材料を用いることができる。
 その後、純水による洗浄及び液きりを経て、混合溶液により覆われることで、その表面がエッチングされた本体10に対して加熱(乾燥)処理を施す。この加熱処理により、混合溶液に含まれる樹脂成分が金属磁性粉であるFeを介して、若しくは樹脂成分同士で架橋し、図27に示すように、本体10の表面にコーティング膜9が形成される。
 最後に、コーディング膜が形成された本体10に外部電極20,25を形成する。まず、Agを主成分とする導電性材料からなる電極ペーストをコーティング膜9で覆われた本体10に塗布する。次に、塗布した電極ペーストを、例えば、80~200℃の温度下で5~12分間熱処理する。これにより、形成された外部電極20,25の下地電極の表面にCu/Ni/Snめっきを施すことにより、外部電極20,25が形成される。以上の工程により、電子部品1Bが完成する。
 以上のように構成された電子部品1Bは、電子部品1あるいは電子部品1Aと同様の効果を奏する。すなわち、第3の実施の形態に係る電子部品1Bは、優れた接続信頼性および耐湿性を有する。
 ここで、本願発明者は、電子部品1Bに相当する実施例および比較例の各サンプルを作製した。実施例および比較例の各サンプルは、コーティング膜9を形成するための混合溶液(樹脂エマルジョン)に含まれる、樹脂成分、エッチング成分、界面活性剤、エッチング促進成分の材料や含有量をそれぞれ変化させた。実験例では、実施例および比較例の各サンプルに対して、接続信頼性および耐湿性を確認するための実験を行った。
(実施例)
 まず、表2に示す実施例1~実施例29の各サンプルが、前述の電子部品の製造方法に従って作製された。ここで、コーティング膜9は、室温で5分混合溶液に浸漬した後、純水で洗浄を行い、180℃のオーブンで10分間加熱することで硬化することにより形成した。実施例1~実施例29の電子部品1Bに相当する各サンプルは、各実験に対して、それぞれ100個準備された。
 実施例1は、コーティング膜9を形成するための混合溶液に含有する樹脂成分をアクリル-エステル系共重合体(商品名:Nipol SX1706A(日本ゼオン社製))とし、エッチング成分を硫酸とし、界面活性剤をアルキルアリルスルホコハク酸ナトリウム(商品名:エレミノールJS-2(三洋化成社製))とし、エッチング促進成分及び添加剤を含有しなかった。
 実施例2は、コーティング膜9を形成するための混合溶液に含有する樹脂成分をアクリル-エステル系共重合体(商品名:Nipol SX1706A(日本ゼオン社製))とし、エッチング成分を硫酸とし、界面活性剤をアルキルアリルスルホコハク酸ナトリウム(商品名:エレミノールJS-2(三洋化成社製))とし、添加剤をフッ化鉄(III)とし、エッチング促進成分を含有しなかった。
 実施例3~実施例5は、コーティング膜9を形成するための混合溶液に含有する樹脂成分をアクリル-エステル系共重合体(商品名:Nipol SX1706A(日本ゼオン社製))とし、エッチング成分を硫酸とし、界面活性剤をアルキルアリルスルホコハク酸ナトリウム(商品名:エレミノールJS-2(三洋化成社製))とし、エッチング促進成分を過酸化水素としたうえで、樹脂成分の混合溶液に対する含有量を0.5gから1.5gの間でそれぞれ変化させた。
 実施例6~実施例8は、コーティング膜9を形成するための混合溶液に含有する樹脂成分をアクリル-エステル系共重合体(商品名:Nipol SX1706A(日本ゼオン社製))とし、エッチング成分を硫酸とし、界面活性剤をアルキルアリルスルホコハク酸ナトリウム(商品名:エレミノールJS-2(三洋化成社製))とし、エッチング促進成分を過酸化水素とし、添加剤をフッ化鉄(III)としたうえで、エッチング成分である硫酸の混合溶液に対する含有量を0.02gから0.1gの間で変化させた。なお、実施例6および実施例7では界面活性剤の含有量を0.2gとし、実施例8では0.1gとした。
 実施例9~実施例11は、コーティング膜9を形成するための混合溶液に含有する樹脂成分をアクリル-エステル系共重合体(商品名:Nipol SX1706A(日本ゼオン社製))とし、エッチング成分を硫酸とし、界面活性剤をアルキルアリルスルホコハク酸ナトリウム(商品名:エレミノールJS-2(三洋化成社製))とし、エッチング促進成分を過酸化水素とし、添加剤をフッ化鉄(III)としたうえで、エッチング促進成分の混合溶液に対する含有量を0.01gから0.3gの間で変化させた。なお、実施例9では、界面活性剤の含有量を0.5gとし、実施例10および実施例11では0.2gとした。
 実施例12~実施例14は、コーティング膜9を形成するための混合溶液に含有する樹脂成分をアクリル-エステル系共重合体(商品名:Nipol SX1706A(日本ゼオン社製))とし、エッチング成分を硫酸とし、界面活性剤をアルキルアリルスルホコハク酸ナトリウム(商品名:エレミノールJS-2(三洋化成社製))とし、エッチング促進成分を過酸化水素とし、添加剤をフッ化鉄(III)としたうえで、エッチング成分であるフッ化鉄(III)の混合溶液に対する含有量を0g(含有しない)から0.005gの間で変化させた。
