CN106664085A - 绝缘栅型功率半导体元件的栅极驱动电路 - Google Patents

绝缘栅型功率半导体元件的栅极驱动电路 Download PDF

Info

Publication number
CN106664085A
CN106664085A CN201480080132.8A CN201480080132A CN106664085A CN 106664085 A CN106664085 A CN 106664085A CN 201480080132 A CN201480080132 A CN 201480080132A CN 106664085 A CN106664085 A CN 106664085A
Authority
CN
China
Prior art keywords
electrode
gate
insulated
positive
power semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201480080132.8A
Other languages
English (en)
Other versions
CN106664085B (zh
Inventor
大津宏
大津一宏
石川纯郎
石川纯一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of CN106664085A publication Critical patent/CN106664085A/zh
Application granted granted Critical
Publication of CN106664085B publication Critical patent/CN106664085B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
    • H03K17/6877Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors the control circuit comprising active elements different from those used in the output circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/16Modifications for eliminating interference voltages or currents
    • H03K17/161Modifications for eliminating interference voltages or currents in field-effect transistor switches
    • H03K17/162Modifications for eliminating interference voltages or currents in field-effect transistor switches without feedback from the output circuit to the control circuit
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • H01L29/0653Dielectric regions, e.g. SiO2 regions, air gaps adjoining the input or output region of a field-effect device, e.g. the source or drain region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/081Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters wherein the phase of the control voltage is adjustable with reference to the AC source
    • H02M1/082Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters wherein the phase of the control voltage is adjustable with reference to the AC source with digital control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/084Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters using a control circuit common to several phases of a multi-phase system
    • H02M1/0845Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters using a control circuit common to several phases of a multi-phase system digitally controlled (or with digital control)
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/145Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M7/155Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • H02M7/162Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only in a bridge configuration
    • H02M7/1623Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only in a bridge configuration with control circuit
    • H02M7/1626Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only in a bridge configuration with control circuit with automatic control of the output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/06Modifications for ensuring a fully conducting state
    • H03K17/063Modifications for ensuring a fully conducting state in field-effect transistor switches

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Conversion In General (AREA)
  • Electronic Switches (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

防止绝缘栅型功率半导体元件的稳态损耗加剧。栅极驱动电路(2)具有:NchMOSFET(4),其使所述绝缘栅型功率半导体元件(1)导通;PchMOSFET(5),其使所述绝缘栅型功率半导体元件(1)截止;控制电路(6),其通过将正电压(8b)施加于所述NchMOSFET(4)的栅电极而使所述NchMOSFET(4)导通,通过将负电压(9)施加于所述PchMOSFET(5)的栅电极而使所述PchMOSFET(5)导通;以及电源体(7),其将负电压(9)施加于所述PchMOSFET(5)的漏电极和所述控制电路(6)的负侧电极,将正电压(8a)施加于所述NchMOSFET(4)的漏电极,将绝对值比施加于所述NchMOSFET(4)的漏电极的正电压(8a)的绝对值大的正电压(8b)施加于所述控制电路(6)的正侧电极。

