WO2015190110A1 - 2軸配向ポリエステルフィルムのヒートシール性付与方法、及び包装容器の製造方法 - Google Patents

2軸配向ポリエステルフィルムのヒートシール性付与方法、及び包装容器の製造方法 Download PDF

Info

Publication number
WO2015190110A1
WO2015190110A1 PCT/JP2015/002944 JP2015002944W WO2015190110A1 WO 2015190110 A1 WO2015190110 A1 WO 2015190110A1 JP 2015002944 W JP2015002944 W JP 2015002944W WO 2015190110 A1 WO2015190110 A1 WO 2015190110A1
Authority
WO
WIPO (PCT)
Prior art keywords
biaxially oriented
oriented polyester
film
heat
layer
Prior art date
Application number
PCT/JP2015/002944
Other languages
English (en)
French (fr)
Inventor
佐々木 規行
矢島 俊輔
Original Assignee
凸版印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2014121672A external-priority patent/JP6048452B2/ja
Priority claimed from JP2014181344A external-priority patent/JP6048464B2/ja
Priority claimed from JP2015026632A external-priority patent/JP6036870B2/ja
Priority claimed from JP2015082606A external-priority patent/JP6094619B2/ja
Application filed by 凸版印刷株式会社 filed Critical 凸版印刷株式会社
Priority to EP15805886.7A priority Critical patent/EP3130629B1/en
Priority to KR1020167031732A priority patent/KR101944170B1/ko
Priority to CN201580025514.5A priority patent/CN106459454A/zh
Publication of WO2015190110A1 publication Critical patent/WO2015190110A1/ja
Priority to US15/366,329 priority patent/US10808092B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/0006Working by laser beam, e.g. welding, cutting or boring taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/09Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/02Wrappers or flexible covers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/123Treatment by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/16Composite materials, e.g. fibre reinforced
    • B23K2103/166Multilayered materials
    • B23K2103/172Multilayered materials wherein at least one of the layers is non-metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/30Organic material
    • B23K2103/42Plastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/31Heat sealable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/514Oriented
    • B32B2307/518Oriented bi-axially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2310/00Treatment by energy or chemical effects
    • B32B2310/08Treatment by energy or chemical effects by wave energy or particle radiation
    • B32B2310/0806Treatment by energy or chemical effects by wave energy or particle radiation using electromagnetic radiation
    • B32B2310/0843Treatment by energy or chemical effects by wave energy or particle radiation using electromagnetic radiation using laser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/40Closed containers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds

Definitions

  • the present invention relates to a method for surface-treating a film of biaxially oriented polyester or the like to impart heat sealability, and a method for manufacturing a packaging container using the same.
  • Biaxially oriented polyester films such as a biaxially oriented polyethylene terephthalate film are useful as various packaging materials because they are excellent in strength, heat resistance, dimensional stability, chemical resistance, aroma retention, and the like. Therefore, a packaging body such as a flexible pouch formed by heat-sealing such films is expected.
  • Patent Document 1 discloses a method of imparting heat sealability by irradiating electromagnetic waves with a short pulse on the surface of a biaxially oriented polyester film and modifying the surface.
  • an object of the present invention is to provide a highly efficient and safe biaxially oriented polyester film heat sealing property imparting method and a packaging container manufacturing method using the same.
  • One aspect of the present invention is by irradiating a predetermined region of a film composed of a biaxially oriented polyester layer alone or a laminate comprising a biaxially oriented polyester layer on at least one surface while scanning with laser light, This is a method of imparting heat sealability to the surface of the biaxially oriented polyester layer in a predetermined region.
  • the other aspect of this invention is the area
  • FIG. 1A and 1B are a plan view and a cross-sectional view illustrating a heat sealability imparting method according to an embodiment.
  • FIG. 2 is a plan view and a cross-sectional view showing the manufactured film.
  • FIG. 3 is a plan view showing a modification of the fine structure.
  • FIG. 4 is a plan view showing a modification of the fine structure.
  • FIG. 5 is a plan view showing the manufactured film and packaging bag.
  • FIG. 6 is a plan view and a cross-sectional view showing a modification of the fine structure.
  • FIG. 7 is a plan view and a cross-sectional view illustrating the provision of heat sealability according to one embodiment.
  • FIG. 8 is a plan view and a side view of the manufactured packaging bag.
  • FIG. 9 is a plan view and a cross-sectional view illustrating a heat sealability imparting method according to an embodiment.
  • FIG. 10 is a plan view and a cross-sectional view of the film according to the embodiment.
  • FIG. 11 is a plan view and a cross-sectional view illustrating a heat sealability imparting method according to an embodiment.
  • FIG. 12 is a plan view and a cross-sectional view illustrating a heat sealability imparting method according to an embodiment.
  • biaxially oriented polyester film according to an embodiment of the present invention and a method for producing a packaging container using the same will be described.
  • This method can be applied to either a film made of a single layer of biaxially oriented polyester or a film made of a laminate including a biaxially oriented polyester layer on the surface.
  • the biaxially oriented polyester is, for example, biaxially oriented polyethylene terephthalate, but is not limited thereto. Further, it can be applied to a film having another thermoplastic resin instead of the biaxially oriented polyester layer.
  • FIG. 1 is a diagram for explaining a method according to the first embodiment.
  • FIG. 1 shows a plan view of a film 10 made of a single layer of biaxially oriented polyethylene terephthalate 30 (hereinafter referred to as PET layer 30) as an example of a biaxially oriented polyester film, and a cross-sectional view along the line AA ′. Show.
  • PET layer 30 biaxially oriented polyethylene terephthalate 30
  • AA ′ biaxially oriented polyester film
  • the irradiation spot S of the laser beam is irradiated so as to draw a plurality of parallel linear trajectories at a predetermined interval.
  • the laser light it is preferable to use a carbon dioxide laser light having an infrared wavelength whose energy is easily absorbed by the film 10 efficiently.
  • the portion irradiated with the laser beam on the surface of the film 10 is altered by being temporarily melted by the energy of the laser beam. Further, for example, the flatness is lost in accordance with the locus of irradiation, and the fine structure 4 having a concave portion or a convex portion is formed.
  • the fine structure 4 As the fine structure 4, a plurality of linear ridges are formed in parallel at predetermined intervals.
  • the fine structure 4 can take various forms depending on the output of the laser light, the energy density in the irradiation spot, the shape of the scanning locus, the scanning speed, and the like. In addition, such a fine structure 4 may not occur.
  • the irradiated part may be whitened, for example, instead of forming the fine structure 4 or instead of forming the fine structure 4, and the light reflectance may increase.
  • Heat sealability is manifested due to alteration at locations irradiated with laser light.
  • content of alteration for example, at least partial decrease or disappearance of molecular orientation such as the crystallinity of the film 10 can be considered. It is also possible that other factors are involved.
  • FIG. 2 shows a plan view and a cross-sectional view of the film 10 that has been provided with heat sealability.
  • the type, output, irradiation spot diameter, scanning trajectory, scanning speed, and the like of the laser light may be appropriately set according to the material of the film 10 so that the heat seal property is suitably developed.
  • the laser beam with a constant output is continuously irradiated. Therefore, compared with the case of irradiating a short pulse with a high output, energy efficiency is high and safety can be easily ensured. Practical application of a package formed by heat-sealing polyester films can be promoted.
  • heat resistance can be suitably imparted to the PET layer 30 by using a biaxially oriented polyester film that satisfies any of the following (1) to (4) as physical property value conditions. .
  • fusing point measured based on JISK7121 is 225 degreeC or more and 270 degrees C or less.
  • Heat shrinkage (150 ° C., 30 minutes) in the flow direction (MD) measured based on JIS C2151 is 0.5% or more and 2.0% or less.
  • the sum of the Young's modulus in the flow direction (MD) measured based on ASTM D882-64T and the Young's modulus in the direction (TD) orthogonal to the flow direction is 8 GPa or more and 12 GPa or less.
  • the total of the breaking strength in the flow direction (MD) measured based on JIS C2151 and the breaking strength in the direction (TD) orthogonal to the flow direction is 200 MPa or more and 540 MPa or less.
  • the type of laser light, irradiation energy, irradiation spot diameter, scanning trajectory, scanning speed, and the like may be appropriately set according to the material of the PET layer 30 and the like so that the heat-sealing property is suitably exhibited.
  • the irradiation energy (density) of laser light is 2 J / cm 2 or more and 15 J / cm 2 or less.
  • the laser beam irradiation may be performed by repeating pulse irradiation instead of continuous irradiation.
  • the irradiation energy of each pulse is preferably 0.1 J or more and 1 J or less, for example.
  • the pulse speed (frequency) is preferably 1000 pulses / second or more and 500000 pulses / second or less, for example. Within such a range, energy irradiation can be performed stably and sufficiently using a general carbon dioxide laser device.
  • the fine structure 4 may be a structure other than the continuous line shape in which a plurality of protrusions are formed in parallel at a predetermined interval as shown in FIGS.
  • examples of the fine structure 4 include a structure in which a plurality of at least one convex shape or concave shape of a continuous line shape, an intermittent line shape, and a dot shape are formed.
  • an intermittent line-like convex shape ((a), (b) in FIG. 3), a dot-like convex shape ((c) in FIG. 3), or an intermittent line-like and dot-like convex shape ((( d)) may be formed.
  • Such a pattern of the fine structure 4 can be variously formed according to an output, a scanning locus, and the like when irradiating laser light while scanning.
  • the fine structure may be a structure in which planar shape units such as squares are arranged as shown in FIG.
  • Such a structure can be formed by appropriately setting the spot diameter and spot shape of the laser beam and irradiating the laser beam on the surface.
  • the shape unit is not limited to a quadrangle, and may be an arbitrary shape such as a triangular shape, a circular shape, or a band shape.
  • a packaging container can be manufactured using the film provided with heat sealability by the method according to the first embodiment.
  • the manufacturing method of a packaging container includes the process of providing the heat seal property to one or more films, and the process of heat-sealing the area
  • FIG. 5 shows an example of a film and a packaging container. In the films 11, 12, and 13, heat sealing properties are imparted by the present method at locations indicated by hatching at the peripheral edge.
  • the packaging bag 100 can be manufactured by sandwiching the folded film 13 between the films 11 and 12 and performing a heat sealing process.
  • the packaging container is not limited to the packaging container 100, and can be variously configured using one or more films. Since such a packaging container uses the polyester film excellent in heat resistance, chemical resistance, aroma retention, etc., it can accommodate the contents suitably.
  • a packaging container can also be manufactured by sealing the opening part of container bodies, such as resin made of a cup shape, with the film 10, for example.
  • the sealing is performed, for example, by heat-sealing the entire circumference of the flange formed at the opening end of the container body and the film 10.
  • FIG. 6 is a plan view and a cross-sectional view showing another modified example of the fine structure 4.
  • the film 14 is made of, for example, a rectangular PET layer 30 alone.
  • a plurality of microstructures 4 imparted with heat sealability are formed in the peripheral region of one side of the film 14 by irradiation with laser light.
  • the fine structure 4 has a linear shape that forms an angle ⁇ with respect to the MD direction of the film 14 (the film flow direction;
  • the angle ⁇ is preferably 5 ° or more and 85 ° or less, and particularly preferably 45 ° which forms an equal angle with respect to both the MD direction and the TD direction perpendicular thereto.
  • FIG. 7 is a diagram for explaining a method for imparting heat sealability to the film 14.
  • the irradiation shape of the laser light is a linear irradiation pattern S having a predetermined length instead of the spot, and the irradiation is performed while moving on the peripheral region.
  • the extending direction of the irradiation pattern S makes the above angle ⁇ with respect to the MD direction of the film 10.
  • a plurality of fine structures 4 are formed on the region.
  • Laser light irradiation may be performed intermittently or continuously. Even in the case of continuous operation, the same fine structure 4 can be formed by periodic changes in various characteristics such as the output of laser light.
  • FIG. 8 shows a plan view and a side view of the packaging container 101 using the film 14.
  • the packaging container 101 is a four-side sealed bag manufactured by stacking two films 14 so that the surfaces irradiated with the laser light face each other and performing a heat sealing process on the peripheral portion to form a storage portion.
  • each edge of the packaging container and each edge of the storage unit are usually parallel to either the MD direction or the TD direction.
  • the seal strength when peeling is progressed in the length direction of the linear shape is smaller than the seal strength when peeling is progressed in a direction perpendicular to the length direction. Therefore, when the extending direction of the linear microstructure 4 is parallel to the MD direction or the TD direction, a difference occurs in the seal peeling strength from each edge of the packaging container 101 and each edge of the storage unit. The seal strength at one edge becomes smaller than the seal strength at the adjacent edge, and the direction of the seal strength occurs. .
  • the packaging container 101 is formed so that the extending direction of the linear microstructure 4 forms an angle ⁇ of 5 ° to 85 ° with respect to the MD direction.
  • the difference in seal strength can be reduced, and uniform and sufficient seal strength can be stably imparted in each direction. If the laser light irradiation method as described above is used, the same effect can be obtained even if the fine structure 4 having a shape corresponding to the irradiation pattern S does not necessarily occur clearly.
  • the shape of the packaging container 101 is not limited to the four-side sealed bag, and any shape can be adopted as long as at least a part of the outer edge or inner edge of the storage portion is parallel to the MD direction and the TD direction.
  • FIG. 9 is a diagram for explaining a method according to the second embodiment.
  • FIG. 9 shows, as an example, a plan view of a film 15 made of a laminate including a PET layer on both surfaces (front and back surfaces) and a cross-sectional view along the line CC ′.
  • the film 15 includes an aluminum layer 5 that reflects a laser beam laminated between two PET layers 31 and 32. Description of matters similar to those in the first embodiment will be omitted as appropriate.
  • the PET layer 31 on one surface of the film 15 is irradiated with a laser beam to impart heat sealability, and is not applied to the opposite PET layer 32.
  • FIG. 10 shows a plan view and a cross-sectional view of the film 15 that has been provided with heat sealability.
  • the aluminum layer 5 is a layer formed using, for example, an aluminum foil of about 9 ⁇ m.
  • the aluminum layer 5 blocks the laser beam, and the PET layers 31 and 32 are melted and contracted by the laser beam irradiation to maintain the film state. It has a function to prevent it from becoming impossible.
  • biaxially oriented polyethylene terephthalate is a relatively thin single film having a thickness of about 20 ⁇ m or less
  • the irradiated portion may be melted and contracted by the temperature rise accompanying laser light irradiation to maintain the film state. It tends to be difficult.
  • the shrinkage of the PET layer 31 irradiated with the laser light can be suppressed.
  • the aluminum layer 5 reflects laser light, the temperature does not easily rise compared to a material that absorbs laser light such as black. Therefore, even if the aluminum layer 5 is provided, the PET layers 31 and 32 can be prevented from being heated more than necessary.
  • the aluminum layer 5 blocks the laser beam, the PET layer 32 on the side opposite to the side irradiated with the laser beam is not altered, and only one side of the film 15 can be provided with heat sealability.
  • the PET layers 31 and 32 were directly formed on both surfaces of the aluminum layer 5, but instead of the aluminum layer 5 and the PET layer 31 or 32, or instead of the aluminum layer 5, for example, polyethylene or the like, One or more resin layers that are easy to transmit laser light and are not easily heated may be included. Further, although aluminum is used as the material for the layer that reflects the laser beam, other materials can be appropriately used as long as the laser beam can be reflected.
  • the predetermined region of the film 15 made of the laminate including the aluminum layer 5 that reflects the laser light laminated between the two PET layers 31 and 32 is formed.
