WO2015194452A1 - 多層膜及びその製造方法 - Google Patents

多層膜及びその製造方法 Download PDF

Info

Publication number
WO2015194452A1
WO2015194452A1 PCT/JP2015/066882 JP2015066882W WO2015194452A1 WO 2015194452 A1 WO2015194452 A1 WO 2015194452A1 JP 2015066882 W JP2015066882 W JP 2015066882W WO 2015194452 A1 WO2015194452 A1 WO 2015194452A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
pzt
sample
substrate
dielectric layer
Prior art date
Application number
PCT/JP2015/066882
Other languages
English (en)
French (fr)
Inventor
宏樹 小林
充則 逸見
光隆 廣瀬
和也 塚越
木村 勲
弘綱 鄒
Original Assignee
株式会社アルバック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アルバック filed Critical 株式会社アルバック
Priority to KR1020167034612A priority Critical patent/KR101971771B1/ko
Priority to EP15810178.2A priority patent/EP3159949A4/en
Priority to JP2016529292A priority patent/JP6367331B2/ja
Priority to US15/319,617 priority patent/US9985196B2/en
Publication of WO2015194452A1 publication Critical patent/WO2015194452A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/50Piezoelectric or electrostrictive devices having a stacked or multilayer structure
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/006Compounds containing, besides zirconium, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/02Oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/04Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • C23C14/025Metallic sublayers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/088Oxides of the type ABO3 with A representing alkali, alkaline earth metal or Pb and B representing a refractory or rare earth metal
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3492Variation of parameters during sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • C30B29/32Titanates; Germanates; Molybdates; Tungstates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/07Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
    • H10N30/074Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing
    • H10N30/076Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing by vapour phase deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/07Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
    • H10N30/074Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing
    • H10N30/079Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing using intermediate layers, e.g. for growth control
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/09Forming piezoelectric or electrostrictive materials
    • H10N30/093Forming inorganic materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/704Piezoelectric or electrostrictive devices based on piezoelectric or electrostrictive films or coatings
    • H10N30/706Piezoelectric or electrostrictive devices based on piezoelectric or electrostrictive films or coatings characterised by the underlying bases, e.g. substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/704Piezoelectric or electrostrictive devices based on piezoelectric or electrostrictive films or coatings
    • H10N30/706Piezoelectric or electrostrictive devices based on piezoelectric or electrostrictive films or coatings characterised by the underlying bases, e.g. substrates
    • H10N30/708Intermediate layers, e.g. barrier, adhesion or growth control buffer layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8548Lead-based oxides
    • H10N30/8554Lead-zirconium titanate [PZT] based
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • H10N30/877Conductive materials

