WO2015178297A1 - 透明導電性フィルム - Google Patents

透明導電性フィルム Download PDF

Info

Publication number
WO2015178297A1
WO2015178297A1 PCT/JP2015/063996 JP2015063996W WO2015178297A1 WO 2015178297 A1 WO2015178297 A1 WO 2015178297A1 JP 2015063996 W JP2015063996 W JP 2015063996W WO 2015178297 A1 WO2015178297 A1 WO 2015178297A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent conductive
layer
indium
tin
conductive layer
Prior art date
Application number
PCT/JP2015/063996
Other languages
English (en)
French (fr)
Inventor
幸大 宮本
和明 佐々
広宣 待永
恵梨 上田
愛美 黒瀬
智剛 梨木
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to JP2015555884A priority Critical patent/JP6066154B2/ja
Priority to CN201580001616.3A priority patent/CN105473756B/zh
Priority to KR1020167000424A priority patent/KR20170008195A/ko
Priority to KR1020227002111A priority patent/KR20220013022A/ko
Priority to US14/908,855 priority patent/US20160160345A1/en
Publication of WO2015178297A1 publication Critical patent/WO2015178297A1/ja
Priority to US16/378,775 priority patent/US20190233939A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/562Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks for coating elongated substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/42Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes polyesters; polyethers; polyacetals
    • H01B3/421Polyesters
    • H01B3/426Polycarbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/42Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes polyesters; polyethers; polyacetals
    • H01B3/427Polyethers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers

Definitions

  • the present invention relates to a transparent conductive film applied to an input display device or the like capable of inputting information by contact with a finger or a stylus pen.
  • a transparent conductive material comprising a film substrate, a transparent conductive layer formed on the surface of the film substrate, and an adhesive layer laminated to embed the transparent conductive layer
  • Adhesive film is used.
  • the film is subjected to a crystal conversion treatment by heating, and the ITO film after the heat treatment is subjected to an etching treatment or the like to obtain a transparent electrode. A pattern is obtained.
  • indium tin composite oxide in which the amount of tin atoms is 1 to 6% by weight with respect to the weight of indium atoms and tin atoms added, the film thickness is 15 to 50 nm, and the hole mobility is 30 to 30%.
  • a transparent conductive film having a transparent conductive layer of 45 cm 2 / V ⁇ S and a carrier density of (2 to 6) ⁇ 10 20 pieces / cm 3 has been proposed (Patent Document 1).
  • the hole mobility before the crystal conversion treatment by heating is 15 to 28 cm 2 / V ⁇ S, and the carrier density is (2 to 5) ⁇ 10 20 pieces / cm 3.
  • the hole mobility after the treatment is larger than that before the crystal conversion treatment by heating, and the carrier density after the crystal conversion treatment by heating is a value that is not so different from that before the crystal conversion treatment by heating. According to this structure, the crystalline transparent conductive layer which is excellent in transparency and whose specific resistance is not too low is provided.
  • the arithmetic average roughness Ra of the surface on which the transparent conductive layer of the transparent substrate is formed is 1.0 nm or less, and the amount of tin atoms in the transparent conductive layer is More than 6 wt% and not more than 15 wt% based on the total weight of indium atoms and tin atoms, the hole mobility of the transparent conductive layer is 10 to 35 cm 2 / V ⁇ s, and the carrier density is (6 To 15) ⁇ 10 20 / cm 3 has been proposed (Patent Document 2).
  • the hole mobility before the crystal conversion treatment by heating is 5 to 30 cm 2 / V ⁇ S
  • the carrier density is (1 to 10) ⁇ 10 20 pieces / cm 3. Both the hole mobility and carrier density after the treatment are somewhat larger than those before the crystal conversion treatment.
  • the ITO transparent conductive layer cannot be heated at a high temperature for a long time during the crystal conversion treatment by heating. Since there is a limit to the amount of tin replaced in the conductive layer, there is a problem that it is difficult to achieve further lower resistance.
  • the object of the present invention is to heat the amorphous transparent conductive layer before the crystal conversion treatment, dramatically improve the electrical characteristics of the transparent conductive layer after the crystal conversion treatment, and realize further reduction in resistance. It is in providing the transparent conductive film which can be manufactured.
  • the transparent conductive film of the present invention is formed by forming an amorphous transparent conductive layer made of an indium-tin composite oxide on a polymer film substrate by sputtering, and the amorphous transparent conductive film.
  • the carrier density of the crystalline transparent conductive layer is n c ⁇ 10 19
  • the hole mobility is ⁇ c
  • the movement distance L is ⁇ (n c ⁇ n a ) 2 + ( ⁇ c ⁇ a ) 2 ⁇ 1/2
  • the carrier density n a ⁇ 10 19 of the amorphous transparent conductive layer before the crystal conversion treatment is (10 to 60) ⁇ 10 19 / cm 3 and the hole mobility ⁇ a is 10 to 25 cm 2 / V ⁇ s and the crystal conversion treatment
  • the hole mobility mu c is 20 ⁇ 40cm 2 / V ⁇ s
  • the amorphous transparent conductive layer is crystal-converted at a temperature of 110 to 180 ° C. within 120 minutes.
  • the amorphous transparent conductive layer has a thickness of 10 nm to 40 nm, and the amorphous transparent conductive layer has a specific resistance of 4.0 ⁇ 10 ⁇ 4 ⁇ ⁇ cm to 2.0 ⁇ 10 ⁇ 3 ⁇ ⁇
  • the specific resistance of the crystalline transparent conductive layer is 1.1 ⁇ 10 ⁇ 4 ⁇ ⁇ cm to 3.0 ⁇ 10 ⁇ 4 ⁇ ⁇ cm.
  • the crystalline transparent conductive layer is made of an indium-tin composite oxide, and the ratio of tin oxide represented by ⁇ tin oxide / (indium oxide + tin oxide) ⁇ ⁇ 100 (%) is 0.5 to 15%. % By weight.
  • ⁇ (n c ⁇ n a ) 2 + ( ⁇ c ⁇ a ) is calculated from the hole mobility and carrier density before the crystal conversion treatment, and the hole mobility and carrier density after the crystal conversion treatment.
  • ) 2 ⁇ 1/2 is defined as the movement distance L, and the movement distance is 50 to 150. Therefore, the electrical property of the crystalline transparent conductive layer after the crystal conversion treatment with respect to the amorphous transparent conductive layer before the crystal conversion treatment is The characteristics are dramatically improved, and further resistance reduction can be realized.
  • the amorphous transparent conductive layer is crystallized at a temperature of 110 to 180 ° C. within 2 hours, the crystal can be transformed at a relatively low temperature in a short time, and the crystalline transparent conductive layer is efficiently formed. can do.
  • the thickness of the amorphous transparent conductive layer is 15 nm to 40 nm, and the specific resistance of the amorphous transparent conductive layer is 4.0 ⁇ 10 ⁇ 4 ⁇ ⁇ cm to 2.0 ⁇ 10 ⁇ 3 ⁇ ⁇ cm, Since the specific resistance of the crystalline transparent conductive layer is 1.1 ⁇ 10 ⁇ 4 ⁇ ⁇ cm to 3.0 ⁇ 10 ⁇ 4 ⁇ ⁇ cm, low resistance is achieved while maintaining transparency and bending resistance can do.
  • the crystalline transparent conductive layer is made of an indium-tin composite oxide, and the ratio of tin oxide represented by ⁇ tin oxide / (indium oxide + tin oxide) ⁇ ⁇ 100 (%) is 0.00. 5 to 15% by weight. That is, even if it is difficult to be crystallized due to a large content of tin atoms, the amorphous transparent conductive layer is surely crystallized in the present invention, so that low resistance can be reliably realized. .
  • FIG. 6 is a view showing a moving distance in transparent conductive layers of Examples 1 to 7.
  • FIG. 4 is a diagram showing a moving distance in transparent conductive layers of Comparative Examples 1 to 3.
  • FIG. 1 is a diagram schematically showing a configuration of a transparent conductive film according to the present embodiment.
  • the length, width, or thickness of each component in FIG. 1 shows an example, and the length, width, or thickness of each component in the touch panel sensor of the present invention is not limited to that in FIG. And
  • the transparent conductive film 1 includes a film base 2 and a crystalline transparent conductive layer 3 formed on one main surface 2a of the base.
  • An undercoat layer such as a dielectric layer or a hard coat layer may be formed between the film substrate 2 and the crystalline transparent conductive layer 3.
  • An adhesive layer may be formed on the crystalline transparent conductive layer 3.
  • the transparent conductive film 1 has the crystalline transparent conductive layer 3 formed on one main surface a2 of the film base material 2, as shown in FIG.
  • the crystalline film 4 may have the crystalline transparent conductive layers 3 and 5 formed on both main surfaces 2a and 2b of the film substrate 1. That is, the crystalline transparent conductive layer of the present invention may be formed on both surfaces of the film substrate.
  • the film base material 2 is a polymer film having the strength required for handleability and having transparency in the visible light region.
  • the polymer film a film excellent in transparency, heat resistance, and surface smoothness is preferably used.
  • the material is a single polyester such as polyethylene terephthalate or polyethylene naphthalate, polycycloolefin, polycarbonate, or the like. Examples thereof include a polymer of a component or a copolymerized polymer with other components. Among them, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polycycloolefin, polycarbonate, and the like are particularly preferable because of excellent transparency and mechanical properties.
  • the polymer film is preferably stretched from the viewpoint of strength, and more preferably biaxially stretched. It does not specifically limit as a extending
  • the thickness of the substrate is not particularly limited, but is preferably in the range of 2 ⁇ m to 200 ⁇ m, more preferably in the range of 2 ⁇ m to 150 ⁇ m, and still more preferably in the range of 20 ⁇ m to 150 ⁇ m. When the thickness of the film is less than 2 ⁇ m, the mechanical strength may be insufficient, and it may be difficult to continuously form an amorphous transparent conductive layer by rolling the film. On the other hand, when the thickness of the film exceeds 200 ⁇ m, the scratch resistance of the crystalline transparent conductive layer and the dot characteristics when the touch panel is formed may not be improved.
  • the crystalline transparent conductive layer is obtained by subjecting an amorphous transparent conductive layer formed on a film substrate to a crystal conversion treatment by heating under a predetermined condition.
  • These crystalline transparent conductive layers are made of a predetermined transparent conductor, and the material for forming the transparent conductor is not particularly limited.
  • Sn, Zn, Ga, Sb, Ti, Si, Zr, Mg, Al A metal oxide of at least one metal selected from the group consisting of Au, Ag, Cu, Pd, and W is preferably used.
  • the metal oxide may further contain a metal atom shown in the above group, if necessary.
  • ITO indium-tin composite oxide
  • ATO antimony-tin composite oxide
  • the amount of SnO 2 in the metal oxide is the sum of In 2 O 3 and SnO 2. 0.5 to 15% by weight, preferably 3 to 15% by weight, more preferably 5 to 12% by weight, and more preferably 6 to 12% by weight based on the weight. More preferably. If the content of tin atoms in the crystalline transparent conductive layer is less than 0.5% by weight, the amount of tin atoms that can be substituted is small, the carrier density is reduced, and as a result, the specific resistance is increased, and the content of tin atoms is increased. When the amount exceeds 15 wt%, the amount of tin atoms that do not contribute to substitution increases, the mobility decreases, and the specific resistance increases.
  • the ITO layer may contain metal elements other than In and Sn, and Zn, Ga, Sb, Ti, Si, Zr, Mg, Al, Au, Ag, Cu, Pd, W, Fe, Pb, 3% by weight or less of at least one metal selected from the group consisting of Ni, Nb, Cr, and Ga may be included.
  • the crystalline transparent conductive layer may have a structure in which a plurality of indium-tin composite oxide layers having different amounts of tin are laminated.
  • the ITO layer may be two layers or three or more layers.
  • the ITO layer is composed of two or more layers, at least one layer is a crystalline transparent conductive layer, and preferably all the layers are crystalline transparent conductive layers.
  • the amount of SnO 2 in the first ITO layer on the film substrate side is based on the weight of In 2 O 3 and SnO 2 added. It is preferably 6 to 15% by weight, more preferably 6 to 12% by weight, and further preferably 6.5 to 10.5% by weight.
  • the amount of SnO 2 in the second ITO layer is preferably 0.5% by weight to 5.5% by weight with respect to the weight of In 2 O 3 and SnO 2 added. More preferably, it is 5.5% by weight, and even more preferably 1-5% by weight.
  • an indium composite oxide is used for the transparent conductive thin film.
  • an oxide of a tetravalent metal element into indium oxide, when a crystal of indium oxide is formed by heating or the like, substitution occurs between the trivalent indium and the tetravalent metal element, and the crystalline layer This is to utilize the fact that surplus electrons become carriers. Therefore, in the indium-based composite oxide, when the content of the tetravalent metal element oxide is increased, the specific resistance decreases because the number of carriers that carry current increases.
  • crystallization of indium oxide an increase in the content of oxides of tetravalent metal elements increases impurities that hinder crystallization. Therefore, in crystallization at the same heating temperature, oxidation of tetravalent metal elements is performed. The higher the content of the product, the longer the crystal conversion time.
  • crystallization of indium oxide is considered to shorten the crystal conversion time if crystal nuclei can be formed with lower energy. That is, in the crystallization, it is considered that securing energy necessary for forming crystal nuclei becomes rate-limiting.
  • the thin film of indium oxide formed on the film substrate is affected by the gas generated from the film substrate during sputtering, so the thin film formed at a position farthest from the film substrate (the outermost surface side) has fewer defects. It is assumed that it is easy to crystallize.
  • the ratio of the amount of SnO 2 in the ITO layer is larger first indium - SnO tin composite oxide layer, and then the ITO layer 2
  • the second indium-tin composite oxide layer With providing the second indium-tin composite oxide layer with a small amount ratio, a layer that is easy to crystallize with a small ratio of impurities such as tetravalent metal elements is located on the outermost surface side (side in contact with the outside air).
  • the amount of SnO 2 in the first ITO layer on the film substrate side is based on the weight of In 2 O 3 and SnO 2 added. It is preferably 0.5% to 5.5% by weight, more preferably 1 to 4% by weight, and even more preferably 2 to 4% by weight.
  • the amount of SnO 2 in the second ITO layer formed adjacent to the first ITO layer is 6% by weight to 15% by weight with respect to the weight of In 2 O 3 and SnO 2 added. %, More preferably 7 to 12% by weight, still more preferably 8 to 12% by weight.
  • the amount of SnO 2 in the third ITO layer formed adjacent to the second ITO layer is 0.5 wt% to the weight of In 2 O 3 and SnO 2 added. It is preferably 5.5% by weight, more preferably 1 to 4% by weight, and even more preferably 2 to 4% by weight.
  • the first indium-tin composite oxide layer having a small proportion of SnO 2 in the ITO layer is provided on the film substrate side, so that the film base is formed during sputtering.
  • the influence of the gas generated from the material can be reduced, and inhibition of crystallization of the amorphous transparent conductive layer can be suppressed.
  • the third indium-tin composite oxide layer with a small proportion of SnO 2 in the ITO layer on the outermost surface side the time until the crystallization of the transparent conductive film can be shortened. As a result, crystallization of the entire amorphous transparent conductive layer including the second indium-tin composite oxide layer is promoted, and the crystal conversion time of the amorphous transparent conductive layer is further shortened.
  • the overall specific resistance can be further reduced.
  • the thickness of the crystalline transparent conductive layer having the above single layer or multilayer structure is 15 nm to 40 nm or less, preferably 15 nm to 35 nm or less. When the thickness is less than 15 nm, it becomes difficult to convert the crystal in the crystal conversion treatment by heating, and when the thickness exceeds 40 nm, the transparency and the bending resistance are lowered.
  • the crystalline transparent conductive layer is preferably crystallized by a crystal conversion treatment by heating. Whether the crystalline transparent conductive layer is crystallized is determined by immersing the crystalline transparent conductive layer in dilute hydrochloric acid with a concentration of 5 wt% for 15 minutes, washing with water and drying, and measuring the resistance between terminals between 15 mm. I can judge. In this specification, after immersion in water, washing with water, and drying, if the resistance between terminals of 15 mm does not exceed 10 k ⁇ , the ITO layer is assumed to have been converted to crystalline.
  • the crystalline transparent conductive layer may be patterned by etching or the like into an arbitrary shape such as a comb shape, a stripe shape, or a rhombus shape.
  • the crystalline transparent conductive layer is preferably patterned in a stripe shape.
  • an undercoat layer such as a dielectric layer or a hard coat layer may be formed between the film substrate 2 and the crystalline transparent conductive layer 3.
  • the dielectric layer formed on the surface of the film base 2 on the crystalline transparent conductive layer forming surface side does not have a function as a conductive layer, and the surface resistance value is, for example, 1 ⁇ 10 6 ⁇ . / ⁇ or more (unit: ohms per square), preferably 1 ⁇ 10 7 ⁇ / ⁇ or more, more preferably 1 ⁇ 10 8 ⁇ / ⁇ or more.
  • the upper limit of the surface resistance value of the dielectric layer is about 1 ⁇ 10 13 ⁇ / ⁇ , which is a measurement limit, but may exceed 1 ⁇ 10 13 ⁇ / ⁇ .
  • an organic material such as acrylic resin, urethane resin, melamine resin, alkyd resin, siloxane polymer, organosilane condensate having a refractive index of about 1.4 to 1.6, or the above
  • a mixture of an inorganic substance and the organic substance can be given.
  • Organic dielectric layer composed of the organic substance or the mixture of the inorganic substance and the organic substance is preferably formed on the film substrate by a wet film forming method (for example, a gravure coating method). By wet coating, the surface roughness of the film substrate can be reduced, which can contribute to a reduction in specific resistance.
  • the thickness of the organic dielectric layer can be appropriately set within a suitable range, but is preferably 15 nm to 1500 nm, more preferably 20 nm to 1000 nm, and most preferably 20 nm to 800 nm. By setting it in the above range, the surface roughness can be sufficiently suppressed.
  • stacked two or more types of the said organic substance from which refractive index differs 0.01 or more or the mixture of the said inorganic substance and the said organic substance may be sufficient.
  • the surface of the film substrate is preferably smooth. This is presumably because the growth of crystal grains is hindered when the film substrate surface is rough.
  • a preferable arithmetic mean roughness (Ra) value of the film substrate surface is 1.5 nm or less.
  • a coating layer as the organic dielectric layer on the film substrate As a method for smoothing the surface of the film substrate, for example, there is a method of forming a coating layer as the organic dielectric layer on the film substrate.
