WO2016002041A1 - 絶縁ゲート型パワー半導体素子のゲート駆動回路 - Google Patents

絶縁ゲート型パワー半導体素子のゲート駆動回路 Download PDF

Info

Publication number
WO2016002041A1
WO2016002041A1 PCT/JP2014/067771 JP2014067771W WO2016002041A1 WO 2016002041 A1 WO2016002041 A1 WO 2016002041A1 JP 2014067771 W JP2014067771 W JP 2014067771W WO 2016002041 A1 WO2016002041 A1 WO 2016002041A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
negative
gate
positive
power semiconductor
Prior art date
Application number
PCT/JP2014/067771
Other languages
English (en)
French (fr)
Inventor
一宏 大津
石川 純一郎
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to DE112014006783.0T priority Critical patent/DE112014006783T5/de
Priority to JP2016530758A priority patent/JP6299869B2/ja
Priority to PCT/JP2014/067771 priority patent/WO2016002041A1/ja
Priority to CN201480080132.8A priority patent/CN106664085B/zh
Priority to US15/320,658 priority patent/US9966947B2/en
Publication of WO2016002041A1 publication Critical patent/WO2016002041A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
    • H03K17/6877Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors the control circuit comprising active elements different from those used in the output circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/16Modifications for eliminating interference voltages or currents
    • H03K17/161Modifications for eliminating interference voltages or currents in field-effect transistor switches
    • H03K17/162Modifications for eliminating interference voltages or currents in field-effect transistor switches without feedback from the output circuit to the control circuit
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • H01L29/0653Dielectric regions, e.g. SiO2 regions, air gaps adjoining the input or output region of a field-effect device, e.g. the source or drain region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/081Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters wherein the phase of the control voltage is adjustable with reference to the AC source
    • H02M1/082Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters wherein the phase of the control voltage is adjustable with reference to the AC source with digital control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/084Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters using a control circuit common to several phases of a multi-phase system
    • H02M1/0845Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters using a control circuit common to several phases of a multi-phase system digitally controlled (or with digital control)
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/145Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M7/155Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • H02M7/162Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only in a bridge configuration
    • H02M7/1623Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only in a bridge configuration with control circuit
    • H02M7/1626Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only in a bridge configuration with control circuit with automatic control of the output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/06Modifications for ensuring a fully conducting state
    • H03K17/063Modifications for ensuring a fully conducting state in field-effect transistor switches

Definitions

  • the present invention relates to a gate drive circuit for an insulated gate power semiconductor element.
  • Patent Document 1 describes a gate drive circuit for an insulated gate power semiconductor element.
  • the gate drive circuit includes a complementary output circuit of a transistor.
  • a MOSFET may be used for the complementary output circuit of the gate drive circuit.
  • the gate threshold voltage of the Nch MOSFET is changed between the positive voltage of the positive power source between the gate electrode and the source electrode of the insulated gate type power semiconductor element.
  • the voltage dropped by this amount is applied. For this reason, the steady loss of an insulated gate type power semiconductor element may deteriorate.
  • An object of the present invention is to provide a gate drive circuit for an insulated gate power semiconductor device capable of preventing deterioration of steady loss of the insulated gate power semiconductor device.
  • the gate drive circuit for an insulated gate power semiconductor device has a source electrode, a drain electrode, and a gate electrode, the source electrode is connected to the gate electrode of the insulated gate power semiconductor device, and a positive voltage is applied to the drain electrode.
  • An NchMOSFET that turns on the insulated gate power semiconductor element by turning on when a positive voltage is applied to the gate electrode while being applied to the gate electrode, a source electrode, a drain electrode, and a gate electrode.
  • the insulated gate power semiconductor element is turned on when a negative voltage is applied to the gate electrode while an electrode is connected to the gate electrode of the insulated gate power semiconductor element and a negative voltage is applied to the drain electrode.
  • control electrode a positive electrode, and a negative electrode, and the control electrode is the NchMOSFET
  • the Nch MOSFET is turned on by applying the positive voltage to the gate electrode of the Nch MOSFET when the positive voltage is applied to the positive side electrode when connected to the gate electrode and the gate electrode of the Pch MOSFET.
  • a control circuit for turning on the PchMOSFET by applying the negative voltage to the gate electrode of the PchMOSFET when applied to the negative side electrode; and a negative voltage for the drain electrode of the PchMOSFET and the control circuit A positive voltage is applied to the drain electrode of the Nch MOSFET, and a positive voltage having an absolute value greater than the absolute value of the positive voltage applied to the drain electrode of the Nch MOSFET is applied to the positive electrode of the control circuit. And a power supply body.
  • the power supply body applies a positive voltage having an absolute value larger than the absolute value of the positive voltage applied to the drain electrode of the Nch MOSFET to the positive electrode of the control circuit.
  • the positive voltage By applying the positive voltage, the potential difference is sufficiently small between the drain electrode and the source electrode of the Nch MOSFET. For this reason, the deterioration of the steady loss of the insulated gate type power semiconductor element can be prevented.
  • FIG. 1 is a diagram of a gate drive circuit for an insulated gate power semiconductor device according to Embodiment 1 of the present invention.
  • the power converter includes a plurality of insulated gate power semiconductor elements 1.
  • each of the plurality of insulated gate power semiconductors is formed of an Nch MOSFET.
  • the power converter converts DC power into AC power by the operation of the plurality of insulated gate power semiconductor elements 1.
  • the power converter supplies the AC power to a motor (not shown).
  • Each of the gate drive circuits 2 is provided corresponding to each of the insulated gate power semiconductor elements 1.
  • the gate drive circuit 2 includes a resistor 3, an Nch MOSFET 4, a Pch MOSFET 5, a control circuit 6, and a power supply body 7.
  • the resistor 3 is connected to the gate electrode of the insulated gate power semiconductor element 1.
  • the Nch MOSFET 4 has a source electrode, a drain electrode, and a gate electrode.
  • the source electrode of the Nch MOSFET 4 is connected to the gate electrode of the insulated gate power semiconductor element 1 through the resistor 3.
  • the Pch MOSFET 5 has a source electrode, a drain electrode, and a gate electrode.
  • the source electrode of the Pch MOSFET 5 is connected to the gate electrode of the insulated gate power semiconductor element 1 through the resistor 3.
  • the control circuit 6 includes a positive side switching element 6a and a negative side switching element 6b.
  • the positive side switching element 6a has an emitter electrode, a collector electrode, and a base electrode.
  • the emitter electrode of the positive side switching element 6a is connected to the gate electrode of the Nch MOSFET 4 and the gate electrode of the Pch MOSFET 5.
  • the emitter electrode of the positive side switching element 6 a becomes a control electrode of the control circuit 6.
  • the collector electrode of the positive side switching element 6 a becomes the positive side electrode of the control circuit 6.
  • the emitter electrode of negative side switching element 6 b is connected to the gate electrode of NchMOSFET 4 and the gate electrode of PchMOSFET 5.
  • the emitter electrode of the negative side switching element 6 b becomes a control electrode of the control circuit 6.
  • the collector electrode of the negative side switching element 6 b becomes the negative side electrode of the control circuit 6.
  • the power supply body 7 includes a positive power supply body 8 and a negative power supply body 9.
  • the positive power supply 8 includes a first positive power supply 8a and a second positive power supply 8b.
  • the positive electrode of the first positive power supply 8a is connected to the drain electrode of the Nch MOSFET 4.
  • the negative electrode of the first positive power supply 8 a is connected to the source electrode of the insulated gate power semiconductor element 1.
  • the positive side electrode of the second positive side power supply 8b is connected to the collector electrode of the positive side switching element 6a.
  • the negative electrode of the second positive power supply 8 b is connected to the source electrode of the insulated gate power semiconductor element 1.
  • the positive electrode of the negative power source body 9 is connected to the source electrode of the insulated gate power semiconductor element 1.
  • the negative electrode of the negative power supply body 9 is connected to the drain electrode of the Pch MOSFET 5 and the collector electrode of the negative switching element 6b.
  • the negative power source body 9 applies a negative voltage of ⁇ 15 V to the drain electrode of the Pch MOSFET 5 and the collector electrode of the negative side switching element 6b.
  • the first positive power supply 8 a applies a positive voltage of +15 V to the drain electrode of the Nch MOSFET 4.
  • the second positive power supply 8b applies a positive voltage having an absolute value larger than the absolute value of the positive voltage applied by the first positive power supply 8a to the collector electrode of the positive switching element 6a.
  • the difference between the absolute value of the positive voltage and the absolute value of the positive voltage applied by the first positive power supply 8a is set to a value larger than the value of the gate threshold voltage of the Nch MOSFET 4.
  • the second positive power supply 8b applies a positive voltage of +20 V to the collector electrode of the positive switching element 6a.
  • a negative voltage of ⁇ 15V is applied to the gate electrode of the PchMOSFET 5.
  • the Pch MOSFET 5 is turned on.
  • a negative voltage is applied to the gate electrode of the insulated gate power semiconductor element 1.
  • the insulated gate power semiconductor element 1 is turned off.
  • a positive voltage of + 20V is applied to the gate electrode of the Nch MOSFET 4.
  • the Nch MOSFET 4 is turned on.
  • a positive voltage is applied between the gate electrode and the source electrode of the Nch MOSFET 4.
  • the positive voltage is +5 V obtained by subtracting +15 V applied to the drain electrode from +20 V applied to the gate electrode of the Nch MOSFET 4.
  • the potential difference between the drain electrode and the source electrode of the Nch MOSFET 4 is sufficiently small.
  • a positive voltage of +15 V is applied between the gate electrode and the source electrode of the insulated gate power semiconductor element 1.
  • variations in the gate threshold voltage of the Nch MOSFET 4 are not affected.
  • FIG. 2 is a diagram for explaining the characteristics of the insulated gate power semiconductor device according to the first embodiment of the present invention.
  • Vgs represents a voltage between the gate electrode and the source electrode of the insulated gate power semiconductor element 1.
  • Vds represents a voltage between the drain electrode and the source electrode of the insulated gate power semiconductor element 1.
  • Id represents the drain current of the insulated gate power semiconductor element 1.
  • the power supply body 7 applies a positive voltage having an absolute value larger than the absolute value of the positive voltage applied to the drain electrode of the Nch MOSFET 4 to the positive electrode of the control circuit 6.
  • the positive voltage By applying the positive voltage, the potential difference between the drain electrode and the source electrode of the Nch MOSFET 4 becomes sufficiently small.
  • a large voltage can be stably applied to the gate electrode of the insulated gate power semiconductor element 1.
  • the efficiency of the power converter is improved.
  • size reduction and cost reduction of a power converter are realizable.
  • the temperature rise value of a power converter becomes small by efficiency improvement of a power converter. For this reason, the lifetime improvement of a power converter is realizable.
  • the positive power supply 8 includes a first positive power supply 8a and a second positive power supply 8b.
  • the first positive power supply 8 a applies a positive voltage to the drain electrode of the Nch MOSFET 4.
  • the second positive power supply 8 b applies a positive voltage having an absolute value larger than the absolute value of the positive voltage applied to the drain electrode of the Nch MOSFET 4 to the positive electrode of the control circuit 6. For this reason, the deterioration of the steady loss of the insulated gate type power semiconductor element 1 can be prevented only by using two different positive power supplies.
  • FIG. FIG. 3 is a diagram of a gate drive circuit for an insulated gate power semiconductor device according to the second embodiment of the present invention.
  • symbol is attached
  • the power supply body 7 according to the first embodiment applies the same negative voltage to the drain electrode of the Pch MOSFET 5 and the negative electrode of the control circuit 6.
  • the power supply body 7 according to the second embodiment applies a negative voltage having an absolute value larger than the absolute value of the negative voltage applied to the drain electrode of the Pch MOSFET 5 to the negative electrode of the control circuit 6.
  • the negative power source body 9 includes a first negative power source 9a and a second negative power source 9b.
  • the first negative power supply 9 a applies a negative voltage to the drain electrode of the Pch MOSFET 5.
  • the second negative power source 9 b applies a negative voltage having an absolute value larger than the absolute value of the negative voltage applied to the drain electrode of the Pch MOSFET 5 to the negative electrode of the control circuit 6.
  • the difference between the absolute value of the negative voltage and the absolute value of the negative voltage applied to the drain electrode of the Pch MOSFET 5 is set to a value larger than the gate threshold voltage value of the Pch MOSFET 5.
  • the second negative power supply 9b applies a negative voltage of ⁇ 20 V to the collector electrode of the negative switching element 6b.
  • the power supply 7 applies a negative voltage having an absolute value larger than the absolute value of the negative voltage applied to the drain electrode of the Pch MOSFET 5 to the negative electrode of the control circuit 6.
  • the positive voltage By applying the positive voltage, the potential difference between the drain electrode and the source electrode of the Pch MOSFET 5 becomes sufficiently small. For this reason, the negative voltage applied to the gate electrode of the insulated gate type power semiconductor element 1 can be stabilized.
  • the negative power source body 9 includes a first negative power source 9a and a second negative power source 9b.
  • the first negative power supply 9 a applies a negative voltage to the drain electrode of the Pch MOSFET 5.
  • the second negative power supply applies a negative voltage having an absolute value larger than the absolute value of the negative voltage applied to the drain electrode of the Pch MOSFET 5 to the negative electrode of the control circuit 6. For this reason, the negative voltage applied to the gate electrode of the insulated gate power semiconductor element 1 can be stabilized only by using two different negative power sources.
  • FIG. 4 is a diagram of a gate drive circuit for an insulated gate power semiconductor device according to a third embodiment of the present invention.
  • symbol is attached
  • the gate drive circuit 2 according to the third embodiment is a circuit in which a positive side zener diode 10 and a negative side zener diode 11 are added to the gate drive circuit 2 according to the second embodiment.
  • the positive side zener diode 10 is connected between the gate electrode and the source electrode of the Nch MOSFET 4.
  • Negative side zener diode 11 is connected between the gate electrode and source electrode of PchMOSFET 5.
  • the Nch MOSFET 4 When the insulated gate power semiconductor element 1 is turned on from off, the Nch MOSFET 4 is turned on from off. At this time, the time during which the voltage between the gate electrode and the source electrode of the insulated gate type power semiconductor element 1 changes from the negative voltage to the positive voltage is changed from the negative voltage to the positive voltage. It may be longer than the time to change.
  • a large positive voltage can be applied between the gate electrode and the source electrode of the Nch MOSFET 4.
  • the absolute value of the positive voltage is 30 (V), which is the sum of the positive voltage of the first positive power supply 8a and the negative voltage of the first negative power supply 9a.
  • the absolute value of the positive voltage is larger than the absolute value of the maximum rated voltage between the gate electrode and the source electrode of the Nch MOSFET 4.
  • Zener voltage needs to be selected to be smaller than the absolute value of the maximum rated voltage between the gate electrode and the source electrode of the Nch MOSFET 4.
  • the PchMOSFET 5 When the insulated gate power semiconductor element 1 is turned off, the PchMOSFET 5 is turned on. At this time, the time during which the voltage between the gate electrode and the source electrode of the insulated gate power semiconductor element 1 changes from the positive voltage to the negative voltage is changed from the negative voltage to the positive voltage. It may be longer than the time to change.
  • a large negative voltage can be applied between the gate electrode and the source electrode of the Pch MOSFET 5.
  • the absolute value of the negative voltage is 30 (V), which is the sum of the positive voltage of the first positive power supply 8a and the negative voltage of the first negative power supply 9a.
  • the absolute value of the negative voltage is larger than the absolute value of the maximum rated voltage between the gate electrode and the source electrode of the Pch MOSFET 5.
  • the Zener voltage needs to be selected to be smaller than the absolute value of the maximum rated voltage between the gate electrode and the source electrode of the Pch MOSFET 5.
  • the positive-side Zener diode 10 is connected between the gate electrode and the source electrode of the Nch MOSFET 4. For this reason, it is possible to prevent the Nch MOSFET 4 from being destroyed when the insulated gate power semiconductor element 1 is turned on from off.
  • the negative side Zener diode 11 is connected between the gate electrode and the source electrode of the PchMOSFET 5. Therefore, it is possible to prevent the Pch MOSFET 5 from being destroyed when the insulated gate power semiconductor element 1 is turned from on to off.
  • the gate drive circuit 2 may be applied to an insulated gate power semiconductor element of a power converter that converts AC power into DC power.
  • the output electrode of the control circuit 6 may be connected to at least one of the gate electrode of the Nch MOSFET 4 and the gate electrode of the Pch MOSFET 5 via a resistor.
  • the first resistor and the second resistor may be used instead of the resistor 3.
  • a first resistor may be provided between the drain electrode of the Nch MOSFET 4 and the first positive power supply 8a. What is necessary is just to provide a 2nd resistance between the drain electrode of PchMOSFET5 and the negative side power supply body 9 or 9a.
  • the gate electrode of the insulated gate power semiconductor element 1 is directly connected to at least one of the source electrode of the Nch MOSFET 4 and the source electrode of the Pch MOSFET 5 without the resistor 3. Also good.
  • a semiconductor element different from the Nch MOSFET may be used as the insulated gate power semiconductor element 1.
  • a semiconductor element formed by IGBT may be the insulated gate power semiconductor element 1.
  • a semiconductor element formed of a wide band gap semiconductor may be used as the insulated gate power semiconductor element 1.
  • the wide band gap semiconductor includes silicon carbide, a gallium nitride-based material, and diamond.
  • the semiconductor element formed of a wide band gap semiconductor is the insulated gate power semiconductor element 1
  • an improvement in the efficiency of the insulated gate power semiconductor element 1 itself can be expected.
  • the magnitude of the steady loss based on the voltage applied to the gate electrode of the insulated gate power semiconductor element 1 greatly affects the loss of the power converter. For this reason, when the semiconductor element formed of a wide band gap semiconductor is the insulated gate power semiconductor element 1, the gate drive circuit 2 can exhibit a greater effect.
  • the gate drive circuit for an insulated gate power semiconductor device can be used in a system that prevents deterioration of steady loss of the insulated gate power semiconductor device.
  • 1 insulated gate type power semiconductor element 1 insulated gate type power semiconductor element, 2 gate drive circuit, 3 resistance, 4 Nch MOSFET, 5 Pch MOSFET, 6 control circuit, 6a positive side switching element, 6b negative side switching element, 7 power source body, 8 positive side power source body, 8a No. 1 positive power supply, 8b 2nd positive power supply, 9 negative power supply, 9a 1st negative power supply, 9b 2nd negative power supply, 10 positive zener diode, 11 negative zener diode

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Conversion In General (AREA)
  • Electronic Switches (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

絶縁ゲート型パワー半導体素子の定常損失の悪化を防止する。ゲート駆動回路(2)は、前記絶縁ゲート型パワー半導体素子(1)をオンにするNchMOSFET(4)と、前記絶縁ゲート型パワー半導体素子(1)をオフにするPchMOSFET(5)と、正電圧(8b)を前記NchMOSFET(4)のゲート電極に印加することで前記NchMOSFET(4)をオンにし、負電圧(9)を前記PchMOSFET(5)のゲート電極に印加することで前記PchMOSFET(5)をオンにする制御回路(6)と、負電圧(9)を前記PchMOSFET(5)のドレイン電極と前記制御回路(6)の負側電極とに印加し、正電圧(8a)を前記NchMOSFET(4)のドレイン電極に印加し、前記NchMOSFET(4)のドレイン電極に印加する正電圧(8a)の絶対値よりも大きい絶対値の正電圧(8b)を前記制御回路(6)の正側電極に印加する電源体(7)とを備えた。

Description

絶縁ゲート型パワー半導体素子のゲート駆動回路
 この発明は、絶縁ゲート型パワー半導体素子のゲート駆動回路に関する。
 例えば、特許文献1には、絶縁ゲート型パワー半導体素子のゲート駆動回路が記載されている。当該ゲート駆動回路は、トランジスタのコンプリメンタリ出力回路からなる。
日本特開平5-226994号公報
 絶縁ゲート型パワー半導体素子の定格電流が大きい場合においては、ゲート駆動回路の出力電流を大きくする必要がある。この場合、ゲート駆動回路のコンプリメンタリ出力回路にMOSFETを用いることがある。
 PchMOSFETの正側とNchMOSFETの負側とを備えたコンプリメンタリ出力回路の場合、PchMOSFETとNchMOSFETとが同時にオンすると、貫通電流がPchMOSFETとNchMOSFETとに流れる。
 これに対し、NchMOSFETの正側とPchMOSFETの負側とを備えたコンプリメンタリ出力回路の場合、NchMOSFETとPchMOSFETは同時にオンせず、貫通電流は流れない。
 しかしながら、同じ正側電源がNchMOSFETのドレイン電極とゲート電極とに接続されると、絶縁ゲート型パワー半導体素子のゲート電極とソース電極との間に、正側電源の正電圧からNchMOSFETのゲート閾値電圧の分だけ降下した電圧が印加される。このため、絶縁ゲート型パワー半導体素子の定常損失が悪化し得る。
 この発明は、上述の課題を解決するためになされた。この発明の目的は、絶縁ゲート型パワー半導体素子の定常損失の悪化を防止することができる絶縁ゲート型パワー半導体素子のゲート駆動回路を提供することである。
 この発明に係る絶縁ゲート型パワー半導体素子のゲート駆動回路は、ソース電極とドレイン電極とゲート電極とを有し、ソース電極が絶縁ゲート型パワー半導体素子のゲート電極に接続され、正電圧がドレイン電極に印加された状態で正電圧がゲート電極に印加された際にオンとなることで前記絶縁ゲート型パワー半導体素子をオンにするNchMOSFETと、ソース電極とドレイン電極とゲート電極とを有し、ソース電極が前記絶縁ゲート型パワー半導体素子のゲート電極に接続され、負電圧がドレイン電極に印加された状態で負電圧がゲート電極に印加された際にオンとなることで前記絶縁ゲート型パワー半導体素子をオフにするPchMOSFETと、制御電極と正側電極と負側電極とを有し、制御電極が前記NchMOSFETのゲート電極と前記PchMOSFETのゲート電極とに接続され、正電圧が正側電極に印加された状態の際に当該正電圧を前記NchMOSFETのゲート電極に印加することで前記NchMOSFETをオンにし、負電圧が負側電極に印加された状態の際に当該負電圧を前記前記PchMOSFETのゲート電極に印加することで前記PchMOSFETをオンにする制御回路と、負電圧を前記PchMOSFETのドレイン電極と前記制御回路の負側電極とに印加し、正電圧を前記NchMOSFETのドレイン電極に印加し、前記NchMOSFETのドレイン電極に印加する正電圧の絶対値よりも大きい絶対値の正電圧を前記制御回路の正側電極に印加する電源体と、を備えた。
 この発明によれば、電源体は、NchMOSFETのドレイン電極に印加する正電圧の絶対値よりも大きい絶対値の正電圧を制御回路の正側電極に印加する。当該正電圧の印加により、NchMOSFETのドレイン電極とソース電極との間において、電位差は十分小さくなる。このため、絶縁ゲート型パワー半導体素子の定常損失の悪化を防止することができる。
この発明の実施の形態1における絶縁ゲート型パワー半導体素子のゲート駆動回路の図である。 この発明の実施の形態1における絶縁ゲート型パワー半導体素子の特性を説明する図である。 この発明の実施の形態2における絶縁ゲート型パワー半導体素子のゲート駆動回路の図である。 この発明の実施の形態3における絶縁ゲート型パワー半導体素子のゲート駆動回路の図である。
 この発明を実施するための形態について添付の図面に従って説明する。なお、各図中、同一又は相当する部分には同一の」符号が付される。当該部分の重複説明は適宜に簡略化ないし省略する。
実施の形態1.
 図1はこの発明の実施の形態1における絶縁ゲート型パワー半導体素子のゲート駆動回路の図である。
 電力変換器は、複数の絶縁ゲート型パワー半導体素子1を備える。例えば、複数の絶縁ゲート型パワー半導体の各々は、NchMOSFETにより形成される。電力変換器は、複数の絶縁ゲート型パワー半導体素子1の動作により直流電力を交流電力に変換する。電力変換器は、図示しないモータに当該交流電力を供給する。
 ゲート駆動回路2の各々は、絶縁ゲート型パワー半導体素子1の各々に対応して設けられる。ゲート駆動回路2は、抵抗3とNchMOSFET4とPchMOSFET5と制御回路6と電源体7とを備える。
 抵抗3は、絶縁ゲート型パワー半導体素子1のゲート電極に接続される。NchMOSFET4は、ソース電極とドレイン電極とゲート電極とを有する。NchMOSFET4のソース電極は、抵抗3を介して絶縁ゲート型パワー半導体素子1のゲート電極に接続される。PchMOSFET5は、ソース電極とドレイン電極とゲート電極とを有する。PchMOSFET5のソース電極は、抵抗3を介して絶縁ゲート型パワー半導体素子1のゲート電極に接続される。
 制御回路6は、正側スイッチング素子6aと負側スイッチング素子6bとを備える。
 正側スイッチング素子6aは、エミッタ電極とコレクタ電極とベース電極とを有する。正側スイッチング素子6aのエミッタ電極は、NchMOSFET4のゲート電極とPchMOSFET5のゲート電極とに接続される。正側スイッチング素子6aのエミッタ電極は、制御回路6の制御電極となる。正側スイッチング素子6aのコレクタ電極は、制御回路6の正側電極となる。負側スイッチング素子6bのエミッタ電極は、NchMOSFET4のゲート電極とPchMOSFET5のゲート電極とに接続される。負側スイッチング素子6bのエミッタ電極は、制御回路6の制御電極となる。負側スイッチング素子6bのコレクタ電極は、制御回路6の負側電極となる。
 電源体7は、正側電源体8と負側電源体9とを備える。正側電源体8は、第1正側電源8aと第2正側電源8bとを備える。
 第1正側電源8aの正側電極は、NchMOSFET4のドレイン電極に接続される。第1正側電源8aの負側電極は、絶縁ゲート型パワー半導体素子1のソース電極に接続される。第2正側電源8bの正側電極は、正側スイッチング素子6aのコレクタ電極に接続される。第2正側電源8bの負側電極は、絶縁ゲート型パワー半導体素子1のソース電極に接続される。負側電源体9の正側電極は、絶縁ゲート型パワー半導体素子1のソース電極に接続される。負側電源体9の負側電極は、PchMOSFET5のドレイン電極と負側スイッチング素子6bのコレクタ電極に接続される。
 例えば、負側電源体9は、PchMOSFET5のドレイン電極と負側スイッチング素子6bのコレクタ電極とに-15Vの負電圧を印加する。例えば、第1正側電源8aは、NchMOSFET4のドレイン電極に+15Vの正電圧を印加する。第2正側電源8bは、正側スイッチング素子6aのコレクタ電極に第1正側電源8aが印加する正電圧の絶対値よりも大きい絶対値の正電圧を印加する。当該正電圧の絶対値と第1正側電源8aが印加する正電圧の絶対値との差は、NchMOSFET4のゲート閾値電圧の値よりも大きい値に設定される。例えば、第2正側電源8bは、正側スイッチング素子6aのコレクタ電極に+20Vの正電圧を印加する。
 外部からの制御により負側スイッチング素子6bがオンになると、-15Vの負電圧がPchMOSFET5のゲート電極に印加される。当該負電圧の印加により、PchMOSFET5がオンとなる。その結果、負電圧が絶縁ゲート型パワー半導体素子1のゲート電極に印加される。その結果、絶縁ゲート型パワー半導体素子1はオフとなる。
 外部からの制御により正側スイッチング素子6aがオンになると、+20Vの正電圧がNchMOSFET4のゲート電極に印加される。当該正電圧の印加により、NchMOSFET4がオンとなる。この際、正電圧がNchMOSFET4のゲート電極とソース電極との間に印加される。当該正電圧は、NchMOSFET4のゲート電極に印加された+20Vからドレイン電極に印加された+15Vを差し引いた+5Vとなる。
 この際、NchMOSFET4のドレイン電極とソース電極との間において、電位差は十分小さくなる。その結果、+15Vの正電圧が絶縁ゲート型パワー半導体素子1のゲート電極とソース電極との間に印加される。この際、NchMOSFET4のゲート閾値電圧のばらつきは影響しない。
 次に、図2を用いて、絶縁ゲート型パワー半導体素子1をNchMOSFETとした際の特性を説明する。
 図2はこの発明の実施の形態1における絶縁ゲート型パワー半導体素子の特性を説明する図である。
 図2において、Vgsは、絶縁ゲート型パワー半導体素子1のゲート電極とソース電極との間の電圧を表す。Vdsは、絶縁ゲート型パワー半導体素子1のドレイン電極とソース電極との間の電圧を表す。Idは、絶縁ゲート型パワー半導体素子1のドレイン電流を表す。
 ドレイン電流Idが同じ場合、ゲート電極とソース電極との間の電圧Vgsが大きくなると、ドレイン電極とソース電極との間の電圧Vdsが小さくなる。ドレイン電極とソース電極との間の電圧Vdsが小さくなると、絶縁ゲート型パワー半導体素子1の定常損失は小さくなる。
 以上で説明した実施の形態1によれば、電源体7は、NchMOSFET4のドレイン電極に印加する正電圧の絶対値よりも大きい絶対値の正電圧を制御回路6の正側電極に印加する。当該正電圧の印加により、NchMOSFET4のドレイン電極とソース電極との間において、電位差は十分小さくなる。このため、NchMOSFET4の個体差または環境によってゲート閾値電圧がばらついても、絶縁ゲート型パワー半導体素子1のゲート電極に大きな電圧を安定して印加することができる。その結果、絶縁ゲート型パワー半導体素子1の定常損失の悪化を防止することができる。この場合、電力変換器の効率が向上する。このため、電力変換器の小型化と低コスト化とを実現することができる。さらに、電力変換器の高効率化により、電力変換器の温度上昇値が小さくなる。このため、電力変換器の高寿命化を実現することができる。
 具体的には、正側電源体8は、第1正側電源8aと第2正側電源8bとを備える。第1正側電源8aは、正電圧をNchMOSFET4のドレイン電極に印加する。第2正側電源8bは、NchMOSFET4のドレイン電極に印加する正電圧の絶対値よりも大きい絶対値の正電圧を制御回路6の正側電極に印加する。このため、異なる2つの正側電源を用いるだけで、絶縁ゲート型パワー半導体素子1の定常損失の悪化を防止することができる。
実施の形態2.
 図3はこの発明の実施の形態2における絶縁ゲート型パワー半導体素子のゲート駆動回路の図である。なお、実施の形態1の部分と同一又は相当部分には同一符号が付される。当該部分の説明は省略される。
 実施の形態1の電源体7は、同じ負電圧をPchMOSFET5のドレイン電極と制御回路6の負側電極とに印加する。これに対し、実施の形態2の電源体7は、PchMOSFET5のドレイン電極に印加する負電圧の絶対値よりも大きい絶対値の負電圧を制御回路6の負側電極に印加する。
 具体的には、負側電源体9は、第1負側電源9aと第2負側電源9bとを備える。第1負側電源9aは、負電圧をPchMOSFET5のドレイン電極に印加する。第2負側電源9bは、PchMOSFET5のドレイン電極に印加する負電圧の絶対値よりも大きい絶対値の負電圧を制御回路6の負側電極に印加する。当該負電圧の絶対値とPchMOSFET5のドレイン電極に印加する負電圧の絶対値との差は、PchMOSFET5のゲート閾値電圧の値よりも大きい値に設定される。例えば、第2負側電源9bは、負側スイッチング素子6bのコレクタ電極に-20Vの負電圧を印加する。
 以上で説明した実施の形態2によれば、電源体7は、PchMOSFET5のドレイン電極に印加する負電圧の絶対値よりも大きい絶対値の負電圧を制御回路6の負側電極に印加する。当該正電圧の印加により、PchMOSFET5のドレイン電極とソース電極との間において、電位差は十分小さくなる。このため、絶縁ゲート型パワー半導体素子1のゲート電極に印加する負電圧を安定させることができる。
 具体的には、負側電源体9は、第1負側電源9aと第2負側電源9bとを備える。第1負側電源9aは、負電圧をPchMOSFET5のドレイン電極に印加する。第2負電源は、PchMOSFET5のドレイン電極に印加する負電圧の絶対値よりも大きい絶対値の負電圧を制御回路6の負側電極に印加する。このため、異なる2つの負側電源を用いるだけで、絶縁ゲート型パワー半導体素子1のゲート電極に印加する負電圧を安定させることができる。
実施の形態3.
 図4はこの発明の実施の形態3における絶縁ゲート型パワー半導体素子のゲート駆動回路の図である。なお、実施の形態2の部分と同一又は相当部分には同一符号が付される。当該部分の説明は省略される。
 実施の形態3のゲート駆動回路2は、実施の形態2のゲート駆動回路2に正側ツェナーダイオード10と負側ツェナーダイオード11とを付加した回路である。正側ツェナーダイオード10は、NchMOSFET4のゲート電極とソース電極との間に接続される。負側ツェナーダイオード11は、PchMOSFET5のゲート電極とソース電極との間に接続される。
 絶縁ゲート型パワー半導体素子1がオフからオンとなる際、NchMOSFET4はオフからオンとなる。この際、絶縁ゲート型パワー半導体素子1のゲート電極とソース電極との間の電圧が負電圧から正電圧に変化する時間がNchMOSFET4のゲート電極とソース電極との間の電圧が負電圧から正電圧に変化する時間よりも長くなる場合がある。
 この場合、大きな正電圧がNchMOSFET4のゲート電極とソース電極との間に印加され得る。当該正電圧の絶対値は、第1正側電源8aの正電圧と第1負側電源9aの負電圧の合計である30(V)となる。当該正電圧の絶対値は、NchMOSFET4のゲート電極とソース電極との間の最大定格電圧の絶対値よりも大きい。
 しかしながら、この際、大きな電流が正側ツェナーダイオード10に急激に流れる。その結果、NchMOSFET4のゲート電極とソース電極との間の電圧は、正側ツェナーダイオード10のツェナー電圧に維持される。当該ツェナー電圧は、NchMOSFET4のゲート電極とソース電極との間の最大定格電圧の絶対値よりも小さくなるように選定する必要がある。
 絶縁ゲート型パワー半導体素子1がオンからオフとなる際、PchMOSFET5はオフからオンとなる。この際、絶縁ゲート型パワー半導体素子1のゲート電極とソース電極との間の電圧が正電圧から負電圧に変化する時間がPchMOSFET5のゲート電極とソース電極との間の電圧が負電圧から正電圧に変化する時間よりも長くなる場合がある。
 この場合、大きな負電圧がPchMOSFET5のゲート電極とソース電極との間に印加され得る。当該負電圧の絶対値は、第1正側電源8aの正電圧と第1負側電源9aの負電圧の合計である30(V)となる。当該負電圧の絶対値は、PchMOSFET5のゲート電極とソース電極との間の最大定格電圧の絶対値よりも大きい。
 しかしながら、この際、大きな電流が負側ツェナーダイオード11に急激に流れる。その結果、PchMOSFET5のゲート電極とソース電極との間の電圧は、負側ツェナーダイオード11のツェナー電圧に維持される。当該ツェナー電圧は、PchMOSFET5のゲート電極とソース電極との間の最大定格電圧の絶対値よりも小さくなるように選定する必要がある。
 以上で説明した実施の形態3によれば、正側ツェナーダイオード10は、NchMOSFET4のゲート電極とソース電極との間に接続される。このため、絶縁ゲート型パワー半導体素子1がオフからオンとなる際にNchMOSFET4が破壊することを防止できる。
 また、負側ツェナーダイオード11は、PchMOSFET5のゲート電極とソース電極との間に接続される。このため、絶縁ゲート型パワー半導体素子1がオンからオフとなる際にPchMOSFET5が破壊することを防止できる。
 なお、交流電力から直流電力に変換する電力変換器の絶縁ゲート型パワー半導体素子に実施の形態1から実施の形態3のゲート駆動回路2を適用してもよい。
 また、実施の形態1から実施の形態3において、NchMOSFET4のゲート電極とPchMOSFET5のゲート電極との少なくとも一方に抵抗を介して制御回路6の出力電極を接続してもよい。
 また、実施の形態1から実施の形態3において、抵抗3に代えて、第1抵抗と第2抵抗とを用いてもよい。この際、NchMOSFET4のドレイン電極と第1正側電源8aとの間に第1抵抗を設ければよい。PchMOSFET5のドレイン電極と負側電源体9あるいは9aとの間に第2抵抗を設ければよい。
 また、実施の形態1から実施の形態3において、NchMOSFET4のソース電極とPchMOSFET5のソース電極との少なくとも一方に抵抗3を介さずに絶縁ゲート型パワー半導体素子1のゲート電極を直接的に接続してもよい。
 また、実施の形態1から実施の形態3において、NchMOSFETとは異なる半導体素子を絶縁ゲート型パワー半導体素子1としてもよい。例えば、IGBTによって形成される半導体素子を絶縁ゲート型パワー半導体素子1としてもよい。例えば、ワイドバンドギャップ半導体によって形成される半導体素子を絶縁ゲート型パワー半導体素子1としてもよい。例えば、ワイドバンドギャップ半導体としては、炭化珪素、窒化ガリウム系材料またはダイヤモンドがある。
 ワイドバンドギャップ半導体によって形成される半導体素子を絶縁ゲート型パワー半導体素子1とした場合、絶縁ゲート型パワー半導体素子1そのものの効率の向上が期待できる。この際、絶縁ゲート型パワー半導体素子1のゲート電極に印加される電圧に基づいた定常損失の大きさが電力変換器の損失に大きく影響する。このため、ワイドバンドギャップ半導体によって形成される半導体素子を絶縁ゲート型パワー半導体素子1とした場合、ゲート駆動回路2は、より大きな効果を発揮することができる。
 以上のように、この発明に係る絶縁ゲート型パワー半導体素子のゲート駆動回路は、絶縁ゲート型側パワー半導体素子の定常損失の悪化を防止するシステムに利用できる。
 1 絶縁ゲート型パワー半導体素子、 2 ゲート駆動回路、 3 抵抗、 4 NchMOSFET、 5 PchMOSFET、 6 制御回路、 6a 正側スイッチング素子、 6b 負側スイッチング素子、 7 電源体、 8 正側電源体、 8a 第1正側電源、 8b 第2正側電源、 9 負側電源体、 9a 第1負側電源、 9b 第2負側電源、 10 正側ツェナーダイオード、 11 負側ツェナーダイオード

Claims (7)

  1.  ソース電極とドレイン電極とゲート電極とを有し、ソース電極が絶縁ゲート型パワー半導体素子のゲート電極に接続され、正電圧がドレイン電極に印加された状態で正電圧がゲート電極に印加された際にオンとなることで前記絶縁ゲート型パワー半導体素子をオンにするNchMOSFETと、
     ソース電極とドレイン電極とゲート電極とを有し、ソース電極が前記絶縁ゲート型パワー半導体素子のゲート電極に接続され、負電圧がドレイン電極に印加された状態で負電圧がゲート電極に印加された際にオンとなることで前記絶縁ゲート型パワー半導体素子をオフにするPchMOSFETと、
     制御電極と正側電極と負側電極とを有し、制御電極が前記NchMOSFETのゲート電極と前記PchMOSFETのゲート電極とに接続され、正電圧が正側電極に印加された状態の際に当該正電圧を前記NchMOSFETのゲート電極に印加することで前記NchMOSFETをオンにし、負電圧が負側電極に印加された状態の際に当該負電圧を前記前記PchMOSFETのゲート電極に印加することで前記PchMOSFETをオンにする制御回路と、
     負電圧を前記PchMOSFETのドレイン電極と前記制御回路の負側電極とに印加し、正電圧を前記NchMOSFETのドレイン電極に印加し、前記NchMOSFETのドレイン電極に印加する正電圧の絶対値よりも大きい絶対値の正電圧を前記制御回路の正側電極に印加する電源体と、
    を備えた絶縁ゲート型パワー半導体素子のゲート駆動回路。
  2.  前記電源体は、
     前記前記NchMOSFETのドレイン電極に接続された正側電極と前記絶縁ゲート型パワー半導体素子のソース電極に接続された負側電極とを有し、正電圧を前記NchMOSFETのドレイン電極に印加する第1正側電源と、
     前記制御回路の正側電極に接続された正側電極と前記絶縁ゲート型パワー半導体素子のソース電極に接続された負側電極とを有し、前記第1正側電源が前記NchMOSFETのドレイン電極に印加する正電圧の絶対値よりも大きい絶対値の正電圧を前記制御回路の正側電極に印加する第2正側電源と、
    を備えた請求項1に記載の絶縁ゲート型パワー半導体素子のゲート駆動回路。
  3.  前記NchMOSFETのゲート電極とソース電極との間に接続された正側ツェナーダイオード、
    を備えた請求項1または請求項2に記載の絶縁ゲート型パワー半導体素子のゲート駆動回路。
  4.  前記電源体は、前記PchMOSFET5のドレイン電極に印加する負電圧の絶対値よりも大きい絶対値の負電圧を前記制御回路の負側電極に印加する請求項1から請求項3のいずれか一項に記載の絶縁ゲート型パワー半導体素子のゲート駆動回路。
  5.  前記電源体は、
     前記絶縁ゲート型パワー半導体素子のソース電極に接続された正側電極と前記前記PchMOSFETのドレイン電極に接続された負側電極とを有し、負電圧を前記PchMOSFETのドレイン電極に印加する第1負側電源と、
     前記絶縁ゲート型パワー半導体素子のソース電極に接続された正側電極と前記制御回路の負側電極に接続された負側電極とを有し、前記第1負側電源が前記PchMOSFETのドレイン電極に印加する負電圧の絶対値よりも大きい絶対値の負電圧を前記制御回路の負側電極に印加する第2負側電源と、
    を備えた請求項4に記載の絶縁ゲート型パワー半導体素子のゲート駆動回路。
  6.  前記PchMOSFETのゲート電極とソース電極との間に接続された負側ツェナーダイオード、
    を備えた請求項1から請求項5のいずれか一項に記載の絶縁ゲート型パワー半導体素子のゲート駆動回路。
  7.  前記絶縁ゲート型パワー半導体素子は、ワイドバンドギャップ半導体により形成された請求項1から請求項6のいずれか一項に記載の絶縁ゲート型パワー半導体素子のゲート駆動回路。
PCT/JP2014/067771 2014-07-03 2014-07-03 絶縁ゲート型パワー半導体素子のゲート駆動回路 WO2016002041A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE112014006783.0T DE112014006783T5 (de) 2014-07-03 2014-07-03 Gate-Treiberschaltung für Leistungshalbleiterelemente mit isoliertem Gate
JP2016530758A JP6299869B2 (ja) 2014-07-03 2014-07-03 絶縁ゲート型パワー半導体素子のゲート駆動回路
PCT/JP2014/067771 WO2016002041A1 (ja) 2014-07-03 2014-07-03 絶縁ゲート型パワー半導体素子のゲート駆動回路
CN201480080132.8A CN106664085B (zh) 2014-07-03 2014-07-03 绝缘栅型功率半导体元件的栅极驱动电路
US15/320,658 US9966947B2 (en) 2014-07-03 2014-07-03 Gate driving circuit for insulated gate-type power semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/067771 WO2016002041A1 (ja) 2014-07-03 2014-07-03 絶縁ゲート型パワー半導体素子のゲート駆動回路

Publications (1)

Publication Number Publication Date
WO2016002041A1 true WO2016002041A1 (ja) 2016-01-07

Family

ID=55018640

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/067771 WO2016002041A1 (ja) 2014-07-03 2014-07-03 絶縁ゲート型パワー半導体素子のゲート駆動回路

Country Status (5)

Country Link
US (1) US9966947B2 (ja)
JP (1) JP6299869B2 (ja)
CN (1) CN106664085B (ja)
DE (1) DE112014006783T5 (ja)
WO (1) WO2016002041A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102447530B1 (ko) * 2016-04-15 2022-09-26 엘지전자 주식회사 냉장고

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020163040A1 (en) * 2001-05-02 2002-11-07 International Rectifier Corp. Power mosfet with integrated drivers in a common package
US20100237911A1 (en) * 2007-10-05 2010-09-23 Andreas Svensson Drive Circuit For A Power Switch Component

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2795027B2 (ja) 1992-02-17 1998-09-10 三菱電機株式会社 Igbtのゲート駆動回路
JPH06244698A (ja) * 1993-02-19 1994-09-02 Pfu Ltd ゲート・ドライブ回路
US5399920A (en) * 1993-11-09 1995-03-21 Texas Instruments Incorporated CMOS driver which uses a higher voltage to compensate for threshold loss of the pull-up NFET
DE19806311A1 (de) * 1998-02-16 1999-08-26 Siemens Ag Vorrichtung zum Schalten induktiver Verbraucher
JP3636140B2 (ja) * 2002-02-04 2005-04-06 サンケン電気株式会社 ゲート駆動回路
JP2005108980A (ja) * 2003-09-29 2005-04-21 Rohm Co Ltd 半導体装置
GB2505135B (en) * 2011-06-09 2017-12-20 Mitsubishi Electric Corp Gate drive circuit
TWI513190B (zh) * 2011-07-22 2015-12-11 Hon Hai Prec Ind Co Ltd 使金氧半導體場效電晶體輸出線性電流的閘極驅動電路
JP5545308B2 (ja) * 2012-02-28 2014-07-09 株式会社豊田中央研究所 駆動回路
JP5755197B2 (ja) * 2012-07-27 2015-07-29 三菱電機株式会社 電力変換装置
US8742803B2 (en) * 2012-09-26 2014-06-03 Broadcom Corporation Output driver using low voltage transistors
CN103839510A (zh) * 2014-03-26 2014-06-04 华映视讯(吴江)有限公司 栅极驱动电路

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020163040A1 (en) * 2001-05-02 2002-11-07 International Rectifier Corp. Power mosfet with integrated drivers in a common package
US20100237911A1 (en) * 2007-10-05 2010-09-23 Andreas Svensson Drive Circuit For A Power Switch Component

Also Published As

Publication number Publication date
DE112014006783T5 (de) 2017-03-30
US20170179950A1 (en) 2017-06-22
JP6299869B2 (ja) 2018-03-28
JPWO2016002041A1 (ja) 2017-04-27
US9966947B2 (en) 2018-05-08
CN106664085B (zh) 2019-10-22
CN106664085A (zh) 2017-05-10

Similar Documents

Publication Publication Date Title
US8952730B2 (en) Driver circuit
JP5499877B2 (ja) 電力用半導体装置
JP5263317B2 (ja) 半導体スイッチング素子の駆動回路
JP6626267B2 (ja) 半導体装置
US20130248923A1 (en) Bi-directional switch using series connected n-type mos devices in parallel with series connected p-type mos devices
JP6356718B2 (ja) 半導体装置
TWI543519B (zh) 橋式整流電路
JP6458552B2 (ja) スイッチング方式の降圧型dc−dcコンバータ、及び電力変換回路
JP6229604B2 (ja) 半導体スイッチング素子の制御回路
JP6065721B2 (ja) 駆動回路、半導体集積回路、及び駆動回路の制御方法
JP5837499B2 (ja) インバータ
WO2014128942A1 (ja) 半導体素子の駆動装置
US9742388B2 (en) Driver circuit
US20150236635A1 (en) Inverter output circuit
JP2019165608A (ja) 半導体装置
JP6299869B2 (ja) 絶縁ゲート型パワー半導体素子のゲート駆動回路
JP2016059180A (ja) スイッチング電源
US8917118B2 (en) Bypass for on-chip voltage regulator
WO2016157813A1 (ja) 負荷駆動装置
US9787303B2 (en) Driver circuit and switch driving method
US10230366B2 (en) Current control device and power supply system
JP5802618B2 (ja) ゲート駆動回路
JP6265849B2 (ja) 制御回路
JP2017175178A (ja) ゲート駆動回路、半導体装置
JP6354610B2 (ja) モータ駆動装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14896290

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016530758

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15320658

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112014006783

Country of ref document: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016030911

Country of ref document: BR

122 Ep: pct application non-entry in european phase

Ref document number: 14896290

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112016030911

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20161229