 実施例15は、コーティング膜9を形成するための混合溶液に含有する樹脂成分をアクリル-エステル系共重合体(商品名:Nipol SX1706A(日本ゼオン社製))とし、エッチング成分を硫酸とし、界面活性剤をアルキルアリルスルホコハク酸ナトリウム(商品名:エレミノールJS-2(三洋化成社製))とし、エッチング促進成分をペルオキソ二硫酸ナトリウムとし、添加剤をフッ化鉄(III)とした。
 実施例16~実施例18は、コーティング膜9を形成するための混合溶液に含有する樹脂成分をアクリル-エステル系共重合体(商品名:Nipol SX1706A(日本ゼオン社製))とし、エッチング成分を硫酸とし、エッチング促進成分を過酸化水素とし、添加剤をフッ化鉄(III)とした。そして、コーティング膜9を形成するための混合溶液に含有される界面活性剤について、実施例16ではβ-ナフタリンスルホン酸ホルマリン縮合物ナトリウム塩(商品名:デモールN(花王社製))とし、実施例17ではジオクチルスルホコハク酸ナトリウム(商品名:ラピゾールA-80(日本油脂株式会社製))とし、実施例18では直鎖型アルキルベンゼンスルホン酸ナトリウム(ニューレックスR(日油株式会社製))とした。
 実施例19は、コーティング膜9を形成するための混合溶液に含有する樹脂成分をスチレン-アクリル系共重合体(商品名:Neocryl A-655(楠本化成社製))とし、実施例20は、アクリル-エステル系共重合体(商品名:Nipol LX814(日本ゼオン社製))とした。また、実施例19および実施例20は、コーティング膜9を形成するための混合溶液に含有するエッチング成分を硫酸とし、界面活性剤をアルキルアリルスルホコハク酸ナトリウム(商品名:エレミノールJS-2(三洋化成社製))とし、エッチング促進成分を過酸化水素とし、添加剤をフッ化鉄(III)とした。
 実施例21~実施例23は、コーティング膜9を形成するための混合溶液に含有する樹脂成分をアクリル-エステル系共重合体(商品名:Nipol SX1706A(日本ゼオン社製))とし、界面活性剤をアルキルアリルスルホコハク酸ナトリウム(商品名:エレミノールJS-2(三洋化成社製))とし、エッチング促進成分を過酸化水素とし、添加剤をフッ化鉄(III)とした。また、そして、コーティング膜9を形成するための混合溶液に含有されるエッチング成分について、実施例21では硝酸とし、実施例22では塩酸とし、実施例23では酢酸とした。
 実施例24~実施例26は、コーティング膜9を形成するための混合溶液に含有する樹脂成分をアクリル-エステル系共重合体(商品名:Nipol SX1706A(日本ゼオン社製))とし、エッチング成分をフッ化水素酸とし、界面活性剤をアルキルアリルスルホコハク酸ナトリウム(商品名:エレミノールJS-2(三洋化成社製))とし、エッチング促進成分を過酸化水素とし、添加剤をフッ化鉄(III)としたうえで、エッチング成分であるフッ化水素酸の混合溶液に対する含有量を0.02gから0.1gの間で変化させた。
 実施例27は、コーティング膜9を形成するための混合溶液に含有する樹脂成分をシリコーン系樹脂(商品名:POLON-MF-56(信越シリコーン社製))とし、実施例28は、シリコーン系樹脂(商品名:X-51-1318(信越シリコーン社製))とし、実施例29は、エポキシ-アクリル系樹脂(商品名:モデピクス-302(荒川化学工業社製))とした。また、実施例27~実施例29は、コーティング膜9を形成するための混合溶液に含有するエッチング成分をフッ化水素酸とし、界面活性剤をアルキルアリルスルホコハク酸ナトリウム(商品名:エレミノールJS-2(三洋化成社製))とし、エッチング促進成分を過酸化水素とし、添加剤をフッ化鉄(III)とした。
 次に、表3に示す比較例1および比較例2の各サンプルが作製された。比較例1および比較例2の各サンプルは、各実験に対して、それぞれ100個準備された。
(比較例)
 比較例1は、電子部品1Bのコーティング膜9をリン酸化成処理により形成した。
 また、比較例2は、コーティング膜9を形成するための混合溶液に含有する樹脂成分をアクリル-エステル系共重合体(商品名:Nipol SX1706A(日本ゼオン社製))とし、界面活性剤をアルキルアリルスルホコハク酸ナトリウム(商品名:エレミノールJS-2(三洋化成社製))とし、添加剤をフッ化鉄(III)とし、エッチング成分及びエッチング促進成分を含有しなかった。
(評価方法)
 電子部品1Bの接続信頼性を評価するための実験を行った。この接続信頼性を確認するための実験(固着力試験)は、第1の実施の形態に係る電子部品1及び第2の実施の形態に係る電子部品1Aに対して行った実験と同様とした。すなわち、図18に示すように、各サンプルを回路基板B1にはんだ付けし、該回路基板B1を垂直に立て、サンプルの側面に垂直方向下側に力Fを加えた。そして、評価サンプルが回路基板B1から外れた際の、各サンプルの側面に加えた力Fを計測した。
 また、電子部品1Bの耐湿性を評価するための実験を行った。耐湿性を確認するための実験(耐湿性試験)も、第1の実施の形態に係る電子部品1及び第2の実施の形態に係る電子部品1Aに対して行った試験と同様とした。すなわち、各サンプルを高温、かつ、高湿度の下で、各サンプルが正常に通電するか否かを確認した。実験の具体的条件は、温度が85±2℃、湿度が85±2%の下で、6Aの電流を流し続けた。そして、実験開始から24時間後に、評価サンプルの通電状態を確認した。すなわち、評価基準は、実験開始から24時間後に通電した各サンプルを良品と判定し、実験開始から24時間後に通電しなかった部品を不良品と判定した。そして、各サンプルにおいて、良品が含まれる確率(良品率)が70%以上を良好と判定した。