  • This coating layer can be formed by applying a solution of a thermosetting resin or an ultraviolet curable resin on a substrate and curing it.
  • a thermosetting resin or an ultraviolet curable resin Although the kind of resin is not specifically limited, An epoxy type, an acrylic type, etc. are mentioned.
  • the inorganic dielectric layer made of the inorganic material is preferably formed on the film substrate 2 by a vacuum film forming method (for example, a sputtering method or a vacuum vapor deposition method).
  • a vacuum film forming method for example, a sputtering method or a vacuum vapor deposition method.
  • Impurity gas such as water or organic gas released from the polymer film substrate when forming the amorphous transparent conductive layer 3 by sputtering by forming a high-density inorganic dielectric layer by vacuum film formation can be suppressed.
  • the amount of impurity gas taken into the amorphous transparent conductive layer can be reduced, which can contribute to suppression of specific resistance after crystal conversion.
  • the thickness of the inorganic dielectric layer is preferably 2.5 nm to 100 nm, more preferably 3 nm to 50 nm, and most preferably 4 nm to 30 nm. By setting the above range, the release of impurity gas can be sufficiently suppressed. Further, it may be an inorganic dielectric layer in which two or more kinds of inorganic materials having different refractive indexes of 0.01 or more are stacked.
  • the resin contained in the polymer base film diffused at the time of sputter deposition by forming a film formed by physical vapor deposition (PVD) on the polymer base film as the inorganic dielectric layer. It can suppress that a component and water are taken in in a transparent conductive layer, and can contribute to the improvement of a mobility or a carrier density.
  • PVD physical vapor deposition
  • a sputtering method is preferable.
  • the material of the film formed by the physical vapor deposition (PVD) method is preferably a metal oxide such as aluminum oxide or silicon oxide.
  • the thickness of the film formed by physical vapor deposition (PVD) is preferably 20 nm to 100 nm.
  • the dielectric layer may be a combination of the organic dielectric layer and the inorganic dielectric layer.
  • the surface becomes smooth and a substrate capable of suppressing the impurity gas during sputtering is obtained, and the specific resistance of the crystalline transparent conductive layer is effectively reduced. It becomes possible.
  • the thicknesses of the organic dielectric layer and the inorganic dielectric layer can be set as appropriate within the above-described range.
  • the dielectric layer can also act as a sealing layer that suppresses precipitation of low molecular weight components such as oligomers from the polymer film.
  • the amorphous transparent conductive layer before crystal conversion treatment has a carrier density n a ⁇ 10 19 of (10 to 60) ⁇ 10 19 / cm 3 and a hole mobility ⁇ a of 10 to 25 cm 2 / V ⁇ s.
  • n a carrier density of the sputtering immediately after (as-deposited) and conversion to crystals pretreatment of amorphous transparent conductive layer
  • the hole mobility of the amorphous transparent conductive layer and mu a that the carrier density n a ⁇ 10 19 is (10 to 60) ⁇ 10 19 / cm 3
  • the hole mobility ⁇ a is 10 to 25 cm 2 / V ⁇ s.
  • the thickness of the amorphous transparent conductive layer is 15 nm to 40 nm, and the specific resistance of the amorphous transparent conductive layer is 4.0 ⁇ 10 ⁇ 4 ⁇ ⁇ cm to 2.0 ⁇ 10 ⁇ 3 ⁇ ⁇ cm.
  • the carrier density n c ⁇ 10 19 of the crystalline transparent conductive layer after the crystal conversion treatment by heating is (80 to 150) ⁇ 10 19 / cm 3 and the hole mobility ⁇ c is 20 to 40 cm 2 / V ⁇ s.
  • the carrier density n c ⁇ 10 19 is (80 to 150) ⁇ 10 19 / cm, where n c is the carrier density of the crystalline transparent conductive layer after the crystal conversion treatment by heating, and ⁇ c is the hole mobility. 3.
  • the hole mobility ⁇ c is 20 to 40 cm 2 / V ⁇ s.
  • the specific resistance of the crystalline transparent conductive layer is 1.1 ⁇ 10 ⁇ 4 ⁇ ⁇ cm to 3.0 ⁇ 10 ⁇ 4 ⁇ ⁇ cm.
  • the moving distance L is 50 to 150.
  • the carrier density n a ⁇ 10 19 of the amorphous transparent conductive layer, the hole mobility ⁇ a, and the carrier density n of the crystalline transparent conductive layer are defined as the moving distance of the transparent conductive layer.
  • the moving distance L is 50 to 150, preferably 65 to 150. If this moving distance L is less than 50, the resistance reduction is not sufficient.
  • the inside of the chamber of the sputtering apparatus is depressurized until a high vacuum is reached, and an inert gas such as argon gas is introduced into the chamber.
  • an initial roll around which the film base material is wound is placed in the sputtering apparatus, and the long film base material is fed from the initial roll into the chamber at a constant speed.
  • an amorphous transparent conductive layer made of indium tin composite oxide is formed on one surface of the film substrate by sputtering.
  • a sputtering method a DC magnetron sputtering method or an RF superimposed DC magnetron sputtering method can be adopted, and a magnetic field can be formed on the target surface to confine electrons, thereby preventing damage to the film substrate.
  • the argon ion energy can be controlled and the discharge voltage can be lowered.
  • the discharge voltage when forming the amorphous transparent conductive layer is 20V to 420V, preferably 100V to 200V.
  • the horizontal magnetic field when forming the amorphous transparent conductive layer is 30 mT to 200 mT, and preferably 80 mT to 130 mT.
  • ⁇ RF superposition> By superimposing RF (high frequency) on a DC power source during sputtering, the generated plasma density increases, and the ionization efficiency of sputtered particles (such as argon) increases as the plasma density increases. By increasing the ionization efficiency, the transparent conductive film can be formed under conditions of low voltage and high current.
  • Sputtering at a low voltage can reduce the energy gained by neutral argon atoms and O 2 ⁇ ions in the atmosphere, and reduce the speed of neutral argon atoms and O 2 ⁇ ions that have bounced off the target. Therefore, collision with the transparent conductive layer on which neutral argon atoms or O 2 ⁇ ions are formed can be suppressed.
  • the recoiled Ar atoms or O 2 ⁇ ions collide with the transparent conductive layer, defects are generated in the film, or the collided particles are taken into the film as impurities, causing damage to the film. These defects and the incorporated impurity atoms become the scattering centers of carriers, which hinders the movement of electrons.
  • the amount of Sn oxide that cannot be substituted can be reduced when an amorphous film formed by superimposing RF is converted to crystalline by heating.
  • An oxide of Sn that does not contribute to substitution can not only generate carriers but can be a neutral scattering center. However, generation of scattering centers can be reduced by increasing ionization efficiency, and mobility and carrier density can be increased.
  • the power ratio of RF to DC is preferably 0.05 to 1.5, and more preferably about 0.8.
  • the temperature of the film substrate at the time of forming the amorphous transparent conductive layer is ⁇ 10 ° C. or higher, preferably 100 ° C. or higher.
  • the temperature of the film substrate is 130 ° C. or higher, crystallization of the amorphous transparent conductive layer is accelerated during the crystal conversion treatment by heating, even if the amorphous transparent conductive layer has a relatively large tin atom content. Therefore, a low-resistance crystalline transparent conductive layer can be obtained.
  • the tin or tin oxide content of the amorphous transparent conductive layer is almost the same as the tin or tin oxide content of the fired target material installed in the sputtering apparatus. It can be adjusted by changing. Further, the thickness of the amorphous transparent conductive layer can be appropriately adjusted by changing the conveying speed of the long film base material or by increasing or decreasing the number of target materials. Moreover, the some amorphous transparent conductive layer from which tin or tin oxide content differs can be laminated
  • the long film base material on which the amorphous transparent conductive layer is formed is continuously conveyed into a heating oven and subjected to a crystal conversion treatment by heating.
  • the heating temperature for the crystal conversion treatment is 110 to 180 ° C., preferably 110 to 150 ° C.
  • the annealing time is within 120 minutes, preferably within 60 minutes.
  • the carrier density of the crystalline transparent conductive layer after the crystal conversion treatment by heating increases as compared with that before the crystal conversion treatment, and the hole mobility also increases.
  • the carrier density n a ⁇ 10 19 before the crystal conversion treatment is (10 to 60) ⁇ 10 19 / cm 3
  • the carrier density n c ⁇ 10 19 after the crystal conversion treatment is ( 80 to 150) ⁇ 10 19 / cm 3 , which is significantly increased.
  • the hole mobility ⁇ a before the crystal conversion treatment is 10 to 25 cm 2 / V ⁇ s
  • the hole mobility ⁇ c after the crystal conversion treatment is 20 to 40 cm 2 / V ⁇ s. Has increased.
  • the moving distance L calculated using the carrier density n a ⁇ 10 19 , n c ⁇ 10 19 and the values of the hole mobility ⁇ a and ⁇ c is used as a new index, and the moving distance L is set to 50.
  • the electrical characteristics of the crystalline transparent conductive layer with respect to the amorphous transparent conductive layer are remarkably improved, and a further reduction in resistance can be realized as compared with the conventional case.
  • the amorphous transparent conductive layer can be crystallized within 120 minutes at a temperature of 110 to 180 ° C., so that it has superior transparency compared to the conventional case.
  • a crystalline transparent conductive layer can be formed efficiently and productivity can be improved.
  • the touch panel sensor according to the present embodiment has been described above, but the present invention is not limited to the described embodiment, and various modifications and changes can be made based on the technical idea of the present invention.
  • Example 1 A film substrate in which a thermosetting resin (organic dielectric layer) having a thickness of 35 nm is formed on one surface side of a substrate made of a PET film having a thickness of 50 ⁇ m (product name “Diafoil”, manufactured by Mitsubishi Plastics) is vacuum-treated. It was installed in a sputtering apparatus and sufficiently evacuated so that the degree of vacuum was 1 ⁇ 10 ⁇ 4 Pa or less. Next, an inorganic dielectric layer made of Al 2 O 3 having a thickness of 5 nm was formed on the organic dielectric layer by using a DC magnetron sputtering method.
  • a thermosetting resin organic dielectric layer
  • RF superposition DC magnetron sputtering method discharge voltage 150 V, RF frequency 13.56 MHz, ratio of RF power to DC power (RF As a result of 0.8)
  • an amorphous transparent conductive layer made of an indium-tin composite oxide layer having a thickness of 5 nm was formed.
  • the produced transparent conductive film was heated in a 150 ° C. hot air oven and subjected to a crystal conversion treatment.
  • Example 2 Example 1 except that a single-layer amorphous transparent conductive layer having a thickness of 25 nm was formed using a sintered body of 10% by weight tin oxide and 90% by weight indium oxide as a target in Example 1. In the same manner, a transparent conductive film was obtained.
  • Example 3 In Example 2, a transparent conductive film was obtained in the same manner as in Example 2 except that a base material on which no organic dielectric layer was formed was used.
  • Example 4 In Example 3, a transparent conductive film was obtained in the same manner as in Example 3 except that a base material on which no inorganic dielectric layer was formed was used.
  • Example 5 In Example 4, a transparent conductive film was obtained in the same manner as in Example 4 except that the ratio of RF power to DC power during sputtering (RF power / DC power) was 0.4.
  • Example 6 In Example 5, a film base material in which an organic dielectric layer having a thickness of 35 nm was formed on one surface side of a PET film base material, and the ratio of RF power to DC power during sputtering (RF power / DC power) was set.
  • a transparent conductive film was obtained in the same manner as in Example 5 except that the amorphous transparent conductive layer was formed without 0, that is, RF was not superimposed.
  • Example 7 In Example 6, an amorphous transparent conductive layer having a thickness of 20 nm was formed using a sintered body of 10 wt% tin oxide and 90 wt% indium oxide as a target, and 3 wt% tin oxide was formed thereon. A transparent conductive film was obtained in the same manner as in Example 5 except that an amorphous transparent conductive layer having a thickness of 5 nm was formed using a sintered body of 97 wt% indium oxide as a target.
  • Example 6 a transparent conductive film was obtained in the same manner as in Example 6 except that a DC magnetron sputtering device having a normal magnetic field of 30 mT and a discharge voltage during sputtering was changed to 430 V.
  • Example 7 a transparent conductive film was obtained in the same manner as in Example 7 except that a DC magnetron sputtering device having a normal magnetic field of 30 mT and a discharge voltage during sputtering was changed to 430 V.
  • Comparative Example 3 In Comparative Example 1, a transparent conductive film was obtained in the same manner as in Comparative Example 1, except that the indium-tin composite oxide target (manufactured by Sumitomo Metal Mining Co., Ltd.) with a tin oxide ratio of 3 wt% was changed.
  • the indium-tin composite oxide target manufactured by Sumitomo Metal Mining Co., Ltd.
  • the thickness of the amorphous transparent conductive layer after the sputtering treatment, the carrier density, the hole mobility, and the specific resistance of the amorphous transparent conductive layer before the crystal conversion treatment The carrier density, hole mobility and specific resistance of the crystalline transparent conductive layer after the crystal conversion treatment were measured, and the crystal conversion was evaluated.
  • the thickness of the ITO layer is based on the X-ray reflectivity method as a measurement principle, and is a powder X-ray diffractometer (RINT-2000, manufactured by Rigaku Corporation) under the following measurement conditions ), The X-ray reflectivity was measured, and the obtained measurement data was calculated by analyzing with analysis software (“GXRR3” manufactured by Rigaku Corporation).
  • the analysis conditions are as follows, a two-layer model of a film base material and an ITO layer with a density of 7.1 g / cm 3 is adopted, and the least square fitting is performed with the thickness and surface roughness of the ITO layer as variables, and the ITO layer The thickness of was analyzed.
  • the carrier density was calculated using the thickness of the ITO layer obtained by the above method. (Calculation of travel distance) Based on the calculated carrier density and hole mobility after the sputtering treatment and before the annealing treatment, and the carrier density and hole mobility after the annealing treatment, the movement distance L was calculated using the above-described equation.
  • the surface resistance value ( ⁇ / ⁇ ) of the transparent conductive layer was measured by a four-terminal method according to JIS K7194 (1994). The specific resistance was calculated from the thickness of the ITO layer determined by the above method and the surface resistance value. The results are shown in Table 1.
  • Example 1 From the results of Table 1, in Example 1, the crystal conversion time is as short as 60 minutes, the moving distance L1 is very large as 77.5 (FIG. 3), and the specific resistance is 1.4 ⁇ 10 ⁇ 4 ⁇ ⁇ cm. It was found that a low resistance conductive film can be obtained with high productivity. In Example 2, the crystal conversion time was 120 minutes, which was longer than in Example 1. However, the movement distance L2 was 79.0, which was very large, and the specific resistance was 1.4 ⁇ 10 ⁇ 4 ⁇ ⁇ It was found that a low resistance conductive film was obtained with a very small value of cm.
  • Example 3 the crystal conversion time required 120 minutes, but the movement distance L3 was very large as 76.2, and the specific resistance was 1.6 ⁇ 10 ⁇ 4 ⁇ ⁇ cm. Although it was larger than 2, it showed a very small value, and it was found that a low resistance conductive film could be obtained.
  • Example 4 the crystal conversion time required 120 minutes, but the moving distance L4 was as very large as 80.3, the specific resistance was as small as 1.9 ⁇ 10 ⁇ 4 ⁇ ⁇ cm, and the resistance was low. It has been found that a conductive film can be obtained.
  • Example 5 the crystal conversion time required 120 minutes, but the moving distance L5 was as very large as 80.4, the specific resistance was as small as 2.3 ⁇ 10 ⁇ 4 ⁇ ⁇ cm, and low. It has been found that a resistive conductive film can be obtained.
  • Example 6 the crystal conversion time required 120 minutes, but the movement distance L6 was as large as 62.2, the specific resistance was as small as 2.3 ⁇ 10 ⁇ 4 ⁇ ⁇ cm, and the low resistance conductivity.
  • Example 7 the crystal conversion time is as short as 60 minutes, the moving distance L7 is as large as 74.4, the specific resistance is relatively small as 2.2 ⁇ 10 ⁇ 4 ⁇ ⁇ cm, and the low resistance conductivity It turns out that a film can be obtained.
  • Comparative Example 1 the crystal conversion time required 120 minutes, the moving distance L8 was 49.3, which was outside the range of the present invention (FIG. 4), and the specific resistance was 3.2, which was a large value. .
  • the crystal conversion time was 60 minutes, but the movement distance L9 was 44.5, which was outside the range of the present invention, and the specific resistance was as large as 3.2 ⁇ 10 ⁇ 4 ⁇ ⁇ cm. showed that.
  • the crystal conversion time required 120 minutes, the movement distance L10 was 9.3, which was outside the range of the present invention, and the specific resistance was as large as 7.0 ⁇ 10 ⁇ 4 .
  • the use of the transparent conductive film according to the present invention is not particularly limited, and is preferably a capacitive touch panel used for a mobile terminal such as a smartphone or a tablet terminal (Slate PC).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Thermal Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Non-Insulated Conductors (AREA)
  • Laminated Bodies (AREA)
  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