  • heat sealability can be imparted to a predetermined region of one PET layer 31 while preventing melting, shrinkage, etc. due to the irradiation of the laser beam.
  • FIG. 11 is a diagram for explaining a method according to the third embodiment.
  • a polyethylene layer 6 hereinafter referred to as a PE layer
  • PE layer which is a polyolefin resin that includes PET layers 33 and 34 on both surfaces (front and back surfaces) and easily transmits laser light between the PET layers 33 and 34.
  • 6 is a plan view of the film 16 made of a laminate including the cross-sectional view taken along line DD ′. Description of matters similar to those in the first embodiment will be omitted as appropriate.
  • laser light is irradiated from the PET layer 33 side of one surface of the film 16 to impart heat sealability to both the PET layers 33 and 34.
  • the laser light applied to the film 16 passes through the PET layer 33 and then passes through the PE layer 6 and is also applied to the PET layer 34 laminated on the opposite surface of the PET layer 33.
  • the PET layer 34 is also modified in the same manner as the PET layer 33, and the fine structure 4 is formed and heat sealability is exhibited.
  • the PET layer 33 on the one surface side and the other surface side is irradiated by irradiating the laser beam from one surface side.
  • 34 can be provided with heat sealability.
  • the PE layer 6 is provided.
  • other thermoplastic resins such as polypropylene may be appropriately used as long as the material easily transmits laser light and is not easily affected by the laser beam.
  • a plurality of resin layers may be provided.
  • FIG. 12 is a diagram for explaining a method according to the fourth embodiment.
  • FIG. 12 shows, as an example, a plan view of a film 17 made of a laminate including an oriented polypropylene layer (OPP layer) 7, a PE layer 6 and a PET layer 35 in this order, and a cross-sectional view along the line EE ′.
  • OPP layer oriented polypropylene layer
  • the OPP layer 7 side opposite to the side on which the PET layer 35 is laminated is irradiated with laser light, and heat sealed to the PET layer 35 by the laser light transmitted through the OPP layer 7 and the PE layer 6. Gives sex.
  • the PET layer 35 is irradiated while scanning with laser light from the other surface side in the region 2 of the film 17 where the PET layer 35 is laminated on one surface.
  • the heat sealability can be imparted to the.
  • the OPP layer 7 and the PE layer 6 are provided, but other resins may be used as appropriate as long as the material easily transmits laser light and is not easily affected by the laser beam. Three or more resin layers may be provided.
  • Example 1-1 The film according to this example is a film having a thickness of 50 ⁇ m made of a single biaxially oriented polyethylene terephthalate. This film was irradiated with laser light at an output of 21 W using a carbon dioxide laser device ML-Z9510 manufactured by Keyence Corporation. The area to be irradiated was an area of 100 mm ⁇ 100 mm, and an irradiation spot having a diameter of 0.14 mm was scanned in a plurality of parallel straight lines at a scanning speed of 4000 mm / sec and a scanning interval of 0.1 mm. As a result of performing heat sealing by applying heat and pressure at a temperature of 140 ° C.
  • Example 1-2 The film according to this example is a film made of a laminate having a layer structure of polyethylene terephthalate (thickness 12 ⁇ m) / aluminum (thickness 9 ⁇ m) / polyethylene (thickness 20 ⁇ m) / biaxially oriented polyethylene terephthalate (thickness 12 ⁇ m). is there.
  • This film was also irradiated with laser light from the biaxially oriented polyethylene terephthalate side using the same apparatus and conditions as in Example 1-1. With respect to the scanning speed and the scanning interval, laser light irradiation was performed under conditions different from those in Example 1-1. Further, the regions irradiated with laser light were heat-sealed under the same conditions as in Example 1-1.
  • the film according to this example is a film composed of a laminate having a layer structure of oriented polypropylene (thickness 20 ⁇ m) / low density polyethylene (thickness 30 ⁇ m) / biaxially oriented polyethylene terephthalate (thickness 12 ⁇ m) from the surface.
  • This film was also irradiated with laser light on the back side using the same apparatus and conditions as in Example 1-1.
  • the regions on the back surface irradiated with the laser beam were heat-sealed under the same conditions as in Example 1-1.
  • the seal strength was 10 N / 15 mm or more.
  • the film according to this example is a laminate having a layer configuration of first biaxially oriented polyethylene terephthalate (thickness 12 ⁇ m) / medium density polyethylene (thickness 50 ⁇ m) / second biaxially oriented polyethylene terephthalate (thickness 12 ⁇ m). It is the film which consists of.
  • This film was also irradiated with laser light from the first biaxially oriented polyethylene terephthalate side using the same apparatus and conditions as in Example 1-1. At this time, the laser light passed through the medium density polyethylene and reached the second biaxially oriented polyethylene terephthalate.
  • the regions of the first biaxially oriented polyethylene terephthalate that are the laser light irradiation surfaces were heat-sealed under the same conditions as in Example 1-1. Further, the second biaxially oriented polyethylene terephthalate regions were heat-sealed under the same conditions as in Example 1-1. As a result of measuring the seal strength in the heat seal region, it was confirmed that both the laser light irradiation surface and the laser light non-irradiation surface had a seal strength of 10 N / 15 mm or more.
  • Example 1-5 The film according to this example has the same layer configuration as the film according to Example 1-3.
  • the film was irradiated with laser light from the oriented polypropylene layer side, unlike Example 1-3, under the same apparatus and conditions as in Example 1-1.
  • the laser beam passed through each layer of oriented polypropylene and low-density polyethylene and reached the biaxially oriented polyethylene terephthalate on the back surface.
  • the regions on the back surface where the laser beam irradiation was performed were heat-sealed under the same conditions as in Example 1.
  • the seal strength was 10 N / 15 mm or more.
  • the film according to this comparative example is a film having a thickness of 12 ⁇ m made of a single biaxially oriented polyethylene terephthalate.
  • This film was also irradiated with laser light using the same apparatus and conditions as in Example 1-1. As a result of laser light irradiation, the film in the irradiated region melted and contracted, and the film state could not be maintained.
  • the thickness of the film of this comparative example is smaller than the thickness of Example 1-1, and is the same as the thickness of the biaxially oriented polyethylene terephthalate layer of Examples 1-2 to 1-5. Even if the film is a thin biaxially oriented polyethylene terephthalate layer and it is difficult to maintain the film state, heat sealability can be suitably imparted by using a laminate.
  • the film was also irradiated with laser light using the same apparatus and conditions as in Example 1-1. Further, the regions irradiated with laser light were heat-sealed under the same conditions as in Example 1-1. Thereafter, the seal strength of the region where the heat sealing process was performed was measured.
  • Example 2-1 The film according to this example is a single-layer biaxially oriented polyester film having a thickness of 50 ⁇ m. Laser irradiation was performed to form a fine structure on one surface. When each of the biaxially oriented polyester films 1 to 5 was used, a seal strength of 3N / 15 mm or more (3 to 23 N / 15 mm) was confirmed, and in all cases, the development of heat sealability could be confirmed.
  • the film according to this example is a film composed of a laminate having a layer structure of biaxially oriented polyethylene terephthalate (thickness 12 ⁇ m) / aluminum (thickness 9 ⁇ m) / biaxially oriented polyester film (thickness 12 ⁇ m). Laser light was irradiated from the biaxially oriented polyester film side to form a microstructure on the biaxially oriented polyester film.
  • a seal strength of 3N / 15 mm or more was confirmed, and in all cases, the expression of heat sealability could be confirmed.
  • Table 3 shows the seal strength when each of the biaxially oriented polyester films 1 to 5 is used in this example.
  • the film according to the present example is a laminate having a layer structure of biaxially oriented polyethylene terephthalate (thickness 12 ⁇ m) / aluminum (thickness 9 ⁇ m) / polyethylene (thickness 20 ⁇ m) / biaxially oriented polyester film (thickness 12 ⁇ m). It is a film. Laser light was irradiated from the biaxially oriented polyester film side to form a microstructure on the biaxially oriented polyester film. When each of the biaxially oriented polyester films 1 to 5 was used, a seal strength of 3N / 15 mm or more (3 to 23 N / 15 mm) was confirmed, and in all cases, the development of heat sealability could be confirmed.
  • the film according to this example is a film composed of a laminate having a layer structure of biaxially oriented polyester film (thickness 12 ⁇ m) / medium density polyethylene (thickness 50 ⁇ m) / biaxially oriented polyester film (thickness 12 ⁇ m).
  • Laser light was irradiated from one side to form a microstructure simultaneously on the biaxially oriented polyester films on both sides.
  • the same film was used as the biaxially oriented polyester film on both sides.
  • a seal strength of 3 N / 15 mm or more (3 to 23 N / 15 mm) is confirmed on both the front side and the back side, both of which are heat-sealable. Expression was confirmed.
  • the film according to this example is a film composed of a laminate having a layer structure of oriented polypropylene (thickness 20 ⁇ m) / low density polyethylene (thickness 30 ⁇ m) / 2-axis oriented polyester film (thickness 12 ⁇ m).
  • oriented polypropylene thickness 20 ⁇ m
  • low density polyethylene thickness 30 ⁇ m
  • 2-axis oriented polyester film thickness 12 ⁇ m.
  • Example 3-1 The film according to this example is a film composed of a laminate having a layer structure of biaxially oriented polyethylene terephthalate (thickness 12 ⁇ m) / aluminum (thickness 9 ⁇ m) / biaxially oriented polyethylene terephthalate (thickness 12 ⁇ m).
  • Irradiation with infrared laser light was performed from one surface side of this film using a carbon dioxide laser device ML-Z9510 manufactured by Keyence Corporation. The irradiation energy was 2 J / cm 2 .
  • Heat sealing was performed by applying heat and pressure at a temperature of 140 ° C. and a pressure of 0.2 MPa between the regions on the incident surface side irradiated with the laser light for 2 seconds. It was 10N / 15mm as a result of measuring the seal strength of the sample which cut out the heat seal area
  • Example 3-2 This example differs from Example 3-1 only in that the irradiation energy is 10 J / cm 2 .
  • the seal strength was 15 N / 15 mm.
  • Example 3-3 This example differs from Example 3-1 only in that the irradiation energy is 15 J / cm 2 .
  • the seal strength was 15 N / 15 mm.
  • the film according to this example is composed of first biaxially oriented polyethylene terephthalate (thickness 12 ⁇ m) / aluminum (thickness 9 ⁇ m) / polyethylene (thickness 20 ⁇ m) / second biaxially oriented polyethylene terephthalate (thickness 12 ⁇ m). It is a film made of a layered laminate.
  • the film was irradiated with infrared laser light from the second biaxially oriented polyethylene terephthalate side using the same apparatus as in Example 3-1.
  • the irradiation energy was 2 J / cm 2 .
  • the regions on the back surface irradiated with the laser beam were heat-sealed under the same conditions as in Example 3-1.
  • the seal strength in the heat seal area was measured in the same manner as in Example 3-1. As a result, it was 10 N / 15 mm.
  • Example 3-5 This example differs from Example 3-4 only in that the irradiation energy is 10 J / cm 2 .
  • the seal strength was 15 N / 15 mm.
  • Example 3-6 This example differs from Example 3-4 only in that the irradiation energy is 15 J / cm 2 .
  • the seal strength was 15 N / 15 mm.
  • the film according to this example is a monolayer film of biaxially oriented polyethylene terephthalate (thickness 50 ⁇ m).
  • the film was irradiated with infrared laser light from one surface side using the same apparatus as in Example 3-1.
  • the irradiation energy was 2 J / cm 2 .
  • the regions on the incident surface side where the laser beam irradiation was performed were heat-sealed under the same conditions as in Example 3-1.
  • the seal strength in the heat seal region was measured in the same manner as in Example 3-1. As a result, it was 11 N / 15 mm.
  • Example 3-8 This example differs from Example 3-7 only in that the irradiation energy was set to 10 J / cm 2 .
  • the seal strength was 15 N / 15 mm.
  • Example 3-9 This example differs from Example 3-8 only in that the irradiation energy is 15 J / cm 2 .
  • the seal strength was 15 N / 15 mm.
  • Comparative Example 3-1 This comparative example differs from Example 3-1 only in that the irradiation energy is 1 J / cm 2 .
  • the seal strength was 1 N / 15 mm.
  • Comparative Example 3-2 This comparative example differs from Example 3-1 only in that the irradiation energy was 16 J / cm 2 .
  • the PET layer on the side irradiated with laser light was evaporated by heat and disappeared, and heat sealing could not be performed.
  • Example 3-3 This example differs from Example 3-4 only in that the irradiation energy is 1 J / cm 2 .
  • the seal strength was 1 N / 15 mm.
  • Comparative Example 3-4 This comparative example differs from Example 3-4 only in that the irradiation energy was 16 J / cm 2 .
  • the PET layer on the side irradiated with laser light was evaporated by heat and disappeared, and heat sealing could not be performed.
  • Comparative Example 3-5 This comparative example differs from Example 3-7 only in that the irradiation energy is 1 J / cm 2 .
  • the seal strength was 1 N / 15 mm.
  • Comparative Example 3-6 This comparative example differs from Example 3-7 only in that the irradiation energy was 16 J / cm 2 .
  • the PET layer was evaporated by heat and disappeared, and could not be heat sealed.
  • Each laminate film has a layer configuration of biaxially oriented polyethylene terephthalate (12 ⁇ m) / aluminum (9 ⁇ m) / biaxially oriented polyethylene terephthalate (12 ⁇ m).
  • Each laminated film was irradiated with a linear laser beam having a width of 14 mm by a diffractive optical element using a pulse laser processing apparatus with a maximum output of 250 W under the conditions of an output of 30% and a scanning speed of 30 m / min.
  • the seal part was provided by forming a linear processing mark forming each angle.
  • Table 5 shows the evaluation results of the angle (°) with respect to the MD direction of the laminated film of the processing marks, the seal strength (N / 15 mm) in the MD direction and the TD direction, and the stability of the seal strength.
  • “++” is described when there is no difference in seal strength between the MD direction and the TD direction
  • “+” is described when it is less than 30%, and when it is 30% or more. Marked "-”.
  • heat sealability can be imparted to a film by a highly efficient and safe method, and a packaging container using such a film can be provided.
  • the present invention is useful for improving the heat sealability of films used for packaging bags and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Laminated Bodies (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Wrappers (AREA)