 表2は、実施例1~実施例29の評価結果を示す。
 また、表3は、比較例1および比較例2の評価結果を示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表2より、実施例1~実施例29の場合、金属磁性粉を構成する金属をイオン化させるエッチング成分と、アニオン性の界面活性剤と、樹脂成分とを含んだ混合溶液(樹脂エマルジョン)を用いてコーティング膜9が形成されていることから、固着力試験において、各サンプルの側面に加えた力Fの最小の力が23Nであり、かつ、耐湿性試験において、良品率がすべて70%以上であり、いずれの実施例においても良好な結果が得られた。
 一方、表3より、比較例1の場合、コーティング膜をリン酸化成処理により形成しているため、サンプルの側面に加えた力Fの最小の力が25Nであったが、耐湿性試験において、良品率が67%であることから、不良と判断された。また、比較例2の場合、コーティング膜を形成するための混合溶液(樹脂エマルジョン)にエッチング成分が含まれていないことから、コーティング膜が形成されなかった。したがって、固着力試験および耐湿性試験を行うことができなかった。
 なお、本体10にコーティング膜9を形成する際は、コーティング膜9の成膜性が重要である。この成膜性は、コーティング膜9の本体10に対する密着性、コーティング膜9の均一性、および中和反応が遅すぎず、本体10にコーティング膜9を構成する樹脂成分がより短時間で析出することを示す析出性により評価される。このうち、生産効率の観点から、特に、析出性が重要である。
 本実験の結果から、樹脂成分について着目すると、実施例のいずれの樹脂成分も成膜性は良好であったが、特に、アクリル-エステル系共重合体(商品名:Nipol SX1706A(日本ゼオン社製))、アクリル-エステル系共重合体(商品名:Nipol LX814(日本ゼオン社製))、スチレン-アクリル系共重合体(商品名:Neocryl A-655(楠本化成社製))の順で、成膜性(析出性)が良好であった。
 また、エッチング成分について着目すると、実施例のいずれのエッチング成分も成膜性は良好であったが、特に、フッ化水素酸、硫酸、酢酸、硝酸・塩酸の順で、成膜性(析出性)が良好であった。
 また、界面活性剤について着目すると、実施例のいずれの界面活性剤も成膜性は良好であったが、特に、アルキルアリルスルホコハク酸ナトリウム(商品名:エレミノールJS-2(三洋化成社製))、直鎖型アルキルベンゼンスルホン酸ナトリウム(ニューレックスR(日油株式会社製))、ジオクチルスルホコハク酸ナトリウム(商品名:ラピゾールA-80(日本油脂株式会社製)、β-ナフタリンスルホン酸ホルマリン縮合物ナトリウム塩(商品名:デモールN(花王社製))の順で、成膜性(析出性)が良好であった。
 さらに、実施例1とその他の実施例とを比較すると、添加剤として、混合溶液にフッ化鉄(III)が含まれている電子部品1Bの方が、フッ化鉄(III)が含まれていない電子部品1Bよりも固着力試験の結果が良好であった。
 なお、本発明に係る電子部品及びその製造方法は、前記実施の形態に限定するものではなく、その要旨の範囲内で種々に変更することができる。
 コーティング膜9を形成するための混合溶液に、耐腐食性を向上させるタンニン、コーティング膜9に柔軟性を付与するジブチルフタレートといった可塑剤、コーティング膜9の成膜性を向上させるフッ化銀などの金属イオン、及びコーティング膜9の表面の傷付き防止及び耐水性を向上させる潤滑剤、例えば、フッ素樹脂系潤滑剤、ポリオレフィン系ワックス、メラミンシアヌレート、二硫化モリブデンを混合溶液に添加してもよい。
 さらに、コーティング膜9を形成するための混合溶液に、コーティング膜9の耐腐食性の向上と電子部品の着色を目的として、カーボンブラックやフタロシアニンブルー等の顔料を添加してもよい。
 そして、コーティング膜9を形成するための混合溶液に、リンを含有する酸基を有する高分子重合体、例えば、リン酸基、亜リン酸基、ホスホン酸基、ホスフィン酸基等を主鎖、又は側鎖に有する有機高分子化合物を添加することで、耐腐食性、耐薬品性を向上させることができる。
 また、コーティング膜9の強度や熱伝導性、電気伝導性向上等の観点から、ガラス繊維、炭酸カルシウム、アラミド繊維、グラファイト、アルミナ、窒化アルミニウム、窒化ホウ素などのフィラー等を混合溶液に添加してもよい。さらに、素体内部に位置する内部導体である回路素子は、インダクタに限られない。そして、各実施例の構成を組み合わせてもよい。
 以上のように、本発明は、電子部品及びその製造方法に有用であり、特に、金属磁性粉を含む絶縁体を用いた電子部品において、該絶縁体上に樹脂のコーティング膜を得ることができ、耐湿性や耐薬品性に優れた電子部品を得ることができる。
C 凹部
d1、d2 厚み
S2~S5 側面
1,1A 電子部品
9 コーティング膜
10 本体
11,14 絶縁体層
20,25 外部電極
21,26 底面電極
23,28 柱状電極
30 回路素子