 結晶転化処理前の透明導電層に対する結晶転化処理後の透明導電層の電気的特性を飛躍的に向上し、更なる低抵抗化を実現することができる透明導電性フィルムを提供する。 透明導電性フィルム(1)は、フィルム基材(2)と、該基材の一方の主面(2a)に形成された結晶質透明導電層(3)とを備える。結晶転化処理前の非晶質透明導電層のキャリア密度n×1019が(10~60)×1019/cm、ホール移動度μが10~25cm/V・sであり、結晶転化処理後の結晶質透明導電層(3)のキャリア密度n×1019が(80~150)×1019/cm、ホール移動度μが20~40cm/V・sであり、{(n-n+(μ-μ1/2で定義される移動距離Lが、50~150である。

Description

透明導電性フィルム
 本発明は、指やスタイラスペン等の接触によって情報を入力することが可能な入力表示装置等に適用される透明導電性フィルムに関する。
 従来、静電容量方式のタッチパネルセンサでは、フィルム基材と、該フィルム基材の表面に形成された透明導電層と、該透明導電層を埋設するように積層された粘着層とを備える透明導電性フィルムが採用されている。通常、基板上にスパッタリング法などでITO(indium tin oxide)からなる膜を形成した後、該膜に加熱による結晶転化処理を施し、熱処理後のITO膜にエッチング処理等を施すことより、透明電極パターンが得られる。
 近年、このような透明導電性フィルムを、多点入力(multi-touch)が可能な静電容量方式のタッチパネルセンサに適用する需要が高まっている。また、大画面化や応答速度の向上を図るべく、透明導電性フィルムの更なる改良が求められている。
 例えば、スズ原子の量が、インジウム原子とスズ原子とを加えた重さに対し、1~6重量%であるインジウムスズ複合酸化物からなり、膜厚が15~50nm、ホール移動度が30~45cm/V・S、キャリア密度が(2~6)×1020個/cmである透明導電層を備える透明導電性フィルムが提案されている(特許文献1)。この透明導電層では、加熱による結晶転化処理前のホール移動度が15~28cm/V・S、キャリア密度が(2~5)×1020個/cmであることから、加熱による結晶転化処理後のホール移動度が加熱による結晶転化処理前よりも大きな値となり、加熱による結晶転化処理後のキャリア密度が加熱による結晶転化処理前とそれほど変わらない値となっている。本構成によれば、透明性に優れ、また比抵抗が低すぎることのない結晶質透明導電層が提供される。
 また、他の透明導電性フィルムとして、透明基材の透明導電層が形成されている側の表面の算術平均粗さRaが1.0nm以下であり、透明導電層中のスズ原子の量が、インジウム原子とスズ原子とを加えた重さに対し、6重量%を超え15重量%以下であり、透明導電層のホール移動度が10~35cm/V・sであり、キャリア密度が(6~15)×1020/cmである透明導電性フィルムが提案されている(特許文献2)。この透明導電層では、加熱による結晶転化処理前のホール移動度が5~30cm/V・S、キャリア密度が(1~10)×1020個/cmであることから、加熱による結晶転化処理後のホール移動度およびキャリア密度が、共に結晶転化処理前のものよりもある程度大きな値となっている。
特開2006-202756号公報 特表2012-134085号公報
 しかしながら、透明導電性フィルムでは、該基材が高分子で形成されていることから、加熱による結晶転化処理の際、ITO製透明導電層を高温で長時間加熱することができず、ITO製透明導電層におけるスズの置換量に限界があることから、更なる低抵抗化を実現することが難しいという問題がある。
 本発明の目的は、結晶転化処理前の非晶質透明導電層を加熱し、結晶転化処理した後の透明導電層の電気的特性を飛躍的に向上し、更なる低抵抗化を実現することができる透明導電性フィルムを提供することにある。
 上記目的を達成するために、本発明の透明導電性フィルムは、インジウム-スズ複合酸化物からなる非晶質透明導電層をスパッタリングによって高分子フィルム基材上に形成し、前記非晶質透明導電層を結晶転化処理することで得られる結晶質透明導電層を有する透明導電性フィルムであって、前記非晶質透明導電層のキャリア密度をn×1019、ホール移動度をμa、前記結晶質透明導電層のキャリア密度をn×1019、ホール移動度をμとし、移動距離Lを{(n-n+(μ-μ1/2としたとき、前記結晶転化処理前の前記非晶質透明導電層のキャリア密度n×1019が(10~60)×1019/cm、ホール移動度μが10~25cm/V・sであり、前記結晶転化処理後の前記結晶質透明導電層のキャリア密度n×1019が(80~150)×1019/cm、ホール移動度μが20~40cm/V・sであり、前記移動距離Lが50~150であることを特徴とする。
 また、前記結晶転化処理は、温度110~180℃、120分以内で、前記非晶質透明導電層を結晶転化する。
 また、前記非晶質透明導電層の厚さが10nm~40nmであり、前記非晶質透明導電層の比抵抗が4.0×10-4Ω・cm~2.0×10-3Ω・cmであり、前記結晶質透明導電層の比抵抗が1.1×10-4Ω・cm~3.0×10-4Ω・cmである。
 さらに、前記結晶質透明導電層は、インジウム-スズ複合酸化物からなり、{酸化スズ/(酸化インジウム+酸化スズ)}×100(%)で表される酸化スズの割合が0.5~15重量%である。
 本発明によれば、結晶転化処理前のホール移動度とキャリア密度、および結晶転化処理後のホール移動度とキャリア密度から算出される{(n-n+(μ-μ1/2を移動距離Lと定義し、該移動距離が50~150であるため、結晶転化処理前の非晶質透明導電層に対する結晶転化処理後の結晶質透明導電層の電気的特性が飛躍的に向上し、更なる低抵抗化を実現することができる。
 また、非晶質透明導電層が、温度110~180℃、2時間以内で結晶化されるため、比較的低温かつ短時間で結晶転化することができ、結晶質透明導電層を効率的に形成することができる。
 さらに、非晶質透明導電層の厚さが15nm~40nmであり、非晶質透明導電層の比抵抗が4.0×10-4Ω・cm~2.0×10-3Ω・cm、結晶質透明導電層の比抵抗が1.1×10-4Ω・cm~3.0×10-4Ω・cmであるので、透明性、耐屈曲特性を維持しつつ、低抵抗化を実現することができる。
 また、本発明では、結晶質透明導電層は、インジウム-スズ複合酸化物からなり、{酸化スズ/(酸化インジウム+酸化スズ)}×100(%)で表される酸化スズの割合が0.5~15重量%である。すなわち、スズ原子の含有量が多いために結晶化され難い場合であっても、本発明では非晶質透明導電層が確実に結晶化されるため、低抵抗化を確実に実現することができる。
本発明の実施形態に係る透明導電性フィルムの構成を概略的に示す断面図である。 本発明の実施形態に係る透明導電性フィルムの変形例を示す断面図である。 実施例1~7の透明導電性層における移動距離を示す図である。 比較例1~3の透明導電性層における移動距離を示す図である。
 以下、本発明の実施形態を図面を参照しながら詳細に説明する。
 図1は、本実施形態に係る透明導電性フィルムの構成を概略的に示す図である。なお、図1における各構成の長さ、幅あるいは厚みは、その一例を示すものであり、本発明のタッチパネルセンサにおける各構成の長さ、幅あるいは厚みは、図1のものに限られないものとする。
 図1に示すように、透明導電性フィルム1は、フィルム基材2と、該基材の一方の主面2aに形成された結晶質透明導電層3とを備えている。なお、フィルム基材2と結晶質透明導電層3との間に、誘電体層やハードコート層等のアンダーコート層が形成されていても良い。また、結晶質透明導電層3上に粘着層が形成されてもよい。
 また本実施形態において、透明導電性フィルム1は、フィルム基材2の一方の主面a2上に形成された結晶質透明導電層3を有しているが、図2に示すように、透明導電性フィルム4が、フィルム基材1の両方の主面2a,2bに形成された結晶質透明導電層3,5を有していてもよい。すなわち、本発明の結晶質透明導電層がフィルム基材の両面に形成されてもよい。
 次に、本発明における透明導電性フィルム1の各構成要素の詳細を説明する。
 (1)フィルム基材
 フィルム基材2は、取り扱い性に必要な強度を有し、かつ可視光領域において透明性を有する高分子フィルムである。高分子フィルムとしては、透明性、耐熱性、表面平滑性に優れたフィルムが好ましく用いられ、例えば、その材料として、ポリエチレンテレフタレート、ポリエチレンナフタレートなどのポリエステル、ポリシクロオレフィン、ポリカーボネート、などの単一成分の高分子または他の成分との共重合高分子等が挙げられる。中でも、透明性、機械特性に優れることからポリエチレンテレフタレート(PET)やポリエチレンナフタレート(PEN)、ポリシクロオレフィン、ポリカーボネート等が特に好適である。また、高分子フィルムは強度の観点から延伸処理が行われていることが好ましく、二軸延伸処理されていることがより好ましい。延伸処理としては特に限定されず、公知の延伸処理を採用することができる。基材の厚みは、特に限定されないものの、2μm~200μmの範囲内であることが好ましく、2μm~150μmの範囲内であることがより好ましく、20μm~150μmの範囲内であることがさらに好ましい。フィルムの厚みが2μm未満であると、機械的強度が不足し、フィルムをロール状にして非晶質透明導電層を連続的に成膜する操作が困難になる場合がある。一方、フィルムの厚みが200μmを超えると、結晶質透明導電層の耐擦傷性やタッチパネルを形成した場合の打点特性等の向上が図れない場合がある。
 (2)結晶質透明導電層
 上記結晶質透明導電層は、フィルム基材上に形成された非晶質透明導電層を所定条件で加熱による結晶転化処理することにより得られる。これら結晶質透明導電層は、所定の透明導電体からなり、透明導電体を形成する材料は、特に限定されず、In、Sn、Zn、Ga、Sb、Ti、Si、Zr、Mg、Al、Au、Ag、Cu、Pd、Wからなる群より選択される少なくとも1種の金属の金属酸化物が好適に用いられる。当該金属酸化物には、必要に応じて、さらに上記群に示された金属原子を含んでいてもよい。例えばインジウム-スズ複合酸化物(ITO)、アンチモン-スズ複合酸化物(ATO)などが好ましく用いられ、ITOが特に好ましく用いられる。
 結晶質透明導電層の構成材料として、ITO(In-SnO金属酸化物)が用いられる場合、該金属酸化物中のSnOの量が、InとSnOとの合計重量に対して、0.5重量%~15重量%であることが好ましく、3~15重量%であることが好ましく、5~12重量%であることがより好ましく、6~12重量%であることがさらに好ましい。結晶質透明導電層におけるスズ原子の含有量が0.5重量%より小さいと、置換できるスズ原子の量が少なく、キャリア密度が小さくなり、その結果比抵抗が高くなってしまい、スズ原子の含有量が15wt%を超えると、置換に寄与しないスズ原子の量が多くなり、移動度が低下し、比抵抗が高くなってしまう。
 また、ITO層にIn、Sn以外の金属元素が含まれていても良く、Zn、Ga、Sb、Ti、Si、Zr、Mg、Al、Au、Ag、Cu、Pd、W、Fe、Pb、Ni、Nb、Cr、Gaからなる群より選択される少なくとも1種の金属が3重量%以下含まれていても良い。
 結晶質透明導電層は、互いにスズの存在量が異なる複数のインジウム-スズ複合酸化物層が積層された構造を有していてもよい。この場合、ITO層は2層でも3層以上であってもよい。また、ITO層が2層以上で構成される場合、少なくとも1つの層が結晶質透明導電層であり、好ましくは全ての層が結晶質透明導電層である。
 結晶質透明導電層が2つのITO層で形成される場合、フィルム基材側の第一のITO層におけるSnOの量は、InとSnOとを加えた重さに対して、6重量%~15重量%であることが好ましく、6~12重量%であることがより好ましく、6.5~10.5重量%であることがさらに好ましい。また、第二のITO層におけるSnOの量は、InとSnOとを加えた重さに対して、0.5重量%~5.5重量%であることが好ましく、1~5.5重量%であることがより好ましく、1~5重量%であることがさらに好ましい。各ITO層のスズの量を上記範囲内とすることにより、比抵抗が小さく、加熱による結晶転化時間が短い非晶質透明導電層を作成することができる。
 通常、透明導電性薄膜にはインジウム系複合酸化物が用いられる。酸化インジウムに4価金属元素の酸化物を含有させることにより、加熱などによって酸化インジウムの結晶を形成する際に、3価のインジウムと4価の金属元素との間で置換が起こり、結晶質層において、余った電子がキャリアになることを利用するためである。従って、インジウム系複合酸化物において、4価金属元素の酸化物の含有量を増加させた場合には、電流を運ぶキャリアが増加するため比抵抗が低下する。
 一方、酸化インジウムの結晶化にとって、4価金属元素の酸化物の含有量の増加は結晶化を阻害する不純物を増加させることになるため、同じ加熱温度における結晶化では、4価金属元素の酸化物の含有量が多いほど結晶転化時間は長くなる。また酸化インジウムの結晶化は、より低エネルギーで結晶核を形成できれば、結晶転化時間が短縮すると考えられる。即ち、前記結晶化において、結晶核の形成に必要なエネルギーの確保が律速になると考えられる。
 またフィルム基材上に形成された酸化インジウムの薄膜は、スパッタリング時にフィルム基材からの発生ガスの影響を受けるため、フィルム基材から遠い位置(最表面側)に形成された薄膜ほど欠陥が少なく結晶化し易いと推察される。
 よって本発明では、2層構造の透明導電層を形成するにあたり、フィルム基材側から、ITO層におけるSnO量の割合が大きい第一のインジウム-スズ複合酸化物層、次いでITO層におけるSnO量の割合が小さい第二のインジウム-スズ複合酸化物層を設けることで、最表面側(外気に接する側)に、4価金属元素等の不純物の割合が少なく、結晶化しやすい層を位置させており、このような構造を採用することにより、非晶質透明導電性層の結晶転化時間を短縮し、結晶質透明導電層全体の比抵抗を小さくすることができる。
 結晶質透明導電層が3つのITO層で形成される場合、フィルム基材側の第一のITO層におけるSnOの量は、InとSnOとを加えた重さに対して、0.5重量%~5.5重量%であることが好ましく、1~4重量%であることがより好ましく、2~4重量%であることがさらに好ましい。また、第一のITO層上に隣接して形成された第二のITO層におけるSnOの量は、InとSnOとを加えた重さに対して、6重量%~15重量%であることが好ましく、7~12重量%であることがより好ましく、8~12重量%であることがさらに好ましい。また、第二のITO層上に隣接して形成された第三のITO層におけるSnOの量は、InとSnOとを加えた重さに対して、0.5重量%~5.5重量%であることが好ましく、1~4重量%であることがより好ましく、2~4重量%であることがさらに好ましい。各ITO層のスズの量を上記範囲内とすることにより、比抵抗の小さい結晶質透明導電層を作成することができる。
 3層構造の透明導電層を形成する際には、フィルム基材側に、ITO層におけるSnO量の割合が少ない第一のインジウム-スズ複合酸化物層を設けることにより、スパッタリング時に、フィルム基材からの発生ガスの影響を低減することができ、非晶質透明導電層の結晶化の阻害を抑制することができる。また、最表面側に、ITO層におけるSnO量の割合が少ない第三のインジウム-スズ複合酸化物層を設けることにより、透明導電膜の結晶化が始まるまでの時間を短縮することができる。その結果、第二のインジウム-スズ複合酸化物層を含む非晶質透明導電層全体の結晶化が促進され、非晶質透明導電性層の結晶転化時間を更に短縮し、結晶質透明導電層全体の比抵抗をより小さくすることができる。
 上記単層又は複層構造からなる結晶質透明導電層の厚みは、15nm~40nm以下、好ましくは15nm~35nm以下である。厚みが15nmより小さいと、加熱による結晶転化処理において結晶転化し難くなり、厚みが40nmを超えると、透明性と耐屈曲性が低下する。
 結晶質透明導電層は、加熱による結晶転化処理によって、結晶化していることが好ましい。結晶質透明導電層が結晶化しているか否かは、結晶質透明導電層を、濃度5wt%の希塩酸に15分間浸漬した後、水洗・乾燥し、15mmの間の端子間抵抗を測定することにより判断できる。本明細書においては、塩酸への浸漬・水洗・乾燥後に、15mm間の端子間抵抗が10kΩを超えない場合、ITO層が結晶質へ結晶転化が完了したものとした。
 上記結晶質透明導電層は、櫛形状、ストライプ形状、ひし形形状など、用途に応じて任意の形状にエッチング等によりパターン化してもよい。例えば、静電容量方式のタッチパネルやマトリックス式の抵抗膜方式のタッチパネルに用いられる透明導電体においては、結晶質透明導電層がストライプ状にパターン化されることが好ましい。なお、エッチングにより結晶質透明導電層をパターン化する場合、先に非晶質透明導電層の結晶化を行うと、エッチングによるパターン化が困難となる場合がある。そのため、結晶質透明導電層の加熱による結晶転化処理は、非晶質透明導電層をパターン化した後に行ってもよい。
 〈アンダーコート層〉
 また、フィルム基材2と結晶質透明導電層3との間には、誘電体層やハードコート層等のアンダーコート層が形成されていてもよい。このうちフィルム基材2の結晶質透明導電層形成面側の表面に形成される誘電体層は、導電層としての機能を有さないものであり、表面抵抗値が、例えば1×10Ω/□以上(単位:ohms per square)であり、好ましくは1×10Ω/□以上、さらに好ましくは1×10Ω/□以上である。なお、誘電体層の表面抵抗値の上限は特にない。一般的には、誘電体層の表面抵抗値の上限は測定限界である1×1013Ω/□程度であるが、1×1013Ω/□を超えるものであってもよい。
 誘電体層の材料としては、NaF(1.3)、NaAlF(1.35)、LiF(1.36)、MgF(1.38)、CaF(1.4)、BaF(1.3)、BaF(1.3)、SiO(1.46)、LaF(1.55)、CeF(1.63)、Al(1.63)などの無機物〔括弧内の数値は屈折率を示す〕や、屈折率が1.4~1.6程度のアクリル樹脂、ウレタン樹脂、メラミン樹脂、アルキド樹脂、シロキサン系ポリマー、有機シラン縮合物などの有機物、あるいは上記無機物と上記有機物の混合物が挙げられる。
(有機系誘電体層)
 前記有機物もしくは前記無機物と前記有機物の混合物からなる有機系誘電体層は、ウェット成膜法(例えば、グラビア塗工法)によりフィルム基材上に形成することが好ましい。ウェットコートすることにより、フィルム基材の表面粗さを小さくすることができ、比抵抗の低減に寄与することができる。有機系誘電体層の厚みは、好適な範囲で適宜設定できるが、15nm~1500nmが好ましく、20nm~1000nmがより好ましく、20nm~800nmが最も好ましい。上記範囲に設定することで表面粗さを十分抑制することができる。また、屈折率が0.01以上異なる2種以上の前記有機物もしくは前記無機物と前記有機物の混合物を複数積層した有機系誘電体層であっても良い。
 良好な透明導電層を得るためには、フィルム基材表面が平滑であることが好ましい。フィルム基材表面が粗いと結晶粒の成長が阻害されるためと推測される。平滑なフィルム基材上に透明導電層を成膜することにより、大きな結晶粒が成長し、結晶粒の粒界によるキャリアの散乱が低減でき、移動度を上昇させることができる。フィルム基材表面の好ましい算術平均粗さ(Ra)の値は1.5nm以下である。
 フィルム基材表面を平滑化する方法としては、例えば、フィルム基材上に上記有機系誘電体層として塗工層を形成する方法がある。この塗工層は、熱硬化性樹脂や紫外線硬化性樹脂の溶液を基材上に塗布し、硬化させることにより形成することができる。樹脂の種類は特に限定されないが、エポキシ系やアクリル系などが挙げられる。
(無機誘電体層)
 前記無機物からなる無機誘電体層は、真空成膜法(例えば、スパッタリング法や真空蒸着法)によりフィルム基材2上に形成することが好ましい。真空成膜法で、密度の高い無機誘電体層を形成することで、スパッタリングで非晶質透明導電層3を形成する際、高分子フィルム基材から放出される水や有機ガス等の不純物ガスを抑制することができる。その結果、非晶質透明導電層内に取り込まれる不純物ガス量を低減することができ、結晶転化後の比抵抗の抑制に寄与することができる。無機誘電体層の厚みは、2.5nm~100nmが好ましく、3nm~50nmがより好ましく、4nm~30nmが最も好ましい。上記範囲に設定することで不純物ガスの放出を十分に抑制することができる。また、屈折率が0.01以上異なる2種以上の無機物を複数積層した無機誘電体層であっても良い。
 また、高分子基材フィルム上に、物理気相成長(PVD)法により形成された膜を上記無機誘電体層として形成することにより、スパッタ成膜時に拡散した高分子基材フィルムに含まれる樹脂成分や水が、透明導電層中に取り込まれることを抑制し、移動度やキャリア密度の向上に寄与することができる。物理気相成長(PVD)法としては、スパッタ法が好ましい。
 物理気相成長(PVD)法により形成された膜の材料としては、酸化アルミニウムや酸化ケイ素など金属酸化物であることが好ましい。物理気相成長(PVD)法により形成された膜の厚さは、20nm~100nmであることが好ましい。
 また、誘電体層は前記有機系誘電体層と前記無機誘電体層とを組み合わせたものであっても良い。前記有機系誘電体層と前記無機誘電体層を組み合わせることで、表面が平滑、かつ、スパッタリング時の不純物ガス抑制が可能な基材となり、結晶質透明導電層の比抵抗を効果的に低減することが可能となる。なお、前記有機系誘電体層及び前記無機誘電体層のそれぞれの厚みは、上述した範囲で、適宜設定できる。
 このように、フィルム基材の結晶質透明導電層形成面側に誘電体層を形成することによって、例えば結晶質透明導電層3が複数の透明電極にパターン化された場合においても、結晶質透明導電層形成領域と結晶質透明導電層非形成領域との間の視認性の差を低減することが可能である。また、フィルム基材が用いられる場合、誘電体層が高分子フィルムからのオリゴマー等の低分子量成分の析出を抑止する封止層としても作用し得る。
 (3)結晶転化処理前の非晶質透明導電層のキャリア密度n×1019が(10~60)×1019/cm、ホール移動度μが10~25cm/V・sであること
 スパッタリング直後(as-deposited)かつ結晶転化処理前の非晶質透明導電層のキャリア密度をn、同非晶質透明導電層のホール移動度をμとしたとき、キャリア密度n×1019は(10~60)×1019/cm、ホール移動度μは10~25cm/V・sである。また、非晶質透明導電層の厚さは、15nm~40nmであり、非晶質透明導電層の比抵抗は、4.0×10-4Ω・cm~2.0×10-3Ω・cmである。
 (4)加熱による結晶転化処理後の結晶質透明導電層のキャリア密度n×1019が(80~150)×1019/cm、ホール移動度μが20~40cm/V・sであること
 加熱による結晶転化処理後の結晶質透明導電層のキャリア密度をn、ホール移動度をμとしたとき、キャリア密度n×1019は(80~150)×1019/cm、ホール移動度μは20~40cm/V・sである。また、この結晶質透明導電層の比抵抗は、1.1×10-4Ω・cm~3.0×10-4Ω・cmである。
 (5)移動距離Lが50~150であること
 また本発明では、上記非晶質透明導電層のキャリア密度n×1019、ホール移動度μa、上記結晶質透明導電層のキャリア密度n×1019、ホール移動度μで表される式L={(n-n+(μ-μ1/2の左辺Lを透明導電層の移動距離と定義する。この移動距離Lは50~150であり、好ましくは65~150である。この移動距離Lが50より小さいと、低抵抗化が十分でない。また、移動距離Lが150を超えるには、180℃以上の高温での結晶転化処理、あるいは120分以上の長時間の結晶転化処理が必要であり、高分子フィルム基材で達成することは困難である。
 (6)透明導電性フィルムの製造方法
 次に、上記のように構成される透明導電性フィルムの製造方法を説明する。なお、以下に説明する製造方法は例示であり、本発明に係る透明導電性フィルムの製造方法は、これに限られるものではない。
 先ず、スパッタ装置のチャンバ内を高真空になるまで減圧し、チャンバ内にアルゴンガスなどの不活性ガスを導入する。次に、フィルム基材を巻回した初期ロールをスパッタ装置内に設置し、初期ロールから長尺状のフィルム基材を一定速度でチャンバ内に送り出す。
 そして、フィルム基材の一方の面に、インジウムスズ複合酸化物からなる非晶質透明導電層をスパッタリングによって形成する。スパッタリングの方法としては、DCマグネトロンスパッタリング法或いはRF重畳DCマグネトロンスパッタリング法を採用することができ、ターゲット表面に磁場を形成し、電子を閉じ込めることでフィルム基材の損傷を抑えることができる。また、高周波と直流を重畳させた電圧をターゲットに印加すると、アルゴンイオンエネルギーを制御することができ、放電電圧を低くできる。非晶質透明導電層形成時の放電電圧は、20V~420Vであり、好ましくは100V~200Vである。また、非晶質透明導電層形成時の水平磁場は、30mT~200mTであり、好ましくは80mT~130mTである。
 〈RF重畳〉
 スパッタリング時にDC電源にRF(高周波)を重畳することより、発生するプラズマ密度が上昇し、プラズマ密度の上昇に伴って、スパッタ粒子(アルゴンなど)のイオン化効率が上昇する。そしてイオン化効率を高くすることにより、低電圧・高電流の条件で透明導電膜の成膜を実現することができる。
 低電圧でのスパッタリングでは、雰囲気中の中性のアルゴン原子やO イオンが得るエネルギーを低減でき、ターゲットに衝突して反跳した中性のアルゴン原子やO イオンの速度が下げることができるので、中性のアルゴン原子やO イオンが成膜された透明導電層への衝突を抑制することができる。反跳したAr原子やO イオンが透明導電層に衝突すると、膜中に欠陥が発生したり、衝突した粒子が不純物として膜中に取り込まれ、膜にダメージを与えることになり、薄膜中の欠陥や、取り込まれた不純物原子は、キャリアの散乱中心となり、電子の移動を妨げる要因になる。
 しかし、低電圧でのスパッタにより反跳した粒子が原因となる、膜中の欠陥の発生や不純物の取り込みを低減でき、移動度の向上が実現できる。
 また、イオン化効率が上がっていると、RFを重畳して成膜された非晶質の膜を加熱により結晶質に転化させる際に、置換できないSn酸化物の量を低減することができる。置換に寄与しないSnの酸化物は、キャリアを生成できないだけではなく中性の散乱中心となりえるが、イオン化効率上昇により散乱中心の発生を低減でき、移動度とキャリア密度を上昇することができる。
 また、RF重畳を行うとフローティング電位が上昇するが、フローティング電位が高くなり過ぎると、フィルム基材近傍に存在するArイオンがフローティング電位と基材電位との電位差により加速されて薄膜へ衝突し、膜にダメージを与えてしまうため、DCに対するRFのパワー比は0.05~1.5であることが好ましく、より好ましくは0.8程度である。
 〈高磁場〉
 さらに、成膜するフィルム基材に対して平行な方向に磁場を高くすると、より多くの電子がターゲット近傍に捕獲されるようになり、イオン化効率がより向上し、より低電圧・高電流のスパッタを実現することが可能となる。
 また、非晶質透明導電層形成時のフィルム基材の温度は、-10℃以上であり、好ましくは100℃以上である。フィルム基材の温度を130℃以上にすると、スズ原子の含有量が比較的多い非晶質透明導電層であっても、加熱による結晶転化処理時に、非晶質透明導電層の結晶化が促進され易くなり、低抵抗の結晶質透明導電層を得ることができる。
 非晶質透明導電層のスズあるいは酸化スズ含有量は、スパッタ装置内に設置する焼成体ターゲット材のスズあるいは酸化スズ含有量とほぼ同じになるため、焼成体ターゲットのスズあるいは酸化スズ含有量を変えることによって調整することができる。また、非晶質透明導電層の厚みは、長尺状フィルム基材の搬送速度を変化させるか、あるいはターゲット材の個数を増減させることで、適宜調整することができる。また、スズあるいは酸化スズ含有量が異なる複数のターゲットを設置することで、スズあるいは酸化スズ含有量が異なる複数の非晶質透明導電層を積層することができる。
 次に、非晶質透明導電層が形成された長尺状のフィルム基材を、加熱オーブン内に連続的に搬送して加熱による結晶転化処理を行う。結晶転化処理の加熱温度は110~180℃、好ましくは110~150℃である。また、アニール処理時間は、120分以内であり、好ましくは60分以内である。本処理により、非晶質透明導電層が結晶化され、フィルム基材上に結晶質透明導電層が形成される。
 上述の方法で作製された透明導電性フィルムでは、加熱による結晶転化処理後の結晶質透明導電層のキャリア密度が結晶転化処理前と比較して増大し、かつホール移動度も増大する。具体的には、結晶転化処理前のキャリア密度n×1019が(10~60)×1019/cmであるのに対して、結晶転化処理後のキャリア密度n×1019が(80~150)×1019/cmと、大幅に増大している。また、結晶転化処理前のホール移動度μは10~25cm/V・sであるのに対して、結晶転化処理後のホール移動度μは20~40cm/V・sと、大幅に増大している。そして本発明では、キャリア密度n×1019,n×1019及びホール移動度μ,μの値を用いて算出される移動距離Lを新たな指標とし、この移動距離Lを50~150とすることで、非晶質透明導電層に対する結晶質透明導電層の電気的特性が飛躍的に向上し、従来に比べて更なる低抵抗化を実現することができる。また、スズ原子の含有量が比較的多い場合においても、温度110~180℃、120分以内で非晶質透明導電層を結晶化することができるため、従来に比べて、透明性に優れた結晶質透明導電層を効率的に形成することができ、生産性を向上することができる。
 以上、本実施形態に係るタッチパネルセンサについて述べたが、本発明は記述の実施形態に限定されるものではなく、本発明の技術思想に基づいて各種の変形および変更が可能である。
 以下、本発明の実施例を説明する。
[実施例1]
 厚み50μmのPETフィルム(三菱樹脂製、商品名「ダイアホイル」)からなる基材の一方の面側に、厚み35nmの熱硬化樹脂(有機系誘電体層)を形成したフィルム基材を、真空スパッタ装置に設置し、真空度が1×10-4Pa以下となるよう十分に真空排気した。次いで、DCマグネトロンスパッタリング法を用いて、有機系誘電体層の上に厚さ5nmのAlからなる無機誘電体層を形成した。その後、Ar及びO(流量比はAr:O=99.9:0.1)を導入した真空雰囲気下(0.40Pa)で、10重量%の酸化スズと90重量%の酸化インジウムとの焼結体をターゲットとして用いて、水平磁場を100mTとするRF重畳DCマグネトロンスパッタリング法(放電電圧150V、RF周波数13.56MHz、DC電力に対するRF電力の比(RF電力/DC電力)は0.8)により、厚み20nmのインジウム-スズ複合酸化物層からなる非晶質透明導電層を形成した。この非晶質透明導電層上に、Ar及びO(流量比はAr:O=99.9:0.1)を導入した真空雰囲気下(0.40Pa)で、3重量%の酸化スズと97重量%の酸化インジウムとの焼結体をターゲットとして用いて、水平磁場を100mTとするRF重畳DCマグネトロンスパッタリング法(放電電圧150V、RF周波数13.56MHz、DC電力に対するRF電力の比(RF電力/DC電力)は0.8)により、厚み5nmのインジウム-スズ複合酸化物層からなる非晶質透明導電層を形成した。作成した透明導電性フィルムは、150℃温風オーブンで加熱し、結晶転化処理を行った。
[実施例2]
 実施例1において、10重量%の酸化スズと90重量%の酸化インジウムとの焼結体をターゲットとして用いて厚み25nmの単層の非晶質透明導電層を形成したこと以外は、実施例1と同様にして透明導電性フィルムを得た。
[実施例3]
 実施例2において、有機系誘電体層を形成していない基材を用いた事以外は、実施例2と同様にして透明導電性フィルムを得た。
[実施例4]
 実施例3において、無機誘電体層を形成していない基材を用いた事以外は、実施例3と同様にして透明導電性フィルムを得た。
[実施例5]
 実施例4において、スパッタリング時のDC電力に対するRF電力の比(RF電力/DC電力)を0.4にした事以外は実施例4と同様にして透明導電性フィルムを得た。
[実施例6]
 実施例5において、PETフィルム基材の一方の面側に厚み35nmの有機系誘電体層を形成したフィルム基材を用い、スパッタリング時のDC電力に対するRF電力の比(RF電力/DC電力)を0、即ちRFを重畳しないで非晶質透明導電層を形成した事以外は実施例5と同様にして透明導電性フィルムを得た。
[実施例7]
 実施例6において、10重量%の酸化スズと90重量%の酸化インジウムとの焼結体をターゲットとして用いて厚み20nmの非晶質透明導電層を形成し、この上に3重量%の酸化スズと97重量%の酸化インジウムとの焼結体をターゲットとして用いて厚み5nmの非晶質透明導電層を形成した事以外は、実施例5と同様にして透明導電性フィルムを得た。
[比較例1]
 実施例6において、水平磁場が30mTの通常磁場のDCマグネトロンスパッタ装置を用い、スパッタリング時の放電電圧を430Vに変えた事以外は、実施例6と同様にして透明導電性フィルムを得た。
[比較例2]
 実施例7において、水平磁場が30mTの通常磁場のDCマグネトロンスパッタ装置を用い、スパッタリング時の放電電圧を430Vに変えた事以外は、実施例7と同様にして透明導電性フィルムを得た。
[比較例3]
 比較例1において、スズ酸化物の割合が3wt%のインジウム―スズ複合酸化物ターゲット(住友金属鉱山社製)に変更した事以外は、比較例1と同様にして透明導電性フィルムを得た。
 上記実施例1~7および比較例1~3のそれぞれについて、スパッタ処理後の非晶質透明導電層の厚み、結晶転化処理前の非晶質透明導電層のキャリア密度とホール移動度と比抵抗、結晶転化処理後の結晶質透明導電層のキャリア密度とホール移動度と比抵抗の測定、及び結晶転化の評価を行った。
(1)結晶転化の評価
 高分子フィルム基材上にITO層が形成された透明積層体を、150℃の熱風オーブンで加熱して結晶転化処理を行い、濃度5wt%の塩酸に15分間浸漬した後、水洗・乾燥し、15mm間の端子間抵抗をテスタにて測定した。本明細書においては、塩酸への浸漬・水洗・乾燥後に、15mm間の端子間抵抗が10kΩを超えない場合、ITO層の結晶転化が完了したものとした。また、加熱時間60分ごとに上記測定を実施し、結晶転化完了が確認できた時間を結晶転化時間として評価した。
(2)ITO層の厚み(膜厚)の評価
 ITO層の厚みは、X線反射率法を測定原理とし、以下の測定条件にて粉末X線回折装置(リガク社製、「RINT-2000」)にてX線反射率を測定し、取得した測定データを解析ソフト(リガク社製、「GXRR3」)で解析することで算出した。解析条件は以下の条件とし、フィルム基材と密度7.1g/cmのITO層の2層モデルを採用し、ITO層の厚みと表面粗さを変数として、最小自乗フィッティングを行い、ITO層の厚みを解析した。
(測定条件)
光源: Cu-Kα線(波長:1,5418Å)、40kV、40mA
光学系: 平行ビーム光学系
発散スリット: 0.05mm
受光スリット: 0.05mm
単色化・平行化: 多層ゲーベルミラー使用
測定モード:θ/2θスキャンモード
測定範囲(2θ):0.3~2.0°
(解析条件)
解析手法: 最小自乗フィッティング
解析範囲(2θ): 2θ=0.3~2.0°
(キャリア密度、ホール移動度の測定方法)
 ホール効果測定システム(バイオラッド製、商品名「HL5500PC」)を用いて測定を行った。キャリア密度は、上記方法で求めたITO層の厚みを用いて算出した。
(移動距離の算出)
 算出されたスパッタ処理後アニール処理前のキャリア密度とホール移動度、およびアニール処理後のキャリア密度とホール移動度から、上述した式を用いて移動距離Lを算出した。
 透明導電層の表面抵抗値(Ω/□)をJIS K7194(1994年)に準じて四端子法により測定した。上記方法にて求めたITO層の厚みと前記表面抵抗値から比抵抗を算出した。上記の結果を表1に示す。









Figure JPOXMLDOC01-appb-T000001
 表1の結果から、実施例1では、結晶転化時間は60分と短く、移動距離L1が77.5と非常に大きく(図3)、また比抵抗が1.4×10-4Ω・cmと非常に小さい値を示し、低抵抗の導電性フィルムを生産性良く得られることが分かった。また、実施例2では、結晶転化時間は120分と実施例1よりは長い時間を要したが、移動距離L2が79.0と非常に大きく、比抵抗が1.4×10-4Ω・cmと非常に小さい値を示し、低抵抗の導電性フィルムを得られることが分かった。また、実施例3では、結晶転化時間は120分を要したが、移動距離L3が76.2と非常に大きく、比抵抗が1.6×10-4Ω・cmと実施例1、実施例2よりは大きいが、非常に小さい値を示し、低抵抗の導電性フィルムを得られることが分かった。
 実施例4では、結晶転化時間は120分を要したが、移動距離L4が80.3と非常に大きく、比抵抗が1.9×10-4Ω・cmと小さな値を示し、低抵抗の導電性フィルムを得られることが分かった。実施例5では、結晶転化時間は120分を要したが、移動距離L5が80.4と非常に大きく、比抵抗が2.3×10-4Ω・cmと比較的小さな値を示し、低抵抗の導電性フィルムを得られることが分かった。実施例6では、結晶転化時間は120分を要したが、移動距離L6が62.2と大きく、比抵抗が2.3×10-4Ω・cmと小さな値を示し、低抵抗の導電性フィルムを得られることが分かった。実施例7では、結晶転化時間が60分と短く、移動距離L7が74.4と大きく、比抵抗が2.2×10-4Ω・cmと比較的小さな値を示し、低抵抗の導電性フィルムを得られることが分かった。
 一方、比較例1では、結晶転化時間が120分を要し、移動距離L8が49.3と本発明の範囲外にあり(図4)、また比抵抗が3.2と大きな値を示した。また、比較例2では、結晶転化時間は60分だったが、移動距離L9が44.5と本発明の範囲外にあり、また比抵抗が3.2×10-4Ω・cmと大きな値を示した。比較例3では、結晶転化時間は120分を要し、移動距離L10が9.3と本発明の範囲外にあり、比抵抗が7.0×10-4と大きな値を示した。
 したがって、スパッタリング直後加熱による結晶転化処理前のホール移動度とキャリア密度、および加熱による結晶転化処理後のホール移動度とキャリア密度から算出される移動距離を新たに定義し、この移動距離の範囲を規定することによって、低抵抗な導電性フィルムを効率的に製造できることが分かった。
 本発明に係る透明導電性フィルムの用途は、特に制限はなく、好ましくはスマートフォンやタブレット端末(Slate PC)等の携帯端末に使用される静電容量方式タッチパネルである。
 1 透明導電性フィルム
 2 基板
 2a 主面
 3 透明導電層
 4 透明導電性フィルム
 5 透明導電層

Claims (22)

  1.  インジウム-スズ複合酸化物からなる非晶質透明導電層をスパッタリングによって高分子フィルム基材上に形成し、前記非晶質透明導電層を結晶転化処理することで得られる結晶質透明導電層を有する透明導電性フィルムであって、
     前記非晶質透明導電層のキャリア密度をn×1019、ホール移動度をμa、前記結晶質透明導電層のキャリア密度をn×1019、ホール移動度をμとし、移動距離Lを{(n-n+(μ-μ1/2としたとき、
     前記結晶転化処理前の前記非晶質透明導電層のキャリア密度n×1019が(10~60)×1019/cm、ホール移動度μが10~25cm/V・sであり、
     前記結晶質転化処理後の前記結晶質透明導電層のキャリア密度n×1019が(80~150)×1019/cm、ホール移動度μが20~40cm/V・sであり、
     前記移動距離Lが50~150であることを特徴とする、透明導電性フィルム。
  2.  前記結晶質転化処理は、温度110~180℃、120分以内で、前記非晶質透明導電層を結晶転化することを特徴とする、請求項1記載の透明導電性フィルム。
  3.  前記非晶質透明導電層の厚さが15nm~40nmであり、
     前記非晶質透明導電層の比抵抗が4.0×10-4Ω・cm~2.0×10-3Ω・cmであり、
     前記結晶質透明導電層の比抵抗が1.1×10-4Ω・cm~3.0×10-4Ω・cmであることを特徴とする、請求項1記載の透明導電性フィルム。
  4.  前記結晶質透明導電層は、インジウム-スズ複合酸化物からなり、{酸化スズ/(酸化インジウム+酸化スズ)}×100(%)で表される酸化スズの割合が0.5~15重量%であることを特徴とする、請求項1~3のいずれか1項に記載の透明導電性フィルム。
  5.  前記結晶質透明導電層を含み、スズの含有量が互いに異なる少なくとも2層のインジウム-スズ複合酸化物層からなる構造を備え、
     前記少なくとも2層のインジウム-スズ複合酸化物の各層が、非晶質もしくは結晶質であることを特徴とする、請求項1~3のいずれか1項に記載の透明導電性フィルム。
  6.  前記少なくとも2層のインジウム-スズ複合酸化物層は、前記高分子フィルム基材側から、第一のインジウム-スズ複合酸化物層、第二のインジウム-スズ複合酸化物層が、この順に積層された2層構造であり、
     前記第一のインジウム-スズ複合酸化物層の酸化スズ含有量が6重量%~15重量%であり、
     前記第二のインジウム-スズ複合酸化物層の酸化スズ含有量が0.5重量%~5.5重量%であることを特徴とする、請求項5記載の透明導電性フィルム。
  7.  前記少なくとも2層のインジウム-スズ複合酸化物層は、前記高分子フィルム基材側から、第一のインジウム-スズ複合酸化物層、第二のインジウム-スズ複合酸化物層、第三のインジウム-スズ複合酸化物層がこの順に積層された3層構造であり、
     前記第一のインジウムスズ酸化物層の酸化スズの含有量は0.5重量%~5.5重量%であり、
     前記第二のインジウムスズ酸化物層の酸化スズの含有量は6重量%~15重量%であり、
     前記第三のインジウムスズ酸化物層の酸化スズの含有量は0.5重量%~5.5重量%であることを特徴とする請求項5記載の透明導電性フィルム。
  8.  前記高分子フィルム基材の少なくとも一方の面に、ウェット成膜法にて形成された有機系誘電体層が形成されており、
     前記高分子フィルム基材と前記有機系誘電体層と前記結晶質透明導電層とがこの順に形成されていることを特徴とする、請求項1記載の透明導電性フィルム。
  9.  前記高分子フィルム基材の少なくとも一方の面に、真空成膜法にて形成された無機誘電体層が形成されており、
     前記高分子フィルムと前記無機誘電体層と前記結晶質透明導電体層とがこの順に形成されていることを特徴とする、請求項1記載の透明導電性フィルム。
  10.  前記高分子フィルム基材の少なくとも一方の面に、ウェット成膜法にて形成された有機系誘電体層と、真空成膜法にて形成された無機誘電体層とが形成されており、
     前記高分子フィルムと前記有機系誘電体層と前記無機誘電体層と前記結晶質透明導電体層とが、この順に形成されていることを特徴とする、請求項1記載の透明導電性フィルム。
  11.  前記高分子フィルム基材の材料が、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリシクロオレフィン及びポリカーボネートからなる群から選択されることを特徴とする請求項1~3のいずれか1項に記載の透明導電性フィルム。
  12.  高分子フィルム基材を準備する工程と、
     前記高分子フィルム基材上に、インジウム-スズ複合酸化物からなる非晶質透明導電層をRF重畳DCマグネトロンスパッタリングにより形成する工程と、
     前記非晶質透明導電層を結晶質に結晶転化処理する工程とを有し、
     前記非晶質透明導電層のキャリア密度をn×1019、ホール移動度をμa、前記結晶質透明導電層のキャリア密度をn×1019、ホール移動度をμとし、移動距離Lを{(n-n+(μ-μ1/2としたとき、
     前記結晶質転化処理前の前記非晶質透明導電層のキャリア密度n×1019が(10~60)×1019/cm、ホール移動度μが10~25cm/V・sであり、
     前記結晶質転化処理後の前記結晶質透明導電層のキャリア密度n×1019が(80~150)×1019/cm、ホール移動度μが20~40cm/V・sであり、
     前記移動距離Lが50~150であることを特徴とする、透明導電性フィルムの製造方法。
  13.  前記結晶転化処理する工程は、温度110~180℃、120分以内で、前記非晶質透明導電層を結晶転化することを特徴とする、請求項12記載の透明導電性フィルムの製造方法。
  14.  前記非晶質透明導電層の厚さが15nm~40nmであり、
     前記非晶質透明導電層の比抵抗が4.0×10-4Ω・cm~2.0×10-3Ω・cmであり、
     前記結晶質透明導電層の比抵抗が1.1×10-4Ω・cm~3.0×10-4Ω・cmであることを特徴とする、請求項12記載の透明導電性フィルムの製造方法。
  15.  前記結晶質透明導電層は、インジウム-スズ複合酸化物からなり、{酸化スズ/(酸化インジウム+酸化スズ)}×100(%)で表される酸化スズの割合が0.5~15重量%であることを特徴とする、請求項12~14のいずれか1項に記載の透明導電性フィルムの製造方法。
  16.  前記結晶質透明導電層を含み、スズの含有量が互いに異なる少なくとも2層のインジウム-スズ複合酸化物層からなる構造を備え、
     前記少なくとも2層のインジウム-スズ複合酸化物の各層が、インジウム-スズ複合酸化物層が非晶質もしくは結晶質であることを特徴とする、請求項12~14のいずれか1項に記載の透明導電性フィルムの製造方法。
  17.  前記少なくとも2層のインジウム-スズ複合酸化物層は、前記高分子フィルム基材側から、第一のインジウム-スズ複合酸化物層、第二のインジウム-スズ複合酸化物層が、この順に積層された2層構造であり、
     前記第一のインジウム-スズ複合酸化物層の酸化スズ含有量が6重量%~15重量%であり、
     前記第二のインジウム-スズ複合酸化物層の酸化スズ含有量が0.5重量%~5.5重量%であることを特徴とする、請求項16記載の透明導電性フィルムの製造方法。
  18.  前記少なくとも2層のインジウム-スズ複合酸化物層は、前記第二のインジウム-スズ複合酸化物層に隣接して第三のインジウム-スズ複合酸化物層が積層された3層構造であり、
     前記第一のインジウムスズ酸化物層の酸化スズの含有量は0.5重量%~5.5重量%であり、
     前記第二のインジウムスズ酸化物層の酸化スズの含有量は6重量%~15重量%であり、
     前記第三のインジウムスズ酸化物層の酸化スズの含有量は0.5重量%~5.5重量%であることを特徴とする請求項16記載の透明導電性フィルムの製造方法。
  19.  前記高分子フィルム基材の少なくとも一方の面に、ウェット成膜法にて形成された有機系誘電体層が形成されており、
     前記高分子フィルム基材と前記有機系誘電体層と前記結晶質透明導電層とがこの順に形成されていることを特徴とする、請求項12記載の透明導電性フィルムの製造方法。
  20.  前記高分子フィルム基材の少なくとも一方の面に、真空成膜法にて形成された無機誘電体層が形成されており、
     前記高分子フィルムと前記無機誘電体層と前記結晶質透明導電体層とがこの順に形成されていることを特徴とする、請求項12記載の透明導電性フィルムの製造方法。
  21.  前記高分子フィルム基材の少なくとも一方の面に、ウェット成膜法にて形成された有機系誘電体層と、真空成膜法にて形成された無機誘電体層とが形成されており、
     前記高分子フィルムと前記有機系誘電体層と前記無機誘電体層と前記結晶質透明導電体層とが、この順に形成されていることを特徴とする、請求項12記載の透明導電性フィルムの製造方法。
  22.  前記高分子フィルム基材の材料が、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリシクロオレフィン及びポリカーボネートからなる群から選択されることを特徴とする請求項12~14のいずれか1項に記載の透明導電性フィルムの製造方法。
PCT/JP2015/063996 2014-05-20 2015-05-15 透明導電性フィルム WO2015178297A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2015555884A JP6066154B2 (ja) 2014-05-20 2015-05-15 透明導電性フィルムの製造方法
CN201580001616.3A CN105473756B (zh) 2014-05-20 2015-05-15 透明导电性薄膜
KR1020167000424A KR20170008195A (ko) 2014-05-20 2015-05-15 투명 도전성 필름
KR1020227002111A KR20220013022A (ko) 2014-05-20 2015-05-15 투명 도전성 필름
US14/908,855 US20160160345A1 (en) 2014-05-20 2015-05-15 Transparent conductive film
US16/378,775 US20190233939A1 (en) 2014-05-20 2019-04-09 Transparent conductive film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-104609 2014-05-20
JP2014104609 2014-05-20

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/908,855 A-371-Of-International US20160160345A1 (en) 2014-05-20 2015-05-15 Transparent conductive film
US16/378,775 Division US20190233939A1 (en) 2014-05-20 2019-04-09 Transparent conductive film

Publications (1)

Publication Number Publication Date
WO2015178297A1 true WO2015178297A1 (ja) 2015-11-26

Family

ID=54553969

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/063996 WO2015178297A1 (ja) 2014-05-20 2015-05-15 透明導電性フィルム

Country Status (6)

Country Link
US (2) US20160160345A1 (ja)
JP (2) JP6066154B2 (ja)
KR (2) KR20220013022A (ja)
CN (1) CN105473756B (ja)
TW (1) TWI554623B (ja)
WO (1) WO2015178297A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170093334A (ko) * 2016-02-05 2017-08-16 주식회사 엘지화학 스퍼터링 타겟 및 이를 이용한 투명 도전성 필름

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9657386B2 (en) * 2014-03-28 2017-05-23 Kaneka Corporation Transparent conductive film and method for producing same
JP6211557B2 (ja) * 2014-04-30 2017-10-11 日東電工株式会社 透明導電性フィルム及びその製造方法
WO2018047977A1 (ja) * 2016-09-12 2018-03-15 株式会社アルバック 透明導電膜付き基板の製造方法、透明導電膜付き基板の製造装置、及び透明導電膜付き基板
JP6490262B2 (ja) * 2017-05-09 2019-03-27 日東電工株式会社 光透過性導電層付きフィルム、調光フィルムおよび調光装置
JP7086080B2 (ja) * 2017-08-08 2022-06-17 三井金属鉱業株式会社 酸化物焼結体およびスパッタリングターゲット
JP7320510B2 (ja) * 2018-08-01 2023-08-03 株式会社カネカ 透明電極付き基板およびその製造方法
US11991871B2 (en) * 2018-12-12 2024-05-21 Nitto Denko Corporation Impedance matching film for radio wave absorber, impedance matching film-attached film for radio wave absorber, radio wave absorber, and laminate for radio wave absorber
JP7198096B2 (ja) 2019-01-30 2022-12-28 日東電工株式会社 透明導電性フィルム
JP7198097B2 (ja) 2019-01-30 2022-12-28 日東電工株式会社 透明導電性フィルム
JP7378937B2 (ja) 2019-02-22 2023-11-14 日東電工株式会社 光透過性導電フィルム
JP7378938B2 (ja) * 2019-02-22 2023-11-14 日東電工株式会社 光透過性導電フィルム
JP7300855B2 (ja) 2019-03-13 2023-06-30 日東電工株式会社 フィルム積層体、および、パターニング導電性フィルムの製造方法
JP7320960B2 (ja) 2019-03-13 2023-08-04 日東電工株式会社 フィルム積層体、および、パターニング導電性フィルムの製造方法
CN113615329A (zh) * 2019-03-29 2021-11-05 日东电工株式会社 电波吸收体用阻抗匹配膜、带有电波吸收体用阻抗匹配膜的膜、电波吸收体以及电波吸收体用层叠体
KR20220156821A (ko) 2020-03-19 2022-11-28 닛토덴코 가부시키가이샤 투명 도전성 필름
JP7073588B2 (ja) 2020-03-19 2022-05-23 日東電工株式会社 透明導電層および透明導電性フィルム
CN115298758A (zh) * 2020-03-19 2022-11-04 日东电工株式会社 透明导电性薄膜
JP7213962B2 (ja) * 2020-04-20 2023-01-27 日東電工株式会社 光透過性導電層および光透過性導電フィルム
JP2022072099A (ja) 2020-10-29 2022-05-17 日東電工株式会社 透明導電性フィルム
KR20230096992A (ko) 2020-10-29 2023-06-30 닛토덴코 가부시키가이샤 투명 도전성 필름 및 투명 도전성 필름의 제조 방법
KR102698069B1 (ko) 2021-09-17 2024-08-22 닛토덴코 가부시키가이샤 투명 도전성 필름
KR102695635B1 (ko) 2021-09-17 2024-08-16 닛토덴코 가부시키가이샤 투명 도전성 필름
JP7509852B2 (ja) 2022-11-10 2024-07-02 日東電工株式会社 透明導電性フィルム
JP7534374B2 (ja) 2022-11-10 2024-08-14 日東電工株式会社 透明導電性フィルムの製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09286070A (ja) * 1995-12-20 1997-11-04 Mitsui Toatsu Chem Inc 透明導電性積層体及びそれを用いたエレクトロルミネッセンス発光素子
JP2003297150A (ja) * 2002-04-08 2003-10-17 Nitto Denko Corp 透明導電積層体とその製造方法
WO2012086484A1 (ja) * 2010-12-24 2012-06-28 日東電工株式会社 透明導電性フィルムおよびその製造方法
WO2013183564A1 (ja) * 2012-06-07 2013-12-12 日東電工株式会社 透明導電性フィルム

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4397511B2 (ja) * 1999-07-16 2010-01-13 Hoya株式会社 低抵抗ito薄膜及びその製造方法
JP4004025B2 (ja) * 2001-02-13 2007-11-07 日東電工株式会社 透明導電性積層体およびタッチパネル
JP4861707B2 (ja) 2006-01-20 2012-01-25 日東電工株式会社 透明導電積層体
TWI488751B (zh) * 2010-07-06 2015-06-21 Nitto Denko Corp Method for manufacturing transparent conductive film
JP5101719B2 (ja) * 2010-11-05 2012-12-19 日東電工株式会社 透明導電性フィルム、その製造方法及びそれを備えたタッチパネル
JP5122670B2 (ja) * 2010-11-05 2013-01-16 日東電工株式会社 透明導電性フィルムの製造方法
KR20140027230A (ko) * 2011-05-20 2014-03-06 아사히 가라스 가부시키가이샤 도전막용 소재, 도전막 적층체, 전자 기기, 및 그들의 제조 방법
JP5190554B1 (ja) * 2011-10-05 2013-04-24 日東電工株式会社 透明導電性フィルム
JP5244950B2 (ja) * 2011-10-06 2013-07-24 日東電工株式会社 透明導電性フィルム
WO2013172055A1 (ja) * 2012-05-17 2013-11-21 株式会社カネカ 透明電極付き基板およびその製造方法、ならびにタッチパネル

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09286070A (ja) * 1995-12-20 1997-11-04 Mitsui Toatsu Chem Inc 透明導電性積層体及びそれを用いたエレクトロルミネッセンス発光素子
JP2003297150A (ja) * 2002-04-08 2003-10-17 Nitto Denko Corp 透明導電積層体とその製造方法
WO2012086484A1 (ja) * 2010-12-24 2012-06-28 日東電工株式会社 透明導電性フィルムおよびその製造方法
WO2013183564A1 (ja) * 2012-06-07 2013-12-12 日東電工株式会社 透明導電性フィルム

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LII,D. -F. ET AL.: "Effects of annealing on the properties of indium-tin oxide films prepared by ion beam sputtering", SURFACE AND COATINGS TECHNOLOGY, vol. 192, no. 1, 2005, pages 106 - 111, XP027608428, ISSN: 0257-8972 *
MIWAKO KUBO ET AL.: "Thickness Dependence of Structure and Properties of Indium Oxide Films Deposited at Room Temperature", JOURNAL OF THE VACUUM SOCIETY OF JAPAN, vol. 44, no. 3, 20 March 2001 (2001-03-20), pages 395 *
UTSUMI,K. ET AL.: "Study on In2O3-SnO2 transparent and conductive films prepared by d.c. sputtering using high density ceramic targets", THIN SOLID FILMS, vol. 445, no. 2, 2003, pages 229 - 234, XP004479597, ISSN: 0040-6090 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170093334A (ko) * 2016-02-05 2017-08-16 주식회사 엘지화학 스퍼터링 타겟 및 이를 이용한 투명 도전성 필름
KR102126707B1 (ko) * 2016-02-05 2020-06-25 주식회사 엘지화학 스퍼터링 타겟 및 이를 이용한 투명 도전성 필름

Also Published As

Publication number Publication date
CN105473756A (zh) 2016-04-06
JP6964401B2 (ja) 2021-11-10
US20160160345A1 (en) 2016-06-09
TWI554623B (zh) 2016-10-21
KR20220013022A (ko) 2022-02-04
JP6066154B2 (ja) 2017-01-25
TW201602375A (zh) 2016-01-16
JPWO2015178297A1 (ja) 2017-04-20
KR20170008195A (ko) 2017-01-23
JP2017071850A (ja) 2017-04-13
US20190233939A1 (en) 2019-08-01
CN105473756B (zh) 2019-06-18

Similar Documents

Publication Publication Date Title
JP6066154B2 (ja) 透明導電性フィルムの製造方法
KR101269316B1 (ko) 투명 도전성 필름의 제조 방법
EP2701161B1 (en) Transparent conductive film
JP5244950B2 (ja) 透明導電性フィルム
WO2012063903A1 (ja) 透明導電フィルム
US10303284B2 (en) Transparent conductive film and method for producing the same
CN110033879A (zh) 透明导电性薄膜及其制造方法
CN107004463A (zh) 透明导电性薄膜以及使用其的触摸传感器
JPWO2014115770A1 (ja) 透明導電性基材ならびにその製造方法
KR20170098685A (ko) 투명 도전성 필름
JP6674991B2 (ja) 透明導電性フィルム及びその製造方法
JP6261540B2 (ja) 透明導電性フィルム及びその製造方法
WO2014157312A1 (ja) 透明導電積層フィルムおよびその製造方法
TW201545176A (zh) 積層體、導電性積層體、及電子機器
JP5805129B2 (ja) 透明導電性フィルム
JP2015114130A (ja) フィルムセンサおよびフィルムセンサを備えるタッチパネル装置、並びに、フィルムセンサを作製するために用いられる積層体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201580001616.3

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2015555884

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15796222

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167000424

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14908855

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15796222

Country of ref document: EP

Kind code of ref document: A1