Abstract

 高効率で安全性の高い、2軸配向ポリエステルフィルムのヒートシール性付与方法及びこれを用いた包装容器の製造方法を提供する。2軸配向ポリエステルの層単体、または、2軸配向ポリエステルの層を少なくとも一表面に含む積層体からなるフィルムの所定の領域にレーザー光を走査しながら照射することにより、所定の領域における2軸配向ポリエステルの層の表面にヒートシール性を付与する。

Description

2軸配向ポリエステルフィルムのヒートシール性付与方法、及び包装容器の製造方法
 本発明は、2軸配向ポリエステル等のフィルムに表面処理を行い、ヒートシール性を付与する方法と、これを用いた包装容器の製造方法とに関する。
 2軸配向ポリエチレンテレフタレートフィルム等の2軸配向ポリエステルフィルムは、強度、耐熱性、寸法安定性、耐薬品性、保香性等に優れることから、各種の包装用素材として有用である。そこで、このようなフィルムどうしをヒートシールして形成したフレキシブルパウチ等の包装体が期待されている。
 配向性を有するフィルムは、ヒートシール性に乏しい。そこで例えば、特許文献1は、電磁波を2軸配向ポリエステルフィルムの表面に短パルス照射し、表面を改質することによりヒートシール性を付与する方法を開示している。
特公平4-26339号公報
 特許文献1が開示するような短パルス照射方法では、2軸配向ポリエステルフィルムの内部配向性を損なわないようにするため、キセノンガスランプ等を用いて高出力の短パルスを発生させる必要がある。このような高出力な装置は、エネルギー効率が低く、また、安全性の確保が困難であるため、このような装置を用いた方法は実用化に向けての取り組みがなされていなかった。
 それ故に、本発明は、高効率で安全性の高い、2軸配向ポリエステルフィルムのヒートシール性付与方法及びこれを用いた包装容器の製造方法を提供することを目的とする。
 本発明の一局面は、2軸配向ポリエステルの層単体、または、2軸配向ポリエステルの層を少なくとも一表面に含む積層体からなるフィルムの所定の領域にレーザー光を走査しながら照射することにより、所定の領域における2軸配向ポリエステルの層の表面にヒートシール性を付与する方法である。
 また、本発明の他の局面は、上述のヒートシール性付与方法を用いて、1枚以上のフィルムにヒートシール性を付与する工程と、1枚以上のフィルムのヒートシール性を付与された領域どうしをヒートシールする工程とを含む、包装容器の製造方法である。
 本発明によれば、高効率で安全性の高い、2軸配向ポリエステルフィルムのヒートシール性付与方法及びこれを用いた包装容器の製造方法を提供できる。
図1は、一実施形態に係るヒートシール性付与方法を示す平面図及び断面図である。 図2は、製造されたフィルムを示す平面図及び断面図である。 図3は、微細構造の変形例を示す平面図である。 図4は、微細構造の変形例を示す平面図である。 図5は、製造されたフィルム及び包装袋を示す平面図である。 図6は、微細構造の変形例を示す平面図及び断面図である。 図7は、一実施形態に係るヒートシール性付与を示す平面図及び断面図である。 図8は、製造された包装袋の平面図及び側面図である。 図9は、一実施形態に係るヒートシール性付与方法を示す平面図及び断面図である。 図10は、実施形態に係るフィルムの平面図及び断面図である。 図11は、一実施形態に係るヒートシール性付与方法を示す平面図及び断面図である。 図12は、一実施形態に係るヒートシール性付与方法を示す平面図及び断面図である。
 以下に本発明の実施形態に係る2軸配向ポリエステルフィルムにヒートシール性を付与する方法及びこれを用いた包装容器の製造方法を説明する。本方法は、2軸配向ポリエステルの層単体からなるフィルム、または、2軸配向ポリエステルの層を表面に含む積層体からなるフィルムのいずれにも適用できる。2軸配向ポリエステルは、例えば2軸配向ポリエチレンテレフタレートであるが、これに限られない。また、2軸配向ポリエステルの層の代わりに他の熱可塑性樹脂を有するフィルムにも適用しうる。
(第1の実施形態)
 図1は第1の実施形態に係る方法を説明する図である。図1には、2軸配向ポリエステルフィルムの一例として2軸配向ポリエチレンテレフタレートの層30(以下、PET層30という)単体からなるフィルム10の平面図およびそのA-A’線に沿った断面図を示す。フィルム10の表面の一部の領域2にヒートシール性を付与する場合、領域2内をレーザー光を走査しながら照射することにより領域2内の各位置に順次レーザー光を照射する。図1に示す例では、レーザー光の照射スポットSが、所定の間隔の複数の平行な直線状の軌跡を描くように照射される。レーザー光は、エネルギーが効率的にフィルム10に吸収されやすい赤外線波長を有する炭酸ガスレーザー光を用いることが好ましい。
 フィルム10表面のレーザー光が照射された箇所は、レーザー光のエネルギーによって一時的に融解することによって変質する。また、例えば照射の軌跡に応じて、平坦さが失われ、凹部または凸部を有する微細構造4が形成される。図1に示す例では、微細構造4として、複数の線状の凸条が所定の間隔で平行に形成される。しかし、レーザー光の出力や照射スポット内のエネルギー密度、走査軌跡の形状、走査速度等に応じて、微細構造4は多様な形態をとりうる。また、このような微細構造4が生じない場合もありうる。また、微細構造4の形成とともにあるいは微細構造4の形成の代わりに、照射された箇所が例えば白化し、光の反射率が大きくなる場合もありうる。
 レーザー光が照射された箇所は、変質によってヒートシール性が発現する。変質の内容として、例えば、フィルム10の結晶化度のような分子の配向性の少なくとも部分的な低下または消失が考えられる。また、これ以外の要因が関係している可能性も考えられる。領域2全体を走査照射することにより、領域2へのヒートシール性の付与が完了する。図2に、ヒートシール性の付与が完了したフィルム10の平面図及び断面図を示す。
 レーザー光の種類、出力、照射スポット径、走査軌跡、走査速度等は、フィルム10の材質等に応じて、好適にヒートシール性が発現するよう、適宜設定すればよい。
 本方法によれば、一定出力のレーザー光を連続的に照射するため、高出力の短パルスを照射する場合に比べて、エネルギー効率が高く、また、安全性を確保しやすくことができ、例えばポリエステルフィルムどうしをヒートシールして形成した包装体の実用化を推進することができる。
 一例として、PET層30には、物性値条件として、以下の(1)~(4)のいずれかを満足する2軸配向ポリエステルフィルムを用いることで、好適にヒートシール性を付与することができる。
(1)JIS K7121に基づき測定した融点が、225℃以上270℃以下である。
(2)JIS C2151に基づき測定した流れ方向(MD)における加熱収縮率(150℃、30分)が、0.5%以上2.0%以下である。
(3)ASTM D882-64Tに基づき測定した流れ方向(MD)におけるヤング率と、流れ方向に直交する方向(TD)におけるヤング率との合計が、8GPa以上12GPa以下である。
(4)JIS C2151に基づき測定した流れ方向(MD)における破断強度と、流れ方向に直交する方向(TD)における破断強度との合計が、200MPa以上540MPa以下である。
 レーザー光の種類、照射エネルギー、照射スポット径、走査軌跡、走査速度等は、PET層30の材質等に応じて、好適にヒートシール性が発現するよう、適宜設定すればよい。ヒートシール性が発現する好適な条件の一例として、レーザー光の照射エネルギー(密度)が2J/cm以上15J/cm以下であることが挙げられる。
 また、レーザー光の照射は、連続照射ではなくパルス照射を重ねることで行ってもよい。この場合、各パルスの照射エネルギーは、例えば0.1J以上1J以下であることが好ましい。あるいは、パルス速度(頻度)は、例えば1000パルス/秒以上500000パルス/秒以下であることが好ましい。このような範囲内であれば、一般的な炭酸ガスレーザー装置を用いて安定的かつ充分にエネルギー照射を行うことができる。
 図3、4は、微細構造4の変形例を示す平面図である。微細構造4は、図1、2に示したような、複数の凸条が所定の間隔で平行に形成された連続線状以外の構造とすることもできる。その他にも、微細構造4として、連続線状、断続線状及び点状の少なくとも1つの凸形状または凹形状が複数形成された構造が挙げられる。例えば、断続線状の凸形状(図3の(a)、(b))、点状の凸形状(図3の(c))、または断続線状および点状の凸形状(図4の(d))が形成されていてもよい。このような微細構造4のパターンは、レーザー光を走査しながら照射する際の出力、走査軌跡等に応じて多様に形成されうる。あるいは、微細構造は、図4の(e)に示す、四角形のような面的な形状単位が配列された構造であってもよい。このような構造は、レーザー光のスポット径、スポット形状を適宜設定して、面的にレーザー光を照射することによって形成されうる。また、形状単位は四角形に限らず例えば三角形状、円形状、帯形状等、任意の形状とすることができる。
 第1の実施形態に係る方法によってヒートシール性を付与されたフィルムを用いて例えば包装容器を製造することができる。包装容器の製造方法は、1枚以上のフィルムにヒートシール性を付与する工程と、1枚以上のフィルムのヒートシール性を付与された領域どうしをヒートシールする工程とを含む。図5に、フィルム及び包装容器の一例を示す。フィルム11、12、13は、周縁部のハッチングで示した箇所が本方法によってヒートシール性を付与されている。フィルム11、12の間に、2つ折りにしたフィルム13を挟み、ヒートシール処理を行うことで、包装袋100を製造することができる。包装容器は、包装容器100に限らず、1枚以上のフィルムを用いて多様に構成することができる。このような包装容器は、耐熱性、耐薬品性、保香性等に優れたポリエステルフィルムを用いているため、内容物を好適に収納することができる。
 また、例えばカップ形状を有する樹脂製等の容器本体の開口部をフィルム10で封止することにより、包装容器を製造することもできる。封止は、例えば、容器本体の開口端に形成されたフランジの全周とフィルム10とをヒートシールすることで行う。
 図6は、微細構造4の別の変形例を示す平面図及び断面図である。フィルム14は例えば長方形状のPET層30単体からなる。フィルム14片面の周縁の領域には、レーザー光を照射することによりヒートシール性の付与された微細構造4が複数形成される。微細構造4は、図6に拡大して示すように、フィルム14のMD方向(フィルムの流れ方向;図の紙面上下方向)に対して角度αをなす直線状である。角度αは5°以上85°以下が好ましく、特にMD方向およびこれに直交するTD方向のいずれに対しても相等しい角度をなす45°が好ましい。
 図7は、フィルム14のヒートシール性付与方法を説明する図である。本変形例では、レーザー光の照射形状を、スポットの代わりに、所定長さの直線状の照射パターンSとし、これを周縁の領域上を移動させながら照射する。照射パターンSの延伸方向はフィルム10のMD方向に対して上述の角度αをなす。照射パターンSの照射により領域上には、複数の微細構造4が形成される。レーザー光の照射は間欠的に行ってもよく、連続的に行ってもよい。連続的に行う場合であっても、レーザー光の出力等の各種特性の周期的な変化によって同様の微細構造4が形成されうる。
 図8に、フィルム14を用いた包装容器101の平面図、側面図を示す。包装容器101は2枚のフィルム14をレーザー光の照射された面が向かい合うように重ねて、周縁部にヒートシール処理を行うことで収納部を形成して製造される四方シール袋である。このような包装容器は、通常、包装容器の各端縁および収納部の各端縁が、MD方向、TD方向のいずれかに平行となる。