Claims (8)

  1.  金属磁性粉と絶縁性樹脂とから形成される素体と、前記素体の内部に位置する内部導体と、を備える本体と、
     前記本体を覆うコーティング膜と、
     前記内部導体と接続された外部電極と、
    を備え、
     前記コーティング膜は、前記金属磁性粉を構成する元素のカチオンと樹脂とを含む電子部品。
  2.  前記金属磁性粉は、Fe又はFe合金の粉であり、
     前記内部導体は、Cu又はAgであること、
     を特徴とする請求項1に記載の電子部品。
  3.  金属磁性粉と絶縁性樹脂とから形成される素体と、前記素体の内部に位置する内部導体と、を備える本体を準備する工程と、
     前記金属磁性粉を構成する金属をイオン化させるエッチング成分と、アニオン性界面活性剤と、樹脂成分とを含む樹脂エマルジョンを準備する工程と、
     前記樹脂エマルジョンを前記本体に塗布し、乾燥する工程と、
     前記内部導体に接続される外部電極を形成する工程と、
    を備えることを特徴とする、電子部品の製造方法。
  4.  前記金属磁性粉は、Fe又はFe合金の粉であり、
     前記内部導体は、Cu又はAgであること、
     を特徴とする、請求項3に記載の電子部品の製造方法。
  5.  前記エッチング成分は、フッ化水素酸、硫酸、酢酸、硝酸又は塩酸である、請求項3または請求項4に記載の電子部品の製造方法。
  6.  前記アニオン性界面活性剤は、スルホン酸基を有すること、を特徴とする、請求項3ないし請求項5のいずれかに記載の電子部品の製造方法。
  7.  前記樹脂エマルジョンは、さらに、エッチング促進成分として酸化剤を含むこと、を特徴とする、請求項3ないし請求項6のいずれかに記載の電子部品の製造方法。
  8.  前記樹脂エマルジョンは、さらに、添加剤としてフッ化鉄を含むこと、を特徴とする、請求項3ないし請求項7のいずれかに記載の電子部品の製造方法。
PCT/JP2015/071057 2014-07-25 2015-07-24 電子部品及びその製造方法 WO2016013643A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2016535982A JP6176405B2 (ja) 2014-07-25 2015-07-24 電子部品及びその製造方法
CN201580023485.9A CN106463239B (zh) 2014-07-25 2015-07-24 电子部件及其制造方法
KR1020177001002A KR101932360B1 (ko) 2014-07-25 2015-07-24 전자 부품 및 그의 제조 방법
US15/366,816 US10553343B2 (en) 2014-07-25 2016-12-01 Electronic component and method for manufacturing the same
US16/031,481 US10475567B2 (en) 2014-07-25 2018-07-10 Electronic component and method for manufacturing the same
US16/031,638 US10650955B2 (en) 2014-07-25 2018-07-10 Method for manufacturing an electronic component

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014151348 2014-07-25
JP2014-151348 2014-07-25
JP2015-021907 2015-02-06
JP2015021907 2015-02-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/366,816 Continuation US10553343B2 (en) 2014-07-25 2016-12-01 Electronic component and method for manufacturing the same

Publications (1)

Publication Number Publication Date
WO2016013643A1 true WO2016013643A1 (ja) 2016-01-28

Family

ID=55163166

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2015/071057 WO2016013643A1 (ja) 2014-07-25 2015-07-24 電子部品及びその製造方法
PCT/JP2015/071083 WO2016013649A1 (ja) 2014-07-25 2015-07-24 電子部品及びその製造方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/071083 WO2016013649A1 (ja) 2014-07-25 2015-07-24 電子部品及びその製造方法

Country Status (5)

Country Link
US (3) US10553343B2 (ja)
JP (1) JP6176405B2 (ja)
KR (1) KR101932360B1 (ja)
CN (1) CN106463239B (ja)
WO (2) WO2016013643A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016031988A (ja) * 2014-07-28 2016-03-07 株式会社村田製作所 セラミック電子部品およびその製造方法
JP2016139789A (ja) * 2015-01-27 2016-08-04 サムソン エレクトロ−メカニックス カンパニーリミテッド. パワーインダクタ及びその製造方法
JP2018170489A (ja) * 2017-03-29 2018-11-01 サムソン エレクトロ−メカニックス カンパニーリミテッド. 電子部品及びシステムインパッケージ
JPWO2017217469A1 (ja) * 2016-06-16 2019-02-28 株式会社村田製作所 電子部品の製造方法
JP2019192748A (ja) * 2018-04-24 2019-10-31 Tdk株式会社 コイル部品及びその製造方法
JP2020145399A (ja) * 2019-03-06 2020-09-10 サムソン エレクトロ−メカニックス カンパニーリミテッド. コイル電子部品
JP2021190592A (ja) * 2020-06-01 2021-12-13 株式会社村田製作所 インダクタ部品、及びインダクタ部品の製造方法
JP2021193724A (ja) * 2020-06-08 2021-12-23 サムソン エレクトロ−メカニックス カンパニーリミテッド. コイル部品
US11367552B2 (en) 2017-09-04 2022-06-21 Murata Manufacturing Co., Ltd. Inductor component
US11676761B2 (en) 2017-10-17 2023-06-13 Murata Manufacturing Co., Ltd. Inductor component

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102130673B1 (ko) * 2015-11-09 2020-07-06 삼성전기주식회사 코일 부품 및 그 제조 방법
US10720823B1 (en) * 2016-01-15 2020-07-21 University Of Southern California Ferrofluid liquid spring with magnets between coils inside an enclosed chamber for vibration energy harvesting
JP6680075B2 (ja) * 2016-05-18 2020-04-15 Tdk株式会社 積層コイル部品
JP6745447B2 (ja) * 2017-01-12 2020-08-26 株式会社村田製作所 磁性体粒子、圧粉磁心、およびコイル部品
KR102492733B1 (ko) 2017-09-29 2023-01-27 삼성디스플레이 주식회사 구리 플라즈마 식각 방법 및 디스플레이 패널 제조 방법
CN110867311A (zh) * 2018-08-20 2020-03-06 广东理标信息科技有限公司 一种电感器及其制作方法
JP6919641B2 (ja) * 2018-10-05 2021-08-18 株式会社村田製作所 積層型電子部品
KR102093147B1 (ko) 2018-11-26 2020-03-25 삼성전기주식회사 코일 부품
WO2021000074A1 (zh) * 2019-06-29 2021-01-07 瑞声声学科技(深圳)有限公司 一种振动马达
JP7253520B2 (ja) * 2020-08-21 2023-04-06 株式会社村田製作所 インダクタ部品
US20220108824A1 (en) * 2020-10-05 2022-04-07 Murata Manufacturing Co., Ltd. Inductor
US11581828B2 (en) * 2021-05-05 2023-02-14 Enervibe Ltd Electromagnetic vibration and energy harvester having vibrating body, magnets and stationary magnet and hinge

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09148105A (ja) * 1995-11-29 1997-06-06 Matsushita Electric Ind Co Ltd 電子部品およびその製造方法
JPH10223407A (ja) * 1997-02-13 1998-08-21 Mitsubishi Materials Corp チップ型サーミスタ及びその製造方法
JP2002033237A (ja) * 2000-07-14 2002-01-31 Matsushita Electric Ind Co Ltd セラミック電子部品およびその製造方法
JP2009055412A (ja) * 2007-08-28 2009-03-12 Tdk Corp 薄膜コイルを備えたアンテナ、アンテナシステム及びアンテナの製造方法
JP2011249615A (ja) * 2010-05-27 2011-12-08 Mitsubishi Materials Corp 表面実装型電子部品およびその製造方法
JP2012015395A (ja) * 2010-07-02 2012-01-19 Murata Mfg Co Ltd コモンモードチョークコイル実装構造
WO2014119564A1 (ja) * 2013-01-29 2014-08-07 株式会社村田製作所 セラミック電子部品およびその製造方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54150426A (en) * 1978-05-18 1979-11-26 Kubota Ltd Production of cement products
US5210066A (en) * 1989-12-28 1993-05-11 Mitsui Toatsu Chemicals, Inc. Heat-sensitive recording material
WO1994027302A1 (fr) 1993-05-14 1994-11-24 Kiyokawa Mekki Kougyo Co., Ltd Resistance a film metallique ayant une fonction de fusion et procede de fabrication
JPH09205005A (ja) * 1996-01-24 1997-08-05 Matsushita Electric Ind Co Ltd 電子部品とその製造方法
JP3648320B2 (ja) 1996-02-21 2005-05-18 日本パーカライジング株式会社 積層モーターコア表面に電気絶縁被膜を被覆する方法
US6392525B1 (en) * 1998-12-28 2002-05-21 Matsushita Electric Industrial Co., Ltd. Magnetic element and method of manufacturing the same
JP3617426B2 (ja) * 1999-09-16 2005-02-02 株式会社村田製作所 インダクタ及びその製造方法
JP2002126618A (ja) * 2000-10-26 2002-05-08 Nippon Paint Co Ltd 多層塗膜形成方法及び多層塗膜
JP2002126619A (ja) * 2000-10-26 2002-05-08 Nippon Paint Co Ltd 多層塗膜形成方法及び多層塗膜
JP2003145034A (ja) 2001-06-18 2003-05-20 Nippon Parkerizing Co Ltd 電子部品及びマイクロ機器部品の表面の自己析出型表面処理被覆方法、及び自己析出型表面処理被膜を有する電子部品及びマイクロ機器部品
JP2003115403A (ja) * 2001-10-03 2003-04-18 Matsushita Electric Ind Co Ltd 電子部品の製造方法
JP4109595B2 (ja) * 2003-09-12 2008-07-02 株式会社日本触媒 エマルション樹脂組成物およびその製造方法
WO2011010539A1 (ja) * 2009-07-24 2011-01-27 関西ペイント株式会社 水性塗料組成物及び複層塗膜形成方法
JP5429067B2 (ja) * 2010-06-17 2014-02-26 株式会社村田製作所 セラミック電子部品およびその製造方法
KR101434351B1 (ko) * 2010-10-21 2014-08-26 티디케이가부시기가이샤 코일 부품 및 그 제조 방법
JP2012238736A (ja) * 2011-05-12 2012-12-06 Sumitomo Electric Ind Ltd 圧粉磁心の製造方法、コア部品及びコイル部品
JP6060508B2 (ja) * 2012-03-26 2017-01-18 Tdk株式会社 平面コイル素子およびその製造方法
KR20130123252A (ko) * 2012-05-02 2013-11-12 삼성전기주식회사 적층형 인덕터 및 그 제조방법
KR101525652B1 (ko) * 2012-05-04 2015-06-03 삼성전기주식회사 도전성 수지 조성물, 이를 포함하는 적층 세라믹 커패시터 및 그 제조방법
JP5974636B2 (ja) * 2012-05-29 2016-08-23 Jfeスチール株式会社 絶縁被膜付き電磁鋼板
KR101983136B1 (ko) * 2012-12-28 2019-09-10 삼성전기주식회사 파워 인덕터 및 그 제조방법
JP5614479B2 (ja) 2013-08-09 2014-10-29 Tdk株式会社 コイル部品の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09148105A (ja) * 1995-11-29 1997-06-06 Matsushita Electric Ind Co Ltd 電子部品およびその製造方法
JPH10223407A (ja) * 1997-02-13 1998-08-21 Mitsubishi Materials Corp チップ型サーミスタ及びその製造方法
JP2002033237A (ja) * 2000-07-14 2002-01-31 Matsushita Electric Ind Co Ltd セラミック電子部品およびその製造方法
JP2009055412A (ja) * 2007-08-28 2009-03-12 Tdk Corp 薄膜コイルを備えたアンテナ、アンテナシステム及びアンテナの製造方法
JP2011249615A (ja) * 2010-05-27 2011-12-08 Mitsubishi Materials Corp 表面実装型電子部品およびその製造方法
JP2012015395A (ja) * 2010-07-02 2012-01-19 Murata Mfg Co Ltd コモンモードチョークコイル実装構造
WO2014119564A1 (ja) * 2013-01-29 2014-08-07 株式会社村田製作所 セラミック電子部品およびその製造方法

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016031988A (ja) * 2014-07-28 2016-03-07 株式会社村田製作所 セラミック電子部品およびその製造方法
JP2016139789A (ja) * 2015-01-27 2016-08-04 サムソン エレクトロ−メカニックス カンパニーリミテッド. パワーインダクタ及びその製造方法
US11037721B2 (en) 2015-01-27 2021-06-15 Samsung Electro-Mechanics Co., Ltd. Power inductor and method of manufacturing the same
JPWO2017217469A1 (ja) * 2016-06-16 2019-02-28 株式会社村田製作所 電子部品の製造方法
JP2018170489A (ja) * 2017-03-29 2018-11-01 サムソン エレクトロ−メカニックス カンパニーリミテッド. 電子部品及びシステムインパッケージ
JP7140312B2 (ja) 2017-03-29 2022-09-21 サムソン エレクトロ-メカニックス カンパニーリミテッド. 電子部品及びシステムインパッケージ
US11367552B2 (en) 2017-09-04 2022-06-21 Murata Manufacturing Co., Ltd. Inductor component
US12087502B2 (en) * 2017-10-17 2024-09-10 Murata Manufacturing Co., Ltd. Inductor component
US11676761B2 (en) 2017-10-17 2023-06-13 Murata Manufacturing Co., Ltd. Inductor component
JP7172113B2 (ja) 2018-04-24 2022-11-16 Tdk株式会社 コイル部品及びその製造方法
JP2019192748A (ja) * 2018-04-24 2019-10-31 Tdk株式会社 コイル部品及びその製造方法
JP2020145399A (ja) * 2019-03-06 2020-09-10 サムソン エレクトロ−メカニックス カンパニーリミテッド. コイル電子部品
US11830653B2 (en) 2019-03-06 2023-11-28 Samsung Electro-Mechanics Co., Ltd. Coil electronic component
JP2021190592A (ja) * 2020-06-01 2021-12-13 株式会社村田製作所 インダクタ部品、及びインダクタ部品の製造方法
JP7298549B2 (ja) 2020-06-01 2023-06-27 株式会社村田製作所 インダクタ部品、及びインダクタ部品の製造方法
JP2021193724A (ja) * 2020-06-08 2021-12-23 サムソン エレクトロ−メカニックス カンパニーリミテッド. コイル部品
JP7160245B2 (ja) 2020-06-08 2022-10-25 サムソン エレクトロ-メカニックス カンパニーリミテッド. コイル部品
US11915853B2 (en) 2020-06-08 2024-02-27 Samsung Electro-Mechanics Co., Ltd. Coil component

Also Published As

Publication number Publication date
US20180323000A1 (en) 2018-11-08
KR20170020442A (ko) 2017-02-22
US10553343B2 (en) 2020-02-04
CN106463239B (zh) 2018-12-04
US10475567B2 (en) 2019-11-12
US10650955B2 (en) 2020-05-12
WO2016013649A1 (ja) 2016-01-28
CN106463239A (zh) 2017-02-22
US20180322999A1 (en) 2018-11-08
US20170084376A1 (en) 2017-03-23
JPWO2016013643A1 (ja) 2017-04-27
KR101932360B1 (ko) 2018-12-24
JP6176405B2 (ja) 2017-08-09

Similar Documents

Publication Publication Date Title
JP6176405B2 (ja) 電子部品及びその製造方法
US11817244B2 (en) Method for manufacturing electronic component
US11120934B2 (en) Electronic component and method for manufacturing electronic component
JP6583003B2 (ja) 電子部品およびその製造方法
JP6508023B2 (ja) 電子部品及び電子部品の製造方法
JP6779187B2 (ja) キャリア付銅箔及びその製造方法、並びに配線層付コアレス支持体及びプリント配線板の製造方法
KR102047564B1 (ko) 칩 전자부품 및 그 제조방법
WO2018110579A1 (ja) 表面処理銅箔および銅張積層板
US11232895B2 (en) Coil component and method for manufacturing coil component
CN108109808B (zh) 线圈部件
KR101721628B1 (ko) 세라믹 전자 부품 및 그 제조 방법
WO2020162068A1 (ja) 表面処理銅箔、並びに、それを用いた銅張積層板、樹脂付銅箔および回路基板
WO2016017511A1 (ja) 電子部品及びその製造方法
WO2021131359A1 (ja) 表面処理銅箔及びその製造方法
JP2019019414A (ja) 表面処理銅箔、積層体及びプリント配線板
KR101088410B1 (ko) 메탈 pcb 기판의 열 방출 향상을 위한 표면처리방법
JP6827083B2 (ja) 表面処理銅箔、銅張積層板、及びプリント配線板
CN107018622A (zh) 微电路基板用经表面处理的铜箔及其制造方法
WO2019188262A1 (ja) 表面処理銅箔及び銅張積層板
KR100330919B1 (ko) 피티씨 전도성 폴리머를 포함하는 전기장치
KR20240054838A (ko) 구리 입자 은 도금 방법, 은 도금 구리 입자, 이를 포함하는 도전성 필름 및 이를 포함하는 도전성 필름 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15824435

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016535982

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177001002

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15824435

Country of ref document: EP

Kind code of ref document: A1