Definitions

  • the present invention relates to a multilayer film having excellent piezoelectric characteristics and a manufacturing method thereof.
  • This application claims priority based on Japanese Patent Application No. 2014-127467 for which it applied to Japan on June 20, 2014, and uses the content here.
  • FIG. 11 is a graph showing piezoelectric characteristics of a (100) / (001) -oriented PZT film and a (111) -oriented PZT film. From FIG. 11, it is known that the (100) / (001) oriented PZT thin film exhibits superior piezoelectric properties than the (111) oriented PZT thin film.
  • FIG. 12 is an X-ray chart at three locations of a center portion (Center) of the PZT film formed on the Pt film, an outer edge portion (Edge), and an intermediate portion (Middle) between the center portion and the outer edge portion. It is.
  • FIG. 12 shows that the obtained PZT film is preferentially oriented in the a-axis (111) direction.
  • the present invention has been devised in view of such conventional circumstances, and a first object thereof is to provide a multilayer film having excellent piezoelectric characteristics. Another object of the present invention is to provide a method for producing a multilayer film having excellent piezoelectric characteristics.
  • the multilayer film includes a conductive layer made of platinum (Pt), lanthanum (La), nickel (Ni), and oxygen (O) on one main surface side of the substrate made of silicon. And a dielectric layer are arranged at least in order, and the dielectric layer is preferentially oriented in the c-axis direction.
  • the dielectric layer includes lead (Pb), zirconia (Zr), titanium (Ti), and oxygen (O). And may be included.
  • the dielectric layer is made of Pb (Zr x Ti 1-x ) O 3 , and 0.2 ⁇ x ⁇ 0. 52 may be sufficient.
  • the dielectric layer has a thickness of 0.1 to 5 [ ⁇ m]. It may be.
  • a conductive layer is formed on a substrate (step A), a seed layer is formed so as to cover the conductive layer (step B), and the seed layer is formed.
  • a dielectric layer is formed so as to cover (step C), and the temperature is controlled so that compressive stress is applied to the dielectric layer in the cooling process after forming the dielectric layer.
  • the multilayer film according to each of the aspects includes a conductive layer made of platinum (Pt), a seed layer containing lanthanum (La), nickel (Ni), and oxygen (O) on one main surface side of a substrate made of silicon.
  • the dielectric layers are disposed at least in order, and the dielectric film disposed on the seed layer is preferentially oriented along the c-axis.
  • the step of forming the dielectric layer is performed by controlling the temperature so that compressive stress is applied to the dielectric layer in the cooling process after the film formation.
  • the dielectric layer preferentially oriented in the c-axis can be stably formed. Thereby, the manufacturing method of the multilayer film which has the outstanding piezoelectric characteristic can be provided.
  • FIG. 1 It is sectional drawing which shows one structural example of the multilayer film which concerns on one Embodiment of this invention. It is a figure which shows typically the change of the crystal structure of PZT in the cooling process from film-forming. It is a figure which shows typically the internal structure of the film-forming apparatus used in the said embodiment. It is sectional drawing which shows the manufacturing process of the multilayer film which concerns on the said embodiment. It is sectional drawing which shows the manufacturing process of the multilayer film which concerns on the said embodiment. It is sectional drawing which shows the manufacturing process of the multilayer film which concerns on the said embodiment. It is sectional drawing which shows the manufacturing process of the multilayer film which concerns on the said embodiment. It is a figure which shows the diffraction peak which shows the crystal structure of the PZT film
  • FIG. 4 is a diagram showing the piezoelectricity of PZT films of Sample 1 to Sample 3. It is a figure which shows the fatigue characteristic of the PZT film
  • FIG. 5 is a diagram showing diffraction peaks indicating crystal structures for the PZT films of Sample 5 to Sample 7.
  • FIG. 6 is a diagram showing fatigue characteristics of PZT films of Sample 5 to Sample 7. It is a graph which shows the piezoelectric characteristic of the PZT thin film of (100) / (001) orientation, and the PZT thin film of (111) orientation. It is a figure which shows the X-ray-diffraction pattern of the conventional PZT thin film.
  • FIG. 1 is a cross-sectional view illustrating a configuration example of a multilayer film according to the present embodiment.
  • the multilayer film 1 includes a conductive layer 3 made of platinum (Pt), a seed layer 4 containing lanthanum (La), nickel (Ni), and oxygen (O) on one main surface side of a substrate 2 made of silicon, and a dielectric.
  • the layers 5 are arranged at least in order.
  • the dielectric layer 5 constituting the multilayer film 1 of the present embodiment is preferentially oriented in the c-axis (001) direction. Since the dielectric film is preferentially oriented in the c-axis, the multilayer film 1 having excellent piezoelectric characteristics can be obtained. Such a multilayer film 1 is suitably used for a piezoelectric element, for example.
  • An example of the seed layer 4 is an oxide film containing lanthanum (La), nickel (Ni), and oxygen (O).
  • LaNiO 3 (LNO) is used as such an oxide.
  • LNO has a high self-mixing property on the (002) plane and can be formed at a low temperature of 300 ° C.
  • LNO also has a low resistivity.
  • LNO by using LNO as the seed layer 4, it is possible to form a film preferentially oriented in the c-axis when the dielectric layer 5 is formed. In order to orient the dielectric layer 5 in the c-axis, it is preferable that the seed layer LNO has a compressive stress.
  • the dielectric layer 5 is not particularly limited.
  • lead zirconate titanate [Pb (Zr x Ti 1-x ) O 3 : PZT], PbTiO 3 , BaTiO 3 , PMM-PZT, PNN-PZT , PMN-PZT, PNN-PT, PLZT, PZTN, NBT, KNN and other ferroelectrics.
  • the dielectric layer 5 may be, for example, lead zirconate titanate [Pb (Zr x Ti 1-x ) O containing lead (Pb), zirconia (Zr), titanium (Ti), oxygen (O). 3 : PZT].
  • FIG. 2 is a diagram schematically showing a change in the crystal structure of PZT in the cooling process from film formation.
  • PZT has a cubic crystal structure (Cubic) [FIG. 2 (a)], but after forming a film at a high temperature (for example, a temperature above the Curie point), it changes to tetragonal (Tetra) in the cooling process. To do.
  • the PZT film is normally oriented in the a-axis [FIG. 2 (b)], but when the compressive stress is applied to the PZT in the cooling process, the PZT is oriented in the c-axis [FIG. 2 (c). ].
  • PZT when the composition of PZT is expressed as Pb (Zr x Ti 1-x ) O 3 , it is preferable that 0.2 ⁇ x ⁇ 0.52. By setting the composition within this range (0.2 ⁇ x ⁇ 0.52), PZT can be preferentially oriented along the C axis.
  • the thickness of the dielectric layer 5 is preferably 0.1 to 5 [ ⁇ m]. If the thickness of the dielectric layer 5 is less than 0.1 [ ⁇ m], sufficient piezoelectric characteristics cannot be obtained. On the other hand, if the thickness of the dielectric layer 5 is thicker than 5 [ ⁇ m], it is not desirable from the viewpoint of throughput. By setting the thickness of the dielectric layer 5 to 0.1 to 5 [ ⁇ m], it is possible to obtain a PZT film exhibiting a mass production throughput and good piezoelectricity.
  • FIG. 3 is a schematic cross-sectional view showing an example of the internal configuration of the film forming apparatus 10.
  • the film forming apparatus 10 includes a vacuum chamber 11, a target 21, a support unit (substrate holding table) 32, a temperature control unit 18, a sputtering power supply 13, a sputtering gas introduction unit 14, and a first deposition plate 34. And a second deposition preventing plate 35.
  • the target 21 is disposed in the vacuum chamber 11.
  • the support part 32 is disposed at a position facing the target 21 and holds the substrate 31 (substrate 2).
  • the temperature control unit 18 adjusts the substrate temperature by heating / cooling the substrate 31 held by the support unit 32.
  • the sputtering power source 13 applies a voltage to the target 21.
  • the sputtering gas introduction unit 14 introduces a sputtering gas into the vacuum chamber 11.
  • the first deposition plate 34 and the second deposition plate 35 are arranged in the vacuum chamber 11 at positions where particles emitted from the target 21 are attached.
  • a cathode electrode 22 is disposed on the upper wall surface of the vacuum chamber 11 via an insulating member 28, and the cathode electrode 22 and the vacuum chamber 11 are electrically insulated.
  • the vacuum chamber 11 is at ground potential.
  • One surface side of the cathode electrode 22 is locally exposed in the vacuum chamber 11.
  • the target 21 is fixed in close contact with the central portion of the exposed region on one side of the cathode electrode 22, and the target 21 and the cathode electrode 22 are electrically connected.
  • the sputtering power source 13 is disposed outside the vacuum chamber 11.
  • the sputtering power source 13 is electrically connected to the cathode electrode 22 and can apply an AC voltage to the target 21 via the cathode electrode 22.
  • a magnet device 29 is disposed on the opposite side of the cathode electrode 22 from the target 21, that is, on the other surface side of the cathode electrode 22.
  • the magnet device 29 is configured to form magnetic lines of force on the surface of the target 21.
  • the support portion 32 on which the substrate 31 is placed is made of, for example, silicon carbide (SiC).
  • SiC silicon carbide
  • the outer periphery of the support portion 32 is formed larger than the outer periphery of the substrate 31.
  • the surface of the support portion 32 is arranged to face the surface of the target 21.
  • a means for electrostatically attracting the substrate 31 is contained in the support portion 32.
  • the back surface of the substrate 31 is brought into close contact with the center portion of the surface of the support portion 32, and the substrate 31 is thermally connected to the support portion 32.
  • the first deposition preventing plate 34 is a ceramic such as quartz or alumina.
  • the first deposition preventing plate 34 is formed in an annular shape in which the inner periphery of the first deposition preventing plate 34 is larger than the outer periphery of the substrate 31, and covers the outer edge portion that is the outside of the center portion of the surface of the support portion 32. Has been placed. Thereby, the particles emitted from the target 21 are prevented from adhering to the outer edge portion of the surface of the support portion 32.
  • the back surface of the first deposition preventing plate 34 is in close contact with the outer edge portion of the surface of the support portion 32, and the first deposition preventing plate 34 is thermally connected to the support portion 32.
  • the first deposition preventing plate 34 is disposed so as to surround the outer periphery of the substrate 31.
  • the second adhesion-preventing plate 35 is a ceramic such as quartz or alumina.
  • the second deposition preventing plate 35 is formed in a cylindrical shape in which the inner circumference of the second deposition preventing plate 35 is larger than the outer circumference of the target 21 and the outer circumference of the substrate 31.
  • the second deposition preventing plate 35 is disposed between the support portion 32 and the cathode electrode 22 and is configured to surround the side of the space between the substrate 31 and the target 21. Thereby, the particles emitted from the target 21 are prevented from adhering to the wall surface of the vacuum chamber 11.
  • the temperature control unit 18 includes a heat generating member 33 and a heating power source 17.
  • SiC is used as the heat generating member 33.
  • the heat generating member 33 is disposed at a position opposite to the substrate 31 with the support portion 32 interposed therebetween.
  • the heating power source 17 is electrically connected to the heat generating member 33.
  • the back surface of the substrate 31 is in close contact with the central portion of the surface of the support portion 32, and heat is evenly transferred from the central portion of the substrate 31 to the outer edge portion.
  • a cooling unit 38 is disposed on the side of the heat generating member 33 opposite to the support unit 32.
  • the cooling unit 38 is configured to circulate a temperature-controlled cooling medium therein, and prevents heating of the wall surface of the vacuum chamber 11 even when the heat generating member 33 generates heat.
  • the sputter gas introducing unit 14 is connected to the inside of the vacuum chamber 11 and is configured so that the sputter gas can be introduced into the vacuum chamber 11.
  • FIG. 3 is a diagram schematically showing the internal configuration of the film forming apparatus used for manufacturing the multilayer film.
  • 4A to 4C are cross-sectional views illustrating the manufacturing process of the multilayer film according to the present embodiment.
  • FIG. 3 illustrates the case where the film forming apparatus 10 has one vacuum chamber 11 for the sake of simplicity.
  • the manufacturing method of the following steps A to C at least three vacuum chambers 11a, 11b, The description will be made on the assumption that the film forming apparatus 11c (11) communicates in the depth direction of the drawing via a partition valve (not shown) in FIG.
  • the vacuum chamber 11a (11) is a vacuum chamber for forming a conductive layer.
  • the vacuum chamber 11b (11) is a vacuum chamber for forming a seed layer.
  • the vacuum chamber 11c (11) is a vacuum chamber for forming a dielectric layer.
  • only the vacuum chambers are distinguished from each other, and the components associated with each vacuum chamber are not distinguished from each other.
  • Step A Formation of Conductive Layer
  • the conductive layer 3 made of platinum (Pt) is formed on one main surface side of the substrate 2 made of silicon (Si), as shown in FIG. 4A.
  • a conductive layer is formed directly on one main surface of the substrate.
  • another film is provided on one main surface of the substrate 2 before forming the conductive layer. It does not matter.
  • the internal space of the vacuum chamber 11a (11) in which the target made of Pt is installed is depressurized by the vacuum exhaust device 15.
  • the internal space of the vacuum chamber 11a (11) is evacuated to a higher vacuum than the pressure atmosphere during film formation. Thereafter, evacuation is continued and the vacuum atmosphere in the vacuum chamber 11 is maintained.
  • the substrate 31 to be deposited is carried into the internal space of the vacuum chamber 11 a (11) through an unillustrated entrance. Then, the substrate 31 is held at the center of the support portion 32 so that one main surface of the substrate 31 faces the sputtering surface of the target 21.
  • a cooling medium whose temperature is controlled is circulated in the cooling unit 38.
  • Ar gas is introduced as a sputtering gas from the sputtering gas introduction unit 14 into the vacuum chamber 11 while the substrate 31 is kept at the deposition temperature, and an AC voltage is applied from the sputtering power source 13 to the cathode electrode 22. Is applied to sputter the Pt target. Thereby, the Pt conductive layer 3 is formed on one main surface side of the substrate 31.
  • Step B Formation of Seed Layer
  • the seed layer 4 is formed so as to cover the conductive layer 3 as shown in FIG. 4B.
  • an oxide containing lanthanum (La), nickel (Ni), and oxygen (O) is formed.
  • the internal space of the vacuum chamber 11b (11) in which an LNO target made of an oxide containing La, Ni, and O is installed as the target 21 is depressurized in advance by the evacuation apparatus 15, and the pressure atmosphere during film formation is reduced. Also, the vacuum atmosphere is evacuated to a high vacuum.
  • the substrate 31 provided with the Pt conductive layer 3 in advance is carried from the vacuum chamber 11a (11) to the internal space of the vacuum chamber 11b (11). Then, the substrate 31 is held at the center of the surface of the support portion 32 so that one main surface side of the substrate 31, that is, the Pt conductive layer 3 faces the sputtering surface of the LNO target 21.
  • Ar gas and oxygen gas are introduced into the vacuum chamber 11 b (11) from the sputtering gas introduction unit 14 as sputtering gas, and AC is supplied from the sputtering power supply 13 to the cathode electrode 22.
  • the LNO target is sputtered by applying a voltage.
  • the seed layer 4 made of LNO is formed on the Pt conductive layer 3 on the one main surface side of the substrate 31.
  • the substrate temperature within the film formation time is controlled by a predetermined temperature profile as necessary. It may be set so that a constant temperature is maintained from the start of film formation to the end of film formation. For example, the start of film formation may be set to be higher than the end of film formation.
  • Step C Formation of Dielectric Layer
  • a dielectric layer 5 is formed so as to cover the seed layer 4 as shown in FIG. 4C.
  • a PZT film is formed by sputtering.
  • the internal space of the vacuum chamber 11c (11) in which the PZT target is installed is depressurized by the vacuum exhaust device 15 so that the vacuum atmosphere is evacuated to a higher vacuum than the pressure atmosphere during film formation.
  • the substrate 31 provided with the Pt conductive layer 3 and the seed layer 4 in advance is carried from the vacuum chamber 11b (11) into the internal space of the vacuum chamber 11c (11). To do. Then, the substrate 31 is held at the center of the surface of the support portion 32 so that one main surface side of the substrate 31, that is, the seed layer 4 faces the sputtering surface of the PZT target 21.
  • Ar gas and oxygen gas are introduced into the vacuum chamber 11 b (11) from the sputtering gas introduction unit 14 as sputtering gas, and AC is supplied from the sputtering power supply 13 to the cathode electrode 22.
  • a PZT target is sputtered by applying a voltage.
  • the dielectric layer 5 made of a PZT film having a perovskite structure is formed on the seed layer 4 on the one main surface side of the substrate 31.
  • the substrate temperature within the film formation time is controlled by a predetermined temperature profile as necessary. It may be set so that a constant temperature is maintained from the start of film formation to the end of film formation. For example, the start of film formation may be set to be higher than the end of film formation.
  • the voltage application from the sputtering power source 13 to the cathode electrode 22 is stopped, and the sputtering gas is introduced into the vacuum chamber 11c (11) from the sputtering gas introduction unit 14. Stop the installation.
  • the current supply from the heating power supply 17 to the heat generating member 33 is stopped, the heat generating member 33 is cooled, and the substrate 31 is set to a temperature lower than the film forming temperature.
  • the temperature of the heat generating member 33 is lowered to 400 ° C. or lower and the temperature is maintained.
  • LNO has a larger thermal expansion coefficient than PZT. Therefore, during this cooling process, the dielectric layer 5 made of the PZT film formed on the seed layer 4 made of the LNO film is subjected to compressive stress. As a result, in this cooling process, the PZT film is preferentially oriented on the c-axis. Thus, by introducing the LNO film as the seed layer 4, the dielectric layer 5 is preferentially oriented in the c-axis.
  • the film-formed substrate 31 on which a multilayer film formed by sequentially stacking three layers (conductive layer, seed layer, dielectric layer) is formed is placed outside the vacuum chamber 11. Then, it is carried out from a carrying outlet (not shown).
  • a transfer robot (not shown) is suitable for the above-described substrate transfer, that is, transfer from outside to the vacuum chamber 11a (11), movement between the vacuum chambers, and transfer from the vacuum chamber 11c (11) to the outside. Used for.
  • the multilayer film 1 having the configuration shown in FIG. 1 is manufactured.
  • the dielectric layer 5 is preferentially oriented in the c-axis.
  • this multilayer film 1 has both high fatigue characteristics and high piezoelectric characteristics, for example, and has excellent characteristics.
  • Such a multilayer film 1 is suitably used for a piezoelectric element, for example.
  • a PZT film (dielectric layer) was formed by changing the presence or absence of the seed layer, and its characteristics were evaluated.
  • a multilayer film is formed by sequentially laminating a conductive layer made of a Pt film, a seed layer made of a LaNiO 3 film, and a dielectric layer made of a PZT film.
  • a silicon (Si) wafer having a diameter of 8 inches was used as the substrate.
  • a thermal oxide film (SiO 2 film), a Ti film (thickness 20 nm) functioning as an adhesion layer, and a Pt film (thickness 100 nm) functioning as a lower electrode layer are sequentially formed on one main surface of the Si wafer. A pre-layered one was used.
  • a flat plate type magnetron type sputtering apparatus (SME-200) having a configuration as shown in FIG. 2 was used.
  • a high frequency power source (frequency: 13.56 MHz) was used as the sputtering power source.
  • the deposition conditions for the seed layer made of the LaNiO 3 film were set as follows.
  • a LaNiO 3 target having a diameter of 300 mm and a thickness of 5 mm was used.
  • the sputtering power was 1.0 [kW]
  • the sputtering pressure was 0.4 [Pa]
  • the substrate temperature was 320 [° C.].
  • the film thickness of the seed layer was 100 [nm].
  • the conditions for forming the dielectric layer made of the PZT film were set as follows.
  • a PZT target having a diameter of 300 mm and a thickness of 5 mm was used as the target.
  • the sputtering power was 2.5 [kW]
  • the sputtering pressure was 0.5 [Pa]
  • the substrate temperature was 505 [° C.].
  • the film thickness of the dielectric layer was 2.0 [ ⁇ m].
  • Sample 1 The sample of Experimental Example 1 manufactured under the above-described conditions is referred to as Sample 1.
  • Example 2 In this example, a multilayer film was formed by forming a PZT film on the Pt thin film of the substrate without providing a seed layer.
  • the PZT film was formed with a substrate temperature condition of 585 [° C.].
  • Other film formation conditions of the dielectric layer made of the PZT film are the same as those in Experimental Example 1.
  • the sample of Experimental Example 2 manufactured under the conditions described above is referred to as Sample 2.
  • Example 3 A seed layer was not formed, and a PZT film was formed on a Pt thin film of a Si substrate at a substrate temperature of 585 [° C.], and then annealed under the conditions of “700 ° C., 15 minutes”. Other film formation conditions of the dielectric layer made of the PZT film are the same as those of the sample 1 described above.
  • the sample of Experimental Example 3 manufactured under the conditions described above is referred to as Sample 3.
  • FIG. 5 and 6 are X-ray charts showing crystal structures of the PZT films of Sample 1 (solid line) and Sample 2 (dotted line).
  • FIG. 5 shows a chart for the range of 20 to 50 degrees.
  • FIG. 6 shows a chart for the range of 96 to 100 degrees.
  • the PZT film is preferentially oriented in the a-axis (400) direction, whereas a LaNiO 3 film is formed as a seed layer.
  • Sample 1 having a PZT film formed thereon it can be seen that the PZT film is preferentially oriented in the c-axis (004) direction.
  • the PZT film is preferentially oriented in the c-axis by forming the PZT film on the seed layer made of the LaNiO 3 film. This is because the LaNiO 3 film has a larger thermal expansion coefficient than the PZT film.
  • the present inventors considered that the PZT film was oriented in the c-axis because the PZT film was subjected to compressive stress during the cooling process due to the magnitude relationship of the thermal expansion coefficient.
  • a dielectric layer preferentially oriented in the c-axis can be formed by using the LaNiO 3 film as a seed layer.
  • FIG. 7 is a graph showing the results of evaluating the piezoelectricity (piezoelectric coefficient) of the PZT films of Samples 1 to 3 produced in Experimental Examples 1 to 3.
  • FIG. 8 is a graph showing the results of evaluating the fatigue characteristics (standardized polarization characteristics vs cycle) of the PZT films of Sample 1 and Sample 2 produced in Experimental Example 1 and Experimental Example 2.
  • Example 4 a multilayer film formed by arranging a PZT film (dielectric layer) on a seed layer made of a LaNiO 3 film on a substrate was formed.
  • the seed layer formation conditions and the PZT film formation conditions are the same as those of Sample 1 described above.
  • the sample of Experimental Example 4 manufactured under the conditions described above is referred to as Sample 4.
  • Example 5 a multilayer film was formed in the same manner as in Experimental Example 1 except that the seed layer was changed from the LaNiO 3 film to the SrRuO 3 film.
  • the deposition conditions for the seed layer made of the SrRuO 3 film were set as follows. A SrRuO 3 target having a diameter of 300 mm and a thickness of 5 mm was used as the target. The sputtering power was 0.7 [kW], the sputtering pressure was 0.4 [Pa], and the substrate temperature was 500 to 800 [° C.]. The film thickness of the seed layer was 40 [nm].
  • Sample 5 The sample of Experimental Example 5 manufactured under the conditions described above is referred to as Sample 5.
  • Example 6 As a film forming condition of the SrRuO 3 film on the substrate, a film was formed under the condition of an (Ar / O 2 ) ratio that causes oxygen deficiency, and a PZT film (dielectric layer) was formed on the seed layer.
  • the other deposition conditions for the seed layer and the deposition conditions for the PZT film are the same as in Sample 1 described above.
  • the sample of Experimental Example 6 manufactured under the above-described conditions is referred to as Sample 6.
  • Example 7 The SrRuO 3 film was deposited on the substrate under oxygen-rich conditions, and a PZT film (dielectric layer) was formed on the seed layer.
  • the other deposition conditions for the seed layer and the deposition conditions for the PZT film are the same as in Sample 1 described above.
  • the sample of Experimental Example 7 manufactured under the conditions described above is referred to as Sample 7.
  • FIG. 9 is an X-ray chart showing the crystal structure of the PZT films of Sample 5 to Sample 7.
  • the solid line represents the case of sample 5
  • the two-dot chain line represents the case of sample 6
  • the dotted line represents the case of sample 7.
  • FIG. 10 is a graph showing the results of evaluating the fatigue characteristics (polarization vs cycle) of the PZT films of Sample 4 to Sample 7 produced in Experimental Example 4 to Experimental Example 7.
  • Table 1 shows the piezoelectricity (piezoelectric coefficient) and fatigue characteristics (cycle number) of the PZT films of Samples 4 to 7.
  • a PZT film preferentially oriented in the c-axis can be formed by using a LaNiO 3 film as a seed layer. And it became clear that the PZT film preferentially oriented in the c-axis has both high fatigue characteristics and high piezoelectric characteristics.
  • Example 8 The discharge method during sputtering was a direct current (DC) method, the applied power was 1 [kW], and the pressure was 0.4 [Pa] (Condition 1).
  • the LNO film formed under these conditions is designated as sample 8.
  • Example 9 The discharge method during sputtering was a radio frequency (RF) method, the applied power was 1 [kW], and the pressure was 0.4 [Pa] (Condition 2).
  • the LNO film formed under this condition 2 is designated as sample 9.
  • Example 10 The discharge method during sputtering was a DC method, the applied power was 0.5 [kW], and the pressure was 0.4 [Pa] (Condition 3). The LNO film formed under this condition 3 is set as sample 10.
  • Example 11 The discharge method during sputtering was a DC method, the applied power was 1.5 [kW], and the pressure was 0.4 [Pa] (Condition 4). The LNO film formed under this condition 4 is designated as sample 11.
  • Example 12 The discharge method during sputtering was a DC method, the applied power was 1 [kW], and the pressure was 0.2 [Pa] (Condition 5).
  • the LNO film formed under this condition 5 is designated as sample 12.
  • Example 13 The discharge method during sputtering was a DC method, the applied power was 1 [kW], and the pressure was 1.0 [Pa] (condition 6).
  • the LNO film formed under these conditions is referred to as sample 13.
  • the internal stress of the LNO films of Sample 8 to Sample 18 described above was examined.
  • the internal stress of the LNO film was measured by applying the change in the radius of curvature to the Stony formula. The results are shown in Table 2.
  • the applied power is indicated as “power”.
  • + (plus) sign indicates “tensile stress”
  • ⁇ (minus) sign indicates “compressive stress”.
  • the DC discharge method is preferably DC rather than RF.
  • C2 It is preferable that the applied power is large.
  • C3 The pressure during film formation is preferably a low pressure.
  • the present invention is widely applicable to multilayer films.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Physical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

 この多層膜は、シリコンからなる基板の一主面側に、白金(Pt)からなる導電層と、ランタン(La)とニッケル(Ni)と酸素(O)とを含むシード層と、誘電体層と、を少なくとも順に配してなり、前記誘電体層は、c軸方向に優先的に配向されている。

Description

多層膜及びその製造方法
 本発明は、優れた圧電特性を有する多層膜及びその製造方法に関する。
 本願は、2014年6月20日に日本国に出願された特願2014-127467号に基づき優先権を主張し、その内容をここに援用する。
 現在、チタン酸ジルコン酸鉛(Pb(Zr,Ti)O :PZT)等の強誘電体を用いた圧電素子は、インクジェットヘッドや加速度センサ等のMEMS(Micro Electro Mechanical Systems)技術に応用されている。中でも、PZT膜は注目されており、各機関において盛んに研究されている(特許文献1~3)。
 本発明者らは、PZT膜の耐電圧特性を改善すべく、種々の研究に取り組んでいる。特に、PZT膜の配向面に着目して、配向面の異なるPZT膜を作製し、配向面と圧電特性との関係を検討した(特許文献4)。
 図11は、(100)/(001)配向のPZT膜と、(111)配向のPZT膜の圧電特性を示すグラフである。図11より、(100)/(001)配向のPZT薄膜は、(111)配向のPZT薄膜よりも優れた圧電特性を示すことが知られている。
 しかしながら、従来の製造方法によれば、図12に示すようなX線チャートのPZT膜が得られ易い。図12は、Pt膜の上に形成したPZT膜の中央部(Center)と、外縁部(Edge)と、中央部と外縁部との間の中間部(Middle)との3箇所におけるX線チャートである。図12より、得られたPZT膜は、a軸(111)方向に優先配向していることが分かる。
 すなわち、従来は、c軸(001)方向に優先配向した誘電体膜を安定に形成することが困難であり、その製造方法の開発が期待されていた。
日本国特開2007-327106号公報 日本国特開2010-084180号公報 日本国特開2003-081694号公報 国際公開第2012/046705号
 本発明は、このような従来の実情に鑑みて考案されたものであり、優れた圧電特性を有する多層膜を提供することを第一の目的とする。
 また、本発明は、優れた圧電特性を有する多層膜の製造方法を提供することを第二の目的とする。
 本発明の第一の態様によれば、多層膜は、シリコンからなる基板の一主面側に、白金(Pt)からなる導電層と、ランタン(La)とニッケル(Ni)と酸素(O)とを含むシード層と、誘電体層と、を少なくとも順に配してなり、前記誘電体層は、c軸方向に優先的に配向されている。
 本発明の第二の態様によれば、前記第一の態様に係る多層膜において、前記誘電体層は、鉛(Pb)と、ジルコニア(Zr)と、チタン(Ti)と、酸素(O)とを含んでもよい。
 本発明の第三の態様によれば、前記第一の態様に係る多層膜において、前記誘電体層は、Pb(ZrTi1-x)O からなり、0.2≦x≦0.52であってもよい。
 本発明の第四の態様によれば、前記第一から前記第三の態様のうちのいずれか一態様に係る多層膜において、前記誘電体層の厚さが、0.1~5[μm]であってもよい。
 本発明の第五の態様によれば、多層膜の製造方法は、基板に導電層を形成し(工程A)、前記導電層を覆うようにシード層を形成し(工程B)、前記シード層を覆うように誘電体層を形成し(工程C)、前記誘電体層を成膜した後の冷却過程において、前記誘電体層に圧縮応力が加わるように温度制御する。
 上記各態様に係る多層膜は、シリコンからなる基板の一主面側に、白金(Pt)からなる導電層と、ランタン(La)とニッケル(Ni)と酸素(O)とを含むシード層と、誘電体層とが、少なくとも順に配されており、前記シード層上に配された誘電体膜はc軸に優先配向されている。これにより、優れた圧電特性を有する多層膜が得られる。
 また、上記各態様に係る多層膜の製造方法によれば、誘電体層を形成する工程が、成膜した後の冷却過程において、前記誘電体層に圧縮応力が加わるように温度制御することにより、c軸に優先配向した誘電体層を安定に形成することができる。これにより、優れた圧電特性を有する多層膜の製造方法を提供することができる。
本発明の一実施形態に係る多層膜の一構成例を示す断面図である。 成膜から冷却過程におけるPZTの結晶構造の変化を模式的に示す図である。 前記実施形態で用いる成膜装置の内部構成を模式的に示す図である。 前記実施形態に係る多層膜の製造工程を示す断面図である。 前記実施形態に係る多層膜の製造工程を示す断面図である。 前記実施形態に係る多層膜の製造工程を示す断面図である。 サンプル1とサンプル2とのPZT膜の結晶構造を示す回折ピークを示す図である。 サンプル1とサンプル2とのPZT膜の結晶構造を示す回折ピークを示す図である。 サンプル1~サンプル3のPZT膜の圧電性を示す図である。 サンプル1とサンプル2とのPZT膜の疲労特性を示す図である。 サンプル5~サンプル7のPZT膜について、結晶構造を示す回折ピークを示す図である。 サンプル5~サンプル7のPZT膜の疲労特性を示す図である。 (100)/(001)配向のPZT薄膜と、(111)配向のPZT薄膜の圧電特性を示すグラフである。 従来のPZT薄膜のX線回折パターンを示す図である。
 以下では、本発明の一実施形態に係る多層膜及びその製造方法について、図面に基づいて説明する。
 図1は、本実施形態に係る多層膜の一構成例を示す断面図である。
 この多層膜1は、シリコンからなる基板2の一主面側に、白金(Pt)からなる導電層3、ランタン(La)とニッケル(Ni)と酸素(O)を含むシード層4、誘電体層5が、少なくとも順に配されている。
 後述する製造方法を採用することにより、本実施形態の多層膜1を構成する誘電体層5は、c軸(001)方向に優先的に配向される。誘電体膜がc軸に優先配向されたことにより、優れた圧電特性を有する多層膜1が得られる。このような多層膜1は、例えば圧電素子等に好適に用いられる。
 シード層4としては、ランタン(La)とニッケル(Ni)と酸素(O)とを含む酸化物膜が挙げられる。このような酸化物として具体的には、例えばLaNiO (LNO)が用いられる。LNOは(002)面に自己配合性が高く、例えば300℃という低温で成膜可能である。また、LNOは、低抵抗率を有する。
 後述するように、シード層4としてLNOを用いることにより、誘電体層5を形成する際に、c軸に優先配向された膜を成膜することが可能である。誘電体層5をc軸に配向させるためには、シード層であるLNOが圧縮の応力を有していることが好ましい。
 誘電体層5は、特に限定されるものではないが、例えばチタン酸ジルコン酸鉛[Pb(ZrTi1-x)O :PZT]、PbTiO 、BaTiO 、PMM-PZT、PNN-PZT、PMN-PZT、PNN-PT、PLZT、PZTN、NBT、KNN等の強誘電体からなる。
 その中でも特に、誘電体層5としては、例えば鉛(Pb)、ジルコニア(Zr)、チタン(Ti)、酸素(O)を含む、チタン酸ジルコン酸鉛[Pb(ZrTi1-x)O :PZT]であることが好ましい。
 図2は、成膜から冷却過程におけるPZTの結晶構造の変化を模式的に示す図である。PZTは、その結晶構造が立方晶(Cubic)であるが[図2(a)]、高温(たとえばキュリー点以上の温度)で成膜した後、冷却過程において、正方晶(Tetra)へと変化する。このとき、通常の場合、PZT膜はa軸に配向するが[図2(b)]、冷却過程においてPZTに圧縮応力がかかっていると、PZTがc軸に配向する[図2(c)]。
 シード層4として、LNOを用いることにより、このシード層4上に誘電体層5としてPZT膜を形成する際に、c軸に優先配向したPZT膜を成膜することが可能である。これは、LaNiOが、PZTよりも大きな熱膨張係数を有するためと考えられる。すなわち、PZT膜の成膜後の冷却過程においてPZT膜が圧縮応力を受けるため、PZT膜がc軸に優先配向すると考えられる。
 ここで、PZTの組成をPb(ZrTi1-x)O と表したとき、0.2≦x≦0.52であることが好ましい。組成をこの範囲(0.2≦x≦0.52)とすることにより、PZTをC軸に優先配向させることができる。
 また、誘電体層5の厚さは、0.1~5[μm]であることが好ましい。誘電体層5の厚さが0.1[μm]よりも薄いと、十分に圧電特性を得られない。一方、誘電体層5の厚さが5[μm]よりも厚いと、スループットの観点から望ましくない。誘電体層5の厚さを0.1~5[μm]とすることより、量産可能なスループット、かつ、良好な圧電性を示すPZT膜を得ることができる。
 つぎに、本実施形態に係る多層膜の製造方法について説明する。
 なお、以下の説明では、誘電体層5としてチタン酸ジルコン酸鉛[Pb(ZrTi1-x)O :PZT]を用いた場合を例に挙げて説明するが、本発明はこれに限定されるものではない。
<成膜装置>
 以下では、本実施形態に係る多層膜の製造方法を実施するために好適な成膜装置の構造について説明する。
 図3は、成膜装置10の内部構成の一例を示す模式的な断面図である。
 成膜装置10は、真空槽11と、ターゲット21と、支持部(基板保持台)32と、温度制御部18と、スパッタ電源13と、スパッタガス導入部14と、第一の防着板34と、第二の防着板35とを備えている。ターゲット21は、真空槽11内に配置されている。支持部32は、ターゲット21と対面する位置に配置され、基板31(基板2)を保持する。温度制御部18は、支持部32に保持された基板31を加熱/冷却して基板温度を調整する。スパッタ電源13は、ターゲット21に電圧を印加する。スパッタガス導入部14は、真空槽11内にスパッタガスを導入する。第一の防着板34および第二の防着板35は、真空槽11内で、ターゲット21から放出された粒子が付着する位置に配置されている。
 真空槽11の上部壁面には、カソード電極22が絶縁部材28を介して配置されており、カソード電極22と真空槽11とは電気的に絶縁されている。真空槽11は接地電位とされている。
 カソード電極22の一面側は局部的に真空槽11内に露出されている。ターゲット21はカソード電極22の一面側のうち露出された領域の中央部に密着して固定され、ターゲット21とカソード電極22とは電気的に接続されている。
 スパッタ電源13は真空槽11の外側に配置されている。スパッタ電源13は、カソード電極22と電気的に接続され、カソード電極22を介してターゲット21に交流電圧を印加可能とされている。
 カソード電極22のターゲット21とは反対側、すなわちカソード電極22の他面側には磁石装置29が配置されている。磁石装置29はターゲット21の表面に磁力線を形成するように構成されている。
 基板31を載置する支持部32は、たとえば炭化ケイ素(SiC)から成る。支持部32の外周は基板31の外周よりも大きく形成されている。支持部32の表面はターゲット21の表面と対向するように配されている。支持部32には基板31を静電吸着する手段が内在されている。
 支持部32の表面の中央部に基板31を静電吸着させると、基板31の裏面は支持部32の表面の中央部に密着され、基板31は支持部32と熱的に接続されている。
 第一の防着板34は、石英、アルミナ等のセラミックスである。第一の防着板34は、第一の防着板34の内周が基板31の外周よりも大きい環状に形成され、支持部32の表面の中央部の外側である外縁部を覆うように配置されている。これにより、ターゲット21から放出された粒子は支持部32の表面の外縁部に対する付着が防止される。
 第一の防着板34の裏面は支持部32の表面の外縁部に密着され、第一の防着板34は支持部32と熱的に接続されている。
 支持部32の表面の中央部に基板31を載置した際に、第一の防着板34は基板31の外周より外側を取り囲むように配されている。
 第二の防着板35は、石英、アルミナ等のセラミックスである。第二の防着板35は、第二の防着板35の内周がターゲット21の外周や基板31の外周よりも大きい筒状に形成されている。第二の防着板35は、支持部32とカソード電極22との間に配置され、基板31とターゲット21との間の空間の側方を取り囲むように構成されている。これにより、ターゲット21から放出された粒子は真空槽11の壁面に対する付着が防止される。
 温度制御部18は、発熱部材33と加熱用電源17とを有している。
 発熱部材33としては例えばSiCが用いられる。発熱部材33は、支持部32を挟んで基板31とは反対側の位置に配されている。加熱用電源17は発熱部材33と電気的に接続されている。加熱用電源17から発熱部材33に直流電流が供給されると、発熱部材33が発する熱が、支持部32を通して、支持部32上の基板31と第一の防着板34とへ伝わることにより、基板31と第一の防着板34とが一緒に加熱される。
 基板31の裏面は支持部32の表面の中央部に密着されており、基板31の中央部から外縁部まで均等に伝熱される。
 発熱部材33の支持部32とは反対側には冷却部38が配置されている。冷却部38は内部に温度管理された冷却媒体を循環できるように構成され、発熱部材33が発熱しても真空槽11の壁面の加熱を防止する。
 スパッタガス導入部14は真空槽11内に接続され、真空槽11内にスパッタガスを導入できるように構成されている。
<多層膜の成膜方法>
 以下では、多層膜の成膜方法について説明する。
 図3は、多層膜の作製に用いた成膜装置の内部構成を模式的に示す図である。図4Aから図4Cは、本実施形態に係る多層膜の製造工程を示す断面図である。
 図3には、説明を簡略とするため、成膜装置10が1つの真空槽11を有する場合を例示したが、以下の工程A~Cの製造方法では、少なくとも3つの真空槽11a、11b、11c(11)が、図3で言うと紙面奥行き方向に、不図示の仕切りバルブを介して連通して成る構成の成膜装置を使用した場合を前提として説明する。ここで、真空槽11a(11)は導電層形成用の真空槽である。真空槽11b(11)はシード層形成用の真空槽である。真空槽11c(11)は誘電体層形成用の真空槽である。以下では、真空槽のみ符号を区別し、各真空槽に付随する構成の符号は区別せず説明する。
 (工程A):導電層の形成
 本工程Aでは、図4Aに示すように、シリコン(Si)からなる基板2の一主面側に、白金(Pt)からなる導電層3を形成する。以下では、基板の一主面に直接、導電層を形成するものとして説明するが、必要に応じて、基板2の一主面に対して、導電層の形成前に、他の被膜を設ける構成としても構わない。
 ターゲット21a(21)として、Ptからなるターゲットが設置された真空槽11a(11)の内部空間を、真空排気装置15により減圧する。これにより、真空槽11a(11)の内部空間が、成膜時の圧力雰囲気よりも高真空排気された状態とする。以後、真空排気を継続して真空槽11内の真空雰囲気を維持する。
 真空槽11内の真空雰囲気を維持しながら、真空槽11a(11)の内部空間に成膜すべき基板31を、不図示の搬入口を通して搬入する。そして、基板31の一主面がターゲット21のスパッタ面と対向するように、支持部32の中央部に基板31を保持する。
 冷却部38に温度管理された冷却媒体を循環させておく。
 次いで、導電層成膜工程として、基板31を成膜温度に保持しながら、スパッタガス導入部14から真空槽11内にスパッタガスとしてArガスを導入し、スパッタ電源13からカソード電極22に交流電圧を印加することにより、Ptターゲットをスパッタする。これにより、基板31の一主面側にPt導電層3が形成される。
(工程B):シード層の形成
 本工程Bでは、図4Bに示すように、前記導電層3を覆うようにシード層4を形成する。シード層4として、ランタン(La)とニッケル(Ni)と酸素(O)とを含む酸化物を形成する。
 ターゲット21として、LaとNiとOとを含む酸化物からなるLNOターゲットが設置された真空槽11b(11)の内部空間を、予め真空排気装置15により減圧して、成膜時の圧力雰囲気よりも高真空排気された真空雰囲気の状態としておく。
 真空槽11b(11)の真空雰囲気を維持しながら、Pt導電層3が予め設けてある基板31を、真空槽11a(11)から真空槽11b(11)の内部空間へ搬入する。そして、基板31の一主面側、すなわちPt導電層3が、LNOターゲット21のスパッタ面と対向するように、支持部32の表面の中央部に基板31を保持させる。
 次いで、基板31を成膜温度に保持しながら、スパッタガス導入部14から真空槽11b(11)内に、スパッタガスとしてArガスと酸素ガスとを導入し、スパッタ電源13からカソード電極22に交流電圧を印加することにより、LNOターゲットをスパッタする。これにより、基板31の一主面側にあるPt導電層3の上に、LNOからなるシード層4が形成される。
 なお、シード層4を形成する場合、成膜時間内における基板温度は、必要に応じて所定の温度プロファイルにより制御される。成膜開始から成膜終了まで一定温度を維持するように設定しても良い。たとえば成膜開始が成膜終了より高温となるように設定しても構わない。
 (工程C):誘電体層の形成
 本工程Cでは、図4Cに示すように、前記シード層4を覆うように誘電体層5を形成する。誘電体層5として、PZT膜を、スパッタ法により形成する。
 ターゲット21として、PZTターゲットが設置された真空槽11c(11)の内部空間を、真空排気装置15により減圧して、成膜時の圧力雰囲気よりも高真空排気された真空雰囲気の状態とする。
 真空槽11c(11)の真空雰囲気を維持しながら、Pt導電層3とシード層4とが予め設けてある基板31を、真空槽11b(11)から真空槽11c(11)の内部空間へ搬入する。そして、基板31の一主面側、すなわちシード層4が、PZTターゲット21のスパッタ面と対向するように、支持部32の表面の中央部に基板31を保持させる。
 次いで、基板31を成膜温度に保持しながら、スパッタガス導入部14から真空槽11b(11)内に、スパッタガスとしてArガスと酸素ガスとを導入し、スパッタ電源13からカソード電極22に交流電圧を印加することにより、PZTターゲットをスパッタする。これにより、基板31の一主面側にあるシード層4の上に、ペロブスカイト構造を有するPZT膜からなる誘電体層5が形成される。
 なお、誘電体層5を形成する場合、成膜時間内における基板温度は、必要に応じて所定の温度プロファイルにより制御される。成膜開始から成膜終了まで一定温度を維持するように設定しても良い。たとえば成膜開始が成膜終了より高温となるように設定しても構わない。
 基板31上に所定の膜厚のPZT薄膜を成膜した後、スパッタ電源13からカソード電極22への電圧印加を停止し、スパッタガス導入部14から真空槽11c(11)内へのスパッタガスの導入を停止する。
 加熱用電源17から発熱部材33への電流の供給を停止して、発熱部材33を冷却し、基板31を成膜温度よりも低い温度にする。たとえば、真空槽11c(11)内において、発熱部材33を400℃以下まで降温させ、その温度を保持させる。
 ここで、LNOは、PZTよりも大きな熱膨張係数を有する。このため、この冷却過程において、LNO膜からなるシード層4上に形成された、PZT膜からなる誘電体層5は、圧縮応力を受ける。その結果、この冷却過程において、PZT膜がc軸に優先配向する。このように、シード層4としてLNO膜を導入することにより、誘電体層5は、c軸に優先配向される。
 真空槽11内の真空雰囲気を維持しながら、3層(導電層、シード層、誘電体層)を順に積層して成る多層膜が形成された、成膜済みの基板31を真空槽11の外側に、不図示の搬出口から外部へ搬出する。
 なお、上述した基板の搬送、すなわち、外部から真空槽11a(11)への搬入、各真空槽間の移動、真空槽11c(11)から外部への搬出には、不図示の搬送ロボットが好適に用いられる。
 以上のようにして、図1に示した構成の多層膜1が製造される。この多層膜1では、誘電体層5は、c軸に優先配向される。これにより、この多層膜1は、例えば高い疲労特性と高い圧電特性との両方を兼ね備え、優れた特性を有する。このような多層膜1は、例えば圧電素子等に好適に用いられる。
<実験例>
 以下では、上述した本発明の効果を確認するために行った実験例について説明する。
 シード層の有無を変えてPZT膜(誘電体層)を成膜し、その特性について評価した。
(実験例1)
 本例では、Pt膜からなる導電層、LaNiO 膜からなるシード層、PZT膜からなる誘電体層を順に積層して成る多層膜を形成した。
 基板としては、直径8インチのシリコン(Si)ウェハを用いた。ここでは、Siウェハの一主面に、熱酸化膜(SiO 膜)、密着層として機能するTi膜(厚さ20nm)、及び、下部電極層として機能するPt膜(厚さ100nm)が順に、予め積層されたものを使用した。
 スパッタ装置としては、図2に示したような構成の、平板型マグネトロン方式のスパッタ装置(SME-200)を用いた。スパッタ電源としては、高周波電源(周波数:13.56MHz)を用いた。
 LaNiO 膜からなるシード層の成膜条件は、次のように設定した。
 ターゲットには、300mm径、厚さ5mmのLaNiO ターゲットを用いた。
 スパッタパワーは1.0[kW]、スパッタ圧は0.4[Pa]、基板温度は320[℃]とした。
 シード層の膜厚は、100[nm]とした。
 PZT膜からなる誘電体層の成膜条件は、次のように設定した。
 ターゲットには、300mm径、厚さ5mmのPZTターゲットを用いた。
 スパッタパワーは2.5[kW]、スパッタ圧は0.5[Pa]、基板温度は505[℃]とした。
 誘電体層の膜厚は、2.0[μm]とした。
 上述した条件により作製した実験例1の試料を、サンプル1と呼ぶ。
(実験例2)
 本例では、シード層を設けることなく、基板のPt薄膜上にPZT膜を成膜することにより多層膜を形成した。PZT膜は、基板温度の条件を585[℃]として形成した。
 PZT膜からなる誘電体層の他の成膜条件は、実験例1と同様である。
 上述した条件により作製した実験例2の試料を、サンプル2と呼ぶ。
(実験例3)
 シード層を形成せず、Si基板のPt薄膜上に、基板温度を585[℃]としてPZT膜を形成した後、「700℃、15分間」の条件でアニール処理を施した。
 PZT膜からなる誘電体層の他の成膜条件は、上述したサンプル1と同様である。
 上述した条件により作製した実験例3の試料を、サンプル3と呼ぶ。
 実験例1、実験例2において作製した、サンプル1、サンプル2のPZT膜について、その結晶構造をX線回折法を用いて解析した。
 図5及び図6は、サンプル1(実線)とサンプル2(点線)のPZT膜について、結晶構造を示すX線チャートである。図5は、20~50[度]の範囲についてのチャートを示している。図6は、96~100[度]の範囲についてのチャートを示している。
 図6より、Pt基板上にPZT膜を成膜したサンプル2では、PZT膜はa軸(400)方向に優先配向しているのに対し、シード層としてLaNiO 膜を形成し、このシード層上にPZT膜を成膜したサンプル1では、PZT膜はc軸(004)方向に優先配向しているのがわかる。
 以上の結果より、LaNiO 膜からなるシード層の上に、PZT膜を成膜することにより、PZT膜はc軸に優先配向される。これは、LaNiO 膜がPZT膜よりも大きな熱膨張係数を有することに起因する。この熱膨張係数の大小関係により、冷却過程においてPZT膜が圧縮応力を受けるので、PZT膜がc軸に配向したものと本発明者らは考察した。
 これにより、LaNiO 膜をシード層として用いることによって、c軸に優先配向した誘電体層を形成可能であることが確認された。
 また実験例1~実験例3において作製した、サンプル1~サンプル3のPZT膜について、圧電性および疲労特性について調べた。圧電性は、レーザードップラー変位計により求めた。また、疲労特性は、0~+30[V]、100kHzのサイクルを繰り返し、Hysteresis測定の最大分極値により評価した。
 図7は、実験例1~実験例3において作製した、サンプル1~サンプル3のPZT膜について、圧電性(圧電係数)を評価した結果を示すグラフである。
 図8は、実験例1、実験例2において作製した、サンプル1、サンプル2のPZT膜について、疲労特性(規格化された分極特性vsサイクル)を評価した結果を示すグラフである。
 図7および図8より、以下の点が明らかとなった。
 図7より、圧電係数は、サンプル1(17.1)とサンプル3(17.2)が同等に高く、これらに比べてサンプル2(14.7)は劣ることが分かった。
 図8より、サンプル2では、サイクルが「2×10+7」を超えたあたりから分極特性が低下する傾向を示し、「2×10+8」以降は急激に低下した。ゆえに、疲労特性は「2×10+7」サイクルと判断した。これに対して、サンプル1では、「1×10+11」以上のサイクルを経ても、分極特性は低下することが無かった。ゆえに、サンプル1は、サンプル2に比べて1000倍を超える長寿命の疲労特性を有することが分かった。
 以上の結果より、LaNiO 膜からなるシード層の上に、PZT膜を成膜することにより、優れた圧電性と疲労特性とを兼ね備えた多層膜が得られることが確認された。
 以下では、シード層を構成する膜の材料を変更した場合の、PZT膜の圧電性および疲労特性について評価した結果について述べる。
 これらの評価を行うために、後述する3つのサンプル4~7を作製した。
(実験例4)
 本例では、基板上にLaNiO 膜からなるシード層上に、PZT膜(誘電体層)を配してなる多層膜を形成した。
 シード層の成膜条件とPZT膜の成膜条件は、上述したサンプル1と同様である。
 上述した条件により作製した実験例4の試料を、サンプル4と呼ぶ。
(実験例5)
 本例では、シード層をLaNiO 膜からSrRuO 膜に変更した以外は、実験例1と同様にして多層膜を形成した。
 SrRuO 膜からなるシード層の成膜条件は、次のように設定した。
 ターゲットには、300mm径、厚さ5mmのSrRuO ターゲットを用いた。スパッタパワーは0.7[kW]、スパッタ圧は0.4[Pa]、基板温度は500~800[℃]とした。
 シード層の膜厚は、40[nm]とした。
 上述した条件により作製した実験例5の試料を、サンプル5と呼ぶ。
(実験例6)
 基板上にSrRuO 膜の成膜条件として、酸素欠損となる(Ar/O )比の条件で成膜し、このシード層上に、PZT膜(誘電体層)を形成した。
 シード層の他の成膜条件とPZT膜の成膜条件は、上述したサンプル1と同様である。
 上述した条件により作製した実験例6の試料を、サンプル6と呼ぶ。
(実験例7)
 基板上にSrRuO 膜の成膜条件として、酸素リッチの条件で成膜し、このシード層上に、PZT膜(誘電体層)を形成した。
 シード層の他の成膜条件とPZT膜の成膜条件は、上述したサンプル1と同様である。
 上述した条件により作製した実験例7の試料を、サンプル7と呼ぶ。
 実験例4~実験例7において作製した、サンプル4~サンプル7のPZT膜について、その結晶構造をX線回折法を用いて解析した。
 図9は、サンプル5~サンプル7のPZT膜について、結晶構造を示すX線チャートである。図9において、実線はサンプル5の場合を、二点鎖線はサンプル6の場合を、点線はサンプル7の場合を、それぞれ表している。
 図6および図9から、以下の点が明らかとなった。
(A1)シード層としてSrRuO 膜を用いた場合、その上に形成されたPZT膜は、サンプル5ではa軸(100)方向、サンプル6では(110)方向、サンプル7では(111)方向に優先配向している。
(A2)これに対し、LaNiO 膜をシード層として用いた場合(サンプル4)にのみ、その上に形成されたPZT膜は、c軸に優先配向している。
 これにより、LaNiO 膜をシード層として用いることによって、c軸に優先配向した誘電体層を形成可能であることが確認された。
 また実験例4~実験例7において作製した、サンプル4~サンプル7のPZT膜について、圧電性および疲労特性について調べた。圧電性は、I-V測定により求めた。また、疲労特性は、0~+30[V]、100kHzのサイクルを繰り返し、Hysteresis測定の最大分極値により評価した。
 図10は、実験例4~実験例7において作製した、サンプル4~サンプル7のPZT膜について、疲労特性(分極vsサイクル)を評価した結果を示すグラフである。
 また、サンプル4~サンプル7のPZT膜について、圧電性(圧電係数)と疲労特性(サイクル数)とを表1に示す。
Figure JPOXMLDOC01-appb-T000001
 図10および表1より、以下の点が明らかとなった。
(B1)圧電係数は、サンプル4(17.1)が最も高く、これに比べてサンプル1(14.7)、サンプル2(12.5)、サンプル3(7.8)は劣っている。
(B2)疲労特性は、サンプル5(1×10サイクル)、サンプル6(1×10サイクル)は劣っている。サンプル7では、4×10サイクル以上の疲労特性を有しているが、圧電係数は低い。これに対し、サンプル4では、1×1011以上のサイクルを経てもなお高い極性を維持している。
(B3)90°ドメインの回転を伴わないPZT(111)配向膜(サンプル7)では、疲労性能が改善する反面、圧電性が低下する。サンプル4は、c軸配向であり90°ドメインを伴わないため、疲労特性が向上する。
 以上の結果より、本発明では、圧電性に優れるとともに、極めて高い耐圧性も兼ね備えた多層膜が得られることが確認された。
 特に、LaNiO 膜をシード層として用いることによって、c軸に優先配向されたPZT膜を成膜できることが確認された。そして、c軸に優先配向したPZT膜が、高い疲労特性と高い圧電特性との両方を兼ね備えることが明らかとなった。
 また、LaNiO 膜をスパッタ法により形成する場合の成膜条件と圧縮応力との関係についても評価した。以下では、その結果について述べる。これらの評価を行うために、後述する6つのサンプル8~13を作製した。
 (実験例8)
 スパッタ時の放電方式は直流(DC)方式とし、印加パワーは1[kW]、圧力は0.4[Pa]とした(条件1)。この条件で成膜されたLNO膜をサンプル8とする。
 (実験例9)
 スパッタ時の放電方式は高周波(RF)方式とし、印加パワーは1[kW]、圧力は0.4[Pa]とした(条件2)。この条件2で成膜されたLNO膜をサンプル9とする。
 (実験例10)
 スパッタ時の放電方式はDC方式とし、印加パワーは0.5[kW]、圧力は0.4[Pa]とした(条件3)。この条件3で成膜されたLNO膜をサンプル10とする。
 (実験例11)
 スパッタ時の放電方式はDC方式とし、印加パワーは1.5[kW]、圧力は0.4[Pa]とした(条件4)。この条件4で成膜されたLNO膜をサンプル11とする。
 (実験例12)
 スパッタ時の放電方式はDC方式とし、印加パワーは1[kW]、圧力は0.2[Pa]とした(条件5)。この条件5で成膜されたLNO膜をサンプル12とする。
 (実験例13)
 スパッタ時の放電方式はDC方式とし、印加パワーは1[kW]、圧力は1.0[Pa]とした(条件6)。この条件で成膜されたLNO膜をサンプル13とする。
 上述したサンプル8~サンプル18のLNO膜の内部応力を調べた。LNO膜の内部応力は、曲率半径の変化をストーニーの公式に当てはめ測定した。その結果を表2に示す。なお、表2では、印加パワーを「パワー」と表示している。表2の内部応力欄において、+(プラス)の符号は「引張応力」を、-(マイナス)の符号は「圧縮応力」を各々示している。
Figure JPOXMLDOC01-appb-T000002
 表2より、以下の点が明らかとなった。
(C1)スパッタの放電方式は、RFよりもDCが好ましい。
(C2)印加パワーは大きいほうが好ましい。
(C3)成膜する際の圧力は低圧であることが好ましい。
 以上、本発明の好ましい実施形態について説明してきたが、本発明はこれに限定されるものではない。本発明の趣旨を逸脱しない範囲で、適宜変更が可能である。
 本発明は、多層膜に広く適用可能である。
 1 多層膜
 2 基板
 3 導電層
 4 シード層
 5 誘電体層
 10 成膜装置
 11 真空槽
 13 スパッタ電源
 14 スパッタガス導入部
 18 温度制御部
 21 ターゲット
 31 基板
 32 支持部
 34 防着板(第一の防着板)

Claims (5)

  1.  シリコンからなる基板の一主面側に、白金(Pt)からなる導電層と、ランタン(La)とニッケル(Ni)と酸素(O)とを含むシード層と、誘電体層と、を少なくとも順に配してなる多層膜であって、
     前記誘電体層は、c軸方向に優先的に配向されている
     多層膜。
  2.  前記誘電体層は、鉛(Pb)と、ジルコニア(Zr)と、チタン(Ti)と、酸素(O)とを含む
     請求項1に記載の多層膜。
  3.  前記誘電体層は、Pb(ZrTi1-x)O からなり、0.2≦x≦0.52である
     請求項1に記載の多層膜。
  4.  前記誘電体層の厚さは、0.1~5[μm]である
     請求項1乃至3のいずれか一項に記載の多層膜。
  5.  基板に導電層を形成し、
     前記導電層を覆うようにシード層を形成し、
     前記シード層を覆うように誘電体層を形成し、
     前記誘電体層を成膜した後の冷却過程において、前記誘電体層に圧縮応力が加わるように温度制御する
     多層膜の製造方法。
PCT/JP2015/066882 2014-06-20 2015-06-11 多層膜及びその製造方法 WO2015194452A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020167034612A KR101971771B1 (ko) 2014-06-20 2015-06-11 다층막 및 다층막의 제조 방법
EP15810178.2A EP3159949A4 (en) 2014-06-20 2015-06-11 Multilayer film and method for producing same
JP2016529292A JP6367331B2 (ja) 2014-06-20 2015-06-11 多層膜及びその製造方法
US15/319,617 US9985196B2 (en) 2014-06-20 2015-06-11 Multi-layered film and method of manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014127467 2014-06-20
JP2014-127467 2014-06-20

Publications (1)

Publication Number Publication Date
WO2015194452A1 true WO2015194452A1 (ja) 2015-12-23

Family

ID=54935439

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/066882 WO2015194452A1 (ja) 2014-06-20 2015-06-11 多層膜及びその製造方法

Country Status (5)

Country Link
US (1) US9985196B2 (ja)
EP (1) EP3159949A4 (ja)
JP (1) JP6367331B2 (ja)
KR (1) KR101971771B1 (ja)
WO (1) WO2015194452A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019052348A (ja) * 2017-09-14 2019-04-04 株式会社アルバック Pzt薄膜積層体の製造方法
JP2019160964A (ja) * 2018-03-12 2019-09-19 株式会社アルバック 多層膜の成膜方法及び成膜装置
JP2020012159A (ja) * 2018-07-18 2020-01-23 株式会社アルバック Pzt素子、pzt素子製造方法
WO2020054779A1 (ja) * 2018-09-12 2020-03-19 Tdk株式会社 誘電性薄膜、誘電性薄膜素子、圧電アクチュエータ、圧電センサ、ヘッドアセンブリ、ヘッドスタックアセンブリ、ハードディスクドライブ、プリンタヘッド、及びインクジェットプリンタ装置
JP7464360B2 (ja) 2019-07-04 2024-04-09 住友化学株式会社 圧電積層体、圧電素子および圧電積層体の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7362339B2 (ja) * 2019-08-02 2023-10-17 住友化学株式会社 圧電積層体、圧電素子、および圧電積層体の製造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008251916A (ja) * 2007-03-30 2008-10-16 Matsushita Electric Ind Co Ltd 圧電体素子及びその製造方法
JP2012169400A (ja) * 2011-02-14 2012-09-06 Panasonic Corp 強誘電体膜の製造方法とそれを用いた強誘電体素子

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3127245B1 (ja) * 1999-09-03 2001-01-22 工業技術院長 多層型電子材料、その製造方法、それを用いたセンサー及び記憶デバイス
JP4662112B2 (ja) 2001-09-05 2011-03-30 独立行政法人産業技術総合研究所 強誘電体薄膜及びその製造方法
TW512463B (en) * 2001-09-28 2002-12-01 Macronix Int Co Ltd Method for epitaxial growth of lead zirconate titanate film
JP2006100622A (ja) * 2004-09-30 2006-04-13 Canon Inc ユニモルフ型圧電膜素子、液体吐出ヘッド、およびユニモルフ型圧電膜素子の製造方法
JP4793568B2 (ja) * 2005-07-08 2011-10-12 セイコーエプソン株式会社 アクチュエータ装置、液体噴射ヘッド及び液体噴射装置
US7521845B2 (en) * 2005-08-23 2009-04-21 Canon Kabushiki Kaisha Piezoelectric substance, piezoelectric element, liquid discharge head using piezoelectric element, and liquid discharge apparatus
JP5274753B2 (ja) 2006-06-08 2013-08-28 株式会社アルバック 含Pb結晶薄膜の形成方法
JP2008042069A (ja) * 2006-08-09 2008-02-21 Matsushita Electric Ind Co Ltd 圧電体素子とその製造方法
US8183594B2 (en) * 2007-03-15 2012-05-22 National University Corporation Toyohashi University Of Technology Laminar structure on a semiconductor substrate
WO2009157189A1 (ja) * 2008-06-27 2009-12-30 パナソニック株式会社 圧電体素子とその製造方法
JP5280789B2 (ja) 2008-09-30 2013-09-04 富士フイルム株式会社 鉛含有ペロブスカイト型酸化物膜およびその作製方法、鉛含有ペロブスカイト型酸化物膜を用いる圧電素子、ならびにこれを用いる液体吐出装置
CN102113145B (zh) * 2009-01-20 2013-06-05 松下电器产业株式会社 压电体薄膜及其制造方法、喷墨头、使用喷墨头形成图像的方法、角速度传感器、使用角速度传感器测定角速度的方法、压电发电元件以及使用了压电发电元件的发电方法
JP5471612B2 (ja) * 2009-06-22 2014-04-16 日立金属株式会社 圧電性薄膜素子の製造方法及び圧電薄膜デバイスの製造方法
JP5509419B2 (ja) * 2009-07-24 2014-06-04 株式会社ユーテック 強誘電体膜、電子部品及び強誘電体膜の製造方法
WO2012046705A1 (ja) 2010-10-06 2012-04-12 株式会社アルバック 誘電体成膜装置及び誘電体成膜方法
WO2012144185A1 (ja) * 2011-04-21 2012-10-26 パナソニック株式会社 誘電体素子用基材とその製造方法、並びにこの誘電体素子用基材を用いた圧電体素子
JP5613910B2 (ja) * 2011-05-17 2014-10-29 三菱マテリアル株式会社 Pzt強誘電体薄膜の製造方法
JP5556966B2 (ja) 2011-08-08 2014-07-23 パナソニック株式会社 圧電体素子
JP5794114B2 (ja) 2011-11-07 2015-10-14 コニカミノルタ株式会社 圧電素子およびその製造方法と、超音波送受信プローブ
JP2013102024A (ja) 2011-11-08 2013-05-23 Konica Minolta Holdings Inc 圧電素子およびその製造方法
JP5835460B2 (ja) * 2012-03-06 2015-12-24 コニカミノルタ株式会社 圧電薄膜、圧電素子、インクジェットヘッド、インクジェットプリンタおよび圧電薄膜の製造方法
EP2889927B1 (en) 2012-08-10 2019-04-17 Konica Minolta, Inc. Piezoelectric element, piezoelectric device, ink-jet head, and ink-jet printer
JP2014116443A (ja) * 2012-12-10 2014-06-26 Panasonic Corp 圧電体素子および圧電体素子の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008251916A (ja) * 2007-03-30 2008-10-16 Matsushita Electric Ind Co Ltd 圧電体素子及びその製造方法
JP2012169400A (ja) * 2011-02-14 2012-09-06 Panasonic Corp 強誘電体膜の製造方法とそれを用いた強誘電体素子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3159949A4 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019052348A (ja) * 2017-09-14 2019-04-04 株式会社アルバック Pzt薄膜積層体の製造方法
JP6992239B2 (ja) 2017-09-14 2022-01-13 株式会社アルバック 車載用pzt薄膜積層体の製造方法
JP2019160964A (ja) * 2018-03-12 2019-09-19 株式会社アルバック 多層膜の成膜方法及び成膜装置
JP2020012159A (ja) * 2018-07-18 2020-01-23 株式会社アルバック Pzt素子、pzt素子製造方法
JP7194528B2 (ja) 2018-07-18 2022-12-22 株式会社アルバック Pzt素子、pzt素子製造方法
WO2020054779A1 (ja) * 2018-09-12 2020-03-19 Tdk株式会社 誘電性薄膜、誘電性薄膜素子、圧電アクチュエータ、圧電センサ、ヘッドアセンブリ、ヘッドスタックアセンブリ、ハードディスクドライブ、プリンタヘッド、及びインクジェットプリンタ装置
CN112640137A (zh) * 2018-09-12 2021-04-09 Tdk株式会社 介电薄膜、介电薄膜元件、压电致动器、压电传感器、磁头组件、磁头悬臂组件、硬盘驱动器、打印头和喷墨打印装置
JPWO2020054779A1 (ja) * 2018-09-12 2021-09-30 Tdk株式会社 誘電性薄膜、誘電性薄膜素子、圧電アクチュエータ、圧電センサ、ヘッドアセンブリ、ヘッドスタックアセンブリ、ハードディスクドライブ、プリンタヘッド、及びインクジェットプリンタ装置
CN112640137B (zh) * 2018-09-12 2024-03-12 Tdk株式会社 介电薄膜、介电薄膜元件、压电致动器、和压电传感器
JP7515113B2 (ja) 2018-09-12 2024-07-12 Tdk株式会社 誘電性薄膜、誘電性薄膜素子、圧電アクチュエータ、圧電センサ、ヘッドアセンブリ、ヘッドスタックアセンブリ、ハードディスクドライブ、プリンタヘッド、及びインクジェットプリンタ装置
JP7464360B2 (ja) 2019-07-04 2024-04-09 住友化学株式会社 圧電積層体、圧電素子および圧電積層体の製造方法

Also Published As

Publication number Publication date
US9985196B2 (en) 2018-05-29
EP3159949A4 (en) 2018-01-10
KR101971771B1 (ko) 2019-04-23
JP6367331B2 (ja) 2018-08-01
US20170148975A1 (en) 2017-05-25
EP3159949A1 (en) 2017-04-26
JPWO2015194452A1 (ja) 2017-04-20
KR20170003986A (ko) 2017-01-10

Similar Documents

Publication Publication Date Title
JP6367331B2 (ja) 多層膜及びその製造方法
WO2015194458A1 (ja) 多層膜の製造方法および多層膜
TWI791546B (zh) 膜構造體及其製造方法
WO2015137198A1 (ja) 多層膜の製造方法および多層膜
JP5790759B2 (ja) 強誘電体薄膜およびその製造方法
US20130200748A1 (en) PIEZOELECTRIC ACTUATOR INCLUDING Ti/TiOx ADHESIVE LAYER AND ITS MANUFACTURING METHOD
US9705070B2 (en) Ferroelectric thin film, method of manufacturing same and method of manufacturing piezoelectric element
JP6410370B2 (ja) 多層膜並びにその製造方法及びその製造装置
JP7143127B2 (ja) 多層構造体並びにその製造方法及びその製造装置
TWI760346B (zh) 成膜裝置
JP7329354B2 (ja) 多層構造体の製造方法及びその製造装置
JP2019160964A (ja) 多層膜の成膜方法及び成膜装置
Ortner et al. Influence of bias voltage on the structure of lead zirconate titanate piezoelectric films prepared by gas flow sputtering
WO2011062050A1 (ja) 圧電体薄膜の製造方法、圧電体薄膜及び圧電体素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15810178

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016529292

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167034612

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15319617

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015810178

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015810178

Country of ref document: EP