 一般に、直線形状のヒートシール箇所は、直線形状の長さ方向に剥離を進行させる場合のシール強度の方が、長さ方向に直交する方向に剥離を進行させる場合のシール強度より小さい。そのため、直線状の微細構造4の延伸方向を、MD方向またはTD方向に平行にした場合、包装容器101の各端縁や、収納部の各端縁からのシール剥離強度に差が生じ、いずれかの端縁におけるシール強度が、隣接する端縁におけるシール強度より小さくなり、シール強度の方向性が生ずる。。
 本変形例では、包装容器101は直線状の微細構造4の延伸方向をMD方向に対して5°以上85°以下の角度αをなすように形成しているため、MD方向とTD方向とのシール強度の差を小さくでき、均等かつ充分なシール強度を各方向に対して安定的に付与できる。なお、上述のようなレーザー光の照射方法を用いれば、必ずしも照射パターンSに対応した形状の微細構造4が明確に発生しなくても、同様の効果が生じうる。
 包装容器101の形状は四方シール袋に限定されず、収納部の外端縁または内端縁の少なくとも一部がMD方向、TD方向に平行であれば、任意の形状を採用できる。例えば、1枚のフィルムを2つ折りにして、合わせた周縁部をヒートシールして形成される三方シール袋や、図5に示すような包装容器等が採用可能である。
(第2の実施形態)
 図9は、第2の実施形態に係る方法を説明する図である。図9には、一例としてPET層を両表面(表面及び裏面)にそれぞれ含む積層体からなるフィルム15の平面図及びそのC-C’線に沿った断面図を示す。フィルム15は、2枚のPET層31、32の間に積層されたレーザー光を反射するアルミニウム層5を含んでいる。第1の実施形態と同様の事項については、適宜説明を省略をする。
 本実施形態では、フィルム15の一表面のPET層31にレーザー光を照射してヒートシール性を付与し、反対側のPET層32には付与しない。図10に、ヒートシール性の付与が完了したフィルム15の平面図及び断面図を示す。
 アルミニウム層5は、例えば、9μm程度のアルミニウム箔を用いて形成される層であり、レーザー光を遮断するとともに、レーザー光の照射にともないPET層31、32が融解、収縮してフィルム状態を維持できなくなることを防止する機能を有する。
 一般に、2軸配向ポリエチレンテレフタレートは、例えば、20μm以下程度の比較的薄い単体のフィルムである場合、レーザー光の照射にともなう温度上昇により照射箇所が融解、収縮等してフィルム状態を維持することが困難となりやすい。しかし、アルミニウム層5を積層することにより、レーザー光が照射されたPET層31の収縮を抑制することができる。また、アルミニウム層5は、レーザー光を反射するため、黒色等のレーザー光を吸収する材質に比べ、温度上昇しにくい。そのためアルミニウム層5を設けても、PET層31、32が必要以上に加熱されるのを防ぐことができる。また、アルミニウム層5がレーザー光を遮断するため、レーザー光が照射された側の反対側のPET層32は変質されず、フィルム15の片面のみにヒートシール性を付与することができる。
 フィルム15には、アルミニウム層5の両面に直接PET層31、32を形成したが、アルミニウム層5とPET層31または32との間に、あるいはアルミニウム層5に代えて、例えば、ポリエチレン等の、レーザー光が透過しやすく、加熱されにくい樹脂層を1つ以上含んでもよい。また、レーザー光を反射する層の材質には、アルミニウムを用いたが、レーザー光を反射できれば他の材質を適宜用いることも可能である。
 このように、第2の実施形態に係る方法によれば、2枚のPET層31、32の間に積層されたレーザー光を反射するアルミニウム層5を含む積層体からなるフィルム15の所定の領域において、レーザー光を走査しながら照射することで、レーザー光の照射による融解、収縮等を防ぎながら一方のPET層31の所定領域にヒートシール性を付与することができる。
(第3の実施形態)
 図11は、第3の実施形態に係る方法を説明する図である。図11には、一例としてPET層33、34を両表面(表面及び裏面)に含み、PET層33、34の間にレーザー光を透過しやすいポリオレフィン系樹脂であるポリエチレン層6(以下、PE層6という)を含む積層体からなるフィルム16の平面図及びそのD-D’線に沿った断面図を示す。第1の実施形態と同様の事項については、適宜説明を省略をする。
 本実施形態では、フィルム16の一表面のPET層33側からレーザー光を照射し、PET層33、34の両方にヒートシール性を付与する。
 フィルム16に照射されたレーザー光は、PET層33を透過した後、PE層6を透過してPET層33とは反対の面に積層されたPET層34にも照射される。この結果、PET層34も、図5の断面図に示すように、PET層33と同様に変質して、微細構造4が形成されるとともにヒートシール性が発現する。
 このように、第3の実施形態に係る方法によれば、フィルム16の領域2において、一表面側からレーザー光を走査しながら照射することで、一表面側及び他の表面側のPET層33、34の領域2にヒートシール性を付与することができる。なお、本実施形態では、PE層6を設けたが、レーザー光を透過しやすく、その影響を受けにくい材質であればポリプロピレンのような他の熱可塑性樹脂を適宜用いてもよい。また複数の樹脂層を設けてもよい。
(第4の実施形態)
 図12は、第4の実施形態に係る方法を説明する図である。図12には、一例として配向ポリプロピレン層(OPP層)7、PE層6、PET層35をこの順に含む積層体からなるフィルム17の平面図及びそのE-E’線に沿った断面図を示す。第1の実施形態と同様の事項については、適宜説明を省略をする。
 本実施形態では、PET層35が積層された側とは反対側のOPP層7側から、レーザー光を照射し、OPP層7およびPE層6を透過したレーザー光によって、PET層35にヒートシール性を付与する。
 このように、本実施形態に係る方法によれば、PET層35が一表面に積層されたフィルム17の領域2において、他の表面側からレーザー光を走査しながら照射することで、PET層35にヒートシール性を付与することができる。なお、本実施形態では、OPP層7、PE層6を設けたが、レーザー光を透過しやすく、その影響を受けにくい材質であれば他の樹脂を適宜用いてもよい。また3層以上の樹脂層を設けてもよい。
<評価1>
 実施例1-1~1-5および比較例1-1に係る2軸配向ポリエステルの層単体、または、2軸配向ポリエステルの層を表面に含む積層体からなるフィルムを作成してヒートシール加工を行い、その後、シール強度の測定を行った。
(実施例1-1)
 本実施例に係るフィルムは、2軸配向ポリエチレンテレフタレート単体からなる厚さ50μmのフィルムである。キーエンス社製の炭酸ガスレーザー装置ML-Z9510を用いて、このフィルムに出力21Wでレーザー光の照射を行った。照射する領域は100mm×100mmの領域とし、直径0.14mmの照射スポットを、走査速度4000mm/sec、走査間隔0.1mmで複数の平行な直線状に走査した。このような照射を行った領域どうしを2秒間、温度140℃、圧力0.2MPaの熱及び圧力を加えてヒートシールを行い、シール強度を測定した結果、22N/15mmのシール強度が確認され、ヒートシール性が付与されていることを確認できた。また、配向特性の有無を確認するため照射領域にクロロホルムを滴下したところ、滴下箇所が白化(不透明化)し、2軸配向性が消失していることが確認できた。
(実施例1-2)
 本実施例に係るフィルムは、ポリエチレンテレフタレート(厚さ12μm)/アルミニウム(厚さ9μm)/ポリエチレン(厚さ20μm)/2軸配向ポリエチレンテレフタレート(厚さ12μm)の層構成の積層体からなるフィルムである。本フィルムに対しても、実施例1-1と同じ装置及び条件で、2軸配向ポリエチレンテレフタレート側からレーザー光照射を行った。走査速度および走査間隔については、実施例1-1とは異なる条件でもレーザー光照射を行った。また、レーザー光を照射した領域どうしを、実施例1-1と同じ条件でヒートシールした。シール強度を測定した結果を表1に示す。いずれもヒートシール性が確認できたが、例えば走査速度4000mm/sec、走査間隔0.2mm以下の場合、または、走査間隔0.05mm、走査速度4000mm/sec以上の場合、シール強度が特に大きくヒートシール性が好適に付与されていることを確認できた。走査速度や走査間隔が大きすぎると、各部分におけるレーザー光の照射エネルギーが少なく、表面の変質が不十分となり、走査速度が小さすぎると、各部分におけるレーザー光の照射エネルギーが多く、2軸配向ポリエチレンテレフタレートが蒸発、燃焼(酸化)等により消滅するものと考えられる。また、配向特性の有無を確認するため照射領域にクロロホルムを滴下したところ、滴下箇所が白化(不透明化)し、2軸配向性が消失していることが確認できた。
Figure JPOXMLDOC01-appb-T000001
(実施例1-3)
 本実施例に係るフィルムは、表面から、配向ポリプロピレン(厚さ20μm)/低密度ポリエチレン(厚さ30μm)/2軸配向ポリエチレンテレフタレート(厚さ12μm)の層構成の積層体からなるフィルムである。本フィルムに対しても、実施例1-1と同じ装置及び条件で、裏面側にレーザー光照射を行った。また、レーザー光照射を行った裏面の領域どうしを、実施例1-1と同じ条件でヒートシールした。ヒートシール領域のシール強度を測定した結果、10N/15mm以上のシール強度を有することが確認できた。
(実施例1-4)
 本実施例に係るフィルムは、第1の2軸配向ポリエチレンテレフタレート(厚さ12μm)/中密度ポリエチレン(厚さ50μm)/第2の2軸配向ポリエチレンテレフタレート(厚さ12μm)の層構成の積層体からなるフィルムである。本フィルムに対しても、実施例1-1と同じ装置及び条件で、第1の2軸配向ポリエチレンテレフタレート側からレーザー光照射を行った。このとき、レーザー光は、中密度ポリエチレンを透過して、第2の2軸配向ポリエチレンテレフタレートにも到達した。レーザー光の照射面である第1の2軸配向ポリエチレンテレフタレートの領域どうしを、実施例1-1と同じ条件でヒートシールした。また、第2の2軸配向ポリエチレンテレフタレートの領域どうしを、実施例1-1と同じ条件でヒートシールした。ヒートシール領域のシール強度を測定した結果、レーザー光照射面及びレーザー光の非照射面のどちらも、10N/15mm以上のシール強度を有することが確認できた。
(実施例1-5)
 本実施例に係るフィルムは、実施例1-3に係るフィルムと同様の層構成を有する。本フィルムに対して、実施例1-1と同じ装置及び条件で、実施例1-3とは異なり配向ポリプロピレン層の側からレーザー光照射を行った。このとき、レーザー光は、配向ポリプロピレンおよび低密度ポリエチレンの各層を透過して、裏面の2軸配向ポリエチレンテレフタレートに到達した。レーザー光照射を行った裏面の領域どうしを、実施例1と同じ条件でヒートシールした。ヒートシール領域のシール強度を測定した結果、10N/15mm以上のシール強度を有することが確認できた。
(比較例1-1)
 本比較例に係るフィルムは、2軸配向ポリエチレンテレフタレート単体からなる厚さ12μmのフィルムである。本フィルムに対しても、実施例1-1と同じ装置及び条件でレーザー光照射を行った。レーザー光の照射を行った結果、照射領域のフィルムが、融解、収縮しフィルム状態を維持することができなかった。本比較例のフィルムの厚さは、実施例1-1の厚さより小さく、実施例1-2~1-5の2軸配向ポリエチレンテレフタレートの層の厚さと同じである。フィルムが2軸配向ポリエチレンテレフタレートの層が薄くて、フィルム状態を維持しにくい場合であっても、積層体にすれば好適にヒートシール性を付与できる。
<評価2>