Description

绝缘栅型功率半导体元件的栅极驱动电路
技术领域
本发明涉及绝缘栅型功率半导体元件的栅极驱动电路。
背景技术
例如,专利文献1记载了绝缘栅型功率半导体元件的栅极驱动电路。该栅极驱动电路由晶体管的互补输出电路构成。
现有技术文献
专利文献
专利文献1:日本特开平5-226994号公报
在绝缘栅型功率半导体元件的额定电流大的情况下,需要增大栅极驱动电路的输出电流。在该情况下,栅极驱动电路的互补输出电路有时使用MOSFET。
在互补输出电路具有PchMOSFET的正侧和NchMOSFET的负侧的情况下,如果PchMOSFET与NchMOSFET同时导通,则直通电流流过PchMOSFET和NchMOSFET。
与此相对,在互补输出电路具有NchMOSFET的正侧和PchMOSFET的负侧的情况下,NchMOSFET与PchMOSFET不同时导通,不流过直通电流。
发明内容
发明要解决的课题
但是,在相同的正侧电源与NchMOSFET的漏电极以及栅电极连接时,在绝缘栅型功率半导体元件的栅电极与源电极之间施加从正侧电源的正电压降低NchMOSFET的栅极阈值电压后的电压。因此,绝缘栅型功率半导体元件的稳态损耗可能加剧。
本发明是为了解决上述课题而完成的。本发明的目的在于提供能够防止绝缘栅型功率半导体元件的稳态损耗加剧的绝缘栅型功率半导体元件的栅极驱动电路。
用于解决课题的手段
本发明的绝缘栅型功率半导体元件的栅极驱动电路具有:NchMOSFET,其具有源电极、漏电极、栅电极,源电极与绝缘栅型功率半导体元件的栅电极连接,在正电压施加于漏电极的状态下正电压施加于栅电极时,所述NchMOSFET导通,由此,使所述绝缘栅型功率半导体元件导通;PchMOSFET,其具有源电极、漏电极、栅电极,源电极与所述绝缘栅型功率半导体元件的栅电极连接,在负电压施加于漏电极的状态下负电压施加于栅电极时,所述PchMOSFET导通,由此,使所述绝缘栅型功率半导体元件截止;控制电路,其具有控制电极、正侧电极、负侧电极,控制电极与所述NchMOSFET的栅电极以及所述PchMOSFET的栅电极连接,通过在正电压施加于正侧电极的状态时将该正电压施加于所述NchMOSFET的栅电极,使所述NchMOSFET导通,通过在负电压施加于负侧电极的状态时将该负电压施加于所述所述PchMOSFET的栅电极,使所述PchMOSFET导通;以及电源体,其将负电压施加于所述PchMOSFET的漏电极和所述控制电路的负侧电极,将正电压施加于所述NchMOSFET的漏电极,将绝对值比施加于所述NchMOSFET的漏电极的正电压的绝对值大的正电压施加于所述控制电路的正侧电极。
发明的效果
根据本发明,电源体将绝对值比施加于NchMOSFET的漏电极的正电压的绝对值大的正电压施加于控制电路的正侧电极。通过施加该正电压,在NchMOSFET的漏电极与源电极之间,电位差充分减小。因此,能够防止绝缘栅型功率半导体元件的稳态损耗加剧。
附图说明
图1是本发明的实施方式1的绝缘栅型功率半导体元件的栅极驱动电路的图。
图2是说明本发明的实施方式1的绝缘栅型功率半导体元件的特性的图。
图3是本发明的实施方式2的绝缘栅型功率半导体元件的栅极驱动电路的图。
图4是本发明的实施方式3的绝缘栅型功率半导体元件的栅极驱动电路的图。
具体实施方式
基于附图,对用于实施本发明的方式进行说明。另外,在各图中,对相同或相当的部分标注相同的标号。适当地简化或省略该部分的重复说明。
实施方式1.
图1是本发明的实施方式1的绝缘栅型功率半导体元件的栅极驱动电路的图。
电力转换器具有多个绝缘栅型功率半导体元件1。例如,多个绝缘栅型功率半导体分别由NchMOSFET形成。电力转换器通过多个绝缘栅型功率半导体元件1的动作将直流电力转换为交流电力。电力转换器向未图示的电机供给该交流电力。
栅极驱动电路2分别与各个绝缘栅型功率半导体元件1对应地设置。栅极驱动电路2具有电阻3、NchMOSFET4、PchMOSFET5、控制电路6以及电源体7。
电阻3与绝缘栅型功率半导体元件1的栅电极连接。NchMOSFET4具有源电极、漏电极以及栅电极。NchMOSFET4的源电极经由电阻3与绝缘栅型功率半导体元件1的栅电极连接。PchMOSFET5具有源电极、漏电极以及栅电极。PchMOSFET5的源电极经由电阻3与绝缘栅型功率半导体元件1的栅电极连接。
控制电路6具有正侧开关元件6a和负侧开关元件6b。
正侧开关元件6a具有发射极电极、集电极电极以及基极电极。正侧开关元件6a的发射极电极与NchMOSFET4的栅电极和PchMOSFET5的栅电极连接。正侧开关元件6a的发射极电极成为控制电路6的控制电极。正侧开关元件6a的集电极电极成为控制电路6的正侧电极。负侧开关元件6b的发射极电极与NchMOSFET4的栅电极和PchMOSFET5的栅电极连接。负侧开关元件6b的发射极电极成为控制电路6的控制电极。负侧开关元件6b的集电极电极成为控制电路6的负侧电极。
电源体7具有正侧电源体8和负侧电源体9。正侧电源体8具有第1正侧电源8a和第2正侧电源8b。
第1正侧电源8a的正侧电极与NchMOSFET4的漏电极连接。第1正侧电源8a的负侧电极与绝缘栅型功率半导体元件1的源电极连接。第2正侧电源8b的正侧电极与正侧开关元件6a的集电极电极连接。第2正侧电源8b的负侧电极与绝缘栅型功率半导体元件1的源电极连接。负侧电源体9的正侧电极与绝缘栅型功率半导体元件1的源电极连接。负侧电源体9的负侧电极与PchMOSFET5的漏电极和负侧开关元件6b的集电极电极连接。
例如,负侧电源体9对PchMOSFET5的漏电极和负侧开关元件6b的集电极电极施加-15V的负电压。例如,第1正侧电源8a对NchMOSFET4的漏电极施加+15V的正电压。第2正侧电源8b对正侧开关元件6a的集电极电极施加绝对值比第1正侧电源8a施加的正电压的绝对值大的正电压。该正电压的绝对值与第1正侧电源8a施加的正电压的绝对值之差设定为比NchMOSFET4的栅极阈值电压的值大的值。例如,第2正侧电源8b对正侧开关元件6a的集电极电极施加+20V的正电压。
在通过来自外部的控制使负侧开关元件6b导通时,-15V的负电压被施加于PchMOSFET5的栅电极。通过施加该负电压,PchMOSFET5导通。其结果是,负电压被施加于绝缘栅型功率半导体元件1的栅电极。其结果是,绝缘栅型功率半导体元件1截止。
在通过来自外部的控制使正侧开关元件6a导通时,+20V的正电压被施加于NchMOSFET4的栅电极。通过施加该正电压,NchMOSFET4导通。此时,正电压被施加于NchMOSFET4的栅电极与源电极之间。该正电压为从施加于NchMOSFET4的栅电极的+20V减去施加于漏电极的+15V而得到的+5V。
此时,在NchMOSFET4的漏电极与源电极之间,电位差充分减小。其结果是,+15V的正电压被施加于绝缘栅型功率半导体元件1的栅电极与源电极之间。此时,NchMOSFET4的栅极阈值电压的偏差不会造成影响。
接下来,使用图2说明将绝缘栅型功率半导体元件1设为NchMOSFET时的特性。
图2是说明本发明的实施方式1的绝缘栅型功率半导体元件的特性的图。
图2中,Vgs表示绝缘栅型功率半导体元件1的栅电极与源电极之间的电压。Vds表示绝缘栅型功率半导体元件1的漏电极与源电极之间的电压。Id表示绝缘栅型功率半导体元件1的漏极电流。
在漏极电流Id相同的情况下,当栅电极与源电极之间的电压Vgs增大时,漏电极与源电极之间的电压Vds减小。当漏电极与源电极之间的电压Vds减小时,绝缘栅型功率半导体元件1的稳态损耗减小。
根据以上说明的实施方式1,电源体7将绝对值比施加于NchMOSFET4的漏电极的正电压的绝对值大的正电压施加于控制电路6的正侧电极。通过施加该正电压,在NchMOSFET4的漏电极与源电极之间,电位差充分减小。因此,即使栅极阈值电压因NchMOSFET4的个体差异或环境而变动,也能够稳定地对绝缘栅型功率半导体元件1的栅电极施加较大的电压。其结果是,能够防止绝缘栅型功率半导体元件1的稳态损耗加剧。在该情况下,电力转换器的效率提高。因此,能够实现电力转换器的小型化和低成本化。并且,由于电力转换器的高效率化,电力转换器的温度上升值减小。因此,能够实现电力转换器的长寿命化。
具体而言,正侧电源体8具有第1正侧电源8a和第2正侧电源8b。第1正侧电源8a将正电压施加于NchMOSFET4的漏电极。第2正侧电源8b将绝对值比施加于NchMOSFET4的漏电极的正电压的绝对值大的正电压施加于控制电路6的正侧电极。因此,仅使用不同的两个正侧电源就能够防止绝缘栅型功率半导体元件1的稳态损耗加剧。
实施方式2.
图3是本发明的实施方式2的绝缘栅型功率半导体元件的栅极驱动电路的图。另外,对与实施方式1的部分相同或相当的部分标注相同标号。省略该部分的说明。
实施方式1的电源体7将相同的负电压施加于PchMOSFET5的漏电极和控制电路6的负侧电极。与此相对,实施方式2的电源体7将绝对值比施加于PchMOSFET5的漏电极的负电压的绝对值大的负电压施加于控制电路6的负侧电极。
具体而言,负侧电源体9具有第1负侧电源9a和第2负侧电源9b。第1负侧电源9a将负电压施加于PchMOSFET5的漏电极。第2负侧电源9b将绝对值比施加于PchMOSFET5的漏电极的负电压大的负电压施加于控制电路6的负侧电极。该负电压的绝对值与施加于PchMOSFET5的漏电极的负电压的绝对值之差设定为比PchMOSFET5的栅极阈值电压的值大的值。例如,第2负侧电源9b对负侧开关元件6b的集电极电极施加-20V的负电压。
根据以上说明的实施方式2,电源体7将绝对值比施加于PchMOSFET5的漏电极的负电压的绝对值大的负电压施加于控制电路6的负侧电极。通过施加该正电压,在PchMOSFET5的漏电极与源电极之间,电位差充分减小。因此,能够使施加于绝缘栅型功率半导体元件1的栅电极的负电压稳定。
具体而言,负侧电源体9具有第1负侧电源9a和第2负侧电源9b。第1负侧电源9a将负电压施加于PchMOSFET5的漏电极。第2负电源将绝对值比施加于PchMOSFET5的漏电极的负电压的绝对值大的负电压施加于控制电路6的负侧电极。因此,仅使用不同的两个负侧电源就能够使施加于绝缘栅型功率半导体元件1的栅电极的负电压稳定。
实施方式3.
图4是本发明的实施方式3的绝缘栅型功率半导体元件的栅极驱动电路的图。另外,对与实施方式2的部分相同或相当的部分标注相同标号。省略该部分的说明。
实施方式3的栅极驱动电路2是在实施方式2的栅极驱动电路2中增加正侧齐纳二极管10和负侧齐纳二极管11而成的电路。正侧齐纳二极管10连接于NchMOSFET4的栅电极与源电极之间。负侧齐纳二极管11连接于PchMOSFET5的栅电极与源电极之间。
当绝缘栅型功率半导体元件1从截止变为导通时,NchMOSFET4从截止变为导通。此时,存在如下情况,即绝缘栅型功率半导体元件1的栅电极与源电极之间的电压从负电压变化为正电压的时间比NchMOSFET4的栅电极与源电极之间的电压从负电压变化为正电压的时间长。
该情况下,较大的正电压能够被施加于NchMOSFET4的栅电极与源电极之间。该正电压的绝对值为第1正侧电源8a的正电压和第1负侧电源9a的负电压的总和30(V)。该正电压的绝对值比NchMOSFET4的栅电极与源电极之间的最大额定电压的绝对值大。
但是,此时,较大的电流急剧地流入正侧齐纳二极管10。其结果是,NchMOSFET4的栅电极与源电极之间的电压保持为正侧齐纳二极管10的齐纳电压。需要以比NchMOSFET4的栅电极与源电极之间的最大额定电压的绝对值小的方式选择该齐纳电压。
当绝缘栅型功率半导体元件1从导通变为截止时,PchMOSFET5从截止变为导通。此时,存在如下情况,即绝缘栅型功率半导体元件1的栅电极与源电极之间的电压从正电压变化为负电压的时间比PchMOSFET5的栅电极与源电极之间的电压从负电压变化为正电压的时间长。
在该情况下,较大的负电压能够被施加于PchMOSFET5的栅电极与源电极之间。该负电压的绝对值为第1正侧电源8a的正电压和第1负侧电源9a的负电压的总和30(V)。该负电压的绝对值比PchMOSFET5的栅电极与源电极之间的最大额定电压的绝对值大。
但是,此时,较大的电流急剧地流入负侧齐纳二极管11。其结果是,PchMOSFET5的栅电极与源电极之间的电压保持为负侧齐纳二极管11的齐纳电压。需要以比PchMOSFET5的栅电极与源电极之间的最大额定电压的绝对值小的方式选择该齐纳电压。
根据以上说明的实施方式3,正侧齐纳二极管10连接于NchMOSFET4的栅电极与源电极之间。因此,能够防止在绝缘栅型功率半导体元件1从截止变为导通时NchMOSFET4损坏。
此外,负侧齐纳二极管11连接于PchMOSFET5的栅电极与源电极之间。因此,能够防止在绝缘栅型功率半导体元件1从导通变为截止时PchMOSFET5损坏。
另外,也可以将实施方式1至实施方式3的栅极驱动电路2应用于从交流电力转换为直流电力的电力转换器的绝缘栅型功率半导体元件。
此外,在实施方式1至实施方式3中,也可以经由电阻将控制电路6的输出电极与NchMOSFET4的栅电极和PchMOSFET5的栅电极中的至少一个连接。
此外,在实施方式1至实施方式3中,可以使用第1电阻与第2电阻来代替电阻3。此时,在NchMOSFET4的漏电极与第1正侧电源8a之间设置第1电阻即可。在PchMOSFET5的漏电极与负侧电源体9或9a之间设置第2电阻即可。
此外,在实施方式1至实施方式3中,也可以不经由电阻3而直接将绝缘栅型功率半导体元件1的栅电极与NchMOSFET4的源电极和PchMOSFET5的源电极中的至少一个连接。
此外,在实施方式1至实施方式3中,也可以将与NchMOSFET不同的半导体元件作为绝缘栅型功率半导体元件1。例如,可以将由IGBT形成的半导体元件作为绝缘栅型功率半导体元件1。例如,也可以将由宽带隙半导体形成的半导体元件作为绝缘栅型功率半导体元件1。例如,作为宽带隙半导体,有碳化硅、氮化镓系材料或金刚石。
在将由宽带隙半导体形成的半导体元件作为绝缘栅型功率半导体元件1的情况下,可期待绝缘栅型功率半导体元件1本身的效率提高。此时,基于对绝缘栅型功率半导体元件1的栅电极施加的电压的稳态损耗的大小较大程度地影响电力转换器的损耗。因此,在将由宽带隙半导体形成的半导体元件作为绝缘栅型功率半导体元件1的情况下,栅极驱动电路2能够发挥更大的效果。
产业上的可利用性
如上所述,本发明的绝缘栅型功率半导体元件的栅极驱动电路能够在防止绝缘栅型侧功率半导体元件的稳态损耗加剧的系统中使用。
标号说明
1:绝缘栅型功率半导体元件;2:栅极驱动电路;3:电阻;4:NchMOSFET;5:PchMOSFET;6:控制电路;6a:正侧开关元件;6b:负侧开关元件;7:电源体;8:正侧电源体;8a:第1正侧电源;8b:第2正侧电源;9:负侧电源体;9a:第1负侧电源;9b:第2负侧电源;10:正侧齐纳二极管;11:负侧齐纳二极管。

Claims (7)

1.一种绝缘栅型功率半导体元件的栅极驱动电路,该栅极驱动电路具有:
NchMOSFET,其具有源电极、漏电极、栅电极,源电极与绝缘栅型功率半导体元件的栅电极连接,在正电压施加于漏电极的状态下正电压施加于栅电极时,所述NchMOSFET导通,由此,使所述绝缘栅型功率半导体元件导通;
PchMOSFET,其具有源电极、漏电极、栅电极,源电极与所述绝缘栅型功率半导体元件的栅电极连接,在负电压施加于漏电极的状态下负电压施加于栅电极时,所述PchMOSFET导通,由此,使所述绝缘栅型功率半导体元件截止;
控制电路,其具有控制电极、正侧电极、负侧电极,控制电极与所述NchMOSFET的栅电极以及所述PchMOSFET的栅电极连接,通过在正电压施加于正侧电极的状态时将该正电压施加于所述NchMOSFET的栅电极,使所述NchMOSFET导通,通过在负电压施加于负侧电极的状态时将该负电压施加于所述所述PchMOSFET的栅电极,使所述PchMOSFET导通;以及
电源体,其将负电压施加于所述PchMOSFET的漏电极和所述控制电路的负侧电极,将正电压施加于所述NchMOSFET的漏电极,将绝对值比施加于所述NchMOSFET的漏电极的正电压的绝对值大的正电压施加于所述控制电路的正侧电极。
2.根据权利要求1所述的绝缘栅型功率半导体元件的栅极驱动电路,其中,
所述电源体具有:
第1正侧电源,其具有与所述所述NchMOSFET的漏电极连接的正侧电极以及与所述绝缘栅型功率半导体元件的源电极连接的负侧电极,将正电压施加于所述NchMOSFET的漏电极;以及
第2正侧电源,其具有与所述控制电路的正侧电极连接的正侧电极以及与所述绝缘栅型功率半导体元件的源电极连接的负侧电极,将绝对值比所述第1正侧电源施加于所述NchMOSFET的漏电极的正电压的绝对值大的正电压施加于所述控制电路的正侧电极。
3.根据权利要求1或2所述的绝缘栅型功率半导体元件的栅极驱动电路,其中,
所述栅极驱动电路具有连接于所述NchMOSFET的栅电极与源电极之间的正侧齐纳二极管。
4.根据权利要求1至3中的任意一项所述的绝缘栅型功率半导体元件的栅极驱动电路,其中,
所述电源体将绝对值比施加于所述PchMOSFET5的漏电极的负电压的绝对值大的负电压施加于所述控制电路的负侧电极。
5.根据权利要求4所述的绝缘栅型功率半导体元件的栅极驱动电路,其中,
所述电源体具有:
第1负侧电源,其具有与所述绝缘栅型功率半导体元件的源电极连接的正侧电极以及与所述所述PchMOSFET的漏电极连接的负侧电极,将负电压施加于所述PchMOSFET的漏电极;以及
第2负侧电源,其具有与所述绝缘栅型功率半导体元件的源电极连接的正侧电极以及与所述控制电路的负侧电极连接的负侧电极,将绝对值比所述第1负侧电源施加于所述PchMOSFET的漏电极的负电压的绝对值大的负电压施加于所述控制电路的负侧电极。
6.根据权利要求1至5中的任意一项所述的绝缘栅型功率半导体元件的栅极驱动电路,其中,
所述栅极驱动电路具有连接于所述PchMOSFET的栅电极与源电极之间的负侧齐纳二极管。
7.根据权利要求1至6中的任意一项所述的绝缘栅型功率半导体元件的栅极驱动电路,其中,
所述绝缘栅型功率半导体元件由宽带隙半导体形成。
CN201480080132.8A 2014-07-03 2014-07-03 绝缘栅型功率半导体元件的栅极驱动电路 Active CN106664085B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/067771 WO2016002041A1 (ja) 2014-07-03 2014-07-03 絶縁ゲート型パワー半導体素子のゲート駆動回路

Publications (2)

Publication Number Publication Date
CN106664085A true CN106664085A (zh) 2017-05-10
CN106664085B CN106664085B (zh) 2019-10-22

Family

ID=55018640

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201480080132.8A Active CN106664085B (zh) 2014-07-03 2014-07-03 绝缘栅型功率半导体元件的栅极驱动电路

Country Status (5)

Country Link
US (1) US9966947B2 (zh)
JP (1) JP6299869B2 (zh)
CN (1) CN106664085B (zh)
DE (1) DE112014006783T5 (zh)
WO (1) WO2016002041A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102447530B1 (ko) * 2016-04-15 2022-09-26 엘지전자 주식회사 냉장고

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050067632A1 (en) * 2003-09-29 2005-03-31 Rohm Company, Ltd. Semiconductor device
US20100237911A1 (en) * 2007-10-05 2010-09-23 Andreas Svensson Drive Circuit For A Power Switch Component
CN102891671A (zh) * 2011-07-22 2013-01-23 吴奕莹 金属氧化物半导体场效晶体管输出线性电流的栅极驱动电路
CN103580526A (zh) * 2012-07-27 2014-02-12 三菱电机株式会社 功率转换装置
CN103620930A (zh) * 2011-06-09 2014-03-05 三菱电机株式会社 栅极驱动电路
CN103839510A (zh) * 2014-03-26 2014-06-04 华映视讯(吴江)有限公司 栅极驱动电路

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2795027B2 (ja) 1992-02-17 1998-09-10 三菱電機株式会社 Igbtのゲート駆動回路
JPH06244698A (ja) * 1993-02-19 1994-09-02 Pfu Ltd ゲート・ドライブ回路
US5399920A (en) * 1993-11-09 1995-03-21 Texas Instruments Incorporated CMOS driver which uses a higher voltage to compensate for threshold loss of the pull-up NFET
DE19806311A1 (de) * 1998-02-16 1999-08-26 Siemens Ag Vorrichtung zum Schalten induktiver Verbraucher
US6593622B2 (en) * 2001-05-02 2003-07-15 International Rectifier Corporation Power mosfet with integrated drivers in a common package
JP3636140B2 (ja) * 2002-02-04 2005-04-06 サンケン電気株式会社 ゲート駆動回路
JP5545308B2 (ja) * 2012-02-28 2014-07-09 株式会社豊田中央研究所 駆動回路
US8742803B2 (en) * 2012-09-26 2014-06-03 Broadcom Corporation Output driver using low voltage transistors

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050067632A1 (en) * 2003-09-29 2005-03-31 Rohm Company, Ltd. Semiconductor device
US20100237911A1 (en) * 2007-10-05 2010-09-23 Andreas Svensson Drive Circuit For A Power Switch Component
CN103620930A (zh) * 2011-06-09 2014-03-05 三菱电机株式会社 栅极驱动电路
CN102891671A (zh) * 2011-07-22 2013-01-23 吴奕莹 金属氧化物半导体场效晶体管输出线性电流的栅极驱动电路
CN103580526A (zh) * 2012-07-27 2014-02-12 三菱电机株式会社 功率转换装置
CN103839510A (zh) * 2014-03-26 2014-06-04 华映视讯(吴江)有限公司 栅极驱动电路

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
郝润科 等: "绝缘栅双极型晶体管(IGBT)驱动及保护电路的研究", 《上海理工大学学报》 *

Also Published As

Publication number Publication date
WO2016002041A1 (ja) 2016-01-07
JP6299869B2 (ja) 2018-03-28
US9966947B2 (en) 2018-05-08
JPWO2016002041A1 (ja) 2017-04-27
CN106664085B (zh) 2019-10-22
US20170179950A1 (en) 2017-06-22
DE112014006783T5 (de) 2017-03-30

Similar Documents

Publication Publication Date Title
CN205725436U (zh) 栅极驱动电路以及包括栅极驱动电路的桥电路
US9935551B2 (en) Switching circuit including serially connected transistors for reducing transient current at time of turning off, and power supply circuit provided therewith
CN103716026B (zh) 开关电路
CN105391280B (zh) 用于生成备用电压的系统和方法
CN104205638B (zh) 共射共基电路
US20130200926A1 (en) Driver circuit
KR20130060143A (ko) 반도체 스위치 및 전력 변환 장치
JP2017055542A5 (zh)
WO2012069045A3 (de) Schaltung zum schutz gegen verpolung
JP6048929B2 (ja) ゲート駆動回路、インバータ回路、電力変換装置および電気機器
CN105553318A (zh) 一种等效晶体管和三电平逆变器
CN103326699A (zh) 半导体器件
CN103023470B (zh) 三电极单向导通场效应管
CN103647540A (zh) 固态宽电压隔离型直流继电器
CN203859674U (zh) 一种mos管的负压驱动电路及开关电源
CN106664085A (zh) 绝缘栅型功率半导体元件的栅极驱动电路
CN102970017A (zh) 一种单向导通电路
WO2016157813A1 (ja) 負荷駆動装置
CN104113312A (zh) 栅极电压产生电路
CN107959407B (zh) 控制至少两个晶体管的方法和包括至少两个晶体管的装置
CN104731728B (zh) 一种基于微处理器i/o口的驱动电路
EP2768138A1 (en) Rectifying circuit and power supply circuit
CN101399438A (zh) 自动识别零相线并可切换极性的装置
CN105391435B (zh) 用于驱动晶体管的系统和方法
CN102983559B (zh) 一种具有改善耐压特性的集成电路

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant