WO2016010407A2 - 내유성이 우수한 폴리케톤 수지 조성물 - Google Patents

내유성이 우수한 폴리케톤 수지 조성물 Download PDF

Info

Publication number
WO2016010407A2
WO2016010407A2 PCT/KR2015/007507 KR2015007507W WO2016010407A2 WO 2016010407 A2 WO2016010407 A2 WO 2016010407A2 KR 2015007507 W KR2015007507 W KR 2015007507W WO 2016010407 A2 WO2016010407 A2 WO 2016010407A2
Authority
WO
WIPO (PCT)
Prior art keywords
polyketone
bis
weight
linear alternating
carbon monoxide
Prior art date
Application number
PCT/KR2015/007507
Other languages
English (en)
French (fr)
Other versions
WO2016010407A3 (ko
Inventor
윤성균
이종
최종인
조경태
홍종철
김가영
Original Assignee
(주) 효성
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020140090892A external-priority patent/KR101620568B1/ko
Priority claimed from KR1020140154627A external-priority patent/KR101646032B1/ko
Priority claimed from KR1020140161986A external-priority patent/KR101684896B1/ko
Priority claimed from KR1020140162005A external-priority patent/KR101706051B1/ko
Priority claimed from KR1020140161995A external-priority patent/KR101664917B1/ko
Priority claimed from KR1020140162015A external-priority patent/KR101675290B1/ko
Priority claimed from KR1020140162010A external-priority patent/KR101684884B1/ko
Priority claimed from KR1020140161979A external-priority patent/KR101684889B1/ko
Priority claimed from KR1020140162012A external-priority patent/KR101684886B1/ko
Priority claimed from KR1020150073982A external-priority patent/KR101705620B1/ko
Priority claimed from KR1020150073979A external-priority patent/KR101705635B1/ko
Priority claimed from KR1020150073972A external-priority patent/KR101705616B1/ko
Priority to US15/327,268 priority Critical patent/US20170166743A1/en
Priority to JP2017502639A priority patent/JP2017521533A/ja
Application filed by (주) 효성 filed Critical (주) 효성
Priority to CN201580046610.8A priority patent/CN106661322B/zh
Priority to EP15822275.2A priority patent/EP3187543B1/en
Publication of WO2016010407A2 publication Critical patent/WO2016010407A2/ko
Publication of WO2016010407A3 publication Critical patent/WO2016010407A3/ko

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K15/00Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
    • B60K15/03Fuel tanks
    • B60K15/03177Fuel tanks made of non-metallic material, e.g. plastics, or of a combination of non-metallic and metallic material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L73/00Compositions of macromolecular compounds obtained by reactions forming a linkage containing oxygen or oxygen and carbon in the main chain, not provided for in groups C08L59/00 - C08L71/00; Compositions of derivatives of such polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • B29C67/24Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00 characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K5/00Arrangement or mounting of internal-combustion or jet-propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/06Power-assisted or power-driven steering fluid, i.e. using a pressurised fluid for most or all the force required for steering a vehicle
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G67/00Macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing oxygen or oxygen and carbon, not provided for in groups C08G2/00 - C08G65/00
    • C08G67/02Copolymers of carbon monoxide and aliphatic unsaturated compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/43Compounds containing sulfur bound to nitrogen
    • C08K5/435Sulfonamides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L55/00Compositions of homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C08L23/00 - C08L53/00
    • C08L55/02ABS [Acrylonitrile-Butadiene-Styrene] polymers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/04Feeding by means of driven pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0001Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2071/00Use of polyethers, e.g. PEEK, i.e. polyether-etherketone or PEK, i.e. polyetherketone or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K15/00Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
    • B60K15/03Fuel tanks
    • B60K2015/03486Fuel tanks characterised by the materials the tank or parts thereof are essentially made from
    • B60K2015/03493Fuel tanks characterised by the materials the tank or parts thereof are essentially made from made of plastics
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2217Oxides; Hydroxides of metals of magnesium
    • C08K2003/222Magnesia, i.e. magnesium oxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/18Applications used for pipes

Definitions

  • the present invention relates to a polyketone resin composition having excellent oil resistance, calcium chloride resistance, and abrasion resistance, and more specifically, is manufactured by mixing ABS, glass fiber, sulfuramide plasticizer, mineral filler, and the like, and an industrial O-ring, pipe liner, and snow chain.
  • the present invention relates to a polyketone resin composition which can be used in automobile fuel tubes, automobile engine covers, vehicle cylinder head covers, power steering oil reservoir tanks, vehicle fuel pumps, and the like.
  • Engineering plastics such as nylon 66, polytetrafluoroethylene (PTFE), polycarbonate (PC), etc. are excellent in water resistance, heat resistance, abrasion resistance, physical property retention, electrical insulation, etc. It is used for various purposes. However, the engineering plastics have problems such as physical property change due to absorption of moisture, acid, high temperature alcohol, deterioration in hot water, and the like.
  • the oil resistance is weak as well as calcium chloride resistance and abrasion resistance.
  • polyketone is not only excellent in heat resistance chemical resistance and impact resistance, but also excellent in oil resistance, calcium chloride resistance and abrasion resistance, so that the conventional nylon 66, polytetrafluoroethylene (PTFE), It is emerging as a new material to replace polycarbonate (PC).
  • Polyketones having the above characteristics include transition metal complexes such as palladium (Pd) and nickel (Ni) as catalysts based on carbon monoxide (CO) and olefins such as ethylene and propylene. It is already known that carbon monoxide and olefins are obtained by alternating bonding with each other by polymerizing with each other.
  • U.S. Patent No. 4,880,903 discloses a linear alternating polyketone terpolymer consisting of carbon monoxide and ethylene and other olefinically unsaturated hydrocarbons, such as propylene.
  • the process for preparing polyketone polymers is usually a compound of a Group VIII metal selected from palladium, cobalt or nickel, and anions of non-hydro halogen strong-hydrohalogentic acid. Catalyst compositions produced from bidentate ligands of phosphorus, arsenic or antimones are used.
  • U.S. Patent No. 4,843,144 describes a process for preparing polymers of carbon monoxide and at least one ethylenically unsaturated hydrocarbon using a palladium compound, an anion of nonhydrohalogenic acid with a pKa of less than 6, and a catalyst that is a bidentate ligand of phosphorus. It is starting.
  • fillers have been used in polyketones for the high value of plastics, the desire for high performance, and the development of high-tech industries.
  • the role of fillers can be seen as cost reduction, improvement of physical properties or properties, functionalization and processability improvement.
  • the mechanical properties of the polyketone blends are diversified in the application fields of thermoplastics, and demands of the industrial industry requiring more excellent properties are required to study polyketones having excellent oil resistance and calcium chloride resistance and wear resistance.
  • An object of the present invention is to provide a polyketone resin composition excellent in oil resistance, calcium chloride resistance, and wear resistance in order to solve the above problems.
  • this invention is a polyketone copolymer which consists of repeating units represented by following General formula (1) and (2), A linear alternating polyketone and acrylonitrile butadiene whose y / x is 0.03-0.3
  • a polyketone resin composition having improved oil resistance, to which styrene, glass fibers, sulfamide-based plasticizers and mineral fillers are added.
  • the composition ratio of acrylonitrile butadiene styrene to the total weight of the polyketone composition is preferably 8 to 20% by weight and may be applied to the fuel filler neck tube.
  • the polyketone composition has an oil absorption of 0.15% or less after 48 hours of immersion in a 50 ° C. gasoline solution, and the ligand of the catalyst composition used in the polymerization of the polyketone is ((2,2-dimethyl-1,3-dioxane-5, Preferred is 5-diyl) bis (methylene)) bis (bis (2-methoxyphenyl) phosphine).
  • Consists of carbon monoxide and at least one olefinically unsaturated hydrocarbon containing 5 to 50 ppm of palladium catalyst residue, 60 to 85 wt% of linear alternating polyketone polymer having a molecular weight distribution of 1.5 to 3.0, and 15 to 40 wt% of glass fibers. It provides a cylinder head cover, a vehicle power steering oil reservoir tank manufacturing method characterized in that the blend is manufactured by injection molding.
  • a linear alternating polyketone polymer composed of carbon monoxide and at least one olefinically unsaturated hydrocarbon, having a residual amount of palladium catalyst of 5 to 50 ppm and a molecular weight distribution of 1.5 to 2.5, and inherent in the linear alternating polyketone polymer.
  • the viscosity is 1.0 to 2.0dl / g
  • the industrial O-ring is immersed in the engine oil maintained at 50 °C for 24 hours, the impact strength measured at 25 °C, relative humidity 65% RH or more than 85% compared to the impact strength measured at To maintain, the O-ring provides an industrial O-ring manufacturing method characterized in that the hydraulic.
  • a linear alternating polyketone polymer composed of carbon monoxide and at least one olefinically unsaturated hydrocarbon, having a residual amount of palladium catalyst of 5 to 50 ppm and a molecular weight distribution of 1.5 to 2.5, and inherent in the linear alternating polyketone polymer.
  • the viscosity is 1.0 to 3.0dl / g
  • the pipe liner is immersed in the engine oil maintained at 50 °C for 24 hours, the impact strength measured at 25 °C, relative humidity 65% RH or more than 85% compared to the impact strength measured at It provides a pipe liner manufacturing method characterized in that to maintain.
  • the polyketone molded article excellent in calcium chloride resistance characterized by the above-mentioned is 80% or more.
  • LPN intrinsic viscosity
  • It is prepared by injection-molding linear alternating polyketone consisting of carbon monoxide and at least one olefinic hydrocarbon, characterized in that the impact strength retention of 80% or more in 5% or 35% calcium chloride solution, the intrinsic viscosity of the polyketone 1.0 to
  • the ligand of the catalyst composition used for the polymerization of polyketone is 2.0 dl / g, and ((2,2-dimethyl-1,3-dioxane-5,5-diyl) bis (methylene)) bis (bis (2- Methoxyphenyl) phosphine), and the polyketone part is a wheel cap, and the impact strength of the wheel cap is 20 kJ / m 2 or more, and the moisture absorption rate is 1.5% or less under the condition of a temperature of 50 ° C. and a relative humidity of 90%. It provides a polyketone parts manufacturing method for the automotive exterior.
  • Tensile strength retention rate after immersion for 24 hours is 80% or more, and the engine parts are engine cylinder block bracket, engine type air intake manifold, canister or mission oil storage tank, and the glass fiber is 100 parts by weight of polyketone.
  • the intrinsic viscosity of the polyketone provides a polyketone engine component, characterized in that 1.0 to 2.0 dl / g.
  • An automobile valve body was manufactured by injection molding a blend of 50 to 90 wt% of linear alternating polyketone and 10 to 50 wt% of glass fiber composed of carbon monoxide and at least one olefinic hydrocarbon, and 48 hours at 50 ° C. in gasoline.
  • the oil absorption after deposition is 0.14% or less
  • the impact strength of the polyketone automotive valve body is more than 15kJ / m2
  • the flexural strength of the polyketone automotive valve body is more than 80MPa
  • the intrinsic viscosity of the polyketone is 1.0 to 2.0 dl / g It provides a polyketone automotive valve body, characterized in that the molecular weight distribution is 1.5 to 2.5.
  • Automotive fuel tube has a fuel permeability of 0.005 g.mm/m 2 .day or less at 23 ° C and a relative humidity of 50% RH, and the flexural strength measured after immersion in 60 ° C gasoline for 3000 hours and then immersed in 25 ° C gasoline Maintaining more than 98% of the flexural strength, the automotive fuel tube is characterized in that the change in weight measured after immersion in gasoline at 25 °C gasoline after 0.4 hours immersed in 60 °C gasoline 0.4% or less Provided are fuel tubes for automobiles.
  • An automobile engine cover is manufactured by injection molding a blend of linear alternating polyketones, glass fibers, and mineral fillers composed of carbon monoxide and at least one olefinic hydrocarbon, wherein the glass fibers are 5 to 30% by weight of the total blend.
  • the mineral filler is 10 to 20% by weight, the intrinsic viscosity is 1.0 to 2.0 dl / g, the molar ratio of ethylene and propylene is 9 to 24: 1, the molecular weight distribution is preferably 1.5 to 2.5, the polymerization of the polyketone
  • the ligand of the catalyst composition used is ((2,2-dimethyl-1,3-dioxane-5,5-diyl) bis (methylene)) bis (bis (2-methoxyphenyl) phosphine) To provide a polyketone car engine cover.
  • the vehicle polyketone fuel pump has a dimensional change rate of 1.3% to 1.5% in the base state, the intrinsic viscosity of the polyketone is preferably 1.0 to 2.0dl / g, the polymerization of the polyketone
  • the ligand of the catalyst composition for use is ((2,2-dimethyl-1,3-dioxane-5,5-diyl) bis (methylene)) bis (bis (2-methoxyphenyl) phosphine) It provides a vehicle polyketone fuel pump.
  • Polyketone resin composition of the present invention has excellent oil resistance, calcium chloride resistance, wear resistance, industrial O-ring, pipe liner, snow chain, wheel cap, engine parts, automotive valve body, automotive fuel tube, automotive engine cover, vehicle cylinder head cover, power There is an advantage that can be applied to a steering oil reservoir tank, a vehicle fuel pump.
  • the poly ketone resin used in the present invention is an engineering plastic and is a recently developed new resin, and is a thermoplastic synthetic resin that is usefully applied as a material for various molded products or parts due to its excellent mechanical properties and molding properties such as impact strength. .
  • Mechanical properties of the polyketone resin belongs to the category of high performance plastics, and is a polymer material that synthesizes carbon monoxide as a raw material.
  • Polyketone resin has lower moisture absorption than nylon material, so it is possible to design various products with little change in dimensions and physical properties due to moisture absorption.
  • polyketone resin has a lower density than aluminum, which is suitable for light weight products.
  • the present invention provides an industrial O-ring made of carbon monoxide and at least one olefinically unsaturated hydrocarbon, injection molding a linear alternating polyketone polymer having a palladium catalyst residue of 5 to 50 ppm and a molecular weight distribution of 1.5 to 3.0.
  • the industrial O-ring of the present invention is characterized in that the polyketone is injected in the form of a ring (ring) to use as a sealing of the device for reciprocating movement such as a pump.
  • the present invention is composed of carbon monoxide and at least one olefinically unsaturated hydrocarbon, 60 to 85 wt% linear alternating polyketone polymer and 15 to 40 wt% linear fiber having a residual amount of palladium catalyst of 5 to 50 ppm and a molecular weight distribution of 1.5 to 3.0.
  • a cylinder head cover and a vehicle power steering oil reservoir tank manufactured by injection molding a blend comprising% are provided.
  • the glass fiber preferably has a particle diameter of 10 to 15 ⁇ m, but is not limited thereto.
  • the particle diameter of the glass fiber is less than 10 ⁇ m, the shape of the glass fiber may change and mechanical properties may decrease.
  • the composition ratio of the total composition of the glass fiber is preferably 15 to 40% by weight.
  • the composition ratio of the glass fiber is less than 15% by weight, the mechanical stiffness may be lowered.
  • the glass fiber is more than 40% by weight, the extrusion and injection workability may be deteriorated.
  • the present invention provides a pipe liner made of carbon monoxide and at least one olefinically unsaturated hydrocarbon, injection molding a linear alternating polyketone polymer having a palladium catalyst residue of 5 to 50 ppm and a molecular weight distribution of 1.5 to 3.0.
  • the pipe liner of the present invention serves to prevent corrosion of the steel pipe by using the polyketone made of a pipe through an extrusion process and inserted into the steel pipe.
  • the pipe liner according to the present invention is characterized in that the impact strength measured after immersion in an engine oil maintained at 50 ° C. for 24 hours is maintained at a level of 85% or more compared to the impact strength measured at 25 ° C. and 65% RH relative humidity. do.
  • the present invention relates to a valve body of an automatic transmission, and more particularly, to a valve body made of polyketone.
  • an automatic transmission has a torque converter and a multistage transmission mechanism connected to the torque converter. And a hydraulically actuated friction element for selecting any one of the gear stages of the transmission gear mechanism according to the driving condition of the gearbox.
  • the hydraulic control system of the automatic transmission for a vehicle operates the hydraulic pressure generated from the oil pump through a control valve to select and operate a friction element so that an appropriate shift can be automatically performed according to the driving state of the vehicle.
  • the hydraulic control system includes a pressure regulating means for adjusting the oil pressure generated from the oil pump, a manual and automatic shift control means for forming a shift mode, and a hydraulic pressure for regulating shifting feeling and responsiveness to form a smooth shift mode during shifting.
  • Control means damper clutch control means for actuating the damper clutch of the torque converter, and hydraulic distribution means for distributing an appropriate hydraulic supply to each friction element.
  • the automatic transmission for automobiles that are commonly used includes a pump impeller connected to the output shaft of the engine to drive together, a turbine runner connected to the input shaft of the transmission to operate together, and a stator disposed between the impeller and the turbine runner It has a fluid torque converter.
  • This configuration causes the fluid to circulate by the pump impeller driven by the engine with the aid of the stator, which causes the fluid to flow in a direction that does not interfere with the rotation of the pump impeller when the fluid enters the impeller from the turbine runner.
  • Automatic shifting is achieved by changing the speed ratio in the planetary gear system by the operation of a friction element, such as a clutch or a kick-down brake, for each gear.
  • the friction element is selectively operated by changing the flow direction of the hydraulic pressure by a plurality of valves of the hydraulic control device, the manual valve is a port conversion to the selected position of the driver's shift lever to the fluid pressure from the oil pump It is intended to be supplied and is connected to a pipeline to supply this fluid pressure to the shift control valve.
  • the hydraulic control means has a pressure control valve controlled by the transmission control unit so that the hydraulic pressure delivered to the hydraulic distribution means has an appropriate pressure and a pressure control solenoid valve for controlling the pressure control valve.
  • the pressure control solenoid valve is mainly used as a two-way valve, but because of the poor control pressure fluctuation characteristics, it is replaced by a three-way valve to control the pressure control valve.
  • the valve body consisting of the valves are likely to be exposed to oil, etc.
  • the present invention uses a polyketone as a material forming the valve body excellent in oil resistance, impact resistance.
  • conventionally known additives may include, for example, antioxidants, stabilizers, fillers, refractory materials, mold release agents, colorants, and other materials.
  • the polyketone as described above can be produced by extrusion molding or injection molding polyketone snow chains.
  • Manufactured snow chains are excellent in chemical resistance, with a calcium chloride resistance property retention rate of 80% or more, and a product moisture absorption rate of 1.5% or less at a temperature of 50 ° C. and a relative humidity of 90%, and has excellent water resistance.
  • the impact strength of the snow chain is at least 80 kJ / m 2, and when the impact strength is less than 80 kJ / m 2, it can be easily broken by the impact.
  • the process for preparing polyketones is characterized by the presence of carbon monoxide in a liquid medium in the presence of an organometallic complex catalyst comprising a ligand having an element of group (a) Group 9, Group 10 or Group 11, and group (b) Group 15.
  • the carbon monoxide, ethylene and propylene are liquid-polymerized in a mixed solvent of alcohol (eg methanol) and water to form a linear terpolymer, the mixture
  • a mixed solvent a mixture of 100 parts by weight of methanol and 2 to 10 parts by weight of water may be used. If the content of the water in the mixed solvent is less than 2 parts by weight of ketal may be formed, the heat stability during the process may be lowered, if more than 10 parts by weight may lower the mechanical properties of the product.
  • a liquid medium not only methanol, dichloromethane or nitromethane, which have been mainly used in the production of polyketone, but also a mixed solvent of acetic acid and water, ethanol and propanol, and isopropanol can be used.
  • a mixed solvent of acetic acid and water is used as the liquid medium in the production of the polyketone, it is possible to improve the catalytic activity while reducing the production cost of the polyketone.
  • a mixed solvent of acetic acid and water when used as the liquid medium, when the concentration of water is less than 10% by volume, the catalytic activity is less affected. However, when the concentration is more than 10% by volume, the catalytic activity rapidly increases. On the other hand, when the concentration of water exceeds 30% by volume, catalytic activity tends to decrease. Therefore, it is preferable to use a mixed solvent composed of 7090 vol% acetic acid and 1030 vol% water as the liquid medium.
  • the catalyst is a (a) Group 9, Group 10 or Group 11 transition metal compound of the Periodic Table (IUPAC Inorganic Chemistry Nomenclature, 1989), (b) Elements of Group 15 and (c) Acids with pKa of 4 or less. It consists of a ligand having an anion of.
  • Examples of the Group 9 transition metal compound in the Group 9, 10 or 11 transition metal compound (a) include complexes of cobalt or ruthenium, carbonates, phosphates, carbamate salts, sulfonates, and the like. Specific examples thereof include cobalt acetate, cobalt acetylacetate, ruthenium acetate, trifluoro ruthenium acetate, ruthenium acetylacetate, trifluoromethane sulfonate ruthenium and the like.
  • Examples of the Group 10 transition metal compound include a complex of nickel or palladium, carbonate, phosphate, carbamate, sulfonate, and the like, and specific examples thereof include nickel acetate, nickel acetyl acetate, palladium acetate, and palladium trifluoroacetate. , Palladium acetylacetate, palladium chloride, bis (N, N-diethylcarbamate) bis (diethylamine) palladium, palladium sulfate and the like.
  • Examples of the Group 11 transition metal compound include a complex of copper or silver, carbonate, phosphate, carbamate, sulfonate, and the like, and specific examples thereof include copper acetate, trifluoroacetate, copper acetylacetate, silver acetate, Silver trifluoroacetic acid, silver acetyl acetate, silver trifluoromethane sulfonic acid, etc. are mentioned.
  • transition metal compounds (a) are nickel and copper compounds
  • preferred transition metal compounds (a) are palladium compounds in terms of yield and molecular weight of polyketones, and in terms of improving catalytic activity and intrinsic viscosity.
  • palladium acetate is used in the process.
  • Examples of the ligand (b) having a group 15 atom include 2,2'-bipyridyl, 4,4'-dimethyl-2,2'-bipyridyl, 2,2'-bi-4-picolin , Nitrogen ligands such as 2,2'-bikinolin, 1,3-bis (diphenylphosphino) propane, 1,4-bis (diphenylphosphino) butane, 1,3-bis [di (2-methyl ) Phosphino] propane, 1,3-bis [di (2-isopropyl) phosphino] propane, 1,3-bis [di (2-methoxyphenyl) phosphino] propane, 1,3-bis [di (2-methoxy-4-sulfonic acid-phenyl) phosphino] propane, 1,2-bis (diphenylphosphino) cyclohexane, 1,2-bis (diphenylphosphino) benzene, 1,2-bis [(
  • the ligand (b) having an element of Group 15 is a phosphorus ligand having an atom of Group 15, and particularly, in view of the yield of polyketone, a phosphorus ligand is preferably 1,3-bis [di (2- Methoxyphenyl) phosphino] propane, 1,2-bis [[di (2-methoxyphenyl) phosphino] methyl] benzene, and 2-hydroxy-1,3-bis [in terms of molecular weight of the polyketone.
  • Preferred ligands (b) having atoms of group 15 are 1,3-bis [di (2-methoxyphenyl) phosphino] propane or 1,3-bis (diphenylphosphino) propane, most preferably 1,3-bis [di (2-methoxyphenyl) phosphino] propane or ((2,2-dimethyl-1,3-dioxane-5,5-diyl) bis (methylene)) bis (bis (2 Methoxyphenyl) phosphine).
  • the method for preparing a ligand for a polyketone polymerization catalyst of the present invention is conventionally 3,3-bis- [bis- (2-methoxyphenyl) phosphanylmethyl] -1,5-dioxa-spiro [5,5] undecane Unlike the synthesis method of ((2,2-dimethyl-1,3-dioxane-5,5-diyl) bis (methylene)) bis (bis (2- Methoxyphenyl) phosphine) can be commercially mass synthesized.
  • the method for preparing a ligand for a polyketone polymerization catalyst of the present invention is (a) adding bis (2-methoxyphenyl) phosphine and dimethylsulfoxide (DMSO) to a reaction vessel under a nitrogen atmosphere and hydrogenated at room temperature.
  • DMSO dimethylsulfoxide
  • the amount of the Group 9, Group 10 or Group 11 transition metal compound (a) to be used varies uniformly since the appropriate value varies depending on the type of the ethylenic and propylene unsaturated compounds selected or other polymerization conditions. Although not limited, it is usually 0.01-100 mmol, preferably 0.01-10 mmol, per liter of the capacity of the reaction zone.
  • the capacity of the reaction zone means the capacity of the liquid phase of the reactor.
  • the amount of the ligand (b) to be used is not particularly limited, but is usually 0.1 to 3 mol, preferably 1 to 3 mol, per mol of the transition metal compound (a).
  • Examples of the anion (c) of an acid having a pKa of 4 or less include anions of an organic acid having a pKa of 4 or less, such as trifluoroacetic acid, trifluoromethane sulfonic acid, p-toluene sulfonic acid, and m-toluene sulfonic acid; Anions of inorganic acids having a pKa of 4 or less, such as perchloric acid, sulfuric acid, nitric acid, phosphoric acid, heteropoly acid, tetrafluoroboric acid, hexafluorophosphoric acid, and fluorosilicic acid; And anions of boron compounds such as trispentafluorophenylborane, trisphenylcarbenium tetrakis (pentafluorophenyl) borate, and N, N-dimethylarinium tetrakis (pentafluorophenyl) borate
  • Particularly preferred anion (c) of an acid having a pKa of 4 or less in the present invention is p-toluene sulfonic acid, which has a high catalytic activity when used with a mixed solvent of acetic acid and water as a liquid medium, and also for tire cords. It is possible to prepare a polyketone having a high intrinsic viscosity suitable.
  • the molar ratio of the ligands having the (a) Group 9, 10 or 11 transition metal compound and (b) Group 15 element is 0.1 to 20 moles of Group 15 element of ligand per mole of palladium element, preferably Is preferably added in a proportion of 0.1 to 10 moles, more preferably 0.1 to 5 moles.
  • the ligand is added less than 0.1 mole relative to the elemental palladium, the binding force between the ligand and the transition metal is lowered to accelerate the desorption of palladium during the reaction, and the reaction is terminated quickly, and the ligand exceeds 20 moles relative to the elemental palladium.
  • the ligand may cause a screening effect in the polymerization reaction by the organometallic complex catalyst, which may cause a disadvantage in that the reaction rate is significantly lowered.
  • the molar ratio of the (a) Group 9, Group 10 or Group 11 transition metal compound and (c) the anion of the acid having a pKa of 4 or less is 0.1 to 20 moles, preferably 0.1 to 10 moles of acid per mole of palladium element. Moles, more preferably from 0.1 to 5 moles are added. If the acid is added less than 0.1 mole relative to the elemental palladium, the effect of improving the intrinsic viscosity of the polyketone is not satisfactory, and if the acid is added more than 20 mole relative to the elemental palladium, the catalyst activity for polyketone production tends to be rather reduced, which is undesirable. not.
  • the present invention it is possible to achieve the effect of improving the intrinsic viscosity of the polyketone by adding benzophenone during the polymerization of the polyketone.
  • the molar ratio of the (a) Group 9, Group 10 or Group 11 transition metal compound and benzophenone is 1: 5 to 100, preferably 1:40 to 60. If the molar ratio of the transition metal and benzophenone is less than 1: 5, the effect of improving the intrinsic viscosity of the polyketone produced is not satisfactory. If the molar ratio of the transition metal and benzophenone is greater than 1: 100, the polyketone catalytic activity produced is rather It is not desirable because it tends to decrease.
  • reaction gas to be reacted with the polyketone production catalyst is preferably used by appropriately mixing carbon monoxide and ethylenically unsaturated compounds.
  • Examples of ethylenically unsaturated compounds copolymerized with carbon monoxide include ethylene, propylene, 1-butene, 1-hexene, 4-methyl-1-pentene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1 ⁇ -olefins such as hexadecene and vinylcyclohexane; Alkenyl aromatic compounds, such as styrene and (alpha) -methylstyrene; Cyclopentene, norbornene, 5-methylnorbornene, 5-phenylnorbornene, tetracyclododecene, tricyclododecene, tricycloundecene, pentacyclopentadecene, pentacyclohexadecene, 8-ethyltetra C4 to C40 cyclic olefins such as cyclododecen
  • preferable ethylenically unsaturated compounds are ⁇ -olefins, more preferably ⁇ -olefins having 2 to 4 carbon atoms, most preferably ethylene, and 1 to 20 mol% propylene is added in the production of terpolymer copolyketones.
  • the input ratio of carbon monoxide and ethylenically unsaturated compound is 1: 12 (molar ratio) and to adjust propylene to 120 mol% relative to the total mixed gas.
  • polyketone it is common to set the ratio of carbon monoxide and ethylenically unsaturated compound to 1: 1, but in the present invention using a mixed solvent of acetic acid and water as a liquid medium and adding benzophenone during polymerization, carbon monoxide and ethylenic
  • the ratio of the unsaturated compound to 1: 12 and propylene is adjusted to 120 mol% of the total mixed gas, it was found that not only the processability was improved but also the catalytic activity and the intrinsic viscosity were simultaneously improved.
  • the amount of propylene is less than 1 mol%, the effect of three-way copolymerization to lower the melting temperature cannot be obtained. If it exceeds 20 mol%, there is a problem of inhibiting the intrinsic viscosity and the improvement of catalyst activity. desirable.
  • a mixed solvent of acetic acid and water is used as a liquid medium, benzophenone is added during polymerization, and carbon monoxide and ethylenically unsaturated compound and one or more olefinically unsaturated compounds are added to the catalytic activity and intrinsic viscosity of the polyketone.
  • the polymerization time should be at least 10 hours to improve the intrinsic viscosity, but it is possible to prepare a terpolymer copolymer polyketone having a high intrinsic viscosity even if the polymerization time is about 12 hours.
  • the catalyst is produced by contacting the two components.
  • Arbitrary methods can be employ
  • the present invention may further include conventionally known additives such as antioxidants, stabilizers, fillers, refractory materials, mold release agents, colorants, and other materials to improve processability and physical properties of the polymer.
  • additives such as antioxidants, stabilizers, fillers, refractory materials, mold release agents, colorants, and other materials to improve processability and physical properties of the polymer.
  • the polymerization method a solution polymerization method using a liquid medium, a suspension polymerization method, a gas phase polymerization method in which a small amount of a polymer is impregnated with a high concentration of a catalyst solution are used.
  • the polymerization may be either batchwise or continuous.
  • polymerization can use a well-known thing as it is or processing it.
  • polymerization Usually, it is normal pressure-20 MPa, Preferably it is 4-15 MPa.
  • the monomer units are alternating, so that the polymer is composed of one or more olefinically unsaturated compounds (simplified as A), wherein the polymer consists of units of the formula-(CO) -A'- where A 'represents a monomeric unit derived from monomer A applied.
  • High molecular weight linear polymer of carbon monoxide can be prepared by contacting a monomer with a palladium-containing catalyst composition solution in a diluent in which the polymer is insoluble or not actually dissolved. During the polymerization process, the polymer is obtained in the form of a suspension in diluent. Polymer preparation is mainly carried out batchwise.
  • Batch preparation of the polymer is usually carried out by introducing a catalyst into the reactor containing the diluent and monomer and having the desired temperature and pressure. As the polymerization proceeds, the pressure drops, the polymer concentration in the diluent rises and the viscosity of the suspension increases. The polymerization is continued until the viscosity of the suspension reaches a high value, for example causing difficulties with heat removal.
  • monomers can be added to the reactor during the polymerization if desired to maintain a constant temperature as well as pressure.
  • polyketone is manufactured through a polymerization process according to the manufacturing process as described above.
  • the polyketone polymer of the present invention is a linear alternating structure and substantially contains carbon monoxide for each molecule of unsaturated hydrocarbon.
  • Suitable ethylenically unsaturated hydrocarbons for use as precursors of polyketone polymers have up to 20, preferably up to 10 carbon atoms.
  • ethylenically unsaturated hydrocarbons are ethene and ⁇ -olefins such as propene, 1-butene, isobutene, 1-hexene, 1-octene
  • aryl aliphatic hydrocarbons in the ethylenically unsaturated hydrocarbons include styrene, p-methyl styrene, p-ethyl styrene and m-isopropyl styrene.
  • Polyketone polymers preferably used in the present invention are copolymers of carbon monoxide with ethene or second ethylenically unsaturated hydrocarbons having at least three carbon atoms with carbon monoxide and ethene, in particular ⁇ -olefins such as propene. Terpolymers.
  • each unit containing the second hydrocarbon moiety in the terpolymer there are at least two units containing the ethylene moiety. It is preferable that there are 10-100 units containing a 2nd hydrocarbon part.
  • the polyketone polymer may include a unit represented by the following formula (2) as a repeating unit.
  • G is an ethylenically unsaturated hydrocarbon, in particular, a part obtained from ethylenically unsaturated hydrocarbon having at least three carbon atoms, and x: y is at least 1: 0.01. More preferably, it is 99: 1 to 85:15, but if it exceeds 85:15, there is a problem that the mechanical properties fall.
  • the unit of Formula 3 is randomly applied to the entire polymer chain.
  • Preferable y: x ratio is 0.01-0.5.
  • the terminal base, or "cap,” of the polymer ring is determined by what material is present during the preparation of the polymer, and whether the polymer is to be purified or how the polymer is to be purified.
  • the polyketone polymer is a copolymer composed of repeating units represented by General Formulas (1) and (2), and it is preferable that y / x is 0.03 to 0.3.
  • y / x is 0.03 to 0.3.
  • y / x is more preferably 0.03 to 0.1.
  • the melting point of the polymer may be controlled by controlling the ratio of ethylene and propylene of the polyketone polymer.
  • the melting point is about 220 ° C. when the molar ratio of ethylene: propylene: carbon monoxide is adjusted to 46: 4: 50, but the melting point is adjusted to 235 ° C. when the molar ratio is adjusted to 47.3: 2.7: 50.
  • polyketone polymers having a number average molecular weight of 100 to 200,000, particularly 20,000 to 90,000, as measured by gel permeation chromatography.
  • the physical properties of a polymer depend on its molecular weight, whether the polymer is a copolymer or a terpolymer.
  • the terpolymer it is determined according to the properties of the second hydrocarbon moiety present.
  • fusing point of the conversion of the polymer used by this invention is 175 degreeC-300 degreeC, and is 210 degreeC-270 degreeC generally.
  • the ultimate viscosity number (LVN) of the polymer measured at 60 ° C. using a standard tubular viscosity measuring device and HFIP (Hexafluoroisopropylalcohol) is 0.5 dl / g to 10 dl / g, more preferably 0.8 dl / g to 4 dl / g, More preferably, they are 1.0 dl / g-2.0 dl / g.
  • the intrinsic viscosity number is less than 0.5dl / g, the mechanical properties are inferior, and if it exceeds 10dl / g, there is a problem of poor workability.
  • a liquid phase polymerization may be employed in which an alcohol solvent is carried out in an alcohol solvent through a catalyst composition consisting of a carbon monoxide and an olefin with a palladium compound, an acid having a PKa of 6 or less, and a binary ligand compound of phosphorus.
  • the polymerization reaction temperature is preferably 50 ⁇ 100 °C and the reaction pressure is 40 ⁇ 60bar.
  • the polymer is recovered through polymerization and filtration and purification, and the remaining catalyst composition is removed with a solvent such as alcohol or acetone.
  • the molecular weight distribution of the polyketone is preferably 1.5 to 2.5, more preferably 1.8 to 2.2. Less than 1.5 had a poor polymerization yield, and more than 2.5 had a problem of poor moldability.
  • the present invention provides acrylonitrile-butadiene-styrene (hereinafter referred to as 'ABS'), glass fiber, sulfamide plasticizer, and mineral filler to further improve oil resistance, calcium chloride resistance, and abrasion resistance to the polyketone. And the like.
  • 'ABS' acrylonitrile-butadiene-styrene
  • glass fiber glass fiber
  • sulfamide plasticizer sulfamide plasticizer
  • mineral filler to further improve oil resistance, calcium chloride resistance, and abrasion resistance to the polyketone. And the like.
  • the ABS is a rubber-modified styrenic copolymer resin prepared by emulsion polymerization, suspension polymerization, solution polymerization, bulk polymerization, suspension polymerization, emulsion polymerization is particularly preferred.
  • the weight of the added ABS is 5 to 50 parts by weight relative to 100 parts by weight of polyketone, preferably 5 to 30 parts by weight, more preferably 8 to 20 parts by weight. If the added ABS is less than 5 parts by weight, the oil resistance, calcium chloride resistance, and abrasion resistance of the polyketone resin composition is not greatly improved, and if it exceeds 50 parts, mechanical strength, dimensional stability, and molding properties may be lowered.
  • the ABS resin prepared by the emulsion polymerization method has an average size of 0.2 to 1.5 ⁇ m of rubber particles present in the dispersed phase in a continuous styrene-acrylonitrile copolymer (SAN copolymer). It is good, but due to the nature of the emulsion polymerization process, the emulsifier and flocculant, which must be used, are not completely removed in the flocculation and dehydration process but remain in the final product to cause deterioration of physical properties, and it is difficult to treat contaminated water used as a polymerization medium. In addition, since the process of flocculation and dehydration after polymerization is required separately, it is less economical than the bulk polymerization which is a continuous process.
  • SAN copolymer styrene-acrylonitrile copolymer
  • a certain amount of butadiene rubber or styrene-butadiene rubber is dissolved in a solution in which a fixed proportion of styrene monomer and acrylonitrile monomer are dissolved in a reaction medium, followed by mixing an appropriate amount of a reaction initiator, a molecular weight regulator and other additives. And then heating to polymerize.
  • SAN is formed as a copolymer of styrene monomer and acrylonitrile monomer as the polymerization proceeds. At this time, the styrene monomer and acrylonitrile monomer are dissolved in butadiene rubber or styrene-butadiene rubber.
  • the resulting SAN copolymer forms two phases without mixing with the rubber dissolved in the reaction medium from the beginning of the reaction to make the entire polymerization solution non-uniform.
  • the rubber phase dissolved in the polymerization solution forms a continuous phase at the beginning of the polymerization reaction with low conversion rate, but the upper blood of the copolymer of styrene or styrene derivatives and acrylonitrile or acrylonitrile derivatives increased as the reaction proceeds.
  • the preceding copolymer forms a continuous phase.
  • phase inversion This phenomenon is called phase inversion, and the point where the volume of the copolymer phase and the rubber phase become equal is called phase inversion time. After the phase inversion occurs, the rubber phase becomes a dispersed phase to form rubber particles in the finally prepared resin.
  • the ABS resin thus manufactured is applied to various fields such as home appliances, office equipment parts, automobile parts, etc., because of excellent moldability, dimensional stability of molded products, and impact resistance.
  • the weight of the high impact ABS is 5 to 50% by weight based on the total weight. Preferably it is 5-30 weight%, More preferably, it is 8-20 weight%. If the content of the polyketone resin is less than 50% by weight, the oil resistance, mechanical strength, dimensional stability, and molding characteristics of the polyketone resin may be lowered, thereby causing a lack of practicality. If the content exceeds 95%, the relative content of high impact ABS is reduced. It can be difficult to give the desired level of wear resistance and impact strength.
  • carbon fibers, mica and talc may be added to the composition to reinforce the mechanical properties.
  • antioxidants, pigments and the like can be added as desired. Such additives may be suitably used by those skilled in the art.
  • the glass fiber has a particle diameter of 10 to 13 ⁇ m, and preferably 25 to 35 parts by weight based on 100 parts by weight of polyketone. If the glass fiber content is less than 25 parts by weight, the mechanical rigidity may be lowered. If the glass fiber content is more than 35 parts by weight, the viscosity may be excessively increased, so that extrusion and injection workability may be degraded and appearance quality may be degraded.
  • the sulfamide plasticizer is preferably 1 to 10 parts by weight based on 100 parts by weight of polyketone.
  • the content of the plasticizer is less than 1 part by weight, the fuel permeability is not suitable for the fuel tube, and when it exceeds 10 parts by weight, the flexural strength, which is a characteristic of the polyketone, is low, and processing is not easy.
  • the mineral filler serves to prevent the bending characteristics of the product.
  • the mineral filler for example, silica (SiO 2), magnesium oxide (MgO), talc, calcium carbonate, asbestos, kaolin and the like may be used, and other inorganic materials may be used as necessary and are not limited to specific types.
  • a mineral filler mixed with 60 to 75% by weight of silica and 25 to 40% by weight of magnesium oxide is preferable to use as the mineral filler.
  • the average particle diameter of the said mineral filler is 4-6 micrometers, and it is preferable to contain as much as 10-20 weight part with respect to 100 weight part of polyketones. If the content of the mineral filler is less than 10 parts by weight, warpage may occur in the product. If the content is more than 20 parts by weight, the impact strength of the product is lowered and the appearance is deteriorated.
  • a manufacturing method for producing a polyketone composition is as follows.
  • Method for producing a polyketone composition of the present invention comprises the steps of preparing a catalyst composition comprising a palladium compound, an acid having a pKa value of 6 or less, and a double ligand compound of phosphorus; Preparing a mixed solvent (polymer solvent) including an alcohol (eg, methanol) and water; Preparing a linear terpolymer of carbon monoxide, ethylene and propylene by polymerizing in the presence of the catalyst composition and the mixed solvent; Removing the remaining catalyst composition from the linear terpolymer with a solvent (eg, alcohol and acetone) to obtain a polyketone resin; And mixing the polyketone resin with a flame retardant.
  • a mixed solvent polymer solvent
  • a solvent eg, alcohol and acetone
  • Palladium acetate may be used as the palladium compound constituting the catalyst composition, and the amount of the palladium compound is preferably 10-3 to 10-1 mol.
  • an acid having a pKa value of 6 or less one or more selected from the group consisting of trifluoroacetic acid, p-toluenesulfonic acid, sulfuric acid, and sulfonic acid, preferably trifluoroacetic acid, may be used. 6-20 (mole) equivalent weight of the compound is appropriate.
  • Examples of the phosphorus double ligand compound constituting the catalyst composition include 1,3-bis [diphenylphosphino] propane (eg, 1,3-bis [di (2-methoxyphenylphosphino)] propane, 1,3- Bis [bis [anisyl] phosphinomethyl] -1,5-dioxaspiro [5,5] undecane and ((2,2-dimethyl-1,3-dioxane-5,5-diyl) bis ( Methylene)) bis (bis (2-methoxyphenyl) phosphine) may be used at least one selected from the group consisting of, the amount is preferably 1 ⁇ 1.2 (mol) equivalent to the palladium compound.
  • 1,3-bis [diphenylphosphino] propane eg, 1,3-bis [di (2-methoxyphenylphosphino)] propane
  • the carbon monoxide, ethylene, and propylene are liquid-polymerized in a mixed solvent of alcohol (eg, methanol) and water to produce a linear terpolymer.
  • the mixed solvent may be a mixture of 100 parts by weight of methanol and 2 to 10 parts by weight of water. If the content of the water in the mixed solvent is less than 2 parts by weight of ketal may form a thermal stability during the process, if more than 10 parts by weight may lower the mechanical properties of the product.
  • the polymerization temperature is 50 ⁇ 100 °C
  • the reaction pressure is suitable for the range of 40 ⁇ 60bar.
  • the resulting polymer is recovered through polymerization and filtration and purification, and the remaining catalyst composition is removed with a solvent such as alcohol or acetone.
  • the obtained polyketone terpolymer is mixed with ABS, glass fiber, sulfuramide plasticizer and mineral filler and extruded using an extruder, and finally a blend composition is obtained.
  • the blend is prepared by melt kneading and extrusion into a twin screw extruder.
  • the extrusion temperature is 230 ⁇ 260 °C
  • screw rotation speed is preferably in the range of 100 ⁇ 300rpm. If the extrusion temperature is less than 230 °C kneading may not occur properly, if it exceeds 260 °C may cause problems with the heat resistance of the resin. In addition, if the screw rotational speed is less than 100rpm it may not occur smooth kneading.
  • the polyketone composition prepared through the above process may be applied to an industrial O-ring, a pipe liner, a snow chain, an automobile fuel tube, an automobile engine cover, etc., because of excellent oil resistance, calcium chloride resistance, and wear resistance, but is not limited thereto.
  • additives may include, for example, antioxidants, stabilizers, fillers, refractory materials, mold release agents, colorants, and other materials.
  • the polyketone as described above can be produced by extrusion molding or injection molding polyketone parts. At this time, the polyketone of the vehicle polyketone parts is excellent in oil resistance, the tensile strength retention is more than 80% after 48 hours of gasoline 50 °C deposition measured in the polyketone base state, the dimensional change rate is 1.3%-1.5% It is characterized by.
  • the polyketone parts produced by the present invention were found to be excellent in oil resistance and dimensional stability.
  • Example 2 Same as Example 1 except for 60% by weight of polyketone terpolymer, 40% by weight of ABS.
  • Specimens were prepared in the same manner as in Example 2, except that 90 wt% of Rhodda PA6 was used instead of polyketone.
  • the prepared polyketone composition of the Example was prepared as a 3 ⁇ 3 cm specimen, and then compared to the product of the comparative example to evaluate the physical properties in the following manner, the results are shown in Table 1 below.
  • Oil resistance Measure the oil absorption of the specimen after immersion of gasoline at 50 °C and after 48 hours, 96 hours
  • Example 1 Example 2 Example 3 Example 4 Example 5 Comparative Example 1 Furtherance PK95% / ABS5% PK90% / ABS10% PK85% / ABS15% PK70% / ABS30% PK60% / ABS40% PA90% / ABS10% Oil absorption (after 48 hours immersion)% 0.11 0.10 0.13 0.12 0.13 0.20 Oil absorption (after 96 hours immersion)% 0.14 0.13 0.17 0.19 0.20 0.28
  • Example 1 the oil absorption was measured to be low under the same conditions as in Comparative Example 1.
  • Example 1 to 5 the oil absorption after 48 hours of immersion in a 50 ° C gasoline solution was measured to be 0.15% or less.
  • Examples 2 and 3 ABS content ratio of 8 to 20% by weight
  • the polyketone composition prepared in Example rather than Comparative Example 1 was evaluated to be suitable for use as a thermoplastic filler, especially a fuel filler neck tube, which is used in the industrial bar having excellent oil resistance.
  • Linear alternating polyketone terpolymers consisting of carbon monoxide, ethylene and propene include palladium acetate, trifluoroacetic acid and ((2,2-dimethyl-1,3-dioxane-5,5-diyl) bis (methylene)) bis ( Prepared in the presence of a catalyst composition produced from bis (2-methoxyphenyl) phosphine).
  • the content of trifluoroacetic acid relative to palladium is 11 times the molar ratio, and the first stage and the second stage of 84 °C polymerization temperature 80 °C.
  • the molar ratio of ethylene and propene in the polyketone terpolymer prepared above was 46: 4.
  • the polyketone terpolymer had a melting point of 220 ° C., LVN measured at 25 ° C. with HFIP (hexa-fluoroisopropano) at 1.2 dl / g, a melt index (MI) of 60 g / 10 min, and a MWD of 2.0.
  • Linear alternating polyketone terpolymers consisting of carbon monoxide, ethylene and propene include palladium acetate, trifluoroacetic acid and ((2,2-dimethyl-1,3-dioxane-5,5-diyl) bis (methylene)) bis ( Prepared in the presence of a catalyst composition produced from bis (2-methoxyphenyl) phosphine).
  • the content of trifluoroacetic acid relative to palladium is 10 times the molar ratio, and the first stage and the second stage of 84 °C polymerization temperature 78 °C.
  • the molar ratio of ethylene and propene in the polyketone terpolymer prepared above was 46: 4.
  • the polyketone terpolymer had a melting point of 220 ° C., LVN measured at 25 ° C. with HFIP (hexa-fluoroisopropano), 1.4 dl / g, MI (Melt index) of 60 g / 10 min, and MWD of 2.0.
  • Linear alternating polyketone terpolymers consisting of carbon monoxide, ethylene and propene include palladium acetate, trifluoroacetic acid and ((2,2-dimethyl-1,3-dioxane-5,5-diyl) bis (methylene)) bis ( Prepared in the presence of a catalyst composition produced from bis (2-methoxyphenyl) phosphine).
  • the content of trifluoroacetic acid relative to palladium is 9 times the molar ratio, and the first stage and the second stage of 84 °C polymerization temperature 74 °C.
  • the molar ratio of ethylene and propene in the polyketone terpolymer prepared above was 46: 4.
  • the polyketone terpolymer had a melting point of 220 ° C., LVN measured at 25 ° C. with HFIP (hexa-fluoroisopropano) at 1.6 dl / g, a MI (Melt index) of 60 g / 10 min, and a MWD of 2.0.
  • Linear alternating polyketone terpolymers consisting of carbon monoxide, ethylene and propene include palladium acetate, trifluoroacetic acid and ((2,2-dimethyl-1,3-dioxane-5,5-diyl) bis (methylene)) bis ( Prepared in the presence of a catalyst composition produced from bis (2-methoxyphenyl) phosphine).
  • the content of trifluoroacetic acid relative to palladium is 10 times the molar ratio, and the first stage and the second stage of 84 °C polymerization temperature 78 °C.
  • the molar ratio of ethylene and propene in the polyketone terpolymer prepared above was 46: 4.
  • the polyketone terpolymer had a melting point of 220 ° C., LVN measured at 25 ° C. with HFIP (hexa-fluoroisopropano) at 1.4 dl / g, a MI (Melt index) of 60 g / 10 min, and an MWD of 1.8.
  • Linear alternating polyketone terpolymers consisting of carbon monoxide, ethylene and propene include palladium acetate, trifluoroacetic acid and ((2,2-dimethyl-1,3-dioxane-5,5-diyl) bis (methylene)) bis ( Prepared in the presence of a catalyst composition produced from bis (2-methoxyphenyl) phosphine).
  • the content of trifluoroacetic acid relative to palladium is 10 times the molar ratio, and the first stage and the second stage of 84 °C polymerization temperature 78 °C.
  • the molar ratio of ethylene and propene in the polyketone terpolymer prepared above was 46: 4.
  • the polyketone terpolymer had a melting point of 220 ° C., LVN measured at 25 ° C. with HFIP (hexa-fluoroisopropano), 1.4 dl / g, MI (Melt index) of 60 g / 10 min, and MWD of 2.2.
  • Izod impact strength evaluation It was performed according to ASTM D256.
  • Abrasion is a value that shows the degree of wear, which means that the wear resistance is less because the wear resistance is larger, the wear resistance is small, on the contrary, the wear resistance is large because the wear resistance does not occur easily as the value is smaller. Means that.
  • the abrasion test was measured by a pin-on-disk type under a load of 1 kg, linear speed 7 Hz and test time 30 minutes.
  • Example 6 Example 7
  • Example 8 Example 9
  • Example 10 Comparative Example 2 Properties IV: 1.2MWD: 2.0 IV: 1.4 MWD: 2.0 IV: 1.6MWD: 2.0 IV: 1.4 MWD: 1.8 IV: 1.4 MWD: 2.2 PEEK Wearability (Rmax) 0.60 0.70 0.75 0.82 0.85 8.10 Impact strength (kJ / m2) 25 20 22 26 23 18 Product oil resistance (%, property retention) 85 86 87 89 90 75
  • the industrial O-ring according to the present invention has excellent oil resistance and physical property retention rate, and accordingly, has been found to be very suitable for application for hydraulic purposes.
  • Linear alternating polyketone terpolymers consisting of carbon monoxide, ethylene and propene include palladium acetate, trifluoroacetic acid and ((2,2-dimethyl-1,3-dioxane-5,5-diyl) bis (methylene)) bis ( Prepared in the presence of a catalyst composition produced from bis (2-methoxyphenyl) phosphine).
  • the content of trifluoroacetic acid relative to palladium is 11 times the molar ratio, and the first stage and the second stage of 84 °C polymerization temperature 80 °C.
  • the molar ratio of ethylene and propene in the polyketone terpolymer prepared above was 46 to 4.
  • the polyketone terpolymer had a melting point of 220 ° C., LVN measured at 25 ° C. with HFIP (hexa-fluoroisopropano) at 2.2 dl / g, a Melt index (MI) of 60 g / 10 min, and a MWD of 2.0.
  • Linear alternating polyketone terpolymers consisting of carbon monoxide, ethylene and propene include palladium acetate, trifluoroacetic acid and ((2,2-dimethyl-1,3-dioxane-5,5-diyl) bis (methylene)) bis ( Prepared in the presence of a catalyst composition produced from bis (2-methoxyphenyl) phosphine).
  • the content of trifluoroacetic acid relative to palladium is 10 times the molar ratio, and the first stage and the second stage of 84 °C polymerization temperature 78 °C.
  • the molar ratio of ethylene and propene in the polyketone terpolymer prepared above was 46 to 4.
  • the polyketone terpolymer had a melting point of 220 ° C., LVN measured at 25 ° C. with HFIP (hexa-fluoroisopropano) at 2.4 dl / g, a melt index (MI) of 60 g / 10 min, and a MWD of 2.0.
  • Linear alternating polyketone terpolymers consisting of carbon monoxide, ethylene and propene include palladium acetate, trifluoroacetic acid and ((2,2-dimethyl-1,3-dioxane-5,5-diyl) bis (methylene)) bis ( Prepared in the presence of a catalyst composition produced from bis (2-methoxyphenyl) phosphine).
  • the content of trifluoroacetic acid relative to palladium is 9 times the molar ratio, and the first stage and the second stage of 84 °C polymerization temperature 74 °C.
  • the molar ratio of ethylene and propene in the polyketone terpolymer prepared above was 46 to 4.
  • the polyketone terpolymer had a melting point of 220 ° C., LVN measured at 25 ° C. with HFIP (hexa-fluoroisopropano) at 2.6 dl / g, a MI (Melt index) of 60 g / 10 min, and a MWD of 2.0.
  • Linear alternating polyketone terpolymers consisting of carbon monoxide, ethylene and propene include palladium acetate, trifluoroacetic acid and ((2,2-dimethyl-1,3-dioxane-5,5-diyl) bis (methylene)) bis ( Prepared in the presence of a catalyst composition produced from bis (2-methoxyphenyl) phosphine).
  • the content of trifluoroacetic acid relative to palladium is 10 times the molar ratio, and the first stage and the second stage of 84 °C polymerization temperature 78 °C.
  • the molar ratio of ethylene and propene in the polyketone terpolymer prepared above was 46 to 4.
  • the polyketone terpolymer had a melting point of 220 ° C., LVN measured at 25 ° C. with HFIP (hexa-fluoroisopropano) at 2.4 dl / g, a melt index (MI) of 60 g / 10 min, and an MWD of 1.8.
  • Linear alternating polyketone terpolymers consisting of carbon monoxide, ethylene and propene include palladium acetate, trifluoroacetic acid and ((2,2-dimethyl-1,3-dioxane-5,5-diyl) bis (methylene)) bis ( Prepared in the presence of a catalyst composition produced from bis (2-methoxyphenyl) phosphine).
  • the content of trifluoroacetic acid relative to palladium is 10 times the molar ratio, and the first stage and the second stage of 84 °C polymerization temperature 78 °C.
  • the molar ratio of ethylene and propene in the polyketone terpolymer prepared above was 46 to 4.
  • the melting point of the polyketone terpolymer was 220 ° C, LVN measured at 25 ° C by HFIP (hexa-fluoroisopropano) at 2.4 dl / g, MI (Melt index) at 60 g / 10 min, and MWD was 2.2.
  • Heat deflection temperature It was carried out in accordance with ASTM D648.
  • Example 11 Example 12
  • Example 13 Example 14
  • Example 15 Comparative Example 3 Properties IV: 2.2 MWD: 2.0 IV: 2.4 MWD: 2.0 IV: 2.6MWD: 2.0 IV: 2.4 MWD: 1.8 IV: 2.4 MWD: 2.2 HDPE HDT (°C) 105 105 105 105 46 Impact strength (kJ / m2) 20 22 24 21 22 4 Product oil resistance (%, property retention) 85 86 88 89 90 75
  • the pipe liner according to the present invention has excellent oil resistance and physical property retention rate.
  • Linear alternating polyketone terpolymers consisting of carbon monoxide, ethylene and propene were prepared in the presence of a catalyst composition produced from palladium acetate, trifluoroacetic acid and 1,3-bis [bis (2-methoxyphenyl-phosphino] propane.
  • the molar ratio of ethylene and propene was 85 to 15.
  • the melting point of the polyketone terpolymer was 220 ° C., and the LVN measured at 25 ° C. using HFIP (hexa-fluoroisopropano) was 1.3.
  • dl / g, MI (Melt index) was 48g / 10min.
  • the polyketone terpolymer prepared above was blended with ABS resin containing 70% butadiene at 20w% and operated at 250rpm, 2.5cm in diameter, and L /
  • Snow chains were manufactured using TPE (thermoplastic elastomer), which was previously used as a material for snow chains.
  • TPE thermoplastic elastomer
  • Example 16 Comparative Example 4 Resin composition Polyketone 80% ABS 20% TPE Charpy Impact Strength (kJ / m2) 90 70 Moisture absorption (%) 1.2 2.5 Calcium chloride resistance (property retention) (%) 90 60
  • the polyketone snow chain prepared through Example 16 of the present invention was very suitable for application to snow chains having excellent impact resistance, moisture resistance and calcium chloride resistance.
  • Linear alternating polyketone terpolymers consisting of carbon monoxide, ethylene and propene include palladium acetate, trifluoroacetic acid and ((2,2-dimethyl-1,3-dioxane-5,5-diyl) bis (methylene)) bis ( Prepared in the presence of a catalyst composition produced from bis (2-methoxyphenyl) phosphine).
  • the content of trifluoroacetic acid relative to palladium is 11 times the molar ratio, and the first stage and the second stage of 84 °C polymerization temperature 80 °C.
  • the molar ratio of ethylene and propene in the polyketone terpolymer prepared above was 46 to 4.
  • the polyketone terpolymer had a melting point of 220 ° C., LVN measured at 25 ° C. with HFIP (hexa-fluoroisopropano) at 1.2 dl / g, a melt index (MI) of 60 g / 10 min, and a MWD of 2.0.
  • Linear alternating polyketone terpolymers consisting of carbon monoxide, ethylene and propene include palladium acetate, trifluoroacetic acid and ((2,2-dimethyl-1,3-dioxane-5,5-diyl) bis (methylene)) bis ( Prepared in the presence of a catalyst composition produced from bis (2-methoxyphenyl) phosphine).
  • the content of trifluoroacetic acid relative to palladium is 10 times the molar ratio, and the first stage and the second stage of 84 °C polymerization temperature 78 °C.
  • the molar ratio of ethylene and propene in the polyketone terpolymer prepared above was 46 to 4.
  • the polyketone terpolymer had a melting point of 220 ° C., LVN measured at 25 ° C. with HFIP (hexa-fluoroisopropano), 1.4 dl / g, MI (Melt index) of 60 g / 10 min, and MWD of 2.0.
  • Linear alternating polyketone terpolymers consisting of carbon monoxide, ethylene and propene include palladium acetate, trifluoroacetic acid and ((2,2-dimethyl-1,3-dioxane-5,5-diyl) bis (methylene)) bis ( Prepared in the presence of a catalyst composition produced from bis (2-methoxyphenyl) phosphine).
  • the content of trifluoroacetic acid relative to palladium is 9 times the molar ratio, and the first stage and the second stage of 84 °C polymerization temperature 74 °C.
  • the molar ratio of ethylene and propene in the polyketone terpolymer prepared above was 46 to 4.
  • the polyketone terpolymer had a melting point of 220 ° C., LVN measured at 25 ° C. with HFIP (hexa-fluoroisopropano) at 1.6 dl / g, a MI (Melt index) of 60 g / 10 min, and a MWD of 2.0.
  • Linear alternating polyketone terpolymers consisting of carbon monoxide, ethylene and propene include palladium acetate, trifluoroacetic acid and ((2,2-dimethyl-1,3-dioxane-5,5-diyl) bis (methylene)) bis ( Prepared in the presence of a catalyst composition produced from bis (2-methoxyphenyl) phosphine).
  • the content of trifluoroacetic acid relative to palladium is 10 times the molar ratio, and the first stage and the second stage of 84 °C polymerization temperature 78 °C.
  • the molar ratio of ethylene and propene in the polyketone terpolymer prepared above was 46 to 4.
  • the polyketone terpolymer had a melting point of 220 ° C., LVN measured at 25 ° C. with HFIP (hexa-fluoroisopropano) at 1.4 dl / g, a MI (Melt index) of 60 g / 10 min, and an MWD of 1.8.
  • Linear alternating polyketone terpolymers consisting of carbon monoxide, ethylene and propene include palladium acetate, trifluoroacetic acid and ((2,2-dimethyl-1,3-dioxane-5,5-diyl) bis (methylene)) bis ( Prepared in the presence of a catalyst composition produced from bis (2-methoxyphenyl) phosphine).
  • the content of trifluoroacetic acid relative to palladium is 10 times the molar ratio, and the first stage and the second stage of 84 °C polymerization temperature 78 °C.
  • the molar ratio of ethylene and propene in the polyketone terpolymer prepared above was 46 to 4.
  • the polyketone terpolymer had a melting point of 220 ° C., LVN measured at 25 ° C. with HFIP (hexa-fluoroisopropano), 1.4 dl / g, MI (Melt index) of 60 g / 10 min, and MWD of 2.2.
  • the impact strength of the polyamide 66 (Polyamide 66, PA66) and the retention of physical properties after moisture absorption were measured as a material of DuPont, which was previously used as a material for the wheel cap.
  • Izod impact strength evaluation It was performed according to ASTM D256.
  • Example 17 Example 18 Example 19 Example 20
  • Example 21 Comparative Example 5 PK Properties IV: 1.2MWD: 2.0 IV: 1.4 MWD: 2.0 IV: 1.6MWD: 2.0 IV: 1.4 MWD: 1.8 IV: 1.4 MWD: 2.2
  • PA66 Product moisture absorption rate (%, 50 °C, 90% RH) 0.5 0.45 0.51 0.57 0.59
  • Product Calcium Chloride Resistance 5% (%, Property Retention Rate) 90 91 89 88 87
  • Product Calcium Chloride Resistance 35% %, Property Retention Rate
  • 85 86
  • 84 83 43 Impact strength (kJ / m2) 20 21 22 21.4 20.8 5
  • the polyketone wheel cap manufactured through the embodiment of the present invention was very suitable for application as a wheel cap having excellent impact resistance, water resistance and chemical resistance maintenance.
  • the present invention is excellent in the impact strength of the wheel cap 20kJ / m 2 or more, 1.5% or less under the condition that the moisture absorption rate is 50 °C, 90% relative humidity.
  • Linear alternating polyketone terpolymers consisting of carbon monoxide, ethylene and propene include palladium acetate, trifluoroacetic acid and ((2,2-dimethyl-1,3-dioxane-5,5-diyl) bis (methylene)) bis ( Prepared in the presence of a catalyst composition produced from bis (2-methoxyphenyl) phosphine).
  • the content of trifluoroacetic acid relative to palladium is 11 times the molar ratio, and the first stage and the second stage of 84 °C polymerization temperature 80 °C.
  • the molar ratio of ethylene and propene in the polyketone terpolymer prepared above was 46: 4.
  • the polyketone terpolymer had a melting point of 220 ° C., LVN measured at 25 ° C. with HFIP (hexa-fluoroisopropano) at 1.2 dl / g, a melt index (MI) of 60 g / 10 min, and a MWD of 2.0.
  • 100 parts by weight of the prepared polyketone terpolymer and 30 parts by weight of glass fiber were introduced into a twin screw extruder having L / D32 and D 40 and extruded through melt kneading at a temperature of 250 ° C. at a 250 rpm screw rotation speed.
  • Linear alternating polyketone terpolymers consisting of carbon monoxide, ethylene and propene include palladium acetate, trifluoroacetic acid and ((2,2-dimethyl-1,3-dioxane-5,5-diyl) bis (methylene)) bis ( Prepared in the presence of a catalyst composition produced from bis (2-methoxyphenyl) phosphine).
  • the content of trifluoroacetic acid relative to palladium is 10 times the molar ratio, and the first stage and the second stage of 84 °C polymerization temperature 78 °C.
  • the molar ratio of ethylene and propene in the polyketone terpolymer prepared above was 46: 4.
  • the polyketone terpolymer had a melting point of 220 ° C., LVN measured at 25 ° C. with HFIP (hexa-fluoroisopropano), 1.4 dl / g, MI (Melt index) of 60 g / 10 min, and MWD of 2.0.
  • 100 parts by weight of the prepared polyketone terpolymer and 30 parts by weight of glass fiber were introduced into a twin screw extruder having L / D32 and D 40 and extruded through melt kneading at a temperature of 250 ° C. at a 250 rpm screw rotation speed.
  • Linear alternating polyketone terpolymers consisting of carbon monoxide, ethylene and propene include palladium acetate, trifluoroacetic acid and ((2,2-dimethyl-1,3-dioxane-5,5-diyl) bis (methylene)) bis ( Prepared in the presence of a catalyst composition produced from bis (2-methoxyphenyl) phosphine).
  • the content of trifluoroacetic acid relative to palladium is 9 times the molar ratio, and the first stage and the second stage of 84 °C polymerization temperature 74 °C.
  • the molar ratio of ethylene and propene in the polyketone terpolymer prepared above was 46: 4.
  • the polyketone terpolymer had a melting point of 220 ° C., LVN measured at 25 ° C. with HFIP (hexa-fluoroisopropano) at 1.6 dl / g, a MI (Melt index) of 60 g / 10 min, and a MWD of 2.0.
  • HFIP hexa-fluoroisopropano
  • 100 parts by weight of the prepared polyketone terpolymer and 30 parts by weight of glass fiber were introduced into a twin screw extruder having L / D32 and D 40 and extruded through melt kneading at a temperature of 250 ° C. at a 250 rpm screw rotation speed.
  • the heat resistance and tensile strength values of the Examples are somewhat lower than those of Comparative Example 6, but are generally in a numerical range suitable for use as an engine component, and the water resistance and oil resistance are higher than those of the Comparative Examples. Found to be excellent.
  • the tensile strength retention rate was 24% or more when immersed in water and engine oil for 24 hours, respectively.
  • Linear alternating polyketone terpolymers consisting of carbon monoxide, ethylene and propene include palladium acetate, trifluoroacetic acid and ((2,2-dimethyl-1,3-dioxane-5,5-diyl) bis (methylene)) bis ( Prepared in the presence of a catalyst composition produced from bis (2-methoxyphenyl) phosphine).
  • the content of trifluoroacetic acid relative to palladium is 10 times the molar ratio, and the first stage and the second stage of 84 °C polymerization temperature 78 °C.
  • the molar ratio of ethylene and propene in the polyketone terpolymer prepared above was 46: 4.
  • the polyketone terpolymer had a melting point of 220 ° C., LVN measured at 25 ° C. with HFIP (hexa-fluoroisopropano), 1.4 dl / g, MI (Melt index) of 60 g / 10 min, and MWD of 2.0.
  • 70% by weight of the polyketone terpolymer and 30% by weight of glass fiber prepared above were injection molded by pelletizing on an extruder using a biaxial screw having a diameter of 40 mm and operating at 250 rpm. To prepare a specimen for the automotive valve body to evaluate the physical properties.
  • Example 27 The same as in Example 1 except that the content of the polyketone in Example 27 60% by weight, the glass fiber content 40% by weight.
  • Example 1 It is the same as Example 1 except setting 50 weight% of polyketone content, and 50 weight% of glass fiber content in Example 1.
  • PA 6 polyamide 6
  • PA 66 polyamide 66
  • Izod impact strength evaluation It was performed according to ASTM D256.
  • Oil resistance Oil absorption measured after 50 °C deposition of mission oil, 48 hours, 96 hours
  • the examples prepared by blending polyketone and glass fiber have low oil absorption after 48 hours or 96 hours, compared to the comparative example, and have excellent oil resistance (oil absorption after immersion in gasoline at 50 ° C for 48 hours). 0.14% or less), and its impact strength was high. Therefore, the automobile valve body manufactured through the embodiment of the present invention was very suitable for application as an automobile valve body because it is very excellent in impact resistance and oil resistance.
  • Linear alternating polyketone terpolymers consisting of carbon monoxide, ethylene and propene include palladium acetate, trifluoroacetic acid and ((2,2-dimethyl-1,3-dioxane-5,5-diyl) bis (methylene)) bis ( Prepared in the presence of a catalyst composition produced from bis (2-methoxyphenyl) phosphine).
  • the molar ratio of ethylene and propene in the polyketone terpolymer prepared above was 46: 4.
  • the polyketone terpolymer had a melting point of 220 ° C., LVN measured at 25 ° C.
  • HFIP hexa-fluoroisopropano
  • Permeation Coefficient was performed according to ASTM D1434 at 23 ° C. and 50% RH.
  • Weight change rate The weights of the specimens after immersion in 25 ° C gasoline and 3000 hours in 60 ° C gasoline were measured according to MS211-47, respectively.
  • Example 30 Comparative Example 9 Permeation Coefficient, @ 23 o C, 50% RH (g.mm/m 2 .day) 0.005 0.067 Property retention rate (%) 98 78 Weight change rate (%) 0.4 4.2
  • Example 30 has a better fuel barrier property with a lower fuel permeability (0.005 g.mm/m 2 .day or less), a property retention rate (98% or more) and a weight change rate (0.4%) compared to Comparative Example 9 Below) all were found to be excellent.
  • Example 30 of the present invention is suitable for use as an automotive fuel tube.
  • Linear alternating polyketone terpolymers consisting of carbon monoxide, ethylene and propene include palladium acetate, trifluoroacetic acid and ((2,2-dimethyl-1,3-dioxane-5,5-diyl) bis (methylene)) bis ( Prepared in the presence of a catalyst composition produced from bis (2-methoxyphenyl) phosphine).
  • the content of trifluoroacetic acid relative to palladium is 10 times the molar ratio, and the first stage and the second stage of 84 °C polymerization temperature 78 °C.
  • the molar ratio of ethylene and propene in the polyketone terpolymer prepared above was 46: 4.
  • Example 31 Except for setting the content of the glass fiber in Example 31 5% by weight and the content of the mineral filler 10% by weight is the same as in Example 31.
  • Example 31 Except for setting the content of the glass fiber in Example 31 20% by weight and the content of the mineral filler 20% by weight is the same as in Example 31.
  • polyamide 6 Polyamide 6, PA 6
  • Example 31 Except for using a polyketone, polyamide 6 (Polyamide 6, PA 6) as the material of DuPont, Inc. was the same as in Example 31.
  • Izod impact strength evaluation It was performed according to ASTM D256.
  • the polyketone resin composition prepared according to the present invention was found to be suitable for use as a material for automobile engine covers because of excellent mechanical properties and oil resistance compared to conventional polyamide materials.
  • the oil dimensional change rate is low in the oil environment is good oil resistance. It has been shown to be suitable for application to automotive oil pans, which are likely to be exposed to oil.
  • the glass fiber content is less than 5% by weight, oil resistance and mechanical properties are not good, and when the content of the glass fiber exceeds 30% by weight, blending and injection molding are difficult.
  • the mineral filler was also found to be preferably 10 to 20% by weight relative to the total blend for the same reason as above.
  • Linear alternating polyketone terpolymers consisting of carbon monoxide, ethylene and propene include palladium acetate, trifluoroacetic acid and ((2,2-dimethyl-1,3-dioxane-5,5-diyl) bis (methylene)) bis ( Prepared in the presence of a catalyst composition produced from bis (2-methoxyphenyl) phosphine).
  • the content of trifluoroacetic acid relative to palladium is 10 times the molar ratio, and the first stage and the second stage of 84 °C polymerization temperature 78 °C.
  • the molar ratio of ethylene and propene in the polyketone terpolymer prepared above was 46: 4.
  • the melting point of the polyketone terpolymer is 220 °C
  • LVN measured at 25 °C by HFIP (hexa-fluoroisopropano) is 1.4dl / g
  • MI Melt index
  • Blending 10 parts by weight of ABS to 100 parts by weight of polyketone terpolymer prepared in the same manner as in Example 34, pelletized on an extruder using a biaxial screw having a diameter of 2.5 cm, operating at 250 rpm, L / D 32 It was prepared by.
  • Blending 30 parts by weight of glass fiber to 100 parts by weight of polyketone terpolymer prepared in the same manner as in Example 34, pelletized on an extruder using a biaxial screw with a diameter of 2.5 cm, operating at 250 rpm, L / D 32 Prepared as phase.
  • the prepared polyketone resin composition of Example was prepared as a specimen, and then evaluated for physical properties in the following manner compared to the product of Comparative Example, and the results are shown in Table 10 below.
  • the retention rate of Izod impact strength per 5 cycles was evaluated at a total of 5.5 hours for 1 cycle, which removes surface water after standing at room temperature for a while.
  • the retention evaluation was carried out a total of 20 cycles.
  • the wear amount was measured at 50 rpm of loads of JIS K7218 standard, 150N of load, and 3 km of abrasion distance.
  • Example 34 0.152 0.170 90 0.018 52
  • Example 35 0.154 0.184 88 0.018 54
  • Example 36 0.148 0.182 92 0.016 52
  • Example 37 0.144 0.188 92 0.017 56
  • Example 38 0.150 0.186 94 0.019 54
  • Comparative Example 11 0.180 0.240 60 0.083 30
  • Comparative Example 12 0.182 0.244 58 0.088 28 Comparative Example 13 0.184 0.260 55 0.090 32
  • Comparative Example 14 0.184 0.264 56 0.092 31
  • Comparative Example 15 0.220 0.262 60 0.090 34
  • the polyketone terpolymer and polyketone resin composition of the present invention has excellent oil resistance, calcium chloride resistance, abrasion resistance, and impact strength compared to PA66 for industrial O-rings, pipe liners, snow chains, automotive fuel tubes, and automobiles. It was found to be very suitable for use in an engine cover or the like.
  • Linear alternating polyketone terpolymers consisting of carbon monoxide, ethylene and propene include palladium acetate, trifluoroacetic acid and ((2,2-dimethyl-1,3-dioxane-5,5-diyl) bis (methylene)) bis ( Prepared in the presence of a catalyst composition produced from bis (2-methoxyphenyl) phosphine).
  • the content of trifluoroacetic acid relative to palladium is 10 times the molar ratio, and the first stage and the second stage of 84 °C polymerization temperature 78 °C.
  • a screw was used to produce pellets on an extruder and then injection molded to prepare specimens of a cylinder head cover.
  • a screw was used to produce pellets on an extruder and then injection molded to prepare specimens of a cylinder head cover.
  • Izod impact strength evaluation It was performed according to ASTM D256.
  • the Example was shown to be superior in dimensional stability, impact resistance and oil resistance compared to Comparative Example 15. Therefore, the cylinder head cover manufactured through the embodiment of the present invention exhibits excellent dimensional stability, impact resistance and oil resistance than the comparative example used as a conventional cylinder head cover material, and thus is more suitable for application as a cylinder head cover.
  • Linear alternating polyketone terpolymers consisting of carbon monoxide, ethylene and propene include palladium acetate, trifluoroacetic acid and ((2,2-dimethyl-1,3-dioxane-5,5-diyl) bis (methylene)) bis ( Prepared in the presence of a catalyst composition produced from bis (2-methoxyphenyl) phosphine).
  • the content of trifluoroacetic acid relative to palladium is 10 times the molar ratio, and the first stage and the second stage of 84 °C polymerization temperature 78 °C.
  • a screw was used to produce pellets on an extruder and then injection molded to prepare specimens of a power steering oil reservoir tank.
  • a screw was used to produce pellets on an extruder and then injection molded to prepare specimens of a power steering oil reservoir tank.
  • the power steering oil reservoir tank manufactured through the embodiment of the present invention exhibits better chemical resistance than the comparative example used as a conventional power steering oil reservoir tank material, and thus is more suitable for application as a power steering oil reservoir tank. .
  • Linear alternating polyketone terpolymers consisting of carbon monoxide, ethylene and propene include palladium acetate, trifluoroacetic acid and ((2,2-dimethyl-1,3-dioxane-5,5-diyl) bis (methylene)) bis ( Prepared in the presence of a catalyst composition produced from bis (2-methoxyphenyl) phosphine).
  • the content of trifluoroacetic acid relative to palladium is 11 times the molar ratio, and the first stage and the second stage of 84 °C polymerization temperature 80 °C.
  • the molar ratio of ethylene and propene in the polyketone terpolymer prepared above was 85 to 15.
  • the melting point of the polyketone terpolymer was 220 ° C
  • LVN measured at 25 ° C by hexa-fluoroisopropano (HFIP) was 1.4 dl / g
  • MWD was 2.0.
  • the prepared test specimen was injection molded on a molding machine having a clamping force of 80 tons to prepare a fuel pump specimen.
  • Linear alternating polyketone terpolymers consisting of carbon monoxide, ethylene and propene include palladium acetate, trifluoroacetic acid and ((2,2-dimethyl-1,3-dioxane-5,5-diyl) bis (methylene)) bis ( Prepared in the presence of a catalyst composition produced from bis (2-methoxyphenyl) phosphine).
  • the content of trifluoroacetic acid relative to palladium is 10 times the molar ratio, and the first stage and the second stage of 84 °C polymerization temperature 78 °C.
  • the molar ratio of ethylene and propene in the polyketone terpolymer prepared above was 85 to 15.
  • the polyketone terpolymer had a melting point of 220 ° C., LVN measured at 25 ° C. with HFIP (hexa-fluoroisopropano) at 1.6 dl / g, and an MWD of 2.0.
  • the prepared test specimen was injection molded on a molding machine having a clamping force of 80 tons to prepare a fuel pump specimen.
  • Linear alternating polyketone terpolymers consisting of carbon monoxide, ethylene and propene include palladium acetate, trifluoroacetic acid and ((2,2-dimethyl-1,3-dioxane-5,5-diyl) bis (methylene)) bis ( Prepared in the presence of a catalyst composition produced from bis (2-methoxyphenyl) phosphine).
  • the content of trifluoroacetic acid relative to palladium is 9 times the molar ratio, and the first stage and the second stage of 84 °C polymerization temperature 74 °C.
  • the molar ratio of ethylene and propene in the polyketone terpolymer prepared above was 85 to 15.
  • the polyketone terpolymer had a melting point of 220 ° C., LVN measured at 25 ° C. with HFIP (hexa-fluoroisopropano) at 2.0 dl / g, and MWD at 2.0.
  • the prepared test specimen was injection molded on a molding machine having a clamping force of 80 tons to prepare a fuel pump specimen.
  • Example 48 Example 49 Comparative Example 17 Product Strain-Vertical (50 ° C, RH 90%) 0.12 0.14 0.10 0.25 Product Strain-Horizontal (50 ° C, RH 90%) 0.04 0.03 0.05 0.12 Oil resistance (%) 85 90 86 70 Formability Good Good Good usually
  • the vehicle fuel pump manufactured through the embodiment of the present invention exhibits excellent oil resistance, formability, and dimensional stability than those of the comparative example used as a conventional vehicle fuel pump material, and thus are more suitable for application as a vehicle fuel pump.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • General Engineering & Computer Science (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyethers (AREA)

Abstract

본 발명은 폴리케톤 수지 조성물 및 이의 제조방법에 관한 것으로 하기 일반식 (1)과 (2)로 표시되는 반복 단위로 이루어진 폴리케톤 터폴리머에 ABS, 유리섬유, 설퍼아마이드계 가소제, 미네랄 필러를 혼합하여 제조되며 내유성, 내염화칼슘성, 내충격성 등이 요구되는 각종 산업 분야에 적용가능하다. -[-CH2CH2-CO]x- (1) -[-CH2-CH(CH3)-CO]y- (2)

Description

내유성이 우수한 폴리케톤 수지 조성물
본 발명은 내유성, 내염화칼슘성, 내마모성이 우수한 폴리케톤 수지 조성물에 관한 것으로 보다 상세하게는 ABS, 유리섬유, 설퍼아마이드계 가소제, 미네랄 필러 등을 혼합하여 제조되며, 산업용 오링, 파이프 라이너, 스노우 체인, 자동차 연료튜브, 자동차 엔진 커버, 차량용 실린더 헤드 커버, 파워 스티어링 오일 리저버 탱크, 차량용 연료 펌프 등으로 사용 가능한 폴리케톤 수지 조성물에 관한 것이다.
나일론 66, 폴리테트라플루오르에틸렌(PTFE), 폴리카보네이트(PC)등과 같은 엔지니어링 플라스틱은 내수성, 내열성, 내마모성, 물성유지, 전기절연성 등이 우수하고 성형이 용이하여 자동차 내·외장재, 전기전자부품, 필름 등 다양한 용도로 사용되고 있다. 그러나, 상기 엔지니어링 플라스틱은 수분의 흡수에 따른 물성 변화, 산, 고온의 알코올, 열수 중에서의 열화 등의 문제점이 있다.
특히 상기한 엔지니어링 플라스틱이 산업용 오링, 파이프 라이너, 스노우 체인, 자동차 연료튜브, 자동차 엔진 커버 등과 같이 직접적으로 기름에 접촉되는 부분에 적용될 경우 내유성이 약할 뿐만 아니라 내염화칼슘성, 내마모성에 문제가 있다.
이에 비하여 폴리케톤 (polyketone, PK)은 내열성 내화학성, 내충격성이 우수할 뿐만 아니라 내유성, 내염화칼슘성, 내마모성이 탁월하여 상기한 적용분야에 있어서 기존의 나일론 66, 폴리테트라플루오르에틸렌(PTFE), 폴리카보네이트(PC)를 대체할 신소재로 각광 받고 있다.
상기와 같은 특성을 지닌 폴리케톤은 일산화탄소 (CO) 와 에틸렌 (ethylene) 및 프로필렌 (propylene) 과 같은 올레핀 (olefin) 을 촉매로 팔라듐 (Pd) 이나 니켈 (Ni) 등과 같은 전이 금속 착체 (complex) 를 이용하여 중합시킴으로써 일산화탄소와 올레핀이 서로 번갈아 결합함으로써 얻어진다는 것은 이미 공지되어 있다.
(공업 재료. 12월호. 5페이지 . 1997년)
미국특허 제4,880,903호는 일산화탄소와 에틸렌과 타 올레핀계 불포화 탄화수소, 예를 들면 프로필렌(propylene)으로 이루어진 선상 교대 폴리케톤 터폴리머 (polyketone terpolymer)를 개시하고 있다.
폴리케톤 폴리머의 제조 방법은 통상 팔라듐(palladium), 코발트 (cobalt) 또는 니켈(nikel)중으로부터 선택된 제VIII족 금속의 화합물과, 비하이드로 할로겐(hydro halogen) 강산(strongon-hydrohalogentic acid)의 음이온과, 인, 비소 또는 안티몬(Antimon)의 2좌 배위자로부터 생성되는 촉매 조성물을 사용한다. 미국 특허 제4,843,144는 팔라튬 화합물과, pKa가 6 미만의 비하이드로할로겐산의 음이온과, 인의 2좌 배위자로 되는 촉매를 사용하여 일산화탄소와 적어도 1개의 에틸렌계 불포화 탄화수소와의 폴리머를 제조하는 방법을 개시하고 있다.
또한, 최근 플라스틱의 고부가가치화, 고성능화에의 요망, 그리고 하이테크 산업의 진전에 있어서 폴리케톤에 여러 충전제를 사용하고 있다. 충전제의 역할은 원가절감, 물성 또는 성질의 개선, 기능부여 및 가공성 개선등으로 볼 수 있다.
이에 따라 상기 폴리케톤 블렌드의 기계적 특성은 열가소성 플라스틱의 응용 산업분야가 다양화 되고 더욱 우수한 특성을 요구하는 산업계의 요청으로 인해 내유성내염화칼슘성 및 내마모성이 우수한 폴리케톤에 대한 연구가 요구되고 있다.
본 발명은 상기한 문제점을 해결하고자 내유성, 내염화칼슘성, 내마모성이 우수한 폴리케톤 수지 조성물을 제공하는 것을 목적으로 한다.
상기한 과제를 해결하기 위하여 본 발명은 하기 일반식 (1)과 (2)로 표시되는 반복 단위로 이루어진 폴리케톤 공중합체로서, y/x가 0.03 내지 0.3인 선상 교대 폴리케톤과 아크릴로니트릴 부타디엔 스티렌, 유리섬유, 설퍼아마이드계 가소제 및 미네랄 필러가 첨가된 내유성이 향상된 폴리케톤 수지 조성물을 과제 해결을 위한 수단으로 제공한다.
-[-CH2CH2-CO]x- (1)
-[-CH2-CH(CH3)-CO]y- (2)
(x, y는 폴리머 중의 일반식 (1) 및 (2)의 각각의 몰%를 나타낸다.)
상기 폴리케톤 조성물 전체 중량에 대하여 아크릴로니트릴 부타디엔 스티렌의 조성비는 8 내지 20중량%이 바람직하며 연료필러 넥 튜브에 적용될 수 있다. 상기 폴리케톤 조성물은 50℃ 가솔린 용액에서 48시간 침적후의 흡유량이 0.15%이하, 상기 폴리케톤의 중합시 사용되는 촉매조성물의 리간드는 ((2,2-디메틸-1,3-디옥산-5,5-디일)비스(메틸렌))비스(비스(2-메톡시페닐)포스핀)인 것이 바람직하다.
일산화탄소와 적어도 1종의 올레핀계 불포화 탄화수소로 이루어지고, 팔라듐 촉매잔량이 5 내지 50ppm이고, 분자량 분포가 1.5 내지 3.0인 선상 교대 폴리케톤 폴리머 60 내지 85 중량%와 유리섬유 15 내지 40 중량%를 포함하는 블렌드를 사출성형하여 제조되는 것을 특징으로 하는 실린더 헤드 커버, 차량용 파워 스티어링 오일 리저버 탱크 제조방법을 제공한다.
일산화탄소와 적어도 1종의 올레핀계 불포화 탄화수소로 이루어지고, 팔라듐 촉매잔량이 5 내지 50ppm이고, 분자량 분포가 1.5 내지 2.5인 선상 교대 폴리케톤 폴리머를 사출성형하여 제조되며, 상기 선상 교대 폴리케톤 폴리머의 고유점도는 1.0 내지 2.0dl/g이고, 상기 산업용 오링은 50℃로 유지된 엔진 오일에 24시간 침지한 후 측정한 충격강도가 25℃, 상대습도 65%RH에서 측정한 충격강도 대비 85% 이상 수준을 유지하며, 상기 오링은 유압용인 것을 특징으로 하는 산업용 오링 제조방법을 제공한다.
일산화탄소와 적어도 1종의 올레핀계 불포화 탄화수소로 이루어지고, 팔라듐 촉매잔량이 5 내지 50ppm이고, 분자량 분포가 1.5 내지 2.5인 선상 교대 폴리케톤 폴리머를 사출성형하여 제조되며, 상기 선상 교대 폴리케톤 폴리머의 고유점도는 1.0 내지 3.0dl/g이고, 상기 파이프 라이너는 50℃로 유지된 엔진 오일에 24시간 침지한 후 측정한 충격강도가 25℃, 상대습도 65%RH에서 측정한 충격강도 대비 85% 이상 수준을 유지하는 것을 특징으로 하는 파이프 라이너 제조방법을 제공한다.
일산화탄소와 적어도 1종의 올레핀계 탄화수소로 이루어진 선상 교대 폴리케톤 블렌드를 사출성형하여 제조되고, 고유점도(LVN)가 1.2 내지 2.0 dl/g이고, 분자량 분포가 1.5 내지 3.5이며, 내염화칼슘성 물성유지율이 80% 이상인 것을 특징으로 하는 내염화칼슘성이 우수한 폴리케톤 성형품을 제공한다.
일산화탄소와 적어도 1종의 올레핀계 탄화수소로 이루어지며, 고유점도(LVN)가 1.2 내지 2.0 dl/g이고, 분자량 분포가 1.5 내지 3.5인 선상 교대 폴리케톤과 에이비에스(ABS)를 포함하는 블렌드를 사출성형하여 제조되고, 내염화칼슘성 물성유지율이 80% 이상이 바람직하며, 에이비에스(ABS)의 함량은 전체 중량대비 15 내지 35 중량%, 상기 폴리케톤 스노우 체인은 온도 50℃, 상대습도 90%의 조건에서 흡습율이 1.5% 이하, 상기 폴리케톤 스노우 체인은 충격강도가 80kJ/㎡ 이상인 것을 특징으로 하는 내염화칼슘성이 우수한 폴리케톤 스노우 체인 제조방법을 제공한다.
일산화탄소와 적어도 1종의 올레핀계 탄화수소로 이루어진 선상 교대 폴리케톤을 사출성형하여 제조되고 염화칼슘 5% 또는 35% 수용액에서 충격강도 유지율이 80% 이상인 것을 특징으로 하며, 상기 폴리케톤의 고유점도가 1.0 내지 2.0dl/g 이고, 폴리케톤의 중합시 사용되는 촉매조성물의 리간드는 ((2,2-디메틸-1,3-디옥산-5,5-디일)비스(메틸렌))비스(비스(2-메톡시페닐)포스핀)이고, 상기 폴리케톤 부품이 휠 캡이며, 상기 휠 캡의 충격강도는 20kJ/m2 이상, 흡습율이 온도 50℃, 상대습도 90%인 조건에서 1.5%이하인 것을 특징으로 하는 자동차 외장용 폴리케톤 부품 제조방법을 제공한다.
일산화탄소와 적어도 1종의 올레핀계 불포화 탄화수소로 이루어진 선상 교대 폴리케톤과 유리섬유를 포함하는 블렌드 조성물을 사출성형하여 제조되는 폴리케톤엔진 부품에 있어서, 이 때 상기 선상 교대 폴리케톤을 물 및 엔진오일에 각각 24시간 침지하였을 때의 인장강도 유지율이 각 80% 이상이며, 상기 엔진 부품은 엔진 실린더블록 브라켓, 엔진형 공기 흡입 매니폴드, 캐니스터 또는 밋션오일 보관탱크이고, 상기 유리섬유는 폴리케톤 100중량부 대비 25 내지 35 중량부, 상기 폴리케톤의 고유점도는 1.0 내지 2.0 dl/g인 것을 특징으로 하는 폴리케톤 엔진 부품을 제공한다.
일산화탄소와 적어도 1종의 올레핀계 탄화수소로 이루어진 선상 교대 폴리케톤 50 내지 90중량%와 유리섬유 10 내지 50 중량%를 혼합한 블렌드를 사출성형하여 자동차 밸브 바디를 제조하고, 50℃의 가솔린에 48시간 침적시킨후 흡유량이 0.14%이하이며, 폴리케톤 자동차 밸브 바디의 충격강도는 15kJ/m2 이상, 상기 폴리케톤 자동차 밸브 바디의 굴곡강도는 80MPa 이상, 폴리케톤의 고유점도는 1.0 내지 2.0 dl/g 이고, 분자량 분포는 1.5 내지 2.5인 것을 특징으로 하는 폴리케톤 자동차 밸브 바디를 제공한다.
자동차용 연료 튜브는 23℃, 상대습도 50%RH에서 연료투과도가 0.005 g.mm/m2.day 이하이며, 60℃ 가솔린에 3000시간 침지 후 측정한 굴곡강도가 25℃ 가솔린에 침지한 후 측정한 굴곡강도 대비 98% 이상 수준을 유지하고, 상기 자동차용 연료 튜브는 60℃ 가솔린에 3000시간 침지 후 측정한 무게가 25℃ 가솔린에 침지한 후 측정한 무게의 변화율이 0.4% 이하인 것을 특징으로 하는 자동차용 연료 튜브를 제공한다.
일산화탄소와 적어도 1종의 올레핀계 탄화수소로 이루어진 선상 교대 폴리케톤, 유리섬유 및 미네랄 필러를 혼합한 블렌드를 사출성형하여 자동차 엔진 커버를 제조하고, 상기 유리섬유는 블렌드 전체대비 5 내지 30중량%이고, 상기 미네랄 필러는 10 내지 20중량%이며, 고유점도가 1.0 내지 2.0 dl/g, 에틸렌과 프로필렌의 몰비%가 9 내지 24 : 1, 분자량 분포가 1.5 내지 2.5가 바람직하며, 상기 폴리케톤의 중합시 사용되는 촉매 조성물의 리간드는 ((2,2-디메틸-1,3-디옥산-5,5-디일)비스(메틸렌))비스(비스(2-메톡시페닐)포스핀)인 것을 특징으로 하는 폴리케톤 자동차 엔진 커버를 제공한다.
일산화탄소와 적어도 1종의 올레핀계 탄화수소로 이루어진 선상 교대 폴리케톤을 사출성형하여 제조된 차량용 폴리케톤 연료 펌프의 가솔린 50℃ 침적 48시간 경과 후 인장강도 유지율이 80%이상이며, 에틸렌과 프로필렌의 몰비%가 99:1 내지 85:15, 상기 차량용 폴리케톤 연료 펌프는 베이스 상태에서 치수변화율이 1.3% - 1.5%, 상기 폴리케톤의 고유 점도가 1.0 내지 2.0dl/g이 바람직하고, 상기 폴리케톤의 중합에 사용되는 촉매조성물의 리간드는 ((2,2-디메틸-1,3-디옥산-5,5-디일)비스(메틸렌))비스(비스(2-메톡시페닐)포스핀)인 것을 특징으로 하는 차량용 폴리케톤 연료 펌프를 제공한다.
본 발명의 폴리케톤 수지 조성물은 내유성, 내염화칼슘성, 내마모성이 우수하여 산업용 오링, 파이프 라이너, 스노우 체인, 휠캡, 엔진부품, 자동차 밸브 바디, 자동차 연료튜브, 자동차 엔진 커버, 차량용 실린더 헤드 커버, 파워 스티어링 오일 리저버 탱크, 차량용 연료 펌프 등으로 적용 가능한 장점이 있다.
이하, 본 발명에 대해 상세히 설명한다.
본 발명에서 사용되는 폴리케톤(poly ketone)수지는 엔지니어링 플라스틱이며 근래 개발된 새로운 수지로서, 충격강도 등과 같은 기계적 물성 및 성형 특성이 탁월하여 각종 성형품이나 부품의 소재로 유용하게 적용되고 있는 열가소성 합성수지이다. 폴리케톤 수지의 기계적 물성은 고성능 플라스틱의 범주에 속하며, 일산화탄소를 원료로 합성하는 고분자 물질인 바, 친환경 소재로서도 크게 주목받고 있다.
폴리케톤 수지는 나일론 재질에 비하여 수분흡습도가 낮아 수분 흡습에 따른 치수 및 물성변화가 적고 다양한 제품 설계가 가능한 소재이다. 특히 폴리케톤수지는 알루미늄 재질에 비하여 밀도가 낮아 제품 경량화에도 매우 적합하다.
본 발명은 일산화탄소와 적어도 1종의 올레핀계 불포화 탄화수소로 이루어지고, 팔라듐 촉매잔량이 5 내지 50ppm이고, 분자량 분포가 1.5 내지 3.0인 선상 교대 폴리케톤 폴리머를 사출성형하여 제조되는 산업용 오링을 제공한다. 이때, 본 발명의 산업용 오링은 폴리케톤을 링(ring) 형태로 사출하여 펌프와 같이 왕복운동을 하는 장치의 실링으로 사용하는 것을 특징으로 한다.
본 발명은 일산화탄소와 적어도 1종의 올레핀계 불포화 탄화수소로 이루어지고, 팔라듐 촉매잔량이 5 내지 50ppm이고, 분자량 분포가 1.5 내지 3.0인 선상 교대 폴리케톤 폴리머 60 내지 85 중량%와 유리섬유 15 내지 40 중량%를 포함하는 블렌드를 사출성형하여 제조되는 실린더 헤드 커버 및 차량용 파워 스티어링 오일 리저버 탱크를 제공한다.
이때, 상기 유리섬유는 그 입경이 10 내지 15㎛인 것이 바람직하나, 이에 한정되는 것은 아니다. 유리섬유의 입경이 10㎛ 미만이면 유리섬유의 형상이 변하여 기계적 물성이 저하될 수 있다.
또한, 상기 유리섬유의 조성물 전체 대비 조성비는 15 내지 40 중량%인 것이 바람직하다. 상기 유리섬유의 조성비가 15 중량% 미만일 경우에는 기계적 강성이 저하될 수 있으며, 40중량%를 초과하는 경우에는 압출 및 사출 작업성이 저하되는 문제점이 발생할 수 있다.
본 발명은 일산화탄소와 적어도 1종의 올레핀계 불포화 탄화수소로 이루어지고, 팔라듐 촉매잔량이 5 내지 50ppm이고, 분자량 분포가 1.5 내지 3.0인 선상 교대 폴리케톤 폴리머를 사출성형하여 제조되는 파이프 라이너를 제공한다. 이때, 본 발명의 파이프 라이너는 폴리케톤을 압출공정을 통하여 파이프로 만들어 스틸 파이프 내부에 삽입하여 사용함으로써, 스틸 파이프의 부식을 방지하는 역할을 한다. 본 발명에 따른 상기 파이프 라이너는 50℃로 유지된 엔진 오일에 24시간 침지한 후 측정한 충격강도가 25℃, 상대습도 65%RH에서 측정한 충격강도 대비 85% 이상 수준을 유지하는 것을 특징으로 한다.
자동변속기의 밸브바디에 관한 것으로서, 보다 상세하게는 폴리케톤을 소재로 제조된 밸브바디에 관한 것으로, 일반적으로 자동변속기는 토오크 컨버터와, 이 토오크 컨버터에 연결되어 있는 다단 변속 메카니즘을 가지고 있으며, 차량의 주행상태에 따라 변속기어 메카니즘의 기어단중 어느 하나의 기어단을 선택하기 위한 유압작동 마찰요소를 포함하고 있다. 이러한 자동차용 자동변속기의 유압제어 시스템은, 오일펌프로부터 발생된 유압을 제어 밸브를 통하여 마찰요소를 선택하여 작동시킴으로서 차량의 주행상태에 따라 적절한 변속이 자동적으로 행하여질 수 있도록 하는 작용을 한다. 이러한 유압제어 시스템은 오일펌프로부터 발생된 유압을 조절하는 압력 조절수단과, 변속모드를 형성시켜 줄수 있는 수동 및 자동 변속 컨트롤 수단과, 변속시 원활한 변속모드 형성을 위해 변속감 및 응답성을 조절하는 유압 컨트롤 수단과, 토오크 컨버터의 댐퍼 클러치 작동을 위한 댐퍼 클러치 컨트롤 수단과, 각 마찰요소에 적절한 유압공급을 분배하는 유압분배 수단을 포함하여 이루어진다. 그리고 통상적으로 사용되고 있는 자동차용 자동 변속기는 엔진의 출력축에 연결되어 함께 구동하는 펌프 임펠러와, 변속기의 입력축에 연결되어 함께 작동하는 터어빈 런너와, 상기한 임펠러와 터어빈 런너 사이에 배치된 스테이터를 포함하는 유체 토오크 컨버터를 가지고 있다.
이러한 구성에 의하여 유체가 터어빈 런너로부터 임펠러로 들어갈 때 펌프 임펠러의 회전을 방해하지 않는 방향으로 흐르도록 하는 스테이터의 보조작용으로 엔진에 의해 구동하는 펌프 임펠러에 의해 유체는 순환하게 된다. 자동 변속은 각 변속단마다 클러치 또는 킥 다운 브레이크와 같은 마찰요소의 작동에 의해 유성기어 장치에서 변속비가 바뀌어져 이루어진다. 또한, 상기한 마찰요소는 유압제어장치의 다수의 밸브들에 의해 유압의 흐름방향이 바뀌어 선택적으로 작동하게 되는데, 매뉴얼 밸브는 운전자의 시프트 레버의 선택 위치에 포트 변환이 이루어져 오일 펌프로부터 유체압을 공급받도록 되어 있으며, 이 유체압을 시프트 컨트롤 밸브로 공급 할 수 있는 관로로 연결을 이루고 있다.
특히 상기한 유압 컨트롤 수단은 유압분배수단으로 전달되는 유압이 적정한 압력을 가지도록 트랜스밋션 제어유닛에 의하여 제어되는 압력 컨트롤 밸브 및 이 압력 컨트롤 밸브를 제어하기 위한 압력 컨트롤 솔레노이드 밸브를 가진다.
이러한 압력 컨트롤솔레노이드 밸브는 2웨이 밸브가 주로 사용되었으나, 제어압 파동특성등이 좋지 않아 3웨이 밸브로 대체되어 압력 컨트롤 밸브를 제어하고 있다. 상기의 밸브들로 이루어진 밸브바디는 오일등에 노출될 가능성이 높으며 본 발명은 밸브바디를 이루는 소재로 내유성, 내충격성이 우수한 소재인 폴레케톤을 사용한다.
본 발명에서는 폴리머의 가공성이나 물성을 개선하기 위하여 종래 알려져 있는 첨가제, 예를 들면 산화방지제, 안정제, 충전제, 내화재료, 이형제, 착색제 및 기타재료를 포함할 수 있다. 상기와 같은 폴리케톤을 압출 성형 또는 사출 성형에 의하여 폴리케톤 스노우 체인을 제조할 수 있다. 제조된 스노우 체인은 내염화칼슘성 물성유지율이 80% 이상으로 내화학성이 뛰어나며, 제품 흡습율이 온도 50℃, 상대습도 90% 인 조건에서 1.5% 이하로서, 내수성이 우수하다. 이 때 스노우 체인의 충격강도는 적어도 80kJ/㎡ 으로서, 충격강도가 80kJ/㎡ 미만인 경우, 쉽게 충격에 의하여 파손될 수 있다.
이하, 상기 폴리케톤의 제조공정을 설명한다.
폴리케톤의 제조공정은 (a) 제 9족, 제 10족 또는 제 11족 전이금속 화합물, (b) 제 15족의 원소를 가지는 리간드로 이루어지는 유기금속 착체 촉매의 존재 하에, 액상 매체 중에서 일산화탄소와 에틸렌성 및 프로필렌성 불포화 화합물을 삼원 공중합시켜 폴리케톤을 제조하는 방법에 있어서, 상기 일산화탄소, 에틸렌 및 프로필렌은 알코올(예컨대, 메탄올)과 물의 혼합용매에서 액상 중합되어 선상 터폴리머를 생성하는데, 상기 혼합용매로는 메탄올 100 중량부 및 물 2~10 중량부의 혼합물을 사용할 수 있다. 혼합용매에서 물의 함량이 2 중량부 미만이면 케탈이 형성되어 공정시 내열안정성이 저하될 수 있으며, 10 중량부를 초과하면 제품의 기계적 물성이 저하될 수 있다.
본 발명에서는 액상 매체로서 종래 폴리케톤의 제조에 주로 사용되어 오던 메탄올, 디클로로메탄 또는 니트로메탄 뿐 아니라, 초산과 물로 이루어지는 혼합용매, 에탄올과 프로파놀, 이소프로파놀 등을 사용할 수 있다. 특히 폴리케톤의 제조에 액상 매체로서 초산과 물의 혼합용매를 사용하면, 폴리케톤의 제조비용을 절감시키면서 촉매활성도 향상시킬 수 있다. 또한, 메탄올 또는 디클로로메탄 용매의 사용은 중합 단계 중 정지 반응을 유발하는 메카니즘을 형성하므로 용매에서 메탄올 또는 디클로로메탄을 제외한 초산, 물의 사용은 확률적으로 촉매 활성의 중단 효과를 가지고 있지 않으므로 중합 활성의 향상에 지대한 역할을 한다.
액상매체로서 초산과 물의 혼합용매를 사용시, 물의 농도가 10용량% 미만으로 적을 때는 촉매활성에 영향을 덜미치지만, 10용량% 이상의 농도가 되면 촉매활성이 급격히 증가한다. 반면, 물의 농도가 30용량%를 초과하면 촉매활성은 감소하는 경향을 보인다. 따라서, 액상매체로서 7090용량%의 초산과 1030용량%의 물로 이루어지는 혼합용매를 사용하는 것이 바람직하다.
여기서 촉매는, 주기율표(IUPAC 무기화학 명명법 개정판, 1989)의 (a) 제 9족, 제 10족 또는 제 11족 전이금속 화합물, (b) 제 15족의 원소 및 (c) pKa가 4 이하인 산의 음이온를 가지는 리간드로 이루어지는 것이다.
제 9족, 제 10족 또는 제 11족 전이금속 화합물(a) 중 제 9족 전이금속 화합물의 예로서는, 코발트 또는 루테늄의 착체, 카본산염, 인산염, 카바민산염, 술폰산염 등을 들 수 있고, 그 구체예로서는 초산 코발트, 코발트 아세틸아세테이트, 초산 루테늄, 트리플루오로 초산 루테늄, 루테늄 아세틸아세테이트, 트리플루오로 메탄 술폰산루테늄 등을 들 수 있다.
제 10족 전이금속 화합물의 예로서는, 니켈 또는 팔라듐의 착체, 카본산염, 인산염, 카바민산염, 술폰산염 등을 들 수 있고, 그 구체예로서는 초산 니켈, 니켈 아세틸아세테이트, 초산 팔라듐, 트리플루오로 초산 팔라듐, 팔라듐 아세틸아세테이트, 염화 팔라듐, 비스(N,N-디에틸카바메이트)비스(디에틸아민)팔라듐, 황산 팔라듐 등을 들 수 있다.
제 11족 전이금속 화합물의 예로서는, 구리 또는 은의 착체, 카본산염, 인산염, 카바민산염, 술폰산염 등을 들 수 있고, 그 구체예로서는 초산 구리, 트리플루오로 초산 구리, 구리 아세틸아세테이트, 초산 은, 트리플루오로초산 은, 은 아세틸아세테이트, 트리플루오로메탄 술폰산 은 등을 들 수 있다.
이들 중에서 값싸고 경제적으로 바람직한 전이금속 화합물(a)은 니켈 및 구리 화합물이고, 폴리케톤의 수득량 및 분자량의 면에서 바람직한 전이금속 화합물(a)은 팔라듐 화합물이며, 촉매활성 및 고유점도 향상의 면에서 초산 팔라듐을 사용하는 것이 가장 바람직하다.
제 15족의 원자를 가지는 리간드(b)의 예로서는, 2,2'-비피리딜, 4,4'-디메틸-2,2'-비피리딜, 2,2'-비-4-피콜린, 2,2'-비키놀린 등의 질소 리간드, 1,3-비스(디페닐포스피노)프로판, 1,4-비스(디페닐포스피노)부탄, 1,3-비스[디(2-메틸)포스피노]프로판, 1,3-비스[디(2-이소프로필)포스피노]프로판, 1,3-비스[디(2-메톡시페닐)포스피노]프로판, 1,3-비스[디(2-메톡시-4-술폰산나트륨-페닐)포스피노]프로판, 1,2-비스(디페닐포스피노)시클로헥산, 1,2-비스(디페닐포스피노)벤젠, 1,2-비스[(디페닐포스피노)메틸]벤젠, 1,2-비스[[디(2-메톡시페닐)포스피노]메틸]벤젠, 1,2-비스[[디(2-메톡시-4-술폰산나트륨-페닐)포스피노]메틸]벤젠, 1,1'-비스(디페닐포스피노)페로센, 2-히드록시-1,3-비스[디(2-메톡시페닐)포스피노]프로판, 2,2-디메틸-1,3-비스[디(2-메톡시페닐)포스피노]프로판 등의 인 리간드 등을 들 수 있다.
이들 중에서 바람직한 제 15족의 원소를 가지는 리간드(b)는, 제 15족의 원자를 가지는 인 리간드이고, 특히 폴리케톤의 수득량의 면에서 바람직한 인 리간드는 1,3-비스[디(2-메톡시페닐)포스피노]프로판, 1,2-비스[[디(2-메톡시페닐)포스피노]메틸]벤젠이고, 폴리케톤의 분자량의 측면에서는 2-히드록시-1,3-비스[디(2-메톡시페닐)포스피노]프로판, 2,2-디메틸-1,3-비스[디(2-메톡시페닐)포스피노]프로판이고, 유기용제를 필요로 하지 않고 안전하다는 면에서는 수용성의 1,3-비스[디(2-메톡시-4-술폰산나트륨-페닐)포스피노]프로판, 1,2-비스[[디(2-메톡시-4-술폰산나트륨-페닐)포스피노]메틸]벤젠이고, 합성이 용이하고 대량으로 입수가 가능하고 경제면에 있어서 바람직한 것은 1,3-비스(디페닐포스피노)프로판, 1,4-비스(디페닐포스피노)부탄이다.
바람직한 제 15족의 원자를 가지는 리간드(b)는 1,3-비스[디(2-메톡시페닐) 포스피노]프로판 또는 1,3-비스(디페닐포스피노)프로판이고, 가장 바람직하게는 1,3-비스[디(2-메톡시페닐)포스피노]프로판 또는 ((2,2-디메틸-1,3-디옥산-5,5-디일)비스(메틸렌))비스(비스(2-메톡시페닐)포스핀)이다.
[화학식 1]
Figure PCTKR2015007507-appb-I000001
상기 화학식 1의 ((2,2-디메틸-1,3-디옥산-5,5-디일)비스(메틸렌))비스(비스(2-메톡시페닐)포스핀)은 현재까지 소개된 폴리케톤 중합촉매 중 최고활성을 보이는 것으로 알려진 3,3-비스-[비스-(2-메톡시페닐)포스파닐메틸]-1,5-디옥사-스파이로[5,5]운데칸과 동등한 활성 발현을 보이되 그 구조는 더욱 단순하고 분자량 또한 더욱 낮은 물질이다. 그 결과, 본 발명은 당 분야의 폴리케톤 중합촉매로서 최고활성을 확보하면서도 그 제조비용 및 원가는 더욱 절감된 신규한 폴리케톤 중합촉매를 제공할 수 있게 되었다. 폴리케톤 중합촉매용 리간드의 제조방법은 다음과 같다.
비스(2-메톡시페닐)포스핀, 5,5-비스(브로모메틸)-2,2-디메틸-1,3-디옥산 및 수소화나트륨(NaH)을 사용하여 ((2,2-디메틸-1,3-디옥산-5,5-디일)비스(메틸렌))비스(비스(2-메톡시페닐)포스핀)을 얻는 것을 특징으로 하는 폴리케톤 중합촉매용 리간드의 제조방법이 제공된다. 본 발명의 폴리케톤 중합촉매용 리간드 제조방법은 종래 3,3-비스-[비스-(2-메톡시페닐)포스파닐메틸]-1,5-디옥사-스파이로[5,5]운데칸의 합성법과는 달리 리튬이 사용되지 않는 안전한 환경하에서 용이한 프로세스를 통해 ((2,2-디메틸-1,3-디옥산-5,5-디일)비스(메틸렌))비스(비스(2-메톡시페닐)포스핀)을 상업적으로 대량합성할 수 있다.
바람직한 일 구체예에서, 본 발명의 폴리케톤 중합촉매용 리간드 제조방법은 (a) 질소 대기하에서 비스(2-메톡시페닐)포스핀 및 디메틸설폭시드(DMSO)를 반응용기에 투입하고 상온에서 수소화나트륨을 가한 뒤 교반하는 단계; (b) 얻어진 혼합액에 5,5-비스(브로모메틸)-2,2-디메틸-1,3-디옥산 및 디메틸설폭시드를 가한뒤 교반하여 반응시키는 단계; (c) 반응 완료 후 메탄올을 투입하고 교반하는 단계;(d) 톨루엔 및 물을 투입하고 층분리 후 유층을 물로 세척한 다음 무수황산나트륨으로 건조 후 감압 여과를 하고 감압 농축하는 단계; 및 (e) 잔류물을 메탄올 하에서 재결정하여 ((2,2-디메틸-1,3-디옥산-5,5-디일)비스(메틸렌))비스(비스(2-메톡시페닐)포스핀)를 얻는 단계;를 거쳐 수행될 수 있다.
제 9족, 제 10족 또는 제 11족 전이금속 화합물(a)의 사용량은, 선택되는 에틸렌성 및 프로필렌성 불포화 화합물의 종류나 다른 중합조건에 따라 그 적합한 값이 달라지기 때문에, 일률적으로 그 범위를 한정할 수는 없으나, 통상 반응대역의 용량 1리터당 0.01~100밀리몰, 바람직하게는 0.01~10밀리몰이다. 반응대역의 용량이라는 것은, 반응기의 액상의 용량을 말한다. 리간드(b)의 사용량도 특별히 제한되지는 않으나, 전이금속 화합물 (a) 1몰당, 통상 0.1~3몰, 바람직하게는 1~3몰이다.
pKa가 4 이하인 산의 음이온(c)의 예로서는, 트리플루오로 초산, 트리플루오로메탄 술폰산, p-톨루엔 술폰산, m-톨루엔 술폰산 등의 pKa가 4 이하인 유기산의 음이온; 과염소산, 황산, 질산, 인산, 헤테로폴리산, 테트라플루오로붕산, 헥사플루오로인산, 플루오로규산 등의 pKa가 4 이하인 무기산의 음이온; 트리스펜타플루오로페닐보란, 트리스페닐카르베늄 테트라키스(펜타플루오로 페닐)보레이트, N,N-디메틸아리늄 테트라키스(펜타플루오로페닐)보레이트 등의 붕소화합물의 음이온을 들 수 있다.
특히 본 발명에 있어서 바람직한 pKa가 4 이하인 산의 음이온 (c)는 p-톨루엔 술폰산인데, 이는 액상매체로서 초산과 물의 혼합용매와 함께 사용하는 경우에, 높은 촉매 활성을 가질 뿐 아니라, 타이어코드 용으로 적합한 높은 고유점도를 가지는 폴리케톤의 제조가 가능해진다.
상기 (a) 제9족, 제10족 또는 제11족 전이금속 화합물과 (b) 제15족의 원소를 가지는 리간드의 몰비는 팔라듐 원소 1몰당 리간드의 제15족 원소 0.1 내지 20몰, 바람직하게는 0.1 내지 10몰, 더욱 바람직하게는 0.1 내지 5몰의 비율로 첨가되는 것이 좋다. 리간드가 팔라듐 원소 대비 0.1몰 미만으로 첨가되면, 리간드와 전이금속간의 결속력이 저하되어 반응 도중 팔라듐의 탈착이 가속화되며, 반응이 빨리 종결되는 단점이 발생하고, 리간드가 팔라듐 원소 대비 20몰을 초과하여 첨가되면, 유기금속 착체 촉매에 의한 중합반응에 리간드가 가리움효과를 발생시켜 반응속도가 현저히 저하되는 단점이 생길 수 있다.
(a) 제9족, 제10족 또는 제11족 전이금속 화합물과 (c) pKa가 4 이하인 산의 음이온의 몰비는 팔라듐 원소 1몰당 산의 몰비가 0.1 내지 20몰, 바람직하게는 0.1 내지 10몰, 더욱 바람직하게는 0.1 내지 5몰의 비율로 첨가되는 것이 좋다. 산이 팔라듐 원소 대비 0.1몰 미만으로 첨가되면, 폴리케톤의 고유점도 향상의 효과가 만족스럽지 못하고, 산이 팔라듐 원소 대비 20몰을 초과하여 첨가되면, 폴리케톤 제조용 촉매 활성이 오히려 감소하는 경향이 있으므로 바람직하지 않다.
또한, 폴리케톤의 중합시 벤조페논을 첨가하는 것을 또 다른 특징으로 한다.
본 발명에서는 폴리케톤의 중합시 벤조페논을 첨가함으로써 폴리케톤의 고유점도가 향상되는 효과를 달성할 수 있다. 상기 (a) 제 9족, 제 10족 또는 제 11족 전이금속 화합물과 벤조페논의 몰비는 1 : 5~100, 바람직하게는 1 : 40~60 이다. 전이금속과 벤조페논의 몰비가 1 : 5 미만이면 제조되는 폴리케톤의 고유점도 향상의 효과가 만족스럽지 못하고, 전이금속과 벤조페논의 몰비가 1 : 100을 초과하면 제조되는 폴리케톤 촉매활성이 오히려 감소하는 경향이 있으므로 바람직하지 않다.
본 발명에 있어서, 상기 폴리케톤 제조용 촉매와 반응시키는 반응가스는 일산화탄소와 에틸렌성 불포화 화합물을 적절히 혼합하여 사용하는 것이 바람직하다.
일산화탄소와 공중합하는 에틸렌성 불포화 화합물의 예로서는, 에틸렌, 프로필렌, 1-부텐, 1-헥센, 4-메틸-1-펜텐, 1-옥텐, 1-데센, 1-도데센, 1-테트라데센, 1-헥사데센, 비닐시클로헥산 등의 α-올레핀; 스티렌, α-메틸스티렌 등의 알케닐방향족 화합물; 시클로펜텐, 노르보르넨, 5-메틸노르보르넨, 5-페닐노르보르넨, 테트라시클로도데센, 트리시클로도데센, 트리시클로운데센, 펜타시클로펜타데센, 펜타시클로헥사데센, 8-에틸테트라시클로도데센 등의 C4 내지 C40의 환상 올레핀; 염화비닐 등의 할로겐화 비닐; 에틸아크릴레이트, 메틸아크릴레이트 등의 아크릴산 에스테르 등을 들 수 있다. 이들 중에서 바람직한 에틸렌성 불포화 화합물은 α-올레핀이고, 더욱 바람직하게는 탄소수가 2~4인 α-올레핀, 가장 바람직하게는 에틸렌이며 삼원 공중합 폴리케톤 제조에 있어서는 1~20mol% 프로필렌을 투입하는 것이다.
여기에서 일산화탄소와 에틸렌성 불포화 화합물의 투입비를 1 : 12(몰비)로 조절하고 프로필렌을 전체 혼합가스 대비 120mol%로 조절하는 것이 바람직하다. 폴리케톤의 제조시, 일산화탄소와 에틸렌성 불포화 화합물의 투입비를 1 : 1로 하는 것이 일반적이지만, 액상 매체로서 초산과 물의 혼합용매를 사용하고, 중합시 벤조페논을 첨가하는 본 발명에서는 일산화탄소와 에틸렌성 불포화 화합물의 투입비를 1 : 12로 하고 프로필렌을 전체 혼합가스 대비 120mol%로 조절하는 경우 가공성이 향상될 뿐 아니라 촉매활성 및 고유점도 향상을 동시에 달성할 수 있음을 발견하였다. 프로필렌의 투입량이 1mol% 미만일 경우 용융온도를 낮추고자 하는 삼원공중합의 효과를 얻을 수 없고 20mol%를 초과하는 경우에는 고유점도 및 촉매 활성 향상을 저해하는 문제점이 생기게 되므로 투입비를 120mol%로 조절하는 것이 바람직하다.
또한, 중합 공정에서는 액상 매체로서 초산과 물의 혼합용매를 사용하고, 중합시 벤조페논을 첨가하며 일산화탄소와 에틸렌성 불포화 화합물 및 하나 또는 그 이상의 올레핀성 불포화 화합물을 투입함으로써 폴리케톤의 촉매활성 및 고유점도가 향상되는 것 뿐 아니라, 종래 기술에서는 고유점도 향상을 위해 중합시간을 최소한 10시간 이상으로 해야 했던 것과는 달리, 중합시간을 12시간 정도로만 해도 높은 고유점도를 가진 삼원 공중합 폴리케톤의 제조가 가능하다.
일산화탄소와 상기 에틸렌성 불포화 화합물 및 프로필렌성 불포화 화합물 삼원 공중합은 상기 제 9족, 제 10족 또는 제 11족 전이금속 화합물(a), 제 15족의 원소를 가지는 리간드(b) 로 이루어지는 유기금속 착체 촉매에 의해 일어나는 것으로, 상기 촉매는 상기 2성분을 접촉시킴으로써 생성된다. 접촉시키는 방법으로서는 임의의 방법을 채용할 수 있다. 즉, 적당한 용매 중에서 2성분을 미리 혼합한 용액으로 만들어 사용해도 좋고, 중합계에 2성분을 각각 따로따로 공급하여 중합계 내에서 접촉시켜도 좋다.
본 발명에서는 폴리머의 가공성이나 물성을 개선하기 위하여 종래 알려져 있는 첨가제, 예를 들면 산화방지제, 안정제, 충전제, 내화재료, 이형제, 착색제 및 기타재료를 추가적으로 포함할 수 있다.
중합법으로서는 액상 매체를 사용하는 용액중합법, 현탁중합법, 소량의 중합체에 고농도의 촉매 용액을 함침시키는 기상중합법 등이 사용된다. 중합은 배치식 또는 연속식 중 어느 것이어도 좋다. 중합에 사용하는 반응기는, 공지의 것을 그대로, 또는 가공하여 사용할 수 있다. 중합온도에 대해서는 특별히 제한은 없고, 일반적으로 40~180℃, 바람직하게는 50~120℃가 채용된다. 중합시의 압력에 대해서도 제한은 없으나, 일반적으로 상압~20MPa, 바람직하게는 4~15MPa이다.
단량체 단위가 교대로 있고, 따라서 중합체가 일반식-(CO)-A'-(여기서 A'는 적용된 단량체 A로부터 유래된 단량체 단위를 나타냄) 단위로 구성된, 하나 이상의 올레핀형 불포화 화합물(간단히 A로 나타냄)과 일산화탄소의 고분자량 선형중합체는, 중합체가 녹지 않거나 실제로 녹지 않는 희석액 내에서 단량체를 팔라듐-함유 촉매 조성물 용액과 접촉시켜 제조할 수 있다. 중합 과정 동안, 중합체는 희석액 내에서 현탁액의 형태로 얻어진다. 중합체 제조는 주로 배치식(batchwise)으로 수행된다.
중합체의 배치식 제조는 통상적으로 희석액 및 단량체를 함유하고 원하는 온도 및 압력을 갖는 반응기에 촉매를 도입시키므로써 수행한다. 중합이 진행됨에 따라 압력이 떨어지고 희석액 내 중합체의 농도가 올라가며 현탁액의 점성이 높아진다. 현탁액의 점성이, 예를 들어 열 제거와 관련한 어려움이 생길 정도까지 높은 값에 도달할 때까지, 중합을 계속한다. 배치식 중합체 제조 동안, 원한다면 중합 동안 반응기에 단량체를 첨가하여 온도 뿐만 아니라 압력을 일정하게 유지할 수 있다.
이상, 상기와 같은 제조공정을 따라 폴리케톤이 중합공정을 거쳐 제조된다.
한편, 본 발명의 폴리케톤 폴리머는 선상 교대 구조체이고, 또 불포화 탄화수소 1분자마다 실질적으로 일산화탄소를 포함하고 있다. 폴리케톤 폴리머의 전구체로서 사용하는데 적당한 에틸렌계 불포화 탄화수소는 20개까지, 바람직한 것은 10개까지의 탄소 원자를 가진다. 또한 에틸렌계 불포화 탄화수소는 에텐 및 α-올레핀, 예를 들면 프로펜(propene), 1-부텐(butene), 아이소부텐(iso-butene), 1-헥센(hexene), 1-옥텐(octene)과 같은 지방족이거나 또는 다른 지방족 분자상에 아릴(aryl) 치환기를 포함하고, 특히 에틸렌계 불포화 탄소 원자상에 아릴 치환기를 포함하고 있는 아릴 지방족이다. 에틸렌계 불포화 탄화 수소 중 아릴 지방족 탄화수소의 예로서는 스틸렌(styrene), p-메틸스틸렌(methyl styrene), p-에틸스틸렌(ethyl styrene) 및 m-이소프로필 스틸렌(isopropyl styrene)을 들 수 있다. 본발명에서 바람직하게 사용되는 폴리케톤 폴리머는 일산화탄소와 에텐(ethene)과의 코폴리머 또는 일산화탄소와 에텐과 적어도 3개의 탄소원자를 가지는 제2의 에틸렌계 불포화 탄화수소, 특히 프로펜(propene) 같은 α-올레핀과의 터폴리머(terpolymer)이다.
상기 폴리케톤 터폴리머를 본 발명의 블랜드의 주요 폴리머 성분으로서 사용할 때에, 터폴리머내의 제2의 탄화수소 부분을 포함하고 있는 각단위에 대하여, 에틸렌 부분을 포함하고 있는 단위가 적어도 2개 있다. 제2의 탄화수소 부분을 포함하고 있는 단위가 10~100개 있는 것이 바람직하다.
일 구체예로, 상기 폴리케톤 폴리머는 하기 화학식 2로 나타낸 단위를 반복단위로 포함하는 것일 수 있다.
[화학식 2]
-CO-(-CH2-CH2-)-x-CO-(G)-y-
상기 화학식 2에서 G는 에틸렌계 불포화 탄화수소로서, 특히 적어도 3개의 탄소 원자를 가지는 에틸렌계 불포화탄화수소로부터 얻어지는 부분이고, x:y는 적어도 1:0.01이다. 더욱 바람직하게는 99:1 내지 85:15인데, 85:15를 초과하게 되면, 기계적 물성이 떨어지게 되는 문제점이 있다.
상기에서 y가 0인 경우에는 하기 화학식 2와 같이 표기되어질 수 있으며, 코폴리머가 되어 제2의 에틸렌계 불포화 탄화수소를 포함하지 않게 된다.
[화학식 3]
-CO-(-CH2-CH2-)-
그리고 CO-(G)-
상기 화학식 3의 단위가 폴리머 체인(chain) 전체에 랜덤하게 적용된다. 바람직한 y:x비는 0.01~0.5이다. 폴리머 고리의 말단 근본 즉 "캡(cap)"은 폴리머의 제조 중에 어떤 재료가 존재하고 있을지, 또 폴리머가 정제될지 또는 폴리머가 어떻게 정제될지에 따라서 정해진다.
다른 구체예로, 상기 폴리케톤 폴리머는 일반식 (1)과 (2)로 표시되는 반복 단위로 이루어진 공중합체로서, y/x가 0.03~0.3 인 것이 바람직하다. 상기 y/x값의 수치가 0.03 미만인 경우, 용융성 및 가공성이 떨어지는 한계가 있고, 0.3을 초과 하는 경우는 기계적 물성이 떨어진다. 또한 y/x는 더욱 바람직하게 0.03 내지 0.1이다.
-[-CH2CH2-CO]x- (1)
-[-CH2-CH(CH3)-CO]y- (2)
또한, 폴리케톤 폴리머의 에틸렌과 프로필렌의 비를 조절하여 폴리머의 융점을 조절할 수 있다. 일례로, 에틸렌 : 프로필렌 : 일산화탄소의 몰비를 46 : 4 :50으로 조절하는 경우 융점은 약 220℃이나, 몰비를 47.3 : 2.7 : 50 으로 조절하는 경우의 융점은 235℃로 조절된다.
겔 투과 크로마토그래피(chromatography)에 의하여 측정한 수평균 분자량이100~200,000 특별히 20,000~90,000의 폴리케톤 폴리머가 특히 바람직하다. 폴리머의 물리적 특성은 분자량에 따라서, 폴리머가 코폴리머인, 또는 터폴리머인 것에
따라서, 또 터폴리머의 경우에는 존재하는 제2의 탄화 수소부분의 성질에 따라서 정해진다. 본 발명에서 사용하는 폴리머의 통산의 융점은 175℃~300℃이고, 또한 일반적으로는 210℃~270℃ 이다. 표준 세관점도 측정장치를 사용하고 HFIP(Hexafluoroisopropylalcohol)로 60℃에 측정한 폴리머의 극한 점도 수(LVN)는 0.5dl/g~10dl/g, 또한 바람직하게는 0.8dl/g~4dl/g이며, 더욱 바람직하게는, 1.0dl/g~2.0dl/g 이다. 이 때 극한 점도 수가 0.5dl/g 미만이면 기계적 물성이 떨어지고, 10dl/g 을 초과하면 가공성이 떨어지는 문제점이 발생한다.
폴리케톤 폴리머의 바람직한 제조 방법은 미국 특허 제4,843,144호에 개시되어 있다. 팔라튬 화합물과(18℃의 수중에서 측정했다.) pKa 6미만 또는 바람직하게는 pKa 2미만의 비하이드로 할로겐산의 음이온과 인의 2좌 배위자로부터 적절히 생성되는 촉매 조성물의 존재 하에서 일산화탄소와 탄화 수소 모노머를 중합 조건하에서 접촉시켜서 폴리케톤 폴리머를 제조한다.
폴리케톤 폴리머의 제조법으로는 일산화탄소와 올레핀을 팔라듐 화합물, PKa가 6이하인 산, 인의 이배위자 화합물로 이루어진 촉매 조성물을 통해 알코올 용매하에 실시되는 액상 중합을 채용할 수 있다. 중합 반응 온도는 50~100℃가 바람직하며 반응 압력은 40~60bar이다. 폴리머는 중합 후 여과, 정제 공정을 통해 회수하며 남은 촉매 조성물은 알코올이나 아세톤 등의 용매로 제거한다.
한편, 폴리케톤의 분자량 분포는 1.5 내지 2.5인 것이 좋고, 보다 바람직하게는 1.8~2.2이 좋다. 1.5 미만은 중합수율이 떨어지며, 2.5 이상은 성형성이 떨어지는 문제점이 있었다. 상기 분자량 분포를 조절하기 위해서는 팔라듐 촉매의 양과 중합온도에 따라 비례하여 조절이 가능하다. 즉, 팔라듐 촉매의 양이 많아지거나, 중합온도가 100℃이상이면 분자량 분포가 커지는 양상을 보인다.
본 발명은 상기의 폴리케톤에 내유성, 내염화칼슘성, 내마모성을 보다 향상시키기 위하여 아크릴로니트릴부타디엔스티렌(Acrylonitrile-Butadiene-Styrene)(이하‘ABS’라함), 유리섬유, 설퍼아마이드계 가소제, 미네랄 필러 등을 포함하기도 한다.
상기 ABS는 고무변성 스티렌계 공중합 수지로서 유화중합법, 현탁중합법, 용액중합법, 괴상중합법, 현탁중합에 의하여 제조되는데, 특히 유화중합법이 선호된다. 첨가되는 ABS의 중량은 폴리케톤 100중량부 대비 5 내지 50 중량부가 좋고, 바람직하게는 5 내지 30 중량부, 더욱 바람직하게는 8 내지 20 중량부인 것이 좋다. 첨가되는 ABS가 5 중량부 미만이면 폴리케톤 수지 조성물의 내유성, 내염화칼슘성, 내마모성이 크게 향상되지 않는 문제점이 발생되며, 50부를 초과하면 기계적 강도, 치수안정성 및 성형 특성 등이 저하될 수 있다.
이러한 유화중합법으로 제조된 ABS수지는 연속상인 스티렌-아크릴로니트릴 공중합체(styrene-acrylonitrile copolymer, SAN공중합체) 내에 분산상으로 존재하는 고무입자의 크기가 평균 0.2 내지 1.5㎛로 기계적 물성 및 광택은 양호하나, 유화중합공정의 특성상 반드시 사용해야 하는 유화제 및 응집제 등이 응집 및 탈수 공정에서 완전히 제거되지 않고 최종 제품에 잔류하여 물성저하를 유발하며, 중합매질로 사용한 오염수를 처리하기가 곤란하다. 뿐만 아니라, 중합 후 응집과 탈수의 공정을 별도로 거쳐야 하므로, 연속공정인 괴상중합에 비하여 비경제적이다.
괴상중합은 일정비율의 스티렌계 단량체와 아크릴로니트릴계 단량체를 반응매질에 녹여 혼합한 용액에 일정량의 부타디엔 고무 또는 스티렌-부타디엔 고무를 용해 시킨 후, 적당량의 반응 개시제, 분자량 조절제 및 기타 첨가제를 혼합한 후 가열하여 중합하는 방법이다. 이러한 괴상중합은 중합이 진행됨에 따라 스티렌계 단량체와 아크릴로니트릴계 단량체에 의한 공중합체인 SAN이 생성되고, 이때 스티렌계 단량체와 아크릴로니트릴계 단량체가 용해된 부타디엔 고무 또는 스티렌-부타디엔 고무와 반응하여 그라프트 SAN 공중합체를 생성하는 것이다. 생성된 SAN 공중합체는 반응 초기부터 반응 매질에 녹아있던 고무와 서로 섞이지 않고 두 개의 상을 이루어 전체 중합용액을 불균일상으로 만든다. 이러한 불균일상에서 전환율이 낮은 중합반응 초기에는 중합용액에 녹아있던 고무상이 연속상을 이루고 있으나, 반응이 진행됨에 따라 증가한 스티렌 또는 스티렌계 유도체와 아크릴로니트릴 또는 아크릴로니트릴계 유도체의 공중합체의 상부피가 중합용액내 고무의 상 부피보다 많아지면 앞의 공중합체가 연속상을 이루게 된다. 이러한 현상을 상전환이라고 하며 공중합체상과 고무상의 부피가 같아지게 되는 지점을 상전환 시점이라고 한다. 그리고 상전환이 일어난 이후에는 고무상이 분산상이 되어 최종적으로 제조된 수지내의 고무입자를 이루게 된다. 이렇게 제조된 ABS수지는 성형성, 성형물의 치수 안정성, 내충격성이 우수하여 가전제품, 사무용 기기 부품, 자동차 부품등 다양한 분야에 적용되고 있다.
고충격 ABS의 중량은 전체중량 대비 5내지 50 중량%이다. 바람직하게는 5 내지 30 중량%이며, 더욱 바람직하게는 8 내지 20 중량%인 것이 좋다. 여기서 폴리케톤 수지의 함량이 50 중량% 미만이면 폴리케톤 수지 고유의 내유성, 기계적 강도, 치수안정성 및 성형 특성 등이 저하되어 실용성이 결여될 수 있으며, 95%를 초과하면 고충격 ABS의 상대적 함량 감소로 원하는 수준의 내마모성 및 충격강도를 부여하기 어려워질 수 있다.
이외에, 상기 조성물에 보강재로 카본 화이버, 마이카 및 탈크 등을 첨가하여 기계적인 물성을 보강시킬 수 있다. 또한, 산화 방지제 및 안료 등을 목적하는 바에 따라 첨가할 수 있다. 이러한 첨가제는 이 분야에서 통상의 지식을 가진 자에 의하여 적절히 사용될 수 있다.
상기 유리섬유는 그 입경이 10 내지 13㎛인 것이 바람직하며, 폴리케톤 100 중량부에 대하여 25 내지 35 중량부 포함되는 것이 바람직하다. 유리섬유의 함량이 25 중량부 미만이면 기계적 강성이 저하될 수 있으며, 35 중량부를 초과하면 점도가 지나치게 상승하여 압출, 사출 작업성이 떨어지고 외관 품질이 저하될 수 있다.
상기 설퍼아마이드계 가소제는 폴리케톤 100 중량부에 대하여 1 내지 10중량부인 것이 바람직하다. 상기 가소제의 함량이 1중량부 미만이면 연료투과도가 높아 연료 튜브에 적합하지 못하고, 10중량부를 초과할 경우에는 폴리케톤의 특성인 굴곡강도가 낮아지고, 가공이 용이하지 못하다.
상기 미네랄 필러는 제품의 휨 특성을 방지하는 역할을 한다. 미네랄 필러로는 예를 들어 실리카(SiO2), 산화마그네슘(MgO), 탈크, 칼슘카보네이트, 석면, 고령토 등이 사용될 수 있고, 다른 무기물들도 필요에 따라 사용 가능하며 특정 종류의 것으로 한정되지 않는다.
본 발명에서는 미네랄 필러로 실리카 60~75 중량%와 산화마그네슘 25~40 중량%로 혼합된 미네랄 필러를 사용하는 것이 바람직하다.
상기 미네랄 필러의 평균 입경이 4 ~ 6 μm 인 것이 바람직하며 폴리케톤 100 중량부에 대하여 10~20 중량부 만큼 함유되는 것이 바람직하다. 만약 미네랄 필러의 함량이 10 중량부 미만이면 제품에 휨 문제가 발생될 수 있고, 20 중량부를 초과하면 제품의 충격강도가 저하되고 외관도 나빠지는 단점이 있고 비중이 증가하므로 바람직하지 않다.
이하, 폴리케톤 조성물을 제조하기 위한 제조방법은 다음과 같다.
본 발명의 폴리케톤 조성물의 제조방법은 팔라듐 화합물, pKa값이 6 이하인 산, 및 인의 2배위자 화합물을 포함하는 촉매 조성물을 준비하는 단계; 알코올(예컨대, 메탄올)과 물을 포함하는 혼합용매(중합용매)를 준비하는 단계; 상기 촉매 조성물 및 혼합용매의 존재 하에서 중합을 진행하여 일산화탄소, 에틸렌 및 프로필렌의 선상 터폴리머를 제조하는 단계; 상기 선상 터폴리머에서 남은 촉매 조성물을 용매(예컨대, 알코올 및 아세톤)로 제거하여 폴리케톤 수지를 수득하는 단계; 및 상기 폴리케톤 수지를 난연제와 혼합하는 단계;를 포함하는 것이다.
촉매 조성물을 구성하는 상기 팔라듐 화합물로는 초산 팔라듐을 사용할 수 있으며, 그 사용량은 10-3~10-1몰이 적절하다.
촉매 조성물을 구성하는 상기 pKa값이 6이하인 산으로는 트리플루오르 초산, p-톨루엔술폰산, 황산 및 술폰산으로 이루어진 군에서 선택된 1종 이상, 바람직하게는 트리플루오르 초산을 사용할 수 있으며, 그 사용량은 팔라듐 화합물 대비 6~20 (몰)당량이 적절하다.
촉매 조성물을 구성하는 상기 인의 2배위자 화합물로는 1,3-비스[다이페닐포스피노]프로판(예컨대, 1,3-비스[다이(2-메톡시페닐포스피노)]프로판, 1,3-비스[비스[아니실]포스피노메틸]-1,5-디옥사스피로[5,5]운데칸 및 ((2,2-디메틸-1,3-디옥산-5,5-디일)비스(메틸렌))비스(비스(2-메톡시페닐)포스핀)으로 이루어진 군에서 선택된 1종 이상을 사용할 수 있으며, 그 사용량은 팔라듐 화합물 대비 1~1.2 (몰)당량이 적절하다.
상기 일산화탄소, 에틸렌 및 프로필렌은 알코올(예컨대, 메탄올)과 물의 혼합용매에서 액상 중합되어 선상 터폴리머를 생성하는데, 상기 혼합용매로는 메탄올 100 중량부 및 물 2~10 중량부의 혼합물을 사용할 수 있다. 혼합용매에서 물의 함량이 2 중량부 미만이면 케탈이 형성되어 공정시 내열안정성이 저하될 수 있으며,10 중량부를 초과하면 제품의 기계적 물성이 저하될 수 있다.
또한, 상기 중합시 반응온도는 50~100℃, 반응압력은 40~60bar의 범위가 적절하다. 생성된 폴리머는 중합 후 여과, 정제 공정을 통해 회수하며, 남은 촉매 조성물은 알코올 또는 아세톤 등의 용매로 제거한다.
본 발명에서는 상기 얻어진 폴리케톤 터폴리머에 ABS, 유리섬유, 설퍼아마이드계 가소제, 미네랄 필러를 혼합하여 압출기를 사용하여 압출하고 나서, 최종적으로 블렌드 조성물을 수득한다. 상기 블렌드는 2축 압출기에 투입하여 용융혼련 및 압출함으로써 제조된다.
이때, 압출온도는 230~260℃, 스크류 회전속도는 100~300rpm의 범위가 바람직하다. 압출온도가 230℃ 미만이면 혼련이 적절히 일어나지 않을 수 있으며, 260℃를 초과하면 수지의 내열성 관련 문제가 발생할 수 있다. 또한 스크류 회전속도가 100rpm 미만이면 원활한 혼련이 일어나지 않을 수 있다.
상기의 과정을 통해 제조된 폴리케톤 조성물은 내유성, 내염화칼슘성, 내마모성이 우수하여 산업용 오링, 파이프 라이너, 스노우 체인, 자동차 연료튜브, 자동차 엔진 커버 등에 적용될 수 있으나, 이에 한정되지는 않는다.
본 발명에서는 폴리머의 가공성이나 물성을 개선하기 위하여 종래 알려져 있는 첨가제, 예를 들면 산화방지제, 안정제, 충전제, 내화재료, 이형제, 착색제 및 기타재료를 포함할 수 있다. 상기와 같은 폴리케톤을 압출 성형 또는 사출 성형에 의하여 폴리케톤 부품을 제조할 수 있다. 이 때, 상기 차량용 폴리케톤 부품의 폴리케톤은 내유성이 우수한데, 폴리케톤 베이스 상태에서 측정한 가솔린 50℃ 침적 48시간 경과 후 인장강도 유지율이 80%이상이고, 치수변화율이 1.3% - 1.5% 인 것을 특징으로 한다.
따라서, 본 발명에 의해 제조된 폴리케톤 부품은 내유성 및 치수안정성이 우수한 것으로 나타났다.
이하, 실시예를 통해 본 발명을 구체적으로 설명한다. 그러나 이들 실시예는 본 발명의 이해를 돕기 위한 것일 뿐 어떠한 의미로든 본 발명의 범위가 이들 실시예로 한정되는 것은 아니다. 비제한적인 이하의 실시예에 의하여 본 발명을 자세히 설명한다.
실시예 1
초산 팔라듐, 트리플루오르 초산의 음이온 및 ((2,2-디메틸-1,3-디옥산-5,5-디일)비스(메틸렌))비스(비스(2-메톡시페닐)포스핀)으로 구성되는 촉매 조성물의 존재하에, 일산화탄소, 에틸렌 및 프로필렌의 선상 터폴리머(terpolymer)를 메탄올 100중량부 대비 물 5중량부 이고, 70~90℃의 용매에서 중합하였다 상기에서 제조된 폴리케톤 터폴리머에서 에틸렌과 프로펜의 몰비는 46대 4였다. 한편, 상기 제조된 폴리케톤 터폴리머의 융점은 220℃이고, 1,1,1,3,3,3-HFIP에 측정된 고유점도(LVN)는 1.4 dl/g이었다.
상기 제조된 폴리케톤 터폴리머 95중량% 및 열가소성 고충격 ABS은 5중량%를 블렌딩 하여 폴리케톤 조성물을 제조하였다.
실시예 2
폴리케톤 터폴리머 90중량%, ABS 10중량%를 제외하고는 실시예 1과 동일하다.
실시예 3
폴리케톤 터폴리머 85중량%, ABS 15중량%를 제외하고는 실시예 1과 동일하다.
실시예 4
폴리케톤 터폴리머 70중량%, ABS 30중량%를 제외하고는 실시예 1과 동일하다.
실시예 5
폴리케톤 터폴리머 60중량%, ABS 40중량%를 제외하고는 실시예 1과 동일하다.
비교예 1
폴리케톤 대신 Rhodda 사 PA6 90중량%을 사용한 것을 제외하고는 실시예 2와 동일한 방법으로 시편을 제조하였다.
물성평가
상기 실시예의 제조된 폴리케톤 조성물을 3×3cm시편으로 제조한 다음, 비교예의 제품과 대비하여 아래와 같은 방법으로 물성을 평가하고, 그 결과를 하기 표 1에 나타내었다.
1. 내유성: 가솔린 50℃ 침적하고, 48시간, 96시간 경과 후 시편의 흡유량 측정
실시예 1 실시예 2 실시예 3 실시예 4 실시예 5 비교예 1
조성 PK95%/ABS5% PK90%/ABS10% PK85%/ABS15% PK70%/ABS30% PK60%/ABS40% PA90%/ABS10%
흡유량(48시간 침지후)% 0.11 0.10 0.13 0.12 0.13 0.20
흡유량(96시간침지후)% 0.14 0.13 0.17 0.19 0.20 0.28
상기 표 1에서 보듯이, 실시예 경우 비교예 1에 비하여 동일 조건에서 흡유량이 낮은 것으로 측정되었다. 실시예 1 내지 5는 50℃ 가솔린 용액에서 48시간 침적후의 흡유량이 0.15%이하로 측정되었으며, 특히나 실시예 2와 3의 경우(ABS의 함량비가 8 내지 20 중량%) 흡유량이 가장 우수한 것으로 평가되었다.
따라서, 비교예 1보다는 실시예를 통해 제조된 폴리케톤 조성물은 내유성이 우수한 바 산업용으로 사용되는 열가소성 플라스틱, 특히 연료 필러 넥 튜브로 사용되기에 적합한 것으로 평가되었다.
실시예 6
일산화탄소와 에틸렌과 프로펜으로 이루어진 선상 교대 폴리케톤 터폴리머는 초산 팔라듐, 트리 플루오르 초산 및 ((2,2-디메틸-1,3-디옥산-5,5-디일)비스(메틸렌))비스(비스(2-메톡시페닐)포스핀)으로부터 생성한 촉매 조성물의 존재 하에서 제조했다. 상기에서 팔라듐 대비 트리 플루오르 초산의 함량은 11배의 몰비이고, 중합온도 80℃의 1단계와 84℃의 2단계를 거친다. 상기에서 제조된 폴리케톤 터폴리머에서 에틸렌과 프로펜의 몰비는 46대 4였다. 또한 상기 폴리케톤 터폴리머의 융점은 220℃이고, HFIP(hexa-fluoroisopropano)로 25℃에 측정한 LVN이 1.2dl/g이며, MI(Melt index)가 60g/10min이며, MWD가 2.0 이었다. 상기에서 제조된 폴리케톤 터폴리머를 250rpm으로 작동하는 직경 40mm이며, L/D=32인 2축 스크류를 이용하여 압출기 상에서 펠렛(pellet) 상으로 제조 후, 사출성형하여 산업용 오링의 시편을 제조하였다.
실시예 7
일산화탄소와 에틸렌과 프로펜으로 이루어진 선상 교대 폴리케톤 터폴리머는 초산 팔라듐, 트리 플루오르 초산 및 ((2,2-디메틸-1,3-디옥산-5,5-디일)비스(메틸렌))비스(비스(2-메톡시페닐)포스핀)으로부터 생성한 촉매 조성물의 존재 하에서 제조했다. 상기에서 팔라듐 대비 트리 플루오르 초산의 함량은 10배의 몰비이고, 중합온도 78℃의 1단계와 84℃의 2단계를 거친다. 상기에서 제조된 폴리케톤 터폴리머에서 에틸렌과 프로펜의 몰비는 46대 4였다. 또한 상기 폴리케톤 터폴리머의 융점은 220℃이고, HFIP(hexa-fluoroisopropano)로 25℃에 측정한 LVN이 1.4dl/g이며, MI(Melt index)가 60g/10min이며, MWD가 2.0 이었다. 상기에서 제조된 폴리케톤 터폴리머를 250rpm으로 작동하는 직경 40mm이며, L/D=32인 2축 스크류를 이용하여 압출기 상에서 펠렛(pellet) 상으로 제조하여 사출성형하여 산업용 오링의 시편을 제조하였다.
실시예 8
일산화탄소와 에틸렌과 프로펜으로 이루어진 선상 교대 폴리케톤 터폴리머는 초산 팔라듐, 트리 플루오르 초산 및 ((2,2-디메틸-1,3-디옥산-5,5-디일)비스(메틸렌))비스(비스(2-메톡시페닐)포스핀)으로부터 생성한 촉매 조성물의 존재 하에서 제조했다. 상기에서 팔라듐 대비 트리 플루오르 초산의 함량은 9배의 몰비이고, 중합온도 74℃의 1단계와 84℃의 2단계를 거친다. 상기에서 제조된 폴리케톤 터폴리머에서 에틸렌과 프로펜의 몰비는 46대 4였다. 또한 상기 폴리케톤 터폴리머의 융점은 220℃이고, HFIP(hexa-fluoroisopropano)로 25℃에 측정한 LVN이 1.6dl/g이며, MI(Melt index)가 60g/10min이며, MWD가 2.0 이었다. 상기에서 제조된 폴리케톤 터폴리머를 250rpm으로 작동하는 직경 40mm이며, L/D=32인 2축 스크류를 이용하여 압출기 상에서 펠렛(pellet) 상으로 제조하여 사출성형하여 산업용 오링의 시편을 제조하였다.
실시예 9
일산화탄소와 에틸렌과 프로펜으로 이루어진 선상 교대 폴리케톤 터폴리머는 초산 팔라듐, 트리 플루오르 초산 및 ((2,2-디메틸-1,3-디옥산-5,5-디일)비스(메틸렌))비스(비스(2-메톡시페닐)포스핀)으로부터 생성한 촉매 조성물의 존재 하에서 제조했다. 상기에서 팔라듐 대비 트리 플루오르 초산의 함량은 10배의 몰비이고, 중합온도 78℃의 1단계와 84℃의 2단계를 거친다. 상기에서 제조된 폴리케톤 터폴리머에서 에틸렌과 프로펜의 몰비는 46대 4였다. 또한 상기 폴리케톤 터폴리머의 융점은 220℃이고, HFIP(hexa-fluoroisopropano)로 25℃에 측정한 LVN이 1.4dl/g이며, MI(Melt index)가 60g/10min이며, MWD가 1.8 이었다. 상기에서 제조된 폴리케톤 터폴리머를 250rpm으로 작동하는 직경 40mm이며, L/D=32인 2축 스크류를 이용하여 압출기 상에서 펠렛(pellet) 상으로 제조하여 사출성형하여 산업용 오링의 시편을 제조하였다.
실시예 10
일산화탄소와 에틸렌과 프로펜으로 이루어진 선상 교대 폴리케톤 터폴리머는 초산 팔라듐, 트리 플루오르 초산 및 ((2,2-디메틸-1,3-디옥산-5,5-디일)비스(메틸렌))비스(비스(2-메톡시페닐)포스핀)으로부터 생성한 촉매 조성물의 존재 하에서 제조했다. 상기에서 팔라듐 대비 트리 플루오르 초산의 함량은 10배의 몰비이고, 중합온도 78℃의 1단계와 84℃의 2단계를 거친다. 상기에서 제조된 폴리케톤 터폴리머에서 에틸렌과 프로펜의 몰비는 46대 4였다. 또한 상기 폴리케톤 터폴리머의 융점은 220℃이고, HFIP(hexa-fluoroisopropano)로 25℃에 측정한 LVN이 1.4dl/g이며, MI(Melt index)가 60g/10min이며, MWD가 2.2 이었다. 상기에서 제조된 폴리케톤 터폴리머를 250rpm으로 작동하는 직경 40mm이며, L/D=32인 2축 스크류를 이용하여 압출기 상에서 펠렛(pellet) 상으로 제조하여 사출성형하여 산업용 오링의 시편을 제조하였다.
비교예 2
폴리에테르에테르케톤 수지를 250rpm으로 작동하는 직경 40cm이며, L/D=32인 2축 스크류를 이용하여 압출기 상에 펠렛(pellet) 상으로 제조한 후, 사출성형하여 산업용 오링의 시편을 제조하였다.
물성 평가
상기 실시예 6 내지 9 및 비교예 2에서 각각 제조된 시편의 물성을 하기와 같은 방법으로 평가하였으며, 그 결과는 하기 표 2에 나타내었다.
1. 아이조드 충격강도 평가 : ASTM D256에 의거하여 실시하였다.
2. 내유성 물성유지율 평가 : 시편은 표준 조건(25℃, 65%RH 상대습도, 24시간 보관)과 50℃로 유지된 엔진 오일에 24시간 침지한 후, ASTM D256에 의거하여 충격강도를 각각 측정하였으며, 각 처리 샘플당 수직 및 수평 방향으로 5회씩 측정한 값의 평균치를 취하였다.
3. 마모성 : 마모성은 마모가 되는 정도를 나타낸 값으로, 상기 마모성이 클수록 마모가 쉽게 발생하기 때문에 내마모성이 작다는 것을 의미하고, 반대로 그 값이 작을수록 마모가 쉽게 발생하지 못하기 때문에 내마모성이 크다는 것을 의미한다. 상기 마모성 시험은 하중 1kg, 선속도 7Hz 및 시험시간 30분의 조건에서 핀-온-디스크 방식(Pin-On-Disk type)으로 측정하였다.
실시예 6 실시예 7 실시예 8 실시예 9 실시예 10 비교예 2
물성 IV : 1.2MWD : 2.0 IV : 1.4MWD : 2.0 IV : 1.6MWD : 2.0 IV : 1.4MWD : 1.8 IV : 1.4MWD : 2.2 PEEK
마모성(Rmax) 0.60 0.70 0.75 0.82 0.85 8.10
충격강도(kJ/m2) 25 20 22 26 23 18
제품 내유성(%, 물성유지율) 85 86 87 89 90 75
상기 표 2에서 알 수 있는 바와 같이, 실시예의 경우 비교예 대비 충격강도 및 마모성이 향상되었고, 엔진 오일에 24시간 침지한 후 측정한 충격강도 유지율이 85% 이상으로 물성 유지율이 우수한 것으로 나타났다.
따라서, 본 발명에 따른 산업용 오링은 내유성 및 물성 유지율이 우수하고, 이에 따라 유압용으로 적용하기에 매우 적합한 것으로 나타났다.
실시예 11
일산화탄소와 에틸렌과 프로펜으로 이루어진 선상 교대 폴리케톤 터폴리머는 초산 팔라듐, 트리 플루오르 초산 및 ((2,2-디메틸-1,3-디옥산-5,5-디일)비스(메틸렌))비스(비스(2-메톡시페닐)포스핀)으로부터 생성한 촉매 조성물의 존재 하에서 제조했다. 상기에서 팔라듐 대비 트리 플루오르 초산의 함량은 11배의 몰비이고, 중합온도 80℃의 1단계와 84℃의 2단계를 거친다. 상기에서 제조된 폴리케톤 터폴리머에서 에틸렌과 프로펜의 몰비는 46 대 4였다. 또한 상기 폴리케톤 터폴리머의 융점은 220℃이고, HFIP(hexa-fluoroisopropano)로 25℃에 측정한 LVN이 2.2dl/g이며, MI(Melt index)가 60g/10min이며, MWD가 2.0 이었다. 상기에서 제조된 폴리케톤 터폴리머를 250rpm으로 작동하는 직경 40mm이며, L/D=32인 2축 스크류를 이용하여 압출기 상에서 펠렛(pellet) 상으로 제조 후, 사출성형하여 파이프 라이너의 시편을 제조하였다.
실시예 12
일산화탄소와 에틸렌과 프로펜으로 이루어진 선상 교대 폴리케톤 터폴리머는 초산 팔라듐, 트리 플루오르 초산 및 ((2,2-디메틸-1,3-디옥산-5,5-디일)비스(메틸렌))비스(비스(2-메톡시페닐)포스핀)으로부터 생성한 촉매 조성물의 존재 하에서 제조했다. 상기에서 팔라듐 대비 트리 플루오르 초산의 함량은 10배의 몰비이고, 중합온도 78℃의 1단계와 84℃의 2단계를 거친다. 상기에서 제조된 폴리케톤 터폴리머에서 에틸렌과 프로펜의 몰비는 46 대 4였다. 또한 상기 폴리케톤 터폴리머의 융점은 220℃이고, HFIP(hexa-fluoroisopropano)로 25℃에 측정한 LVN이 2.4dl/g이며, MI(Melt index)가 60g/10min이며, MWD가 2.0 이었다. 상기에서 제조된 폴리케톤 터폴리머를 250rpm으로 작동하는 직경 40mm이며, L/D=32인 2축 스크류를 이용하여 압출기 상에서 펠렛(pellet) 상으로 제조하여 사출성형하여 파이프 라이너의 시편을 제조하였다.
실시예 13
일산화탄소와 에틸렌과 프로펜으로 이루어진 선상 교대 폴리케톤 터폴리머는 초산 팔라듐, 트리 플루오르 초산 및 ((2,2-디메틸-1,3-디옥산-5,5-디일)비스(메틸렌))비스(비스(2-메톡시페닐)포스핀)으로부터 생성한 촉매 조성물의 존재 하에서 제조했다. 상기에서 팔라듐 대비 트리 플루오르 초산의 함량은 9배의 몰비이고, 중합온도 74℃의 1단계와 84℃의 2단계를 거친다. 상기에서 제조된 폴리케톤 터폴리머에서 에틸렌과 프로펜의 몰비는 46 대 4였다. 또한 상기 폴리케톤 터폴리머의 융점은 220℃이고, HFIP(hexa-fluoroisopropano)로 25℃에 측정한 LVN이 2.6dl/g이며, MI(Melt index)가 60g/10min이며, MWD가 2.0 이었다. 상기에서 제조된 폴리케톤 터폴리머를 250rpm으로 작동하는 직경 40mm이며, L/D=32인 2축 스크류를 이용하여 압출기 상에서 펠렛(pellet) 상으로 제조하여 사출성형하여 파이프 라이너의 시편을 제조하였다.
실시예 14
일산화탄소와 에틸렌과 프로펜으로 이루어진 선상 교대 폴리케톤 터폴리머는 초산 팔라듐, 트리 플루오르 초산 및 ((2,2-디메틸-1,3-디옥산-5,5-디일)비스(메틸렌))비스(비스(2-메톡시페닐)포스핀)으로부터 생성한 촉매 조성물의 존재 하에서 제조했다. 상기에서 팔라듐 대비 트리 플루오르 초산의 함량은 10배의 몰비이고, 중합온도 78℃의 1단계와 84℃의 2단계를 거친다. 상기에서 제조된 폴리케톤 터폴리머에서 에틸렌과 프로펜의 몰비는 46 대 4였다. 또한 상기 폴리케톤 터폴리머의 융점은 220℃이고, HFIP(hexa-fluoroisopropano)로 25℃에 측정한 LVN이 2.4dl/g이며, MI(Melt index)가 60g/10min이며, MWD가 1.8 이었다. 상기에서 제조된 폴리케톤 터폴리머를 250rpm으로 작동하는 직경 40mm이며, L/D=32인 2축 스크류를 이용하여 압출기 상에서 펠렛(pellet) 상으로 제조하여 사출성형하여 파이프 라이너의 시편을 제조하였다.
실시예 15
일산화탄소와 에틸렌과 프로펜으로 이루어진 선상 교대 폴리케톤 터폴리머는 초산 팔라듐, 트리 플루오르 초산 및 ((2,2-디메틸-1,3-디옥산-5,5-디일)비스(메틸렌))비스(비스(2-메톡시페닐)포스핀)으로부터 생성한 촉매 조성물의 존재 하에서 제조했다. 상기에서 팔라듐 대비 트리 플루오르 초산의 함량은 10배의 몰비이고, 중합온도 78℃의 1단계와 84℃의 2단계를 거친다. 상기에서 제조된 폴리케톤 터폴리머에서 에틸렌과 프로펜의 몰비는 46 대 4였다. 또한 상기 폴리케톤 터폴리머의 융점은 220℃이고, HFIP(hexa-fluoroisopropano)로 25℃에 측정한 LVN이 2.4dl/g이며, MI(Melt index)가 60g/10min이며, MWD가 2.2 이었다. 상기에서 제조된 폴리케톤 터폴리머를 250rpm으로 작동하는 직경 40mm이며, L/D=32인 2축 스크류를 이용하여 압출기 상에서 펠렛(pellet) 상으로 제조하여 사출성형하여 파이프 라이너의 시편을 제조하였다.
비교예 3
고밀도 폴리에틸렌 수지를 250rpm으로 작동하는 직경 40cm이며, L/D=32인 2축 스크류를 이용하여 압출기 상에 펠렛(pellet) 상으로 제조한 후, 사출성형하여 파이프 라이너의 시편을 제조하였다.
물성 평가
상기 실시예 11 내지 15 및 비교예 3에서 각각 제조된 시편의 물성을 하기와 같은 방법으로 평가하였으며, 그 결과는 하기 표 3에 나타내었다.
1. 열변형 온도 : ASTM D648에 의거하여 실시하였다.
2. 아이조드 충격강도 평가 : ASTM D256에 의거하여 실시하였다.
3. 내유성 물성유지율 평가 : 시편은 표준 조건(25℃, 65%RH 상대습도, 24시간 보관)과 50℃로 유지된 엔진 오일에 24시간 침지한 후, ASTM D256에 의거하여 충격강도를 각각 측정하였으며, 각 처리 샘플당 수직 및 수평 방향으로 5회씩 측정한 값의 평균치를 취하였다.
실시예 11 실시예 12 실시예 13 실시예 14 실시예 15 비교예 3
물성 IV : 2.2MWD : 2.0 IV : 2.4MWD : 2.0 IV : 2.6MWD : 2.0 IV : 2.4MWD : 1.8 IV : 2.4MWD : 2.2 HDPE
HDT (℃) 105 105 105 105 105 46
충격강도(kJ/m2) 20 22 24 21 22 4
제품 내유성(%, 물성유지율) 85 86 88 89 90 75
상기 표 3에서 알 수 있는 바와 같이, 실시예의 경우 비교예 대비 충격강도가 향상되었고, 엔진 오일에 24시간 침지한 후 측정한 충격강도 유지율이 80% 이상으로 물성 유지율이 우수한 것으로 나타났다.
따라서, 본 발명에 따른 파이프 라이너는 내유성 및 물성 유지율이 우수한 것을 알 수 있다.
실시예 16
일산화탄소와 에틸렌과 프로펜으로 이루어진 선상 교대 폴리케톤 터폴리머는 초산 팔라듐, 트리 플루오르 초산 및 1,3-비스[비스(2-메톡시페닐-포스피노]프로판으로부터 생성한 촉매 조성물의 존재 하에서 제조했다. 상기에서 제조된 폴리케톤 터폴리머에서 에틸렌과 프로펜의 몰비는 85대 15였다. 또한 상기 폴리케톤 터폴리머의 융점은 220℃이고, HFIP(hexa-fluoroisopropano)로 25℃에 측정한 LVN이 1.3dl/g이며, MI(Melt index)가 48g/10min 이었다. 상기에서 제조된 폴리케톤 터폴리머를 부타디엔이 70% 함유된 ABS수지와 20w%로 블렌딩하여 250rpm으로 작동하는 직경 2.5㎝이며, L/D=32인 2축 스크류를 이용하여 압출기 상에서 펠렛(pellet) 상으로 제조하였다.
비교예 4
기존에 스노우 체인의 소재로 사용되던 TPE(thermoplastic elastomer)을 이용하여 스노우 체인을 제조하였다.
물성평가
상기 실시예의 제조된 펠렛을 사출 성형하여 스노우 체인용 시편을 제조한 다음, 비교예의 제품과 대비하여 아래와 같은 방법으로 물성을 평가하고, 그 결과를 하기 표 4에 나타내었다.
1. 샤르피 충격강도 평가: ISO 179에 의거하여 실시하였다.
2. 제품 흡습율 평가:온도 50℃, 상대습도 90%에서 24시간 처리후 수분 함유량 측정
3. 제품 내염화칼슘성 물성 유지율 평가
시험용 시편을 염화칼슘 35% 수용액에 아래와 같은 시험을 20회 반복 평가후 인장강도 물성 유지율을 측정함
1) 100℃ 물에서 2시간 처리후 표면 습기 제거
2) 상온에서 30분간 방치, 냉각
3) 100℃ 염화칼슘 35% 수용액에 2시간 처리
4) 상온에서 60분간 방치, 냉각
5) 물로 세정후, 표면 습기 제거
실시예와 비교예의 물성은 하기 표 4와 같았다.
단위 실시예 16 비교예 4
수지 조성 폴리케톤 80%ABS 20% TPE
샤르피 충격강도 (kJ/㎡) 90 70
흡습율 (%) 1.2 2.5
내염화칼슘성(물성유지율) (%) 90 60
상기 표 4에서 보듯이, 실시예 16의 경우 비교예 4 대비 샤르피 충격강도가 향상되었고, 제품 흡습율은 더욱 낮으며, 제품의 내염화 칼슘성에서도 물성유지율이 90%로 매우 우수한 것으로 평가되었다.
따라서, 본 발명의 실시예 16을 통해 제조된 폴리케톤 스노우체인은 내충격성, 내습성 및 내염화칼슘성이 매우 우수한 스노우 체인으로 적용하기에 매우 적합하였다.
실시예 17
일산화탄소와 에틸렌과 프로펜으로 이루어진 선상 교대 폴리케톤 터폴리머는 초산 팔라듐, 트리 플루오르 초산 및 ((2,2-디메틸-1,3-디옥산-5,5-디일)비스(메틸렌))비스(비스(2-메톡시페닐)포스핀)으로부터 생성한 촉매 조성물의 존재 하에서 제조했다. 상기에서 팔라듐 대비 트리 플루오르 초산의 함량은 11배의 몰비이고, 중합온도 80℃의 1단계와 84℃의 2단계를 거친다. 상기에서 제조된 폴리케톤 터폴리머에서 에틸렌과 프로펜의 몰비는 46 대 4였다. 또한 상기 폴리케톤 터폴리머의 융점은 220℃이고, HFIP(hexa-fluoroisopropano)로 25℃에 측정한 LVN이 1.2dl/g이며, MI(Melt index)가 60g/10min이며, MWD가 2.0 이었다. 상기에서 제조된 폴리케톤 터폴리머를 250rpm으로 작동하는 직경 40mm이며, L/D=32인 2축 스크류를 이용하여 압출기 상에서 펠렛(pellet) 상으로 제조 후, 사출성형하여 휠 캡용 시편을 제조하였다.
실시예 18
일산화탄소와 에틸렌과 프로펜으로 이루어진 선상 교대 폴리케톤 터폴리머는 초산 팔라듐, 트리 플루오르 초산 및 ((2,2-디메틸-1,3-디옥산-5,5-디일)비스(메틸렌))비스(비스(2-메톡시페닐)포스핀)으로부터 생성한 촉매 조성물의 존재 하에서 제조했다. 상기에서 팔라듐 대비 트리 플루오르 초산의 함량은 10배의 몰비이고, 중합온도 78℃의 1단계와 84℃의 2단계를 거친다. 상기에서 제조된 폴리케톤 터폴리머에서 에틸렌과 프로펜의 몰비는 46 대 4였다. 또한 상기 폴리케톤 터폴리머의 융점은 220℃이고, HFIP(hexa-fluoroisopropano)로 25℃에 측정한 LVN이 1.4dl/g이며, MI(Melt index)가 60g/10min이며, MWD가 2.0 이었다. 상기에서 제조된 폴리케톤 터폴리머를 250rpm으로 작동하는 직경 40mm이며, L/D=32인 2축 스크류를 이용하여 압출기 상에서 펠렛(pellet) 상으로 제조하여 사출성형하여 휠 캡용 시편을 제조하였다.
실시예 19
일산화탄소와 에틸렌과 프로펜으로 이루어진 선상 교대 폴리케톤 터폴리머는 초산 팔라듐, 트리 플루오르 초산 및 ((2,2-디메틸-1,3-디옥산-5,5-디일)비스(메틸렌))비스(비스(2-메톡시페닐)포스핀)으로부터 생성한 촉매 조성물의 존재 하에서 제조했다. 상기에서 팔라듐 대비 트리 플루오르 초산의 함량은 9배의 몰비이고, 중합온도 74℃의 1단계와 84℃의 2단계를 거친다. 상기에서 제조된 폴리케톤 터폴리머에서 에틸렌과 프로펜의 몰비는 46 대 4였다. 또한 상기 폴리케톤 터폴리머의 융점은 220℃이고, HFIP(hexa-fluoroisopropano)로 25℃에 측정한 LVN이 1.6dl/g이며, MI(Melt index)가 60g/10min이며, MWD가 2.0 이었다. 상기에서 제조된 폴리케톤 터폴리머를 250rpm으로 작동하는 직경 40mm이며, L/D=32인 2축 스크류를 이용하여 압출기 상에서 펠렛(pellet) 상으로 제조하여 사출성형하여 휠 캡용 시편을 제조하였다.
실시예 20
일산화탄소와 에틸렌과 프로펜으로 이루어진 선상 교대 폴리케톤 터폴리머는 초산 팔라듐, 트리 플루오르 초산 및 ((2,2-디메틸-1,3-디옥산-5,5-디일)비스(메틸렌))비스(비스(2-메톡시페닐)포스핀)으로부터 생성한 촉매 조성물의 존재 하에서 제조했다. 상기에서 팔라듐 대비 트리 플루오르 초산의 함량은 10배의 몰비이고, 중합온도 78℃의 1단계와 84℃의 2단계를 거친다. 상기에서 제조된 폴리케톤 터폴리머에서 에틸렌과 프로펜의 몰비는 46 대 4였다. 또한 상기 폴리케톤 터폴리머의 융점은 220℃이고, HFIP(hexa-fluoroisopropano)로 25℃에 측정한 LVN이 1.4dl/g이며, MI(Melt index)가 60g/10min이며, MWD가 1.8 이었다. 상기에서 제조된 폴리케톤 터폴리머를 250rpm으로 작동하는 직경 40mm이며, L/D=32인 2축 스크류를 이용하여 압출기 상에서 펠렛(pellet) 상으로 제조하여 사출성형하여 휠 캡용 시편을 제조하였다.
실시예 21
일산화탄소와 에틸렌과 프로펜으로 이루어진 선상 교대 폴리케톤 터폴리머는 초산 팔라듐, 트리 플루오르 초산 및 ((2,2-디메틸-1,3-디옥산-5,5-디일)비스(메틸렌))비스(비스(2-메톡시페닐)포스핀)으로부터 생성한 촉매 조성물의 존재 하에서 제조했다. 상기에서 팔라듐 대비 트리 플루오르 초산의 함량은 10배의 몰비이고, 중합온도 78℃의 1단계와 84℃의 2단계를 거친다. 상기에서 제조된 폴리케톤 터폴리머에서 에틸렌과 프로펜의 몰비는 46 대 4였다. 또한 상기 폴리케톤 터폴리머의 융점은 220℃이고, HFIP(hexa-fluoroisopropano)로 25℃에 측정한 LVN이 1.4dl/g이며, MI(Melt index)가 60g/10min이며, MWD가 2.2 이었다. 상기에서 제조된 폴리케톤 터폴리머를 250rpm으로 작동하는 직경 40mm이며, L/D=32인 2축 스크류를 이용하여 압출기 상에서 펠렛(pellet) 상으로 제조하여 사출성형하여 휠 캡용 시편을 제조하였다.
비교예 5
기존에 휠 캡의 소재로 사용되던 DuPont 사(社)의 소재로서 폴리아마이드66(Polyamide66, PA66)의 충격강도 및 흡습 후 물성 유지율을 측정하였다.
물성평가
상기 실시예의 제조된 펠렛을 사출 성형하여 휠 캡용 시편을 제조한 다음, 비교예의 제품과 대비하여 아래와 같은 방법으로 물성을 평가하고, 그 결과를 하기 표 5에 나타내었다.
1. 아이조드 충격강도 평가: ASTM D256에 의거하여 실시하였다.
2. 수분흡습 평가 : 온도 50℃, 상대습도 90%에서 24시간 처리후 수분 함유량 측정
3. 내염화칼슘 아이조드 충격강도 유지율: ASTM D256에 의거하여 제작된 시편을 2시간 동안 100℃ 물에 침적 후 꺼내어 표면수를 제거하고 30분간 실온에서 방치한 다음 100℃ 염화칼슘 5% 수용액 및 35% 수용액에 2시간 침적 후 꺼내어 1시간 동안 실온에서 방치 후 표면수를 제거하는, 총 5.5시간을 1 주기로 하여 매 5cycle 당 아이조드 충격강도의 유지율을 평가하였다. 상기 유지율 평가는 총 20cycle을 실시하였다.
실시예와 비교예의 물성은 하기 표 5와 같았다.
실시예 17 실시예 18 실시예 19 실시예 20 실시예 21 비교예 5
PK의 물성 IV : 1.2MWD : 2.0 IV : 1.4MWD : 2.0 IV : 1.6MWD : 2.0 IV : 1.4MWD : 1.8 IV : 1.4MWD : 2.2 PA66
제품 흡습율(%, 50℃, 90%RH) 0.5 0.45 0.51 0.57 0.59 2.5
제품 내염화칼슘성 5%(%, 물성유지율) 90 91 89 88 87 50
제품 내염화칼슘성 35%(%, 물성유지율) 85 86 84 83 82 43
충격강도(kJ/m2) 20 21 22 21.4 20.8 5
상기 표 5에서 보듯이, 실시예의 경우 비교예 대비 노치드된 이조드 충격강도가 향상되었고, 제품 흡습율은 더욱 낮으며, 제품 내염화 칼슘성에서도 그 물성이 유지된 점이 매우 우수한 것으로 평가되었다.
따라서, 본 발명의 실시예를 통해 제조된 폴리케톤 휠 캡은 내충격성, 내수성 및 내화학성 물성유지가 매우 우수한 휠 캡으로 적용하기에 매우 적합하였다. 본 발명은 휠 캡의 충격강도가 20kJ/m2 이상이고, 흡습율이 온도 50℃, 상대습도 90%인 조건에서 1.5%이하로 우수하다.
실시예 22
일산화탄소와 에틸렌과 프로펜으로 이루어진 선상 교대 폴리케톤 터폴리머는 초산 팔라듐, 트리 플루오르 초산 및 ((2,2-디메틸-1,3-디옥산-5,5-디일)비스(메틸렌))비스(비스(2-메톡시페닐)포스핀)으로부터 생성한 촉매 조성물의 존재 하에서 제조했다. 상기에서 팔라듐 대비 트리 플루오르 초산의 함량은 11배의 몰비이고, 중합온도 80℃의 1단계와 84℃의 2단계를 거친다. 상기에서 제조된 폴리케톤 터폴리머에서 에틸렌과 프로펜의 몰비는 46대 4였다. 또한 상기 폴리케톤 터폴리머의 융점은 220℃이고, HFIP(hexa-fluoroisopropano)로 25℃에 측정한 LVN이 1.2dl/g이며, MI(Melt index)가 60g/10min이며, MWD가 2.0 이었다.
상기 제조된 폴리케톤 터폴리머 100중량부 및 유리섬유 30중량부를 L/D32, D 40인 2축 압출기에 투입하여 온도 240℃에서 250rpm 스크류 회전속도로 용융혼련을 통해 압출하였다.
실시예 23
일산화탄소와 에틸렌과 프로펜으로 이루어진 선상 교대 폴리케톤 터폴리머는 초산 팔라듐, 트리 플루오르 초산 및 ((2,2-디메틸-1,3-디옥산-5,5-디일)비스(메틸렌))비스(비스(2-메톡시페닐)포스핀)으로부터 생성한 촉매 조성물의 존재 하에서 제조했다. 상기에서 팔라듐 대비 트리 플루오르 초산의 함량은 10배의 몰비이고, 중합온도 78℃의 1단계와 84℃의 2단계를 거친다. 상기에서 제조된 폴리케톤 터폴리머에서 에틸렌과 프로펜의 몰비는 46대 4였다. 또한 상기 폴리케톤 터폴리머의 융점은 220℃이고, HFIP(hexa-fluoroisopropano)로 25℃에 측정한 LVN이 1.4dl/g이며, MI(Melt index)가 60g/10min이며, MWD가 2.0 이었다.
상기 제조된 폴리케톤 터폴리머 100중량부 및 유리섬유 30중량부를 L/D32, D 40인 2축 압출기에 투입하여 온도 240℃에서 250rpm 스크류 회전속도로 용융혼련을 통해 압출하였다.
실시예 24
일산화탄소와 에틸렌과 프로펜으로 이루어진 선상 교대 폴리케톤 터폴리머는 초산 팔라듐, 트리 플루오르 초산 및 ((2,2-디메틸-1,3-디옥산-5,5-디일)비스(메틸렌))비스(비스(2-메톡시페닐)포스핀)으로부터 생성한 촉매 조성물의 존재 하에서 제조했다. 상기에서 팔라듐 대비 트리 플루오르 초산의 함량은 9배의 몰비이고, 중합온도 74℃의 1단계와 84℃의 2단계를 거친다. 상기에서 제조된 폴리케톤 터폴리머에서 에틸렌과 프로펜의 몰비는 46대 4였다. 또한 상기 폴리케톤 터폴리머의 융점은 220℃이고, HFIP(hexa-fluoroisopropano)로 25℃에 측정한 LVN이 1.6dl/g이며, MI(Melt index)가 60g/10min이며, MWD가 2.0 이었다.
상기 제조된 폴리케톤 터폴리머 100중량부 및 유리섬유 30중량부를 L/D32, D 40인 2축 압출기에 투입하여 온도 240℃에서 250rpm 스크류 회전속도로 용융혼련을 통해 압출하였다.
실시예 25
실시예 23에서 제조된 폴리케톤 터폴리머 100 중량부 및 유리섬유 25중량부를 L/D32, D 40인 2축 압출기에 투입하여 온도 240℃에서 250rpm 스크류 회전속도로 용융혼련을 통해 압출하였다.
실시예 26
실시예 23에서 제조된 폴리케톤 터폴리머 100 중량부 및 유리섬유 35중량부를 L/D32, D 40인 2축 압출기에 투입하여 온도 240℃에서 250rpm 스크류 회전속도로 용융혼련을 통해 압출하였다.
비교예 6
Rhodda 사 PA66 Glass Fiber 33%, A218V30 제품을 사용하였다.
물성평가
상기 실시예의 제조된 펠렛을 사출 성형하여 엔진부품의 일종인 엔진 실린더 블록 브라켓 시편을 제조한 다음, 비교예의 제품과 대비하여 아래와 같은 방법으로 물성을 평가하고, 그 결과를 하기 표 6에 나타내었다.
1. 인장강도 평가 : ASTM D638에 의거하여 실시하였다.
2. 흡습 후 물성(인장물성)유지율 평가
1) 온도 50℃, 상대습도 90%에서 24시간 처리
2) 인장물성 평가 : ASTM D638에 의하여 인장강도 측정
3) 사출즉시 물성으로부터 유지율 산출
3. 내유성: 가솔린 50℃ 침적 48시간 경과 후 인장강도 유지율 측정
4. 내열성 - 열변형온도를 ASTM D648에 의거하여 실시하였다.
항목 실시예22 실시예23 실시예24 실시예25 실시예26 비교예6
인장강도 (MPa) 158 160 162 157 170 200
내수성 (침지 물성유지율, %) 89 90 87 91 85 50
내유성 (엔진오일 침지물성 유지율, %) 85 90 86 88 89 70
내열성 (℃) 218 222 223 220 219 260
상기 표 6에서 보듯이, 실시예 의 경우 비교예 6에 비하여 내열성이나 인장강도 수치는 다소 낮으나 일반적으로 엔진 부품으로 사용하기에 적당한 수치범위로볼 수 있는 범위이며, 내수성 및 내유성은 비교예에 비하여 우수한 것으로 나타났다. 특히, 물 및 엔진오일에 각각 24시간 침지하였을 때의 인장강도 유지율이 각 80% 이상으로 우수하였다.
따라서, 비교예보다는 실시예를 통해 제조된 시편은 엔진 부품으로 사용하기에 더 유리한 것으로 나타났다.
실시예 27
일산화탄소와 에틸렌과 프로펜으로 이루어진 선상 교대 폴리케톤 터폴리머는 초산 팔라듐, 트리 플루오르 초산 및 ((2,2-디메틸-1,3-디옥산-5,5-디일)비스(메틸렌))비스(비스(2-메톡시페닐)포스핀)으로부터 생성한 촉매 조성물의 존재 하에서 제조했다. 상기에서 팔라듐 대비 트리 플루오르 초산의 함량은 10배의 몰비이고, 중합온도 78℃의 1단계와 84℃의 2단계를 거친다. 상기에서 제조된 폴리케톤 터폴리머에서 에틸렌과 프로펜의 몰비는 46대 4였다. 또한 상기 폴리케톤 터폴리머의 융점은 220℃이고, HFIP(hexa-fluoroisopropano)로 25℃에 측정한 LVN이 1.4dl/g이며, MI(Melt index)가 60g/10min이며, MWD가 2.0 이었다. 상기에서 제조된 폴리케톤 터폴리머 70중량%와 유리섬유 30중량%를 250rpm으로 작동하는 직경 40mm이며, L/D=32인 2축 스크류를 이용하여 압출기 상에서 펠렛(pellet) 상으로 제조하여 사출성형하여 자동차 밸브 바디용 시편을 제조하여 물성을 평가하였다.
실시예 28
실시예 27중 폴리케톤의 함량을 60중량%, 유리섬유의 함량을 40중량% 설정한 것 이외에는 실시예 1과 동일하다.
실시예 29
실시예 1중 폴리케톤의 함량을 50중량%, 유리섬유의 함량을 50중량% 설정한 것 이외에는 실시예 1과 동일하다.
비교예 7 내지 8
기존에 DuPont 사(社)의 소재로서 폴리아마이드 6(Polyamide 6, PA 6) 50중량%과 유리섬유 50중량% 및 폴리아마이드 66(Polyamide 66, PA 66) 37중량%과 유리섬유 63중량%의 충격강도 및 흡습 후 물성 유지율을 측정하였다.
물성평가
상기 실시예의 제조된 펠렛을 사출 성형하여 자동차 밸브 바디용 시편을 제조한 다음, 비교예의 제품과 대비하여 아래와 같은 방법으로 물성을 평가하고, 그 결과를 하기 표 1에 나타내었다.
1. 아이조드 충격강도 평가 : ASTM D256에 의거하여 실시하였다.
2. 내유성: 미션오일 50℃ 침적, 48시간, 96시간 경과 후 흡유량측정
3. 인장강도: ASTM D638에 의거하여 실시하였다.
4. 굴곡강도: ASTM D790에 의거하여 실시하였다.
5. 제품 내염화칼슘성 물성 유지율 평가
시험용 시편을 염화칼슘 35% 수용액에 아래와 같은 시험을 20회 반복 평가후 인장강도 물성 유지율을 측정함
1) 100℃ 물에서 2시간 처리후 표면 습기 제거
2) 상온에서 30분간 방치, 냉각
3) 100℃ 염화칼슘 35% 수용액에 2시간 처리
4) 상온에서 60분간 방치, 냉각
5) 물로 세정후, 표면 습기 제거
실시예와 비교예의 물성은 하기 표 7과 같았다.
구분 배합비 흡유량(48시간후) 흡유량(96시간후) 인장강도 굴곡강도 충격강도 내염화칼슘성(물성유지율)
% % MPa MPa KJ/m2 %
비교예7 PA6/GF50 0.15 0.18 39 43 30 60
비교예8 PA66/GF63 0.16 0.20 36 46 25 65
실시예27 PK/GF30 0.10 0.13 90 85 50 90
실시예28 PK/GF40 0.11 0.14 77 88 52 92
실시예29 PK/GF50 0.11 0.16 73 87 59 88
상기 표 7에서 보듯이, 폴리케톤과 유리섬유를 블렌딩하여 제조된 실시예들은 비교예에 비하여 48시간 또는 96시간후 흡유량이 낮아 내유성이 우수하며(50℃의 가솔린에 48시간 침적시킨후 흡유량이 0.14%이하), 충격강도가 높아 내충격성이 우수한 것으로 평가되었다. 따라서, 본 발명의 실시예를 통해 제조된 자동차 밸브 바디는 내충격성, 내유성이 매우 우수하여 자동차 밸브 바디로 적용하기에 매우 적합하였다.
실시예 30
일산화탄소와 에틸렌과 프로펜으로 이루어진 선상 교대 폴리케톤 터폴리머는 초산 팔라듐, 트리 플루오르 초산 및 ((2,2-디메틸-1,3-디옥산-5,5-디일)비스(메틸렌))비스(비스(2-메톡시페닐)포스핀)으로부터 생성한 촉매 조성물의 존재 하에서 제조했다. 상기에서 제조된 폴리케톤 터폴리머에서 에틸렌과 프로펜의 몰비는 46대 4였다. 또한 상기 폴리케톤 터폴리머의 융점은 220℃이고, HFIP(hexa-fluoroisopropano)로 25℃에 측정한 LVN이 1.4dl/g이며, MI(Melt index)가 48g/10min 이었다. 상기에서 제조된 폴리케톤 터폴리머 95중량% 및 설퍼아마이드계 가소제 5중량%를 포함하는 블렌드를 250rpm으로 작동하는 직경 2.5cm이며, L/D=32인 2축 스크류를 이용하여 압출기 상에서 펠렛(pellet) 상으로 제조된 펠렛을 사출 성형하여 자동차 연료 튜브용 시편을 제조하였다.
비교예 9
폴리케톤 터폴리머 대신 나일론12를 250rpm으로 작동하는 직경 2.5cm이며, L/D=32인 2축 스크류를 이용하여 압출기 상에서 펠렛(pellet) 상으로 제조된 펠렛을 사출 성형하여 자동차 연료 튜브용 시편을 제조하였다.
물성평가
실시예 30 및 비교예 9에서 각각 제조한 자동차 연료 튜브용 시편의 물성을 하기와 같은 방법으로 평가하였으며, 그 결과는 하기 표 1에 나타내었다.
1. 연료투과도(Permeation Coefficient): 23℃, 50%RH의 조건에서 ASTM D1434에 의거하여 실시하였다.
2. 물성유지율: 시편을 25℃ 가솔린에 침지한 후와 60℃ 가솔린에 3000시간 침지한 후의 굴곡강도를 각각 ASTM D790에 의거하여 측정하였다.
3. 무게 변화율: 시편을 25℃ 가솔린에 침지한 후와 60℃ 가솔린에 3000시간 침지한 후의 무게를 각각 MS211-47에 의거하여 측정하였다.
실시예 30 비교예 9
연료투과도 (Permeation Coefficient, @ 23oC,50%RH(g.mm/m2.day) 0.005 0.067
물성유지율 (%) 98 78
무게변화율 (%) 0.4 4.2
상기 표 8 에 따르면 실시예 30은 비교예 9에 비해 낮은 연료투과도로 연료차단성이 우수하며(0.005g.mm/m2.day 이하), 물성유지율(98% 이상) 및 무게변화율(0.4%이하) 모두 우수한 것으로 나타났다.
따라서, 본원발명의 실시예 30에 의해 제조된 시편은 자동차용 연료 튜브로 사용하기에 적합하다.
실시예 31
일산화탄소와 에틸렌과 프로펜으로 이루어진 선상 교대 폴리케톤 터폴리머는 초산 팔라듐, 트리 플루오르 초산 및 ((2,2-디메틸-1,3-디옥산-5,5-디일)비스(메틸렌))비스(비스(2-메톡시페닐)포스핀)으로부터 생성한 촉매 조성물의 존재 하에서 제조했다. 상기에서 팔라듐 대비 트리 플루오르 초산의 함량은 10배의 몰비이고, 중합온도 78℃의 1단계와 84℃의 2단계를 거친다. 상기에서 제조된 폴리케톤 터폴리머에서 에틸렌과 프로펜의 몰비는 46대 4였다. 또한 상기 폴리케톤 터폴리머의 융점은 220℃이고, HFIP(hexa-fluoroisopropano)로 25℃에 측정한 LVN이 1.4dl/g이며, MI(Melt index)가 60g/10min이며, MWD가 2.0 이었다. 상기에서 제조된 폴리케톤 터폴리머 75중량%와 유리섬유 10중량% 및 실리카 60~75 중량%와 산화마그네슘 25~40 중량%로 혼합된 미네랄 필러를 15중량% 혼합하여 250rpm으로 작동하는 직경 40mm이며, L/D=32인 2축 스크류를 이용하여 압출기 상에서 펠렛(pellet) 상으로 제조하여 사출성형하여 자동차 엔진 커버용 시편을 제조하여 물성을 평가하였다.
실시예 32
실시예 31중 유리섬유의 함량을 5중량% 및 미네랄 필러의 함량을 10중량%로 설정한 것 이외에는 실시예 31과 동일하다.
실시예 33
실시예 31중 유리섬유의 함량을 20중량% 및 미네랄 필러의 함량을 20중량%로 설정한 것 이외에는 실시예 31과 동일하다.
비교예 10
폴리케톤 대신 기존에 DuPont 사(社)의 소재로서 폴리아마이드 6(Polyamide 6, PA 6)을 사용한 것을 제외하고는 실시예 31과 동일하다.
물성평가
상기 실시예의 제조된 펠렛을 사출 성형하여 자동차 엔진 커버용 시편을 제조한 다음, 비교예의 제품과 대비하여 아래와 같은 방법으로 물성을 평가하고, 그 결과를 하기 표 9에 나타내었다.
1. 아이조드 충격강도 평가 : ASTM D256에 의거하여 실시하였다.
2. 오일환경하 변형율 평가 : 상온에서 500시간 오일에 침적 후 수직 및 수평방향에 대해 MS211-47에 따라 평가하였다.
3. 인장강도: ASTM D638에 의거하여 실시하였다.
4. 굴곡강도: ASTM D790에 의거하여 실시하였다.
실시예와 비교예의 물성은 하기 표 9와 같았다.
구분 오일환경하 수직방향 변화율 평가 오일환경하 수평방향 변화율 평가 인장강도 굴곡강도 충격강도
% % MPa MPa KJ/m2
비교예10 0.180 0.210 39 43 30
실시예31 0.152 0.170 77 88 52
실시예32 0.154 0.178 90 85 50
실시예33 0.153 0.174 73 87 59
상기 표 9에서 본 발명에 의하여 제조된 폴리케톤 수지 조성물은 기존의 폴리아미드 소재에 비하여 기계적 특성 및 내유성이 우수하여 자동차 엔지 커버의 재질로 사용하기에 적합한 것으로 판명되었다.
특히, 본 발명의 자동차 엔진커버는 블렌드 전체 대비 유리섬유를 5 내지 30중량%를 함유하는 경우, 오일 환경하에서 치수변화율이 적어 내유성이 좋다. 오일에 노출가능성이 높은 자동차 오일 팬에 적용되기에 적합한 것으로 나타났다. 또한, 유리섬유의 함량이 5중량% 미만인 경우 내유성, 기계적 물성이 좋지 못하고, 30중량%를 초과하는 경우 블렌드 및 사출성형이 어렵다. 또한, 미네랄 필러 역시 상기와 동일한 이유로 블렌드 전체 대비 10 내지 20중량%인 것이 바람직한 것으로 나타났다.
실시예 34
일산화탄소와 에틸렌과 프로펜으로 이루어진 선상 교대 폴리케톤 터폴리머는 초산 팔라듐, 트리 플루오르 초산 및 ((2,2-디메틸-1,3-디옥산-5,5-디일)비스(메틸렌))비스(비스(2-메톡시페닐)포스핀)으로부터 생성한 촉매 조성물의 존재 하에서 제조했다. 상기에서 팔라듐 대비 트리 플루오르 초산의 함량은 10배의 몰비이고, 중합온도 78℃의 1단계와 84℃의 2단계를 거친다. 상기에서 제조된 폴리케톤 터폴리머에서 에틸렌과 프로펜의 몰비는 46대 4였다. 또한 상기 폴리케톤 터폴리머의 융점은 220℃이고, HFIP(hexa-fluoroisopropano)로 25℃에 측정한 LVN이 1.4dl/g이
며, MI(Melt index)가 60g/10min이며, MWD가 2.0 이었다.
상기 제조된 폴리케톤 터폴리머를 250rpm으로 작동하는 직경 2.5㎝이며, L/D=32인 2축 스크류를 이용하여 압출기 상에서 펠렛(pellet) 상으로 제조하였다.
실시예 35
실시예 34와 동일하게 제조된 폴리케톤 터폴리머 100중량부에 ABS 10중량부를 블렌딩하여 250rpm으로 작동하는 직경 2.5㎝이며, L/D=32인 2축 스크류를 이용하여 압출기 상에서 펠렛(pellet) 상으로 제조하였다.
실시예 36
실시예 34와 동일하게 제조된 폴리케톤 터폴리머 100중량부에 유리섬유 30중량부를 블렌딩하여 250rpm으로 작동하는 직경 2.5㎝이며, L/D=32인 2축 스크류를 이용하여 압출기 상에서 펠렛(pellet) 상으로 제조하였다.
실시예 37
실시예 34와 동일하게 제조된 폴리케톤 터폴리머 100중량부에 설퍼아마이드계 가소제 10중량부를 블렌딩하여 250rpm으로 작동하는 직경 2.5㎝이며, L/D=32인 2축 스크류를 이용하여 압출기 상에서 펠렛(pellet) 상으로 제조하였다.
실시예 38
실시예 34와 동일하게 제조된 폴리케톤 터폴리머 100중량부에 실리카 60중량%와 산화마그네슘 40중량%를 혼합하여 제조된 미네랄 필러 10중량부를 블렌딩하여 250rpm으로 작동하는 직경 2.5㎝이며, L/D=32인 2축 스크류를 이용하여 압출기 상에서 펠렛(pellet) 상으로 제조하였다.
비교예 11
Rhodda 사 PA66를 250rpm으로 작동하는 직경 2.5㎝이며, L/D=32인 2축 스크류를 이용하여 압출기 상에서 펠렛(pellet) 상으로 제조하였다.
비교예 12
Rhodda 사 PA66 100중량부에 ABS 10중량부를 블렌딩하여 250rpm으로 작동하는 직경 2.5㎝이며, L/D=32인 2축 스크류를 이용하여 압출기 상에서 펠렛(pellet) 상으로 제조하였다.
비교예 13
Rhodda 사 PA66 100중량부에 유리섬유 30중량부를 블렌딩하여 250rpm으로 작동하는 직경 2.5㎝이며, L/D=32인 2축 스크류를 이용하여 압출기 상에서 펠렛(pellet) 상으로 제조하였다.
비교예 14
Rhodda 사 PA66 100중량부에 설퍼아마이드계 가소제 10중량부를 블렌딩하여 250rpm으로 작동하는 직경 2.5㎝이며, L/D=32인 2축 스크류를 이용하여 압출기 상에서 펠렛(pellet) 상으로 제조하였다.
비교예 15
Rhodda 사 PA66 100중량부에 실리카 60중량%와 산화마그네슘 40중량%를 혼합하여 제조된 미네랄 필러 10중량부를 블렌딩하여 250rpm으로 작동하는 직경 2.5㎝이며, L/D=32인 2축 스크류를 이용하여 압출기 상에서 펠렛(pellet) 상으로 제조하였다.
물성평가
상기 실시예의 제조된 폴리케톤 수지 조성물을 시편으로 제조한 다음, 비교예의 제품과 대비하여 아래와 같은 방법으로 물성을 평가하고, 그 결과를 하기 표10에 나타내었다.
1. 오일환경하 변형율 평가 : 상온에서 500시간 오일에 침적 후 수직 및 수평방향에 대해 MS211-47에 따라 평가하였다.
2. 내염화칼슘성 평가: 100℃ 염화칼슘 35% 수용액에 2시간 침지한 후 꺼내어 1시
간 동안 실온에서 방치 후 표면수를 제거하는, 총 5.5시간을 1 주기로 하여 매5cycle 당 아이조드 충격강도의 유지율을 평가하였다. 상기 유지율 평가는 총20cycle을 실시하였다.
3. 내마모성 평가: 내경 20mm, 외경 25mm, 높이 15mm인 원통형 시편과 상대재
를 사용하여 평가하였다. JIS K7218규격 하 속도 50rpm, 하중 150N, 마모거리 3km로 하여 마모량을 측정하였다.
4. 아이조드 충격강도 평가 : ASTM D256에 의거하여 실시하였다.
구분 오일환경하의 수직방향 변화율 (%) 오일환경하의수평방향 변화율(%) 내염화칼슘성(%) 내마모성(g) 아이조드 충격강도(KJ/m2)
실시예34 0.152 0.170 90 0.018 52
실시예35 0.154 0.184 88 0.018 54
실시예36 0.148 0.182 92 0.016 52
실시예37 0.144 0.188 92 0.017 56
실시예38 0.150 0.186 94 0.019 54
비교예11 0.180 0.240 60 0.083 30
비교예12 0.182 0.244 58 0.088 28
비교예13 0.184 0.260 55 0.090 32
비교예14 0.184 0.264 56 0.092 31
비교예15 0.220 0.262 60 0.090 34
상기 표10에서 확인되듯이 본 발명의 폴리케톤 터폴리머 및 폴리케톤 수지 조성물은 PA66에 비하여 내유성, 내염화칼슘성, 내마모성, 충격강도가 우수하여 산업용 오링, 파이프 라이너, 스노우 체인, 자동차 연료튜브, 자동차 엔진 커버 등에 사용하기에 매우 적절한 것임을 알 수 있었다.
실시예 39
일산화탄소와 에틸렌과 프로펜으로 이루어진 선상 교대 폴리케톤 터폴리머는 초산 팔라듐, 트리 플루오르 초산 및 ((2,2-디메틸-1,3-디옥산-5,5-디일)비스(메틸렌))비스(비스(2-메톡시페닐)포스핀)으로부터 생성한 촉매 조성물의 존재 하에서 제조했다. 상기에서 팔라듐 대비 트리 플루오르 초산의 함량은 10배의 몰비이고, 중합온도 78℃의 1단계와 84℃의 2단계를 거친다. 상기에서 제조된 폴리케톤 터폴리머에서 일산화탄소는 50mol%이고, 에틸렌은 46mol%이며, 프로필렌은 4mol%이었다. 또한, 상기 폴리케톤 터폴리머의 융점은 220℃이고, HFIP(hexa-fluoroisopropano)로 25℃에 측정한 LVN이 1.4dl/g이며, MWD가 2.0 이었다.
상기 제조된 폴리케톤 터폴리머 70중량%와 유리섬유 30중량%를 투입하여 조성물을 제조하고, 제조된 조성물을 250rpm으로 작동하는 직경 40cm이며, L/D=32인 2축 스크류를 이용하여 압출기 상에 펠렛(pellet) 상으로 제조한 후, 사출성형하여 실린더 헤드 커버의 시편을 제조하였다.
실시예 40
실시예 39과 동일한 방법으로 제조된 폴리케톤 터폴리머 75중량%와 유리섬유 25중량%를 투입하여 조성물을 제조하고, 제조된 조성물을 250rpm으로 작동하는 직경 40cm이며, L/D=32인 2축 스크류를 이용하여 압출기 상에 펠렛(pellet) 상으로 제조한 후, 사출성형하여 실린더 헤드 커버의 시편을 제조하였다.
실시예 41
실시예 39과 동일한 방법으로 제조된 폴리케톤 터폴리머 80중량%와 유리섬유 20중량%를 투입하여 조성물을 제조하고, 제조된 조성물을 250rpm으로 작동하는 직경 40cm이며, L/D=32인 2축 스크류를 이용하여 압출기 상에 펠렛(pellet) 상으로 제조한 후, 사출성형하여 실린더 헤드 커버의 시편을 제조하였다.
실시예 42
실시예 39과 동일한 방법으로 제조된 폴리케톤 터폴리머 85중량%와 유리섬유 15중량%를 투입하여 조성물을 제조하고, 제조된 조성물을 250rpm으로 작동하는 직경 40cm이며, L/D=32인 2축 스크류를 이용하여 압출기 상에 펠렛(pellet) 상으로 제조한 후, 사출성형하여 실린더 헤드 커버의 시편을 제조하였다.
비교예 15
나일론 66 수지 70중량%와 유리섬유 30중량%를 투입하여 조성물을 제조하고, 제조된 조성물을 250rpm으로 작동하는 직경 40cm이며, L/D=32인 2축 스크류를 이용하여 압출기 상에 펠렛(pellet) 상으로 제조한 후, 사출성형하여 실린더 헤드 커버의 시편을 제조하였다.
물성 평가
상기 실시예 39 내지 42 및 비교예 15에서 각각 제조된 시편을 하기와 같은 방법으로 물성을 평가하였으며, 그 결과는 하기 표 11에 나타내었다.
1. 아이조드 충격강도 평가 : ASTM D256에 의거하여 실시하였다.
2. 치수 변화율 평가 : 온도 50℃, 상대습도 90%의 조건에서 수직 및 수평방향에 대해 MS211-47에 따라 평가하였다.
3. 내유성 : 가솔린 50℃ 침적 48시간 경과 후 인장강도 유지율을 측정하였다.
구분 내유성 충격강도 치수변화율
% KJ/m2 %
실시예 39 85 25 1.3
실시예 40 90 23 1.1
실시예 41 86 28 1.2
실시예 42 88 27 1.5
비교예 15 70 18 5.2
상기 표 11에서 알 수 있는 바와 같이, 실시예의 경우 비교예 15 대비 치수안정성, 내충격성 및 내유성이 우수한 것으로 나타났다. 따라서 본 발명의 실시예를 통해 제조된 실린더 헤드 커버는 기존의 실린더 헤드 커버 소재로 사용되는 비교예의 경우보다 우수한 치수안정성, 내충격성 및 내유성을 나타내므로, 실린더 헤드 커버로 적용하기에 더욱 적합하다.
실시예 43
일산화탄소와 에틸렌과 프로펜으로 이루어진 선상 교대 폴리케톤 터폴리머는 초산 팔라듐, 트리 플루오르 초산 및 ((2,2-디메틸-1,3-디옥산-5,5-디일)비스(메틸렌))비스(비스(2-메톡시페닐)포스핀)으로부터 생성한 촉매 조성물의 존재 하에서 제조했다. 상기에서 팔라듐 대비 트리 플루오르 초산의 함량은 10배의 몰비이고, 중합온도 78℃의 1단계와 84℃의 2단계를 거친다. 상기에서 제조된 폴리케톤 터폴리머에서 일산화탄소는 50mol%이고, 에틸렌은 46mol%이며, 프로필렌은 4mol%이었다. 또한, 상기 폴리케톤 터폴리머의 융점은 220℃이고, HFIP(hexa-fluoroisopropano)로 25℃에 측정한 LVN이 1.4dl/g이며, MWD가 2.0 이었다.
상기 제조된 폴리케톤 터폴리머 70중량%와 유리섬유 30중량%를 투입하여 조성물을 제조하고, 제조된 조성물을 250rpm으로 작동하는 직경 40cm이며, L/D=32인 2축 스크류를 이용하여 압출기 상에 펠렛(pellet) 상으로 제조한 후, 사출성형하여 파워 스티어링 오일 리저버 탱크의 시편을 제조하였다.
실시예 44
실시예 43과 동일한 방법으로 제조된 폴리케톤 터폴리머 75중량%와 유리섬유 25중량%를 투입하여 조성물을 제조하고, 제조된 조성물을 250rpm으로 작동하는 직경 40cm이며, L/D=32인 2축 스크류를 이용하여 압출기 상에 펠렛(pellet) 상으로 제조한 후, 사출성형하여 파워 스티어링 오일 리저버 탱크의 시편을 제조하였다.
실시예 45
실시예 43과 동일한 방법으로 제조된 폴리케톤 터폴리머 80중량%와 유리섬유 20중량%를 투입하여 조성물을 제조하고, 제조된 조성물을 250rpm으로 작동하는 직경 40cm이며, L/D=32인 2축 스크류를 이용하여 압출기 상에 펠렛(pellet) 상으로 제조한 후, 사출성형하여 파워 스티어링 오일 리저버 탱크의 시편을 제조하였다.
실시예 46
실시예 43과 동일한 방법으로 제조된 폴리케톤 터폴리머 85중량%와 유리섬유 15중량%를 투입하여 조성물을 제조하고, 제조된 조성물을 250rpm으로 작동하는 직경 40cm이며, L/D=32인 2축 스크류를 이용하여 압출기 상에 펠렛(pellet) 상으로 제조한 후, 사출성형하여 파워 스티어링 오일 리저버 탱크의 시편을 제조하였다.
비교예 16
나일론 66 수지 70중량%와 유리섬유 30중량%를 투입하여 조성물을 제조하고, 제조된 조성물을 250rpm으로 작동하는 직경 40cm이며, L/D=32인 2축 스크류를 이용하여 압출기 상에 펠렛(pellet) 상으로 제조한 후, 사출성형하여 파워 스티어링 오일 리저버 탱크의 시편을 제조하였다.
물성 평가
상기 실시예 43 내지 46 및 비교예 16에서 각각 제조된 시편을 하기와 같은 방법으로 물성을 평가하였으며, 그 결과는 하기 표 12에 나타내었다.
1) 내유성 평가 : 가솔린 50℃ 침적 48시간 경과 후 인장강도 유지율을 측정하였다.
2) 내염화칼슘성 물성 유지율 평가:
(1)제조된 시편을 2hr, 100℃ 물에 침지시키는 단계;
(2)침지된 시편을 상온(RT)에서 30min 동안 cooling 시키는 단계;
(3)cooling된 시편을 2hr, 100℃에서 35% 염화칼슘용액에 침지시키는 단계;
(4)침지된 시편을 상온(RT)에서 60min 동안 cooling 시키는 단계;
상기(1) 내지 (4) 단계를 20회 반복 후 물성유지율을 측정한다.
구분 내유성(물성유지율) 내염화칼슘성(물성유지율)
% %
실시예 43 86 90
실시예 44 90 93
실시예 45 86 85
실시예 46 88 86
비교예 16 70 70
상기 표 12에서 알 수 있는 바와 같이, 실시예의 경우 비교예 16 대비 내화학성이 우수한 것으로 나타났다. 따라서 본 발명의 실시예를 통해 제조된 파워 스티어링 오일 리저버 탱크는 기존의 파워 스티어링 오일 리저버 탱크 소재로 사용되는 비교예의 경우보다 우수한 내화학성을 나타내므로, 파워 스티어링 오일 리저버 탱크로 적용하기에 더욱 적합하다.
실시예 47
일산화탄소와 에틸렌과 프로펜으로 이루어진 선상 교대 폴리케톤 터폴리머는 초산 팔라듐, 트리 플루오르 초산 및 ((2,2-디메틸-1,3-디옥산-5,5-디일)비스(메틸렌))비스(비스(2-메톡시페닐)포스핀)으로부터 생성한 촉매 조성물의 존재 하에서 제조했다. 상기에서 팔라듐 대비 트리 플루오르 초산의 함량은 11배의 몰비이고, 중합온도 80℃의 1단계와 84℃의 2단계를 거친다. 상기에서 제조된 폴리케톤 터폴리머에서 에틸렌과 프로펜의 몰비는 85대 15였다. 또한 상기 폴리케톤 터폴리머의 융점은 220℃이고, HFIP(hexa-fluoroisopropano)로 25℃에 측정한 LVN이 1.4dl/g이며, MWD가 2.0 이었다.
상기에서 제조된 폴리케톤 터폴리머를 250rpm으로 작동하는 직경 2.5cm이며, L/D=32인 2축 스크류를 이용하여 압출기 상에서 펠렛(pellet) 상으로 제조하였다. 제조된 시험편을 형체력 80톤의 성형기 상에서 사출성형하여 연료 펌프 시편을 제조하였다.
실시예 48
일산화탄소와 에틸렌과 프로펜으로 이루어진 선상 교대 폴리케톤 터폴리머는 초산 팔라듐, 트리 플루오르 초산 및 ((2,2-디메틸-1,3-디옥산-5,5-디일)비스(메틸렌))비스(비스(2-메톡시페닐)포스핀)으로부터 생성한 촉매 조성물의 존재 하에서 제조했다. 상기에서 팔라듐 대비 트리 플루오르 초산의 함량은 10배의 몰비이고, 중합온도 78℃의 1단계와 84℃의 2단계를 거친다. 상기에서 제조된 폴리케톤 터폴리머에서 에틸렌과 프로펜의 몰비는 85대 15였다. 또한 상기 폴리케톤 터폴리머의 융점은 220℃이고, HFIP(hexa-fluoroisopropano)로 25℃에 측정한 LVN이 1.6dl/g이며, MWD가 2.0 이었다.
상기에서 제조된 폴리케톤 터폴리머를 250rpm으로 작동하는 직경 2.5cm이며, L/D=32인 2축 스크류를 이용하여 압출기 상에서 펠렛(pellet) 상으로 제조하였다. 제조된 시험편을 형체력 80톤의 성형기 상에서 사출성형하여 연료 펌프 시편을 제조하였다.
실시예 49
일산화탄소와 에틸렌과 프로펜으로 이루어진 선상 교대 폴리케톤 터폴리머는 초산 팔라듐, 트리 플루오르 초산 및 ((2,2-디메틸-1,3-디옥산-5,5-디일)비스(메틸렌))비스(비스(2-메톡시페닐)포스핀)으로부터 생성한 촉매 조성물의 존재 하에서 제조했다. 상기에서 팔라듐 대비 트리 플루오르 초산의 함량은 9배의 몰비이고, 중합온도 74℃의 1단계와 84℃의 2단계를 거친다. 상기에서 제조된 폴리케톤 터폴리머에서 에틸렌과 프로펜의 몰비는 85대 15였다. 또한 상기 폴리케톤 터폴리머의 융점은 220℃이고, HFIP(hexa-fluoroisopropano)로 25℃에 측정한 LVN이 2.0dl/g이며, MWD가 2.0 이었다.
상기에서 제조된 폴리케톤 터폴리머를 250rpm으로 작동하는 직경 2.5cm이며, L/D=32인 2축 스크류를 이용하여 압출기 상에서 펠렛(pellet) 상으로 제조하였다. 제조된 시험편을 형체력 80톤의 성형기 상에서 사출성형하여 연료 펌프 시편을 제조하였다.
비교예 17
폴리옥시메틸렌 수지를 250rpm으로 작동하는 직경 2.5cm이며, L/D=32인 2축 스크류를 이용하여 압출기 상에서 펠렛(pellet) 상으로 제조후 차량용 연료 펌프 시편을 제조하였다.
물성 평가
1. 치수안정성, 내충격성 평가: 상기 실시예 및 비교예에서 제조된 연료 펌프를 하기의 방법을 통해 치수안정성, 성형성 및 내유성을 평가하였으며, 그 결과는 하기 표 4에 나타내었다.
1) 치수안정성 평가: 온도 50℃, 상대습도 90%의 조건에서 수직 및 수평방향에 대해 MS211-47에 따라 제품의 변형율을 평가하였다.
2) 성형성 평가 : 동일한 금형에서 단위시간당 정상품으로 사출되는 사출품의 수로 평가, 기준 대비 많은 수를 사출할 수 있을 경우 우수, 기준 대비 적은 수를 사출 할 수 있을 경우 미흡 판정.
3) 내유성 평가 : 가솔린 50℃ 침적 48시간 경과 후 인장강도 유지율을 측정하였다.
항목 실시예47 실시예48 실시예49 비교예17
제품 변형율-수직 (50℃, RH 90%) 0.12 0.14 0.10 0.25
제품 변형율-수평 (50℃, RH 90%) 0.04 0.03 0.05 0.12
내유성(%) 85 90 86 70
성형성 양호 양호 양호 보통
상기 표 13에서 알 수 있는 바와 같이, 실시예의 경우 비교예 대비 내유성, 성형성이 향상되었고, 수직 및 수평 방향의 제품 변형율이 우수한 것으로 나타났다. 따라서 본 발명의 실시예를 통해 제조된 차량용 연료 펌프는 기존의 차량용 연료 펌프 소재로 사용되는 비교예의 경우보다 우수한 내유성, 성형성 및 치수안정성을 나타내므로, 차량용 연료 펌프로 적용하기에 더욱 적합하다.

Claims (57)

  1. 하기 일반식 (1)과 (2)로 표시되는 반복 단위로 이루어진 폴리케톤 공중합체로서, y/x가 0.03 내지 0.3인 선상 교대 폴리케톤과 아크릴로니트릴 부타디엔 스티렌을 포함하여 구성되며, 아크릴로니트릴 부타디엔 스티렌은 상기 폴리케톤 공중합체 100중량부 대비 5 내지 50 중량부 만큼 포함되어 있는 것을 특징으로 하는 내유성이 향상된 폴리케톤 수지 조성물.
    -[-CH2CH2-CO]x- (1)
    -[-CH2-CH(CH3)-CO]y- (2)
    (x, y는 폴리머 중의 일반식 (1) 및 (2)의 각각의 몰%를 나타낸다.)
  2. 하기 일반식 (1)과 (2)로 표시되는 반복 단위로 이루어진 폴리케톤 공중합체로서, y/x가 0.03 내지 0.3인 선상 교대 폴리케톤과 유리섬유를 포함하여 구성되며, 상기 유리섬유는 입경이 10 내지 13㎛인 것으로 상기 폴리케톤 공중합체 100 중량부 대비 25 내지 35 중량부 만큼 포함되는 것을 특징으로 하는 내유성이 향상된 폴리케톤 수지 조성물.
    -[-CH2CH2-CO]x- (1)
    -[-CH2-CH(CH3)-CO]y- (2)
    (x, y는 폴리머 중의 일반식 (1) 및 (2)의 각각의 몰%를 나타낸다.)
  3. 하기 일반식 (1)과 (2)로 표시되는 반복 단위로 이루어진 폴리케톤 공중합체로서, y/x가 0.03 내지 0.3인 선상 교대 폴리케톤과 설퍼아마이드계 가소제를 포함하여 구성되며, 상기 설퍼아마이드계 가소제는 상기 폴리케톤 공중합체 100 중량부에 대비 1 내지 10중량부 만큼 포함되는 것을 특징으로 하는 내유성이 향상된 폴리케톤 수지 조성물.
    -[-CH2CH2-CO]x- (1)
    -[-CH2-CH(CH3)-CO]y- (2)
    (x, y는 폴리머 중의 일반식 (1) 및 (2)의 각각의 몰%를 나타낸다.)
  4. 하기 일반식 (1)과 (2)로 표시되는 반복 단위로 이루어진 폴리케톤 공중합체로서, y/x가 0.03 내지 0.3인 선상 교대 폴리케톤과 미네랄 필러를 포함하여 구성되며, 상기 미네랄 필러는 평균 입경이 4 ~ 6 μm 이며, 상기 폴리케톤 공중합체 100 중량부 대비 10~20 중량부 만큼 포함되는 것을 특징으로 하는 내유성이 향상된 폴리케톤 수지 조성물.
    -[-CH2CH2-CO]x- (1)
    -[-CH2-CH(CH3)-CO]y- (2)
    (x, y는 폴리머 중의 일반식 (1) 및 (2)의 각각의 몰%를 나타낸다.)
  5. 제 1항 내지 제 4항 중 어느 하나의 항에 따른 폴리케톤 수지 조성물을 이용한 산업용 오링, 파이프 라이너, 스노우 체인, 자동차 연료튜브, 자동차 엔진 커버.
  6. 제 1항에 있어서,
    상기 폴리케톤 조성물 전체 중량에 대하여 아크릴로니트릴 부타디엔 스티렌의 조성비는 8 내지 20중량%인 것을 특징으로 하는 폴리케톤 조성물.
  7. 제 1항에 있어서,
    상기 폴리케톤 조성물은 50℃ 가솔린 용액에서 48시간 침적후의 흡유량이 0.15%이하인 것을 특징으로 하는 폴리케톤 조성물.
  8. 제 1항에 있어서,
    상기 폴리케톤의 중합시 사용되는 촉매조성물의 리간드는 ((2,2-디메틸-1,3-디옥산-5,5-디일)비스(메틸렌))비스(비스(2-메톡시페닐)포스핀)인 것을 특징으로 하는 폴리케톤 조성물.
  9. 제 6항 내지 제 9항 중 어느 한 항에 기재된 폴리케톤 조성물은 연료 필러 넥 튜브에 적용되는 것을 특징으로 하는 폴리케톤 조성물.
  10. 일산화탄소와 적어도 1종의 올레핀계 불포화 탄화수소로 이루어지고, 팔라듐 촉매잔량이 5 내지 50ppm이고, 분자량 분포가 1.5 내지 2.5인 선상 교대 폴리케톤 폴리머를 사출성형하여 제조되는 것을 특징으로 하는 산업용 오링.
  11. 제 10항에 있어서,
    상기 선상 교대 폴리케톤의 중합시 촉매조성물의 리간드는 ((2,2-디메틸-1,3-디옥산-5,5-디일)비스(메틸렌))비스(비스(2-메톡시페닐)포스핀)인 것을 특징으로 하는 산업용 오링.
  12. 제 10항에 있어서,
    상기 선상 교대 폴리케톤 폴리머의 고유점도는 1.0 내지 2.0dl/g인 것을 특징으로 하는 산업용 오링.
  13. 제 10항에 있어서,
    상기 산업용 오링은 50℃로 유지된 엔진 오일에 24시간 침지한 후 측정한 충격강도가 25℃, 상대습도 65%RH에서 측정한 충격강도 대비 85% 이상 수준을 유지하는 것을 특징으로 하는 산업용 오링.
  14. 제 10항에 있어서,
    상기 오링은 유압용인 것을 특징으로 하는 산업용 오링.
  15. 일산화탄소와 적어도 1종의 올레핀계 불포화 탄화수소로 이루어지고, 팔라듐 촉매잔량이 5 내지 50ppm이고, 분자량 분포가 1.5 내지 2.5인 선상 교대 폴리케톤 폴리머를 사출성형하여 제조되는 것을 특징으로 하는 파이프 라이너.
  16. 제 15항에 있어서,
    상기 선상 교대 폴리케톤의 중합시 촉매조성물의 리간드는 ((2,2-디메틸-1,3-디옥산-5,5-디일)비스(메틸렌))비스(비스(2-메톡시페닐)포스핀)인 것을 특징으로 하는 파이프 라이너.
  17. 제 15항에 있어서,
    상기 선상 교대 폴리케톤 폴리머의 고유점도는 1.0 내지 3.0dl/g인 것을 특징으로 하는 파이프 라이너.
  18. 제 15항에 있어서,
    상기 파이프 라이너는 50℃로 유지된 엔진 오일에 24시간 침지한 후 측정한 충격강도가 25℃, 상대습도 65%RH에서 측정한 충격강도 대비 85% 이상 수준을 유지하는 것을 특징으로 하는 파이프 라이너.
  19. 일산화탄소와 적어도 1종의 올레핀계 탄화수소로 이루어진 선상 교대 폴리케톤 블렌드를 사출성형하여 제조되고, 고유점도(LVN)가 1.2 내지 2.0 dl/g이고, 분자량 분포가 1.5 내지 3.5이며, 내염화칼슘성 물성유지율이 80% 이상인 것을 특징으로 하는 내염화칼슘성이 우수한 폴리케톤 성형품.
  20. 일산화탄소와 적어도 1종의 올레핀계 탄화수소로 이루어지며, 고유점도(LVN)가 1.2 내지 2.0 dl/g이고, 분자량 분포가 1.5 내지 3.5인 선상 교대 폴리케톤과 에이비에스(ABS)를 포함하는 블렌드를 사출성형하여 제조되고, 내염화칼슘성 물성유지율이 80% 이상인 것을 특징으로 하는 내염화칼슘성이 우수한 폴리케톤 스노우 체인.
  21. 제 20항에 있어서,
    상기 에이비에스(ABS)의 함량은 전체 중량대비 15 내지 35 중량%인 것을 특징으로 하는 폴리케톤 스노우 체인.
  22. 제 20항에 있어서,
    상기 폴리케톤 스노우 체인은 온도 50℃, 상대습도 90%의 조건에서 흡습율이 1.5% 이하인 것을 특징으로 하는 폴리케톤 스노우 체인.
  23. 제 20항에 있어서,
    상기 폴리케톤 스노우 체인은 충격강도가 80kJ/㎡ 이상인 것을 특징으로 하는 폴리케톤 스노우 체인.
  24. 일산화탄소와 적어도 1종의 올레핀계 탄화수소로 이루어진 선상 교대 폴리케톤을 사출성형하여 제조되고 염화칼슘 5% 또는 35% 수용액에서 충격강도 유지율이 80% 이상인 것을 특징으로 하는 자동차 외장용 폴리케톤 부품.
  25. 제 24항에 있어서,
    상기 폴리케톤의 고유점도가 1.0 내지 2.0dl/g 이고, 폴리케톤의 중합시 사용되는 촉매조성물의 리간드는 ((2,2-디메틸-1,3-디옥산-5,5-디일)비스(메틸렌))비스(비스(2-메톡시페닐)포스핀)인 것을 특징으로 하는 자동차 외장용 폴리케톤 부품.
  26. 제 24항에 있어서,
    상기 폴리케톤 부품이 휠 캡인 것을 특징으로 하는 자동차 외장용 폴리케톤 부품.
  27. 제 26항에 있어서,
    상기 휠 캡의 충격강도는 20kJ/m2 이상인 것을 특징으로 하는 자동차 외장용 폴리케톤 부품.
  28. 제 26항에 있어서,
    상기 휠 캡은 흡습율이 온도 50℃, 상대습도 90%인 조건에서 1.5%이하인 것을 특징으로 하는 자동차 외장용 폴리케톤 부품.
  29. 일산화탄소와 적어도 1종의 올레핀계 불포화 탄화수소로 이루어진 선상 교대 폴리케톤과 유리섬유를 포함하는 블렌드 조성물을 사출성형하여 제조되는 폴리케톤엔진 부품에 있어서, 이 때 상기 선상 교대 폴리케톤을 물 및 엔진오일에 각각 24시간 침지하였을 때의 인장강도 유지율이 각 80% 이상인 것을 특징으로 하는 폴리케톤 엔진 부품.
  30. 제 29항에 있어서,
    상기 엔진 부품은 엔진 실린더블록 브라켓, 엔진형 공기 흡입 매니폴드, 캐니스터 또는 밋션오일 보관탱크인 것을 특징으로 하는 폴리케톤 엔진 부품.
  31. 제 29항에 있어서,
    상기 유리섬유는 폴리케톤 100중량부 대비 25 내지 35 중량부인 것을 특징으로 하는 폴리케톤 엔진 부품.
  32. 제 29항에 있어서,
    상기 폴리케톤의 고유점도는 1.0 내지 2.0 dl/g인 것을 특징으로 하는 폴리케톤 엔진 부품.
  33. 일산화탄소와 적어도 1종의 올레핀계 탄화수소로 이루어진 선상 교대 폴리케톤 50 내지 90중량%와 유리섬유 10 내지 50 중량%를 혼합한 블렌드를 사출성형하여 자동차 밸브 바디를 제조하고, 50℃의 가솔린에 48시간 침적시킨후 흡유량이 0.14%이하인 것을 특징으로 하는 폴리케톤 자동차 밸브 바디.
  34. 제 33항에 있어서,
    상기 폴리케톤 자동차 밸브 바디의 충격강도는 15kJ/m2 이상인 것을 특징으로 하는 폴리케톤 자동차 밸브 바디.
  35. 제 33항에 있어서,
    상기 폴리케톤 자동차 밸브 바디의 굴곡강도는 80MPa 이상인 것을 특징으로 하는 폴리케톤 자동차 밸브 바디.
  36. 제 33항에 있어서,
    상기 폴리케톤의 고유점도는 1.0 내지 2.0 dl/g 이고, 분자량 분포는 1.5 내지 2.5 인 것을 특징으로 하는 폴리케톤 자동차 밸브 바디.
  37. 하기의 일반식(1)과(2)로 표시되는 반복 단위로 이루어진 폴리케톤 공중합체로서, y/x가 0.03내지 0.3 인 폴리케톤 공중합체 및 설퍼아마이드계 가소제 1 내지 10중량%를 포함하는 블렌드를 사출성형하여 제조되는 것을 특징으로 하는 자동차용 연료 튜브.
    [일반식 1]
    -(CH2CH2-CO)x-
    [일반식 2]
    -(CH2CH(CH3)-CO)y-
    (x, y는, 폴리머 중의 일반식(1) 및 (2) 각각의 몰%)
  38. 제 37항에 있어서,
    상기 자동차용 연료 튜브는 23℃, 상대습도 50%RH에서 연료투과도가 0.005 g.mm/m2.day 이하인 것을 특징으로 하는 자동차용 연료 튜브.
  39. 제 37항에 있어서,
    상기 자동차용 연료 튜브는 60℃ 가솔린에 3000시간 침지 후 측정한 굴곡강도가 25℃ 가솔린에 침지한 후 측정한 굴곡강도 대비 98% 이상 수준을 유지하는 것을 특징으로 하는 자동차용 연료 튜브.
  40. 제 37항에 있어서,
    상기 자동차용 연료 튜브는 60℃ 가솔린에 3000시간 침지 후 측정한 무게가 25℃ 가솔린에 침지한 후 측정한 무게의 변화율이 0.4% 이하인 것을 특징으로 하는 자동차용 연료 튜브.
  41. 일산화탄소와 적어도 1종의 올레핀계 탄화수소로 이루어진 선상 교대 폴리케톤, 유리섬유 및 미네랄 필러를 혼합한 블렌드를 사출성형하여 자동차 엔진 커버를 제조하고, 상기 유리섬유는 블렌드 전체대비 5 내지 30중량%이고, 상기 미네랄 필러는 10 내지 20중량%인 것을 특징으로 하는 폴리케톤 자동차 엔진 커버.
  42. 제 41항에 있어서,
    상기 폴리케톤은는 고유점도가 1.0 내지 2.0 dl/g인 것을 특징으로 하는 폴리케톤 자동차 엔진 커버.
  43. 제 41항에 있어서,
    상기 폴리케톤은 에틸렌과 프로필렌의 몰비%가 9 내지 24 : 1 인 것을 특징으로 하는 폴리케톤 자동차 엔진 커버.
  44. 제 41항에 있어서,
    상기 폴리케톤은 분자량 분포가 1.5 내지 2.5 인 것을 특징으로 하는 폴리케톤 자동차 엔진 커버.
  45. 제 41항에 있어서,
    상기 폴리케톤의 중합시 사용되는 촉매 조성물의 리간드는 ((2,2-디메틸-1,3-디옥산-5,5-디일)비스(메틸렌))비스(비스(2-메톡시페닐)포스핀)인 것을 특징으로 하는 폴리케톤 자동차 엔진 커버.
  46. 일산화탄소와 적어도 1종의 올레핀계 불포화 탄화수소로 이루어지고, 팔라듐 촉매잔량이 5 내지 50ppm이고, 분자량 분포가 1.5 내지 3.0인 선상 교대 폴리케톤 폴리머 60 내지 85 중량%와 유리섬유 15 내지 40 중량%를 포함하는 블렌드를 사출성형하여 제조되는 것을 특징으로 하는 실린더 헤드 커버.
  47. 제 46항에 있어서,
    상기 선상 교대 폴리케톤은 에틸렌과 프로필렌의 몰비%가 99:1 내지 85:15 인 것을 특징으로 하는 실린더 헤드 커버.
  48. 제 46항에 있어서,
    상기 선상 교대 폴리케톤 폴리머의 고유점도는 1.2 내지 2.0dl/g인 것을 특징으로 하는 실린더 헤드 커버.
  49. 제 46항에 있어서,
    상기 실린더 헤드 커버는 충격강도가 20kJ/m2 이상인 것을 특징으로 하는 실린더 헤드 커버.
  50. 일산화탄소와 적어도 1종의 올레핀계 불포화 탄화수소로 이루어지고, 팔라듐 촉매잔량이 5 내지 50ppm이고, 분자량 분포가 1.5 내지 3.0인 선상 교대 폴리케톤 폴리머 60 내지 85 중량%와 유리섬유 15 내지 40 중량%를 포함하는 블렌드를 사출성형하여 제조되는 것을 특징으로 하는 폴리케톤 블렌드를 포함하는 차량용 파워 스티어링 오일 리저버 탱크.
  51. 제 50항에 있어서,
    상기 선상 교대 폴리케톤은 에틸렌과 프로필렌의 몰비%가 99:1 내지 85:15 인 것을 특징으로 하는 폴리케톤 블렌드를 포함하는 차량용 파워 스티어링 오일 리저버 탱크.
  52. 제 50항에 있어서,
    상기 선상 교대 폴리케톤 폴리머의 고유점도는 1.2 내지 2.0dl/g인 것을 특징으로 하는 폴리케톤 블렌드를 포함하는 차량용 파워 스티어링 오일 리저버 탱크.
  53. 일산화탄소와 적어도 1종의 올레핀계 탄화수소로 이루어진 선상 교대 폴리케톤을 사출성형하여 제조된 차량용 폴리케톤 연료 펌프의 가솔린 50℃ 침적 48시간 경과 후 인장강도 유지율이 80%이상인 것을 특징으로 하는 차량용 폴리케톤 연료 펌프.
  54. 제 53항에 있어서,
    상기 폴리케톤은 에틸렌과 프로필렌의 몰비%가 99:1 내지 85:15인 것을 특징으로 하는 차량용 폴리케톤 연료 펌프.
  55. 제 53항에 있어서,
    상기 차량용 폴리케톤 연료 펌프는 베이스 상태에서 치수변화율이 1.3% - 1.5% 인 것을 특징으로 하는 차량용 폴리케톤 연료 펌프.
  56. 제 53항에 있어서,
    상기 폴리케톤의 고유 점도가 1.0 내지 2.0dl/g 인 것을 특징으로 하는 차량용 폴리케톤 연료 펌프.
  57. 제 53항에 있어서,
    상기 폴리케톤의 중합에 사용되는 촉매조성물의 리간드는 ((2,2-디메틸-1,3-디옥산-5,5-디일)비스(메틸렌))비스(비스(2-메톡시페닐)포스핀)인 것을 특징으로 하는 차량용 폴리케톤 연료 펌프.
PCT/KR2015/007507 2014-07-18 2015-07-20 내유성이 우수한 폴리케톤 수지 조성물 WO2016010407A2 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/327,268 US20170166743A1 (en) 2014-07-18 2015-07-20 Polyketone resin composition having excellent oil resistance
JP2017502639A JP2017521533A (ja) 2014-07-18 2015-07-20 耐油性に優れたポリケトン樹脂組成物
EP15822275.2A EP3187543B1 (en) 2014-07-18 2015-07-20 Polyketone resin composition having excellent oil resistance
CN201580046610.8A CN106661322B (zh) 2014-07-18 2015-07-20 具有优异耐油性的聚酮树脂组合物

Applications Claiming Priority (24)

Application Number Priority Date Filing Date Title
KR1020140090892A KR101620568B1 (ko) 2014-07-18 2014-07-18 폴리케톤 성형품 및 스노우 체인
KR10-2014-0090892 2014-07-18
KR1020140154627A KR101646032B1 (ko) 2014-11-07 2014-11-07 자동차 외장용 폴리케톤 부품
KR10-2014-0154627 2014-11-07
KR1020140162012A KR101684886B1 (ko) 2014-11-19 2014-11-19 폴리케톤 자동차용 연료 튜브
KR10-2014-0162015 2014-11-19
KR1020140161979A KR101684889B1 (ko) 2014-11-19 2014-11-19 폴리케톤 엔진 부품
KR10-2014-0162005 2014-11-19
KR1020140162010A KR101684884B1 (ko) 2014-11-19 2014-11-19 폴리케톤 자동차 엔진 커버
KR10-2014-0161979 2014-11-19
KR1020140161986A KR101684896B1 (ko) 2014-11-19 2014-11-19 폴리케톤 자동차 밸브 바디
KR10-2014-0161995 2014-11-19
KR10-2014-0161986 2014-11-19
KR1020140162015A KR101675290B1 (ko) 2014-11-19 2014-11-19 폴리케톤 폴리머를 포함하는 산업용 오링
KR1020140161995A KR101664917B1 (ko) 2014-11-19 2014-11-19 폴리케톤 폴리머를 포함하는 파이프 라이너
KR1020140162005A KR101706051B1 (ko) 2014-11-19 2014-11-19 고충격 abs가 포함된 폴리케톤 조성물
KR10-2014-0162012 2014-11-19
KR10-2014-0162010 2014-11-19
KR1020150073982A KR101705620B1 (ko) 2015-05-27 2015-05-27 차량용 폴리케톤 연료 펌프
KR1020150073979A KR101705635B1 (ko) 2015-05-27 2015-05-27 폴리케톤 블렌드를 포함하는 차량용 파워 스티어링 오일 리저버 탱크
KR10-2015-0073979 2015-05-27
KR1020150073972A KR101705616B1 (ko) 2015-05-27 2015-05-27 폴리케톤 블렌드를 포함하는 차량용 실린더 헤드 커버
KR10-2015-0073982 2015-05-27
KR10-2015-0073972 2015-05-27

Publications (2)

Publication Number Publication Date
WO2016010407A2 true WO2016010407A2 (ko) 2016-01-21
WO2016010407A3 WO2016010407A3 (ko) 2016-03-10

Family

ID=55079146

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/007507 WO2016010407A2 (ko) 2014-07-18 2015-07-20 내유성이 우수한 폴리케톤 수지 조성물

Country Status (5)

Country Link
US (1) US20170166743A1 (ko)
EP (1) EP3187543B1 (ko)
JP (1) JP2017521533A (ko)
CN (1) CN106661322B (ko)
WO (1) WO2016010407A2 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3327055A1 (de) * 2016-11-28 2018-05-30 Carl Freudenberg KG Polymermischung für dichtungen
KR101928869B1 (ko) * 2017-09-20 2018-12-14 효성화학 주식회사 저온 충격성이 우수한 폴리케톤 플렉시블 튜브
JP2021506547A (ja) * 2017-12-21 2021-02-22 イ, ド フンLEE, Do Hoon ポリケトン材質の部品を有するポンプが装着された化粧品容器
CN114752206A (zh) * 2022-04-27 2022-07-15 苏州和庚丽塑胶科技有限公司 一种环保再生耐低温增强耐磨聚酮材料及其制备方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6569068B2 (ja) * 2014-11-07 2019-09-04 ヒョスン ケミカル コーポレーション ガス遮断性に優れた車両用水素タンクライナー
CN107075244A (zh) * 2014-11-07 2017-08-18 株式会社晓星 具有优异耐磨性的聚酮树脂组合物
CN107940123A (zh) * 2017-12-22 2018-04-20 中国石油化工股份有限公司 一种聚酮内衬管、聚酮内衬复合油管及其制备方法
KR101956616B1 (ko) * 2018-01-18 2019-03-11 효성화학 주식회사 폴리케톤 튜브 및 이의 제조방법
CN108641269A (zh) * 2018-03-28 2018-10-12 广东聚石化学股份有限公司 一种耐溶剂耐候阻燃abs/pok合金及其制备方法
CN108530819A (zh) * 2018-04-13 2018-09-14 广东聚石化学股份有限公司 一种耐高低温、耐化学品的abs复合材料及其制备方法
CN109096731B (zh) * 2018-08-08 2021-09-17 浙江新力新材料股份有限公司 高灼热丝引燃温度高强度聚酮复合材料及其制备方法和应用
KR102125332B1 (ko) * 2018-11-30 2020-06-22 주식회사 데스코 펌프 하우징용 수지 조성물
CN113242945A (zh) * 2018-12-31 2021-08-10 美国圣戈班性能塑料公司 包括涂层的密封件及其形成方法
CN110343382A (zh) * 2019-07-23 2019-10-18 金发科技股份有限公司 一种高性能阻燃abs复合材料及其制备方法
CN114276669B (zh) * 2021-12-30 2023-06-06 黄河三角洲京博化工研究院有限公司 一种聚酮树脂复合材料及其制备方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IN166314B (ko) * 1985-08-29 1990-04-07 Shell Int Research
CA1333619C (en) * 1987-06-24 1994-12-20 Johannes Adrianus Van Doorn Catalyst compositions
US5077384A (en) * 1989-08-17 1991-12-31 Shell Oil Company Carbon monoxide/olefin copolymer having wide molecular weight distribution
JPH03199415A (ja) * 1989-12-27 1991-08-30 Unitika Ltd 光崩壊性モノフイラメント
EP0457374A3 (en) * 1990-02-12 1992-11-25 Shell Internationale Research Maatschappij B.V. Polyketone polymer blends comprising a linear alternating polymer of carbon monoxide and ethylenically unsaturated compounds
US5227437A (en) * 1991-10-15 1993-07-13 Shell Oil Company Isomorphic polyketone polymer blend
IT1274255B (it) * 1995-02-23 1997-07-15 Enichem Spa Procedimento per la preparazione di copolimeri a base di ossido di carbonio ed almeno un composto avente un'insaturazione alcheniliga
WO1997008242A1 (en) * 1995-08-28 1997-03-06 E.I. Du Pont De Nemours And Company Polymer blends
JPH101590A (ja) * 1996-06-18 1998-01-06 Kuraray Co Ltd 熱可塑性樹脂組成物
US5800885A (en) * 1996-09-18 1998-09-01 Kuraray Co., Ltd. Blow molded polyalcohol container
JPH1171514A (ja) * 1997-06-25 1999-03-16 Toray Ind Inc 熱可塑性樹脂組成物
CN1229101A (zh) * 1998-03-06 1999-09-22 通用电气公司 一种芳族乙烯/酮类聚合物的组合物
DE19846051A1 (de) * 1998-10-07 2000-04-13 Bayer Ag Karosserie-Anbauteile auf Basis thermoplastischer Polyketone
JP4282131B2 (ja) * 1998-12-18 2009-06-17 横浜ゴム株式会社 タイヤ用熱可塑性エラストマー組成物
WO2000042089A1 (en) * 1999-01-15 2000-07-20 Bp Chemicals Limited Polyketones having improved barrier properties
JP3847031B2 (ja) * 1999-08-17 2006-11-15 ポリプラスチックス株式会社 難燃性樹脂組成物
JP2007131651A (ja) * 2005-11-08 2007-05-31 Asahi Kasei Chemicals Corp 耐衝撃性ポリケトン樹脂組成物およびその成形体
JP2008007582A (ja) * 2006-06-28 2008-01-17 Asahi Kasei Chemicals Corp 耐衝撃性、高剛性ポリケトン樹脂組成物およびその成形体
KR101307935B1 (ko) * 2006-12-28 2013-09-12 주식회사 효성 폴리케톤의 제조방법
KR101098242B1 (ko) * 2009-07-30 2011-12-23 주식회사 효성 폴리케톤 블렌드 및 그 제조방법
KR20120077807A (ko) * 2010-12-31 2012-07-10 주식회사 효성 폴리케톤 및 abs를 포함하는 블렌드 및 그 제조방법

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3327055A1 (de) * 2016-11-28 2018-05-30 Carl Freudenberg KG Polymermischung für dichtungen
KR101928869B1 (ko) * 2017-09-20 2018-12-14 효성화학 주식회사 저온 충격성이 우수한 폴리케톤 플렉시블 튜브
JP2021506547A (ja) * 2017-12-21 2021-02-22 イ, ド フンLEE, Do Hoon ポリケトン材質の部品を有するポンプが装着された化粧品容器
CN114752206A (zh) * 2022-04-27 2022-07-15 苏州和庚丽塑胶科技有限公司 一种环保再生耐低温增强耐磨聚酮材料及其制备方法
CN114752206B (zh) * 2022-04-27 2024-03-15 苏州和庚丽塑胶科技有限公司 一种环保再生耐低温增强耐磨聚酮材料及其制备方法

Also Published As

Publication number Publication date
US20170166743A1 (en) 2017-06-15
JP2017521533A (ja) 2017-08-03
EP3187543A4 (en) 2018-02-21
CN106661322A (zh) 2017-05-10
CN106661322A8 (zh) 2017-07-11
WO2016010407A3 (ko) 2016-03-10
EP3187543A2 (en) 2017-07-05
CN106661322B (zh) 2020-07-07
EP3187543B1 (en) 2021-05-12

Similar Documents

Publication Publication Date Title
WO2016010407A2 (ko) 내유성이 우수한 폴리케톤 수지 조성물
WO2016072641A1 (ko) 내마모성이 우수한 폴리케톤 수지 조성물
WO2016010406A2 (ko) 내수성이 우수한 폴리케톤 수지 조성물
WO2016190596A2 (ko) 폴리케톤 섬유를 포함하는 산업용 폴리케톤 산업 제품 및 그 제조방법
WO2016072642A2 (ko) 내충격성이 우수한 폴리케톤 수지 조성물
WO2021040425A1 (ko) 폴리프로필렌계 복합재 및 이의 제조방법
WO2016072637A2 (ko) 가스 차단성이 우수한 폴리케톤 수지 조성물
WO2018212488A1 (ko) 폴리케톤 얼로이 수지 조성물
WO2016060511A2 (ko) 전도성이 우수한 폴리케톤 수지 조성물
KR101716162B1 (ko) 폴리케톤 블렌드를 포함하는 자동차용 아웃사이드 도어 핸들
WO2022025696A1 (ko) 열가소성 수지 조성물
WO2022075669A1 (ko) 신규한 메탈로센 화합물, 이를 포함하는 촉매 조성물 및 이를 이용한 올레핀 중합체의 제조 방법
KR101684884B1 (ko) 폴리케톤 자동차 엔진 커버
WO2016072638A1 (ko) 난연성이 우수한 폴리케톤 수지 조성물
KR101611580B1 (ko) 폴리케톤 블렌드를 포함하는 신발용 소재
WO2022039425A1 (ko) 펠렛형 폴리에틸렌 수지 조성물 및 그 제조방법
WO2022025697A1 (ko) 열가소성 수지 조성물
WO2018124540A1 (ko) 에폭시기가 그래프트된 폴리케톤 상용화제 제조 및 이를 사용한 내열성이 향상된 폴리케톤 얼로이 수지의 제조방법
KR101716223B1 (ko) 폴리케톤 자동차 인터 쿨러 에어덕트 및 이의 제조방법
WO2022031097A1 (ko) 열가소성 수지 조성물
WO2018124576A1 (ko) 폴리케톤 조성물을 포함하는 수도용 볼 밸브 및 파이프 캡
WO2024063415A1 (ko) 폴리에틸렌 조성물 및 이를 포함하는 이축 연신 필름
KR101849198B1 (ko) 장기내열안정성이 개선된 표면이 가교(크로스링크)된 실리콘 오일을 포함하는 폴리케톤 조성물
KR101716163B1 (ko) 폴리케톤 블렌드를 포함하는 자동차용 공기흡입구 가니쉬
KR101716199B1 (ko) 폴리케톤 폴리머를 포함하는 자동차용 안전벨트 조인터

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15822275

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2017502639

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15327268

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015822275

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015822275

Country of ref document: EP