 実施例2-1~2-5および比較例2-1~2-5のフィルムを作成してヒートシール加工を行い、その後、シール強度の測定を行った。表2に、各フィルムの作成に用いた、微細構造を形成する2軸配向ポリエステルフィルム1~7の物性値を示す。2軸配向ポリエステルフィルム1~5は、上述の、融点、加熱収縮率、ヤング率、破断強度の物性値条件を満たし、2軸配向ポリエステルフィルム6、7は、上述の物性値条件をいずれも満たさない。2軸配向ポリエステルフィルム1~7は、ポリエステルとして、いずれもポリエチレンテレフタレートを用いた。
Figure JPOXMLDOC01-appb-T000002
 本フィルムに対しても、実施例1-1と同じ装置及び条件で、レーザー光照射を行った。また、レーザー光照射を行った領域どうしを、実施例1-1と同じ条件でヒートシールした。その後、ヒートシール加工を行った領域のシール強度を測定した。
(実施例2-1)
 本実施例に係るフィルムは、厚さ50μmの単層の2軸配向ポリエステルフィルムである。レーザー光照射を行い一表面に微細構造を形成した。2軸配向ポリエステルフィルム1~5をそれぞれ用いた場合、3N/15mm以上(3~23N/15mm)のシール強度が確認され、いずれもヒートシール性の発現を確認できた。
(実施例2-2)
 本実施例に係るフィルムは、2軸配向ポリエチレンテレフタレート(厚さ12μm)/アルミニウム(厚さ9μm)/2軸配向ポリエステルフィルム(厚さ12μm)の層構成の積層体からなるフィルムである。2軸配向ポリエステルフィルム側からレーザー光照射を行い、2軸配向ポリエステルフィルムに微細構造を形成した。2軸配向ポリエステルフィルム1~5をそれぞれ用いた場合、3N/15mm以上のシール強度が確認され、いずれもヒートシール性の発現を確認できた。表3に、本実施例において2軸配向ポリエステルフィルム1~5をそれぞれ用いた場合のシール強度を示す。
Figure JPOXMLDOC01-appb-T000003
(実施例2-3)
 本実施例に係るフィルムは、2軸配向ポリエチレンテレフタレート(厚さ12μm)/アルミニウム(厚さ9μm)/ポリエチレン(厚さ20μm)/2軸配向ポリエステルフィルム(厚さ12μm)の層構成の積層体からなるフィルムである。2軸配向ポリエステルフィルム側からレーザー光照射を行い、2軸配向ポリエステルフィルムに微細構造を形成した。2軸配向ポリエステルフィルム1~5をそれぞれ用いた場合、3N/15mm以上(3~23N/15mm)のシール強度が確認され、いずれもヒートシール性の発現を確認できた。
(実施例2-4)
 本実施例に係るフィルムは、2軸配向ポリエステルフィルム(厚さ12μm)/中密度ポリエチレン(厚さ50μm)/2軸配向ポリエステルフィルム(厚さ12μm)の層構成の積層体からなるフィルムである。レーザー光を一面側から照射して、両面の2軸配向ポリエステルフィルムに同時に微細構造を形成した。両面の2軸配向ポリエステルフィルムは同一のフィルムを用いた。2軸配向ポリエステルフィルム1~5をそれぞれ用いた場合、表面側どうし、裏面側どうしのいずれにおいても、3N/15mm以上(3~23N/15mm)のシール強度が確認され、いずれもヒートシール性の発現を確認できた。
(実施例2-5)
 本実施例に係るフィルムは、配向ポリプロピレン(厚さ20μm)/低密度ポリエチレン(厚さ30μm)/2軸配向ポリエステルフィルム(厚さ12μm)の層構成の積層体からなるフィルムである。2軸配向ポリエステルフィルム1~5のそれぞれを用い、2軸配向ポリエステルフィルム側からレーザー光照射を行って、2軸配向ポリエステルフィルムに微細構造を形成した場合、3N/15mm以上(3~23N/15mm)のシール強度が確認され、いずれもヒートシール性の発現を確認できた。また、2軸配向ポリエステルフィルム1~5をそれぞれ用い、配向ポリプロピレン側からレーザー光照射を行って、2軸配向ポリエステルフィルムに微細構造を形成した場合、3N/15mm以上(3~23N/15mm)のシール強度が確認され、いずれもヒートシール性の発現を確認できた。
(比較例2-1~2-5)
 比較例2-1~2-5は、それぞれ、実施例2-1~2-5において、2軸配向ポリエステルフィルム1~5の代わりに2軸配向ポリエステルフィルム6、7を用い、その他の構成、レーザー光照射条件を同一としたフィルムである。実施例2-1~2-5と同様にヒートシール加工を行ったが、2軸配向ポリエステルフィルム6、7のいずれを用いた場合においてもヒートシール性の発現を確認することができなかった。
 以上の結果から、上述の物性値条件を満足する2軸配向ポリエステルフィルムを用いることが、いずれの層構成のフィルムにおいても、レーザー照射により好適にヒートシール性を付与するうえで好ましいことが確認できた。
<評価3>
 実施例3-1~3-9および比較例3-1~3-6において、2軸配向ポリエステルの層単体、または、2軸配向ポリエステルの層を表面に含む積層体からなるフィルムに相異なる照射エネルギーでレーザー光を照射してヒートシール加工を行い、その後、シール強度の測定を行った。
(実施例3-1)
 本実施例に係るフィルムは、2軸配向ポリエチレンテレフタレート(厚さ12μm)/アルミニウム(厚さ9μm)/2軸配向ポリエチレンテレフタレート(厚さ12μm)の層構成の積層体からなるフィルムである。キーエンス社製の炭酸ガスレーザー装置ML-Z9510を用いて、このフィルムの一表面側から赤外線レーザー光の照射を行った。照射エネルギーは2J/cmとした。レーザー光の照射を行った入射面側の領域どうしを2秒間、温度140℃、圧力0.2MPaの熱及び圧力を加えてヒートシールを行った。ヒートシール領域を15mm幅に切り出したサンプルのシール強度を測定した結果、10N/15mmであった。
(実施例3-2)
 本実施例は、照射エネルギーを10J/cmとした点のみ実施例3-1と異なる。シール強度は、15N/15mmであった。
(実施例3-3)
 本実施例は、照射エネルギーを15J/cmとした点のみ実施例3-1と異なる。シール強度は、15N/15mmであった。
(実施例3-4)
 本実施例に係るフィルムは、第1の2軸配向ポリエチレンテレフタレート(厚さ12μm)/アルミニウム(厚さ9μm)/ポリエチレン(厚さ20μm)/第2の2軸配向ポリエチレンテレフタレート(厚さ12μm)の層構成の積層体からなるフィルムである。本フィルムに対して、実施例3-1と同じ装置を用いて、第2の2軸配向ポリエチレンテレフタレート側から赤外線レーザー光の照射を行った。照射エネルギーは2J/cmとした。また、レーザー光照射を行った裏面の領域どうしを、実施例3-1と同じ条件でヒートシールした。ヒートシール領域のシール強度を実施例3-1と同様にして測定した結果、10N/15mmであった。
(実施例3-5)
 本実施例は、照射エネルギーを10J/cmとした点のみ実施例3-4と異なる。シール強度は、15N/15mmであった。
(実施例3-6)
 本実施例は、照射エネルギーを15J/cmとした点のみ実施例3-4と異なる。シール強度は、15N/15mmであった。
(実施例3-7)
 本実施例に係るフィルムは、2軸配向ポリエチレンテレフタレート(厚さ50μm)の単層フィルムである。本フィルムに対して、実施例3-1と同じ装置を用いて、一表面側から赤外線レーザー光の照射を行った。照射エネルギーは2J/cmとした。また、レーザー光照射を行った入射面側の領域どうしを、実施例3-1と同じ条件でヒートシールした。ヒートシール領域のシール強度を実施例3-1と同様にして測定した結果、11N/15mmであった。
(実施例3-8)
 本実施例は、照射エネルギーを10J/cmとした点のみ実施例3-7と異なる。シール強度は、15N/15mmであった。
(実施例3-9)
 本実施例は、照射エネルギーを15J/cmとした点のみ実施例3-8と異なる。シール強度は、15N/15mmであった。
(比較例3-1)
 本比較例は、照射エネルギーを1J/cmとした点のみ実施例3-1と異なる。シール強度は、1N/15mmであった。
(比較例3-2)
 本比較例は、照射エネルギーを16J/cmとした点のみ実施例3-1と異なる。レーザー光の照射を行った側のPET層が、熱により蒸発して消失し、ヒートシールすることができなかった。
(比較例3-3)
 本実施例は、照射エネルギーを1J/cmとした点のみ実施例3-4と異なる。シール強度は、1N/15mmであった。
(比較例3-4)
 本比較例は、照射エネルギーを16J/cmとした点のみ実施例3-4と異なる。レーザー光の照射を行った側のPET層が、熱により蒸発して消失し、ヒートシールすることができなかった。
(比較例3-5)
 本比較例は、照射エネルギーを1J/cmとした点のみ実施例3-7と異なる。シール強度は、1N/15mmであった。
(比較例3-6)
 本比較例は、照射エネルギーを16J/cmとした点のみ実施例3-7と異なる。PET層が、熱により蒸発して消失し、ヒートシールすることができなかった。
 以上の結果を、以下の表4にまとめて示す。表4に示す通り、各実施例においては10N/15mm以上の充分なシール強度が得られることが確認できた。これに対し、各比較例においては、PET層が消失して、ヒートシールすることができないか、ヒートシールすることができてもシール強度は1N/15mmであり、充分なシール強度が得られないことが確認できた。
Figure JPOXMLDOC01-appb-T000004
<評価4>
 実施例4-1~4-9に係る2軸配向ポリエステルの層を表面に含む積層体フィルムに、MD方向に対する相異なる角度を有する直線形状の照射パターンでレーザー光を照射し、これを用いた図8に示す包装袋を作製して、それぞれのMD方向およびTD方向におけるシール強度を測定した。
 各積層体フィルムは、2軸配向ポリエチレンテレフタレート(12μm)/アルミニウム(9μm)/2軸配向ポリエチレンテレフタレート(12μm)の層構成を有する。
 各積層体フィルムに、最大出力250Wのパルスレーザー加工装置を用いて、出力30%、スキャンスピード30m/minの条件で、回折光学素子により14mm幅の直線形状のレーザー光を照射して、MD方向に対して各角度をなす直線状の加工跡を形成してシール部を設けた。
 レーザー加工を行った各積層体フィルムに140℃、0.2MPaの熱および荷重を2秒間加えてヒートシール処理を行った後、引張試験機でMD方向およびTD方向におけるシール強度を測定した。
 表5に加工跡の積層体フィルムのMD方向に対する角度(°)、MD方向およびTD方向におけるシール強度(N/15mm)、シール強度の安定性の評価結果を示す。評価結果には、MD方向とTD方向とにおけるシール強度の差がない場合には「++」を記載し、30%未満である場合には「+」を記載し、30%以上である場合には「-」を記載した。
Figure JPOXMLDOC01-appb-T000005
 実施例4-1~4-5に係る積層体フィルムにより作成された包装袋はいずれもMD方向とTD方向とにおけるシール強度の差が30%未満であった。このことから、積層体フィルムのMD方向に対する直線状の加工跡の角度を5°以上85°以下とすることで、シール強度をMD方向およびTD方向に対して均等に付与できることが確認された。実施例4-6~4-9においても、MD方向およびTD方向に対するシール強度の差は生ずるものの、一定のシール強度が確認できた。
 以上説明したように、本発明によれば、高効率で安全性の高い方法により、フィルムにヒートシール性を付与でき、このようなフィルムを用いた包装容器を提供することができる。
 本発明は、包装袋等に用いられるフィルムのヒートシール性向上に有用である。
 10、11、12、13、14、15、16、17  フィルム
 2  ヒートシール性を付与する領域
 4  微細構造
 5  アルミニウム層
 6  ポリエチレン層
 7  配向ポリプロピレン層 20  包装袋
 30、31、32、33、34、35  2軸配向ポリエチレン層
 100、101  包装容器

Claims (17)

  1.  2軸配向ポリエステルの層単体、または、前記2軸配向ポリエステルの層を少なくとも一表面に含む積層体からなるフィルムの所定の領域にレーザー光を走査しながら照射することにより、
     前記所定の領域における前記2軸配向ポリエステルの層の表面にヒートシール性を付与する方法。
  2.  前記積層体は、両表面に前記2軸配向ポリエステルの層をそれぞれ含むとともに各前記2軸配向ポリエステルの層の間に熱可塑性樹脂層を含み、前記積層体からなるフィルムの所定の領域において、レーザー光を一表面側から走査しながら照射することにより、
     前記一表面側の2軸配向ポリエステルの層の所定の領域、及び、他の表面側の前記2軸配向ポリエステルの前記所定の領域にヒートシール性を付与する請求項1に記載の方法。
  3.  前記積層体は、前記2軸配向ポリエステルの層を一表面側に含むとともに前記2軸配向ポリエステルの層の他の表面側に熱可塑性樹脂層を含み、前記積層体からなるフィルムの所定の領域において、レーザー光を他の表面側から走査しながら照射することにより、
     前記一表面側の前記2軸配向ポリエステルの前記所定の領域にヒートシール性を付与する請求項1に記載の方法。
  4.  前記積層体は、アルミニウム層を含む、請求項1~3のいずれかに記載の方法。
  5.  前記積層体は、バリア性を有するバリアフィルムを含む、請求項1~4のいずれかに記載の方法。
  6.  前記2軸配向ポリエステルとして、2軸配向ポリエチレンテレフタレートを用いる、請求項1~5のいずれかに記載の方法。
  7.  前記レーザー光として、赤外線波長を有する炭酸ガスレーザー光を用いる、請求項1~6のいずれかに記載の方法。
  8.  前記2軸配向ポリエステルの層は、融点が225℃以上270℃以下である、請求項1~7に記載の方法。
  9.  前記2軸配向ポリエステルの層は、150℃で30分加熱したときの流れ方向における加熱収縮率が、0.5%以上2.0%以下である、請求項1~8のいずれかに記載の方法。
  10.  前記2軸配向ポリエステルの層は、流れ方向におけるヤング率と流れ方向に垂直な方向におけるヤング率との合計が、8GPa以上12GPa以下である、請求項1~9のいずれかに記載の方法。
  11.  前記2軸配向ポリエステルの層は、流れ方向における破断強度と流れ方向に垂直な方向における破断強度との合計が、200MPa以上540MPa以下である、請求項1~10のいずれかに記載の方法。
  12.  前記レーザー光は照射するエネルギーが2J/cm以上15J/cm以下である、請求項1~11のいずれかに記載の方法。
  13.  前記レーザー光は、赤外線波長のパルス光であり、各パルスの全照射エネルギーは0.1J以上1J以下である、請求項1~12のいずれかに記載の方法。
  14.  前記パルス光の最大パルス速度は、1000パルス/秒以上500000パルス/秒以下である、請求項13に記載の方法。
  15.  前記レーザー光は、前記2軸配向ポリエステルの層の流れ方向に対して5°以上85°以下の角度をなす直線状の照射形状で照射される、請求項1~14のいずれかに記載の方法。
  16.  請求項1~15のいずれかに記載のヒートシール性付与方法を用いて、1枚以上のフィルムにヒートシール性を付与する工程と、
     前記1枚以上のフィルムのヒートシール性を付与された領域どうしをヒートシールする工程とを含む、包装容器の製造方法。
  17.  開口部を有する容器本体と前記容器本体の開口部を封止するフィルムとを備える包装容器の製造方法であって、
     請求項1~15のいずれかに記載のヒートシール性付与方法を用いて、フィルムにヒートシール性を付与する工程と、
     前記フィルムのヒートシール性を付与された領域を前記容器本体にヒートシールする工程とを含む、包装容器の製造方法。
PCT/JP2015/002944 2014-06-12 2015-06-11 2軸配向ポリエステルフィルムのヒートシール性付与方法、及び包装容器の製造方法 WO2015190110A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15805886.7A EP3130629B1 (en) 2014-06-12 2015-06-11 Method for imparting heat sealability to biaxially oriented polyester film, and method for producing packaging container
KR1020167031732A KR101944170B1 (ko) 2014-06-12 2015-06-11 2축 배향 폴리에스테르 필름의 히트 시일성 부여 방법, 및 포장 용기의 제조 방법
CN201580025514.5A CN106459454A (zh) 2014-06-12 2015-06-11 双轴取向聚酯薄膜的热封性赋予方法以及包装容器的制造方法
US15/366,329 US10808092B2 (en) 2014-06-12 2016-12-01 Method for imparting heat sealability to a biaxially oriented polyester film, and method for producing a packaging container

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2014-121672 2014-06-12
JP2014121672A JP6048452B2 (ja) 2014-06-12 2014-06-12 2軸延伸ポリエステルフィルムにヒートシール性を付与する方法、ヒートシール性を付与した2軸延伸ポリエステルフィルム及びこれを用いた包装体
JP2014181344A JP6048464B2 (ja) 2014-09-05 2014-09-05 2軸延伸ポリエステルフィルムにヒートシール性を付与する方法
JP2014-181344 2014-09-05
JP2015-026632 2015-02-13
JP2015026632A JP6036870B2 (ja) 2015-02-13 2015-02-13 2軸延伸ポリエステルフィルムおよびこれを用いた包装袋
JP2015-082606 2015-04-14
JP2015082606A JP6094619B2 (ja) 2015-04-14 2015-04-14 2軸延伸ポリエステルフィルムの表面処理方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/366,329 Continuation US10808092B2 (en) 2014-06-12 2016-12-01 Method for imparting heat sealability to a biaxially oriented polyester film, and method for producing a packaging container

Publications (1)

Publication Number Publication Date
WO2015190110A1 true WO2015190110A1 (ja) 2015-12-17

Family

ID=54833221

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/002944 WO2015190110A1 (ja) 2014-06-12 2015-06-11 2軸配向ポリエステルフィルムのヒートシール性付与方法、及び包装容器の製造方法

Country Status (6)

Country Link
US (1) US10808092B2 (ja)
EP (1) EP3130629B1 (ja)
KR (1) KR101944170B1 (ja)
CN (1) CN106459454A (ja)
TW (1) TWI648118B (ja)
WO (1) WO2015190110A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017006521A1 (ja) * 2015-07-07 2017-01-12 凸版印刷株式会社 フィルム、これを用いた包装袋およびフィルムへのヒートシール性の付与方法
WO2017043030A1 (ja) * 2015-09-07 2017-03-16 凸版印刷株式会社 レーザー加工装置
JP2018058973A (ja) * 2016-10-04 2018-04-12 凸版印刷株式会社 フィルム及びフィルムの製造方法
JP2018188593A (ja) * 2017-05-11 2018-11-29 凸版印刷株式会社 フィルムの加工方法
WO2019035409A1 (ja) * 2017-08-14 2019-02-21 東洋製罐グループホールディングス株式会社 ヒートシール性ポリエステル延伸フィルム及びその製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3569411A1 (en) * 2018-05-18 2019-11-20 Dow Global Technologies Llc Spout pouch and method of making same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63308042A (ja) * 1987-03-16 1988-12-15 ミネソタ マイニング アンド マニユフアクチユアリング カンパニー 半結晶性ポリマーの表面改質方法および該改質表面を有する半結晶性ポリマー物品
JPH10139900A (ja) * 1996-11-06 1998-05-26 Kishimoto Akira 樹脂表面の加工方法
JP2001047561A (ja) * 1999-08-10 2001-02-20 Showa Denko Kk 酸素捕捉機能樹脂層を含むラミネートフィルム及びそれを使用したフレキシブルパッケージ

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4375494A (en) * 1980-03-12 1983-03-01 Imperial Chemical Industries Plc Polyester film composites
US4631155A (en) 1985-02-01 1986-12-23 American Hoechst Corporation Process for manufacture of surface-modified oriented polymeric film
US4894107A (en) * 1985-05-16 1990-01-16 American National Can Company Process for making multiple layer polymeric films
US4879176A (en) 1987-03-16 1989-11-07 Minnesota Mining And Manufacturing Company Surface modification of semicrystalline polymers
EP0287216B1 (en) * 1987-03-16 1992-08-12 Minnesota Mining And Manufacturing Company Surface modification of semicrystalline polymers
WO1990003886A1 (en) * 1988-10-12 1990-04-19 Toyo Seikan Kaisha, Ltd. Heat-sealable cap for polyester vessel and vessels capped with same
JPH0780502B2 (ja) * 1989-03-17 1995-08-30 東洋製罐株式会社 ヒートシール容器
JPH02292335A (ja) * 1989-05-02 1990-12-03 Toray Ind Inc 二軸配向熱可塑性樹脂フィルムおよびその製造方法
JPH0426339A (ja) 1990-05-18 1992-01-29 Seiko Epson Corp 永久磁石回転子
JPH0483637A (ja) * 1990-07-26 1992-03-17 Du Pont Mitsui Polychem Co Ltd 紙容器用筒状部材の製造方法
JP3253083B2 (ja) * 1992-08-20 2002-02-04 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー レーザー放射線を使用して配向した重合体基質の微細構造表面を得る方法
US7001475B2 (en) * 2001-12-11 2006-02-21 3M Innovative Properties Company Film structures and methods of making film structures
JP2007302314A (ja) * 2006-05-12 2007-11-22 Taisei Lamick Co Ltd 包装用積層フィルムおよびそれを用いた液体注出ノズル
US8945702B2 (en) * 2007-10-31 2015-02-03 Bemis Company, Inc. Barrier packaging webs having metallized non-oriented film
JP7080502B2 (ja) * 2020-01-29 2022-06-06 三協化学株式会社 美爪料除去剤

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63308042A (ja) * 1987-03-16 1988-12-15 ミネソタ マイニング アンド マニユフアクチユアリング カンパニー 半結晶性ポリマーの表面改質方法および該改質表面を有する半結晶性ポリマー物品
JPH10139900A (ja) * 1996-11-06 1998-05-26 Kishimoto Akira 樹脂表面の加工方法
JP2001047561A (ja) * 1999-08-10 2001-02-20 Showa Denko Kk 酸素捕捉機能樹脂層を含むラミネートフィルム及びそれを使用したフレキシブルパッケージ

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017006521A1 (ja) * 2015-07-07 2017-01-12 凸版印刷株式会社 フィルム、これを用いた包装袋およびフィルムへのヒートシール性の付与方法
US10427377B2 (en) 2015-07-07 2019-10-01 Toppan Printing Co., Ltd. Film, packaging bag using the film, and method of imparting heat sealing properties to the film
WO2017043030A1 (ja) * 2015-09-07 2017-03-16 凸版印刷株式会社 レーザー加工装置
US10213974B2 (en) 2015-09-07 2019-02-26 Toppan Printing Co., Ltd. Laser processing apparatus
JP2018058973A (ja) * 2016-10-04 2018-04-12 凸版印刷株式会社 フィルム及びフィルムの製造方法
JP2018188593A (ja) * 2017-05-11 2018-11-29 凸版印刷株式会社 フィルムの加工方法
JP7027700B2 (ja) 2017-05-11 2022-03-02 凸版印刷株式会社 フィルムの加工方法
WO2019035409A1 (ja) * 2017-08-14 2019-02-21 東洋製罐グループホールディングス株式会社 ヒートシール性ポリエステル延伸フィルム及びその製造方法

Also Published As

Publication number Publication date
TW201603932A (zh) 2016-02-01
EP3130629A1 (en) 2017-02-15
US10808092B2 (en) 2020-10-20
CN106459454A (zh) 2017-02-22
EP3130629A4 (en) 2017-12-06
US20170081490A1 (en) 2017-03-23
TWI648118B (zh) 2019-01-21
KR20160146822A (ko) 2016-12-21
EP3130629B1 (en) 2019-01-23
KR101944170B1 (ko) 2019-01-30

Similar Documents

Publication Publication Date Title
WO2015190110A1 (ja) 2軸配向ポリエステルフィルムのヒートシール性付与方法、及び包装容器の製造方法
JP6048452B2 (ja) 2軸延伸ポリエステルフィルムにヒートシール性を付与する方法、ヒートシール性を付与した2軸延伸ポリエステルフィルム及びこれを用いた包装体
ES2719580T3 (es) Producto compuesto de tipo laminar, especial para recipientes, con una capa promotora de adhesión caracterizada por diferentes máximos de absorción del grupo C=O
WO2014061651A1 (ja) 積層フィルムおよび包装容器
JP6094619B2 (ja) 2軸延伸ポリエステルフィルムの表面処理方法
WO2015111736A1 (ja) ガゼット袋、ガゼット袋の製造方法、及び積層体の接合方法
JP6048464B2 (ja) 2軸延伸ポリエステルフィルムにヒートシール性を付与する方法
JP2015013441A (ja) 積層フィルムおよび包装容器
US11731825B2 (en) Package and film
JP6756146B2 (ja) 積層体の製造方法
JP6094647B2 (ja) 包装用フィルム及び包装袋
JP6036870B2 (ja) 2軸延伸ポリエステルフィルムおよびこれを用いた包装袋
JP2018015906A (ja) 積層フィルム及びその製造方法、並びに包装袋
JP6855703B2 (ja) ヒートシール方法
JP6776539B2 (ja) ヒートシール方法
JP2017222393A (ja) 包装袋
JP6048537B1 (ja) フィルム、包装袋およびフィルムのヒートシール性付与方法
JP6897049B2 (ja) フィルム及びフィルムの製造方法
WO2022004186A1 (ja) 表面処理方法並びにフィルム及びそれを用いた包装袋
JP7311668B2 (ja) 易開封性包装体
JP6953686B2 (ja) 包装容器
JP6094636B2 (ja) フィルムのヒートシール方法及び包装袋の製造方法
JP6094645B2 (ja) フィルムの保管方法
JP2022075694A (ja) 包装体、フィルム及び内容物入り包装体
JP2014005070A (ja) 易開封性バリア包装袋用ラミネートフィルム、その製造方法及びそれを用いたバリア包装袋

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15805886

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015805886

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015805886

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167031732

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE