WO2015166910A1 - パターン描画装置、パターン描画方法、デバイス製造方法、レーザ光源装置、ビーム走査装置、および、ビーム走査方法 - Google Patents

パターン描画装置、パターン描画方法、デバイス製造方法、レーザ光源装置、ビーム走査装置、および、ビーム走査方法 Download PDF

Info

Publication number
WO2015166910A1
WO2015166910A1 PCT/JP2015/062692 JP2015062692W WO2015166910A1 WO 2015166910 A1 WO2015166910 A1 WO 2015166910A1 JP 2015062692 W JP2015062692 W JP 2015062692W WO 2015166910 A1 WO2015166910 A1 WO 2015166910A1
Authority
WO
WIPO (PCT)
Prior art keywords
scanning
light
pattern
spot
light source
Prior art date
Application number
PCT/JP2015/062692
Other languages
English (en)
French (fr)
Inventor
加藤正紀
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2014092862A external-priority patent/JP6349924B2/ja
Priority claimed from JP2015083669A external-priority patent/JP6569281B2/ja
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to KR1020197016105A priority Critical patent/KR102078979B1/ko
Priority to KR1020197002361A priority patent/KR101967598B1/ko
Priority to KR1020197009529A priority patent/KR102060289B1/ko
Priority to KR1020207004046A priority patent/KR102164337B1/ko
Priority to KR1020197008297A priority patent/KR101988825B1/ko
Priority to CN201580034744.8A priority patent/CN106489093B/zh
Priority to KR1020167029590A priority patent/KR101963488B1/ko
Priority to KR1020187027312A priority patent/KR101998541B1/ko
Publication of WO2015166910A1 publication Critical patent/WO2015166910A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2051Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source
    • G03F7/2053Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source using a laser
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/12Scanning systems using multifaceted mirrors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/11Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on acousto-optical elements, e.g. using variable diffraction by sound or like mechanical waves
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/37Non-linear optics for second-harmonic generation
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/24Curved surfaces
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • G03F7/70025Production of exposure light, i.e. light sources by lasers

Definitions

  • the present invention relates to a beam scanning apparatus and a beam scanning method for scanning a spot light of a beam irradiated on an irradiated body, a pattern drawing apparatus and a pattern drawing for scanning a spot light and drawing a predetermined pattern on the irradiated body.
  • the present invention relates to a method, a device manufacturing method using the pattern drawing method, and a laser light source device used in a pattern drawing apparatus and a beam scanning apparatus.
  • a laser beam from one laser oscillator (laser beam light source) is divided into two by a half mirror and divided.
  • a laser irradiation apparatus and a laser drawing apparatus are known in which each laser beam is incident on two polygon mirrors (rotating polygon mirrors) to scan two laser beams on a drawing object.
  • Japanese Patent Laid-Open No. 2001-133710 discloses that each of two divided laser beams incident on two polygon mirrors is modulated by an AOM (acousto-optic element) that is turned on / off in response to drawing data. Is also disclosed.
  • the incident laser beam is applied to the drawing object during the rotation of the polygon mirror depending on the number of reflection surfaces of the polygon mirror and the incident condition of the optical system (such as the f ⁇ lens) after the polygon mirror.
  • the optical system such as the f ⁇ lens
  • a pattern drawing apparatus for drawing a predetermined pattern on an irradiated object by a scanning spot of laser light, the light source device for emitting the laser light, and the laser light being incident
  • a plurality of drawing units including an optical scanning member that scans the laser beam and an optical lens system to generate the scanning spot, and the scanning spot is installed so as to scan different regions on the irradiated object And along the traveling direction of the laser light from the light source device in order to switch whether or not the laser light from the light source device is incident on the drawing unit selected from the plurality of drawing units.
  • a plurality of optical elements for selection arranged in series.
  • a pattern drawing apparatus for drawing a predetermined pattern on an irradiated object by a scanning spot of laser light, the light source device for emitting the laser light, and the laser light being incident.
  • a plurality of drawing units including an optical scanning member that scans the laser beam and an optical lens system to generate the scanning spot, and the scanning spot is installed so as to scan different regions on the irradiated object
  • a plurality of selection optical elements arranged in series along the traveling direction of the laser light from the light source device in order to selectively cause the laser light from the light source device to enter the plurality of drawing units.
  • the plurality of selection lights based on the respective drawing data of the plurality of drawing units that define the pattern to be drawn on the irradiated object by the scanning spot.
  • a pulse light source device that generates a pulsed beam whose oscillation cycle can be adjusted, and the beam from the pulse light source device is projected as a spot light on an irradiated body.
  • the beam is deflected so that a projection period and a non-projection period of the object to be irradiated are repeated at a predetermined cycle, and the beam is deflected along the first drawing line on the object to be irradiated during the projection period.
  • a first drawing unit that scans spot light and a beam from the pulsed light source device are projected as spot light onto the irradiated body, and the projection period and the non-projection period are repeated at a predetermined cycle.
  • a second drawing unit that deflects the beam and scans the spot light along a second drawing line on the irradiated object different from the first drawing line during the projection period;
  • the projection period in the first drawing unit corresponds to the non-projection period in the second drawing unit, and the projection period in the second drawing unit corresponds to the non-projection period in the first drawing unit,
  • a first control system that synchronously controls the first drawing unit and the second drawing unit, and a first pattern to be drawn by the first drawing line during the projection period in the first drawing unit.
  • the oscillation of the beam is controlled based on the drawing information, and the oscillation of the beam is controlled based on the second drawing information of the pattern to be drawn by the second drawing line during the projection period in the second drawing unit.
  • a second control system for controlling the pulse light source device so as to be controlled.
  • the spot light and the irradiated object are relatively scanned while intensity-modulating the spot light of the ultraviolet laser light focused on the irradiated object according to the drawing data.
  • a pattern drawing apparatus for drawing a pattern on the irradiated object a light source unit that generates seed light that is a source of the ultraviolet laser light, an optical amplifier that receives and amplifies the seed light, and is amplified
  • a laser light source device including a wavelength conversion optical element that generates the ultraviolet laser light from the seed light, and the intensity of the seed light generated from the light source unit in the drawing data to modulate the intensity of the spot light.
  • a drawing modulation device that modulates in response.
  • the spot light and the irradiated object are relatively scanned while intensity-modulating the spot light of the ultraviolet laser light focused on the irradiated object according to the drawing data.
  • a pattern drawing method for drawing a pattern on the irradiated object wherein a seed light that is a source of the ultraviolet laser light is amplified by an optical amplifier, and the amplified seed light is amplified by a wavelength conversion optical element.
  • a device manufacturing method wherein the light-sensitive substrate prepared as the irradiation target is moved in the first direction, and the pattern drawing method according to the fifth aspect is used. Drawing a pattern for a device on the photosensitive layer of the substrate; selectively forming a predetermined pattern material according to the difference between the irradiated portion of the spot light and the non-irradiated portion of the photosensitive layer; including.
  • a laser light source device that is connected to an apparatus for drawing a pattern by spot light collected on an irradiated object and that emits a beam that becomes the spot light, the clock having a predetermined cycle.
  • the first semiconductor light source that generates sharp first pulse light whose emission time is short with respect to the predetermined period and whose peak intensity is high, and the emission time in response to the clock pulse is the predetermined period
  • a second semiconductor light source that generates a broad second pulse light that is shorter than the first pulse light emission time and has a low peak intensity, and the first pulse light or the second pulse light is incident
  • the first pulsed light is incident on the fiber optical amplifier when the spot light is projected onto the irradiated object.
  • the at non-projection of the spot light to the irradiated body on includes a switching member for switching optically so as to be incident the second pulse light to the fiber optical amplifiers.
  • a rotary polygon mirror for repeatedly deflecting a beam from a light source device, and projection optics for condensing the deflected beam into spot light that is one-dimensionally scanned on an irradiated body.
  • a beam scanning device in which a plurality of scanning units including a system are arranged in a predetermined positional relationship, and the light source device is included in one scanning unit that performs one-dimensional scanning of the spot light among the plurality of scanning units.
  • a beam switching member that switches an optical path of the beam so that the beam from the beam is incident, and deflection of the beam by the rotating polygon mirror of the scanning unit is provided for each at least every other reflecting surface of the rotating polygon mirror.
  • a beam switching control unit that controls the beam switching member to be repeated, and causes each of the plurality of scanning units to perform one-dimensional scanning of the spot light in order.
  • a rotary polygon mirror that rotates at a constant rotational speed in order to repeatedly deflect a beam from a light source device, and the deflected beam is incident and one-dimensionally scanned on an irradiated object.
  • a beam scanning apparatus having a plurality of scanning modules each including a plurality of scanning units each having a projection optical system for condensing the spot light and having a predetermined positional relationship.
  • a beam switching member that switches an optical path of the beam so that the beam from the light source device is incident on the scanning unit that performs dimensional scanning, and deflection of the beam by the rotary polygon mirror of each of the scanning units,
  • To switch to either, and controls the beam switching member comprises a beam switching controller to perform the one-dimensional scanning of the spot light sequentially to each of a plurality of the scanning unit.
  • a scanning unit including a projection optical system that condenses a beam repeatedly deflected by a rotating polygon mirror and collects the spot light that is one-dimensionally scanned on the irradiated object.
  • a beam scanning method in which a plurality of positions are arranged and the irradiated object is beam-scanned, wherein a plurality of rotation angle positions of the rotary polygon mirrors of the plurality of scanning units are in a predetermined phase relationship with each other.
  • the deflection of the beam by the rotating polygon mirror is performed by the rotating polygon mirror. Switching the scanning unit on which the beam is incident so as to be repeated for every other reflecting surface.
  • An eleventh aspect of the present invention includes a projection optical system that receives a beam repeatedly deflected by a rotating polygon mirror that rotates at a constant rotation speed and collects the beam into spot light that is one-dimensionally scanned on the irradiated object.
  • a beam scanning method in which a plurality of scanning units are arranged in a predetermined positional relationship, and the object to be irradiated is scanned by a beam scanning method, wherein a rotational angle position of the rotary polygon mirror of each of the plurality of scanning units is Synchronously rotating a plurality of the rotating polygon mirrors so as to have a predetermined phase relationship with each other, and the deflection of the beam by the rotating polygon mirror is repeated for each successive reflecting surface of the rotating polygon mirror,
  • a first scanning step in which each of the plurality of scanning units sequentially performs one-dimensional scanning of the spot light by switching the scanning unit on which the beam is incident, By switching the scanning unit on which the beam is incident so that deflection of the beam by the polygon mirror is repeated for every other reflecting surface of the rotating polygon mirror, each of the plurality of scanning units is A second scanning step for sequentially performing one-dimensional scanning of spot light, and a switching step for switching between the first scanning step and the second scanning step.
  • a plurality of scanning units for main-scanning the spot light of the beam from the light source device along the drawing line, and a pattern drawn by each drawing line is scanned on the substrate on the drawing line.
  • a pattern drawing method using a drawing device that is arranged so as to be connected in the direction of the image, and relatively moves the plurality of scanning units and the substrate in a sub-scanning direction intersecting the main scanning direction.
  • a specific scanning unit corresponding to the width in the main scanning direction of the substrate or the width or position in the main scanning direction of the exposure region on which the pattern is drawn on the substrate is selected.
  • a beam delivery unit for delivering the beam from the light source device.
  • FIG. 1 is a diagram illustrating a configuration of a drawing head. It is a detailed block diagram of the light introduction optical system shown in FIG. It is a figure which shows the drawing line by which spot light is scanned by each scanning unit shown in FIG. It is a figure which shows the relationship between the polygon mirror of each scanning unit shown in FIG. 3, and the scanning direction of a drawing line.
  • FIG. 1 is a diagram illustrating a configuration of a drawing head. It is a detailed block diagram of the light introduction optical system shown in FIG. It is a figure which shows the drawing line by which spot light is scanned by each scanning unit shown in FIG. It is a figure which shows the relationship between the polygon mirror of each scanning unit shown in FIG. 3, and the scanning direction of a drawing line.
  • FIG. 4 is a diagram for explaining a rotation angle of a polygon mirror that can deflect (reflect) laser light so that a reflection surface of the polygon mirror shown in FIG. 3 is incident on an f- ⁇ lens.
  • FIG. 4 is a diagram schematically illustrating an optical path between a light introducing optical system and a plurality of scanning units illustrated in FIG. 3. It is a figure which shows the structure of the drawing head in the modification of the said 1st Embodiment. It is a detailed block diagram of the light introduction optical system shown in FIG. It is a figure which shows the structure of the drawing head of 2nd Embodiment. It is a figure which shows the light introduction optical system shown in FIG. FIG.
  • FIG. 13 is a diagram schematically illustrating an optical path between the light introduction optical system illustrated in FIG. 12 and a plurality of scanning units. It is a block diagram which shows the example of a control circuit for the rotational drive of each polygon mirror of the some scanning unit shown in FIG.
  • FIG. 15 is a timing chart illustrating an operation example of the control circuit illustrated in FIG. 14.
  • FIG. 14 is a block diagram showing an example of a circuit for generating drawing bit string data supplied to the drawing optical element shown in FIGS. 11 to 13; It is a figure which shows the structure of the light source device in the modification of 2nd Embodiment. It is a block diagram which shows the structure of the control unit for drawing control by 3rd Embodiment.
  • FIG. 21 is a time chart illustrating how the clock signal in FIG. 20 is corrected for drawing magnification correction. It is a figure explaining the correction method of the drawing magnification in one drawing line (scanning line). It is a figure which shows schematic structure of the device manufacturing system containing the exposure apparatus which performs the exposure process to the board
  • FIG. 24 is a detailed view of the rotating drum of FIG. 23 around which a substrate is wound.
  • FIG. 27A is a diagram of switching of the optical path of the beam by the selection optical element when viewed from the + Z direction side
  • FIG. 27B is a diagram of switching of the optical path of the beam by the selection optical element when viewed from the ⁇ Y direction side.
  • FIG. 27A shows the optical structure of a scanning unit.
  • FIG. 27B shows the structure of the origin sensor provided in the periphery of the polygon mirror of FIG.
  • FIG. 32 is a diagram showing a time chart of a sub origin signal generated by the sub origin generation circuit of FIG. 31. It is a block diagram which shows the electric structure of exposure apparatus. It is a time chart which shows the timing which an origin signal, a sub origin signal, and serial data are output. It is a figure which shows the structure of the drawing data output control part shown in FIG. It is a block diagram of the beam switching member of 5th Embodiment. It is a figure which shows an optical path when the position of the arrangement
  • FIG. 40 is a timing chart illustrating the operation of the logic circuit of FIG. 39.
  • FIG. FIG. 45 is a diagram showing a modification of the driver circuit in FIG. 44.
  • FIG. 1 is a diagram illustrating a schematic configuration of a device manufacturing system 10 including an exposure apparatus EX that performs an exposure process on a substrate (irradiated body) FS according to the first embodiment.
  • the device manufacturing system 10 is a manufacturing system in which a manufacturing line for manufacturing a flexible display, a flexible wiring, a flexible sensor, etc. as an electronic device is constructed. The following description is based on the assumption that a flexible display is used as the electronic device. Examples of the flexible display include an organic EL display and a liquid crystal display.
  • the device manufacturing system 10 sends out a substrate FS from a supply roll (not shown) obtained by winding a flexible sheet-like substrate (sheet substrate) FS in a roll shape, and continuously performs various processes on the delivered substrate FS. After the application, the substrate FS after various treatments is wound up by a collecting roll (not shown), and has a so-called roll-to-roll structure.
  • the substrate FS has a strip shape in which the moving direction of the substrate FS is the longitudinal direction (long) and the width direction is the short direction (short).
  • the substrate FS sent from the supply roll is sequentially subjected to various processes by the process apparatus PR1, the exposure apparatus (pattern drawing apparatus, beam scanning apparatus) EX, and the process apparatus PR2, and is taken up by the collection roll.
  • the X direction is a direction (conveyance direction) from the process apparatus PR1 to the process apparatus PR2 through the exposure apparatus EX in the horizontal plane.
  • the Y direction is a direction orthogonal to the X direction in the horizontal plane, and is the width direction (short direction) of the substrate FS.
  • the Z direction is a direction (upward direction) orthogonal to the X direction and the Y direction, and is parallel to the direction in which gravity acts.
  • the substrate FS for example, a resin film, or a foil (foil) made of a metal or alloy such as stainless steel is used.
  • the resin film material include polyethylene resin, polypropylene resin, polyester resin, ethylene vinyl copolymer resin, polyvinyl chloride resin, cellulose resin, polyamide resin, polyimide resin, polycarbonate resin, polystyrene resin, and vinyl acetate resin. Of these, one containing at least one may be used. Further, the thickness and rigidity (Young's modulus) of the substrate FS may be in a range that does not cause folds due to buckling or irreversible wrinkles in the substrate FS when passing through the transport path of the exposure apparatus EX.
  • a film such as PET (polyethylene terephthalate) or PEN (polyethylene naphthalate) having a thickness of about 25 ⁇ m to 200 ⁇ m is typical of a suitable sheet substrate.
  • the substrate FS may receive heat in each process performed by the process apparatus PR1, the exposure apparatus EX, and the process apparatus PR2, it is preferable to select a substrate FS having a material whose thermal expansion coefficient is not significantly large.
  • the thermal expansion coefficient can be suppressed by mixing an inorganic filler with a resin film.
  • the inorganic filler may be, for example, titanium oxide, zinc oxide, alumina, or silicon oxide.
  • the substrate FS may be a single layer of ultrathin glass having a thickness of about 100 ⁇ m manufactured by a float process or the like, or a laminate in which the above resin film, foil, etc. are bonded to the ultrathin glass. It may be.
  • the flexibility of the substrate FS means a property that the substrate FS can be bent without being sheared or broken even when a force of its own weight is applied to the substrate FS.
  • flexibility includes a property of bending by a force of about its own weight. The degree of flexibility varies depending on the material, size, and thickness of the substrate FS, the layer structure formed on the substrate FS, the environment such as temperature and humidity, and the like.
  • the substrate FS when the substrate FS is correctly wound around the conveyance direction changing members such as various conveyance rollers and rotary drums provided in the conveyance path in the device manufacturing system 10 according to the first embodiment, If the substrate FS can be smoothly transported without being bent and creased or damaged (breaking or cracking), it can be said to be a flexible range.
  • the conveyance direction changing members such as various conveyance rollers and rotary drums provided in the conveyance path in the device manufacturing system 10 according to the first embodiment
  • the process apparatus PR1 performs a pre-process on the substrate FS exposed by the exposure apparatus EX.
  • the process apparatus PR1 sends the substrate FS that has been processed in the previous process toward the exposure apparatus EX.
  • the substrate FS sent to the exposure apparatus EX is a substrate (photosensitive substrate) having a photosensitive functional layer (photosensitive layer, photosensitive layer) formed on the surface thereof.
  • This photosensitive functional layer is applied as a solution on the substrate FS and dried to form a layer (film).
  • a typical photosensitive functional layer is a photoresist (in liquid or dry film form), but as a material that does not require development processing, the photosensitivity of the part that has been irradiated with ultraviolet rays is modified.
  • SAM silane coupling agent
  • the pattern portion exposed to ultraviolet rays on the substrate FS is modified from lyophobic to lyophilic.
  • a pattern layer to be an electrode, a semiconductor, insulation, or a wiring or electrode for connection can be formed.
  • a photosensitive reducing agent is used as the photosensitive functional layer, the plating reducing group is exposed to the pattern portion exposed to ultraviolet rays on the substrate. Therefore, after exposure, the substrate FS is immediately immersed in a plating solution containing palladium ions for a certain period of time, so that a pattern layer of palladium is formed (deposited).
  • a plating process is an additive process.
  • the substrate FS sent to the exposure apparatus EX has a base material of PET or the like.
  • PEN may be formed by depositing a metallic thin film such as aluminum (Al) or copper (Cu) on the entire surface or selectively, and further laminating a photoresist layer thereon.
  • the exposure apparatus EX is a direct drawing type exposure apparatus that does not use a mask, that is, a so-called raster scan type exposure apparatus.
  • the exposure apparatus EX irradiates the irradiated surface (photosensitive surface) of the substrate FS supplied from the process apparatus PR1 with a light pattern corresponding to a predetermined pattern for an electronic device, circuit, wiring, or the like for display. .
  • the exposure apparatus EX transmits the spot light SP of the exposure beam (laser light, irradiation light) LB on the substrate FS while transporting the substrate FS in the + X direction (sub-scanning direction).
  • the intensity of the spot light SP is rapidly modulated (ON / OFF) according to pattern data (drawing data, drawing information).
  • pattern data drawing data, drawing information.
  • a light pattern corresponding to a predetermined pattern such as an electronic device, a circuit, or a wiring is drawn and exposed on the surface (photosensitive surface) that is the irradiated surface of the substrate FS. That is, the spot light SP is relatively two-dimensionally scanned on the irradiated surface of the substrate FS by the sub-scanning of the substrate FS and the main scanning of the spot light SP, and a predetermined pattern is drawn and exposed on the substrate FS.
  • the exposure region W where the pattern is exposed by the exposure apparatus EX is spaced at a predetermined interval along the longitudinal direction of the substrate FS.
  • a plurality are provided (see FIG. 5). Since an electronic device is formed in the exposure area W, the exposure area W is also an electronic device formation area. Since the electronic device is configured by superimposing a plurality of pattern layers (layers on which patterns are formed), a pattern corresponding to each layer may be exposed by the exposure apparatus EX.
  • the process apparatus PR2 performs post-process processing (for example, plating processing, development / etching processing, etc.) on the substrate FS exposed by the exposure apparatus EX. By this subsequent process, a pattern layer of the device is formed on the substrate FS.
  • post-process processing for example, plating processing, development / etching processing, etc.
  • the electronic device is configured by superimposing a plurality of pattern layers, one pattern layer is generated through at least each process of the device manufacturing system 10. Therefore, in order to generate an electronic device, each process of the device manufacturing system 10 as shown in FIG. 1 must be performed at least twice. Therefore, a pattern layer can be laminated
  • the collection roll that collects the substrate FS formed in a state where the electronic devices are connected may be mounted on a dicing apparatus (not shown).
  • the dicing apparatus to which the collection roll is attached forms a plurality of electronic devices by dividing (dicing) the processed substrate FS into electronic devices (electronic device forming regions W).
  • the dimension of the substrate FS is about 10 cm to 2 m in the width direction (short direction) and 10 m or more in the length direction (long direction).
  • substrate FS is not limited to an above-described dimension.
  • the exposure apparatus EX is stored in the temperature control chamber ECV.
  • This temperature control chamber ECV suppresses a shape change due to the temperature of the substrate FS transported inside by keeping the inside at a predetermined temperature.
  • the temperature control chamber ECV is arranged on the installation surface E of the manufacturing factory via passive or active vibration isolation units SU1, SU2.
  • the anti-vibration units SU1 and SU2 reduce vibration from the installation surface E.
  • the installation surface E may be the floor surface of the factory itself, or may be a surface on an installation base (pedestal) installed on the floor surface in order to obtain a horizontal surface.
  • the exposure apparatus EX includes a substrate transport mechanism 12, a light source device (pulse light source device, laser light source device) 14, a drawing head 16, and a control device 18.
  • the substrate transport mechanism 12 transports the substrate FS transported from the process apparatus PR1 at a predetermined speed in the exposure apparatus EX, and then sends the substrate FS to the process apparatus PR2 at a predetermined speed.
  • the substrate transport mechanism 12 defines a transport path for the substrate FS transported in the exposure apparatus EX.
  • the substrate transport mechanism 12 includes an edge position controller EPC, a driving roller R1, a tension adjusting roller RT1, a rotating drum (cylindrical drum) DR, a tension adjusting roller RT2, in order from the upstream side ( ⁇ X direction side) in the transport direction of the substrate FS.
  • a driving roller R2 and a driving roller R3 are provided.
  • the edge position controller EPC adjusts the position in the width direction (the Y direction and the short direction of the substrate FS) of the substrate FS transported from the process apparatus PR1.
  • the edge position controller EPC has a position at the end (edge) in the width direction of the substrate FS being transported in a state of a predetermined tension, which is about ⁇ 10 ⁇ m to several tens ⁇ m with respect to the target position.
  • the position of the substrate FS in the width direction is adjusted by moving the substrate FS in the width direction so that it falls within the range (allowable range).
  • the edge position controller EPC has a roller over which the substrate FS is stretched, and an edge sensor (edge detection unit) (not shown) that detects the position of the edge (edge) in the width direction of the substrate FS. Based on the detection signal, the roller of the edge position controller EPC is moved in the Y direction to adjust the position in the width direction of the substrate FS.
  • the driving roller R1 rotates while holding both front and back surfaces of the substrate FS conveyed from the edge position controller EPC, and conveys the substrate FS toward the rotating drum DR.
  • the edge position controller EPC sets the position in the width direction of the substrate FS so that the longitudinal direction of the substrate FS wound around the rotary drum DR is always orthogonal to the central axis (rotation axis) AXo of the rotary drum DR. While adjusting as appropriate, the parallelism between the rotation axis of the roller and the Y axis of the edge position controller EPC may be adjusted as appropriate so as to correct a tilt error in the traveling direction of the substrate FS.
  • the rotating drum DR has a central axis AXo extending in the Y direction and extending in a direction intersecting with the direction in which gravity works, and a cylindrical outer peripheral surface having a constant radius from the central axis AXo, and an outer peripheral surface (circumferential surface).
  • the substrate FS is transported in the + X direction by rotating around the central axis AXo while supporting a part of the substrate FS in the longitudinal direction following the above.
  • the rotary drum DR supports the exposure area (part) on the substrate FS on which the beam LB (spot light SP) from the drawing head 16 is projected on its circumferential surface.
  • shafts Sft supported by an annular bearing are provided so that the rotating drum DR rotates about the central axis AXo.
  • the shaft Sft rotates around the central axis AXo when a rotational torque from a rotation drive source (not shown) controlled by the control device 18 (for example, composed of a motor, a speed reduction mechanism, etc.) is applied.
  • a rotational torque from a rotation drive source for example, composed of a motor, a speed reduction mechanism, etc.
  • a plane including the central axis AXo and parallel to the YZ plane is referred to as a central plane Poc.
  • the driving rollers R2 and R3 are arranged at a predetermined interval along the transport direction (+ X direction) of the substrate FS, and give a predetermined slack (play) to the exposed substrate FS. Similarly to the drive roller R1, the drive rollers R2 and R3 rotate while holding both front and back surfaces of the substrate FS, and transport the substrate FS toward the process apparatus PR2.
  • the driving rollers R2 and R3 are provided on the downstream side (+ X direction side) in the transport direction with respect to the rotating drum DR.
  • the driving roller R2 is located on the upstream side ( ⁇ X in the transport direction) with respect to the driving roller R3. (Direction side).
  • the tension adjusting rollers RT1 and RT2 are urged in the ⁇ Z direction, and apply a predetermined tension in the longitudinal direction to the substrate FS that is wound around and supported by the rotary drum DR. Thereby, the longitudinal tension applied to the substrate FS applied to the rotary drum DR is stabilized within a predetermined range.
  • the control device 18 rotates the driving rollers R1 to R3 by controlling a rotation driving source (not shown) (for example, a motor, a reduction gear, or the like).
  • the light source device 14 has a light source (pulse light source) and emits a pulsed beam (pulse light, laser light) LB.
  • This beam LB is ultraviolet light having a peak wavelength in a wavelength band of 370 nm or less, and the oscillation frequency (light emission frequency) of the beam LB is Fs.
  • the beam LB emitted from the light source device 14 enters the drawing head 16.
  • the light source device 14 emits and emits the beam LB at the emission frequency Fs under the control of the control device 18.
  • the configuration of the light source device 14 will be described in detail later.
  • a semiconductor laser element that generates pulsed light in the infrared wavelength region, a fiber amplifier, and the amplified pulsed light in the infrared wavelength region is converted into pulsed light in the ultraviolet wavelength region.
  • a fiber amplifier laser that is composed of a wavelength conversion element (harmonic generation element) or the like that converts the light into a laser beam and that can generate high-intensity ultraviolet pulsed light with an oscillation frequency Fs of several hundreds of MHz and an emission time of one pulse of about picoseconds.
  • a light source may be used.
  • the drawing head 16 includes a plurality of scanning units Un (U1 to U6) on which the beams LB are incident.
  • the drawing head 16 draws a predetermined pattern on a part of the substrate FS supported by the circumferential surface of the rotary drum DR of the substrate transport mechanism 12 by a plurality of scanning units (drawing units) U1 to U6.
  • the drawing head 16 is a so-called multi-beam drawing head 16 in which a plurality of scanning units U1 to U6 having the same configuration are arranged. Since the drawing head 16 repeatedly performs pattern exposure for an electronic device on the substrate FS, an exposure region (electronic device formation region) W where the pattern is exposed is a predetermined interval along the longitudinal direction of the substrate FS. A plurality are provided (see FIG. 5).
  • the control device 18 controls each part of the exposure apparatus EX and causes each part to execute processing.
  • the control device 18 includes a computer and a storage medium in which a program is stored, and the computer functions as the control device 18 in the first embodiment by executing the program stored in the storage medium. .
  • FIG. 2 is a view showing a plurality of scanning units (drawing units) Un of the drawing head 16 and a support frame (device column) 30 that supports the rotating drum DR.
  • the support frame 30 includes a main body frame 32, a three-point support portion 34, and a drawing head support portion 36.
  • the support frame 30 is stored in the temperature control chamber ECV.
  • the main body frame 32 rotatably supports the rotary drum DR and the tension adjustment rollers RT1 (not shown) and RT2 via an annular bearing.
  • the three-point support part 34 is provided at the upper end of the main body frame 32 and supports the drawing head support part 36 provided above the rotary drum DR at three points.
  • the drawing head support unit 36 supports the scanning units Un (U1 to U6) of the drawing head 16.
  • the drawing head support unit 36 supports the scanning units U1, U3, and U5 in parallel with the central axis AXo of the rotary drum DR on the downstream side (+ X direction side) in the transport direction and along the width direction of the substrate FS. (See FIG. 1). Further, the drawing head support 36 is located upstream in the transport direction ( ⁇ X direction side) with respect to the central axis AXo with respect to the scanning units U2, U4, and U6, and along the width direction (Y direction) of the substrate FS. Support in parallel (see FIG. 1).
  • the drawing width in the Y direction (scanning range of the spot light SP, drawing line SLn) by one scanning unit Un is about 20 to 50 mm as an example
  • the odd-numbered scanning units U1, U3, U5 By arranging a total of six scanning units Un, three of which are even numbered scanning units U2, U4, and U6, in the Y direction, the width in the Y direction that can be drawn is increased to about 120 to 300 mm. Yes.
  • FIG. 3 is a diagram showing a configuration of the drawing head 16.
  • the exposure apparatus EX includes two light source devices 14 (14a, 14b).
  • the drawing head 16 includes a plurality of scanning units U1 to U6, a light introducing optical system (beam switching member) 40a for guiding the beam LB from the light source device 14a to the plurality of scanning units U1, U3, and U5, and a light source device 14b.
  • a light introducing optical system (beam switching member) 40b for guiding the beam LB to the plurality of scanning units U2, U4, and U6.
  • the light introducing optical system (beam switching member) 40a will be described with reference to FIG. Since the light introduction optical systems 40a and 40b have the same configuration, the light introduction optical system 40a will be described here, and the description of the light introduction optical system 40b will be omitted.
  • the light introducing optical system 40a includes a condensing lens 42, a collimating lens 44, a reflecting mirror 46, a condensing lens 48, a selection optical element 50, a reflecting mirror 52, a collimating lens 54, and a condensing lens from the light source device 14 (14a) side.
  • a lens 56, a selection optical element 58, a reflection mirror 60, a collimating lens 62, a condenser lens 64, a selection optical element 66, a reflection mirror 68, and an absorber 70 are included.
  • the condensing lens 42 and the collimating lens 44 expand the beam LB emitted from the light source device 14a. Specifically, first, the condensing lens 42 converges the beam LB at the focal position on the rear side of the condensing lens 42, and the collimating lens 44 converts the beam LB diverged after being converged by the condensing lens 42 to a predetermined beam diameter. (For example, several mm).
  • the reflection mirror 46 reflects the beam LB made parallel by the collimating lens 44 and irradiates the optical element 50 for selection.
  • the condensing lens 48 condenses (converges) the beam LB incident on the selection optical element 50 so as to be a beam waist in the selection optical element 50.
  • the selection optical element 50 is transmissive to the beam LB, and for example, an acousto-optic modulator (AOM: Acousto-Optic Modulator) is used.
  • AOM Acousto-Optic Modulator
  • the beams LBn emitted from each of the plurality of optical elements for selection 50, 58, 66 as the first-order diffracted light and incident on the corresponding scanning units U1, U3, U5 are converted into LB1, LB3. , LB5, and each of the selection optical elements 50, 58, 66 is treated as having a function of deflecting the optical path of the beam LB from the light source device 14 (14a).
  • the configurations, functions, functions, etc. of the selection optical elements 50, 58, 66 may be the same.
  • the selection optical elements 50, 58, and 66 turn on / off the generation of diffracted light diffracted from the incident beam LB in accordance with the on / off of the drive signal (high frequency signal) from the control device 18.
  • the selection optical element 50 irradiates the selection optical element 58 with the incident beam LB when the drive signal (high frequency signal) from the control device 18 is OFF.
  • the selection optical element 50 diffracts the incident beam LB and irradiates the reflection mirror 52 with the beam LB1 that is the first-order diffracted light.
  • the reflection mirror 52 reflects the incident beam LB1 and irradiates the collimating lens 100 of the scanning unit U1. That is, when the control device 18 switches (drives) the selection optical element 50 on and off, the selection optical element 50 switches whether the beam LB1 is incident on the scanning unit U1.
  • the condensing lens 56 that condenses (converges) the beam waist again in the optical element for selection 58 is provided in the order described above.
  • the selection optical element 58 is transmissive to the beam LB in the same manner as the selection optical element 50.
  • an acousto-optic modulation element AOM
  • the selection optical element 58 transmits the incident beam LB as it is to irradiate the selection optical element 66 and sends it from the control device 18.
  • the drive signal high-frequency signal
  • the reflection mirror 60 is irradiated with the beam LB3 that is the first-order diffracted light.
  • the reflection mirror 60 reflects the incident beam LB3 and irradiates the collimating lens 100 of the scanning unit U3. That is, when the control device 18 switches the selection optical element 58 on and off, the selection optical element 58 switches whether the beam LB3 is incident on the scanning unit U3.
  • a collimator lens 62 that returns the beam LB irradiated to the selection optical element 66 to parallel light, and a beam LB that has been collimated by the collimator lens 62.
  • the condensing lens 64 that condenses (converges) the beam waist again in the selection optical element 66 is provided in the order described above.
  • the selection optical element 66 is transmissive to the beam LB in the same manner as the selection optical element 50.
  • an acoustooptic modulation element AOM
  • the selection optical element 66 irradiates the incident beam LB toward the absorber 70 and the drive signal (high frequency signal) from the control device 18.
  • the incident beam LB is diffracted, and the beam LB5 which is the first-order diffracted light is irradiated toward the reflection mirror 68.
  • the reflection mirror 68 reflects the incident beam LB5 and irradiates the collimating lens 100 of the scanning unit U5.
  • the absorber 70 is an optical trap that absorbs the beam LB for suppressing leakage of the beam LB to the outside.
  • the optical elements for selection 50, 58, 66 of the light introducing optical system 40b switch whether the beam LB is incident on the scanning units U2, U4, U6.
  • the reflection mirrors 52, 60, 68 of the light introducing optical system 40b reflect the beams LB2, LB4, LB6 emitted from the selection optical elements 50, 58, 66 to collimate the scanning units U2, U4, U6. Irradiate the lens 100.
  • an actual acousto-optic modulation element has a generation efficiency of the first-order diffracted light of about 80% of the zero-order light
  • the beams LB1 (LB2) deflected by the selection optical elements 50, 58, and 66, respectively. ), LB3 (LB4) and LB5 (LB6) are lower than the intensity of the original beam LB.
  • any one of the optical elements for selection 50, 58, 66 is in the ON state, about 20% of 0th-order light that travels straight without being diffracted remains, but is finally absorbed by the absorber 70.
  • the scanning unit Un projects the beam LBn from the light source device 14 (14a, 14b) so as to converge on the spot light SP on the irradiated surface of the substrate FS, and the spot light SP on the irradiated surface of the substrate FS. Then, one-dimensional scanning is performed by a rotating polygon mirror PM along a predetermined linear drawing line (scanning line) SLn.
  • the drawing line SLn of the scanning unit U1 is represented by SL1
  • the drawing line SLn of the scanning units U2 to U6 is represented by SL2 to SL6.
  • FIG. 5 is a diagram showing drawing lines SLn (SL1 to SL6) on which the spot light SP is scanned by the respective scanning units Un (U1 to U6).
  • each of the scanning units Un (U1 to U6) shares the scanning area so that all of the plurality of scanning units Un (U1 to U6) cover all of the width direction of the exposure area W. Yes. Accordingly, each scanning unit Un (U1 to U6) can draw a pattern for each of a plurality of regions divided in the width direction of the substrate FS.
  • the lengths of the respective drawing lines SLn (SL1 to SL6) are the same.
  • the scanning distance of the spot light SP of the beam LBn scanned along each of the drawing lines SL1 to SL6 is basically the same.
  • the actual drawing lines SLn are set slightly shorter than the maximum length that the spot light SP can actually scan on the irradiated surface. For example, if the maximum length of the drawing line SLn on which pattern drawing is possible is 30 mm when the drawing magnification in the main scanning direction (Y direction) is an initial value (no magnification correction), the maximum scanning on the irradiated surface of the spot light SP is performed.
  • the length is set to about 31 mm with a margin of about 0.5 mm on each of the scanning start point side and the scanning end point side of the drawing line SLn.
  • the maximum scanning length of the spot light SP is not limited to 31 mm, but is mainly determined by the aperture of the f ⁇ lens FT (see FIG. 3) provided after the polygon mirror (rotating polygon mirror) PM in the scanning unit Un. It may be the above.
  • the plurality of drawing lines (scanning lines) SL1 to SL6 are arranged in two rows in the circumferential direction of the rotary drum DR with the center surface Poc interposed therebetween.
  • the drawing lines SL1, SL3, and SL5 are located on the substrate FS on the downstream side (+ X direction side) in the transport direction with respect to the center plane Poc.
  • the drawing lines SL2, SL4, and SL6 are positioned on the substrate FS on the upstream side ( ⁇ X direction side) in the transport direction with respect to the center plane Poc.
  • Each drawing line SLn (SL1 to SL6) is substantially parallel to the width direction of the substrate FS, that is, along the central axis AXo of the rotary drum DR, and is shorter than the length of the substrate FS in the width direction.
  • the drawing lines SL1, SL3, and SL5 are arranged at predetermined intervals along the width direction (scanning direction, Y direction) of the substrate FS, and the drawing lines SL2, SL4, and SL6 are similarly arranged in the width direction of the substrate FS ( (Scanning direction, Y direction) are arranged at a predetermined interval.
  • the drawing line SL2 is arranged between the drawing line SL1 and the drawing line SL3 in the width direction of the substrate FS.
  • the drawing line SL3 is arranged between the drawing line SL2 and the drawing line SL4 in the width direction of the substrate FS.
  • the drawing line SL4 is arranged between the drawing line SL3 and the drawing line SL5 in the width direction of the substrate FS.
  • the drawing line SL5 is disposed between the drawing line SL4 and the drawing line SL6 in the width direction of the substrate FS. That is, the drawing lines SL1 to SL6 are arranged so as to cover all of the width direction of the exposure region W drawn on the substrate FS.
  • the scanning direction of the spot light SP of the beam LBn (LB1, LB3, LB5) scanned along each of the odd-numbered drawing lines SL1, SL3, SL5 is a one-dimensional direction and is the same direction. Yes.
  • the scanning direction of the spot light SP of the beam LBn (LB2, LB4, LB6) scanned along each of the even-numbered drawing lines SL2, SL4, SL6 is a one-dimensional direction and is the same direction. Yes.
  • the scanning direction of the beam LBn (spot light SP) scanned along the drawing lines SL1, SL3, SL5 and the scanning direction of the beam LBn (spot light SP) scanned along the drawing lines SL2, SL4, SL6 Are in opposite directions.
  • the scanning direction of the beam LBn (spot light SP) scanned along the drawing lines SL2, SL4, and SL6 is the + Y direction
  • the scanning direction of the light SP) is the -Y direction.
  • the drawing start positions of the drawing lines SL1, SL3, and SL5 positions of drawing start points (scanning start points)
  • the drawing start positions of the drawing lines SL2, SL4, and SL6 are adjacent (or partially overlapped) in the Y direction.
  • the drawing end positions (drawing end points (scan end points)) of the drawing lines SL3 and SL5 and the drawing end positions of the drawing lines SL2 and SL4 are adjacent (or partially overlap) in the Y direction.
  • each drawing line SLn so that the ends of the drawing lines SLn adjacent in the Y direction partially overlap, for example, the drawing start position or the drawing end with respect to the length of each drawing line SLn It is preferable to overlap within a range of several percent or less in the Y direction including the position.
  • the width of the drawing line SLn in the sub-scanning direction is a thickness corresponding to the size (diameter) ⁇ of the spot light SP.
  • the width of the drawing line SLn in the sub-scanning direction is also 3 ⁇ m.
  • the spot light SP may be projected along the drawing line SLn so as to overlap by a predetermined length (for example, half the size ⁇ of the spot light SP).
  • a predetermined length for example, half the size ⁇ of the spot light SP.
  • the spot light SP projected on the drawing line SLn during the main scanning corresponds to the oscillation frequency Fs of the beam LB. And become discrete. Therefore, it is necessary to overlap the spot light SP projected by one pulse light of the beam LB and the spot light SP projected by the next one pulse light in the main scanning direction.
  • the amount of overlap is set by the size ⁇ of the spot light SP, the scanning speed Vs of the spot light SP, and the oscillation frequency Fs of the beam LB, but when the intensity distribution of the spot light SP is approximated by a Gaussian distribution, It is preferable to overlap the effective diameter size ⁇ determined by 1 / e 2 (or 1/2) of the peak intensity of the light SP by about ⁇ / 2. Therefore, also in the sub-scanning direction (direction perpendicular to the drawing line SLn), the substrate FS effectively applies the spot light SP between one scanning of the spot light SP along the drawing line SLn and the next scanning. It is desirable to set so as to move by a distance of approximately 1 ⁇ 2 or less of a large size ⁇ .
  • the exposure amount to the photosensitive functional layer on the substrate FS can be set by adjusting the peak value of the beam LB (pulse light), but the exposure amount can be increased in a situation where the intensity of the beam LB cannot be increased.
  • the main light of the spot light SP may be reduced by decreasing the scanning speed Vs of the spot light SP in the main scanning direction, increasing the oscillation frequency Fs of the beam LB, or decreasing the transport speed of the substrate FS in the sub-scanning direction.
  • the overlap amount in the scanning direction or the sub-scanning direction may be increased to 1 ⁇ 2 or more of the effective size ⁇ .
  • the scanning unit U1 includes a collimating lens 100, a reflecting mirror 102, a condenser lens 104, a drawing optical element 106, a collimating lens 108, a reflecting mirror 110, a cylindrical lens CYa, and a reflecting mirror 114 after the reflecting mirror 52 shown in FIG. , A polygon mirror (optical scanning member, deflection member) PM, an f ⁇ lens FT, a cylindrical lens CYb, and a reflection mirror 122.
  • the collimating lenses 100 and 108, the reflecting mirrors 102, 110, 114, and 122, the condensing lens 104, the cylindrical lenses CYa and CYb, and the f ⁇ lens FT constitute an optical lens system.
  • the reflection mirror 102 reflects the beam LB1 incident from the collimating lens 100 in the ⁇ Z direction in FIG. 3 and enters the drawing optical element 106 as a drawing light modulator.
  • the condensing lens 104 condenses (converges) the beam LB1 (parallel light beam) incident on the drawing optical element 106 so as to be a beam waist in the drawing optical element 106.
  • the drawing optical element 106 is transmissive to the beam LB1, and for example, an acousto-optic modulation element (AOM) is used.
  • the drawing optical element 106 When the drive signal (high frequency signal) from the control device 18 is in the OFF state, the drawing optical element 106 irradiates the incident beam LB1 to a shielding plate or absorber (not shown), and the drive signal (high frequency signal) from the control device 18. ) Is diffracted, the incident beam LB1 is diffracted, and the first-order diffracted light (the drawing beam, that is, the beam LB1 whose intensity is modulated in accordance with the pattern data) is applied to the reflection mirror 110.
  • the shielding plate and the absorber are for suppressing leakage of the beam LB1 to the outside.
  • a collimating lens 108 is provided for making the beam LB1 incident on the reflection mirror 110 into parallel light.
  • the reflection mirror 110 reflects the incident beam LB1 toward the reflection mirror 114 in the ⁇ X direction, and the reflection mirror 114 reflects the incident beam LB1 toward the polygon mirror PM.
  • the polygon mirror (rotating polygon mirror) PM reflects the incident beam LB1 toward the ⁇ X direction toward an f ⁇ lens FT having an optical axis parallel to the X axis.
  • the polygon mirror PM deflects (reflects) the incident beam LB1 in a plane parallel to the XY plane in order to scan the spot light SP of the beam LB1 on the irradiated surface of the substrate FS.
  • the polygon mirror PM includes a rotation axis AXp extending in the Z direction and a plurality of reflection surfaces RP (eight reflection surfaces RP in the first embodiment) formed around the rotation axis AXp. Have.
  • the reflection angle of the pulsed beam LB1 irradiated on the reflection surface RP can be continuously changed.
  • the reflection direction of the beam LB1 is deflected by one reflection surface RP, and the spot light SP of the beam LB1 irradiated on the irradiated surface of the substrate FS is scanned in the scanning direction (width direction of the substrate FS, Y direction). can do.
  • the polygon mirror PM deflects the incident beam LB1 and scans the spot light SP along the drawing line (scanning line) SL1 shown in FIG.
  • the polygon mirror PM is rotated at a constant speed by a rotation driving source (not shown) (for example, constituted by a motor, a speed reduction mechanism, etc.).
  • This rotational drive source is controlled by the control device 18.
  • the spot light SP of the beam LB1 can be scanned along the drawing line SL1 by one reflecting surface RP of the polygon mirror PM, the spot light SP is irradiated onto the irradiated surface of the substrate FS by one rotation of the polygon mirror PM.
  • the number of drawing lines SL1 to be scanned is eight, which is the same as the number of reflecting surfaces RP.
  • the effective length (for example, 30 mm) of the drawing line SL1 is set to a length equal to or shorter than the maximum scanning length (for example, 31 mm) that allows the spot light SP to be scanned by the polygon mirror PM.
  • the center point of the drawing line SL1 is set at the center of the maximum scanning length.
  • the effective length of the drawing line SL1 is set to 30 mm, and the spot light SP is overlapped with the substrate line FS along the drawing line SL1 while overlapping the spot light SP having an effective size ⁇ of 3 ⁇ m by 1.5 ⁇ m.
  • the number of spot lights SP (number of pulses of the beam LB from the light source device 14) irradiated in one scan is 20000 (30 mm / 1.5 ⁇ m).
  • the cylindrical lens CYa provided between the reflecting mirror 110 and the reflecting mirror 114 reflects the beam LB1 with respect to the polygon mirror PM in the Z direction (non-scanning direction) orthogonal to the scanning direction.
  • the light is condensed (converged) into an elliptical shape (slit shape) extending in a direction parallel to the XY plane on the surface RP.
  • the cylindrical lens CYa Even when the reflecting surface RP is inclined with respect to the Z direction (Z axis) (when there is a surface tilt error), the influence can be suppressed by the cylindrical lens CYa, and irradiation onto the substrate FS is performed.
  • the irradiation position of the spot light by the beam LB1 is prevented from shifting in the transport direction (X direction) of the substrate FS.
  • the beam LB1 reflected by the polygon mirror PM is applied to the f ⁇ lens FT including the condenser lens.
  • the f ⁇ lens FT having an optical axis extending in the X-axis direction is a telecentric system that projects the beam LB1 reflected by the polygon mirror PM onto the reflection mirror 122 so as to be parallel to the X-axis in a plane parallel to the XY plane. Scan lens.
  • the incident angle ⁇ of the beam LB1 to the f ⁇ lens FT changes according to the rotation angle ( ⁇ / 2) of the polygon mirror PM.
  • the f ⁇ lens FT projects the beam LB1 on the image height position on the irradiated surface of the substrate FS in proportion to the incident angle ⁇ .
  • the beam LB1 irradiated from the f ⁇ lens FT is irradiated as the spot light SP on the substrate FS via the reflection mirror 122.
  • the cylindrical lens CYb provided between the f ⁇ lens FT and the reflection mirror 122 makes the spot light SP of the beam LB1 condensed on the substrate FS a minute circle having a diameter of about several ⁇ m (for example, 3 ⁇ m).
  • the generatrix is parallel to the Y direction.
  • a drawing line SL1 (see FIG. 5) extending in the Y direction by the spot light (scanning spot) SP is defined on the substrate FS.
  • the spot light SP condensed on the substrate FS by the action of the cylindrical lens CYa in front of the polygon mirror PM extends in a direction (X direction) orthogonal to the scanning direction (Y direction). It becomes oval.
  • the spot light SP of the beam LB is scanned in the scanning direction (Y direction) by each of the scanning units U1 to U6, whereby a predetermined pattern is formed on the substrate FS. Rendered on top.
  • Each of the scanning units U1 to U6 is arranged on the drawing head support unit 36 so as to scan different areas on the substrate FS.
  • the beam LB The oscillation frequency Fs must satisfy the relationship of Fs ⁇ Vs / Ds.
  • the beam LB is pulsed light
  • the oscillation frequency Fs does not satisfy the relationship of Fs ⁇ Vs / Ds
  • the spot light SP of the beam LB is irradiated on the substrate FS with a predetermined interval (gap). Because it ends up.
  • the oscillation frequency Fs satisfies the relationship of Fs ⁇ Vs / Ds
  • the spot lights SP can be irradiated onto the substrate FS so as to overlap each other in the scanning direction, scanning is performed even with the pulsed beam LB.
  • a linear pattern substantially continuous in the direction can be satisfactorily drawn on the substrate FS. Note that the scanning speed Vs of the spot light SP increases as the rotational speed of the polygon mirror PM increases.
  • FIG. 6 is a diagram showing the relationship between the polygon mirror PM of each of the scanning units U1 to U6 and the scanning direction of the plurality of drawing lines SLn (SL1 to SL6).
  • the reflection mirror 114, the polygon mirror PM, and the f ⁇ lens FT have a symmetric configuration with respect to the center plane Poc. Therefore, by rotating the polygon mirror PM of each of the scanning units U1 to U6 in the same direction (counterclockwise), each of the scanning units U1, U3, U5 is in the ⁇ Y direction from the drawing start position toward the drawing end position.
  • the scanning unit U2, U4, U6 scans the spot light SP of the beam LB in the + Y direction from the drawing start position to the drawing end position.
  • the rotation direction of the polygon mirror PM of each scanning unit U2, U4, U6 is made opposite to the rotation direction of the polygon mirror PM of each scanning unit U1, U3, U5, so that the beam of each scanning unit U1 to U6.
  • the scanning direction of the LB spot light SP may be aligned with the same direction (+ Y direction or -Y direction).
  • the rotation angle ⁇ of the polygon mirror PM that allows the beam LB incident on the specific reflecting surface RP of the polygon mirror PM to be incident on the f ⁇ lens FT is limited.
  • FIG. 7 is a diagram for explaining the rotation angle ⁇ of the polygon mirror PM that can deflect (reflect) the beam LBn so that the reflection surface RP of the polygon mirror PM of the scanning unit Un enters the f ⁇ lens FT. is there.
  • This rotation angle ⁇ is the maximum scanning rotation angle range of the polygon mirror PM in which the polygon mirror PM of the scanning unit Un can scan the spot light SP on the irradiated surface of the substrate FS by one reflecting surface RP.
  • the rotation angle ⁇ is referred to as a maximum scanning rotation angle range.
  • a period during which the polygon mirror PM rotates by the maximum scanning rotation angle range ⁇ is an effective scanning period (maximum scanning time) of the spot light SP.
  • the maximum scanning rotation angle range ⁇ corresponds to the above-described maximum scanning length of the drawing line SLn, and the maximum scanning length increases as the maximum scanning rotation angle range ⁇ increases.
  • the rotation angle ⁇ is from the angle of the polygon mirror PM when the incidence of the beam LB to the specific one reflecting surface RP starts to the angle of the polygon mirror PM when the incidence to the specific reflecting surface RP ends.
  • the rotation angle is shown. That is, the rotation angle ⁇ is an angle by which the polygon mirror PM rotates by one surface of the reflection surface RP.
  • the rotation angle ⁇ is defined by the number Np of the reflection surfaces RP of the polygon mirror PM, and can be expressed by ⁇ 360 / Np.
  • a period during which the polygon mirror PM rotates by the non-scanning rotation angle range ⁇ is an invalid scanning period of the spot light SP.
  • the scanning unit Un cannot irradiate the substrate FS with the beam LBn.
  • the rotation angle ⁇ and the non-scanning rotation angle range ⁇ have the relationship of Equation (1).
  • (360 degrees / Np) ⁇ (1) (Where N is the number of reflecting surfaces RP of the polygon mirror PM)
  • the scanning unit Un that makes the beam LB from one light source device 14 enter is switched, and the beam LB is periodically distributed to the three scanning units Un, thereby improving the scanning efficiency.
  • the maximum scanning rotation angle range ⁇ which is an effective scanning period (effective drawing period), is a range in which the beam LBn is incident on the f ⁇ lens FT and the spot light SP can be effectively scanned on the drawing line SLn.
  • the maximum scanning rotation angle range ⁇ also varies depending on the focal length of the front side of the f ⁇ lens FT.
  • the non-scanning rotation angle range ⁇ which is a non-drawing period, is 35 degrees according to Equation (2).
  • the efficiency is about 1/4 (10/45).
  • the non-scanning rotation angle range ⁇ which is the non-drawing period
  • the drawing scanning efficiency at this time is about 1/2 ( 20/45).
  • the scanning efficiency is 1/2 or more
  • the number of scanning units Un that distribute the beam LB may be two. That is, the number of scanning units Un that can distribute the beam LB is limited by the scanning efficiency.
  • FIG. 8 is a schematic view of the optical path between the light introducing optical system 40a and the plurality of scanning units U1, U3, U5.
  • the drive signal (high frequency signal) applied from the control device 18 to the selection optical element (AOM) 50 is on and the drive signal applied to the selection optical elements 58 and 66 is off, the selection optical element 50 diffracts the incident beam LB.
  • the beam LB1 which is the first-order diffracted light diffracted by the selection optical element 50, enters the scanning unit U1 via the reflection mirror 52, and the beam LB does not enter the scanning units U3, U5.
  • the selection optical element (AOM) 58 from the control device 18 is ON and the drive signal applied to the selection optical elements 50 and 66 is OFF, the selection of the OFF state is performed.
  • the beam LB transmitted through the optical element 50 enters the selection optical element 58, and the selection optical element 58 diffracts the incident beam LB.
  • the beam LB3 which is the first-order diffracted light diffracted by the selection optical element 58 is incident on the scanning unit U3 via the reflection mirror 60, and the beam LB is not incident on the scanning units U1 and U5.
  • the selection optical in the off state is used.
  • the beam LB transmitted through the elements 50 and 58 enters the selection optical element 66, and the selection optical element 66 diffracts the incident beam LB.
  • the beam LB5 which is the first-order diffracted light diffracted by the selection optical element 66 is incident on the scanning unit U5 by the reflection mirror 68, and the beam LB is not incident on the scanning units U1 and U3.
  • the plurality of selection optical elements 50, 58, 66 of the light introducing optical system 40a are arranged in series along the traveling direction of the beam LB from the light source device 14a, so that the plurality of selection optical elements 50, 58 and 66 can select and switch whether the beam LBn (LB1, LB3, LB5) is incident on any one of the plurality of scanning units U1, U3, U5.
  • the control device 18 uses a plurality of selection units so that the scanning unit Un on which the beam LB is incident is periodically switched in the order of, for example, the scanning unit U1, the scanning unit U3, the scanning unit U5, and the scanning unit U1.
  • the optical elements 50, 58 and 66 are controlled. That is, switching is performed so that the beam LBn (LB1, LB3, LB5) is incident on each of the plurality of scanning units U1, U3, U5 in order for a predetermined scanning time.
  • the rotation of the polygon mirror PM of the scanning unit U1 is controlled by the controller 18 so that the incident beam LB1 can be reflected toward the f ⁇ lens FT during the period in which the beam LB1 is incident on the scanning unit U1. ing. That is, the period during which the beam LB1 is incident on the scanning unit U1 is synchronized with the scanning period of the spot light SP of the beam LB1 by the scanning unit U1 (maximum scanning rotation angle range ⁇ in FIG. 7). In other words, the polygon mirror PM of the scanning unit U1 synchronizes with the period during which the beam LB1 is incident, and scans the spot light SP of the beam LB1 incident on the scanning unit U1 along the drawing line SL1. LB1 is deflected.
  • the polygon mirror PM of the scanning units U3 and U5 can reflect the incident beams LB3 and LB5 to the f ⁇ lens FT during the period in which the beams LB3 and LB5 are incident on the scanning units U3 and U5.
  • the rotation is controlled by the control device 18. That is, the period in which the beams LB3 and LB5 are incident on the scanning units U3 and U5 is synchronized with the scanning period of the spot light SP of the beams LB3 and LB5 by the scanning units U3 and U5.
  • the polygon mirror PM of the scanning units U3 and U5 synchronizes with the period in which the beams LB3 and LB5 are incident, and the spot light SP of the beam LB incident on the scanning units U3 and U5 is drawn on the drawing lines SL3 and SL5.
  • the beams LB3 and LB5 are deflected so as to scan along the line.
  • the beam LB from one light source device 14a is supplied to any one of the three scanning units U1, U3, U5 in a time-sharing manner, so that the scanning units U1, U3, U5
  • the rotation driving of each polygon mirror PM is controlled so that the rotation angle positions thereof maintain a constant angle difference (a phase difference is maintained) while matching the rotation speeds.
  • a specific example of the control will be described later.
  • control device 18 is based on pattern data (drawing data) that defines a pattern drawn on the substrate FS by the spot light SP of the beams LB1, LB3, and LB5 irradiated from the scanning units U1, U3, and U5.
  • the driving signal (high frequency signal) supplied to the drawing optical element 106 of each scanning unit U1, U3, U5 is controlled.
  • the drawing optical element 106 of each of the scanning units U1, U3, U5 diffracts the incident beams LB1, LB3, LB5 based on this on / off drive signal to modulate the intensity of the spot light SP. Can do.
  • the pattern data provided for each scanning unit Un will be described in more detail.
  • the direction along the scanning direction (main scanning direction, Y direction) of the spot light SP is the row direction, and the substrate FS is transported.
  • This is bitmap data composed of a plurality of pixel data (hereinafter referred to as pixel data) two-dimensionally decomposed so that the direction along the direction (sub-scanning direction, X direction) is the column direction.
  • This pixel data is 1-bit data of “0” or “1”.
  • the pixel data “0” means that the intensity of the spot light SP irradiated on the substrate FS is set to a low level, and the pixel data “1” is a level where the intensity of the spot light SP irradiated on the substrate FS is high. That means Pixel data for one column of pattern data corresponds to one drawing line SLn (SL1 to SL6), and is projected onto the substrate FS along one drawing line SLn (SL1 to SL6). The intensity of the spot light SP is modulated according to the pixel data for one column. This one column of pixel data is called serial data (drawing information) DLn. That is, the pattern data is bitmap data in which serial data DLn are arranged in the column direction. In some cases, the serial data DLn of the pattern data of the scanning unit U1 is represented by DL1, and similarly, the serial data DLn of the pattern data of the scanning units U2 to U6 is represented by DL2 to DL6.
  • the control device 18 Based on the pattern data (serial data DLn consisting of “0” and “1”) of the scanning unit Un to which the beam LBn is incident, the control device 18 draws optical elements (AOM) of the scanning unit Un to which the beam LBn is incident.
  • An on / off drive signal is input to 106.
  • the drawing optical element 106 diffracts the incident beam LBn when the ON driving signal is input and irradiates the reflecting mirror 110, and receives the incident beam LBn when the OFF driving signal is input. Irradiate the plate or the absorber.
  • the scanning unit Un to which the beam LBn is incident irradiates the spot light SP of the beam LBn on the substrate FS (the intensity of the spot light SP is high).
  • the spot light of the beam LBn is not irradiated onto the substrate FS (the intensity of the spot light SP becomes 0). Therefore, the scanning unit Un on which the beam LBn is incident can draw a pattern based on the pattern data on the substrate FS along the drawing line SLn.
  • each scanning unit U1, U3, U5 modulates the intensity of the spot light (scanning spot) SP along the drawing lines SL1, SL3, SL5, and draws a pattern based on the pattern data on the substrate FS. can do.
  • the control device 18 determines that the even-numbered scanning units Un into which the beam LBn from the light source device 14b is incident are in the order of, for example, the scanning unit U2, the scanning unit U4, the scanning unit U6, and the scanning unit U2.
  • the plurality of selection optical elements 50, 58 and 66 are controlled so as to be switched to each other. That is, switching is performed so that the beam LB is incident on each of the plurality of scanning units U2, U4, and U6 in order for a predetermined scanning time.
  • the polygon mirror PM of each of the scanning units U2, U4, and U6 is controlled by the control device 18, and the spot light SP of the incident beam LBn is synchronized with the period during which the beam LBn is incident, so that the drawing lines SL2, SL4, The beam LBn is deflected so as to scan along SL6.
  • the control device 18 allows the scanning units U2, U4, and U6 to draw a pattern based on the pattern data on the substrate FS along the drawing lines SL2, SL4, and SL6, so that the beam LBn (LB2, LB4, LB6).
  • the drawing optical element (AOM) 106 in U6) is controlled.
  • the plurality of selection optical elements 50, 58, 66 are arranged in series along the traveling direction of the beam LB from the light source device 14a (14b).
  • the beam LBn is selectively incident on any one of the plurality of scanning units U1, U3, and U5 (scanning units U2, U4, and U6) in a time division manner by the plurality of optical elements for selection 50, 58, and 66.
  • the use efficiency of the beam LB can be improved without wasting the beam LB.
  • each of the polygon mirrors PM of the plurality (three in this case) of the scanning units Un are synchronized with each other, and each of the scanning units Un is assigned to each scanning unit Un by the plurality of optical elements for selection 50, 58, 66. Since the polygon mirror PM deflects the beam LBn so that the spot light SP scans on the substrate FS in synchronization with the period in which the beam LBn is incident, the scanning efficiency is improved without wasting the beam LB. Can do.
  • the selection optical elements (AOM) 50, 58, 66 need only be in the ON state during one scanning period of the spot light SP by the polygon mirror PM of each scanning unit Un.
  • the time Tss corresponding to the rotation angle ⁇ of one reflection surface RP of the polygon mirror PM 60 / (Np ⁇ Vp) [seconds].
  • the number of reflecting surfaces Np is 8 and the rotation speed Vp is 30,000
  • one rotation of the polygon mirror PM is 2 milliseconds and the time Tss is 0.25 milliseconds. This is 4 kHz in terms of frequency.
  • an acousto-optic modulation element for modulating a beam LB having a wavelength in the ultraviolet region at a high speed of about several tens of MHz in response to pattern data.
  • an acousto-optic modulation element having a considerably low response frequency may be used.
  • the optical elements for selection (AOM) 50, 58, 66 use elements having a large diffraction angle of LBn (LB1 to LB6) which is the first-order diffracted light deflected with respect to the incident beam LB (0th-order light). be able to.
  • the first embodiment may be modified as follows.
  • the beam LB is distributed to the three scanning units Un.
  • the beam LB from one light source device 14 is distributed to the five scanning units Un.
  • FIG. 9 is a diagram showing a configuration of the drawing head 16 in the modification of the first embodiment.
  • the drawing head 16 has five scanning units Un (U1 to U5).
  • Un U1 to U5
  • symbol is attached
  • the cylindrical lens CYb shown in FIG. 3 is not shown.
  • a light introducing optical system 130 is used instead of the light introducing optical systems 40a and 40b.
  • the light introducing optical system 130 includes the condensing lens 42, the collimating lens 44, the reflecting mirror 46, the condensing lens 48, the selecting optical element 50, the reflecting mirror 52, and the collimating shown in FIG.
  • the condensing lens 56, the selecting optical element 58, the reflecting mirror 60, the collimating lens 62, the condensing lens 64, the selecting optical element 66, the reflecting mirror 68, and the absorber 70 the selecting optical element 132, a reflecting mirror 134, a collimating lens 136, a condensing lens 138, a selection optical element 140, a reflecting mirror 142, a collimating lens 144, and a condensing lens 146.
  • the selection optical element 132, the collimating lens 136, and the condenser lens 138 are provided between the condenser lens 56 and the selection optical element 58 in the order described above. Therefore, in this modification, when the drive signal (high frequency signal) from the control device 18 is off, the selection optical element 50 transmits the incident beam LB as it is and irradiates the selection optical element 132 to collect it.
  • the optical lens 56 condenses the beam LB incident on the selection optical element 132 so as to form a beam waist in the selection optical element 132.
  • the selection optical element 132 is transmissive to the beam LB, and for example, an acousto-optic modulation element (AOM) is used.
  • AOM acousto-optic modulation element
  • the selection optical element 132 transmits the incident beam LB as it is and irradiates the selection optical element 58, and the drive signal (high frequency signal) from the control device 18 is received.
  • the reflection mirror 134 is irradiated with a beam LB2, which is first-order diffracted light diffracted from the incident beam LB.
  • the reflection mirror 134 reflects the incident beam LB2 and makes it incident on the collimating lens 100 of the scanning unit U2.
  • the selection optical element 132 switches whether the beam LB2 is incident on the scanning unit U2.
  • the collimating lens 136 converts the beam LB applied to the selection optical element 58 into parallel light
  • the condensing lens 138 converts the beam LB converted into parallel light by the collimating lens 136 into the selection optical element 58. Condensed to form a beam waist.
  • the selection optical element 140, the collimating lens 144, and the condenser lens 146 are provided between the condenser lens 64 and the selection optical element 66 in the order described above. Therefore, in this modification, when the drive signal from the control device 18 is OFF, the selection optical element 58 transmits the incident beam LB as it is and irradiates the selection optical element 140, and the condenser lens 64 is The beam LB incident on the selection optical element 140 is condensed in the selection optical element 140 so as to be a beam waist.
  • the selection optical element 140 is transmissive to the beam LB, and for example, an acousto-optic modulation element (AOM) is used.
  • AOM acousto-optic modulation element
  • the selection optical element 140 switches whether the beam LB4 is incident on the scanning unit U4.
  • the collimating lens 144 converts the beam LB applied to the selection optical element 66 into parallel light
  • the condenser lens 146 converts the beam LB converted into parallel light by the collimating lens 144 into the selection optical element 66. Condensed to form a beam waist.
  • the beam LBn is applied to any one of the plurality of scanning units U1 to U5. Can be incident.
  • the control device 18 periodically switches the scanning unit Un on which the beam LBn is incident in the order of, for example, the scanning unit U1, the scanning unit U2, the scanning unit U3, the scanning unit U4, the scanning unit U5, and the scanning unit U1.
  • the plurality of selection optical elements 50, 132, 58, 140, 66 are controlled so as to be replaced. That is, switching is performed so that the beam LBn is incident on each of the plurality of scanning units U1 to U5 in order for a predetermined scanning time.
  • the polygon mirror PM of each of the scanning units U1 to U5 controls the spot light SP of the incident beam LBn to the drawing lines SL1 to SL5 in synchronization with the period during which the beam LBn is incident under the control of the control device 18.
  • the beam LBn is deflected so as to scan along.
  • the control device 18 allows the pattern data (“0”, “0”, “0”, “0”, and “0”) of the scanning unit Un incident to the beam LBn so that each scanning unit Un can draw a pattern based on the pattern data on the substrate FS along the drawing line SLn.
  • the drawing optical element (AOM) 106 of the scanning unit Un is controlled.
  • the polygon mirrors PM of the five scanning units U1 to U5 are synchronously rotated so that the rotation angle positions are shifted in phase by a certain angle.
  • the beam (laser light) LB is distributed to the five scanning units U1 to U5 in a time-sharing manner, so that an angle range in which the beam LBn can be irradiated onto one reflecting surface RP of the polygon mirror PM (FIG. 7).
  • F ⁇ lens FT so that the maximum deflection angle (angle 2 ⁇ in FIG. 7) at which the beam LBn reflected by the reflecting surface RP enters the f ⁇ lens FT satisfies ⁇ ⁇ 5 ⁇ .
  • the front focal length and the number of reflection surfaces Np of the polygon mirror PM are set.
  • the use efficiency of the beam LB from the light source device 14 can be increased and the scanning efficiency can be improved without wasting the beam LB.
  • the beam LB from one light source device 14 is distributed to the five scanning units Un, but the beam LB from one light source device 14 is distributed to the two scanning units Un. Alternatively, it may be distributed to four or six or more scanning units Un. In this case, assuming that the number of scanning units Un to be distributed is n, the angle range (rotation angle ⁇ in FIG.
  • the beam LB from the two light source devices 14 is not limited to three, but can be any number. You may make it distribute to the scanning unit Un. For example, the beam LB from the light source device 14a may be distributed to five scanning units Un, and the beam LB from the light source device 14b may be distributed to four scanning units Un.
  • drawing optical element (AOM) 106 is provided in front of the polygon mirror PM in each scanning unit Un, the number of drawing optical elements 106 to be used increases and the cost increases. . Therefore, in the second embodiment, one drawing light modulator (AOM) is provided on the optical path of the beam LB from one light source device 14, and a plurality of drawing light modulators are used to provide a plurality of drawing light modulators. A pattern is drawn by modulating the intensity of the beam LBn irradiated from the scanning unit Un to the substrate FS.
  • FIG. 11 is a diagram illustrating a configuration of the drawing head 16 according to the second embodiment
  • FIG. 12 is a diagram illustrating the light introducing optical system 40a illustrated in FIG.
  • the same reference numerals are given to the same components as those in the first embodiment, and only different parts will be described.
  • the cylindrical lens CYb shown in FIG. 3 is not shown, and the light introduction optical systems 40a and 40b have the same configuration. Therefore, here, the light introduction optical system 40a will be described, Description of the introduction optical system 40b is omitted.
  • FIG. 11 is a diagram illustrating a configuration of the drawing head 16 according to the second embodiment
  • FIG. 12 is a diagram illustrating the light introducing optical system 40a illustrated in FIG.
  • the same reference numerals are given to the same components as those in the first embodiment, and only different parts will be described.
  • the cylindrical lens CYb shown in FIG. 3 is not shown, and the light introduction optical systems 40a and 40b have the same configuration. Therefore, here, the light introduction optical system 40
  • the light introducing optical system 40a includes the condensing lens 42, the collimating lens 44, the reflecting mirror 46, the condensing lens 48, the selecting optical element 50, the reflecting mirror 52, and the collimating shown in FIG.
  • the condensing lens 56, the selection optical element 58, the reflection mirror 60, the collimating lens 62, the condensing lens 64, the selection optical element 66, the reflection mirror 68, and the absorber 70 further, the light modulation for drawing A drawing optical element (AOM) 150, a collimator lens 152, a condenser lens 154, and an absorber 156 are provided.
  • a drawing optical element (AOM) 150 A drawing optical element 150
  • collimator lens 152 a collimator lens
  • condenser lens 154 a condenser lens 154, and an absorber 156
  • an absorber 156 are provided in the second embodiment, as shown in FIG. 11, each of the scanning units U1 to U6 does not have the drawing optical element 106 as
  • the drawing optical element 150, the collimating lens 152, and the condensing lens 154 are provided between the condensing lens 48 and the selection optical element 50 in the order described above. Therefore, in the second embodiment, the reflection mirror 46 reflects the beam LB that has been collimated by the collimator lens 44 and directs it toward the drawing optical element 150.
  • the condensing lens 48 condenses (converges) the beam LB incident on the drawing optical element 150 so as to form a beam waist in the drawing optical element 150.
  • the drawing optical element 150 is transmissive to the beam LB, and for example, an acousto-optic modulation element (AOM) is used.
  • the drawing optical element 150 is provided closer to the light source device 14 (14a) than the first-stage selection optical element 50 located closest to the light source device 14 (14a) among the selection optical elements 50, 58, and 66. Yes.
  • the drive signal (high frequency signal) from the control device 18 is off, the drawing optical element 150 irradiates the absorber 156 with the incident beam LB, and the drive signal (high frequency signal) from the control device 18 is turned on.
  • the first-stage selection optical element 50 is irradiated with a beam (drawing beam) LB which is first-order diffracted light diffracted from the incident beam LB.
  • the collimating lens 152 converts the beam LB irradiated to the selection optical element 50 into parallel light
  • the condensing lens 154 converts the beam LB converted into parallel light by the collimating lens 152 into the selection optical element 50. Focus (converge) so that it becomes the beam waist.
  • the scanning units U1 to U6 include a collimating lens 100, a reflecting mirror 102, a reflecting mirror 110, a cylindrical lens CYa, a reflecting mirror 114, a polygon mirror PM, an f ⁇ lens FT, and a cylindrical lens CYb (illustrated in FIG. 11). ), And a reflection mirror 122, and further, a first molded lens 158a and a second molded lens 158b as beam-shaped lenses.
  • the first molded lens 158a and the second molded lens 158b are provided in the scanning units U1 to U6. It has been.
  • FIG. 13 is a diagram schematically showing an optical path between the light introducing optical system 40a of FIG. 12 and the plurality of scanning units U1, U3, U5.
  • the control device 18 defines pattern data (from “0”, “1”) that defines a pattern drawn on the substrate FS by the spot light SP of the beams LB1, LB3, LB5 irradiated from the scanning units U1, U3, U5.
  • an on / off drive signal (high frequency signal) is output to the drawing optical element 150 of the light introducing optical system 40a.
  • the drawing optical element 150 of the light introducing optical system 40a can diffract the incident beam LB based on the on / off drive signal to modulate (On / Off) the intensity of the spot light SP. .
  • the control device 18 inputs an on / off drive signal to the drawing optical element 150 based on the pattern data of the scanning unit Un on which the beam LBn is incident.
  • the drawing optical element 150 diffracts the incident beam LB and irradiates the selection optical element 50 when the ON drive signal (high frequency signal) is input (the intensity of the beam LB incident on the selection optical element 50). Becomes higher).
  • the drawing optical element 150 irradiates the absorber 156 (FIG. 12) with the incident beam LB (the beam LB incident on the selection optical element 50). Strength is 0).
  • the scanning unit Un on which the beam LBn is incident can irradiate the substrate FS with the beam LB whose intensity is modulated along the drawing line SLn, and can draw a pattern based on the pattern data on the substrate FS. .
  • the control device 18 switches the drawing optical element 150 of the light introduction optical system 40a on and off based on the pattern data of the scanning unit U3.
  • the scanning unit U3 can irradiate the substrate FS with the beam LB whose intensity is modulated along the drawing line SL3, and can draw a pattern based on the pattern data on the substrate FS.
  • the scanning unit Un on which the beam LBn is incident is sequentially switched, for example, scanning unit U1 ⁇ scanning unit U3 ⁇ scanning unit U5 ⁇ scanning unit U1.
  • the control device 18 similarly draws the optical data for drawing of the light introducing optical system 40a in the order of pattern data of the scanning unit U1, pattern data of the scanning unit U3, pattern data of the scanning unit U5, and pattern data of the scanning unit U1.
  • Pattern data for determining an on / off signal to be sent to the element 150 is sequentially switched.
  • the control device 18 controls the drawing optical element 150 of the light introducing optical system 40a based on the sequentially switched pattern data.
  • each scanning unit U1, U3, U5 irradiates the substrate FS with the beam LB whose intensity is modulated along the drawing lines SL1, SL3, SL5, so that a pattern according to the pattern data is applied to the substrate FS. Can be drawn.
  • FIG. 14 is a block diagram of the rotation control system of the polygon mirror PM provided in each of the three scanning units U1, U3, U5 in FIGS. 11 and 13 as an example, and the configuration of the scanning units U1, U3, U5.
  • Each of the scanning units U1, U3, U5 includes origin sensors OP1, OP3, which photoelectrically detect scanning start timings of the drawing lines (scanning lines) SL1, SL3, SL5 generated on the substrate FS by the polygon mirror PM.
  • OP5 is provided.
  • the origin sensors OP1, OP3, and OP5 are photoelectric detectors that project light onto the reflecting surface RP of the polygon mirror PM and receive the reflected light, and the spot light SP is a scanning start point of the drawing lines SL1, SL3, and SL5. Each time it comes to the position immediately before, the pulse-like origin signals SZ1, SZ3, SZ5 are output.
  • the timing measurement unit 180 receives the origin signals SZ1, SZ3, and SZ5, measures whether each of the origin signals SZ1, SZ3, and SZ5 is generated within a predetermined allowable range (time interval). If an error from the allowable range occurs, deviation information corresponding to the error is output to the servo controller 182.
  • the servo controller 182 outputs a command value based on the deviation information to each servo drive circuit unit of the motor Mp that rotationally drives the polygon mirror PM in each of the scanning units U1, U3, U5.
  • Each servo drive circuit section of the motor Mp inputs an up / down pulse signal (hereinafter referred to as an encoder signal) from an encoder EN attached to the rotating shaft of the motor Mp, and a speed signal corresponding to the rotational speed of the polygon mirror PM.
  • Servo circuit that inputs a command value from the servo control device 182 and a speed signal from the feedback circuit unit FBC, and drives the motor Mp so that the rotation speed is in accordance with the command value. It is composed of a circuit (amplifier) SCC.
  • the servo drive circuit unit feedback circuit unit FBC, servo drive circuit SCC), timing measurement unit 180, and servo control device 182 constitute a part of the control device 18.
  • the polygon mirrors PM in the three scanning units U1, U3, and U5 must be rotated at the same speed while maintaining a constant phase difference at the rotation angle position, which is realized.
  • the timing measurement unit 180 receives the origin signals SZ1, SZ3, and SZ5, and performs measurement as shown in the timing chart of FIG. 15, for example.
  • FIG. 15 schematically shows various signal waveforms generated when the three polygon mirrors PM rotate with a phase difference within a predetermined allowable range with respect to the rotation angle.
  • the timing measurement unit 180 uses another origin signal SZ3 based on the origin signal SZ1.
  • SZ5 is generated at the same frequency (cycle) as the origin signal SZ1, and the time intervals Ts1, Ts2, Ts3 between the three origin signals SZ1, SZ3, SZ5 are all equal to each other as a reference value, and an error corresponding thereto is determined. Measure correction information.
  • the timing measurement unit 180 supplies a drawing enable (On) signal to each of the selection optical elements 50, 58, and 66 shown in FIGS. SPP1, SPP3, and SPP5 are output.
  • the drawing enable (On) signals SPP1, SPP3, and SPP5 here cause the corresponding selection optical elements 50, 58, and 66 to perform a modulation operation (light deflection switching operation) only during an H level period. Since the three origin signals SZ1, SZ3, and SZ5 are stably maintained at a constant phase difference (here, 1/3 of the cycle of the origin signal SZ1), each rising edge (L ⁇ H) also has a certain phase difference.
  • the drawing enable signals SPP1, SPP3, and SPP5 correspond to drive signals (high-frequency signals) for switching the selection optical elements 50, 58, and 66.
  • the timing of the drop (H ⁇ L) of the drawing enable signals SPP1, SPP3, SPP5 is determined by the clock signal CLK for turning on / off the spot light in each drawing line SL1, SL3, SL5, and the counter in the timing measuring unit 180. It is set by measuring with.
  • the clock signal CLK controls the On / Off timing of the drawing optical element 150 (or the drawing optical element 106 in FIG. 3), and the length and spot of the drawing lines SLn (SL1, SL3, SL5). It is determined by the size of the light SP on the substrate FS, the scanning speed Vs of the spot light SP, and the like.
  • the counter in the timing measurement unit 180 is When the clock signal CLK is counted 10,000 (30 mm / 3 ⁇ m), the drawing enable signals SPP1, SPP3, and SPP5 may be lowered (H ⁇ L).
  • drawing bit string data or serial data DLn (for example, for 10,000 bits) corresponding to the drawing line SLn generated from pattern data (“0” or “1” on the bitmap) Sdw is output to the drawing optical element 150.
  • the drawing optical element 106 is provided in each of the scanning units U1, U3, and U5
  • the drawing bit string data Sdw or the serial data DL1 corresponding to the drawing line SL1 is drawn by the scanning unit U1.
  • the drawing bit string data Sdw or serial data DL3 corresponding to the drawing line SL3 sent to the drawing optical element 106 is sent to the drawing optical element 106 of the scanning unit U3 and drawn bit string data Sdw or serial data DL5 corresponding to the drawing line SL5. Is sent to the drawing optical element 106 of the scanning unit U5.
  • the drawing bit string data Sdw or the serial data DLn generated from the pattern data corresponding to each of the three drawing lines SL1, SL3, SL5 is used as the drawing enable signals SPP1, SPP3, SPP5 (or the origin). Are supplied in order for On / Off of the drawing optical element 150 in synchronization with the signals SZ1, SZ3, SZ5).
  • FIG. 16 shows an example of a circuit that generates such drawing bit string data Sdw, and the circuit includes generation circuits (pattern data generation circuits) 301, 303, and 305, and an OR circuit GT8.
  • the generation circuit 301 includes a memory unit BM1, a counter unit CN1, and a gate unit GT1
  • the generation circuit 303 includes a memory unit BM3, a counter unit CN3, and a gate unit GT3
  • the generation circuit 305 includes a memory unit BM5.
  • the generation circuits 301, 303, and 305 and the OR circuit GT8 constitute part of the control device 18.
  • the memory units BM1, BM3, and BM5 are memories that primarily store bitmap data (pattern data) corresponding to patterns to be drawn and exposed by the scanning units U1, U3, and U5.
  • the counter units CN1, CN3, and CN5 are one bit each of a bit string (for example, 10,000 bits) for one drawing line to be drawn next among bitmap data (pattern data) in each of the memory units BM1, BM3, and BM5. This is a counter for outputting the drawing enable signals SPP1, SPP3, SPP5 as the serial data DL1, DL3, DL5 in synchronization with the clock signal CLK during the period of On.
  • the map data in each of the memory units BM1, BM3, and BM5 is shifted by data for one drawing line by an address counter (not shown) or the like.
  • the shift is performed at the timing when the origin signal SZ3 of the scanning unit U3 that becomes the next active is generated after the serial data DL1 for one drawing line has been output.
  • the shift of the map data in the memory unit BM3 is performed at the timing when the origin signal SZ5 of the scanning unit U5 that becomes the next active after the serial data DL3 has been output, and in the memory unit BM5.
  • the shift of the map data is performed at the timing when the origin signal SZ1 of the next scanning unit U1 that becomes active after the serial data DL5 has been output.
  • Each serial data DL1, DL3, DL5 sequentially generated in this way passes through the gate portions GT1, GT3, GT5 opened during the on period of the drawing enable signals SPP1, SPP3, SPP5, and the 3-input OR circuit GT8.
  • the OR circuit GT8 outputs a bit data string that is repeatedly synthesized in the order of serial data DL1-> DL3-> DL5-> DL1,... As On / Off of the drawing optical element 150 as drawing bit string data Sdw.
  • the serial data DL1 output from the gate part GT1 is used as the drawing optical element in the scanning unit U1.
  • the serial data DL3 output from the gate part GT3 is sent to the drawing optical element 106 in the scanning unit U3, and the serial data DL5 output from the gate part GT5 is sent to the drawing optical element 106 in the scanning unit U5. Send it.
  • On / Off of the drawing optical element 150 (or 106) needs to respond to a high-speed clock signal CLK (for example, 50 MHz), but the selection optical elements 50, 58, and 66 have drawing enable.
  • the On / Off may be performed in synchronization with the signals SPP1, SPP3, SPP5 (or the origin signals SZ1, SZ3, SZ5), and the response frequency is 200 ⁇ S in the time interval Toa (or Ts1) in the case of the above numerical example. Therefore, it may be about 10 KHz, and a high transmittance and an inexpensive one can be used.
  • the control device 18 similarly draws the optical for drawing of the light introducing optical system 40b in the order of pattern data of the scanning unit U2, pattern data of the scanning unit U4, pattern data of the scanning unit U6, and pattern data of the scanning unit U2.
  • Pattern data for determining an on / off signal to be sent to the element 150 is sequentially switched. Then, the control device 18 controls the drawing optical element 150 of the light introducing optical system 40b based on the sequentially switched pattern data.
  • drawing bit string data Sdw obtained by synthesizing pattern data for three drawing lines with the circuit configuration shown in FIG. 16 is generated and supplied to the drawing optical element 150.
  • each scanning unit U2, U4, U6 draws a pattern based on the pattern data on the substrate FS by irradiating the substrate FS with the beam LB whose intensity is modulated along the drawing lines SL2, SL4, SL6. can do.
  • one drawing optical element 150 is provided in the light introducing optical system 40 a, and the drawing optical element 150 is disposed closer to the light source device 14 a than the first-stage selection optical element 50.
  • the intensity of the beams LB1, LB3, LB5 irradiated to the substrate FS from the plurality of scanning units U1, U3, U5 is modulated according to the pattern.
  • one drawing optical element 150 is provided in the light introducing optical system 40b, and the drawing optical element 150 is arranged on the light source device 14b side from the first-stage selection optical element 50, and one drawing optical element 150 is provided.
  • the intensity of the beams LB2, LB4, and LB6 irradiated to the substrate FS from the plurality of scanning units U2, U4, and U6 is modulated according to the pattern.
  • the number of acousto-optic modulation elements can be reduced, and the cost is reduced.
  • the drawing head 16 that splits the beam LB into three has been described. However, as described in the modification of the first embodiment, the drawing head 16 that splits the beam LB into five. (See FIGS. 9 and 10). Further, in the case of FIGS. 9 and 10, since there is one light source device 14, there is also one drawing optical element 150.
  • the second embodiment may be modified as follows.
  • the drawing optical element 150 is provided in the light introducing optical systems 40a and 40b as the drawing light modulator.
  • the light source device 14 is replaced with the drawing optical element 150.
  • a drawing optical modulator is provided in each of (14a, 14b).
  • symbol is attached
  • the light source devices provided with the light modulators for drawing in the light source devices 14a and 14b are called light source devices 14A and 14B, respectively, and the light source device 14A and the light source device 14B have the same configuration, so only the light source device 14A will be described. To do.
  • FIG. 17 is a diagram showing a configuration of a light source device (pulse light source device, laser light source device) 14A of this modification.
  • a light source device 14A as a fiber laser device includes a DFB semiconductor laser element 200, a DFB semiconductor laser element 202, a polarization beam splitter 204, an electro-optical element 206 as a drawing optical modulator, a drive circuit 206a for the electro-optical element 206, a polarization
  • a control circuit 222 including a beam splitter 208, an absorber 210, an excitation light source 212, a combiner 214, a fiber optical amplifier 216, a wavelength conversion optical element 218, a wavelength conversion optical element 220, a plurality of lens elements GL, and a clock generator 222a is provided. .
  • the DFB semiconductor laser element (first solid-state laser element, first semiconductor laser light source) 200 generates sharp or sharp pulsed seed light (laser light) S1 at a predetermined frequency (oscillation frequency, fundamental frequency) Fs
  • the DFB semiconductor laser element (second solid-state laser element, second semiconductor laser light source) 202 generates a slow pulsed seed light (laser light) S2 at a predetermined frequency Fs.
  • One pulse of the seed light S1 generated by the DFB semiconductor laser element 200 and one pulse of the seed light S2 generated by the DFB semiconductor laser element 202 have substantially the same energy, but the polarization states are different from each other, and the peak intensity is The seed light S1 is stronger.
  • the polarization state of the seed light S1 generated by the DFB semiconductor laser element 200 is described as S-polarized light
  • the polarization state of the seed light S2 generated by the DFB semiconductor laser element 202 is described as P-polarized light.
  • the DFB semiconductor laser elements 200 and 202 In response to the clock signal LTC (predetermined frequency Fs) generated by the clock generator 222a, the DFB semiconductor laser elements 200 and 202 have the seed lights S1 and S2 at the oscillation frequency Fs by electrical control of the control circuit 222. Is controlled to emit light.
  • the control circuit 222 is controlled by the control device 18.
  • the clock signal LTC is a base of the clock signal CLK supplied to each of the counter units CN1, CN3, CN5 shown in FIG. 16, and the clock signal LTC is divided by n (n is an integer of 2 or more) Is preferably the clock signal CLK.
  • the clock generator 222a also has a function of adjusting the basic frequency Fs of the clock signal LTC by ⁇ ⁇ F, that is, a function of finely adjusting the time interval of pulse oscillation of the beam LB. Thereby, for example, even if the scanning speed Vs of the spot light SP slightly varies, the dimensions (drawing magnification) of the pattern drawn over the drawing line can be accurately maintained by finely adjusting the basic frequency Fs. Can do.
  • the polarization beam splitter 204 transmits S-polarized light and reflects P-polarized light, and includes seed light S1 generated by the DFB semiconductor laser element 200 and seed light S2 generated by the DFB semiconductor laser element 202. Is guided to the electro-optic element 206. Specifically, the polarization beam splitter 204 transmits the S-polarized seed light S 1 generated by the DFB semiconductor laser element 200 to guide the seed light S 1 to the electro-optical element 206, and the P-polarized light generated by the DFB semiconductor laser element 202. The seed light S2 is guided to the electro-optic element 206 by reflecting the seed light S2.
  • the DFB semiconductor laser elements 200 and 202 and the polarization beam splitter 204 constitute a laser light source unit (light source unit) 205 that generates seed lights S1 and S2.
  • the electro-optic element 206 is transmissive to the seed lights S1 and S2, and for example, an electro-optic modulator (EOM: Electro-Optic Modulator) is used.
  • EOM Electro-Optic Modulator
  • the EOM responds to the On / Off state (high / low) of the drawing bit string data Sdw (or serial data DLn) shown in FIG. 16 and polarizations of the seed lights S1 and S2 that have passed through the polarization beam splitter 204. The state is switched by the drive circuit 206a.
  • the seed light S1 and S2 from each of the DFB semiconductor laser element 200 and the DFB semiconductor laser element 202 has a long wavelength range of 800 nm or more, and therefore, the electro-optical element 206 having a polarization state switching response of about GHz is used. Can do.
  • the electro-optical element 206 When the 1-bit pixel data of the drawing bit string data Sdw (or serial data DLn) input to the driving circuit 206a is in the off state (low “0”), the electro-optical element 206 is configured to polarize the incident seed light S1 or S2. The light is guided to the polarization beam splitter 208 without changing the state. On the other hand, when the drawing bit string data Sdw (or serial data DLn) input to the drive circuit 206a is in the On state (high “1”), the electro-optical element 206 changes the polarization state of the incident seed light S1 or S2 ( The polarization direction is changed by 90 degrees) and guided to the polarization beam splitter 208.
  • the electro-optic element 206 causes the S-polarized seed light S1 to be P when the pixel data of the drawing bit string data Sdw (or serial data DLn) is in the On state (high).
  • the light is converted into polarized seed light S1
  • P-polarized seed light S2 is converted into S-polarized seed light S2.
  • the polarization beam splitter 208 transmits the P-polarized light and guides it to the combiner 214 via the lens element GL, and reflects the S-polarized light to the absorber 210.
  • the excitation light source 212 generates excitation light, and the generated excitation light is guided to the combiner 214 via the optical fiber 212a.
  • the combiner 214 combines the seed light and the excitation light emitted from the polarization beam splitter 208 and outputs the combined light to the fiber optical amplifier (optical amplifier) 216.
  • the fiber optical amplifier 216 is doped with a laser medium that is pumped by pumping light.
  • the seed light is amplified by exciting the laser medium with the pumping light.
  • the laser medium doped in the fiber optical amplifier 216 rare earth elements such as erbium (Er), ytterbium (Yb), thulium (Tm) are used.
  • the amplified seed light is emitted from the emission end 216a of the fiber optical amplifier 216 with a predetermined divergence angle, converged or collimated by the lens element GL, and enters the wavelength conversion optical element 218.
  • the wavelength conversion optical element (first wavelength conversion optical element) 218 generates the incident seed light (wavelength ⁇ ) by the second harmonic generation (SHG) and converts the incident seed light (wavelength ⁇ ) to a second wavelength 1 ⁇ 2 of ⁇ . Convert to harmonics.
  • a PPLN (Periodically Poled LiNbO 3 ) crystal that is a quasi phase matching (QPM) crystal is preferably used. It is also possible to use a PPLT (Periodically Poled LiTaO 3 ) crystal or the like.
  • the wavelength conversion optical element (second wavelength conversion optical element) 220 includes the second harmonic wave (wavelength ⁇ / 2) converted by the wavelength conversion optical element 218 and the seed light remaining without being converted by the wavelength conversion optical element 218.
  • a sum frequency with (wavelength ⁇ ) (Sum Frequency Generation: SFG)
  • SFG Standard Frequency Generation
  • This third harmonic becomes ultraviolet light (beam LB) having a peak wavelength in a wavelength band of 370 nm or less.
  • the drawing bit string data Sdw (or DLn) sent from the pattern data generation circuit shown in FIG. 16 is applied to the electro-optic element 206 of FIG. 17, the drawing bit string data Sdw (or DLn) is applied.
  • the electro-optic element 206 guides the incident seed light S1 or S2 to the polarization beam splitter 208 without changing the polarization state of the incident seed light S1 or S2. Therefore, the seed light transmitted through the polarization beam splitter 208 becomes the seed light S 2 from the DFB semiconductor laser element 202.
  • the beam LB finally output from the light source device 14A has the same oscillation profile (time characteristic) as the seed light S2 from the DFB semiconductor laser element 202.
  • the beam LB has a low pulse peak intensity and has a time-broad and dull characteristic. Since the fiber optical amplifier 216 has low amplification efficiency for the seed light S2 having such a low peak intensity, the beam LB output from the light source device 14A becomes light that is not amplified to the energy required for exposure. Therefore, in this case, from the viewpoint of exposure, the light source device 14A has substantially the same result as not emitting the beam LB. That is, the intensity of the spot light SP irradiated on the substrate FS is at a low level.
  • the ultraviolet beam LB derived from the seed light S2 has a slight intensity. If the drawing line SLn (SL1 to SL6) continues to be in the same position on the substrate FS for a long time (for example, an emergency stop of the substrate FS due to a trouble in the transport system) A movable shutter may be provided on the exit window of the beam LB of the light source device 14A to close the exit window.
  • the electro-optical element 206 receives the incident seed light S1 or The polarization state of S 2 is changed and guided to the polarization beam splitter 208. Therefore, the seed light transmitted through the polarizing beam splitter 208 becomes the seed light S1 from the DFB semiconductor laser element 200. Therefore, the beam LB output from the light source device 14 ⁇ / b> A is generated from the seed light S ⁇ b> 1 from the DFB semiconductor laser element 200.
  • the beam LB efficiently amplified by the fiber optical amplifier 216 and output from the light source device 14A has energy necessary for exposure of the substrate FS. That is, the intensity of the spot light SP irradiated to the substrate FS becomes a high level.
  • the electro-optical element 206 as the drawing optical modulator is provided in the light source device 14A, the electro-optical element is controlled in the same manner as the drawing optical element 150 is controlled in the second embodiment.
  • the electro-optic element 206 is switched on and off (driven) on the basis of the pattern data (or the drawing bit string data Sdw in FIGS. 15 and 16) on which the beam LB is incident.
  • the intensity of the beam LB incident on the optical element 50 that is, the intensity of the spot light SP of the beam LB irradiated on the substrate FS by each scanning unit Un (U1 to U6) may be modulated in accordance with the pattern to be drawn. it can.
  • the DFB semiconductor laser element 202 and the polarization beam splitter 204 are omitted, and only the seed light S1 from the DFB semiconductor laser element 200 is switched to the electro-optical element 206 based on pattern data (drawing data).
  • pattern data drawing data
  • the periodicity of incidence of the seed light S1 on the fiber optical amplifier 216 is greatly disturbed according to the pattern to be drawn. That is, after the seed light S1 from the DFB semiconductor laser element 202 is not incident on the fiber optical amplifier 216 and then the seed light S1 is incident on the fiber optical amplifier 216, the seed light S1 immediately after the incident is more than normal.
  • the seed light S2 (broad pulse light with low peak intensity) from the DFB semiconductor laser element 202 is used as the fiber optical amplifier 216 during the period when the seed light S1 is not incident on the fiber optical amplifier 216. This problem is solved by being incident on.
  • the DFB semiconductor laser elements 200 and 202 may be driven based on the pattern data (drawing bit string data Sdw or serial data DLn). That is, the control circuit 222 controls the DFB semiconductor laser elements 200 and 202 based on the pattern data (drawing bit string data Sdw or DLn), and selects the seed lights S1 and S2 that oscillate in a pulse shape at the predetermined frequency Fs. (Alternatively) to generate.
  • the polarizing beam splitters 204 and 208, the electro-optical element 206, and the absorber 210 are not necessary, and one of the seed lights S1 and S2 that are selectively pulse-oscillated from either one of the DFB semiconductor laser elements 200 and 202. Directly enters the combiner 214.
  • the control circuit 222 prevents the seed light S1 from the DFB semiconductor laser element 200 and the seed light S2 from the DFB semiconductor laser element 202 from entering the fiber optical amplifier 216 at the same time.
  • the driving of 202 is controlled.
  • the DFB semiconductor laser element 200 is controlled so that only the seed light S1 enters the fiber optical amplifier 216. Further, when the spot light SP of the beam LBn is not irradiated onto the substrate FS (the intensity of the spot light SP is extremely low), the DFB semiconductor laser element 202 is controlled so that only the seed light S2 is incident on the fiber optical amplifier 216. To do. As described above, whether or not the substrate FS is irradiated with the beam LBn is determined based on the pixel data (high / low) of the pattern data (H or L of the drawing bit string data Sdw). Further, in this case, the deflection states of the seed lights S1 and S2 may be P deflection.
  • the output timing of the seed light S1 from the DFB semiconductor laser element 200 output from the light source devices 14A and 14B and the switching of the drawing optical element 106 of each of the scanning units U1 to U6 are represented by pattern data (drawing bit string). Control may be performed based on the data Sdw).
  • the third embodiment will be described with reference to FIG. 18.
  • the light source device 14A described in the modification of the second embodiment see FIG. 17
  • 14B is used.
  • the clock generator 222a in the control circuit 222 of the light source device 14A in FIG. 17 is corrected for the magnification from the drawing control control unit (control circuit 500) shown in FIG.
  • the clock signal LTC has a function of expanding or contracting partially (discretely) the time interval of the clock signal LTC.
  • the clock generator 222a in the control circuit 222 of the light source device 14B has a function of partially (discretely) expanding / contracting the time interval of the clock signal LTC according to the magnification correction information CMg.
  • the operations of the light source device 14B, the light introduction optical system 40b, and the scanning units U2, U4, and U6 are the same as the operations of the light source device 14A, the light introduction optical system 40a, and the scanning units U1, U3, and U5. Description of the operations of the light source device 14B, the light introducing optical system 40b, and the scanning units U2, U4, and U6 is omitted. Further, the same components as those of the modification of the second embodiment are denoted by the same reference numerals or the illustration thereof is omitted, and only different portions will be described.
  • a beam (laser light) LB from one light source device 14A is provided with three scanning units via selection optical elements 50, 58, and 66, respectively, in the same manner as in the configuration of FIGS. Supplied to U1, U3, U5.
  • Each of the selection optical elements 50, 58, and 66 selectively deflects (switches) the beam LB in response to the drawing enable (On) signals SPP1, SPP3, and SPP5 described with reference to FIGS.
  • the beam LB is guided to any one of the units U1, U3, and U5.
  • the ultraviolet beam LB derived from the seed light S2 continues to be radiated even at a slight intensity.
  • a movable shutter SST is provided at the exit window of the beam LB of the light source device 14A.
  • the origin signals SZ1, SZ3, SZ5 from the origin sensors OP1, OP3, OP5 of the respective scanning units U1, U3, U5 are generated to generate pattern data for each of the scanning units U1, U3, U5. It is supplied to circuits (pattern data generation circuits) 301, 303, and 305.
  • the generation circuit 301 includes the gate unit GT1, the memory unit BM1, the counter unit CN1, and the like in FIG. 16.
  • the counter unit CN1 is based on the clock signal LTC output from the control circuit 222 (clock generator 222a) of the light source device 14A. Is configured to count the clock signal CLK1 produced.
  • the generation circuit 303 includes the gate unit GT3, the memory unit BM3, the counter unit CN3, and the like in FIG. 16, and the counter unit CN3 is configured to count the clock signal CLK3 generated based on the clock signal LTC.
  • the generation circuit 305 includes the gate unit GT5, the memory unit BM5, the counter unit CN5, and the like in FIG. 16, and the counter unit CN5 is configured to count the clock signal CLK5 generated based on the clock signal LTC.
  • clock signals CLK1, CLK3, and CLK5 are converted to 1 / n (n is an integer of 2 or more) by the control circuit 500 that functions as an interface between the generation circuits 301, 303, and 305 and the light source device 14A. ) Made by dividing.
  • the supply of the clock signals CLK1, CLK3, and CLK5 to each counter unit CN1, CN3, and CN5 is limited to one in response to the drawing enable (On) signals SPP1, SPP3, and SPP5 (see FIG. 15).
  • serial data DL1, DL3, DL5 output in order from each of the generation circuits 301, 303, 305 is input to the three inputs provided in the control circuit 500 via the gate portions GT1, GT3, GT5, respectively.
  • the sum is added by the OR circuit GT8 (see FIG. 16) and is supplied as drawing bit string data Sdw to the electro-optic element 206 in the light source device 14A.
  • the generation circuits 301, 303, and 305 and the control circuit 500 constitute a part of the control device 18.
  • each drawing line (scanning line) of each of the three scanning units U1, U3, U5.
  • a function for finely adjusting the drawing magnification in the spot scanning direction (Y direction) of the patterns drawn by SL1, SL3, and SL5 is provided.
  • memory units BM1a, BM3a, and BM5a that temporarily store information mg1, mg3, and mg5 related to the correction amount of the drawing magnification are provided for each of the scanning units U1, U3, and U5. .
  • the memory units BM1a, BM3a, and BM5a are illustrated as independent in FIG. 18, but may be part of the memory units BM1, BM3, and BM5 provided in the generation circuits 301, 303, and 305, respectively.
  • the information mg1, mg3, and mg5 regarding the correction amount also constitute part of the drawing information.
  • the information regarding correction amounts mg1, mg3, and mg5 corresponds to, for example, the rate (ppm) of how much the dimension in the Y direction of the pattern drawn by each drawing line SL1, SL3, SL5 is expanded or contracted. It is. As an example, if the length of the region in the Y direction that can be drawn by each drawing line SL1, SL3, SL5 is 30 mm, and if it is desired to expand / contract it by ⁇ 200 ppm (corresponding to ⁇ 6 ⁇ m), the information mg1, mg3, mg5 Is set to a numerical value of ⁇ 200. The information mg1, mg3, and mg5 may be set not by the rate but by a direct expansion / contraction amount ( ⁇ ⁇ m).
  • the information mg1, mg3, and mg5 may be sequentially reset for each line of pattern data (serial data DLn) along each of the drawing lines SL1, SL3, and SL5, or pattern data for a plurality of lines. It may be reset every time (serial data DLn) is sent.
  • serial data DLn serial data
  • Y is dynamically applied.
  • the drawing magnification in the direction can be changed, and when the deformation or in-plane distortion of the substrate FS is known, the deterioration of the drawing position accuracy caused by the deformation can be suppressed. Further, in the overlay exposure, the overlay accuracy can be greatly improved in response to the deformation of the base pattern already formed.
  • FIG. 19 is a diagram showing a time chart of the signal states of the respective parts and the oscillation state of the beam LB when the standard pattern is drawn by the scanning unit U1 in the drawing apparatus shown in FIG.
  • a two-dimensional matrix Gm represents a bit pattern PP of pattern data to be drawn, and one grid (one pixel (pixel) unit) on the substrate FS has, for example, a dimension Py in the Y direction of 3 ⁇ m, X
  • the direction dimension Px is set to 3 ⁇ m.
  • SL1-1, SL1-2, SL1-3,... SL1-6 indicated by arrows indicate drawing lines as the substrate FS moves in the X direction (sub scanning in the longitudinal direction). The drawing lines sequentially drawn by SL1 are shown.
  • the interval between the drawing lines SL1-1, SL1-2, SL1-3,..., SL1-6 in the X direction is, for example, a size Px (3 ⁇ m) in units of one pixel
  • the conveyance speed of the substrate FS is set so as to be 1/2 of this.
  • the dimension (spot size ⁇ ) in the XY direction of the spot light SP projected onto the substrate FS is set to be the same as or slightly larger than the unit of one pixel. Therefore, the size ⁇ of the spot light SP is set to about 3 to 4 ⁇ m as an effective diameter (the width of 1 / e 2 of the Gaussian distribution or the full width at half maximum of the peak intensity), and the spot light along the drawing line SL1.
  • the oscillation frequency Fs pulse time interval
  • a scanning speed Vs is set.
  • the seed light emitted from the polarization beam splitter 208 in the light source device 14A shown in FIG. 17 is a beam Lse (FIG. 18)
  • the seed light beam Lse is output from the control circuit 222 (clock generator 222a).
  • the control circuit 222 clock generator 222a
  • each clock pulse of the clock signal LTC it is emitted as shown in FIG.
  • the clock signal LTC and the clock signal CLK1 supplied to the counter unit CN1 in the generation circuit 301 in FIG. 18 are set to a frequency ratio of 1: 2, and when the clock signal LTC is 100 MHz, The clock signal CLK1 is set to 50 MHz by the 1/2 frequency divider of the control circuit 500.
  • the frequency ratio between the clock signal LTC and the clock signal CLK1 only needs to be an integral multiple. For example, the set frequency of the clock signal CLK1 is reduced to 1 ⁇ 4 of 25 MHz, and the scanning speed Vs of the spot light SP is also reduced to half. It may be set.
  • the drawing bit string data Sdw shown in FIG. 19 corresponds to the serial data DL1 output from the generation circuit 301, and corresponds to the pattern on the drawing line SL1-2 of the pattern PP, for example. Since the electro-optic element 206 in the light source device 14A switches the polarization state in response to the drawing bit string data Sdw, the seed light beam Lse is shown in FIG. It is generated by the seed light S1 from the DFB semiconductor laser element 200 in FIG. 17, and is generated by the seed light S2 from the DFB semiconductor laser element 202 in FIG. The drawing exposure operation of the scanning unit U1 shown in FIG. 19 is the same for the other scanning units U2 to U6.
  • the seed light S1 (sharp pulse) is sent from the DFB semiconductor laser element 200 in response to the clock signal LTC.
  • Light) and seed light S2 (broad pulse light) is generated from the DFB semiconductor laser device 202 in response to the clock signal LTC while the drawing bit string data Sdw is in the off state (low “0”).
  • the electro-optic element 206 shown in FIGS. 17 and 18, the polarization beam splitter 208 and the absorber 210 shown in FIG. 17 can be omitted.
  • each pulse light of the seed light beam Lse is output in response to each clock pulse of the clock signal LTC generated by the clock generator 222a shown in FIG.
  • a circuit configuration for partially increasing or decreasing the time (cycle) between pulses of the clock signal LTC is provided in the generator 222a.
  • the circuit configuration includes a reference (standard) clock generator that is a source of the clock signal LTC, a frequency division counter circuit, a variable delay circuit, and the like.
  • FIG. 20 is a time chart showing the relationship between the reference clock signal TC0 from the reference clock generator in the clock generator 222a and the clock signal LTC, and is based on the magnification correction information CMg shown in FIGS. Indicates a state in which no correction is performed.
  • the variable delay circuit in the clock generator 222a always delays the reference clock signal TC0 generated at the constant frequency Fs (constant time Td0) by the delay time DT0 corresponding to the preset value, and outputs it as the clock signal LTC. .
  • the reference clock signal TC0 is counted by the frequency dividing counter circuit in the clock generator 222a, and when the count value reaches the predetermined value Nv, the preset value set in the variable delay circuit is changed by a certain amount. To do. This will be described with reference to the time chart of FIG. In FIG. 21, until the reference clock signal TC0 is counted up to Nv by the frequency division counter circuit, the preset value set in the variable delay circuit is the delay time DT0. Thereafter, when the frequency division counter circuit counts up to Nv by one clock pulse Kn of the reference clock signal TC0, the preset value set in the variable delay circuit is immediately changed to the delay time DT1.
  • each clock pulse (after K′n + 1) of the clock signal LTC generated based on the clock pulse after the clock pulse Kn + 1 generated after the clock pulse Kn of the reference clock signal TC0 is uniformly generated with the delay time DT1. Is done.
  • the delay time DT1 is increased from the delay time DT0 and the time between two clock pulses of the clock signal LTC is increased from Td0.
  • the frequency dividing counter circuit is reset to zero when the reference clock signal TC0 is counted up to Nv, and starts counting up to Nv again.
  • the operation of changing the time interval between two specific clock pulses of the clock signal LTC is performed on one drawing line (SL1 to SL6) according to the predetermined value Nv set in the frequency division counter circuit. It is carried out discretely at a plurality of points in the total length. This is shown in FIG. FIG. 22 shows, as correction points CPP, a plurality of positions that are reset to zero each time the count value of the frequency division counter circuit reaches a predetermined value Nv over the entire length of the drawing line SL1. At each of the correction points CPP, only the interval between two specific clock pulses of the clock signal LTC is expanded or contracted by ⁇ ⁇ Dh with respect to the time Td0.
  • the number of clocks of the reference clock signal TC0 is 20000.
  • the delay time change amount ⁇ Dh is sufficiently small with respect to the reference time interval Td0, for example, set to about 2%.
  • 150 ppm of the length 30 mm of the drawing line SL1 corresponds to 4.5 ⁇ m.
  • Information regarding the drawing magnification rate of 150 ppm or the actual size length of 4.5 ⁇ m is stored as information mg1 in the memory unit BM1a in FIG.
  • the maximum predetermined value Nv set in the frequency division counter circuit shown in FIG. 22 is about 133 from 20000/150.
  • the change amount ⁇ Dh of the delay time is 5%
  • the maximum predetermined value set in the frequency division counter circuit Nv is about 333 from 20000/60.
  • the delay time variation ⁇ Dh, the number of correction points CPP, the setting of the predetermined value Nv by the frequency division counter circuit, and the like are based on the magnification correction information CMg (ppm) output from the control circuit 500 of FIG. Are calculated in the control circuit 222 shown in FIG. 17 and set in a frequency division counter circuit, a variable delay circuit, or the like in the clock generator 222a.
  • the beam LB from the light source device 14A can be sequentially supplied to each of the three scanning units U1, U3, U5, for example, in order, and each of the scanning units U1, U3, U5 can be supplied. Since the drawing operations along the drawing lines SL1, SL3, and SL5 can be individually performed serially, as shown in FIG. 18, the information mg1, about the correction amount of the drawing magnification for each of the scanning units U1, U3, and U5. mg3 and mg5 can be set. As a result, even if the expansion and contraction in the Y direction of the substrate FS is not uniform and the expansion and contraction rate is different for each of several regions divided in the Y direction, the optimum drawing magnification of each scanning unit Un can be accommodated. An advantage is obtained in that the correction amount can be set and non-linear deformation of the substrate FS can be dealt with.
  • the light source device 14A that is connected to an apparatus that draws a pattern by scanning the spot light SP condensed on the irradiated object (substrate FS) and emits a beam (laser light) LB that becomes the spot light SP is included in the light source device 14A. 17 and FIG. 18, in response to a clock pulse (clock signal LTC) having a predetermined period (Td0), the first pulsed light having a sharp light emission time and a high peak intensity (with a high peak intensity). In response to the first semiconductor laser light source (200) that generates the seed light S1) and the clock pulse, the light emission time is shorter than a predetermined period and peaks longer than the light emission time of the first pulse light (seed light S1).
  • a second semiconductor laser light source (202) that generates a broad second pulse light (seed light S2) with low intensity, and a fiber that receives the first pulse light (seed light S1) or the second pulse light (seed light S2).
  • Light amplification Based on (216) and information on the pattern to be drawn (drawing bit string data Sdw), the first pulse light (seed light S1) is incident on the fiber optical amplifier at the time of drawing in which the spot light SP is projected onto the irradiated object.
  • a switching device is provided that switches the second pulsed light (seed light S2) to enter the fiber optical amplifier (216) during non-drawing in which the spot light SP is not projected onto the irradiated object.
  • the switching device includes an electro-optical element (206) that selects one of the first pulse light (seed light S1) and the second pulse light (seed light S2) based on pattern information to be drawn, The first semiconductor laser light source (200) and the second semiconductor laser light source (based on the pattern information to be drawn so that one of the pulsed light (seed light S1) and the second pulsed light (seed light S2) is generated. 202).
  • the third embodiment can also be applied to the first embodiment or a modified example thereof and the second embodiment. That is, the clock generator 222a in the control circuit 222 of the light source device 14A described in the third embodiment responds to the magnification correction information CMg from the drawing control control unit (control circuit 500) shown in FIG.
  • the function of expanding or contracting the time interval of the clock signal LTC partially (discretely) is applied to the light source device 14 of the first embodiment or its modification, or the light source device 14 of the second embodiment.
  • the light source device 14 may not include the DFB semiconductor laser element 202, the polarization beam splitter 204, the electro-optic element 206, the polarization beam splitter 208, and the absorber 210.
  • the pulsed seed light S1 emitted from the DFB semiconductor laser element 200 may be amplified by the fiber optical amplifier 216 and emitted as a beam LB.
  • the serial data DL1, DL3, and DL5 generated by the generation circuits 301, 303, and 305 are the drawing optical element 106 or the drawing optical element of the scanning unit Un. Sent to the element 150.
  • FIG. 23 is a diagram illustrating a schematic configuration of a device manufacturing system 10 including an exposure apparatus EX that performs an exposure process on a substrate (irradiated body) FS according to the fourth embodiment.
  • EX an exposure apparatus
  • FIG. 23 is a diagram illustrating a schematic configuration of a device manufacturing system 10 including an exposure apparatus EX that performs an exposure process on a substrate (irradiated body) FS according to the fourth embodiment.
  • the same components as those in the first to third embodiments are denoted by the same reference numerals or omitted in the drawings, and only different portions thereof are illustrated. explain.
  • the exposure apparatus EX as a beam scanning apparatus includes a direct drawing type exposure apparatus that does not use a mask, This is a so-called raster scan type exposure apparatus.
  • the exposure apparatus EX includes a beam switching member 20 and an exposure head 22 instead of the drawing head 16 described in the first to third embodiments (including modifications).
  • the exposure apparatus EX also includes a plurality of alignment microscopes AMm (AM1 to AM4).
  • the exposure apparatus EX of the first to third embodiments also includes a plurality of alignment microscopes AMm (AM1 to AM4). ing.
  • the exposure apparatus EX of the fourth embodiment also includes the substrate transport mechanism 12, the light source device 14 ′, and the control device 18.
  • the light source device 14 'of the fourth embodiment has the same configuration (see FIG. 17) as the light source device 14 (light source devices 14A and 14B) described in the modification of the second embodiment. Assuming that.
  • the beam LB emitted from the light source device 14 ′ enters the exposure head 22 through the beam switching member 20.
  • the beam switching member 20 receives the beam LB from the light source device 14 ′ in one scanning unit Un that performs one-dimensional scanning of the spot light SP among the plurality of scanning units Un (U 1 to U 6) constituting the exposure head 22.
  • the optical path of the beam LB is switched so as to be incident.
  • the beam switching member 20 will be described in detail later.
  • the exposure head 22 includes a plurality of scanning units Un (U1 to U6) on which the beams LB are incident.
  • the exposure head 22 draws a pattern on a part of the substrate FS supported by the circumferential surface of the rotary drum DR by a plurality of scanning units Un (U1 to U6).
  • the exposure head 22 is a so-called multi-beam type exposure head in which a plurality of scanning units Un (U1 to U6) having the same configuration are arranged.
  • the odd-numbered scanning units U1, U3, U5 are arranged on the upstream side ( ⁇ X direction side) in the transport direction of the substrate FS with respect to the center plane Poc, and along the Y direction. Has been placed.
  • the even-numbered scanning units U2, U4, and U6 are arranged on the downstream side (+ X direction side) in the transport direction of the substrate FS with respect to the center plane Poc, and are arranged along the Y direction.
  • the odd-numbered scanning units U1, U3, and U5 and the even-numbered scanning units U2, U4, and U6 are provided symmetrically with respect to the center plane Poc. That is, in the fourth embodiment, the arrangement of the odd-numbered scanning units U1, U3, U5 and the even-numbered scanning units U2, U4, U6 is the same as that of the first to third embodiments (modified examples). Is the opposite of that described in
  • the scanning unit Un projects the beam LB from the light source device 14 ′ so as to converge on the spot light SP on the irradiated surface of the substrate FS, and the spot light SP on the irradiated surface of the substrate FS.
  • a one-dimensional scan is performed by a rotating polygon mirror PM (see FIG. 28) along a typical drawing line (scan line) SLn.
  • the plurality of scanning units Un (U1 to U6) are arranged in a predetermined arrangement relationship.
  • the plurality of scanning units Un (U1 to U6) includes the drawing lines SLn (SL1 to SL6) of the plurality of scanning units Un (U1 to U6) as shown in FIGS.
  • the Y direction (the width direction of the substrate FS, the main scanning direction) is arranged so as to be joined together without being separated from each other.
  • the beams LB incident on the scanning units Un (U1 to U6) may be represented as LB1 to LB6, respectively.
  • the beam LB incident on the scanning unit Un is a linearly polarized beam (P-polarized light or S-polarized light) polarized in a predetermined direction, and is a P-polarized beam in the fourth embodiment. Further, the beams LB1 to LB6 incident on each of the six scanning units U1 to U6 may be represented as a beam LBn.
  • each scanning unit Un (U1 to U6) shares the scanning area so that all of the plurality of scanning units Un (U1 to U6) cover the entire width direction of the exposure area W. Yes. Accordingly, each scanning unit Un (U1 to U6) can draw a pattern for each of a plurality of regions divided in the width direction of the substrate FS. For example, if the scanning length in the Y direction (the length of the drawing line SLn) by one scanning unit Un is about 30 to 60 mm, the odd numbered scanning units U1, U3, U5 and the even numbered scanning unit U2 , U4 and U6, a total of six scanning units Un in the Y direction, the width in the Y direction that can be drawn is increased to about 180 to 360 mm. In principle, the lengths of the drawing lines SL1 to SL6 (scanning length, drawing width in the main scanning direction) are the same.
  • the actual drawing lines SLn are set slightly shorter than the maximum length that the spot light SP can actually scan on the irradiated surface.
  • the position of the drawing line SLn (for example, the scanning length is 30 mm) within the range of the maximum scanning length (for example, 31 mm) of the spot light SP can be finely adjusted in the main scanning direction, or the drawing magnification can be adjusted. Can be finely adjusted.
  • the maximum scanning length of the spot light SP is mainly determined by the aperture of the f ⁇ lens FT (see FIG. 28) provided after the polygon mirror (rotating polygon mirror) PM in the scanning unit Un.
  • the plurality of drawing lines SLn are arranged in two rows in the circumferential direction of the rotary drum DR with the center plane Poc interposed therebetween.
  • the odd-numbered drawing lines SL1, SL3, and SL5 are located on the irradiated surface of the substrate FS on the upstream side ( ⁇ X direction side) in the transport direction of the substrate FS with respect to the center plane Poc.
  • the even-numbered drawing lines SL2, SL4, and SL6 are positioned on the irradiated surface on the substrate FS on the downstream side (+ X direction side) in the transport direction of the substrate FS with respect to the center plane Poc.
  • the drawing lines SL1 to SL6 are substantially parallel to the width direction of the substrate FS, that is, the central axis AXo of the rotary drum DR.
  • the drawing lines SL1, SL3, and SL5 are arranged on a straight line at a predetermined interval along the width direction (scanning direction) of the substrate FS.
  • the drawing lines SL2, SL4, and SL6 are arranged on a straight line at a predetermined interval along the width direction (scanning direction) of the substrate FS.
  • the scanning direction of the spot light SP of the beam LBn scanned along each of the odd-numbered drawing lines SL1, SL3, SL5 is a one-dimensional direction and is a ⁇ Y direction.
  • the scanning direction of the spot light SP of the beam LBn scanned along each of the even-numbered drawing lines SL2, SL4, SL6 is a one-dimensional direction and is a + Y direction.
  • the plurality of scanning units Un repeatedly scan the spot light SP of the beam LBn according to a predetermined order (predetermined order). For example, when the order of the scanning units Un that scan the spot light SP is U1 ⁇ U2 ⁇ U3 ⁇ U4 ⁇ U5 ⁇ U6, first, the scanning unit U1 scans the spot light SP once. . When the scanning of the spot light SP of the scanning unit U1 is completed, the scanning unit U2 performs the scanning of the spot light SP once, and when the scanning is completed, the scanning unit U3 performs the scanning of the spot light SP once. In addition, the plurality of scanning units Un (U1 to U6) scan the spot light SP once in a predetermined order.
  • a predetermined order predetermined order
  • the scanning returns to the scanning of the spot light SP of the scanning unit U1.
  • the plurality of scanning units Un repeat the scanning of the spot light SP in a predetermined order.
  • Each scanning unit Un irradiates each beam LBn toward the substrate FS so that each beam LBn travels toward the central axis AXo of the rotary drum DR at least in the XZ plane.
  • the optical path (beam central axis) of the beam LBn traveling from each scanning unit Un (U1 to U6) toward the substrate FS is coaxial (parallel) with the normal line of the irradiated surface of the substrate FS in the XZ plane.
  • each scanning unit Un (U1 to U6) is configured such that the beam LBn irradiated to the drawing line SLn (SL1 to SL6) is perpendicular to the irradiated surface of the substrate FS in a plane parallel to the YZ plane.
  • the beam LBn is irradiated toward the substrate FS. That is, with respect to the main scanning direction of the spot light SP on the irradiated surface, the beams LBn (LB1 to LB6) projected onto the substrate FS are scanned in a telecentric state.
  • a line (also referred to as an optical axis) perpendicular to the irradiated surface of the substrate FS through each midpoint of the drawing lines SLn (SL1 to SL6) defined by each scanning unit Un (U1 to U6), This is called the irradiation center axis Len (Le1 to Le6) (see FIG. 24).
  • Each irradiation center axis Len (Le1 to Le6) is a line connecting the drawing lines SL1 to SL6 and the center axis AXo on the XZ plane.
  • the irradiation center axes Le1, Le3, Le5 of the odd-numbered scanning units U1, U3, U5 are in the same direction in the XZ plane, and the irradiation center axes Le2 of the even-numbered scanning units U2, U4, U6. , Le4 and Le6 are in the same direction in the XZ plane.
  • irradiation center axes Le1, Le3, Le5 and the irradiation center axes Le2, Le4, Le6 are set so that the angle is ⁇ ⁇ with respect to the center plane Poc in the XZ plane (see FIG. 23).
  • the alignment microscope AMm (AM1 to AM4) shown in FIG. 23 is for detecting alignment marks MKm (MK1 to MK4) formed on the substrate FS as shown in FIG. A plurality (four in the fourth embodiment) are provided.
  • the alignment marks MKm (MK1 to MK4) are reference marks for relatively aligning (aligning) the predetermined pattern drawn in the exposure region W on the irradiated surface of the substrate FS with the substrate FS. .
  • the alignment microscope AMm (AM1 to AM4) detects the alignment mark MKm (MK1 to MK4) on the substrate FS supported by the circumferential surface of the rotary drum DR.
  • the alignment microscope AMm (AM1 to AM4) has a substrate FS that is more than the irradiated region (region surrounded by the drawing lines SL1 to SL6) on the substrate FS by the spot light SP of the beam LBn (LB1 to LB6) from the exposure head 22. Is provided on the upstream side in the transport direction ( ⁇ X direction side).
  • the alignment microscope AMm (AM1 to AM4) obtains an enlarged image of a local region (observation region) including a light source that projects illumination light for alignment onto the substrate FS and an alignment mark MKm (MK1 to MK4) on the surface of the substrate FS.
  • An observation optical system including an objective lens
  • an imaging element such as a CCD or CMOS that captures an enlarged image of the observation optical system with a high-speed shutter while the substrate FS is moving in the transport direction.
  • Imaging signals (image data) ig (ig1 to ig4) captured by the alignment microscope AMm (AM1 to AM4) are sent to the control device 18.
  • the control device 18 analyzes the image of the imaging signal ig (ig1 to ig4), information on the rotational position of the rotating drum DR at the moment of imaging (measured values by the encoders EN1a and EN1b that read the scale portion SD shown in FIG. 24), and Based on this, the position of the alignment mark MKm (MK1 to MK4) is detected, and the position of the substrate FS is measured with high accuracy.
  • the illumination light for alignment is light in a wavelength range that has little sensitivity to the photosensitive functional layer on the substrate FS, for example, light having a wavelength of about 500 to 800 nm.
  • Alignment marks MK1 to MK4 are provided around each exposure area W.
  • a plurality of alignment marks MK1 and MK4 are formed on both sides of the exposure region W in the width direction of the substrate FS at a constant interval DI along the longitudinal direction of the substrate FS.
  • the alignment mark MK1 is formed on the ⁇ Y direction side in the width direction of the substrate FS
  • the alignment mark MK4 is formed on the + Y direction side in the width direction of the substrate FS.
  • Such alignment marks MK1 and MK4 are located at the same position in the longitudinal direction (X direction) of the substrate FS when the substrate FS is not deformed due to a large tension or a thermal process. Be placed.
  • the alignment marks MK2 and MK3 are between the alignment mark MK1 and the alignment mark MK4, and extend along the width direction (short direction) of the substrate FS in the margin of the exposure area W between the + X direction side and the ⁇ X direction side. Is formed.
  • the alignment marks MK2 and MK3 are formed between the exposure area W and the exposure area W.
  • the alignment mark MK2 is formed on the ⁇ Y direction side in the width direction of the substrate FS
  • the alignment mark MK3 is formed on the + Y direction side of the substrate FS.
  • the spacing in the Y direction between the alignment mark MK1 and the alignment mark MK2 in the margin portion arranged at the ⁇ Y direction side edge of the substrate FS, the spacing in the Y direction between the alignment mark MK2 in the margin portion and the alignment mark MK3, and The interval in the Y direction between the alignment mark MK4 arranged at the side edge in the + Y direction of the substrate FS and the alignment mark MK3 in the blank portion is set to the same distance.
  • These alignment marks MKm (MK1 to MK4) may be formed together when forming the first pattern layer. For example, when the pattern of the first layer is exposed, the alignment mark pattern may be exposed around the exposure area W where the pattern is exposed. The alignment mark MKm may be formed in the exposure area W.
  • the alignment mark MKm may be formed in the exposure area W along the outline of the exposure area W. Further, when the alignment mark MKm is formed in the exposure region W, a pattern portion at a specific position or a specific shape portion in the pattern of the electronic device formed in the exposure region W may be used as the alignment mark MKm. Good.
  • the alignment microscope AM1 is arranged so as to image the alignment mark MK1 existing in the observation region (detection region) Vw1 by the objective lens.
  • the alignment microscopes AM2 to AM4 are arranged so as to image the alignment marks MK2 to MK4 existing in the observation regions Vw2 to Vw4 by the objective lens.
  • the plurality of alignment microscopes AM1 to AM4 are provided in order of the alignment microscopes AM1 to AM4 from the ⁇ Y direction side of the substrate FS corresponding to the positions of the plurality of alignment marks MK1 to MK4.
  • the distance between the exposure position (drawing lines SL1 to SL6) and the observation region Vw (Vw1 to Vw4) of the alignment microscope AMm is greater than the length of the exposure region W in the X direction. Is also provided to be shorter.
  • the number of alignment microscopes AMm provided in the Y direction can be changed according to the number of alignment marks MKm formed in the width direction of the substrate FS.
  • the size of the observation regions Vw1 to Vw4 on the surface to be irradiated of the substrate FS is set according to the size of the alignment marks MK1 to MK4 and the alignment accuracy (position measurement accuracy), but is about 100 to 500 ⁇ m square. That's it.
  • a plurality of alignment marks MKm are also formed on the substrate FS used in the first to third embodiments. Yes.
  • scale parts SD (SDa, SDb) having scales formed in an annular shape over the entire circumferential direction of the outer peripheral surface of the rotary drum DR are provided at both ends of the rotary drum DR.
  • the scale portion SD (SDa, SDb) is a diffraction grating in which concave or convex grating lines are engraved at a constant pitch (for example, 20 ⁇ m) in the circumferential direction of the outer peripheral surface of the rotary drum DR, and an incremental scale. Configured as The scale portion SD (SDa, SDb) rotates integrally with the rotary drum DR around the central axis AXo.
  • a plurality of encoders (scale reading heads) ENn are provided so as to face the scale portion SD (SDa, SDb).
  • This encoder ENn optically detects the rotational position of the rotary drum DR.
  • Three encoders ENn (EN1a, EN2a, EN3a) are provided to face the scale part SDa provided at the end portion on the ⁇ Y direction side of the rotary drum DR.
  • three encoders ENn (EN1b, EN2b, EN3b) are provided so as to face the scale part SDb provided at the + Y direction side end of the rotary drum DR.
  • the scale portions SD (SDa, SDa, S) are provided at both ends of the rotary drum DR of the first to third embodiments.
  • SDb) is provided, and a plurality of encoders En (EN1a to EN3a, EN1b to EN3b) are provided to face the SDb).
  • the encoder ENn projects a light beam for measurement toward the scale part SD (SDa, SDb), and photoelectrically detects the reflected light beam (diffracted light) to generate a pulse signal.
  • a certain detection signal is output to the control device 18.
  • the control device 18 counts the detection signal (pulse signal) with the counter circuit 356a (see FIG. 33), thereby measuring the rotation angle position and angle change of the rotary drum DR with submicron resolution.
  • the counter circuit 356a individually counts the detection signals of the encoders ENn (EN1a to EN3a, EN1b to EN3b).
  • the control device 18 can also measure the transport speed of the substrate FS from the angle change of the rotary drum DR.
  • a counter circuit 356a that individually counts the detection signals of the encoders ENn (EN1a to EN3a, EN1b to EN3b) is configured so that each encoder ENn (EN1a to EN3a, EN1b to EN3b) has one circumferential direction of the scale portions SDa and SDb.
  • the count value corresponding to the encoder ENn is reset to zero.
  • Encoders EN1a and EN1b are arranged on the installation direction line Lx1.
  • the installation azimuth line Lx1 is a line connecting the projection position (reading position) of the light beam for measurement of the encoders EN1a and EN1b onto the scale part SD (SDa, SDb) and the central axis AXo on the XZ plane.
  • the installation orientation line Lx1 is a line connecting the observation region Vw (Vw1 to Vw4) of each alignment microscope AMm (AM1 to AM4) and the central axis AXo on the XZ plane.
  • the encoders EN2a and EN2b are provided on the upstream side ( ⁇ X direction side) in the transport direction of the substrate FS with respect to the center plane Poc, and on the downstream side in the transport direction of the substrate FS (+ X direction) from the encoders EN1a and EN1b. Side).
  • the encoders EN2a and EN2b are arranged on the installation direction line Lx2.
  • the installation orientation line Lx2 is a line connecting the projection position of the measurement light beam on the scale part SD (SDa, SDb) of the encoders EN2a, EN2b and the central axis AXo on the XZ plane.
  • the installation azimuth line Lx2 overlaps with the irradiation center axes Le1, Le3, Le5 at the same angular position in the XZ plane.
  • Encoders EN3a and EN3b are provided on the downstream side (+ X direction side) in the transport direction of the substrate FS with respect to the center plane Poc.
  • the encoders EN3a and EN3b are arranged on the installation direction line Lx3.
  • the installation azimuth line Lx3 is a line connecting the projection position of the measurement light beam on the scale part SD (SDa, SDb) of the encoders EN3a, EN3b and the central axis AXo on the XZ plane.
  • This installation orientation line Lx3 overlaps with the irradiation center axes Le2, Le4, and Le6 at the same angular position in the XZ plane.
  • the angle position) is reset to zero at the moment when each encoder ENn detects the origin mark ZZ provided at one place in the rotating direction of the rotary drum DR.
  • the count value based on the encoders EN1a and EN1b is the first value (for example, 100)
  • the position on the installation direction line Lx1 of the substrate FS wound around the rotary drum DR (each of the alignment microscopes AM1 to AM4)
  • the first positions on the observation areas Vw1 to Vw4 are transferred to the positions on the installation azimuth line Lx2 (positions on the drawing lines SL1, SL3, and SL5) when the first positions are set as the first positions.
  • the count value based on the encoders EN2a and EN2b is a first value (for example, 100).
  • the count value of the detection signal based on the encoders EN3a and EN3b is the first value. (For example, 100).
  • the substrate FS is wound inside the scale portions SDa and SDb at both ends of the rotary drum DR.
  • the radius from the central axis AXo of the outer peripheral surface of the scale part SD (SDa, SDb) is set smaller than the radius from the central axis AXo of the outer peripheral surface of the rotary drum DR.
  • the outer peripheral surface of the scale portion SD (SDa, SDb) may be set to be the same surface as the outer peripheral surface of the substrate FS wound around the rotary drum DR.
  • the radius (distance) from the central axis AXo of the outer peripheral surface of the scale part SD (SDa, SDb) and the radius from the central axis AXo of the outer peripheral surface (irradiated surface) of the substrate FS wound around the rotary drum DR ( The distance may be set to be the same.
  • the encoder ENn (EN1a, EN1b, EN2a, EN2b, EN3a, EN3b) detects the scale part SD (SDa, SDb) at the same radial position as the irradiated surface of the substrate FS wound around the rotary drum DR. It is possible to reduce the Abbe error caused by the difference between the measurement position by the encoder ENn and the processing positions (drawing lines SL1 to SL6) in the radial direction of the rotary drum DR.
  • the control device 18 performs the longitudinal direction of the substrate FS.
  • the drawing exposure start position in the exposure area W in the (X direction) is determined, and the count value based on the encoders EN1a and EN1b is set to a first value (for example, 100).
  • the count value based on the encoders EN2a and EN2b becomes a first value (for example, 100)
  • the drawing exposure start position of the exposure region W in the longitudinal direction of the substrate FS is on the drawing lines SL1, SL3, and SL5. Located in.
  • the scanning units U1, U3, and U5 can start scanning the spot light SP based on the count values of the encoders EN2a and EN2b.
  • the count value based on the encoders EN3a and EN3b becomes a first value (for example, 100)
  • the drawing exposure start position of the exposure region W in the longitudinal direction of the substrate FS is positioned on the drawing lines SL2, SL4, and SL6.
  • the scanning units U2, U4, and U6 can start scanning the spot light SP based on the count values of the encoders EN3a and EN3b.
  • the exposure apparatus EX of the first to third embodiments also uses the encoder ENn (EN1a to EN3a, EN1b to EN3b). ) And a scale portion SD (SDa, SDb).
  • FIG. 26 is a configuration diagram of the beam switching member 20.
  • the beam switching member 20 includes a plurality of selection optical elements AOMn (AOM1 to AOM6), a plurality of condenser lenses CD1 to CD6, a plurality of reflection mirrors M1 to M12, a plurality of unit side incidence mirrors IM1 to IM6, It has a plurality of collimating lenses CL1 to CL6 and an absorber TR.
  • the selection optical elements AOMn (AOM1 to AOM6) are transparent to the beam LB, and are acousto-optic modulators (AOMs) driven by ultrasonic signals.
  • These optical members are: It is supported by a plate-like support member IUB.
  • the support member IUB supports these optical members from below (the ⁇ Z direction side) above the plurality of scanning units Un (U1 to U6). Therefore, the support member IUB also has a function of insulating between the selection optical element AOMn (AOM1 to AOM6) serving as a heat source and the plurality of scanning units Un (U1 to U6).
  • the beam LB from the light source device 14 ' is guided to the absorber TR by the reflection mirrors M1 to M12 having its optical path bent in a spiral shape.
  • a beam LB (parallel light beam) from the light source device 14 ′ travels in the + Y direction in parallel with the Y axis, and enters the reflection mirror M1 through the condenser lens CD1.
  • the beam LB reflected on the ⁇ X direction side by the reflecting mirror M1 passes straight through the first selection optical element AOM1 disposed at the focal position (beam waist position) of the condenser lens CD1, and is again reflected by the collimating lens CL1. It is made a parallel light beam and reaches the reflection mirror M2.
  • the beam LB reflected on the + Y direction side by the reflection mirror M2 is reflected on the + X direction side by the reflection mirror M3 after passing through the condenser lens CD2.
  • the beam LB reflected by the reflecting mirror M3 passes straight through the second selection optical element AOM2 arranged at the focal position (beam waist position) of the condenser lens CD2, and is converted into a parallel beam again by the collimating lens CL2.
  • the beam LB reflected on the + Y direction side by the reflection mirror M4 passes through the condenser lens CD3 and then is reflected on the ⁇ X direction side by the reflection mirror M5.
  • the beam LB reflected to the ⁇ X direction side by the reflecting mirror M5 is transmitted straight through the third selection optical element AOM3 arranged at the focal position (beam waist position) of the condenser lens CD3, and is collimated by the collimating lens CL3.
  • the light beam is again converted into a parallel light beam and reaches the reflection mirror M6.
  • the beam LB reflected on the + Y direction side by the reflection mirror M6 passes through the condenser lens CD4 and then is reflected on the + X direction side by the reflection mirror M7.
  • the beam LB reflected by the reflection mirror M7 passes straight through the fourth selection optical element AOM4 arranged at the focal position (beam waist position) of the condenser lens CD4, and is converted into a parallel beam again by the collimator lens CL4.
  • the beam LB reflected on the + Y direction side by the reflection mirror M8 passes through the condenser lens CD5 and then is reflected on the ⁇ X direction side by the reflection mirror M9.
  • the beam LB reflected by the reflecting mirror M9 in the ⁇ X direction side passes straight through the fifth selection optical element AOM5 disposed at the focal position (beam waist position) of the condenser lens CD5, and is collimated by the collimating lens CL5.
  • the light beam is again converted into a parallel light beam and reaches the reflection mirror M10.
  • the beam LB reflected on the + Y direction side by the reflection mirror M10 is reflected on the + X direction side by the reflection mirror M11 after passing through the condenser lens CD6.
  • the beam LB reflected by the reflecting mirror M11 passes straight through the sixth selection optical element AOM6 disposed at the focal position (beam waist position) of the condenser lens CD6, and is converted into a parallel beam again by the collimating lens CL6.
  • the light After being reflected by the reflecting mirror M12 in the ⁇ Y direction side, the light reaches the absorber TR.
  • the absorber TR is an optical trap that absorbs the beam LB in order to suppress leakage of the beam LB to the outside.
  • the selection optical elements AOM1 to AOM6 are arranged so as to sequentially transmit the beam LB from the light source device 14 ', and are selected by the condenser lenses CD1 to CD6 and the collimating lenses CL1 to CL6.
  • the optical waists AOM1 to AOM6 are arranged so that the beam waist of the beam LB is formed.
  • the diameter of the beam LB incident on the selection optical elements AOM1 to AOM6 is reduced to increase the diffraction efficiency and increase the responsiveness.
  • Each of the selection optical elements AOMn diffracts the incident beam LB (0th order light) at a diffraction angle corresponding to the frequency of the high frequency when an ultrasonic signal (high frequency signal) is applied. The next diffracted light is generated as an exit beam (beam LBn).
  • beams LBn emitted as first-order diffracted light from each of the plurality of selection optical elements AOMn are referred to as beams LB1 to LB6, and each of the selection optical elements AOMn (AOM1 to AOM6).
  • the actual acousto-optic modulation element has a generation efficiency of the first-order diffracted light of about 80% of the zero-order light
  • the beam deflected by each of the selection optical elements AOMn (AOM1 to AOM6).
  • LB1 to LB6 are lower than the intensity of the original beam LB.
  • any one of the optical elements for selection AOMn (AOM1 to AOM6) is in the on state, about 20% of 0th-order light that travels straight without being diffracted remains, but it is finally absorbed by the absorber TR. .
  • the optical element for selection AOMn is a diffraction grating that causes a periodic coarse / fine change in refractive index in a predetermined direction in the transmission member by ultrasonic waves
  • the incident beam LB is linearly polarized light (P-polarized light or S-polarized light).
  • the polarization direction and the periodic direction of the diffraction grating are set so that the generation efficiency (diffraction efficiency) of the first-order diffracted light is the highest. As shown in FIG.
  • the periodic direction of the diffraction grating generated in the selection optical element AOMn is also the Z direction. Therefore, the polarization direction of the beam LB from the light source device 14 ′ is set (adjusted) so as to match it.
  • each of the plurality of optical elements for selection AOMn applies the deflected beams LB1 to LB6 (first-order diffracted light) in the ⁇ Z direction with respect to the incident beam LB. Installed to deflect.
  • the beams LB1 to LB6 deflected and emitted from each of the selection optical elements AOMn are incident on the unit side provided at a predetermined distance from each of the selection optical elements AOMn (AOM1 to AOM6).
  • the light is projected onto the mirrors IM1 to IM6, and is reflected so as to be parallel (coaxial) with the irradiation center axes Le1 to Le6 in the ⁇ Z direction.
  • the beams LB1 to LB6 reflected by the unit side incident mirrors IM1 to IM6 (hereinafter also simply referred to as mirrors IM1 to IM6) pass through each of the openings TH1 to TH6 formed in the support member IUB, and the irradiation center axis Le1. Are incident on each of the scanning units Un (U1 to U6) along the lines Le6.
  • the same optical elements AOMn (AOM1 to AOM6) for selection, configurations, functions, operations, and the like may be used.
  • the plurality of selection optical elements AOMn (AOM1 to AOM6) turn on / off generation of diffracted light obtained by diffracting the incident beam LB in accordance with on / off of a drive signal (high frequency signal) from the control device 18.
  • the selection optical element AOM1 transmits the incident beam LB without being diffracted when the drive signal (high-frequency signal) from the control device 18 is not applied and is turned off. Therefore, the beam LB transmitted through the selection optical element AOM1 is transmitted through the collimator lens CL1 and is incident on the reflection mirror M2.
  • the selection optical element AOM1 diffracts the incident beam LB toward the mirror IM1 when the drive signal from the control device 18 is applied and is on. That is, the selection optical element AOM1 is switched by this drive signal.
  • the mirror IM1 reflects the beam LB1 diffracted by the selection optical element AOM1 toward the scanning unit U1.
  • the beam LB1 reflected by the mirror IM1 enters the scanning unit U1 along the irradiation center axis Le1 through the opening TH1 of the support member IUB. Therefore, the mirror IM1 reflects the incident beam LB1 so that the optical axis of the reflected beam LB1 is coaxial with the irradiation center axis Le1.
  • the selection optical element AOM1 When the selection optical element AOM1 is in the ON state, the 0th-order light (intensity of about 20% of the incident beam) of the beam LB that passes straight through the selection optical element AOM1 is the collimating lenses CL1 to CL6 thereafter.
  • the light passes through the condenser lenses CD2 to CD6, the reflection mirrors M2 to M12, and the optical elements for selection AOM2 to AOM6 and reaches the absorber TR.
  • FIG. 27A is a diagram of switching of the optical path of the beam LB by the selection optical element AOM1 from the + Z direction side
  • FIG. 27B is a diagram of switching of the optical path of the beam LB by the selection optical element AOM1 from the ⁇ Y direction side. It is.
  • the selection optical element AOM1 transmits the incident beam LB directly toward the reflection mirror M2 without being diffracted.
  • the selection optical element AOM1 generates a beam LB1 obtained by diffracting the incident beam LB in the ⁇ Z direction, and directs the beam LB1 toward the mirror IM1.
  • the beam LB1 (1) is related to the Z direction without changing the traveling direction of the beam LB (0th order light) emitted from the selection optical element AOM1 and the deflected beam LB1 (first order diffracted light).
  • the traveling direction of the next diffracted light is changed.
  • the control device 18 switches the selection optical element AOM1 by turning on / off (high / low) the drive signal (high frequency signal) to be applied to the selection optical element AOM1, and thereby the beam LB. Switches to the subsequent selection optical element AOM2 or the deflected beam LB1 goes to the scanning unit U1.
  • the selection optical element AOM2 is incident on the beam LB (the beam LB transmitted without being diffracted by the selection optical element AOM1). Is transmitted to the collimator lens CL2 side (reflection mirror M4 side) without being diffracted, and when the drive signal from the control device 18 is on, the beam LB2, which is the diffracted light of the incident beam LB, is directed to the mirror IM2. Dodge.
  • the mirror IM2 reflects the beam LB2 diffracted by the selection optical element AOM2 toward the scanning unit U2.
  • the beam LB2 reflected by the mirror IM2 passes through the opening TH2 of the support member IUB and enters the scanning unit U2 coaxially with the irradiation center axis Le2. Further, when the drive signal (high frequency signal) from the control device 18 is OFF, the selection optical elements AOM3 to AOM6 do not diffract the incident beam LB and collimate lens CL3 to CL6 side (reflection mirror M6, When the driving signal from the control device 18 is on, the beams LB3 to LB6, which are the first-order diffracted lights of the incident beam LB, are directed to the mirrors IM3 to IM6.
  • the mirrors IM3 to IM6 reflect the beams LB3 to LB6 diffracted by the selection optical elements AOM3 to AOM6 toward the scanning units U3 to U6.
  • the beams LB3 to LB6 reflected by the mirrors IM3 to IM6 are coaxial with the irradiation center axes Le3 to Le6 and enter the scanning units U3 to U6 through each of the openings TH3 to TH6 of the support member IUB.
  • the control device 18 turns on / off (high / low) the drive signals (high frequency signals) to be applied to the selection optical elements AOM2 to AOM6, thereby enabling the selection optical elements AOM2 to AOM6.
  • the beam switching member 20 includes a plurality of selection optical elements AOMn (AOM1 to AOM6) arranged in series along the traveling direction of the beam LB from the light source device 14 ′, so that the beam LB One scanning unit Un on which the beam LBn is incident can be selected by switching the optical path.
  • AOMn AOM1 to AOM6
  • the selection optical element AOM1 is turned on.
  • the selection optical element AOM3 is turned on.
  • the plurality of selection optical elements AOMn (AOM1 to AOM6) are provided corresponding to the plurality of scanning units Un (U1 to U6), and switch whether or not the beam LBn is incident on the corresponding scanning unit Un. .
  • the beam switching member 20 Since the plurality of scanning units Un (U1 to U6) repeat the operation of scanning the spot light SP in a predetermined order, the beam switching member 20 correspondingly receives any one of the beams LB1 to LB6.
  • the scanning units U1 to U6 to be switched are switched. For example, when the order of the scanning units Un that scan the spot light SP is U1 ⁇ U2 ⁇ ... ⁇ U6, the beam switching member 20 also receives the beam LBn correspondingly.
  • the scanning unit Un is switched in the order of U1 ⁇ U2 ⁇ .
  • each optical element for selection AOMn (AOM1 to AOM6) of the beam switching member 20 is only for one scanning period of the spot light SP by each polygon mirror PM of the scanning unit Un (U1 to U6). As long as it is in the on state.
  • the number of reflecting surfaces Np is 8 and the rotation speed Vp is 30,000
  • one rotation of the polygon mirror PM is 2 milliseconds
  • the time Tss is 0.25 milliseconds.
  • This is 4 kHz in terms of frequency, and an acoustic wave having a considerably lower response frequency than an acousto-optic modulation element for modulating a beam LB having a wavelength in the ultraviolet region at a high speed of about several tens of MHz in response to drawing data.
  • an optical modulation element may be used.
  • the beams LB1 to LB6 (first order diffracted light) deflected with respect to the incident beam LB (0th order light) having a large diffraction angle can be used, and pass straight through the selection optical elements AOM1 to AOM6.
  • the arrangement of mirrors IM1 to IM6 (FIGS. 26, 27A, and 27B) for separating the deflected beams LB1 to LB6 with respect to the path of the beam LB is facilitated.
  • the serial data DLn of the pattern data of each scanning unit Un correspondingly corresponds to the predetermined data.
  • the serial data DLn sequentially output to the drive circuit 206a is referred to as drawing bit string data Sdw.
  • the predetermined order is U1 ⁇ U2 ⁇ ... ⁇ U6
  • serial data DL1 for one column is output to the drive circuit 206a, and then serial data for one column.
  • DL2 is output to the drive circuit 206a, and serial data DL1 to DL6 for one column constituting the drawing bit string data Sdw are sequentially output to the drive circuit 206a. Thereafter, the serial data DL1 to DL6 of the next column are sequentially output to the drive circuit 206a as the drawing bit string data Sdw.
  • serial data DL1 to DL6 of the next column are sequentially output to the drive circuit 206a as the drawing bit string data Sdw.
  • the configuration of the scanning unit Un may be that used in the first to third embodiments.
  • the configuration as shown in FIG. The scanning unit Un is used.
  • the scanning unit Un described below may be used as the scanning unit of the first to third embodiments.
  • each scanning unit Un (U1 to U6) has the same configuration, only the scanning unit U1 will be described, and the description of the other scanning units Un will be omitted.
  • the direction parallel to the irradiation center axis Len (Le1) is the Zt direction
  • the substrate FS is on the plane orthogonal to the Zt direction
  • the substrate FS passes from the process apparatus PR1 through the exposure apparatus EX to the process apparatus PR2.
  • the direction going to the Xt direction is defined as the Yt direction
  • the direction perpendicular to the Xt direction on the plane orthogonal to the Zt direction is defined as the Yt direction. That is, the three-dimensional coordinates Xt, Yt, and Zt in FIG. 28 are the same as the three-dimensional coordinates X, Y, and Z in FIG. 23, and the Z-axis direction is parallel to the irradiation center axis Len (Le1).
  • the three-dimensional coordinates rotated as described above.
  • the scanning unit U1 along the traveling direction of the beam LB1 from the incident position of the beam LB1 to the irradiated surface of the substrate FS, the reflection mirror M20, the beam expander BE, the reflection mirror M21, and the polarization Beam splitter BS, reflection mirror M22, image shift optical member SR, field aperture FA, reflection mirror M23, ⁇ / 4 wavelength plate QW, cylindrical lens CYa, reflection mirror M24, polygon mirror PM, f ⁇ lens FT, reflection mirror M25, cylindrical A lens CYb is provided. Further, in the scanning unit U1, an optical lens system G10 and a photodetector DTS are provided for detecting reflected light from the irradiated surface of the substrate FS via the polarization beam splitter BS.
  • the beam LB1 incident on the scanning unit U1 travels in the ⁇ Zt direction and enters the reflection mirror M20 inclined by 45 ° with respect to the XtYt plane.
  • the axis of the beam LB1 incident on the scanning unit U1 is incident on the reflection mirror M20 so as to be coaxial with the irradiation center axis Le1.
  • the reflection mirror M20 functions as an incident optical member that causes the beam LB1 to enter the scanning unit U1, and the incident beam LB1 is directed toward the reflection mirror M21 along the optical axis set in parallel with the Xt axis in the ⁇ Xt direction. reflect.
  • the optical axis of the beam LB1 traveling parallel to the Xt axis is orthogonal to the irradiation center axis Le1 in a plane parallel to the XtZt plane.
  • the beam LB1 reflected by the reflection mirror M20 passes through the beam expander BE arranged along the optical axis of the beam LB1 traveling in parallel with the Xt axis and enters the reflection mirror M21.
  • the beam expander BE expands the diameter of the transmitted beam LB1.
  • the beam expander BE includes a condensing lens Be1 and a collimating lens Be2 that collimates the beam LB1 that diverges after being converged by the condensing lens Be1.
  • the reflection mirror M21 is disposed with an inclination of 45 ° with respect to the YtZt plane, and reflects the incident beam LB1 in the ⁇ Yt direction toward the polarization beam splitter BS.
  • the polarization separation surface of the polarization beam splitter BS is inclined by 45 ° with respect to the YtZt plane, reflects a P-polarized beam, and transmits a linearly polarized (S-polarized) beam polarized in a direction orthogonal to the P-polarized light. Is. Since the beam LB1 incident on the scanning unit U1 is a P-polarized beam, the polarization beam splitter BS reflects the beam LB1 from the reflection mirror M21 in the -Xt direction and guides it to the reflection mirror M22 side.
  • the reflection mirror M22 is disposed with an inclination of 45 ° with respect to the XtYt plane, and reflects the incident beam LB1 in the ⁇ Zt direction toward the reflection mirror M23 that is separated from the reflection mirror M22 in the ⁇ Zt direction.
  • the beam LB1 reflected by the reflection mirror M22 passes through the image shift optical member SR and the field aperture (field stop) FA along the optical axis parallel to the Zt axis, and enters the reflection mirror M23.
  • the image shift optical member SR two-dimensionally adjusts the center position in the cross section of the beam LB1 in a plane (XtYt plane) orthogonal to the traveling direction of the beam LB1.
  • the image shift optical member SR is composed of two quartz parallel plates Sr1 and Sr2 arranged along the optical axis of the beam LB1 traveling parallel to the Zt axis, and the parallel plate Sr1 can be tilted around the Xt axis.
  • the parallel flat plate Sr2 can be tilted around the Yt axis.
  • the parallel plates Sr1 and Sr2 are inclined about the Xt axis and the Yt axis, respectively, so that the position of the center of the beam LB1 is shifted two-dimensionally by a minute amount on the XtYt plane orthogonal to the traveling direction of the beam LB1.
  • the parallel plates Sr1 and Sr2 are driven by an actuator (drive unit) (not shown) under the control of the control device 18.
  • the beam LB1 that has passed through the image shift optical member SR passes through the circular aperture of the field aperture FA and reaches the reflection mirror M23.
  • the circular aperture of the field aperture FA is a stop that cuts the skirt portion of the intensity distribution in the cross section of the beam LB1 expanded by the beam expander BE. If a variable iris diaphragm having an adjustable aperture of the circular aperture of the field aperture FA is used, the intensity (luminance) of the spot light SP can be adjusted.
  • the reflection mirror M23 is disposed at an angle of 45 ° with respect to the XtYt plane, and reflects the incident beam LB1 in the + Xt direction toward the reflection mirror M24 that is separated from the reflection mirror M23 in the + Xt direction.
  • the beam LB1 reflected by the reflection mirror M23 passes through the ⁇ / 4 wavelength plate QW and the cylindrical lens CYa and enters the reflection mirror M24.
  • the reflection mirror M24 reflects the incident beam LB1 toward the polygon mirror (rotating polygon mirror, scanning deflection member) PM.
  • the polygon mirror PM reflects the incident beam LB1 in the + Xt direction toward the f ⁇ lens FT having the optical axis AXf parallel to the Xt axis.
  • the polygon mirror PM deflects (reflects) the incident beam LB1 in a plane parallel to the XtYt plane in order to scan the spot light SP of the beam LB1 on the irradiated surface of the substrate FS.
  • the polygon mirror PM includes a rotation axis AXp extending in the Zt-axis direction, and a plurality of reflection surfaces RP (eight reflection surfaces RP in the fourth embodiment) formed around the rotation axis AXp.
  • the reflection direction of the beam LB1 is deflected by one reflection surface RP, and the spot light SP of the beam LB1 irradiated on the irradiated surface of the substrate FS is along the scanning direction (the width direction of the substrate FS, the Yt direction). Can be scanned.
  • the spot light SP of the beam LB1 can be scanned along the drawing line SL1 by one reflecting surface RP.
  • the number of drawing lines SL1 in which the spot light SP is scanned on the irradiated surface of the substrate FS by one rotation of the polygon mirror PM is eight, which is the same as the number of the reflecting surfaces RP.
  • the polygon mirror PM is rotated at a constant speed by a polygon driving unit RM including a motor and the like.
  • the rotation of the polygon mirror PM by the polygon drive unit RM is controlled by the control device 18.
  • the effective length (for example, 30 mm) of the drawing line SL1 is set to a length equal to or shorter than the maximum scanning length (for example, 31 mm) that allows the spot light SP to be scanned by the polygon mirror PM.
  • the center point of the drawing line SL1 (the irradiation center axis Le1 passes) is set at the center of the maximum scanning length.
  • the effective length of the drawing line SL1 is set to 30 mm, and the spot light SP is overlapped with the substrate line FS along the drawing line SL1 while overlapping the spot light SP having an effective size ⁇ of 3 ⁇ m by 1.5 ⁇ m.
  • the number of spot lights SP (number of pulses of the beam LB from the light source device 14 ′) irradiated in one scan is 20000 (30 mm / 1.5 ⁇ m).
  • the cylindrical lens CYa converges the incident beam LB1 in a slit shape on the reflection surface RP of the polygon mirror PM in the non-scanning direction (Zt direction) orthogonal to the scanning direction (rotation direction) of the polygon mirror PM. Even if the reflecting surface RP is inclined with respect to the Zt direction (inclination of the reflecting surface RP with respect to the normal line of the XtYt plane) by the cylindrical lens CYa in which the generatrix is parallel to the Yt direction, the influence is exerted. It can suppress, and it suppresses that the irradiation position of beam LB1 irradiated on the to-be-irradiated surface of board
  • the f ⁇ lens FT having the optical axis AXf extending in the Xt axis direction is a telecentric scan lens that projects the beam LB1 reflected by the polygon mirror PM onto the reflection mirror M25 so as to be parallel to the optical axis AXf on the XtYt plane. It is.
  • the incident angle ⁇ of the beam LB1 to the f ⁇ lens FT changes according to the rotation angle ( ⁇ / 2) of the polygon mirror PM.
  • the f ⁇ lens FT projects the beam LB1 to the image height position on the irradiated surface of the substrate FS in proportion to the incident angle ⁇ through the reflection mirror M25 and the cylindrical lens CYb.
  • the reflection mirror M25 reflects the incident beam LB1 in the ⁇ Zt direction toward the substrate FS via the cylindrical lens CYb.
  • the beam LB1 projected on the substrate FS is a minute spot light having a diameter of about several ⁇ m (for example, 3 ⁇ m) on the irradiated surface of the substrate FS. Converged to SP. Further, the spot light SP projected on the irradiated surface of the substrate FS is one-dimensionally scanned by the polygon mirror PM along the drawing line SL1 extending in the Yt direction.
  • the optical axis AXf of the f ⁇ lens FT and the irradiation center axis Le1 are on the same plane, and the plane is parallel to the XtZt plane. Therefore, the beam LB1 traveling on the optical axis AXf is reflected in the ⁇ Zt direction by the reflecting mirror M25, and is projected on the substrate FS coaxially with the irradiation center axis Le1.
  • at least the f ⁇ lens FT functions as a projection optical system that projects the beam LB1 deflected by the polygon mirror PM onto the irradiated surface of the substrate FS.
  • At least the reflecting members (reflecting mirrors M21 to M25) and the polarizing beam splitter BS function as an optical path deflecting member that bends the optical path of the beam LB1 from the reflecting mirror M20 to the substrate FS.
  • the incident axis of the beam LB1 incident on the reflecting mirror M20 and the irradiation center axis Le1 can be made substantially coaxial.
  • the beam LB1 passing through the scanning unit U1 passes through a substantially U-shaped or U-shaped optical path, and then travels in the ⁇ Zt direction and is projected onto the substrate FS.
  • each scanning unit Un U1 to U6
  • the spot light SP can be relatively two-dimensionally scanned on the irradiated surface of the substrate FS. Therefore, a predetermined pattern can be drawn and exposed on the exposure region W of the substrate FS.
  • the photodetector DTS has a photoelectric conversion element that photoelectrically converts incident light.
  • a predetermined reference pattern is formed on the surface of the rotary drum DR.
  • the portion on the rotating drum DR on which the reference pattern is formed is made of a material having a low reflectance (10 to 50%) with respect to the wavelength region of the beam LB1, and on the rotating drum DR on which the reference pattern is not formed.
  • the other part is made of a material having a reflectance of 10% or less or a material that absorbs light.
  • the reflected light is a cylindrical lens CYb, a reflection mirror M25, an f ⁇ lens FT, a polygon mirror PM, a reflection mirror M24, a cylindrical lens CYa, a ⁇ / 4 wavelength plate QW, a reflection mirror M23, a field aperture FA, an image shift optical member SR, Then, the light passes through the reflection mirror M22 and enters the polarization beam splitter BS.
  • a ⁇ / 4 wavelength plate QW is provided between the polarizing beam splitter BS and the substrate FS, specifically, between the reflection mirror M23 and the cylindrical lens CYa.
  • the beam LB1 irradiated to the substrate FS is converted from P-polarized light to circularly-polarized light by the ⁇ / 4 wavelength plate QW, and reflected light incident on the polarization beam splitter BS from the substrate FS is converted to the ⁇ / 4 wavelength plate.
  • QW converts circularly polarized light into S polarized light. Therefore, the reflected light from the substrate FS passes through the polarization beam splitter BS and enters the photodetector DTS via the optical lens system G10.
  • the scanning unit U1 emits the spot light SP by rotating the rotary drum DR.
  • the outer peripheral surface of the rotary drum DR is irradiated with the spot light SP two-dimensionally. Therefore, the image of the reference pattern formed on the rotary drum DR can be acquired by the photodetector DTS.
  • the change in the intensity of the photoelectric signal output from the photodetector DTS is changed in response to a clock pulse signal (generated in the light source device 14 ′) for pulse emission of the spot light SP for each scanning time.
  • Digital sampling is performed every time to obtain one-dimensional image data in the Yt direction, and in response to a measurement value of the encoder ENn that measures the rotation angle position of the rotary drum DR, a certain distance in the sub-scanning direction (for example, spot light)
  • a certain distance in the sub-scanning direction for example, spot light
  • the control device 18 measures the inclination of the drawing line SL1 of the scanning unit U1 based on the acquired two-dimensional image information of the reference pattern of the rotating drum DR.
  • the inclination of the drawing line SL1 may be a relative inclination between the scanning units Un (U1 to U6), or may be an inclination (absolute inclination) with respect to the central axis AXo of the rotating drum DR. . It goes without saying that the inclinations of the respective drawing lines SL2 to SL6 can be measured in the same manner.
  • an origin sensor (origin detector) OP1 is provided around the polygon mirror PM of the scanning unit U1.
  • the origin sensor OP1 outputs a pulsed origin signal SZ indicating the start of scanning of the spot light SP by each reflecting surface RP.
  • the origin sensor OP1 outputs an origin signal SZ when the rotational position of the polygon mirror PM comes to a predetermined position immediately before the scanning of the spot light SP by the reflecting surface RP is started. Since the polygon mirror PM can deflect the beam LB1 projected on the substrate FS within the scanning angle range ⁇ s, the reflection direction (deflection direction) of the beam LB1 reflected by the polygon mirror PM is within the scanning angle range ⁇ s.
  • the reflected beam LB1 enters the f ⁇ lens FT. Accordingly, the origin sensor OP1 outputs the origin signal SZ when the rotational position of the polygon mirror PM comes to a predetermined position immediately before the reflection direction of the beam LB1 reflected by the reflecting surface RP enters the scanning angle range ⁇ s.
  • the origin sensor OP1 Since the polygon mirror PM has eight reflecting surfaces RP, the origin sensor OP1 outputs the origin signal SZ eight times during the period in which the polygon mirror PM rotates once.
  • the origin signal SZ detected by the origin sensor OP1 is sent to the control device 18. After the origin sensor OP1 outputs the origin signal SZ, scanning along the drawing line SL1 of the spot light SP is started.
  • the origin sensor OP1 reflects the reflection surface RP next to the reflection surface RP that performs the scanning of the spot light SP (deflection of the beam LB1) (in the fourth embodiment, the reflection immediately before the rotation direction of the polygon mirror PM).
  • the origin signal SZ is output using the surface RP).
  • the reflection surface RP that is currently deflecting the beam LB1 is represented by RPa, and the other reflection surfaces RP are rotated counterclockwise (the rotation direction of the polygon mirror PM). RPb to RPh).
  • the origin sensor OP1 is a light source unit 312 that emits a laser beam Bga in a non-photosensitive wavelength region such as a semiconductor laser, and a mirror that reflects the laser beam Bga from the light source unit 312 and projects it onto the reflection surface RPb of the polygon mirror PM. 314, 316 and a beam transmission system Opa.
  • the origin sensor OP1 includes a light receiving unit 318, mirrors 320 and 322 that guide the reflected light (reflected beam Bgb) of the laser beam Bga reflected by the reflecting surface RPb to the light receiving unit 318, and a reflected beam Bgb reflected by the mirror 322.
  • a beam receiving system Opb including a lens system 324 for condensing the light into a minute spot light.
  • the light receiving unit 318 includes a photoelectric conversion element that converts the spot light of the reflected beam Bgb collected by the lens system 324 into an electric signal.
  • the position at which the laser beam Bga is projected onto each reflecting surface RP of the polygon mirror PM is set to be the pupil plane (focus position) of the lens system 324.
  • the beam transmission system Opa and the beam light reception system Opb are configured so that the beam transmission system Opa is rotated when the rotational position of the polygon mirror PM reaches a predetermined position immediately before the scanning of the spot light SP by the reflection surface RP is started. It is provided at a position where the reflected beam Bgb of the emitted laser beam Bga can be received by the beam receiving system Opb. That is, the beam transmitting system Opa and the beam receiving system Opb receive the reflected beam Bgb of the laser beam Bga emitted from the beam transmitting system Opa when the angle of the reflecting surface RP reaches a predetermined angle position. It is provided at a position where In addition, the code
  • a light-shielding body having a slit opening with a very small width is provided immediately before the light-receiving surface of the photoelectric conversion element in the light-receiving unit 318 (not shown). While the angle position of the reflecting surface RPb is within a predetermined angle range, the reflected beam Bgb is incident on the lens system 324, and the spot light of the reflected beam Bgb scans the light shield in the light receiving unit 318 in a certain direction. To do. During the scanning, the spot light of the reflected beam Bgb that has passed through the slit opening of the light shield is received by the photoelectric conversion element of the light receiving unit 318, and the received light signal is amplified by an amplifier and output as a pulsed origin signal SZ.
  • the origin sensor OP1 detects the origin signal SZ using the reflection surface RPb immediately before the rotation direction from the reflection surface RPa that deflects the beam LB1 (scans the spot light SP). Therefore, if the angle ⁇ j formed between the adjacent reflecting surfaces RP (for example, the reflecting surfaces RPa and RPb) has an error with respect to the design value (135 degrees when there are eight reflecting surfaces RP), Due to error variations, as shown in FIG. 30, the generation timing of the origin signal SZ may differ for each reflecting surface RP.
  • the origin signal SZ generated using the reflecting surface RPb is SZb.
  • the origin signal SZ generated using the reflecting surfaces RPc, RPd, RPe,... Is SZc, SZd, SZe,.
  • the interval between the generation timings of the origin signals SZ (SZb, SZc, SZd,...) Is the time Tpx.
  • the predetermined time Tpx is a time required for the polygon mirror PM to rotate by one surface of the reflection surface RP.
  • FIG. 30 the origin signal SZ generated using the reflecting surface RPb.
  • the timing of the origin signals SZc and SZd generated using the reflection surfaces RPc and RPd is shifted from the normal generation timing due to the error of the angle ⁇ j formed by the reflection surface RP of the polygon mirror PM. Yes. Further, the time intervals Tp1, Tp2, Tp3,... At which the origin signals SZb, SZc, SZd, SZe,... Are generated are not constant in the order of ⁇ seconds due to manufacturing errors of the polygon mirror PM. In the time chart shown in FIG. 30, Tp1 ⁇ Tpx, Tp2> Tpx, and Tp3 ⁇ Tpx.
  • Tpx 60 / (Np ⁇ Vp) [seconds]. For example, if Vp is 30,000 rpm and Np is 8, Tpx is 250 ⁇ sec.
  • the drawing line SL1 on the irradiated surface of the substrate FS of the spot light SP drawn by each reflecting surface RP (RPa to RPh).
  • the position of the drawing start point (scanning start point) varies in the main scanning direction.
  • the drawing of the spot light SP is started with the drawing start point after the time Tpx after the generation of one pulse-like origin signal SZ.
  • the control device 18 controls the beam switching member 20 so that the beam LB1 enters the scanning unit U1 after the time Tpx from the generation of the origin signal SZ, and drives the light source device 14 ′ shown in FIG.
  • the drawing bit string data Sdw of the scanning unit U1 to be scanned from now on, that is, the serial data DL1 is output to the circuit 206a.
  • the reflective surface RPb used for detecting the origin signal SZ and the reflective surface RP that actually scans the spot light SP can be made the same reflective surface.
  • the control device 18 applies a predetermined time (on time Ton) to the optical element AOM1 for selection of the beam switching member 20 after a time Tpx after the origin sensor OP1 of the scanning unit U1 outputs the origin signal SZb. Outputs an ON drive signal.
  • the predetermined time (on time Ton) when the selection optical element AOM1 is turned on is a predetermined time, and the spot light SP is scanned once along the drawing line SL1 by one reflecting surface RP of the polygon mirror PM. Is set so as to cover the period (scanning period) to be performed. Then, the control device 18 outputs serial data DL1 in a specific column, for example, the first column to the drive circuit 206a of the light source device 14 ′.
  • the scanning unit U1 since the beam LB1 is incident on the scanning unit U1 during the scanning time in which the scanning unit U1 scans the spot light SP, the scanning unit U1 converts the serial data DL1 into a specific column (for example, the first column). A corresponding pattern can be drawn. In this way, since the scanning unit U1 scans the spot light SP after the time Tpx since the origin sensor OP1 of the scanning unit U1 outputs the origin signal SZb, the reflection surface RPb used for detecting the origin signal SZb The spot light SP caused by the origin signal SZb can be scanned.
  • the control device 18 drives the selection optical element AOM1 of the beam switching member 20 to be on for a predetermined time (on time Ton) after a time Tpx after the origin sensor OP1 of the scanning unit U1 outputs the origin signal SZd. Output a signal. Then, the control device 18 outputs serial data DL1 in the next column, for example, the second column to the drive circuit 206a of the light source device 14 ′. Thereby, the beam LB1 is incident on the scanning unit U1 during the time including the time necessary for the scanning unit U1 to scan the spot light SP, so that the scanning unit U1 is in the next column (for example, the second column). A pattern corresponding to the serial data DL1 can be drawn.
  • the scanning unit U1 scans the spot light SP after time Tpx after the origin sensor OP1 of the scanning unit U1 outputs the origin signal SZd
  • the reflection surface RPb used for detecting the origin signal SZd The spot light SP caused by the origin signal SZd can be scanned. If the scanning of the spot light SP is not performed for each continuous reflection surface RP of the polygon mirror PM but by skipping one surface, the drawing process is performed by skipping one origin signal SZ (every other). Do. The reason for the drawing process by one skip will be described in detail later.
  • the control device 18 controls the beam switching member 20 so that the scanning unit U1 scans the spot light SP after the time Tpx after the origin sensor OP1 of the scanning unit U1 outputs the origin signal SZ.
  • serial data DL1 is output to the drive circuit 206a of the light source device 14 '.
  • the control device 18 sets the columns of the serial data DL1 to be output every time scanning by the scanning unit U1 is started, such as the first column, the second column, the third column, the fourth column,. Shift in the column direction.
  • the scanning of the spot light SP by the other scanning units Un is performed in order from one scanning of the spot light SP by the scanning unit U1 to the next scanning.
  • the scanning of the spot light SP by the other scanning units Un is the same as the scanning of the scanning unit U1.
  • the origin sensor OPn (OP1 to OP6) is provided for each scanning unit Un (U1 to U6).
  • the time Tpx during which the polygon mirror PM rotates 45 degrees is accurate on the order of microseconds, that is, the polygon mirror PM is rotated uniformly and precisely at a constant speed.
  • the reflecting surface RP used for generating the origin signal SZ always rotates exactly 45 degrees after the time Tpx, and the beam LB1 is changed to f ⁇ .
  • the angle is reflected toward the lens FT. Therefore, by increasing the rotational isokineticity of the polygon mirror PM and reducing the speed unevenness during one rotation as much as possible, the position of the reflection surface RP used for generating the origin signal SZ and the beam LB1 are deflected to generate the spot light SP.
  • the position of the reflection surface RP used for scanning can be made different. That is, since the generation timing of the origin signal SZ is delayed by the time Tpx, the operation is equivalent to detecting the origin signal SZ using the reflection surface RP that scans the spot light SP as a result. Thereby, the freedom degree of arrangement
  • the origin signal SZ is generated when the reflection surface RP to be detected by the origin sensor OP is positioned n (an integer greater than or equal to 1) in the rotation direction of the reflection surface RP that deflects the beam LB1 (LBn). Then, the drawing start point may be set after n ⁇ time Tpx.
  • the drawing start point is set after n ⁇ time Tpx, thereby rendering the drawing.
  • the reflection surface RP adjacent to the reflection surface RP from which the spot light SP is to be scanned (the deflection of the beam LB1) is now detected (in the fourth embodiment, the rotation direction of the polygon mirror PM). Even if the origin sensor OPn for detecting the previous reflection surface RP) is not provided, the origin sensor for detecting the same reflection surface RP as the reflection surface RP from which the spot light SP is scanned (the deflection of the beam LB1) is provided. Good. In this case, as described with reference to FIG. 30, since the time interval of the origin signal (pulse-like) SZ generated for each of the reflection surfaces RPa to RPh of the polygon mirror PM varies, It is necessary to consider a time offset according to the variation.
  • the scanning efficiency ( ⁇ / ⁇ ) is 1 / 3
  • the beam LBn is distributed to the two scanning units Un other than the scanning unit U1, and the spot light SP is scanned. It can. That is, while the polygon mirror PM of the scanning unit U1 is rotated by one surface, the corresponding beam LBn can be distributed to each of the three scanning units Un including the scanning unit U1, and the spot light SP can be scanned. It is.
  • the scanning efficiency of the polygon mirror PM is 1/3, when each scanning unit Un scans the spot light SP in the maximum scanning rotation angle range ⁇ (15 degrees), the polygon mirror PM of the scanning unit U1 is the reflecting surface.
  • the beam LBn cannot be distributed to three or more scanning units Un (U2 to U6) other than the scanning unit U1. That is, the beam LBn is distributed to three or more scanning units Un (U2 to U6) other than the scanning unit U1 during a period from the start of scanning of the spot light SP of the scanning unit U1 to the start of scanning of the next spot light SP. It is not possible.
  • the beam LBn is distributed to each of the other five scanning units Un (U2 to U6), and scanning by the spot light SP is performed.
  • the beam LBn is changed to any one of the six scanning units Un (U1 to U6) while the polygon mirror PM of each scanning unit Un rotates 45 degrees (while rotating by one surface of the reflection surface RP).
  • the light beams can be incident in order, and the scanning units Un (U1 to U6) can perform scanning with the spot light SP in order.
  • the scanning rotation angle range ⁇ ′ in which the spot light SP can be actually scanned becomes too small, and the maximum scanning range length in which the spot light SP is scanned, that is, the maximum scanning of the drawing line SLn. There is a problem that the length becomes too short.
  • an f ⁇ lens FT having a long focal length is prepared so as not to change the maximum scanning length in which the spot light SP is scanned, and the distance from the reflection surface RP of the polygon mirror PM to the f ⁇ lens FT. (Working distance) will be set longer.
  • the f ⁇ lens FT is increased in size, the size of the scanning unit Un (U1 to U6) in the Xt direction is increased, and there is a concern that the stability of the beam scanning is lowered due to the long working distance.
  • the number of reflection surfaces RP of the polygon mirror PM is reduced and the rotation angle ⁇ at which the polygon mirror PM rotates by one surface of the reflection surface RP is increased.
  • the polygon mirror PM of the scanning unit Un (U1 to U6) is one surface of the reflection surface RP while suppressing the drawing line SLn from being shortened or from increasing the size of the scanning unit Un (U1 to U6).
  • the beam LBn is distributed and the six scanning units Un (U1 to U6) can sequentially scan the spot light SP.
  • the entire polygon mirror PM is installed in a vacuum environment, or a gas having a molecular weight smaller than air (such as helium). It may be installed in the environment of In that case, an airtight structure for creating such an environment is provided around the polygon mirror PM, which leads to an increase in the size of the scanning unit Un (U1 to U6).
  • a polygon mirror that can actually scan the spot light SP while using a polygon having a relatively large number of reflection surfaces Np, that is, an octagonal polygon mirror PM closer to a circle.
  • the beam LB2 to LB6 is sequentially distributed to each of the five scanning units U2 to U6 other than the scanning unit U1 after the scanning unit U1 scans the spot light SP until the next scanning is performed. Scanning with the light SP can be performed. That is, the beam LB1 is applied to each of the six scanning units Un (U1 to U6) while the polygon mirror PM of one of the six scanning units Un (U1 to U6) rotates by two planes. By assigning ⁇ LB6, all of the six scanning units Un (U1 to U6) can scan the spot light SP. In this case, the polygon mirror PM is rotated by two surfaces (90 degrees) from the time when each scanning unit Un (U1 to U6) starts scanning the spot light SP until the next spot light SP starts scanning.
  • the polygon mirrors PM of the six scanning units Un are synchronously controlled so as to have the same rotation speed, and the reflection surface RP of each polygon mirror PM is controlled. Are controlled so as to have a predetermined phase relationship with each other.
  • the polygon mirror PM of each scanning unit Un (U1 to U6) rotates once.
  • the number of scans of the spot light SP along each of the drawing lines SLn is four. Therefore, the drawing line SLn is compared with the case where the scanning of the spot light SP (deflection of the beam LBn) is repeated for each continuous reflecting surface RP of the polygon mirror PM, that is, compared with the case where it is performed on each reflecting surface RP of the polygon mirror PM. Therefore, it is preferable to reduce the conveyance speed of the substrate FS by half.
  • the rotation speed and the oscillation frequency Fs of the polygon mirror PM of each scanning unit Un are increased twice.
  • the rotation speed of the polygon mirror PM when the scanning of the spot light SP (deflection of the beam LBn) is repeated for each continuous reflecting surface RP of the polygon mirror PM is 20,000 rpm, and the oscillation of the beam LB from the light source device 14 ′ is performed.
  • the oscillation frequency Fs of the beam LB from the device 14 ' is set to 400 MHz.
  • the control device 18 manages which scanning unit Un among the plurality of scanning units Un (U1 to U6) scans the spot light SP based on the origin signal SZ.
  • the origin sensor OPn of each scanning unit Un (U1 to U6) generates an origin signal SZ when each reflecting surface RP reaches a predetermined angular position. Determines that each scanning unit Un (U1 to U6) scans the spot light SP for each continuous reflection surface RP. Therefore, the beam LBn cannot be distributed to the other five scanning units Un until one scanning unit Un scans the spot light SP and then performs the next scanning.
  • FIG. 31 is a block diagram of the sub origin generating circuit CA for generating the sub origin signal ZP in which the origin signal SZ is thinned and the generation timing is delayed by the time Tpx
  • FIG. 32 is a diagram showing the sub origin generating circuit CA of FIG.
  • FIG. 6 is a diagram showing a time chart of a sub origin signal ZP generated by
  • the sub origin generation circuit CA includes a frequency divider 330 and a delay circuit 332.
  • the frequency divider 330 divides the frequency of the generation timing of the origin signal SZ by 1/2 and outputs it to the delay circuit 332 as the origin signal SZ ′.
  • the delay circuit 332 delays the sent origin signal SZ ′ by a time Tpx and outputs it as a sub origin signal ZP.
  • a plurality of sub origin generation circuits CA are provided corresponding to the origin sensors OPn of the respective scanning units Un (U1 to U6).
  • the sub origin generation circuit CA corresponding to the origin sensor OPn of the scanning unit Un may be represented by CAn. That is, the sub origin generation circuit CA corresponding to the origin sensor OP1 of the scanning unit U1 may be represented by CA1, and the sub origin generation circuits CA corresponding to the origin sensors OP2 to OP6 of the scanning units U2 to U6 may be represented by CA2 to CA6. . Further, the origin signal SZ output from the origin sensor OPn of the scanning unit Un may be represented by SZn.
  • the origin signal SZ output from the origin sensor OP1 of the scanning unit U1 may be represented by SZ1
  • the origin signals SZ output from the origin sensors OP2 to OP6 of the scanning units U2 to U6 may be represented by SZ2 to SZ6.
  • the origin signal SZ ′ and the sub origin signal ZP generated based on the origin signal SZn are represented by SZn ′ and ZPn. That is, the origin signal SZ ′ and the sub origin signal ZP generated based on the origin signal SZ1 are represented by SZ1 ′ and ZP1, and similarly, the origin signal SZ ′ and the sub origin signal generated based on the origin signals SZ2 to SZ6.
  • ZP may be represented by SZ2 ′ to SZ6 ′ and ZP2 to ZP6.
  • FIG. 33 is a block diagram showing an electrical configuration of the exposure apparatus EX
  • FIG. 34 is a time chart showing timings at which the origin signals SZ1 to SZ6, sub origin signals ZP1 to ZP6, and serial data DL1 to DL6 are output. It is.
  • the control device 18 of the exposure apparatus EX includes a rotation control unit 350, a beam switching control unit 352, a drawing data output control unit 354, and an exposure control unit 356.
  • the exposure apparatus EX also includes motor drive circuits Drm1 to Drm6 that drive the polygon drive unit RM including the motors of the respective scanning units Un (U1 to U6).
  • the rotation control unit 350 controls the rotation of the polygon mirror PM of each scanning unit Un (U1 to U6) by controlling the motor drive circuits Drm1 to Drm6.
  • the rotation control unit 350 controls the motor drive circuits Drm1 to Drm6, so that the rotation angle positions of the polygon mirrors PM of the plurality of scanning units Un (U1 to U6) have a predetermined phase relationship with each other.
  • the polygon mirror PM of the unit Un (U1 to U6) is rotated synchronously.
  • the rotation control unit 350 has a plurality of rotation units (phases) so that the rotation speeds (number of rotations) of the polygon mirrors PM of the plurality of scanning units U1 to U6 are the same and the phase of the rotation angle position is shifted by a certain angle.
  • the rotation of the polygon mirror PM of the scanning units Un (U1 to U6) is controlled.
  • reference numerals PD1 to PD6 in FIG. 33 represent control signals output from the rotation control unit 350 to the motor drive circuits Drm1 to Dr
  • the rotational speed Vp of the polygon mirror PM is set to 39,000 rpm (650 rps). Further, since the number of reflecting surfaces Np is set to 8, the scanning efficiency ( ⁇ / ⁇ ) is set to 1/3, and the reflecting surfaces RP for scanning the spot light SP are set every other surface, rotation between the six polygon mirrors PM is performed.
  • the phase difference of the angular position is set to the maximum scanning rotation angle range ⁇ , that is, 15 degrees.
  • the scanning of the spot light SP is performed in the order of U1 ⁇ U2 ⁇ ... ⁇ U6.
  • the rotation control unit 350 performs synchronous control so that the polygon mirror PM of each of the six scanning units U1 to U6 rotates at a constant speed with the phase of the rotation angle position shifted by 15 degrees.
  • the phase shift between the rotation angle positions of the scanning unit U1 and the scanning unit U4 is 45 degrees corresponding to the rotation angle of one surface. Therefore, the phases of the rotational angular positions of the scanning unit U1 and the scanning unit U4, that is, the generation timings of the origin signals SZ1, SZ4 may be aligned.
  • the rotational angular positions of the scanning unit U2 and the scanning unit U5 and the phase shifts of the rotational angular positions of the scanning unit U3 and the scanning unit U6 are both 45 degrees, so that each of the scanning units U2 and U5
  • the generation timings of the origin signals SZ2 and SZ5 and the generation timings of the origin signals SZ3 and SZ6 from each of the scanning unit U3 and the scanning unit U6 may be aligned on the time axis.
  • the rotation control unit 350 rotates the polygon mirror PM of the scanning unit U1 and the scanning unit U4, rotates the polygon mirror PM of the scanning unit U2 and the scanning unit U5, and polygons of the scanning unit U3 and the scanning unit U6.
  • the rotation of the polygon mirror PM of each scanning unit U1 to U6 is controlled via each motor drive circuit Drm1 to Drm6 so that each rotation of the mirror PM is in the first control state.
  • This first control state is a state in which the phase difference of the circulating pulse signal that is output each time the polygon mirror PM rotates once is 0 (zero).
  • the polygon mirror PM of the scanning unit U1 and the scanning unit U4 is set so that the phase difference between the circular pulse signals output each time the polygon mirror PM of the scanning unit U1 and the scanning unit U4 makes one rotation becomes 0 (zero). Control the rotation.
  • scanning is performed so that the phase difference of the circular pulse signal output each time the polygon mirror PM of the scanning unit U2 and the scanning unit U5 and the scanning unit U3 and the scanning unit U6 rotates once becomes 0 (zero).
  • the rotation of the polygon mirror PM of the unit U2 and the scanning unit U5, and the scanning unit U3 and the scanning unit U6 is controlled.
  • This circular pulse signal may be a signal that is output once every time the origin signal SZn of the scanning unit Un is output eight times by a frequency divider (not shown).
  • the circular pulse signal may be a signal output from an encoder (not shown) provided in the polygon driving unit RM of each scanning unit Un (U1 to U6).
  • a sensor for detecting the circulating pulse signal may be provided in the vicinity of the polygon mirror PM.
  • FIG. 34 it is assumed that a circular pulse signal is generated once every time the origin signal SZn of the scanning unit Un is output eight times, and a part of the origin signal SZn corresponding to the generation of the circular pulse signal is generated. Is represented by a dotted line.
  • Each origin signal SZ1 and each origin signal SZ4 are time periods unless the error of each angle ⁇ j (see FIG. 29) between adjacent reflection surfaces RP (for example, reflection surface RPa and reflection surface RPb) is considered.
  • the phases are all in agreement on the axis.
  • each origin signal SZ2 and each origin signal SZ5, and each origin signal SZ3 and each origin signal SZ6 must take into account the error of each angle ⁇ j formed between adjacent reflecting surfaces RP (see FIG. 29).
  • the phases are all in agreement on the time axis.
  • FIG. 34 in order to make the explanation easy to understand, it is assumed that there is no error in the angle ⁇ j formed between the adjacent reflecting surfaces RP.
  • the rotation control unit 350 maintains the first control state, and the phase of the rotation angle position of the polygon mirror PM of the scanning units U2 and U5 with respect to the rotation angle position of the polygon mirror PM of the scanning units U1 and U4.
  • the rotation of the polygon mirror PM of the scanning units U2 and U5 is controlled so that is deviated by 15 degrees.
  • the rotation control unit 350 maintains the first control state, and the phase of the rotation angle position of the polygon mirror PM of the scanning units U3 and U6 with respect to the rotation angle position of the polygon mirror PM of the scanning units U1 and U4.
  • the rotation of the scanning units U3 and U6 is controlled so that is shifted by 30 degrees.
  • the time for which the polygon mirror PM rotates by 15 degrees (the maximum scanning time of the beam LBn) is Ts.
  • the rotation control unit 350 scans so that the circular pulse signals obtained by the scanning units U2 and U5 are delayed by the time Ts with respect to the circular pulse signals obtained by the scanning units U1 and U4.
  • the rotation of the polygon mirror PM of the units U2 and U5 is controlled (see FIG. 34).
  • the rotation control unit 350 scans so that the circular pulse signals obtained by the scanning units U3 and U6 are delayed by the time 2 ⁇ Ts with respect to the circular pulse signals obtained by the scanning units U1 and U4.
  • the rotation of the polygon mirror PM of the units U3 and U6 is controlled (see FIG. 34).
  • the beam switching control unit 352 controls the selection optical element AOMn (AOM1 to AOM6) of the beam switching member 20, and the light source device from when one scanning unit Un starts scanning until the next scanning starts.
  • the beam LB from 14 ' is distributed to six scanning units Un (U1 to U6). Therefore, the beam switching control unit 352 is configured so that the scanning (deflection) of the beam LBn of the polygon mirror PM of each scanning unit Un (U1 to U6) is repeated for every other reflecting surface RP of the polygon mirror PM. Any one of the beams LB1 to LB6 generated from the beam LB by the selection optical elements AOM1 to AOM6 is incident on each scanning unit Un (U1 to U6) in a time division manner.
  • the beam switching control unit 352 generates the sub origin signal ZPn (ZP1 to ZP6) based on the origin signal SZn (SZ1 to SZ6), as shown in FIG. 31, and the sub origin generation circuit CAn (CA1). To CA6).
  • the secondary origin signal ZPn (ZP1 to ZP6) is generated by the secondary origin generation circuit CAn (CA1 to CA6), it corresponds to the scanning unit Un (U1 to U6) derived from the generation of the secondary origin signal ZPn (ZP1 to ZP6).
  • the selection optical elements AOMn (AOM1 to AOM6) are turned on for a certain time (on time Ton).
  • the selection optical element AOM1 corresponding to the scanning unit U1 derived from the generation of the sub origin signal ZP1 is turned on for a predetermined time (on time Ton).
  • the sub origin signal ZPn is generated based on the origin signal SZn output from the origin sensor OPn, and the frequency of the origin signal SZn is divided by half, that is, the origin signal SZn is thinned in half.
  • Tpx delayed by time Tpx.
  • This fixed time (on time Ton) is a period from the time when the sub origin signal ZPn is generated to the time when the sub origin signal ZPn is generated from the scanning unit Un that performs the next scan, that is, the polygon mirror PM is only 15 degrees.
  • the on-time Ton of the selection optical element AOMn is set longer than the time Ts, a period in which two of the selection optical elements AOMn are turned on at the same time occurs, and the scanning unit Un to perform the drawing operation with the spot light SP.
  • the beams LB1 to LB6 cannot be correctly introduced. Therefore, the on time Ton is set to Ton ⁇ Ts.
  • each origin signal SZ1 and each origin signal SZ4 are all on the time axis unless the error of the angle ⁇ j formed between the adjacent reflecting surfaces RP (for example, the reflecting surfaces RPa and RPb) is taken into consideration.
  • the sub-origin signal ZP1 and the sub-origin signal ZP4 are set to be out of phase by about a half cycle (see FIG. 34).
  • the phase difference between the sub origin signal ZP1 and the sub origin signal ZP4 is shifted by about a half cycle by the frequency divider 330 of the sub origin generation circuit CAn (CA1 to CA6). That is, the frequency divider 330 shifts the timing for thinning the origin signal SZ1 and the timing for thinning the origin signal SZ4 by approximately a half cycle.
  • the relationship between the sub origin signal ZP2 and the sub origin signal ZP5 is set by the frequency divider 330 so that the phases of the sub origin signal ZP2 and the sub origin signal ZP5 are shifted by about a half cycle (see FIG. 34).
  • the relationship between the sub origin signal ZP3 and the sub origin signal ZP6 is set by the frequency divider 330 so that the phases of the sub origin signal ZP3 and the sub origin signal ZP6 are shifted by about a half cycle (see FIG. 34). ).
  • the generation timings of the sub origin signals ZP1 to ZP6 generated for each of the scanning units U1 to U6 are shifted by time Ts.
  • the order of the scanning units Un that perform the scanning of the spot light SP is U1 ⁇ U2 ⁇ ... ⁇ U6, so that the secondary origin signal ZPn is also the secondary origin signal ZP1.
  • the beam switching control unit 352 controls the selection optical elements AOMn (AOM1 to AOM6) of the beam switching member 20 in accordance with the generated sub-origin signal ZPn (ZP1 to ZP6), so that U1 ⁇ U2 ⁇ .
  • each scanning unit Un (U1 to U6) is scanned so that the scanning (deflection) of the beam LBn by the polygon mirror PM of each scanning unit Un (U1 to U6) is repeated for every other reflecting surface RP of the polygon mirror PM. ) Can be switched in a time division manner.
  • the drawing data output control unit 354 sends serial data DLn for one column corresponding to the pattern of one drawing line SLn scanned with the spot light SP by the scanning unit Un as drawing bit string data Sdw to the drive circuit 206a of the light source device 14 ′. Output. Since the order of the scanning units Un that perform the scanning of the spot light SP is U1 ⁇ U2 ⁇ ... ⁇ U6, the drawing data output control unit 354 has the serial data DLn for one column as DL1 ⁇ DL2. The drawing bit string data Sdw repeated in the order of... ⁇ DL6 is output.
  • the drawing data output control unit 354 includes six generation circuits 360, 362, 364, 366, 368, and 370 corresponding to each of the scanning units U1 to U6, and an OR circuit GT8.
  • the generation circuits 360 to 370 have the same configuration.
  • the generation circuit 360 includes a memory unit BM1, a counter unit CN1, and a gate unit GT1
  • the generation circuit 362 includes the memory unit BM2.
  • the generation circuit 364 includes a memory unit BM3, a counter unit CN3, and a gate unit GT3.
  • the generation circuit 366 includes a memory unit BM4, a counter unit CN4, and a gate unit GT4.
  • the generation circuit 368 includes a memory unit BM5, a counter unit CN5, and a gate unit GT5.
  • the generation circuit 370 includes a memory unit BM6, a counter unit CN6, and a gate unit GT6.
  • the configuration of the generation circuits 360 to 370 may be the same as that of the generation circuits 301, 303, and 305 shown in FIG.
  • the memory units BM1 to BM6 are memories that store pattern data (bitmaps) corresponding to patterns to be drawn and exposed by the scanning units Un (U1 to U6).
  • the counter units CN1 to CN6 synchronize serial data DL1 to DL6 for one drawing line SLn to be drawn next among the pattern data stored in the memory units BM1 to BM6, one pixel at a time in synchronization with the clock signal CLK. This is a counter for output. As shown in FIG. 34, the counter units CN1 to CN6 output the single origin data DL1 to DL6 after the sub origin signals ZP1 to ZP6 are output from the sub origin generation circuits CA1 to CA6 of the beam switching control unit 352.
  • the serial data DL1 to DL6 output is shifted in the column direction by an address counter (not shown) or the like. That is, the columns read by the address counter (not shown) are shifted as the first column, the second column, the third column, and so on.
  • the shift is performed at the timing when the sub origin signal ZP2 corresponding to the scanning unit U2 to be scanned next is generated after the output of the serial data DL1. Is called.
  • the shift of the serial data DL2 of the pattern data stored in the memory unit BM2 is the timing at which the sub origin signal ZP3 corresponding to the scanning unit U3 that performs the next scanning is generated after the serial data DL2 has been output.
  • the serial data DL3 to DL6 of the pattern data stored in the memory units BM3 to BM6 are shifted to the scanning units U4 to U6 and U1 that perform scanning next after the serial data DL3 to DL6 are output. This is performed at the timing when the corresponding sub-origin signals ZP4 to ZP6 and ZP1 are generated.
  • the spot light SP is scanned in the order of U1 ⁇ U2 ⁇ U3 ⁇ ... ⁇ U6.
  • serial data DL1 to DL6 that are sequentially output are ORed with 6 inputs through the gate portions GT1 to GT6 that are opened during a predetermined time (on time Ton) after the sub origin signals ZP1 to ZP6 are applied.
  • the OR circuit GT8 outputs serial data DLn, which is repeatedly synthesized in the order of serial data DL1-> DL2-> DL3-> DL4-> DL5-> DL6-> DL1,...
  • drawing bit string data Sdw To the drive circuit 206a of the light source device 14 ′ as drawing bit string data Sdw.
  • each of the scanning units Un can perform drawing exposure of a pattern corresponding to the pattern data while simultaneously scanning the spot light SP.
  • pattern data is prepared for each scanning unit Un (U1 to U6), and scanning is performed to scan the spot light SP from the pattern data of each scanning unit Un (U1 to U6).
  • the serial data DL1 to DL6 are output according to the order of the unit Un.
  • one pattern data is prepared by combining the serial data DL1 to DL6 of the pattern data of each scanning unit Un (U1 to U6). May be. That is, one pattern data in which serial data DLn (DL1 to DL6) of each column of pattern data of each scanning unit Un (U1 to U6) is arranged in accordance with the order of the scanning units Un that scan the spot light SP. You may make it build.
  • serial data DLn of one pattern data is output in order from the first column in accordance with the sub origin signal ZPn (ZP1 to ZP6) based on the origin sensor OPn of each scanning unit Un (U1 to U6). Good.
  • the exposure control unit 356 shown in FIG. 33 controls the rotation control unit 350, the beam switching control unit 352, the drawing data output control unit 354, and the like.
  • the exposure control unit 356 analyzes the imaging signals ig (ig1 to ig4) captured by the alignment microscope AMm (AM1 to AM4), and detects the position of the alignment mark MKm (MK1 to MK4) on the substrate FS. Then, the exposure control unit 356 detects (determines) the drawing exposure start position of the exposure region W on the substrate FS based on the detected position of the alignment mark MKm (MK1 to MK4).
  • the exposure control unit 356 includes a counter circuit 356a, and the counter circuit 356a counts detection signals detected by the encoders EN1a to EN3a and EN1b to EN3b shown in FIG.
  • the exposure control unit 356 counts based on the encoders EN1a and EN1b when the drawing exposure start position is detected (mark detection position), and count values based on the encoders EN2a and EN2b (positions of odd-numbered drawing lines SLn). Based on the above, it is determined whether or not the drawing exposure start position of the substrate FS is located on the drawing lines SL1, SL3, SL5.
  • the exposure control unit 356 determines that the drawing exposure start position is located on the drawing lines SL1, SL3, and SL5
  • the exposure control unit 356 controls the drawing data output control unit 354 to scan the spot units SP with the scanning units U1, U3, and U5.
  • the rotation control unit 350 and the beam switching control unit 352 are controlled by the exposure control unit 356 based on the circulation pulse signal and the sub-origin signal ZPn (ZP1 to ZP6), for each scanning unit Un (U1 to U6). It is assumed that the rotation of the polygon mirror PM and the distribution of the beam LBn by the beam switching member 20 are controlled.
  • the exposure control unit 356 includes a count value (mark detection position) based on the encoders EN1a and EN1b when the drawing exposure start position is detected, and a count value (positions of even-numbered drawing lines) based on the encoders EN3a and EN3b. Based on the above, it is determined whether or not the drawing exposure start position of the substrate FS is located on the drawing lines SL2, SL4, and SL6. When the exposure control unit 356 determines that the drawing exposure start position is located on the drawing lines SL2, SL4, and SL6, the exposure control unit 356 controls the drawing data output control unit 354 to scan the spot units SP with the scanning units U2, U4, and U6. To start.
  • the drawing exposure in each of the drawing lines SL1, SL3, and SL5 precedes and the substrate FS is transported by a predetermined distance in accordance with the transport direction (+ X direction) of the substrate FS.
  • Drawing exposure is performed on each of the lines SL2, SL4, and SL6.
  • the polygon mirrors PM of the six scanning units U1 to U6 are rotationally controlled while maintaining a constant angle phase with each other, the sub-origin signals ZP1 to ZP6 are sequentially shifted by the time Ts as shown in FIG. It continues to occur with a phase difference. Therefore, the gate part GT2 in FIG.
  • the beam switching control unit 352 has a sub-origin generated based on the count values of the encoders EN1a and EN1b determined by the exposure control unit 356 or the count values of the encoders EN2a and EN2b.
  • each of the driver circuits DRVn (DRV1 to DRV6) (see FIG. 38) of the selection optical elements AOM1 to AOM6 corresponding to each of the scanning units U1 to U6 is also connected to the sub-origin signals ZP1 to ZP1 through the selection gate circuit. ZP6 should be given.
  • the drawing exposure of the exposure region W of the substrate FS is started.
  • the position first reaches the drawing lines SL1, SL3, and SL5, and then reaches the drawing lines SL2, SL4, and SL6 after a certain period of time. Therefore, until the drawing exposure start position reaches the drawing lines SL2, SL4, and SL6, pattern drawing exposure is performed only by the scanning units U1, U3, and U5.
  • the exposure control unit 356 outputs the drawing bit string data to be output to the drive circuit 206a of the light source device 14 ′.
  • the drawing exposure by the scanning units U2, U4, U6 is substantially canceled.
  • the columns of serial data DL2, DL4, DL6 output from the memory units BM2, BM4, BM6 are not shifted and remain in the first column.
  • the drawing exposure end position in the exposure area W first reaches the drawing lines SL1, SL3, and SL5, and then reaches the drawing lines SL2, SL4, and SL6 after a certain period of time. Therefore, after the drawing exposure end position reaches the drawing lines SL1, SL3, and SL5, the pattern drawing exposure is performed only by the scanning units U2, U4, and U6 until reaching the drawing lines SL2, SL4, and SL6. Become. Therefore, when the selection gate circuit for the sub origin signals ZP1 to ZP6 as described above is not provided in the beam switching control unit 352, the exposure control unit 356 outputs the drawing bit string data output to the drive circuit 206a of the light source device 14 ′.
  • the pixel data corresponding to the serial data DL1, DL3, DL5 are all set to low “(0)”, thereby substantially canceling the drawing exposure by the scanning units U1, U3, U5. If the selection gate circuit is not provided, the beams LB1, LB3, and LB5 are introduced into the scanning units U1, U3, and U5 in which the drawing exposure is canceled even when the drawing exposure is being canceled.
  • the selecting optical elements AOM1, AOM3, and AOM5 are repeatedly turned on for a predetermined time Ton selectively in response to the sub-origin signals ZP1, ZP3, and ZP5.
  • the beam is deflected (scanned) so that the polygon mirror PM is repeatedly deflected (scanned) for every other reflecting surface RP of the polygon mirror PM of the scanning unit Un (U1 to U6).
  • the switching control unit 352 controls the beam switching member 20 to cause each of the plurality of scanning units Un (U1 to U6) to perform one-dimensional scanning of the spot light SP in order. Accordingly, one beam LB can be distributed to a plurality of scanning units Un (U1 to U6) without shortening the length of the drawing lines SLn (SL1 to SL6) scanned with the spot light SP, which is effective.
  • the beam LB can be utilized. Further, since the shape of the polygon mirror PM (polygon shape) can be made close to a circle, it is possible to prevent the rotation speed of the polygon mirror PM from being lowered, and the polygon mirror PM can be rotated at high speed.
  • the beam switching member 20 is arranged in series along the traveling direction of the beam LB from the light source device 14 ', and selects any one of the n beams LBn diffracted and deflected by the beam LB, A selection optical element AOMn (AOM1 to AOM6) to be introduced into the corresponding scanning unit Un is included. Accordingly, any one of the scanning units Un (U1 to U6) to which the beam LBn should be incident can be easily selected, and the beam LB from the light source device 14 'is efficiently applied to one scanning unit Un to be subjected to drawing exposure. And a high exposure amount can be obtained.
  • the beam LB emitted from the light source device 14 ′ is amplitude-divided into six using a plurality of beam splitters, and each of the divided six beams LBn (LB1 to LB6) is serial data DL1 to DL6 of drawing data.
  • the attenuation of the beam intensity at the acoustooptic modulator for drawing is 20%
  • the intensity of the spot light SP in one scanning unit Un is about 9.3% when the intensity of the original beam LB is 100%.
  • the beam LB from the light source device 14 ′ is deflected by the optical element AOMn for selection and is incident on any one of the six scanning units Un as in the fourth embodiment
  • the attenuation of the beam intensity at the selection optical element AOMn is 20%
  • the intensity of the spot light SP in one scanning unit Un is about 56% of the intensity of the original beam LB.
  • the rotation control unit 350 controls the rotation of the polygon mirrors PM of the plurality of scanning units Un (U1 to U6) so that the rotation speeds are the same and the phase of the rotation angle position is shifted by a certain angle.
  • the one-dimensional scanning of the spot light SP by the plurality of other scanning units Un is sequentially performed during the period from the one-dimensional scanning of the spot light SP by one scanning unit Un until the next one-dimensional scanning is performed. It becomes possible.
  • one beam LB is distributed to six scanning units Un.
  • one beam LB from the light source device 14 ' is divided into nine scanning units Un (U1 to U9). You may distribute to.
  • the scanning efficiency ( ⁇ / ⁇ ) of the polygon mirror PM is 1/3
  • the beam LBn is distributed to the nine scanning units U1 to U9 while the polygon mirror PM rotates by the three reflecting surfaces RP. Therefore, the spot light SP is scanned every two reflecting surfaces RP. This allows the other eight scanning units Un to sequentially scan the spot light SP until the next spot light SP is scanned after the scanning of the spot light SP by one scanning unit Un. it can.
  • the polygon mirror PM can be rotated by three reflecting surfaces RP and one beam LB can be distributed to nine scanning units Un.
  • the frequency divider 330 of CAn divides the frequency of the generation timing of the origin signal SZn by 1/3.
  • the circulating pulse signals of the scanning units U1, U4, and U7 are synchronized (in phase on the time axis).
  • the circulating pulse signals of the scanning units U2, U5, U8 are synchronized, and the circulating pulse signals of the scanning units U3, U6, U9 are synchronized.
  • the circular pulse signals of the scanning units U2, U5, U8 are generated with a delay of time Ts from the circular pulse signals of the scanning units U1, U4, U7, and the circular pulse signals of the scanning units U3, U6, U9 are It occurs with a delay of 2 ⁇ time Ts with respect to the circulating pulse signals of the scanning units U1, U4, U7.
  • the generation timings of the sub origin signals ZP1, ZP4, ZP7 of the scanning units U1, U4, U7 are out of phase by 1/3 of one cycle.
  • the sub origin signals of the scanning units U2, U5, U8 The generation timings of ZP2, ZP5 and ZP8 and the generation timings of the sub origin signals ZP3, ZP6 and ZP9 of the scanning units U3, U6 and U9 are also shifted in phase by 1/3 of one cycle.
  • the time Ts is a time for the polygon mirror PM to rotate by the scanning rotation angle range ⁇ ′ of the polygon mirror PM that can scan the spot light SP.
  • the time Ts is an angle ⁇ at which the polygon mirror PM rotates by one reflecting surface RP.
  • a value obtained by multiplying the scanning efficiency is a scanning rotation angle range ⁇ ′.
  • the scanning efficiency of the polygon mirror PM is 1/3 and one beam LB is distributed to 12 scanning units Un (U1 to U12), 12 polygon mirrors PM are rotated while rotating by four reflecting surfaces RP. Since the beam LBn can be distributed to the scanning units U1 to U12, the spot light SP is scanned for every third reflecting surface RP. Further, when the scanning efficiency of the polygon mirror PM is 1/3, the polygon mirror PM rotates by four reflecting surfaces RP, and twelve optical elements for selection in which the beam LB from the light source device 14 'is arranged in series.
  • the beams LBn (LB1 to LB12) selectively deflected by AOMn (AOM1 to AOM12) can be incident on one corresponding scanning unit Un (U1 to U12).
  • the frequency divider 330 divides the frequency of the generation timing of the origin signal SZn by 1 ⁇ 4.
  • the circulation pulse signals of the scanning units U1, U4, U7, U10 are synchronized (in phase on the time axis).
  • the circulating pulse signals of the scanning units U2, U5, U8, U11 are synchronized, and the circulating pulse signals of the scanning units U3, U6, U9, U12 are synchronized.
  • the circular pulse signals of the scanning units U2, U5, U8, and U11 are generated by a time Ts later than the circular pulse signals of the scanning units U1, U4, U7, and U10, and the scanning units U3, U6, U9, and U12 are generated.
  • the round pulse signal is generated with a delay of 2 ⁇ time Ts with respect to the round pulse signals of the scanning units U1, U4, U7, and U10.
  • the generation timings of the sub origin signals ZP1, ZP4, ZP7, and ZP10 of the scanning units U1, U4, U7, and U10 are shifted by 1 ⁇ 4 of one cycle.
  • the scanning units U2, U5, and U8 , U11 sub origin signal ZP2, ZP5, ZP7, ZP11 generation timing, and scan unit U3, U6, U9, U12 sub origin signal ZP3, ZP6, ZP9, ZP12 generation timing are also 1/4 of one cycle. The phase is shifted by one.
  • the scanning efficiency of the polygon mirror PM of the scanning unit Un has been described as 1/3. However, the scanning efficiency may be 1/2 or 1/4. Good.
  • the scanning efficiency is 1 ⁇ 2
  • the beam LBn can be distributed to the two scanning units Un while the polygon mirror PM rotates by one reflecting surface RP, so that one beam LBn is divided into six scanning units Un.
  • the spot light SP is scanned for every two reflecting surfaces RP of the polygon mirror PM. That is, when the scanning efficiency of the polygon mirror PM is 1 ⁇ 2, the beam LBn can be distributed to the six scanning units Un while the polygon mirror PM rotates by the three reflecting surfaces RP.
  • the frequency divider 330 of CAn divides the frequency of the generation timing of the origin signal SZn by 1/3.
  • the circulating pulse signals of the scanning units U1, U3, U5 are synchronized.
  • the circulating pulse signals of the scanning units U2, U4, U6 are synchronized.
  • the circular pulse signals of the scanning units U2, U4, U6 are generated with a delay of time Ts from the circular pulse signals of the scanning units U1, U3, U5. Further, the generation timings of the sub origin signals ZP1, ZP3, ZP5 of the scanning units U1, U3, U5 are out of phase by 1/3 of one cycle, and the sub origin signals ZP2, ZP4 of the scanning units U2, U4, U6. The generation timing of ZP6 is also shifted in phase by 1/3 of one cycle.
  • the beam LBn can be distributed to the four scanning units Un while the polygon mirror PM rotates by one reflecting surface RP.
  • the spot light SP is scanned for every other reflecting surface RP of the polygon mirror PM. That is, when the scanning efficiency of the polygon mirror PM is 1/4, the beam LBn can be distributed to the eight scanning units Un while the polygon mirror PM rotates by two reflecting surfaces RP. This allows the other seven scanning units Un to sequentially scan the spot light SP until the next spot light SP is scanned after the scanning of the spot light SP by one scanning unit Un. it can.
  • the polygon mirror PM rotates by two reflecting surfaces RP, and one beam LB can be distributed to eight scanning units Un.
  • the frequency divider 330 of CAn divides the frequency of the generation timing of the origin signal SZn by half.
  • the circulation pulse signals of the scanning units U1 and U5 are synchronized, and the circulation pulse signals of the scanning units U2 and U6 are synchronized.
  • the circulation pulse signals of the scanning units U3 and U7 are synchronized, and the circulation pulse signals of the scanning units U4 and U8 are synchronized.
  • the circular pulse signals of the scanning units U2 and U6 are generated with a delay of time Ts from the circular pulse signals of the scanning units U1 and U5.
  • the circular pulse signals of the scanning units U3 and U7 are generated with a delay of 2 ⁇ time Ts from the circular pulse signals of the scanning units U1 and U5, and the circular pulse signals of the scanning units U4 and U8 are generated by the scanning units U1 and U5. It occurs with a delay of 3 ⁇ time Ts with respect to the circulating pulse signal.
  • the generation timings of the sub origin signals ZP1 and ZP5 of the scanning units U1 and U5 are shifted by 1/2 of one cycle, and the generation timings of the sub origin signals ZP2 and ZP6 of the scanning units U2 and U6 are also 1
  • the phase is shifted by half of the period.
  • the generation timings of the sub-origin signals ZP3 and ZP7 of the scanning units U3 and U7 and the sub-origin signals ZP4 and ZP8 of the scanning units U4 and U8 are also shifted in phase by 1/2 of one period.
  • the polygon mirror PM has an octagonal shape (eight reflecting surfaces RP). However, it may be a hexagonal or heptagonal shape, or more than a hexagonal shape. It may be. This also changes the scanning efficiency of the polygon mirror PM. Generally, as the number of reflection surfaces Np of the polygon mirror PM having a polygonal shape increases, the scanning efficiency of one reflection surface RP of the polygon mirror PM increases, and as the number of reflection surfaces Np decreases, the polygon mirror PM increases. Scanning efficiency is reduced.
  • a polygon mirror PM having an optimal number of reflection surfaces Np can be selected in accordance with the incident angle of view.
  • the polygon mirror PM of 24 faces whose reflection surface RP changes by half of the rotation of 15 degrees, or for 30 degrees. It is also possible to use a 12-surface polygon mirror PM whose reflection surface RP changes with rotation of.
  • the scanning efficiency ( ⁇ / ⁇ ) of the 24-surface polygon mirror PM is larger than 1/2 and smaller than 1.0, so the 24-surface polygons of each of the 6 scanning units U1 to U6.
  • the mirror PM is controlled to scan the spot light SP by skipping five surfaces. Further, since the scanning efficiency of the 12-sided polygon mirror PM is greater than 1/3 and less than 1/2, the 12-sided polygon mirror PM of each of the 6 scanning units U1 to U6 is skipped by 2 sides.
  • the spot light SP is controlled to be scanned.
  • the scanning (deflection) of the spot light SP is always repeated for every other reflection surface RP of the polygon mirror PM.
  • the scanning (deflection) of the spot light SP is set to the first state that is repeated for each continuous reflection surface RP of the polygon mirror PM, or the reflection surface RP of the polygon mirror PM is changed. It was made possible to arbitrarily switch between the second state that is repeated every other surface.
  • the beam LB is distributed to the three scanning units Un in a time division or from the six scanning units Un in a time division until the scanning unit U1 starts the scanning of the spot light SP and starts the next scanning. Can be switched.
  • the scanning efficiency of the polygon mirror PM is 1/3, when the scanning of the spot light SP is repeated for each continuous reflecting surface RP of the polygon mirror PM, for example, the next scanning is performed after the scanning unit U1 scans the spot light SP.
  • the beam LB can be distributed only to two scanning units Un other than the scanning unit U1. Accordingly, two beams LB are prepared, the first beam LB is distributed to the three scanning units Un in a time division manner, and the second beam LB is distributed to the remaining three scanning units Un in a time division manner. Therefore, the scanning of the spot light SP is performed in parallel by the two scanning units Un.
  • Two light beams LB may be generated by providing two light source devices 14 ', or two beams LB may be generated by dividing the beam LB from one light source device 14' by a beam splitter or the like. Good.
  • the exposure apparatus EX according to the fifth embodiment shown in FIGS. 36 to 40 includes two light source devices 14 ′ (14A ′ and 14B ′) (see FIG. 38). Note that in the fifth embodiment, identical symbols are assigned to configurations similar to those in the fourth embodiment and only different parts are described.
  • FIG. 36 is a configuration diagram of a beam switching member (beam delivery unit) 20A according to the fifth embodiment. Similar to the beam switching member 20 of FIG. 26, the beam switching member 20A includes a plurality of selection optical elements AOMn (AOM1 to AOM6), a plurality of condenser lenses CD1 to CD6, a plurality of reflection mirrors M1 to M12, and a plurality of mirrors IM1. To IM6 and a plurality of collimating lenses CL1 to CL6, and in addition, reflecting mirrors M13 and M14 and absorbers TR1 and TR2. The absorber TR1 corresponds to the absorber TR of FIG. 26 shown in the fourth embodiment, and absorbs the beam LB reflected by the reflection mirror M12.
  • the selection optical elements AOM1 to AOM3 constitute an optical element module (first optical element module) OM1
  • the selection optical elements AOM4 to AOM6 constitute an optical element module (second optical element module) OM2.
  • the selection optical elements AOM1 to AOM3 of the first optical element module OM1 are arranged in series along the traveling direction of the beam LB as described in the fourth embodiment.
  • the selection optical elements AOM4 to AOM6 of the second optical element module OM2 are also arranged in series along the traveling direction of the beam LB.
  • the scanning units U1 to U3 corresponding to the selection optical elements AOM1 to AOM3 of the first optical element module OM1 are defined as the first scanning module.
  • the scanning units U4 to U6 corresponding to the selection optical elements AOM4 to AOM6 of the second optical element module OM2 are defined as the second scanning module.
  • the scanning units U1 to U3 of the first scanning module and the scanning units U4 to U6 of the second scanning module are arranged in a predetermined arrangement relationship as described in the fourth embodiment.
  • the reflection mirrors M6, M13, and M14 are in a first arrangement state in which the first optical element module OM1 and the second optical element module OM2 are arranged in parallel with respect to the traveling direction of the beam LB.
  • an arrangement switching member (movable member) SWE for switching to a second arrangement state in which the first optical element module OM1 and the second optical element module OM2 are arranged in series.
  • the arrangement switching member SWE includes a slide member SE that supports the reflection mirrors M6, M13, and M14, and the slide member SE is movable in the X direction with respect to the support member IUB.
  • the movement of the slide member SE (placement switching member SWE) in the X direction is performed by an actuator AC (see FIG. 38).
  • the actuator AC is driven by the control of the drive control unit 352a (see FIG. 38) of the beam switching control unit 352.
  • the beams LB from the two light source devices 14 '(14A', 14B ') are incident in parallel on each of the first optical element module OM1 and the second optical element module OM2.
  • the beam LB from one light source device 14 ′ (14A ′) enters the first optical element module OM1 and the second optical element module OM2.
  • the beam LB transmitted through the first optical element module OM1 is incident on the second optical element module OM2.
  • FIG. 36 shows a state in which the first optical element module OM1 and the second optical element module OM2 are in the second arrangement state arranged in series by the arrangement switching member SWE.
  • the first optical element module OM1 and the second optical element module OM2 arranged in series each select optical element AOMn (AOM1 to AOM6).
  • One scanning unit Un on which any one deflected beam LBn is incident can be selected from the scanning module and the second scanning modules (U1 to U6). Note that the position of the arrangement switching member SWE in FIG. 36 is referred to as a second position.
  • the beam LB incident on the first optical element module OM1 (AOM1 to AOM3) in the first arrangement state is referred to as a beam LBa from the first light source device 14A ′, and in the first arrangement state.
  • a beam incident on the second optical element module OM2 (AOM4 to AOM6) is referred to as a beam LBb from the second light source device 14B ′.
  • FIG. 37 is a diagram illustrating the optical paths of the beams LBa and LBb when the position of the arrangement switching member SWE is the first position.
  • the beam LBa is incident on the first optical element module OM1
  • the beam LBb is incident on the second optical element module OM2.
  • the beam LB incident on the first optical element module OM1 is represented by LBa
  • the beam LB incident on the second optical element module OM2 is denoted by LBb.
  • the position of the reflection mirror M6 shifts in the ⁇ X direction, so that the beam LBa reflected by the reflection mirror M6 is absorbed not by the reflection mirror M7. Incident on the body TR2. Accordingly, the beam LBa from the first light source device 14A ′ incident on the first optical element module OM1 is incident only on the first optical element module OM1 (selection optical elements AOM1 to AOM3), and the second optical element module OM1. It does not enter the element module OM2. That is, the beam LBa can pass through only the selection optical elements AOM1 to AOM3.
  • the beam LBb emitted from the second light source device 14B ′ and traveling in the + Y direction toward the reflection mirror M13 is reflected on the reflection mirror M7 by the reflection mirrors M13 and M14. Led. Therefore, the beam LBb can pass only through the second optical element module OM2 (selection optical elements AOM4 to AOM6).
  • the first optical element module OM1 is provided with a beam to one of the three scanning units U1 to U3 constituting the first scanning module by three selection optical elements AOM1 to AOM3 arranged in series. Any one of the beams LB1 to LB3 deflected from LBa can be made incident.
  • the second optical element module OM2 is configured such that the three selection optical elements AOM4 to AOM6 arranged in series give one of the three scanning units U4 to U6 constituting the second scanning module a beam. Any one of the beams LB4 to LB6 deflected from the LBb can be made incident.
  • the first scanning module (U1 to U3) and the second scanning are performed by the first optical element module OM1 (AOM1 to AOM3) and the second optical element module OM2 (AOM4 to AOM6) arranged in parallel.
  • One scanning unit Un on which the beam LB is incident can be selected from the modules (U4 to U6).
  • the exposure operation by scanning along the drawing line SLn of the spot light SP is performed in parallel by any one scanning unit Un of the first scanning module and any one scanning unit Un of the second scanning module. Done.
  • the beam switching control unit 352 controls the actuator AC in the first state (first drawing mode) in which the scanning (deflection) of the spot light SP is repeated for each continuous reflecting surface RP of the polygon mirror PM. Then, the arrangement switching member SWE is arranged at the first position. Further, the beam switching control unit 352 controls the actuator AC to control the arrangement switching member in the second state (second drawing mode) repeated for every other reflection surface RP of the polygon mirror PM. The SWE is placed at the second position.
  • FIG. 38 is a diagram illustrating a configuration of the beam switching control unit 352 according to the fifth embodiment.
  • the optical elements AOM1 to AOM6 for selection and the light source devices 14 ′ (14A ′, 14B ′) to be controlled by the beam switching control unit 352 are also illustrated.
  • the light source device 14 ′ that makes the beam LBa incident from the first optical element module OM1 is represented by 14A ′
  • the light source device 14 ′ that makes the beam LBb directly incident only on the second optical element module OM2 is represented by 14B ′.
  • the beam LBa (LB) from the light source device 14A ′ is in the order of AOM1, AOM2, AOM3,..., AOM6.
  • the beam LBa that can pass (transmit) through the selection optical element AOMn and enters the selection optical element AOM6 is incident on the absorber TR1.
  • the arrangement switching member SWE is moved to the first position, the beam LBa from the light source device 14A ′ can pass through the selection optical element AOMn in the order of AOM1, AOM2, and AOM3, and passes through the selection optical element AOM3.
  • the passed beam LBa is incident on the absorber TR2.
  • the arrangement switching member SWE in FIG. 38 is a conceptual diagram, and is different from the actual configuration of the arrangement switching member SWE shown in FIGS.
  • the arrangement switching member SWE is in the second position, that is, in the second arrangement state in which the first optical element module OM1 and the second optical element module OM2 are arranged in series. This shows a case where the selection optical element AOM5 is in an ON state.
  • the beam switching control unit 352 includes a driver circuit DRVn (DRV1 to DRV6) that drives each of the selection optical elements AOM1 to AOM6 with an ultrasonic (high frequency) signal, and an origin sensor OPn of each scanning unit Un (U1 to U6).
  • the driver circuit DRVn receives from the exposure control unit 356 information on the on-time Ton for turning on the selection optical elements AOM1 to AOM6 for a predetermined time after receiving the sub-origin signal ZPn (ZP1 to ZP6). Sent.
  • the driver circuit DRV1 turns on the optical element for selection AOM1 for the on time Ton.
  • the driver circuits DRV2 to DRV6 turn on the selection optical elements AOM2 to AOM6 for the on time Ton.
  • the exposure control unit 356 changes the length of the on-time Ton accordingly.
  • the driver circuits DRVn (DRV1 to DRV6) are similarly provided in the beam switching control unit 352 of FIG. 33 in the fourth embodiment.
  • the sub origin generation circuit CAan (CAa1 to CAa6) includes a logic circuit LCC and a delay circuit 332.
  • the origin signal SZn (SZ1 to SZ6) from the origin sensor OPn of each scanning unit Un (U1 to U6) is input to the logic circuit LCC of the sub origin generation circuit CAan (CAa1 to CAa6). That is, the origin signal SZ1 is input to the logic circuit LCC of the sub origin generation circuit CAa1, and similarly, the origin signals SZ2 to SZ6 are input to the logic circuits LCC of the sub origin generation circuits CAa2 to CAa6. Further, the status signal STS is input to the logic circuit LCC of each of the sub origin generation circuits CAan (CAa1 to CAa6).
  • This status signal (logical value) STS is set to “1” in the case of the first state that is repeated for each continuous reflection surface RP of the polygon mirror PM, and is set every other reflection surface RP of the polygon mirror PM. In the case of the second state to be repeated, “0” is set.
  • the status signal STS is sent from the exposure control unit 356.
  • Each logic circuit LCC generates an origin signal SZn ′ (SZ1 ′ to SZ6 ′) based on the input origin signal SZn (SZ1 to SZ6) and outputs it to each delay circuit 332.
  • Each delay circuit 332 delays the input origin signal SZn ′ (SZ1 ′ to SZ6 ′) by a time Tpx and outputs the sub origin signal ZPn (ZP1 to ZP6).
  • FIG. 39 is a diagram showing a configuration of a logic circuit LCC that inputs an origin signal SZn (SZ1 to SZ6) and a status signal STS.
  • the logic circuit LCC includes a two-input OR gate LC1, a two-input AND gate LC2, and a one-shot pulse generator LC3.
  • the status signal STS is applied as one input signal of the OR gate LC1.
  • the output signal (logical value) of the OR gate LC1 is applied as one input signal of the AND gate LC2, and the origin signal SZn is applied as the other input signal of the AND gate LC2.
  • the output signal (logical value) of the AND gate LC2 is input to the delay circuit 332 as the origin signal SZn ′.
  • the one-shot pulse generator LC3 normally outputs a signal SDo having a logical value “1”, but when the origin signal SZn ′ (SZ1 ′ to SZ6 ′) is generated, the signal SDo having a logical value “0” for a certain time Tdp. Is output. That is, when the origin signal SZn ′ (SZ1 ′ to SZ6 ′) is generated, the one-shot pulse generator LC3 inverts the logical value of the signal SDo for a certain time Tdp.
  • the time Tdp is set to a relationship of 2 ⁇ Tpx> Tdp> Tpx, and is preferably set to Tdp ⁇ 1.5 ⁇ Tpx.
  • FIG. 40 is a timing chart for explaining the operation of the logic circuit LCC of FIG.
  • the left half of FIG. 40 shows the case of the first state in which the scanning of the spot light SP by each scanning unit Un (U1 to U6) is performed for each continuous reflection surface RP without skipping the surface, and the right half is In the second state, the scanning of the spot light SP by each of the scanning units Un (U1 to U6) is performed by skipping one reflection surface RP.
  • FIG. 40 for easy understanding, there is no error in the angle ⁇ j formed between adjacent reflecting surfaces RP (for example, the reflecting surfaces RPa and RPb) of the polygon mirror PM, and the origin signal SZn has a time Tpx. It is assumed that it occurs exactly at intervals.
  • the output signal of the OR gate LC1 is related to the state of the signal SDo. It is always “1”. Therefore, the output signal (origin signal SZn ′) output from the AND gate LC2 is output at the same timing as the origin signal SZn. That is, in the first state, the origin signal SZn and the origin signal SZn ′ can be regarded as the same.
  • the time interval Tpx of the origin signal SZn ′ applied to the one-shot pulse generator LC3 is smaller than the time Tpd. Therefore, the signal SDo from the one-shot pulse generator LC3 remains “0”. Even when there is an error in the angle ⁇ j formed between the reflecting surfaces RP of the polygon mirror PM, the time interval of the origin signal SZn ′ is still smaller than the time Tpd.
  • the status signal STS is switched to “0” when the spot light SP is scanned in the second state where one surface of the reflecting surface RP is skipped. Therefore, the output signal of the OR gate LC1 becomes “1” only when the signal SDo is “1”. In a state where the signal SDo is “1” (in this case, the output signal of the OR gate LC1 is also “1”), an origin signal SZn (for convenience, this origin signal SZn is referred to as the first origin signal SZn) is applied. In response to this, the AND gate LC2 also outputs the origin signal SZn ′. However, when the origin signal SZn ′ is generated, the signal SDo from the one-shot pulse generator LC3 changes to “0” for a time Tpd.
  • the two inputs of the OR gate LC1 both become “0” signals, and the output signal of the OR gate LC1 remains “0”.
  • the output signal of the AND gate LC2 also remains “0”. Therefore, even if the second origin signal SZn is applied to the AND gate LC2 before the time Tpd elapses, the AND gate LC2 does not output the origin signal SZn ′.
  • the signal SDo from the one-shot pulse generator LC3 is inverted to “1”, so that the third applied after the time Tpd elapses as in the case of the first origin signal SZn.
  • the origin signal SZn ′ corresponding to the origin signal SZn is output from the AND gate LC2.
  • the logic circuit LCC converts the origin signal SZn repeatedly generated every time Tpx into an origin signal SZn ′ repeatedly generated every 2 ⁇ time Tpx. From another viewpoint, the logic circuit LCC generates the origin signal SZn ′ by thinning out every other pulse of the origin signal SZn that is repeatedly generated every time Tpx, that is, the generation timing of the origin signal SZn.
  • the frequency is divided by half.
  • the logic circuit LCC of the sub origin generation circuit CAan may be replaced with the frequency divider 330 (FIG. 31) of the sub origin generation circuit CAn described in the fourth embodiment.
  • the frequency divider 330 divides the origin signal SZn by 1/2 in the second state, and does not divide the origin signal SZn in the first state. What should I do?
  • the sub origin generation circuit CAn of the fourth embodiment may be replaced with the sub origin generation circuit CAan of the fifth embodiment.
  • the origin signal SZ1 ′ output from the logic circuit LCC of the sub origin generation circuit CAa1 and the origin signal SZ4 ′ output from the logic circuit LCC of the sub origin generation circuit CAa4 are half a cycle. Out of phase.
  • the spot light SP is generated for each continuous reflection surface RP of the polygon mirror PM only by inverting the value of the status signal STS input to the logic circuit LCC of each of the sub origin generation circuits CAa1 to CAa6 of the beam switching control unit 352. Switching between the first state in which the drawing exposure by scanning is repeated or the second state in which the drawing exposure by scanning of the spot light SP is repeated for every other reflection surface RP of the polygon mirror PM. Can do.
  • each scanning unit Un (U1 to U6) is set such that the origin signals SZn (SZ1 to SZ6) output from the origin sensor OPn of each scanning unit Un (U1 to U6) have the relationship shown in FIG.
  • the rotation of the polygon mirror PM is controlled. Therefore, in the first state where the spot light SP is scanned for each reflection surface RP without skipping the surface, the scanning units U1 to U3 scan the spot light SP in the order of U1 ⁇ U2 ⁇ U3.
  • the scanning units U4 to U6 can repeatedly scan the spot light SP in the order of U4 ⁇ U5 ⁇ U6.
  • the time Tpd set in the one-shot pulse generator LC3 can be changed according to information on the rotational speed of the polygon mirror PM from the exposure control unit 356. Further, even when the spot light SP is scanned not only by skipping one surface but by skipping two surfaces, the time Tpd is (n + 1) ⁇ Tpx> Tdp> n ⁇ Tpx as long as the configuration as shown in FIG. You can respond by simply setting the relationship. Note that n represents the number of reflecting surfaces RP to be skipped. For example, when n is 2, it means that the spot light SP is scanned every two reflection surfaces RP, and when n is 3, the spot light SP is scanned every three reflection surfaces RP. Means to be done.
  • the drawing data output control unit 354 drives the drive circuit 206a of the light source devices 14A ′ and 14B ′.
  • the output control of the drawing bit string data Sdw will be briefly described.
  • the spot light SP is scanned in parallel by the first scanning module (scanning units U1 to U3) and the second scanning module (scanning units U4 to U6). Therefore, the drawing data output control unit 354 supplies serial data DL1 to DL3 corresponding to each of the scanning units U1 to U3 to the drive circuit 206a of the light source device 14A ′ that emits the beam LBa incident on the first scanning module.
  • Serial data corresponding to each of the scanning units U4 to U6 is output to the driving circuit 206a of the light source device 14B ′ which outputs the drawing bit string data Sdw synthesized in time series and emits the beam LBb incident on the second scanning module.
  • the drawing bit string data Sdw obtained by synthesizing DL4 to DL6 in time series is output.
  • the drawing data output control unit 354 shown in FIG. 35 can be used as it is regardless of whether the status signal STS is “1” or “0”.
  • the sub origin signal ZP2 is generated after the time Ts after the generation of the sub origin signal ZP1, and further after the time Ts.
  • a secondary origin signal ZP3 is generated. Therefore, the counter units CN1 to CN3 repeatedly output the serial data DL1 to DL3 in the order of DL1 ⁇ DL2 ⁇ DL3.
  • the serial data DL1 to DL3 sequentially output through the gate portions GT1 to GT3 opened during a predetermined time (on time Ton) after the sub origin signals ZP1 to ZP3 are applied are first drawn bit string data Sdw. Is input to the drive circuit 206a of the light source device 14A ′.
  • the sub origin signal ZP5 is generated after the time Ts after the generation of the sub origin signal ZP4.
  • Sub time origin signal ZP6 is generated after time Ts. Therefore, the counter units CN4 to CN6 repeatedly output the serial data DL4 to DL6 in the order of DL4 ⁇ DL5 ⁇ DL6.
  • serial data DL4 to DL6 that are sequentially output through the gate portions GT4 to GT6 that are opened during a predetermined time (on time Ton) after the sub-origin signals ZP4 to ZP6 are applied are second bit data as drawing bit string data Sdw. Is input to the drive circuit 206a of the light source device 14B ′.
  • the serial data DL1 is shifted in the column direction at the timing when the sub-origin signal ZP2 corresponding to the scanning unit U2 to be scanned next is generated after the serial data DL1 has been output.
  • the serial data DL2 is shifted in the column direction at the timing when the sub-origin signal ZP3 corresponding to the scanning unit U3 that performs the next scanning is generated after the serial data DL2 is output.
  • the serial data DL3 is shifted in the column direction at the timing when the sub-origin signal ZP1 corresponding to the scanning unit U1 to be scanned next is generated after the serial data DL3 has been output.
  • the serial data DL4 is shifted in the column direction at the timing when the sub-origin signal ZP5 corresponding to the scanning unit U5 that performs the next scanning is generated after the serial data DL4 is output.
  • the serial data DL5 is shifted in the column direction at the timing when the sub-origin signal ZP6 corresponding to the scanning unit U6 that performs the next scanning is generated after the serial data DL5 is output.
  • the serial data DL6 is shifted in the column direction at the timing when the sub-origin signal ZP4 corresponding to the scanning unit U4 that performs the next scanning is generated after the serial data DL6 is output.
  • the output control of the drawing bit string data Sdw in the second state is the same as that in the fourth embodiment, and a description thereof will be omitted.
  • the output control of the drawing bit string data Sdw in the first state is the same as the control principle of the first to third embodiments, and only the order of the serial data DLn to be output is different. That is, depending on whether serial data DLn is output in the order of DL1-> DL3-> DL5, DL2-> DL4-> DL6, or serial data DLn is output in the order of DL1-> DL2-> DL3, DL4-> DL5-> DL6, respectively. is there.
  • each scanning unit Un is compared with the first state performed for each reflection surface RP without skipping the surface.
  • the scanning start interval of the spot light SP of (U1 to U6) is long.
  • the scanning start interval of the spot light SP of each scanning unit Un (U1 to U6) is doubled compared to the case where the surface skip is not performed.
  • the reflection surface RP is skipped by two surfaces, the scanning start interval of the spot light SP is tripled compared to when the reflection surface RP is not skipped. Therefore, if the rotation speed of the polygon mirror PM and the transport speed of the substrate FS are the same in the first state and the second state, the exposure results differ in the first state and the second state. End up.
  • the exposure control unit 356 may have a control mode for making the same state. For example, when the scanning start interval of the spot light SP in the first state and the scanning start interval of the spot light SP in the second state are 1: 2, the exposure control unit 356 is in the first state.
  • the rotation controller 350 is controlled so that the ratio of the rotation speed of the polygon mirror PM at the time of the rotation speed of the polygon mirror PM at the time of the second state is 1: 2.
  • the rotational speed of the polygon mirror PM in the first state is set to 20,000 rpm
  • the rotational speed of the polygon mirror PM in the second state is set to 40,000 rpm
  • the light emission frequency Fs of the beam LB (LBa, LBb) of the light source device 14 ′ (14A ′, 14B ′) is, for example, 200 MHz in the first state, and is 400 MHz in the second state. Set. Thereby, the generation timing interval of the sub origin signal ZPn in the first state and the generation timing interval of the sub origin signal ZPn in the second state can be made substantially the same.
  • An exposure control unit controls a control mode for controlling the rotational speeds of the driving rollers R1 to R3 and the rotary drum DR so that the ratio of the transport speed of the FS and the transport speed of the substrate FS in the second state is 2: 1. 356 may be provided.
  • the control mode scanning correction mode
  • Fs frequency of the clock signal LTC
  • transport correction mode for correcting the transport speed of the substrate FS.
  • the interval in the X direction of the drawing lines SLn (SL1 to SL6) on the substrate FS in the first state and the drawing lines SLn (SL1 to SL6) on the substrate FS in the second state can be the same distance (for example, 1.5 ⁇ m).
  • the pattern data (bitmap) stored in each of the memory units BM1 to BM6 in the drawing data output control unit 354 in the first state and the second state is used without any correction. be able to.
  • the pattern drawn on the substrate FS in the first state is equivalent to the pattern drawn on the substrate FS in the second state.
  • the rotation speed of the polygon mirror PM is 20,000 rpm
  • the beam LB of the light source device 14 ′ 14A ′, 14B ′
  • the emission frequency Fs is 200 MHz and the transport speed of the substrate FS is 5 mm / second
  • the transport speed of the substrate FS is halved.
  • the number of scanning units Un that distribute the beams LBa and LBb may be arbitrarily changed. Further, the scanning efficiency of the polygon mirror PM may be arbitrarily changed. In the fifth embodiment, since the scanning efficiency of the polygon mirror PM is 1/3 and the number of scanning units Un is six, the six selection optical elements AOMn (AOM1 to AOM6) are divided into two optical elements. The modules are divided into modules OM1 and OM2, and the corresponding six scanning units Un (U1 to U6) are divided into two scanning modules.
  • the Q selection optical elements AOMn are converted into Q / M optical element modules OM1 and OM2.
  • Q scanning units Un may be divided into Q / M scanning modules.
  • the number of optical elements AOMn for selection included in each of the optical element modules OM1, OM2,... Is equal, and the number of scanning units Un included in each of the Q / M scanning modules is also equal. It is preferable to do this.
  • the Q / M is preferably a positive number. That is, Q is preferably a multiple of M.
  • the six selection optical elements AOMn are equal to the three optical element modules OM1, OM2, and OM3.
  • the six scanning units Un may be divided equally into three scanning modules.
  • three optical element modules OM1, OM2, and OM3 are arranged in parallel, and beams LB from the three light source devices 14 'are provided in each of the three optical element modules OM1, OM2, and OM3.
  • LBa, LBb, and LBc are incident in parallel.
  • three optical element modules OM1, OM2, and OM3 are arranged in series, and one light source device 14 ' Beam LB may be incident so that it passes serially through the three optical element modules OM1, OM2, and OM3.
  • the deflection (scanning) of the beam LBn (spot light SP) by the polygon mirror PM of the scanning unit Un is repeated for each continuous reflection surface RP of the polygon mirror PM. So that the beam is switched to one of the state (first drawing mode) and the second state (second drawing mode) repeated for every other reflecting surface RP of the polygon mirror PM.
  • the switching control unit 352 controlled the beam switching member 20A to sequentially perform the one-dimensional scanning of the spot light SP by each of the plurality of scanning units Un.
  • the number of scanning units Un according to the reciprocal of the scanning efficiency is grouped as one scanning module, Using a plurality of the grouped scanning modules, one scanning unit Un of each scanning module performs one-dimensional scanning of the spot light SP. Thereby, the same number of drawing lines SLn as the number of scanning modules among the plurality of drawing lines SLn can be simultaneously scanned with the spot light SP.
  • the beam scanning is controlled for every other reflecting surface RP of the polygon mirror PM, it corresponds to the reciprocal of the scanning efficiency ( ⁇ / ⁇ ) of the polygon mirror PM. Even if there are a plurality of scanning units Un larger than the number, all of the plurality of scanning units Un can scan the spot light SP along the drawing line SLn while effectively using the beam LB.
  • the beams LBa and LBb from the light source devices 14A ′ and 14B ′ are incident on the two grouped scanning modules in parallel.
  • Each of the optical elements AOM1 to AOM6 for selection is turned on / off so that the beams LB1 to LB6 are incident on the corresponding scanning units U1 to U6 in a time division manner by the beam switching control unit 352 in units of grouped scanning modules. Switched off state.
  • the arrangement switching member SWE provided in the beam switching member 20A transmits the beam LBa from the first light source device 14A ′ to each of the three scanning units U1 to U3 among the six scanning units U1 to U6. Three selections are made along the optical path of the beam LBa so that the beam LBb is distributed as LB3 and the beam LBb from the second light source device 14B ′ is distributed to each of the remaining three scanning units U4 to U6 as beams LB4 to LB6.
  • the first arrangement state in which the optical elements AOM1 to AOM3 are connected in series and the optical elements AOM4 to AOM6 for selection are connected in series along the optical path of the beam LBb, and the beam LBa from one light source device 14A ′, Along the optical path of the beam LBa so as to be distributed to each of the six scanning units U1 to U6 as beams LB1 to LB6.
  • Six selected optical elements AOM1 ⁇ AOM6 is for switching a second arrangement state linked in series.
  • each of the scanning units U1 to U6 sets the spot light for each continuous reflection surface RP of the polygon mirror PM by setting the first arrangement state by the arrangement switching member SWE.
  • the scanning by the SP can be repeated, and two of the six scanning units U1 to U6 can perform the scanning by the spot light SP almost simultaneously.
  • the beam scanning is performed for each reflection surface RP of at least every other mirror of the polygon mirror PM. Scanning with the spot light SP can be repeated in all of U1 to U6.
  • the arrangement switching member SWE in the initial setup of the drawing apparatus, is set so as to be in the second arrangement state by using one light source device 14A ′. Thereafter, when it is desired to increase the conveyance speed of the substrate FS, the second light source device 14B ′ may be added and the arrangement switching member SWE may be set so as to be in the first arrangement state.
  • the drawing apparatus can be upgraded by a simple operation such as expansion of the apparatus and switching of the arrangement switching member SWE.
  • the origin signal SZn is detected using the reflection surface RP that is one before the rotation direction of the polygon mirror PM with respect to the reflection surface RP that deflects the beam LBn of the polygon mirror PM.
  • the origin signal SZn may be detected by using the reflection surface RP itself that deflects the beam LBn.
  • the origin signal SZn or the origin signal SZn ′ may be used as the sub origin signal ZPn.
  • the electro-optic element 206 as the drawing light modulator of the light source device 14 ′ (14A ′, 14B ′) is switched using the drawing bit string data Sdw.
  • the drawing optical element AOM may be used as the drawing light modulator.
  • the drawing optical element AOM is an acousto-optic modulator (AOM). That is, in the fourth embodiment, the drawing optical element AOM is disposed between the light source device 14 ′ and the first-stage selection optical element AOM1, and the light source device 14 ′ that has passed through the drawing optical element AOM is used.
  • the beam LB may be incident on the optical element AOM1 for selection. In this case, the drawing optical element AOM is switched according to the drawing bit string data Sdw. Even in this case, the same effect as that of the fourth embodiment can be obtained.
  • the drawing optical elements AOM are respectively arranged between the first-stage selection optical element AOM4 of the optical element module OM2. That is, the beam LBa from the light source device 14A ′ that has passed through the drawing optical element AOMa is incident on the selection optical element AOM1, and the beam LBb from the light source device 14B ′ that has passed through the drawing optical element AOMb is the selection optical element AOM4. Is incident on.
  • the drawing optical element AOMa in the first state, is switched according to the drawing bit string data Sdw composed of the serial data DL1 to DL3, and the drawing optical element AOMb is switched to the serial data DL4 to DL6. Is switched according to the drawing bit string data Sdw.
  • the drawing optical element AOMa In the second state, only the drawing optical element AOMa is switched in accordance with the drawing bit string data Sdw composed of the serial data DL1 to DL6.
  • a drawing optical element AOM as a drawing light modulator may be provided for each scanning unit Un.
  • the drawing optical element AOM may be provided in front of the reflection mirror M20 (see FIG. 28) of each scanning unit Un.
  • the drawing optical elements AOM of the scanning units Un (U1 to U6) are switched according to the serial data DLn (DL1 to DL6).
  • the drawing optical element AOM of the scanning unit U3 is switched according to the serial data DL3.
  • FIG. 41 shows the configuration of a beam switching member (beam delivery unit) 20B according to the sixth embodiment.
  • a beam LBw (LB) emitted from one light source device 14 ′ and incident on the beam switching member 20B. Is a circularly polarized parallel light beam.
  • the beam switching member 20B includes six selection optical elements AOM1 to AOM6, two absorbers TR1 and TR2, six lens systems CG1 to CG6, mirrors M30, M31 and M32, a condensing lens CG0, and a polarization beam splitter.
  • BS1 and two drawing optical elements (acousto-optic modulation elements) AOMa and AOMb are provided. Note that the same reference numerals are assigned to configurations similar to those in the fourth embodiment or the fifth embodiment.
  • the beam LBw incident on the beam switching member 20B is separated into a linear P-polarized beam LBp and a linear S-polarized beam LBs by the polarizing beam splitter BS1 through the condenser lens CG0.
  • the S-polarized beam LBs reflected by the polarization beam splitter BS1 enters the drawing optical element AOMa.
  • the beam LBs incident on the drawing optical element AOMa is converged so as to be a beam waist in the drawing optical element AOMa by the focusing action of the condenser lens CG0.
  • the drawing bit string data Sdw (DLn) as shown in FIG. 19 is applied to the drawing optical element AOMa via the driver circuit DRVn.
  • the drawing bit string data Sdw is obtained by synthesizing serial data DL1, DL3, DL5 corresponding to each of odd-numbered scanning units U1, U3, U5. Accordingly, the drawing optical element AOMa is turned on when the drawing bit string data Sdw (DLn) is “1”, and the first-order diffracted light of the incident beam LBs is deflected to the deflected drawing beam (intensity modulated). Beam) toward the mirror M31. The drawing beam reflected by the mirror M31 enters the selection optical element AOM1 through the lens system CG1.
  • the drawing bit string data Sdw (DLn) is “0”
  • the 0th-order light (LBs) emitted from the drawing optical element AOMa is reflected by the mirror M31, but does not enter the subsequent lens system CG1. Proceed at an angle.
  • the lens system CG1 condenses the drawing beam emitted from the drawing optical element AOMa at the diffraction portion of the selection optical element AOM1 to form a beam waist.
  • the drawing beam that has passed through the selection optical element AOM1 enters the selection optical element AOM3 via the lens system CG3 similar to the lens system CG1, and the drawing beam that has passed through the selection optical element AOM3 is the same as in the lens system CG1. Enters the optical element for selection AOM5 through the lens system CG5.
  • three selection optical elements AOM1, AOM3, and AOM5 are arranged in series along the beam optical path, and only the selection optical element AOM3 is turned on, and the intensity is modulated by the drawing optical element AOMa.
  • the drawing beam is incident on the corresponding scanning unit U3 as a beam LB3.
  • the lens systems CG1, CG3, and CG5 correspond to a combination of one collimator lens CL and one condenser lens CD in FIGS.
  • the P-polarized beam LBp transmitted through the polarization beam splitter BS1 is reflected by the mirror M30 and enters the drawing optical element AOMb.
  • the beam LBp incident on the drawing optical element AOMb is converged so as to be a beam waist in the drawing optical element AOMb by the focusing action of the condenser lens CG0.
  • the drawing bit string data Sdw (DLn) as shown in FIG. 19 is applied to the drawing optical element AOMb via the driver circuit DRVn.
  • the drawing bit string data Sdw is a combination of serial data DL2, DL4, and DL6 corresponding to each of the even-numbered scanning units U2, U4, and U6.
  • the drawing optical element AOMb is turned on when the drawing bit string data Sdw (DLn) is “1”, and the first-order diffracted light of the incident beam LBp is deflected to the deflected drawing beam (intensity modulated). Beam) toward the mirror M32.
  • the drawing beam reflected by the mirror M32 enters the selection optical element AOM2 through a lens system CG2 similar to the lens system CG1.
  • the zero-order light (LBp) emitted from the drawing optical element AOMb when the drawing bit string data Sdw (DLn) is “0” is reflected by the mirror M32, but does not enter the subsequent lens system CG2. Proceed at an angle.
  • the lens system CG2 condenses the drawing beam emitted and emitted from the drawing optical element AOMb at the diffraction portion of the selection optical element AOM2 to form a beam waist.
  • the drawing beam transmitted through the selection optical element AOM2 is incident on the selection optical element AOM4 via the lens system CG4 similar to the lens system CG1, and the drawing beam transmitted through the selection optical element AOM4 is the same as in the lens system CG1.
  • three selection optical elements AOM2, AOM4, and AOM6 are arranged in series along the beam optical path, and only the selection optical element AOM2 is turned on, and the intensity is modulated by the drawing optical element AOMb.
  • the drawing beam is incident on the corresponding scanning unit U2 as a beam LB2.
  • the lens systems CG2, CG4, and CG6 correspond to a combination of one collimator lens CL and one condenser lens CD in FIGS.
  • the beam LBw from one light source device 14 ′ is divided into two by the polarization beam splitter BS1, and drawing is performed from one of the beams LBs.
  • the drawing beam (LB1, LB3, LB5) generated by the optical element AOMa is sequentially incident on any one of the odd-numbered scanning units U1, U3, U5, and the other beam divided by the polarization beam splitter BS1.
  • a drawing beam (LB2, LB4, LB6) generated from the LBp by the drawing optical element AOMb can be sequentially incident on any one of the even-numbered scanning units U2, U4, U6.
  • the intensity modulation of the beam LB based on the pattern data is performed by the drawing optical elements AOMa and AOMb. Therefore, the intensity of the spot light SP by each of the six scanning units U1 to U6 is -50% attenuated by the polarization beam splitter BS1, and attenuated by the drawing optical elements AOMa and AOMb and each selection optical element AOMn. Assuming ⁇ 20% and the attenuation in each of the scanning units U1 to U6 to be ⁇ 30%, this is about 22.4% of the intensity (100%) of the original beam LBw.
  • the reflection surface RP of the polygon mirror PM is set to 1.
  • a pattern can be drawn by scanning the spot light SP on each of the six drawing lines SLn without performing beam scanning by skipping the surface.
  • the polarization directions of the beams LBs incident on the odd selection optical elements AOM1, AOM3, and AOM5 and the beams LBp incident on the even selection optical elements AOM2, AOM4, and AOM6 are orthogonal to each other, the odd-numbered selection optical element AOMn and the even-numbered selection optical element AOMn need to be relatively rotated by 90 degrees around the beam incident axis.
  • FIG. 42 shows a configuration in which, for example, the selection optical element AOM3 among the odd-numbered selection optical elements AOM1, AOM3, and AOM5 is disposed by being rotated by 90 degrees with respect to the even-numbered selection optical element AOMn. .
  • the direction in which the diffraction efficiency is high is the Y direction parallel to the XY plane.
  • the selection optical element AOM3 is rotated 90 degrees so that the periodic direction of the diffraction grating generated in the selection optical element AOM3 is the Y direction.
  • the beam LB3 deflected and emitted when the selection optical element AOM3 is in the ON state is inclined in the Y direction with respect to the traveling direction of the zero-order light. Therefore, the beam LB3 is separated from the optical path of the zero-order light, and the beam LB3 from the selection optical element AOM3 is reflected in the XY plane so that the beam LB3 passes through the opening portion TH3 of the support member IUB in the Z direction.
  • a mirror IM3a and a mirror IM3b that reflects the beam LB3 reflected by the mirror IM3a in the ⁇ Z direction so as to pass through the opening TH3 are provided.
  • each of the other odd-numbered selection optical elements AOM1 and AOM5 is provided with a set of mirrors IM1a and IM1b and a set of mirrors IM5a and IM5b. Furthermore, in the configuration of FIG. 41, since the polarization directions of the beams LBs and LBp incident on the drawing optical elements AOMa and AOMb are orthogonal, the drawing optical elements AOMa and AOMb are relatively around the beam incident axis. They are arranged in a relationship rotated 90 degrees.
  • the polarization beam splitter BS1 in FIG. 41 is an amplitude division beam splitter or a half mirror, if the polarization direction of the beam LBw is set to only one direction (for example, P polarization), the drawing optical elements AOMa and AOMb On the other hand, one of the odd-numbered selection optical element AOMn and the even-numbered selection optical element AOMn does not need to be relatively rotated by 90 degrees as shown in FIG.
  • Three additional optical elements AOM7, AOM9, and AOM11 are provided in series between TR2, and beams that have passed through the even-numbered optical elements AOM2, AOM4, and AOM6 in order (modulated by the drawing optical element AOMb). Further, three selection optical elements AOM8, AOM10, and AOM12 are provided in series between the selection optical element AOM6 and the absorber TR1. Then, six scanning units U7 to U12 into which the beams LB7 to LB12 deflected (switched) by the selection optical elements AOM7 to AOM12 are introduced are added, and a total of twelve scanning units U1 to U12 are connected to the substrate FS. Arrange in the width direction (Y direction). Thereby, joint drawing exposure of 12 drawing lines SL1 to SL12 becomes possible, and the maximum exposure width in the Y direction can be doubled.
  • U11, and even-numbered scanning units U2, U4, U6, U8, U10, and U12 grouped as the second drawing module all provide beams LBn for every other reflection surface RP of the polygon mirror PM. Scan.
  • a large exposure area W FIGS. 5 and 25
  • the configuration in which the six scanning units U7 to U12 and the selection optical elements AOM7 to AOM12 are added to form the 12 scanning units U1 to U12 is the same as that of the fifth embodiment (FIGS. 36 to 36). The same applies to the case where the two light source devices 14A ′ and 14B ′ described in 38) are used.
  • FIG. 43 shows the positional relationship between the transport mode of the substrate FS and the scanning unit Un (drawing line SLn) according to the third modification.
  • twelve scanning units U1 to U12 are provided,
  • the drawing lines SL1 to SL12 of the scanning unit Un are arranged on the rotary drum DR so that the drawing exposure can be performed in the Y direction.
  • the length of the rotary drum DR and the various rollers R1 to R3, RT1, RT2, etc. in the rotation axis direction (Y direction) in the substrate transport mechanism 12 shown in FIG. 23 is Hd, and joint drawing by 12 scanning units Un.
  • the maximum drawing width in the Y direction that can be exposed is Sh (Sh ⁇ Hd), and the maximum support width of the substrate FS0 that can be exposed is Tf.
  • Each of the twelve scanning units U1 to U12 corresponding to each of the twelve drawing lines SL1 to SL12 in the modification 3 is a beam from one light source device 14 'as shown in FIG. 41 (sixth embodiment).
  • the maximum drawing width Sh is 600 mm.
  • the width of the substrate FS0 serving as the maximum support width Tf is 650 mm, and the length Hd of the rotating drum DR. Can be about 700 mm.
  • the four alignment microscopes AM1 to AM4 (observation regions Vw1 to Vw4) shown in FIGS.
  • three alignment microscopes AM5 to AM7 (observation regions Vw5 to Vw7) are added in the Y direction.
  • the alignment microscope AM1 (observation region Vw1) and the alignment microscope AM7 (observation region Vw7) located on both sides in the width direction of the substrate FS0 have alignment marks formed at a constant pitch in the X direction on both sides of the substrate FS0.
  • the alignment microscope AM4 (observation region Vw4) is arranged so as to be positioned at substantially the center of the maximum support width Tf.
  • the width Tf1 is the rotation drum. Since it is about half of the maximum support width Tf of DR, the substrate FS1 is transported toward the ⁇ Y direction side of the outer peripheral surface of the rotary drum DR, for example. At that time, each of the alignment marks MK1 to MK4 (FIG. 25) on the substrate FS1 can be detected by the observation regions Vw1 to Vw4 of the four alignment microscopes AM1 to AM4.
  • each of the scanning units U1 to U6 performs beam scanning for each continuous reflecting surface RP of the polygon mirror PM, or a polygon. Spot scanning along each drawing line SL1 to SL6 is possible in either mode of beam scanning with one reflecting surface RP of the mirror PM.
  • the beam LBa from the light source device 14A ′ is In the beam switching member 20A, the optical elements for selection AOM1, AOM3, AOM5, AOM7, AOM9, and AOM11 corresponding to each of the odd-numbered scanning units U1, U3, U5, U7, U9, and U11 are transmitted in series.
  • the beams LBa from the light source device 14A ′ are grouped and selected optical elements AOM2, AOM4, AOM6, AOM8, AOM10, AOM12 corresponding to the even-numbered scanning units U2, U4, U6, U8, U10, U12, respectively.
  • the beam scanning for each continuous reflecting surface RP of the polygon mirror PM is controlled to be repeated, and only based on the three origin signals SZ2, SZ4, SZ6 output for each continuous reflecting surface RP of the polygon mirror PM.
  • control is performed so that beam scanning is repeated for each of the continuous reflecting surfaces RP of the polygon mirror PM in the order of the even-numbered scanning units U2, U4, and U6.
  • the substrate FS2 when exposure is performed on the substrate FS2 having a width Tf2 smaller than the maximum support width Tf and larger than the width Tf1 of the substrate FS1, the substrate FS2 is aligned with the central portion of the maximum support width Tf of the rotary drum DR. Transport. At that time, the exposure area W on the substrate FS2 is drawn by the drawing lines SL3 to SL10 by the eight scanning units U3 to U10 connected in the Y direction. In such a case, the odd-numbered four selection optical elements AOM3, AOM5, AOM7, and AOM9 that receive the beam LBa (intensity modulated beam) from the light source device 14A 'are time-divisionally divided into the beams LB3, LB5, and LB7.
  • the odd-numbered four selection optical elements AOM3, AOM5, AOM7, and AOM9 that receive the beam LBa (intensity modulated beam) from the light source device 14A 'are time-divisionally divided into the beam
  • each of the at least eight scanning units U3 to U10 is set to the beam scanning mode for every reflecting surface RP of the polygon mirror PM.
  • alignment marks (corresponding to alignment marks MK1 and MK4 in FIG. 25) formed on both sides in the width direction on the substrate FS2 are detected by the observation regions Vw2 and Vw6 of the alignment microscopes AM2 and AM6.
  • the third modification described above it is possible to perform efficient exposure using only the necessary scanning unit Un according to the width of the substrate FS to be exposed and the dimension in the Y direction of the exposure region W. 43, when the scanning efficiency of each polygon mirror PM of each of the 12 scanning units U1 to U12 is 1/3 or less, for example, beam scanning is performed every third reflecting surface RP of each polygon mirror PM. If it does, even if it is a beam from one light source device 14 ', pattern drawing will become possible satisfactorily over the maximum drawing width Sh.
  • the drawing apparatus is configured by nine scanning units U1 to U9, five odd-numbered scanning units U1, U3, U5, U7, U9 and four even-numbered scanning units U2, U4, U6 and U8 are used. Therefore, when pattern drawing is performed in the exposure area W by the drawing lines SL1 to SL9 by all nine scanning units U1 to U9, when the scanning efficiency of the polygon mirror PM is 1/3 or less, for example, each polygon mirror PM The beam may be scanned every other reflecting surface RP. However, in this case, only the sub origin signals ZP1, ZP3, ZP5, ZP7, ZP9 generated from the origin signals SZn of the odd numbered scanning units U1, U3, U5, U7, U9 are referred to in that order.
  • spot scanning is performed on each of the odd-numbered drawing lines SL1, SL3, SL5, SL7, and SL9, and is generated from the origin signal SZn of each of the even-numbered scanning units U2, U4, U6, and U8. It is only necessary to perform spot scanning on each of even-numbered drawing lines SL2, SL4, SL6, and SL8 by repeatedly referencing only the sub origin signals ZP2, ZP4, ZP6, and ZP8 in that order.
  • a plurality of scanning units Un that scan the beam spot light SP from the light source device 14 ′ along the drawing line SLn are used as the pattern drawn by each drawing line SLn on the substrate FS.
  • a pattern drawing method using a drawing apparatus that is arranged so as to be continued in the direction of SLn (main scanning direction) and relatively moves a plurality of scanning units and the substrate FS in the sub-scanning direction intersecting the main scanning direction, Among the plurality of scanning units Un, a specific scanning unit corresponding to the width of the substrate FS in the main scanning direction, the width of the exposure region on the substrate FS in the main scanning direction, or the position of the exposure region is selected.
  • the pattern data to be drawn in each of the specific scanning units via the beam delivery unit that delivers the beam from the light source device 14 ' Alternatively, sequentially supplying an intensity-modulated beam to each of the specific scanning units.
  • the modification 3 even if the width
  • the rotation speed and the rotation angle phase are not synchronized among all the polygon mirrors PM of the plurality of scanning units, but only between the polygon mirrors PM of a specific scanning unit contributing to pattern drawing.
  • the rotation speed and the rotation angle phase may be synchronized.
  • the first scanning module is divided into a first scanning module composed of six scanning units U1 to U6 and a second scanning module composed of three scanning units U7 to U9.
  • the beam LBa from the device 14A ′ may be supplied, and the beam LBb from the second light source device 14B ′ may be supplied to the second scanning module.
  • each of the six scanning units U1 to U6 in the first scanning module is 1/4 ⁇ ( ⁇ / ⁇ ) ⁇ 1/3, each of the six scanning units U1 to U6 in the first scanning module.
  • the spot light SP is scanned along the drawing lines SL1 to SL6 by beam scanning every one reflecting surface RP of the polygon mirror PM. Become.
  • each of the three scanning units U7 to U9 in the second scanning module can perform beam scanning for every reflecting surface RP of the polygon mirror PM. Therefore, if each of the three scanning units U7 to U9 performs the beam scanning for every reflecting surface RP of the polygon mirror PM as it is, each drawing line SL1 to each of the six scanning units U1 to U6 is used.
  • each of the three scanning units U7 to U9 capable of performing beam scanning for every reflecting surface RP of the polygon mirror PM is also controlled to perform beam scanning for every reflecting surface RP of the polygon mirror PM.
  • the origin signals SZ7 to SZ9 generated from each of the scanning units U7 to U9 are input to the circuit of FIG. 31 or the sub origin generation circuit CAan in FIG. 38, and the sub origin signals ZP7 to ZP9 are input.
  • the corresponding selection optical elements AOM7 to AOM9 are sequentially turned on for a predetermined time Ton and drawn on each of the drawing lines SL7 to SL9. This can be realized by sequentially sending each of the drawing serial data DL7 to DL9 corresponding to the pattern to the drive circuit 206a of the electro-optic element 206 in the second light source device 14B ′.
  • FIG. 44 shows a configuration of the driver circuit DRVn of the selection optical element AOMn according to the fifth modification.
  • the light source device 14 ′ 14A ′, 14B ′
  • the beams LBs and LBp emitted from the drawing optical elements AOMa and AOMb are transmitted through a plurality of optical elements AOMn for selection arranged along the optical path of the beam LB (LBa, LBb). To do.
  • FIG. 1 shows a configuration of the driver circuit DRVn of the selection optical element AOMn according to the fifth modification.
  • the beam LB is switched by the selection optical element AOM3 to generate the beam LB3 toward the scanning unit U3.
  • the optical material in the selection optical element AOMn has a relatively high transmittance with respect to the beam LB in the ultraviolet wavelength region (for example, a wavelength of 355 nm), but has an attenuation factor of about several percent.
  • the intensity of the beam LB incident on the selection optical element AOM3 is two. Since it is attenuated by the selection optical elements AOM1 and AOM2, it is about 90% (0.95 2 ) with respect to the original beam intensity (100%) incident on the selection optical element AOM1. Further, when six selection optical elements AOM1 to AOM6 are connected, the intensity of the beam LB incident on the last selection optical element AOM6 is attenuated by the five selection optical elements AOM1 to AOM5. The beam intensity (100%) is about 77% (0.95 5 ).
  • the intensities of the beams LB incident on each of the six selection optical elements AOM1 to AOM6 are 100%, 95%, 90%, 85%, 81%, and 77% in order. This means that the intensities of the beams LB1 to LB6 that are deflected and emitted by the selection optical elements AOM1 to AOM6 also change depending on the ratio. Therefore, in the fifth modification, in the driver circuit DRVn of each of the plurality of selection optical elements AOMn shown in FIG. 38, the driving conditions of the selection optical elements AOM1 to AOM6 are adjusted to increase the intensity of the beams LB1 to LB6. Control to reduce fluctuations.
  • each of the driver circuits DRV1 to DRV6 has an ON time Ton of each of the selection optical elements AOM1 to AOM6 (AOM5 and AOM6 are not shown in FIG. 44).
  • Information to be set and sub origin signals ZP1 to ZP6 are input.
  • a high-frequency transmission source 400 for applying ultrasonic waves to each of the selection optical elements AOM1 to AOM6 is provided in common.
  • the driver circuit DRV1 receives a high-frequency signal from the high-frequency transmission source 400 and transmits it to the amplifier 402 that amplifies the high-frequency signal to a high voltage amplitude, and information for setting the on-time Ton. And the logic circuit 403 that controls the opening / closing of the switching element 401 based on the sub-origin signal ZP1 and the amplification factor (gain) of the amplifier 402 to adjust the amplitude of the high-frequency high-frequency signal applied to the selection optical element AOM1. And a gain adjuster 404.
  • the amplitude of the high-frequency high-frequency signal applied to the selection optical element AOM1 is changed within an allowable range, the diffraction efficiency of the selection optical element AOM1 can be finely adjusted, and the intensity of the deflected beam LB1 (first-order diffracted light) is changed. It is possible. Therefore, in the fifth modification, the selection is performed in the order of the driver circuit DRV1 of the selection optical element AOM1 on the side closer to the light source device 14 ′ and the driver circuit DRV6 of the selection optical element AOM6 on the side farther from the light source device 14 ′.
  • the gain adjuster 404 is adjusted so that the amplitude of the high-frequency high-frequency signal applied to the optical element AOMn for use is increased.
  • the amplitude of the high-frequency high-frequency signal applied to the optical element for selection AOM6 at the end of the optical path of the beam LB is set to a value Va6 that gives the highest diffraction efficiency, and the first optical element for selection in the optical path of the beam LB
  • the amplitude of the high-frequency high-frequency signal applied to the AOM 1 is set to a value Va1 so that the diffraction efficiency is lowered within an allowable range.
  • the amplitudes Va2 to Va5 of the high-frequency high-frequency signals applied to the selection optical elements AOM2 to AOM5 are set so that Va1 ⁇ Va2 ⁇ Va3 ⁇ Va4 ⁇ Va5 ⁇ Va6.
  • intensity variations of the beams LB1 to LB6 emitted from each of the six selection optical elements AOM1 to AOM6 can be reduced or suppressed.
  • variations in the exposure amount of the pattern drawn by each of the drawing lines SL1 to SL6 can be suppressed, and highly accurate pattern drawing can be performed.
  • the amplitudes Va1 to Va6 of the high-frequency high-frequency signals set by the driver circuits DRV1 to DRV6 do not need to be gradually increased in that order.
  • the method of adjusting the intensity of the drawing beams LB1 to LB6 to be the spot light SP for each of the scanning units U1 to U6 is not limited to the method as in the modified example 5, but the optical path in each of the scanning units U1 to U6.
  • a method of providing a neutral density filter (ND filter) having a predetermined transmittance may be used.
  • FIG. 45 shows the configuration of such a driver circuit DRVn.
  • the configuration of the driver circuit DRV1 is representatively shown, and the same components as those in FIG. 44 are denoted by the same reference numerals.
  • the resistor RE2 is a variable resistor and the switching element 401 is in an off (non-conducting) state
  • the first-order diffracted light emitted from the selection optical element AOM1 that is, the intensity of the beam LB1 is sufficiently small (for example, the original intensity)
  • the level of the high-frequency signal applied to the selection optical element AOM1 is adjusted so as to be 1/1000 or less of the above.
  • the responsiveness can be improved by applying the bias (raising) of the high frequency signal to the selection optical element AOM1 by the resistors RE1 and RE2.
  • the beam LB1 is incident on the corresponding scanning unit U1 even though the switching element 401 is in an off (non-conducting) state.
  • the shutter provided at the exit of the light source device 14 '(14A', 14B ') is closed or a neutral density filter is inserted.
  • each of the plurality of scanning units Un is formed on the surface of the substrate FS curved in a cylindrical surface with the sheet-like substrate FS in close contact with the outer peripheral surface of the rotary drum DR.
  • the pattern is drawn along the drawing line SLn.
  • the exposure processing may be performed while feeding the substrate FS in the longitudinal direction while supporting the substrate FS in a planar shape.
  • the surface of the substrate FS is set parallel to the XY plane, for example, the irradiation center axes Le1, Le3, Le5 of the odd-numbered scanning units U1, U3, U5 shown in FIGS.
  • the irradiation center axes Le2, Le4, Le6 of the even-numbered scanning units U2, U4, U6 are parallel to the Z axis when viewed in a plane parallel to the XZ plane, and at a constant interval in the X direction.
  • a plurality of scanning units U1 to U6 may be arranged so as to be positioned at.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

 レーザ光の走査スポットによって被照射体上に所定のパターンを描画するパターン描画装置であって、前記レーザ光を射出する光源装置(14)と、前記レーザ光を入射して前記走査スポットを生成するために、前記レーザ光を走査する光走査部材と光学レンズ系とを含み、前記走査スポットが前記被照射体上の異なる領域を走査するように設置された複数の描画ユニット(U1~U6)と、前記光源装置からの前記レーザ光を前記複数の描画ユニットのうちの選択された前記描画ユニットに入射させるか否かを切り換えるために、前記光源装置からの前記レーザ光の進行方向に沿って直列に配置される複数の選択用光学素子(50,58,66)と、を備える。

Description

パターン描画装置、パターン描画方法、デバイス製造方法、レーザ光源装置、ビーム走査装置、および、ビーム走査方法
 本発明は、被照射体上に照射されるビームのスポット光を走査するビーム走査装置およびビーム走査方法と、スポット光を走査して被照射体に所定のパターンを描画するパターン描画装置およびパターン描画方法と、そのパターン描画方法を用いたデバイス製造方法と、パターン描画装置およびビーム走査装置に用いられるレーザ光源装置に関する。
 特開昭61-134724号公報および特開2001-133710号公報に開示されているように、1つのレーザ発振機(レーザビーム光源)からのレーザビームをハーフミラーによって2つに分割し、分割したレーザビームの各々を2つのポリゴンミラー(回転多面鏡)に入射させることで、被描画体上で2つのレーザビームを走査させるレーザ照射装置、レーザ描画装置が知られている。また、特開2001-133710号公報には、2つのポリゴンミラーに入射する分割した2つのレーザビームの各々は、描画データに応答してオン/オフするAOM(音響光学素子)により変調されることも開示されている。
 しかしながら、ポリゴンミラーによるビーム走査では、ポリゴンミラーの反射面数、ポリゴンミラーの後の光学系(fθレンズ等)の入射条件等によって、ポリゴンミラーの回転中に、入射したレーザビームを被描画体に向けて有効に反射することができない期間が存在する場合がある。したがって、従来のように、ハーフミラーによってレーザビームを2分割にして2つのポリゴンミラーに入射させたとしても、被描画体にレーザビームを有効に照射することができない期間、すなわち非描画期間が存在することがあり、光源からのレーザビームを有効に活用することはできない。
 本発明の第1の態様は、レーザ光の走査スポットによって被照射体上に所定のパターンを描画するパターン描画装置であって、前記レーザ光を射出する光源装置と、前記レーザ光を入射して前記走査スポットを生成するために、前記レーザ光を走査する光走査部材と光学レンズ系とを含み、前記走査スポットが前記被照射体上の異なる領域を走査するように設置された複数の描画ユニットと、前記光源装置からの前記レーザ光を前記複数の描画ユニットのうちの選択された前記描画ユニットに入射させるか否かを切り換えるために、前記光源装置からの前記レーザ光の進行方向に沿って直列に配置される複数の選択用光学素子と、を備える。
 本発明の第2の態様は、レーザ光の走査スポットによって被照射体上に所定のパターンを描画するパターン描画装置であって、前記レーザ光を射出する光源装置と、前記レーザ光を入射して前記走査スポットを生成するために、前記レーザ光を走査する光走査部材と光学レンズ系とを含み、前記走査スポットが前記被照射体上の異なる領域を走査するように設置された複数の描画ユニットと、前記光源装置からの前記レーザ光を前記複数の描画ユニットに選択的に入射させるために、前記光源装置からの前記レーザ光の進行方向に沿って直列に配置される複数の選択用光学素子と、前記走査スポットによって前記被照射体上に描画されるべきパターンを規定する前記複数の描画ユニットの各々の描画データに基づいて、前記複数の選択用光学素子に入射する前記レーザ光の強度を変調する描画用光変調器と、を備える。
 本発明の第3の態様は、発振周期を調整可能なパルス状のビームを発生するパルス光源装置と、前記パルス光源装置からのビームを被照射体上にスポット光として投射するとともに、該スポット光の前記被照射体への投射期間と非投射期間とが所定の周期で繰り返されるように前記ビームを偏向させて、前記投射期間の間に前記被照射体上の第1描画ラインに沿って前記スポット光を走査する第1描画ユニットと、前記パルス光源装置からのビームを前記被照射体上にスポット光として投射するとともに、前記投射期間と前記非投射期間とが所定の周期で繰り返されるように前記ビームを偏向させて、前記投射期間の間に前記第1描画ラインと異なる前記被照射体上の第2描画ラインに沿って前記スポット光を走査する第2描画ユニットと、前記第1描画ユニットにおける前記投射期間が前記第2描画ユニットにおける前記非投射期間に対応し、前記第2描画ユニットにおける前記投射期間が前記第1描画ユニットにおける前記非投射期間に対応するように、前記第1描画ユニットと前記第2描画ユニットとを同期制御する第1の制御系と、前記第1描画ユニットにおける前記投射期間の間は、前記第1描画ラインによって描画されるべきパターンの第1描画情報に基づいて前記ビームの発振が制御され、前記第2描画ユニットにおける前記投射期間の間は、前記第2描画ラインによって描画されるべきパターンの第2描画情報に基づいて前記ビームの発振が制御されるように、前記パルス光源装置を制御する第2の制御系と、を備える。
 本発明の第4の態様は、被照射体上に集光される紫外レーザ光のスポット光を描画データに応じて強度変調しつつ、前記スポット光と前記被照射体とを相対走査することにより、前記被照射体上にパターンを描画するパターン描画装置であって、前記紫外レーザ光の元となる種光を発生する光源部と、前記種光を入射して増幅する光増幅器と、増幅された前記種光から前記紫外レーザ光を生成する波長変換光学素子とを含むレーザ光源装置と、前記スポット光を強度変調するために、前記光源部から発生する前記種光の強度を前記描画データに応じて変調する描画用変調装置と、を備える。
 本発明の第5の態様は、被照射体上に集光される紫外レーザ光のスポット光を描画データに応じて強度変調しつつ、前記スポット光と前記被照射体とを相対走査することにより、前記被照射体上にパターンを描画するパターン描画方法であって、前記紫外レーザ光の元となる種光を光増幅器によって増幅し、増幅された前記種光を波長変換光学素子によって前記紫外レーザ光に変換する変換工程と、前記スポット光を強度変調するために、前記光増幅器に入射する前記種光の強度を前記描画データに応じて変調する変調工程と、を含む。
 本発明の第6の態様は、デバイス製造方法であって、前記被照射体として用意された光感応性の基板を第1方向に移動させつつ、前記第5の態様のパターン描画方法によって、前記基板の光感応層にデバイス用のパターンを描画することと、前記光感応層の前記スポット光の照射部分と非照射部分の違いに応じて、所定のパターン材料を選択的に形成することと、を含む。
 本発明の第7の態様は、被照射体上に集光されるスポット光によってパターンを描画する装置に接続され、前記スポット光となるビームを射出するレーザ光源装置であって、所定周期のクロックパルスに応答して、発光時間が前記所定周期に対して短くピーク強度が高い俊鋭な第1パルス光を発生する第1半導体光源と、前記クロックパルスに応答して、発光時間が前記所定周期よりも短く、且つ前記第1パルス光の発光時間よりも長くピーク強度が低いブロードな第2パルス光を発生する第2半導体光源と、前記第1パルス光、または前記第2パルス光を入射するファイバー光増幅器と、描画すべきパターン情報の入力に基づいて、前記被照射体上への前記スポット光の投射時には、前記第1パルス光を前記ファイバー光増幅器に入射させ、前記被照射体上への前記スポット光の非投射時には、前記第2パルス光を前記ファイバー光増幅器に入射させるように光学的に切り換える切換え部材と、を備える。
 本発明の第8の態様は、光源装置からのビームを繰り返し偏向する回転多面鏡と、偏向された前記ビームを入射して被照射体上で1次元走査されるスポット光に集光する投射光学系とを備えた走査ユニットを、所定の位置関係で複数配置したビーム走査装置であって、複数の前記走査ユニットのうち前記スポット光の1次元走査を行う1つの前記走査ユニットに、前記光源装置からの前記ビームが入射するように、前記ビームの光路を切り換えるビーム切換部材と、前記走査ユニットの前記回転多面鏡による前記ビームの偏向が、前記回転多面鏡の少なくとも1つ置きの反射面毎に繰り返されるように前記ビーム切換部材を制御して、複数の前記走査ユニットの各々に前記スポット光の1次元走査を順番に行わせるビーム切換制御部と、を備える。
 本発明の第9の態様は、光源装置からのビームを繰り返し偏向するために一定の回転速度で回転する回転多面鏡と、偏向された前記ビームを入射して被照射体上で1次元走査されるスポット光に集光する投射光学系とを備えた走査ユニットを、所定の位置関係で複数配置した走査モジュールを複数有するビーム走査装置であって、複数の前記走査ユニットのうち前記スポット光の1次元走査を行う前記走査ユニットに、前記光源装置からの前記ビームが入射するように、前記ビームの光路を切り換えるビーム切換部材と、各前記走査ユニットの前記回転多面鏡による前記ビームの偏向が、前記回転多面鏡の連続した反射面毎に繰り返される第1の状態と、前記回転多面鏡の少なくとも1つ置きの反射面毎に繰り返される第2の状態とのいずれか一方に切り換わるように、前記ビーム切換部材を制御して、複数の前記走査ユニットの各々に前記スポット光の1次元走査を順番に行わせるビーム切換制御部と、を備える。
 本発明の第10の態様は、回転多面鏡によって繰り返し偏向されるビームを入射して被照射体上で1次元走査されるスポット光に集光する投射光学系を備えた走査ユニットを、所定の位置関係で複数配置して、前記被照射体をビーム走査するビーム走査方法であって、前記複数の走査ユニットの各々の前記回転多面鏡の回転角度位置が互いに所定の位相関係となるように複数の前記回転多面鏡を同期回転させることと、複数の前記走査ユニットの各々による前記スポット光の1次元走査を順番に行うために、前記回転多面鏡による前記ビームの偏向が、前記回転多面鏡の少なくとも1つ置きの反射面毎に繰り返されるように、前記ビームが入射する前記走査ユニットを切り換えることと、を含む。
 本発明の第11の態様は、一定の回転速度で回転する回転多面鏡によって繰り返し偏向されるビームを入射して被照射体上で1次元走査されるスポット光に集光する投射光学系を備えた走査ユニットを、所定の位置関係で複数配置したビーム走査装置によって、前記被照射体をビーム走査するビーム走査方法であって、前記複数の走査ユニットの各々の前記回転多面鏡の回転角度位置が互いに所定の位相関係となるように複数の前記回転多面鏡を同期回転させることと、前記回転多面鏡による前記ビームの偏向が、前記回転多面鏡の連続した反射面毎に繰り返されるように、前記ビームが入射する前記走査ユニットを切り換えることで、複数の前記走査ユニットの各々が前記スポット光の1次元走査を順番に行う第1の走査工程と、前記回転多面鏡による前記ビームの偏向が、前記回転多面鏡の少なくとも1つ置きの反射面毎に繰り返されるように、前記ビームが入射する前記走査ユニットを切り換えることで、複数の前記走査ユニットの各々が前記スポット光の1次元走査を順番に行う第2の走査工程と、前記第1の走査工程と前記第2の走査工程とを切り換える切換工程と、を含む。
 本発明の第12の態様は、描画ラインに沿って光源装置からのビームのスポット光を主走査する複数の走査ユニットを、各描画ラインによって描画されるパターンが基板上で前記描画ラインの主走査の方向に継がれるように配置し、前記複数の走査ユニットと前記基板とを前記主走査の方向と交差する副走査の方向に相対移動させる描画装置を用いたパターン描画方法であって、前記複数の走査ユニットのうちで、前記基板の前記主走査の方向の幅、または前記基板上のパターン描画される露光領域の前記主走査の方向の幅、或いは位置に対応した特定の走査ユニットを選定することと、前記光源装置からの前記ビームを配送するビーム配送ユニットを介して、前記特定の走査ユニットの各々で描画すべきパターンデータに基づいて前記ビームを強度変調して、前記特定の走査ユニットの各々に択一的に順次供給することと、を含む。
第1の実施の形態の基板に露光処理を施す露光装置を含むデバイス製造システムの概略構成を示す図である。 図1に示す描画ヘッドおよび回転ドラムを支持する支持フレームを示す図である。 図1に描画ヘッドの構成を示す図である。 図3に示す光導入光学系の詳細構成図である。 図3に示す各走査ユニットによって、スポット光が走査される描画ラインを示す図である。 図3に示す各走査ユニットのポリゴンミラーと、描画ラインの走査方向との関係を示す図である。 図3に示すポリゴンミラーの反射面がf-θレンズに入射するように、レーザ光を偏向(反射)することができるポリゴンミラーの回転角度を説明するための図である。 図3に示す光導入光学系と複数の走査ユニットとの光路を模式化した図である。 上記第1の実施の形態の変形例における描画ヘッドの構成を示す図である。 図9に示す光導入光学系の詳細構成図である。 第2の実施の形態の描画ヘッドの構成を示す図である。 図11に示す光導入光学系を示す図である。 図12に示す光導入光学系と複数の走査ユニットとの光路を模式化した図である。 図13に示す複数の走査ユニットの各ポリゴンミラーの回転駆動のための制御回路例を示すブロック図である。 図14に示す制御回路の動作例を示すタイミングチャート図である。 図11~図13に示した描画用光学素子に供給される描画ビット列データを生成する回路例を示すブロック図である。 第2の実施の形態の変形例における光源装置の構成を示す図である。 第3の実施の形態による描画制御用の制御ユニットの構成を示すブロック図である。 図18の制御ユニットにおけるパターン描画時の各部の信号状態とレーザ光の発振状態とを示すタイムチャートを示す図である。 図17の光源装置の制御回路で作られるパルス光発振用のクロック信号を示すタイムチャート図である。 描画倍率補正のために、図20のクロック信号を補正する様子を説明するタイムチャート図である。 1つの描画ライン(走査ライン)における描画倍率の補正法を説明する図である。 第4の実施の形態の基板に露光処理を施す露光装置を含むデバイス製造システムの概略構成を示す図である。 基板が巻き付けられた図23の回転ドラムの詳細図である。 スポット光の描画ラインおよび基板上に形成されたアライメントマークを示す図である。 ビーム切換部材の構成図である。 図27Aは、選択用光学素子によるビームの光路の切り換えを+Z方向側からみた図、図27Bは、選択用光学素子によるビームの光路の切り換えを-Y方向側からみた図である。 走査ユニットの光学的な構成を示す図である。 図28のポリゴンミラーの周辺に設けられた原点センサの構成を示す図である。 原点信号の発生タイミングと描画開始タイミングとの関係を示すタイムチャートである。 原点信号を間引いてその発生タイミングを所定の時間だけ遅延させた副原点信号を生成するための副原点生成回路の構成図である。 図31の副原点生成回路によって生成される副原点信号のタイムチャートを示す図である。 露光装置の電気的な構成を示すブロック図である。 原点信号、副原点信号、および、シリアルデータが出力されるタイミングを示すタイムチャートである。 図33に示す描画データ出力制御部の構成を示す図である。 第5の実施の形態のビーム切換部材の構成図である。 図36の配置切換部材の位置が第1の位置となったときの光路を示す図である。 第5の実施の形態におけるビーム切換制御部の構成を示す図である。 図38の論理回路の構成を示す図である。 図39の論理回路の動作を説明するタイミングチャートを示す図である。 第6の実施の形態よるビーム切換部材の構成図である。 第6の実施の形態における選択用光学素子(音響光学変調素子)の配置を90度回転させる場合の構成を示す図である。 変形例3による基板の搬送形態と描画ラインとの配置関係を示す図である。 変形例5による選択用光学素子(音響光学変調素子)のドライバ回路の構成を示す図である。 図44中のドライバ回路の変形例を示す図である。
 本発明の態様に係るパターン描画装置、パターン描画方法、ビーム走査装置、ビーム走査方法、デバイス製造方法、および、レーザ光源装置について、好適な実施の形態を掲げ、添付の図面を参照しながら以下、詳細に説明する。なお、本発明の態様は、これらの実施の形態に限定されるものではなく、多様な変更または改良を加えたものも含まれる。つまり、以下に記載した構成要素には、当業者が容易に想定できるもの、実質的に同一のものが含まれ、以下に記載した構成要素は適宜組み合わせることが可能である。また、本発明の要旨を逸脱しない範囲で構成要素の種々の省略、置換または変更を行うことができる。
[第1の実施の形態]
 図1は、第1の実施の形態の基板(被照射体)FSに露光処理を施す露光装置EXを含むデバイス製造システム10の概略構成を示す図である。なお、以下の説明においては、特に断わりのない限り、重力方向をZ方向とするXYZ直交座標系を設定し、図に示す矢印にしたがって、X方向、Y方向、およびZ方向を説明する。
 デバイス製造システム10は、例えば、電子デバイスとしてのフレキシブル・ディスプレイ、フレキシブル配線、フレキシブル・センサ等を製造する製造ラインが構築された製造システムである。以下、電子デバイスとしてフレキシブル・ディスプレイを前提として説明する。フレキシブル・ディスプレイとしては、例えば、有機ELディスプレイ、液晶ディスプレイ等がある。デバイス製造システム10は、可撓性のシート状の基板(シート基板)FSをロール状に巻いた図示しない供給ロールから基板FSが送出され、送出された基板FSに対して各種処理を連続的に施した後、各種処理後の基板FSを図示しない回収ロールで巻き取る、いわゆる、ロール・ツー・ロール(Roll To Roll)方式の構造を有する。基板FSは、基板FSの移動方向が長手方向(長尺)となり、幅方向が短手方向(短尺)となる帯状の形状を有する。前記供給ロールから送られた基板FSは、順次、プロセス装置PR1、露光装置(パターン描画装置、ビーム走査装置)EX、および、プロセス装置PR2で各種処理が施され、前記回収ロールで巻き取られる。
 なお、X方向は、水平面内において、プロセス装置PR1から露光装置EXを経てプロセス装置PR2に向かう方向(搬送方向)である。Y方向は、水平面内においてX方向に直交する方向であり、基板FSの幅方向(短尺方向)である。Z方向は、X方向とY方向とに直交する方向(上方向)であり、重力が働く方向と平行である。
 基板FSは、例えば、樹脂フィルム、若しくは、ステンレス鋼等の金属または合金からなる箔(フォイル)等が用いられる。樹脂フィルムの材質としては、例えば、ポリエチレン樹脂、ポリプロピレン樹脂、ポリエステル樹脂、エチレンビニル共重合体樹脂、ポリ塩化ビニル樹脂、セルロース樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリカーボネート樹脂、ポリスチレン樹脂、および酢酸ビニル樹脂のうち、少なくとも1つ以上を含んだものを用いてもよい。また、基板FSの厚みや剛性(ヤング率)は、露光装置EXの搬送路を通る際に、基板FSに座屈による折れ目や非可逆的なシワが生じないような範囲であればよい。基板FSの母材として、厚みが25μm~200μm程度のPET(ポリエチレンテレフタレート)やPEN(ポリエチレンナフタレート)等のフィルムは、好適なシート基板の典型である。
 基板FSは、プロセス装置PR1、露光装置EX、およびプロセス装置PR2で施される各処理において熱を受ける場合があるため、熱膨張係数が顕著に大きくない材質の基板FSを選定することが好ましい。例えば、無機フィラーを樹脂フィルムに混合することによって熱膨張係数を抑えることができる。無機フィラーは、例えば、酸化チタン、酸化亜鉛、アルミナ、または酸化ケイ素等でもよい。また、基板FSは、フロート法等で製造された厚さ100μm程度の極薄ガラスの単層体であってもよいし、この極薄ガラスに上記の樹脂フィルム、箔等を貼り合わせた積層体であってもよい。
 ところで、基板FSの可撓性(flexibility)とは、基板FSに自重程度の力を加えてもせん断したり破断したりすることはなく、その基板FSを撓めることが可能な性質をいう。また、自重程度の力によって屈曲する性質も可撓性に含まれる。また、基板FSの材質、大きさ、厚さ、基板FS上に成膜される層構造、温度、湿度等の環境等に応じて、可撓性の程度は変わる。いずれにしろ、本第1の実施の形態によるデバイス製造システム10内の搬送路に設けられる各種の搬送用ローラ、回転ドラム等の搬送方向転換用の部材に基板FSを正しく巻き付けた場合に、座屈して折り目がついたり、破損(破れや割れが発生)したりせずに、基板FSを滑らかに搬送できれば、可撓性の範囲といえる。
 プロセス装置PR1は、露光装置EXで露光処理される基板FSに対して前工程の処理を行う。プロセス装置PR1は、前工程の処理を行った基板FSを露光装置EXへ向けて送る。この前工程の処理により、露光装置EXへ送られる基板FSは、その表面に感光性機能層(光感応層、感光層)が形成された基板(感光基板)となっている。
 この感光性機能層は、溶液として基板FS上に塗布され、乾燥することによって層(膜)となる。感光性機能層の典型的なものはフォトレジスト(液状またはドライフィルム状)であるが、現像処理が不要な材料として、紫外線の照射を受けた部分の親撥液性が改質される感光性シランカップリング剤(SAM)、或いは紫外線の照射を受けた部分にメッキ還元基が露呈する感光性還元剤等がある。感光性機能層として感光性シランカップリング剤を用いる場合は、基板FS上の紫外線で露光されたパターン部分が撥液性から親液性に改質される。そのため、親液性となった部分の上に導電性インク(銀や銅等の導電性ナノ粒子を含有するインク)や半導体材料を含有した液体等を選択塗布することで、薄膜トランジスタ(TFT)等を構成する電極、半導体、絶縁、或いは接続用の配線や電極となるパターン層を形成することができる。感光性機能層として、感光性還元剤を用いる場合は、基板上の紫外線で露光されたパターン部分にメッキ還元基が露呈する。そのため、露光後、基板FSを直ちにパラジウムイオン等を含むメッキ液中に一定時間浸漬することで、パラジウムによるパターン層が形成(析出)される。このようなメッキ処理はアディティブ(additive)なプロセスであるが、その他、サブトラクティブ(subtractive)なプロセスとしてのエッチング処理を前提にする場合、露光装置EXへ送られる基板FSは、母材をPETやPENとし、その表面にアルミニウム(Al)や銅(Cu)等の金属性薄膜を全面または選択的に蒸着し、さらにその上にフォトレジスト層を積層したものであってもよい。
 本第1の実施の形態においては、露光装置EXは、マスクを用いない直描方式の露光装置、いわゆるラスタースキャン方式の露光装置である。露光装置EXは、プロセス装置PR1から供給された基板FSの被照射面(感光面)に対して、ディスプレイ用の電子デバイス、回路または配線等のための所定のパターンに応じた光パターンを照射する。後で詳細に説明するが、露光装置EXは、基板FSを+X方向(副走査の方向)に搬送しながら、露光用のビーム(レーザ光、照射光)LBのスポット光SPを、基板FS上(基板FSの被照射面上)で所定の走査方向(Y方向)に1次元に走査しつつ、スポット光SPの強度をパターンデータ(描画データ、描画情報)に応じて高速に変調(オン/オフ)する。これにより、基板FSの被照射面である表面(感光面)に、電子デバイス、回路または配線等の所定のパターンに応じた光パターンが描画露光される。つまり、基板FSの副走査と、スポット光SPの主走査とで、スポット光SPが基板FSの被照射面上で相対的に2次元走査されて、基板FSに所定のパターンが描画露光される。また、基板FSは、搬送方向(+X方向)に沿って搬送されているので、露光装置EXによってパターンが露光される露光領域Wは、基板FSの長尺方向に沿って所定の間隔をあけて複数設けられることになる(図5参照)。この露光領域Wに電子デバイスが形成されるので、露光領域Wは、電子デバイス形成領域でもある。なお、電子デバイスは、複数のパターン層(パターンが形成された層)が重ね合わされることで構成されるので、露光装置EXによって各層に対応したパターンが露光されるようにしてもよい。
 プロセス装置PR2は、露光装置EXで露光処理された基板FSに対しての後工程の処理(例えばメッキ処理や現像・エッチング処理等)を行う。この後工程の処理により、基板FS上にデバイスのパターン層が形成される。
 上述したように、電子デバイスは、複数のパターン層が重ね合わされることで構成されるので、デバイス製造システム10の少なくとも各処理を経て、1つのパターン層が生成される。そのため、電子デバイスを生成するために、図1に示すようなデバイス製造システム10の各処理を少なくとも2回は経なければならない。そのため、基板FSが巻き取られた回収ロールを供給ロールとして別のデバイス製造システム10に装着することで、パターン層を積層することができる。そのような動作を繰り返して、電子デバイスが形成される。そのため、処理後の基板FSは、複数の電子デバイス(露光領域W)が所定の間隔をあけて基板FSの長尺方向に沿って連なった状態となる。つまり、基板FSは、多面取り用の基板となっている。
 電子デバイスが連なった状態で形成された基板FSを回収した回収ロールは、図示しないダイシング装置に装着されてもよい。回収ロールが装着されたダイシング装置は、処理後の基板FSを電子デバイス(電子デバイス形成領域W)毎に分割(ダイシング)することで、複数個の電子デバイスにする。基板FSの寸法は、例えば、幅方向(短尺となる方向)の寸法が10cm~2m程度であり、長さ方向(長尺となる方向)の寸法が10m以上である。なお、基板FSの寸法は、上記した寸法に限定されない。
 次に、露光装置EXについて詳しく説明する。露光装置EXは、温調チャンバーECV内に格納されている。この温調チャンバーECVは、内部を所定の温度に保つことで、内部において搬送される基板FSの温度による形状変化を抑制する。温調チャンバーECVは、パッシブまたはアクティブな防振ユニットSU1、SU2を介して製造工場の設置面Eに配置される。防振ユニットSU1、SU2は、設置面Eからの振動を低減する。この設置面Eは、工場の床面自体であってもよいし、水平面を出すために床面上に設置される設置土台(ペデスタル)上の面であってもよい。露光装置EXは、基板搬送機構12と、光源装置(パルス光源装置、レーザ光源装置)14と、描画ヘッド16と、制御装置18とを備えている。
 基板搬送機構12は、プロセス装置PR1から搬送される基板FSを、露光装置EX内で所定の速度で搬送した後、プロセス装置PR2に所定の速度で送り出す。この基板搬送機構12によって、露光装置EX内で搬送される基板FSの搬送路が規定される。基板搬送機構12は、基板FSの搬送方向の上流側(-X方向側)から順に、エッジポジションコントローラEPC、駆動ローラR1、テンション調整ローラRT1、回転ドラム(円筒ドラム)DR、テンション調整ローラRT2、駆動ローラR2、および、駆動ローラR3を有している。
 エッジポジションコントローラEPCは、プロセス装置PR1から搬送される基板FSの幅方向(Y方向であって基板FSの短尺方向)における位置を調整する。つまり、エッジポジションコントローラEPCは、所定のテンションが掛けられた状態で搬送されている基板FSの幅方向の端部(エッジ)における位置が、目標位置に対して±十数μm~数十μm程度の範囲(許容範囲)に収まるように、基板FSを幅方向に移動させて、基板FSの幅方向における位置を調整する。エッジポジションコントローラEPCは、基板FSが掛け渡されるローラと、基板FSの幅方向の端部(エッジ)の位置を検出する図示しないエッジセンサ(端部検出部)を有し、エッジセンサが検出した検出信号に基づいて、エッジポジションコントローラEPCの前記ローラをY方向に移動させて、基板FSの幅方向における位置を調整する。駆動ローラR1は、エッジポジションコントローラEPCから搬送される基板FSの表裏両面を保持しながら回転し、基板FSを回転ドラムDRへ向けて搬送する。なお、エッジポジションコントローラEPCは、回転ドラムDRに巻き付く基板FSの長尺方向が、回転ドラムDRの中心軸(回転軸)AXoに対して常に直交するように、基板FSの幅方向における位置を適宜調整するとともに、基板FSの進行方向における傾き誤差を補正するように、エッジポジションコントローラEPCの前記ローラの回転軸とY軸との平行度を適宜調整してもよい。
 回転ドラムDRは、Y方向に延びるとともに重力が働く方向と交差した方向に延びた中心軸AXoと、中心軸AXoから一定半径の円筒状の外周面とを有し、外周面(円周面)に倣って基板FSの一部を長尺方向に支持しつつ、中心軸AXoを中心に回転して基板FSを+X方向に搬送する。回転ドラムDRは、描画ヘッド16からのビームLB(スポット光SP)が投射される基板FS上の露光領域(部分)をその円周面で支持する。回転ドラムDRのY方向の両側には、回転ドラムDRが中心軸AXo回りに回転するように環状のベアリングで支持されたシャフトSftが設けられている。このシャフトSftは、制御装置18によって制御される図示しない回転駆動源(例えば、モータや減速機構等から構成される)からの回転トルクが与えられることで中心軸AXo回りに回転する。なお、便宜的に、中心軸AXoを含み、YZ平面と平行な平面を中心面Pocと呼ぶ。
 駆動ローラR2、R3は、基板FSの搬送方向(+X方向)に沿って所定の間隔を空けて配置されており、露光後の基板FSに所定の弛み(あそび)を与えている。駆動ローラR2、R3は、駆動ローラR1と同様に、基板FSの表裏両面を保持しながら回転し、基板FSをプロセス装置PR2へ向けて搬送する。駆動ローラR2、R3は、回転ドラムDRに対して搬送方向の下流側(+X方向側)に設けられており、この駆動ローラR2は、駆動ローラR3に対して、搬送方向の上流側(-X方向側)に設けられている。テンション調整ローラRT1、RT2は、-Z方向に付勢されており、回転ドラムDRに巻き付けられて支持されている基板FSに、長尺方向に所定のテンションを与えている。これにより、回転ドラムDRにかかる基板FSに付与される長尺方向のテンションを所定の範囲内に安定化させている。なお、制御装置18は、図示しない回転駆動源(例えば、モータや減速機等から構成される)を制御することで、駆動ローラR1~R3を回転させる。
 光源装置14は、光源(パルス光源)を有し、パルス状のビーム(パルス光、レーザ光)LBを射出するものである。このビームLBは、370nm以下の波長帯域にピーク波長を有する紫外線光であり、ビームLBの発振周波数(発光周波数)をFsとする。光源装置14が射出したビームLBは、描画ヘッド16に入射する。光源装置14は、制御装置18の制御にしたがって、発光周波数FsでビームLBを発光して射出する。この光源装置14の構成は、後で詳細に説明するが、赤外波長域のパルス光を発生する半導体レーザ素子、ファイバー増幅器、増幅された赤外波長域のパルス光を紫外波長域のパルス光に変換する波長変換素子(高調波発生素子)等で構成され、発振周波数Fsが数百MHzで、1パルス光の発光時間がピコ秒程度の高輝度な紫外線のパルス光が得られるファイバーアンプレーザ光源を用いてもよい。
 描画ヘッド16は、ビームLBがそれぞれ入射する複数の走査ユニットUn(U1~U6)を備えている。描画ヘッド16は、基板搬送機構12の回転ドラムDRの円周面で支持されている基板FSの一部分に、複数の走査ユニット(描画ユニット)U1~U6によって、所定のパターンを描画する。描画ヘッド16は、同一構成の複数の走査ユニットU1~U6を配列した、いわゆるマルチビーム型の描画ヘッド16となっている。描画ヘッド16は、基板FSに対して電子デバイス用のパターン露光を繰り返し行うことから、パターンが露光される露光領域(電子デバイス形成領域)Wは、基板FSの長尺方向に沿って所定の間隔をあけて複数設けられている(図5参照)。制御装置18は、露光装置EXの各部を制御し、各部に処理を実行させる。この制御装置18は、コンピュータと、プログラムが記憶された記憶媒体とを含み、該コンピュータが記憶媒体に記憶されたプログラムを実行することで、本第1の実施の形態の制御装置18として機能する。
 図2は、描画ヘッド16の複数の走査ユニット(描画ユニット)Unおよび回転ドラムDRを支持する支持フレーム(装置コラム)30を示す図である。支持フレーム30は、本体フレーム32と、3点支持部34と、描画ヘッド支持部36とを有する。支持フレーム30は、温調チャンバーECV内に格納されている。本体フレーム32は、回転ドラムDRと、テンション調整ローラRT1(不図示)、RT2とを環状のベアリングを介して回転可能に支持している。3点支持部34は、本体フレーム32の上端に設けられ、回転ドラムDRの上方に設けられた描画ヘッド支持部36を3点で支持する。
 描画ヘッド支持部36は、描画ヘッド16の走査ユニットUn(U1~U6)を支持するものである。描画ヘッド支持部36は、走査ユニットU1、U3、U5を回転ドラムDRの中心軸AXoに対して搬送方向の下流側(+X方向側)で、且つ、基板FSの幅方向に沿って並列に支持する(図1参照)。また、描画ヘッド支持部36は、走査ユニットU2、U4、U6を中心軸AXoに対して搬送方向の上流側(-X方向側)で、且つ、基板FSの幅方向(Y方向)に沿って並列に支持する(図1参照)。なお、ここで、1つの走査ユニットUnによるY方向の描画幅(スポット光SPの走査範囲、描画ラインSLn)は、一例として20~50mm程度とすると、奇数番の走査ユニットU1、U3、U5の3個と、偶数番の走査ユニットU2、U4、U6の3個との計6個の走査ユニットUnをY方向に配置することによって、描画可能なY方向の幅を120~300mm程度に広げている。
 図3は、描画ヘッド16の構成を示す図である。本第1の実施の形態では、露光装置EXは、2つの光源装置14(14a、14b)を備える。描画ヘッド16は、複数の走査ユニットU1~U6と、光源装置14aからのビームLBを複数の走査ユニットU1、U3、U5に導く光導入光学系(ビーム切換部材)40aと、光源装置14bからのビームLBを複数の走査ユニットU2、U4、U6に導く光導入光学系(ビーム切換部材)40bとを有する。
 まず、図4を用いて、光導入光学系(ビーム切換部材)40aについて説明する。なお、光導入光学系40a、40bは、同一の構成を有するので、ここでは、光導入光学系40aについて説明し、光導入光学系40bの説明を省略する。
 光導入光学系40aは、光源装置14(14a)側から、集光レンズ42、コリメートレンズ44、反射ミラー46、集光レンズ48、選択用光学素子50、反射ミラー52、コリメートレンズ54、集光レンズ56、選択用光学素子58、反射ミラー60、コリメートレンズ62、集光レンズ64、選択用光学素子66、反射ミラー68、および吸収体70を有する。
 集光レンズ42およびコリメートレンズ44は、光源装置14aから射出されたビームLBを拡大するものである。詳しくは、まず、集光レンズ42はビームLBを集光レンズ42の後側の焦点位置に収斂し、コリメートレンズ44は、集光レンズ42によって収斂された後に発散するビームLBを所定のビーム径(例えば、数mm)の平行光にする。
 反射ミラー46は、コリメートレンズ44によって平行光にされたビームLBを反射させて選択用光学素子50に照射する。集光レンズ48は、選択用光学素子50に入射するビームLBを、選択用光学素子50内でビームウェストとなるように集光(収斂)させる。選択用光学素子50は、ビームLBに対して透過性を有するものであり、例えば、音響光学変調素子(AOM:Acousto-Optic Modulator)が用いられる。AOMは、超音波信号(高周波信号)が印加されると、入射したビームLB(0次光)を、高周波の周波数に応じた回折角で回折させた1次回折光を射出ビーム(ビームLBn)として発生させるものである。なお、本第1の実施の形態では、複数の選択用光学素子50、58、66の各々から1次回折光として射出されて対応する走査ユニットU1、U3、U5に入射するビームLBnをLB1、LB3、LB5で表し、各選択用光学素子50、58、66は、光源装置14(14a)からのビームLBの光路を偏向する機能を奏するものとして扱う。各選択用光学素子50、58、66の構成、機能、作用等は互いに同一のものを用いてもよい。選択用光学素子50、58、66は、制御装置18からの駆動信号(高周波信号)のオン/オフにしたがって、入射したビームLBを回折させた回折光の発生をオン/オフする。
 詳しく説明すると、選択用光学素子50は、制御装置18からの駆動信号(高周波信号)がオフの場合は、入射したビームLBを次段の選択用光学素子58に照射する。一方、制御装置18からの駆動信号(高周波信号)がオンの場合は、選択用光学素子50は、入射したビームLBを回折させ、その1次回折光であるビームLB1を反射ミラー52に照射する。反射ミラー52は、入射したビームLB1を反射させて、走査ユニットU1のコリメートレンズ100に照射する。すなわち、制御装置18が選択用光学素子50をオンオフにスイッチング(駆動)することで、選択用光学素子50は、ビームLB1を走査ユニットU1に入射させるか否かを切り換える。
 選択用光学素子50と選択用光学素子58との間には、選択用光学素子58に照射されるビームLBを平行光に戻すコリメートレンズ54と、コリメートレンズ54によって平行光にされたビームLBを再び選択用光学素子58内でビームウェストとなるように集光(収斂)させる集光レンズ56とが、前記の順で設けられている。
 選択用光学素子58は、選択用光学素子50と同様に、ビームLBに対して透過性を有するものであり、例えば、音響光学変調素子(AOM)が用いられる。選択用光学素子58は、制御装置18から送られてくる駆動信号(高周波信号)がオフの場合は、入射したビームLBをそのまま透過して選択用光学素子66に照射し、制御装置18から送られてくる駆動信号(高周波信号)がオンの場合は、入射したビームLBを回折させ、その1次回折光であるビームLB3を反射ミラー60に照射する。反射ミラー60は、入射したビームLB3を反射させて、走査ユニットU3のコリメートレンズ100に照射する。すなわち、制御装置18が選択用光学素子58をオンオフにスイッチングすることで、選択用光学素子58は、ビームLB3を走査ユニットU3に入射させるか否かを切り換える。
 選択用光学素子58と選択用光学素子66との間には、選択用光学素子66に照射されるビームLBを平行光に戻すコリメートレンズ62と、コリメートレンズ62によって平行光にされたビームLBを再び選択用光学素子66内でビームウェストとなるように集光(収斂)させる集光レンズ64とが、前記の順で設けられている。
 選択用光学素子66は、選択用光学素子50と同様に、ビームLBに対して透過性を有するものであり、例えば、音響光学変調素子(AOM)が用いられる。選択用光学素子66は、制御装置18からの駆動信号(高周波信号)がオフの状態の場合は、入射したビームLBを吸収体70に向けて照射し、制御装置18からの駆動信号(高周波信号)がオンの状態の場合は、入射したビームLBを回折させ、その1次回折光であるビームLB5を反射ミラー68に向けて照射する。反射ミラー68は、入射したビームLB5を反射させて、走査ユニットU5のコリメートレンズ100に照射する。すなわち、制御装置18が選択用光学素子66をオンオフにスイッチングすることで、選択用光学素子66は、ビームLB5を走査ユニットU5に入射させるか否かを切り換える。吸収体70は、ビームLBの外部への漏れを抑制するためのビームLBを吸収する光トラップである。
 光導入光学系40bについては簡単に説明すると、光導入光学系40bの選択用光学素子50、58、66は、ビームLBを走査ユニットU2、U4、U6に入射させるか否かを切り換える。この場合、光導入光学系40bの反射ミラー52、60、68は、選択用光学素子50、58、66から射出されるビームLB2、LB4、LB6を反射して走査ユニットU2、U4、U6のコリメートレンズ100に照射する。
 なお、実際の音響光学変調素子(AOM)は、1次回折光の発生効率が0次光の80%程度であるため、選択用光学素子50、58、66の各々で偏向されたビームLB1(LB2)、LB3(LB4)、LB5(LB6)は、元のビームLBの強度よりは低下している。また、選択用光学素子50、58、66のいずれか1つがオン状態のとき、回折されずに直進する0次光が20%程度残存するが、それは最終的に吸収体70によって吸収される。
 次に、図3に示す複数の走査ユニットUn(U1~U6)について説明する。走査ユニットUnは、光源装置14(14a、14b)からのビームLBnを基板FSの被照射面上でスポット光SPに収斂させるように投射しつつ、そのスポット光SPを基板FSの被照射面上で所定の直線的な描画ライン(走査線)SLnに沿って、回転するポリゴンミラーPMによって1次元に走査する。なお、走査ユニットU1の描画ラインSLnをSL1で表し、同様に、走査ユニットU2~U6の描画ラインSLnをSL2~SL6で表す。
 図5は、各走査ユニットUn(U1~U6)によって、スポット光SPが走査される描画ラインSLn(SL1~SL6)を示す図である。図5に示すように、複数の走査ユニットUn(U1~U6)全部で露光領域Wの幅方向の全てをカバーするように、各走査ユニットUn(U1~U6)は、走査領域を分担している。これにより、各走査ユニットUn(U1~U6)は、基板FSの幅方向に分割された複数の領域毎にパターンを描画することができる。各描画ラインSLn(SL1~SL6)の長さは、原則として同一とする。つまり、描画ラインSL1~SL6の各々に沿って走査されるビームLBnのスポット光SPの走査距離は、原則として同一とする。なお、露光領域Wの幅を長くしたい場合は、描画ラインSLn自体の長さを長くするか、Y方向に設置する走査ユニットUnの数を増やすことで対応することができる。
 なお、実際の各描画ラインSLn(SL1~SL6)は、スポット光SPが被照射面上を実際に走査可能な最大の長さよりも僅かに短く設定される。例えば、主走査方向(Y方向)の描画倍率が初期値(倍率補正無し)の場合にパターン描画可能な描画ラインSLnの最大長を30mmとすると、スポット光SPの被照射面上での最大走査長は、描画ラインSLnの走査開始点側と走査終了点側の各々に0.5mm程度の余裕を持たせて、31mm程度に設定されている。このように設定することによって、スポット光SPの最大走査長31mmの範囲内で、30mmの描画ラインSLnの位置を主走査方向に微調整したり、描画倍率を微調整したりすることが可能となる。スポット光SPの最大走査長は31mmに限定されるものではなく、主に走査ユニットUn内のポリゴンミラー(回転ポリゴンミラー)PMの後に設けられるfθレンズFT(図3参照)の口径によって決まり、31mm以上であってもよい。
 複数の描画ライン(走査ライン)SL1~SL6は、中心面Pocを挟んで、回転ドラムDRの周方向に2列に配置される。描画ラインSL1、SL3、SL5は、中心面Pocに対して搬送方向の下流側(+X方向側)の基板FS上に位置する。描画ラインSL2、SL4、SL6は、中心面Pocに対して搬送方向の上流側(-X方向側)の基板FS上に位置する。各描画ラインSLn(SL1~SL6)は、基板FSの幅方向、つまり、回転ドラムDRの中心軸AXoに沿ってほぼ平行となっており、基板FSの幅方向の長さよりも短い。
 描画ラインSL1、SL3、SL5は、基板FSの幅方向(走査方向、Y方向)に沿って所定の間隔を空けて配置され、描画ラインSL2、SL4、SL6も同様に、基板FSの幅方向(走査方向、Y方向)に沿って所定の間隔を空けて配置されている。このとき、描画ラインSL2は、基板FSの幅方向において、描画ラインSL1と描画ラインSL3との間に配置される。同様に、描画ラインSL3は、基板FSの幅方向において、描画ラインSL2と描画ラインSL4との間に配置される。描画ラインSL4は、基板FSの幅方向において、描画ラインSL3と描画ラインSL5との間に配置される。描画ラインSL5は、基板FSの幅方向において、描画ラインSL4と描画ラインSL6との間に配置される。すなわち、描画ラインSL1~SL6は、基板FS上に描画される露光領域Wの幅方向の全てをカバーするように配置される。
 奇数番の描画ラインSL1、SL3、SL5の各々に沿って走査されるビームLBn(LB1、LB3、LB5)のスポット光SPの走査方向は、一次元の方向となっており、同じ方向となっている。偶数番の描画ラインSL2、SL4、SL6の各々に沿って走査されるビームLBn(LB2、LB4、LB6)のスポット光SPの走査方向は、一次元の方向となっており、同じ方向となっている。この描画ラインSL1、SL3、SL5に沿って走査されるビームLBn(スポット光SP)の走査方向と、描画ラインSL2、SL4、SL6に沿って走査されるビームLBn(スポット光SP)の走査方向とは互いに逆方向となっている。詳しくは、この描画ラインSL2、SL4、SL6に沿って走査されるビームLBn(スポット光SP)の走査方向は+Y方向であり、描画ラインSL1、SL3、SL5に沿って走査されるビームLBn(スポット光SP)の走査方向は-Y方向である。これは、走査ユニットU1~U6のポリゴンミラーPMとして、同一方向に回転するポリゴンミラーPMを使用したことによる。これにより、描画ラインSL1、SL3、SL5の描画開始位置(描画開始点(走査開始点)の位置)と、描画ラインSL2、SL4、SL6の描画開始位置とはY方向に関して隣接(または一部重複)する。また、描画ラインSL3、SL5の描画終了位置(描画終了点(走査終了点)の位置)と、描画ラインSL2、SL4の描画終了位置とはY方向に関して隣接(または一部重複)する。Y方向に隣り合う描画ラインSLnの端部同士を一部重複させるように、各描画ラインSLnを配置する場合は、例えば、各描画ラインSLnの長さに対して、描画開始位置、または描画終了位置を含んでY方向に数%以下の範囲で重複させるとよい。
 なお、描画ラインSLnの副走査方向の幅は、スポット光SPのサイズ(直径)φに応じた太さである。例えば、スポット光SPのサイズφが3μmの場合は、描画ラインSLnの副走査方向の幅も3μmとなる。スポット光SPは、所定の長さ(例えば、スポット光SPのサイズφの半分)だけオーバーラップするように、描画ラインSLnに沿って投射されてもよい。また、Y方向に隣り合う描画ラインSLn(例えば、描画ラインSL1と描画ラインSL2)同士を互いに隣接させる場合(継ぐ場合)も、所定の長さ(例えば、スポット光SPのサイズφの半分)だけオーバーラップさせるのがよい。
 本第1の実施の形態の場合、光源装置14からのビームLBがパルス光であるため、主走査の間に描画ラインSLn上に投射されるスポット光SPは、ビームLBの発振周波数Fsに応じて離散的になる。そのため、ビームLBの1パルス光によって投射されるスポット光SPと次の1パルス光によって投射されるスポット光SPとを、主走査方向にオーバーラップさせる必要がある。そのオーバーラップの量は、スポット光SPのサイズφ、スポット光SPの走査速度Vs、ビームLBの発振周波数Fsによって設定されるが、スポット光SPの強度分布がガウス分布で近似される場合、スポット光SPのピーク強度の1/e2(または1/2)で決まる実効的な径サイズφに対して、φ/2程度オーバーラップさせるのがよい。したがって、副走査方向(描画ラインSLnと直交した方向)に関しても、描画ラインSLnに沿ったスポット光SPの1回の走査と、次の走査との間で、基板FSがスポット光SPの実効的なサイズφのほぼ1/2以下の距離だけ移動するように設定することが望ましい。また、基板FS上の感光性機能層への露光量の設定は、ビームLB(パルス光)のピーク値の調整で可能であるが、ビームLBの強度を上げられない状況で露光量を増大させたい場合は、スポット光SPの主走査方向の走査速度Vsの低下、ビームLBの発振周波数Fsの増大、或いは基板FSの副走査方向の搬送速度の低下等のいずれかによって、スポット光SPの主走査方向または副走査方向に関するオーバーラップ量を実効的なサイズφの1/2以上に増加させればよい。
 次に、図3に示す走査ユニットUnの構成について説明する。なお、各走査ユニットU1~U6は、同一の構成を有するので、ここでは、走査ユニットU1についてのみ説明する。走査ユニットU1は、図4に示した反射ミラー52の後のコリメートレンズ100、反射ミラー102、集光レンズ104、描画用光学素子106、コリメートレンズ108、反射ミラー110、シリンドリカルレンズCYa、反射ミラー114、ポリゴンミラー(光走査部材、偏向部材)PM、fθレンズFT、シリンドリカルレンズCYb、および反射ミラー122を有する。コリメートレンズ100、108、反射ミラー102、110、114、122、集光レンズ104、シリンドリカルレンズCYa、CYb、およびfθレンズFTは、光学レンズ系を構成する。
 反射ミラー102は、コリメートレンズ100から入射したビームLB1を図3中で-Z方向に反射して、描画用光変調器としての描画用光学素子106に入射する。集光レンズ104は、描画用光学素子106に入射するビームLB1(平行光束)が、描画用光学素子106内でビームウェストとなるように集光(収斂)させる。描画用光学素子106は、ビームLB1に対して透過性を有するものであり、例えば、音響光学変調素子(AOM)が用いられる。描画用光学素子106は、制御装置18からの駆動信号(高周波信号)がオフ状態のとき、入射したビームLB1を図示しない遮蔽板若しくは吸収体に照射し、制御装置18からの駆動信号(高周波信号)がオン状態のとき、入射したビームLB1を回折させて、その1次回折光(描画ビーム、すなわち、パターンデータに応じて強度変調されたビームLB1)を反射ミラー110に照射する。前記遮蔽板および前記吸収体は、ビームLB1の外部への漏れを抑制するためのものである。
 反射ミラー110と描画用光学素子106との間には、反射ミラー110に入射するビームLB1を平行光にするコリメートレンズ108が設けられている。反射ミラー110は、入射したビームLB1を反射ミラー114に向けて-X方向に反射し、反射ミラー114は、入射したビームLB1をポリゴンミラーPMに向けて反射する。ポリゴンミラー(回転多面鏡)PMは、入射したビームLB1を、X軸と平行な光軸を有するfθレンズFTに向けて-X方向側に反射する。ポリゴンミラーPMは、ビームLB1のスポット光SPを基板FSの被照射面上で走査するために、入射したビームLB1をXY平面と平行な面内で偏向(反射)する。具体的には、ポリゴンミラーPMは、Z方向に延びる回転軸AXpと、回転軸AXpの周りに形成された複数の反射面RP(本第1の実施の形態では8つの反射面RP)とを有する。回転軸AXpを中心にこのポリゴンミラーPMを所定の回転方向に回転させることで、反射面RPに照射されるパルス状のビームLB1の反射角を連続的に変化させることができる。これにより、1つの反射面RPによってビームLB1の反射方向が偏向され、基板FSの被照射面上に照射されるビームLB1のスポット光SPを走査方向(基板FSの幅方向、Y方向)に走査することができる。つまり、ポリゴンミラーPMは、入射したビームLB1を偏向させて、図5に示す描画ライン(走査ライン)SL1に沿ってスポット光SPを走査する。なお、ポリゴンミラーPMは、図示しない回転駆動源(例えば、モータや減速機構等から構成される)によって一定の速度で回転する。この回転駆動源は、制御装置18によって制御される。
 ポリゴンミラーPMの1つの反射面RPによって、ビームLB1のスポット光SPを描画ラインSL1に沿って走査することができることから、ポリゴンミラーPMの1回転で、基板FSの被照射面上にスポット光SPが走査される描画ラインSL1の数は、最大で反射面RPの数と同じ8本となる。上述したように、描画ラインSL1の実効的な長さ(例えば、30mm)は、このポリゴンミラーPMによってスポット光SPを走査することができる最大走査長(例えば、31mm)以下の長さに設定されており、初期設定(設計上)では、最大走査長の中央に描画ラインSL1の中心点が設定されている。
 なお、一例として、描画ラインSL1の実効的な長さを30mmとし、実効的なサイズφが3μmのスポット光SPを1.5μmずつオーバーラップさせながらスポット光SPを描画ラインSL1に沿って基板FSの被照射面上に照射する場合は、1回の走査で照射されるスポット光SPの数(光源装置14からのビームLBのパルス数)は、20000(30mm/1.5μm)となる。また、描画ラインSL1に沿ったスポット光SPの走査時間を200μsecとすると、この間に、パルス状のスポット光SPを20000回照射しなければならないので、光源装置14の発光周波数Fsは、Fs≧20000回/200μsec=100MHzとなる。
 走査ユニットU1の構成の説明に戻り、反射ミラー110と反射ミラー114との間に設けられたシリンドリカルレンズCYaは、走査方向と直交するZ方向(非走査方向)に関してビームLB1をポリゴンミラーPMの反射面RP上でXY面と平行な方向に延びた長楕円状(スリット状)に集光(収斂)する。このシリンドリカルレンズCYaによって、反射面RPがZ方向(Z軸)に対して傾いている場合(面倒れ誤差がある場合)であっても、その影響を抑制することができ、基板FS上に照射されるビームLB1によるスポット光の照射位置が、基板FSの搬送方向(X方向)にずれることを抑制する。
 ポリゴンミラーPMで反射したビームLB1は、集光レンズを含むfθレンズFTに照射される。X軸方向に延びる光軸を有するfθレンズFTは、ポリゴンミラーPMによって反射されたビームLB1を、XY平面と平行な平面において、X軸と平行となるように反射ミラー122に投射するテレセントリック系のスキャンレンズである。ビームLB1のfθレンズFTへの入射角θは、ポリゴンミラーPMの回転角(θ/2)に応じて変わる。fθレンズFTは、その入射角θに比例した基板FSの被照射面上の像高位置にビームLB1を投射する。焦点距離をfoとし、像高位置をyとすると、fθレンズFTは、y=fo・θ、の関係を有する。したがって、このfθレンズFTによって、ビームLB1(スポット光SP)をY方向に正確に等速で走査することが可能になる。fθレンズFTへの入射角が0度のときに、fθレンズFTに入射したビームLB1は、fθレンズFTの光軸上に沿って進む。
 fθレンズFTから照射されたビームLB1は、反射ミラー122を介して基板FS上にスポット光SPとなって照射される。fθレンズFTと反射ミラー122との間に設けられたシリンドリカルレンズCYbは、基板FS上に集光されるビームLB1のスポット光SPを直径数μm程度(例えば、3μm)の微小な円形にするもので、その母線はY方向と平行になっている。これにより、基板FS上にはスポット光(走査スポット)SPによるY方向に延びた描画ラインSL1(図5参照)が規定される。シリンドリカルレンズCYbが無い場合、ポリゴンミラーPMの手前のシリンドリカルレンズCYaの作用によって、基板FS上に集光するスポット光SPは、走査方向(Y方向)と直交した方向(X方向)に伸びた長楕円形になってしまう。
 このように、基板FSがX方向に搬送されている状態で、各走査ユニットU1~U6によって、ビームLBのスポット光SPが走査方向(Y方向)に走査することで、所定のパターンが基板FS上に描画される。この各走査ユニットU1~U6は、基板FS上の異なる領域を走査するように描画ヘッド支持部36に配置されている。なお、基板FS上でのスポット光SPの走査方向の寸法(描画ラインの長さ)をDs、スポット光SPの基板FS上での走査速度(相対走査の速度)をVsとしたとき、ビームLBの発振周波数Fsは、Fs≧Vs/Ds、の関係を満たす必要がある。ビームLBはパルス光であるため、発振周波数Fsが、Fs≧Vs/Ds、の関係を満たさないと、所定の間隔(隙間)を空けて基板FS上にビームLBのスポット光SPが照射されてしまうからである。発振周波数Fsが、Fs≧Vs/Ds、の関係を満たすと、スポット光SPが走査方向に関して互いに重なり合うように基板FS上に照射することができるので、パルス発振するビームLBであっても、走査方向に実質的に連続した直線パターンを基板FS上に良好に描画することができる。なお、スポット光SPの走査速度Vsは、ポリゴンミラーPMの回転速度が速くなる程速くなる。
 図6は、各走査ユニットU1~U6のポリゴンミラーPMと、複数の描画ラインSLn(SL1~SL6)の走査方向との関係を示す図である。複数の走査ユニットU1、U3、U5と複数の走査ユニットU2、U4、U6とにおいては、反射ミラー114、ポリゴンミラーPM、およびfθレンズFTが中心面Pocに対して対称な構成となっている。このため、各走査ユニットU1~U6のポリゴンミラーPMを同一の方向(左回り)に回転させることで、各走査ユニットU1、U3、U5は、描画開始位置から描画終了位置へ向けて-Y方向にビームLBのスポット光SPを走査し、各走査ユニットU2、U4、U6は、描画開始位置から描画終了位置へ向けて+Y方向にビームLBのスポット光SPを走査することになる。なお、各走査ユニットU2、U4、U6のポリゴンミラーPMの回転方向を、各走査ユニットU1、U3、U5のポリゴンミラーPMの回転方向と逆方向にすることで、各走査ユニットU1~U6のビームLBのスポット光SPの走査方向を同一方向(+Y方向または-Y方向)に合わせるようにしてもよい。
 ここで、ポリゴンミラーPMは回転しているため、時間の経過とともに反射面RPの角度も変化する。したがって、ポリゴンミラーPMの特定の反射面RPに入射したビームLBを、fθレンズFTに入射させることができるポリゴンミラーPMの回転角度αは限られる。
 図7は、走査ユニットUnのポリゴンミラーPMの反射面RPがfθレンズFTに入射するように、ビームLBnを偏向(反射)することができるポリゴンミラーPMの回転角度αを説明するための図である。この回転角度αは、走査ユニットUnのポリゴンミラーPMが1つの反射面RPによってスポット光SPを基板FSの被照射面上で走査することができるポリゴンミラーPMの最大走査回転角度範囲である。以下、回転角度αを最大走査回転角度範囲と呼ぶ。ポリゴンミラーPMが最大走査回転角度範囲αだけ回転する期間がスポット光SPの有効走査期間(最大走査時間)となる。この最大走査回転角度範囲αは、上述した描画ラインSLnの最大走査長に対応し、最大走査回転角度範囲αが大きくなる程、最大走査長は長くなる。回転角度βは、特定の1つの反射面RPへのビームLBの入射が開始するときのポリゴンミラーPMの角度から、前記特定の反射面RPへの入射が終了するときのポリゴンミラーPMの角度までの回転角度を示している。つまり、回転角度βは、ポリゴンミラーPMが、反射面RPの1面分回転する角度である。回転角度βは、ポリゴンミラーPMの反射面RPの数Npによって規定され、β≒360/Np、で表すことができる。したがって、走査ユニットUnのポリゴンミラーPMの前記特定の反射面RPが、スポット光SPを基板FSの被照射面上で走査することができない、つまり、ポリゴンミラーPMの前記特定の反射面RPで反射した反射光がfθレンズFTに入射することができないポリゴンミラーPMの非走査回転角度範囲γは、γ=β-α、の関係式で表される。このポリゴンミラーPMが非走査回転角度範囲γだけ回転する期間はスポット光SPの無効走査期間となる。この非走査回転角度範囲γにおいては、走査ユニットUnは、ビームLBnを基板FS上に照射することができない。この回転角度αと非走査回転角度範囲γとは、数式(1)の関係を有する。
 γ=(360度/Np)-α …(1)
(ただし、Nは、ポリゴンミラーPMが有する反射面RPの数)
 本第1の実施の形態では、ポリゴンミラーPMは、8つの反射面RPを有するので、N=8、となる。したがって、数式(1)は、数式(2)で表すことができる。
 γ=45度-α …(2)
 最大走査回転角度範囲αは、ポリゴンミラーPMとfθレンズFTとの距離等の条件によって変わる。例えば、最大走査回転角度範囲αを15度とすると、非走査回転角度範囲γは30度となり、ポリゴンミラーPMの走査効率は、図7において、α/β=1/3、となる。つまり、走査ユニットUnのポリゴンミラーPMが非走査回転角度範囲γ(30度)分だけ回転する間に、ポリゴンミラーPMに入射するビームLBnは無駄となる。
 そこで、本第1の実施の形態においては、1つの光源装置14からのビームLBを入射させる走査ユニットUnを切り換えて、ビームLBを3つの走査ユニットUnに周期的に振り分けることで、走査効率の向上を図る。つまり、3つの走査ユニットUnの描画期間(スポット光SPを走査する走査期間)を、互いにずらすことで、光源装置14からのビームLBを無駄にすることなく、走査効率の向上を図る。
 なお、有効走査期間(有効描画期間)である最大走査回転角度範囲αは、ビームLBnがfθレンズFTに入射して、スポット光SPが描画ラインSLn上を有効に走査可能な範囲であるが、fθレンズFTの前側の焦点距離等によっては最大走査回転角度範囲αも変わる。上記と同じ8面のポリゴンミラーPMで最大走査回転角度範囲αが10度の場合、数式(2)より、非描画期間である非走査回転角度範囲γは35度となり、このときの描画の走査効率は約1/4(10/45)となる。逆に、最大走査回転角度範囲αが20度の場合、数式(2)より、非描画期間である非走査回転角度範囲γは25度となり、このときの描画の走査効率は約1/2(20/45)となる。なお、走査効率が1/2以上の場合は、ビームLBを振り分ける走査ユニットUnの数は2つであってもよい。つまり、ビームLBを振り分けることができる走査ユニットUnの数は、走査効率によって制限される。
 図8は、光導入光学系40aと複数の走査ユニットU1、U3、U5との光路を模式化した図である。制御装置18から選択用光学素子(AOM)50に印加される駆動信号(高周波信号)がオンであり、選択用光学素子58、66に印加される駆動信号がオフの場合は、選択用光学素子50が入射したビームLBを回折させる。これにより、選択用光学素子50で回折された1次回折光であるビームLB1は、反射ミラー52を介して走査ユニットU1に入射し、走査ユニットU3、U5にはビームLBが入射しない。同様に、制御装置18から選択用光学素子(AOM)58に印加される駆動信号がオンであり、選択用光学素子50、66に印加される駆動信号がオフの場合は、オフ状態の選択用光学素子50を透過したビームLBが選択用光学素子58に入射し、選択用光学素子58は、入射したビームLBを回折させる。これにより、選択用光学素子58で回折した1次回折光であるビームLB3は、反射ミラー60を介して走査ユニットU3に入射し、走査ユニットU1、U5にはビームLBが入射しない。また、制御装置18から選択用光学素子(AOM)66に印加される駆動信号がオンであり、選択用光学素子50、58に印加される駆動信号がオフの場合は、オフ状態の選択用光学素子50、58を透過したビームLBが選択用光学素子66に入射し、選択用光学素子66は、入射したビームLBを回折させる。これにより、選択用光学素子66で回折した1次回折光であるビームLB5は、反射ミラー68によって走査ユニットU5に入射し、走査ユニットU1、U3にはビームLBが入射しない。
 このように、光導入光学系40aの複数の選択用光学素子50、58、66を光源装置14aからのビームLBの進行方向に沿って直列に配置したことにより、複数の選択用光学素子50、58、66は、複数の走査ユニットU1、U3、U5のうちのいずれか1つの走査ユニットUnにビームLBn(LB1、LB3、LB5)を入射させるかを選択して切り換えることができる。制御装置18は、ビームLBが入射する走査ユニットUnが、例えば、走査ユニットU1→走査ユニットU3→走査ユニットU5→走査ユニットU1、というような順番で周期的に切り換わるように、複数の選択用光学素子50、58、66を制御する。すなわち、複数の走査ユニットU1、U3、U5の各々に順番に所定の走査時間だけビームLBn(LB1、LB3、LB5)が入射するように切り換える。
 走査ユニットU1のポリゴンミラーPMは、走査ユニットU1にビームLB1が入射される期間に、入射したビームLB1をfθレンズFTに向けて反射することができるように、その回転が制御装置18によって制御されている。すなわち、走査ユニットU1にビームLB1が入射する期間と、走査ユニットU1によるビームLB1のスポット光SPの走査期間(図7中の最大走査回転角度範囲α)とは同期している。言い換えるならば、走査ユニットU1のポリゴンミラーPMは、ビームLB1が入射される期間と同期させて、走査ユニットU1に入射されたビームLB1のスポット光SPを描画ラインSL1に沿って走査するようにビームLB1を偏向する。走査ユニットU3、U5のポリゴンミラーPMも同様に、走査ユニットU3、U5にビームLB3、LB5が入射される期間に、入射したビームLB3、LB5をfθレンズFTに反射することができるように、その回転が制御装置18によって制御されている。すなわち、走査ユニットU3、U5にビームLB3、LB5が入射する期間と、走査ユニットU3、U5によるビームLB3、LB5のスポット光SPの走査期間とは同期している。言い換えるならば、走査ユニットU3、U5のポリゴンミラーPMは、ビームLB3、LB5が入射される期間と同期させて、走査ユニットU3、U5に入射されたビームLBのスポット光SPを描画ラインSL3、SL5に沿って走査するようにビームLB3、LB5を偏向する。
 このように、1つの光源装置14aからのビームLBは、3つの走査ユニットU1、U3、U5のいずれか1つの走査ユニットUnに時分割的に供給されるため、走査ユニットU1、U3、U5の各々のポリゴンミラーPMは、回転速度を一致させつつ、その回転角度位置が一定の角度差を保つ(位相差を保つ)ように回転駆動が制御される。その制御の具体例については、後述する。
 また、制御装置18は、各走査ユニットU1、U3、U5から照射されるビームLB1、LB3、LB5のスポット光SPによって基板FS上に描画されるパターンを規定するパターンデータ(描画データ)に基づいて、各走査ユニットU1、U3、U5の描画用光学素子106に供給される駆動信号(高周波信号)のオンオフを制御する。これにより、各走査ユニットU1、U3、U5の描画用光学素子106は、このオンオフの駆動信号に基づいて、入射したビームLB1、LB3、LB5を回折させて、スポット光SPの強度を変調させることができる。このパターンデータは、例えば、描画パターンの1ドット(画素)を3×3μmとし、1ドット毎に駆動信号をオン(描画)する場合は「1」、駆動信号をオフ(非描画)とする場合は「0」の2値データをビットマップデータとして生成したものであり、各走査ユニットUn毎にメモリ(RAM)内に一時的に記憶されている。
 走査ユニットUn毎に設けられるパターンデータについてさらに詳しく説明すると、パターンデータ(描画データ)は、スポット光SPの走査方向(主走査方向、Y方向)に沿った方向を行方向とし、基板FSの搬送方向(副走査方向、X方向)に沿った方向を列方向とするように2次元に分解された複数の画素のデータ(以下、画素データ)で構成されているビットマップデータである。この画素データは、「0」または「1」の1ビットのデータである。「0」の画素データは、基板FSに照射するスポット光SPの強度を低レベルにすることを意味し、「1」の画素データは、基板FS上に照射するスポット光SPの強度を高レベルにすることを意味する。パターンデータの1列分の画素データは、1本分の描画ラインSLn(SL1~SL6)に対応するものであり、1本の描画ラインSLn(SL1~SL6)に沿って基板FSに投射されるスポット光SPの強度が、1列分の画素データに応じて変調される。この1列分の画素データをシリアルデータ(描画情報)DLnと呼ぶ。つまり、パターンデータは、シリアルデータDLnが列方向に並んだビットマップデータである。走査ユニットU1のパターンデータのシリアルデータDLnをDL1で表し、同様に、走査ユニットU2~U6のパターンデータのシリアルデータDLnをDL2~DL6で表す場合がある。
 制御装置18は、ビームLBnが入射する走査ユニットUnのパターンデータ(「0」、「1」からなるシリアルデータDLn)に基づいて、ビームLBnが入射する走査ユニットUnの描画用光学素子(AOM)106にオンオフの駆動信号を入力する。描画用光学素子106は、オンの駆動信号が入力されると入射したビームLBnを回折させて反射ミラー110に照射し、オフの駆動信号が入力されると、入射したビームLBnを図示しない前記遮蔽板若しくは前記吸収体に照射する。その結果、ビームLBnが入射する走査ユニットUnは、オンの駆動信号が描画用光学素子106に入力されると、基板FS上にビームLBnのスポット光SPを照射し(スポット光SPの強度が高くなる)、オフの駆動信号が描画用光学素子106に入力されると基板FS上にビームLBnのスポット光を照射しない(スポット光SPの強度が0になる)。したがって、ビームLBnが入射する走査ユニットUnは、描画ラインSLnに沿って、パターンデータに基づくパターンを基板FS上に描画することができる。
 例えば、制御装置18は、走査ユニットU3にビームLB3が入射する場合は、走査ユニットU3のパターンデータに基づいて、走査ユニットU3の描画用光学素子106をオンオフにスイッチング(駆動)する。これにより、走査ユニットU3は、描画ラインSL3に沿ってパターンデータに基づくパターンを基板FS上に描画することができる。このようにして、各走査ユニットU1、U3、U5は、描画ラインSL1、SL3、SL5に沿ってスポット光(走査スポット)SPの強度を変調して、パターンデータに基づくパターンを基板FS上に描画することができる。
 なお、図8を用いて、光導入光学系40aと複数の走査ユニットU1、U3、U5の動作について説明したが、光導入光学系40bと複数の走査ユニットU2、U4、U6についても同様である。簡単に説明すると、制御装置18は、光源装置14bからのビームLBnが入射する偶数番の走査ユニットUnが、例えば、走査ユニットU2→走査ユニットU4→走査ユニットU6→走査ユニットU2、というように順番に切り換わるように、複数の選択用光学素子50、58、66を制御する。すなわち、複数の走査ユニットU2、U4、U6の各々に順番に所定の走査時間だけビームLBが入射するように切り換える。各走査ユニットU2、U4、U6のポリゴンミラーPMは、制御装置18による制御の下、ビームLBnが入射される期間と同期させて、入射されたビームLBnのスポット光SPが描画ラインSL2、SL4、SL6に沿って走査するようにビームLBnを偏向する。また、制御装置18は、各走査ユニットU2、U4、U6が描画ラインSL2、SL4、SL6に沿ってパターンデータに基づくパターンを基板FS上に描画できるように、ビームLBn(LB2、LB4、LB6)が入射する走査ユニットUn(U2、U4、U6)のパターンデータ(「0」、「1」からなるシリアルデータDLn(DL2、DL4、DL6))に基づいて、該走査ユニットUn(U2、U4、U6)の描画用光学素子(AOM)106を制御する。
 以上のように、上記第1の実施の形態では、光源装置14a(14b)からのビームLBの進行方向に沿って、複数の選択用光学素子50、58、66を直列に配置したので、この複数の選択用光学素子50、58、66によってビームLBnを複数の走査ユニットU1、U3、U5(走査ユニットU2、U4、U6)のうちいずれか1つの走査ユニットUnに時分割で選択的に入射させることができ、ビームLBを無駄にすることなく、ビームLBの利用効率の向上を図ることができる。
 また、複数(ここでは3つ)の走査ユニットUnの各々のポリゴンミラーPMの回転速度と回転位相とを相互に同期させるとともに、複数の選択用光学素子50、58、66によって各走査ユニットUnにビームLBnが入射する期間に同期させて、スポット光SPが基板FS上を走査するようにポリゴンミラーPMがビームLBnを偏向するので、ビームLBを無駄にすることなく、走査効率の向上を図ることができる。
 なお、選択用光学素子(AOM)50、58、66は、走査ユニットUnの各々のポリゴンミラーPMによるスポット光SPの1回の走査期間の間だけ、オン状態となっていればよい。例えば、ポリゴンミラーPMの反射面数をNp、ポリゴンミラーPMの回転速度Vpを(rpm)とすると、ポリゴンミラーPMの反射面RPの1面分の回転角度βに対応した時間Tssは、Tss=60/(Np・Vp)[秒]となる。例えば、反射面数Npが8、回転速度Vpが3万の場合は、ポリゴンミラーPMの1回転は2ミリ秒であり、時間Tssは、0.25ミリ秒となる。これは周波数に換算すると4kHzであり、紫外域の波長のビームLBをパターンデータに応答して数十MHz程度で高速に変調するための音響光学変調素子(描画用光学素子106)に比べると、相当に低い応答周波数の音響光学変調素子でよいことを意味する。そのため、選択用光学素子(AOM)50、58、66は、入射するビームLB(0次光)に対して偏向される1次回折光であるLBn(LB1~LB6)の回折角が大きいものを使うことができる。したがって、選択用光学素子50、58、66をストレートに透過するビームLBの進路に対して、偏向されたビームLBn(LB1~LB6)を走査ユニットUnに導く反射ミラー52、60、68(図3、図4参照)の配置が容易になる。
[上記第1の実施の形態の変形例]
 上記第1の実施の形態は、以下のように変形してよい。上記第1の実施の形態では、ビームLBを3つの走査ユニットUnに振り分けるようにしたが、本変形例では、1つの光源装置14からのビームLBを5つの走査ユニットUnに振り分ける。
 図9は、上記第1の実施の形態の変形例における描画ヘッド16の構成を示す図である。本変形例では、光源装置14は1つであり、描画ヘッド16は、5つの走査ユニットUn(U1~U5)を有する。なお、上記第1の実施の形態と同一の構成については同様の符号を付したり、図示を省略したりし、異なる部分のみ説明する。なお、図9において、図3中に示したシリンドリカルレンズCYbは図示を省略している。
 本変形例では、光導入光学系40a、40bに代えて、光導入光学系(ビーム切換部材)130が用いられる。光導入光学系130は、図10に示すように、先の図4に示した集光レンズ42、コリメートレンズ44、反射ミラー46、集光レンズ48、選択用光学素子50、反射ミラー52、コリメートレンズ54、集光レンズ56、選択用光学素子58、反射ミラー60、コリメートレンズ62、集光レンズ64、選択用光学素子66、反射ミラー68、および吸収体70に加え、さらに、選択用光学素子132、反射ミラー134、コリメートレンズ136、集光レンズ138、選択用光学素子140、反射ミラー142、コリメートレンズ144、および集光レンズ146を備える。
 選択用光学素子132、コリメートレンズ136、および集光レンズ138は、集光レンズ56と選択用光学素子58との間に前記の順で設けられる。したがって、本変形例では、選択用光学素子50は、制御装置18からの駆動信号(高周波信号)がオフの場合は、入射したビームLBをそのまま透過して選択用光学素子132に照射し、集光レンズ56は、選択用光学素子132に入射するビームLBを、選択用光学素子132内でビームウェストとなるように集光させる。
 選択用光学素子132は、ビームLBに対して透過性を有するものであり、例えば、音響光学変調素子(AOM)が用いられる。選択用光学素子132は、制御装置18からの駆動信号がオフの場合は、入射したビームLBをそのまま透過して選択用光学素子58に照射し、制御装置18からの駆動信号(高周波信号)がオンになると、入射したビームLBを回折させた1次回折光であるビームLB2を反射ミラー134に照射する。反射ミラー134は、入射したビームLB2を反射させて、走査ユニットU2のコリメートレンズ100に入射させる。すなわち、制御装置18が選択用光学素子132をオンオフにスイッチングすることで、選択用光学素子132は、ビームLB2を走査ユニットU2に入射させるか否かを切り換える。コリメートレンズ136は、選択用光学素子58に照射されるビームLBを平行光にするものであり、集光レンズ138は、コリメートレンズ136によって平行光にされたビームLBを選択用光学素子58内でビームウェストとなるように集光させる。
 選択用光学素子140、コリメートレンズ144、および集光レンズ146は、集光レンズ64と選択用光学素子66との間に前記の順で設けられる。したがって、本変形例では、選択用光学素子58は、制御装置18からの駆動信号がオフの場合は、入射したビームLBをそのまま透過して選択用光学素子140に照射し、集光レンズ64は、選択用光学素子140に入射するビームLBを、選択用光学素子140内でビームウェストとなるように集光させる。
 選択用光学素子140は、ビームLBに対して透過性を有するものであり、例えば、音響光学変調素子(AOM)が用いられる。選択用光学素子140は、制御装置18からの駆動信号がオフの場合は、入射したビームLBを選択用光学素子66に照射し、制御装置18からの駆動信号(高周波信号)がオンになると、入射したビームLBを回折させた1次回折光であるビームLB4を反射ミラー142に照射する。反射ミラー142は、入射したビームLB4を反射させて、走査ユニットU4のコリメートレンズ100に照射する。すなわち、制御装置18が選択用光学素子140をオンオフにスイッチングすることで、選択用光学素子140は、ビームLB4を走査ユニットU4に入射させるか否かを切り換える。コリメートレンズ144は、選択用光学素子66に照射されるビームLBを平行光にするものであり、集光レンズ146は、コリメートレンズ144によって平行光にされたビームLBを選択用光学素子66内でビームウェストとなるように集光させる。
 この複数の選択用光学素子(AOM)50、58、66、132、140をシリアル(直列)に配置することによって、複数の走査ユニットU1~U5のうち、いずれか1つの走査ユニットUnにビームLBnを入射させることができる。制御装置18は、ビームLBnが入射する走査ユニットUnが、例えば、走査ユニットU1→走査ユニットU2→走査ユニットU3→走査ユニットU4→走査ユニットU5→走査ユニットU1、というような順番で周期的に切り換わるように、複数の選択用光学素子50、132、58、140、66を制御する。すなわち、複数の走査ユニットU1~U5の各々に順番に所定の走査時間だけビームLBnが入射するように切り換える。また、各走査ユニットU1~U5のポリゴンミラーPMは、制御装置18による制御の下、ビームLBnが入射される期間と同期させて、入射されたビームLBnのスポット光SPを描画ラインSL1~SL5に沿って走査するようにビームLBnを偏向する。また、制御装置18は、各走査ユニットUnが描画ラインSLnに沿ってパターンデータに基づくパターンを基板FS上に描画できるように、ビームLBnが入射する走査ユニットUnのパターンデータ(「0」、「1」のからなるシリアルデータDLn)に基づいて、該走査ユニットUnの描画用光学素子(AOM)106を制御する。
 すなわち、本変形例の場合、5つの走査ユニットU1~U5の各ポリゴンミラーPMは、回転角度位置が一定の角度分ずつ位相がずれるように同期回転する。また、本変形例の場合、5つの走査ユニットU1~U5にビーム(レーザ光)LBを時分割で振り分けるので、ポリゴンミラーPMの1つの反射面RPにビームLBnが照射され得る角度範囲(図7中の回転角度β)と、反射面RPで反射されたビームLBnがfθレンズFTに入射する最大の振れ角(図7中の角度2α)とが、β≧5αを満たすように、fθレンズFTの前側焦点距離やポリゴンミラーPMの反射面数Npが設定される。
 このように、本変形例においても、ビームLBを無駄にすることなく、光源装置14からのビームLBの利用効率を高めて、走査効率の向上を図ることができる。なお、本変形例では、1つの光源装置14からのビームLBを5つの走査ユニットUnに振り分けるようにしたが、1つの光源装置14からのビームLBを2つの走査ユニットUnに振り分けるようにしてもよいし、4つ、または、6つ以上の走査ユニットUnに振り分けるようにしてもよい。この場合は、振り分ける走査ユニットUnの数をn個とすると、ポリゴンミラーPMの1つの反射面RPにビームLBnが照射され得る角度範囲(図7中の回転角度β)と、反射面RPで反射されたビームLBがfθレンズFTに入射する最大の振れ角(図7中の角度2α)とが、β≧n×αを満たすように、fθレンズFTの前側焦点距離やポリゴンミラーPMの反射面数Npが設定される。また、上記第1の実施の形態で説明したように、2つの光源装置14(14a、14b)からのビームLBを複数の走査ユニットUnに振り分ける場合も、3つに限らず、任意の数の走査ユニットUnに振り分けるようにしてもよい。例えば、光源装置14aからのビームLBを5つの走査ユニットUnに振り分け、光源装置14bからのビームLBを4つの走査ユニットUnに振り分けてもよい。
[第2の実施の形態]
 上記第1の実施の形態では、各走査ユニットUn内のポリゴンミラーPMの手前に描画用光学素子(AOM)106を設けるので、使用する描画用光学素子106の数が多くなり、高コストとなる。そこで、本第2の実施の形態では、1つの光源装置14からのビームLBの光路上に1つの描画用光変調器(AOM)を設け、その1つの描画用光変調器を用いて複数の走査ユニットUnから基板FSに照射させるビームLBnの強度を変調させてパターンを描画させる。すなわち、第2の実施の形態では、高い応答性が要求される描画用光変調器(AOM)を複数の走査ユニットUnの手前に1つだけ配置し、各走査ユニットUn側には、応答性が低くてよい選択用光学素子(AOM)を配置する。
 図11は、第2の実施の形態の描画ヘッド16の構成を示す図、図12は、図11に示す光導入光学系40aを示す図である。上記第1の実施の形態と同一の構成について同様の符号を付し、異なる部分のみ説明する。なお、図11において、図3中に示したシリンドリカルレンズCYbは図示を省略し、光導入光学系40a、40bは、同一の構成を有するので、ここでは、光導入光学系40aについて説明し、光導入光学系40bの説明を省略する。図12に示すように、光導入光学系40aは、先の図4に示した集光レンズ42、コリメートレンズ44、反射ミラー46、集光レンズ48、選択用光学素子50、反射ミラー52、コリメートレンズ54、集光レンズ56、選択用光学素子58、反射ミラー60、コリメートレンズ62、集光レンズ64、選択用光学素子66、反射ミラー68、および吸収体70に加え、さらに、描画用光変調器としての描画用光学素子(AOM)150、コリメートレンズ152、集光レンズ154、および吸収体156を備える。本第2の実施の形態においては、図11に示すように、各走査ユニットU1~U6内には、第1の実施の形態のような描画用光学素子106を有しない。
 描画用光学素子150、コリメートレンズ152、および集光レンズ154は、集光レンズ48と選択用光学素子50との間に前記の順で設けられている。したがって、本第2の実施の形態においては、反射ミラー46は、コリメートレンズ44によって平行光にされたビームLBを反射させて描画用光学素子150に向ける。集光レンズ48は、描画用光学素子150に入射するビームLBを、描画用光学素子150内でビームウェストとなるように集光(収斂)させる。
 描画用光学素子150は、ビームLBに対して透過性を有するものであり、例えば、音響光学変調素子(AOM)が用いられる。描画用光学素子150は、選択用光学素子50、58、66のうち、最も光源装置14(14a)側に位置する初段の選択用光学素子50よりも光源装置14(14a)側に設けられている。描画用光学素子150は、制御装置18からの駆動信号(高周波信号)がオフの場合は、入射したビームLBを吸収体156に照射し、制御装置18からの駆動信号(高周波信号)がオンになると、入射したビームLBを回折させた1次回折光であるビーム(描画ビーム)LBを初段の選択用光学素子50に照射する。コリメートレンズ152は、選択用光学素子50に照射されるビームLBを平行光にするものであり、集光レンズ154は、コリメートレンズ152によって平行光にされたビームLBを選択用光学素子50内でビームウェストとなるように集光(収斂)させる。
 図11に示すように、走査ユニットU1~U6は、コリメートレンズ100、反射ミラー102、反射ミラー110、シリンドリカルレンズCYa、反射ミラー114、ポリゴンミラーPM、fθレンズFT、シリンドリカルレンズCYb(図11では図示を省略)、および反射ミラー122を有し、さらに、ビーム成形レンズとしての第1成形レンズ158aおよび第2成形レンズ158bとを有する。つまり、本第2の実施の形態においては、第1の実施の形態の集光レンズ104およびコリメートレンズ108に代えて、第1成形レンズ158aおよび第2成形レンズ158bが走査ユニットU1~U6に設けられている。
 図13は、図12の光導入光学系40aと複数の走査ユニットU1、U3、U5との光路を模式化した図である。制御装置18は、各走査ユニットU1、U3、U5から照射されるビームLB1、LB3、LB5のスポット光SPによって基板FS上に描画されるパターンを規定するパターンデータ(「0」、「1」からなるシリアルデータDL1、DL3、DL6)に基づいて、光導入光学系40aの描画用光学素子150にオンオフの駆動信号(高周波信号)を出力する。これにより、光導入光学系40aの描画用光学素子150は、このオンオフの駆動信号に基づいて、入射したビームLBを回折させて、スポット光SPの強度を変調(On/Off)させることができる。
 詳しく説明すると、制御装置18は、ビームLBnが入射する走査ユニットUnのパターンデータに基づいて、描画用光学素子150にオンオフの駆動信号を入力する。描画用光学素子150は、オンの駆動信号(高周波信号)が入力されると入射したビームLBを回折させて、選択用光学素子50に照射する(選択用光学素子50に入射するビームLBの強度が高くなる)。一方、描画用光学素子150は、オフの駆動信号(高周波信号)が入力されると、入射したビームLBを吸収体156(図12)に照射する(選択用光学素子50に入射するビームLBの強度が0になる)。したがって、ビームLBnが入射する走査ユニットUnは、描画ラインSLnに沿って、強度が変調したビームLBを基板FSに照射することができ、パターンデータに基づくパターンを基板FS上に描画することができる。
 例えば、走査ユニットU3にビームLB3が入射する場合は、制御装置18は、走査ユニットU3のパターンデータに基づいて、光導入光学系40aの描画用光学素子150をオンオフにスイッチングする。これにより、走査ユニットU3は、描画ラインSL3に沿って、強度が変調したビームLBを基板FSに照射することができ、パターンデータに基づくパターンを基板FS上に描画することができる。ビームLBnが入射する走査ユニットUnは、例えば、走査ユニットU1→走査ユニットU3→走査ユニットU5→走査ユニットU1、というように、順次切り換わる。したがって、制御装置18は、同様に、走査ユニットU1のパターンデータ→走査ユニットU3のパターンデータ→走査ユニットU5のパターンデータ→走査ユニットU1のパターンデータというように、光導入光学系40aの描画用光学素子150に送るオンオフ信号を決定するパターンデータを順次切り換える。そして、制御装置18は、順次切り換えたパターンデータに基づいて光導入光学系40aの描画用光学素子150を制御する。これにより、各走査ユニットU1、U3、U5は、描画ラインSL1、SL3、SL5に沿って、強度が変調したビームLBを基板FSに照射することで、パターンデータに応じたパターンを基板FS上に描画することができる。
 以上、第2の実施の形態に適用される制御系の一部の構成とその動作について、図14~図16を参照して詳述する。なお、以下説明する構成および動作は、第1の実施の形態にも適用可能である。図14は、一例として、図11、図13中の3つの走査ユニットU1、U3、U5の各々に設けられるポリゴンミラーPMの回転制御系のブロック図であり、走査ユニットU1、U3、U5の構成は同じなので、同じ部材には同じ符号を付してある。走査ユニットU1、U3、U5の各々には、ポリゴンミラーPMによって基板FS上に生成される描画ライン(走査ライン)SL1、SL3、SL5の走査開始タイミングを光電的に検知する原点センサOP1、OP3、OP5が設けられる。原点センサOP1、OP3、OP5は、ポリゴンミラーPMの反射面RPに光を投射して、その反射光を受光する光電検出器であり、スポット光SPが描画ラインSL1、SL3、SL5の走査開始点の直前の位置に来る度に、パルス状の原点信号SZ1、SZ3、SZ5を各々出力する。
 タイミング計測部180は、原点信号SZ1、SZ3、SZ5を入力し、原点信号SZ1、SZ3、SZ5の各々の発生タイミングが所定の許容範囲(時間間隔)内になっているか否かを計測し、その許容範囲からの誤差が生じたら、それに応じた偏差情報をサーボ制御装置182に出力する。サーボ制御装置182は、各走査ユニットU1、U3、U5内のポリゴンミラーPMを回転駆動するモータMpの各サーボ駆動回路部に、偏差情報に基づいた指令値を出力する。モータMpの各サーボ駆動回路部は、モータMpの回転軸に取り付けられたエンコーダENからのアップ・ダウンパルス信号(以下、エンコーダ信号)を入力して、ポリゴンミラーPMの回転速度に応じた速度信号を出力する帰還回路部FBCと、サーボ制御装置182からの指令値と帰還回路部FBCからの速度信号とを入力して、指令値に応じた回転速度になるようにモータMpを駆動するサーボ駆動回路(アンプ)SCCとで構成される。なお、サーボ駆動回路部(帰還回路部FBC、サーボ駆動回路SCC)、タイミング計測部180、および、サーボ制御装置182は、制御装置18の一部を構成する。
 本第2の実施の形態では、3つの走査ユニットU1、U3、U5内の各ポリゴンミラーPMが、その回転角度位置に一定の位相差を保ちつつ同じ速度で回転させる必要があり、それを実現するために、タイミング計測部180は原点信号SZ1、SZ3、SZ5を入力し、例えば、図15のタイミングチャートに示すような計測を行う。
 図15は、3つのポリゴンミラーPMが、回転角度に関して所定の許容範囲内の位相差で回転している場合に生成される各種の信号波形を模式的に示す。各ポリゴンミラーPMを回転させた直後は、原点信号SZ1、SZ3、SZ5の相対的な位相差はばらばらであるが、タイミング計測部180は、例えば、原点信号SZ1を基準として、他の原点信号SZ3、SZ5が原点信号SZ1と同じ周波数(周期)で発生し、且つ3つの原点信号SZ1、SZ3、SZ5間の時間間隔Ts1、Ts2、Ts3が共に等しい状態を基準値とし、それに対する誤差に応じた補正情報を計測する。タイミング計測部180は、その補正情報をサーボ制御装置182に出力し、それによって走査ユニットU3、U5の各モータMpがサーボ制御され、3つの原点信号SZ1、SZ3、SZ5の発生タイミングが、図15のようにTs1=Ts2=Ts3で安定するように制御される。
 原点信号SZ1、SZ3、SZ5の発生タイミングが安定すると、タイミング計測部180は、先の図11~図13中に示した選択用光学素子50、58、66の各々に、描画イネーブル(On)信号SPP1、SPP3、SPP5を出力する。描画イネーブル(On)信号SPP1、SPP3、SPP5は、ここではHレベルの期間中だけ、対応する選択用光学素子50、58、66に変調動作(光の偏向スイッチング動作)を行わせる。3つの原点信号SZ1、SZ3、SZ5が安定して一定の位相差(ここでは原点信号SZ1の周期の1/3)に維持されることから、描画イネーブル信号SPP1、SPP3、SPP5の各立上り(L→H)も一定の位相差を持つ。この描画イネーブル信号SPP1、SPP3、SPP5は、選択用光学素子50、58、66をスイッチングするための駆動信号(高周波信号)に対応するものである。
 描画イネーブル信号SPP1、SPP3、SPP5の降下(H→L)のタイミングは、各描画ラインSL1、SL3、SL5内でスポット光をOn/Offするためのクロック信号CLKを、タイミング計測部180内のカウンタで計測することで設定される。そのクロック信号CLKは、描画用光学素子150(或いは図3中の描画用光学素子106)のOn/Offのタイミングをつかさどるものであり、描画ラインSLn(SL1、SL3、SL5)の長さ、スポット光SPの基板FS上での寸法、スポット光SPの走査速度Vs等によって決まる。例えば、描画ラインの長さが30mm、スポット光SPの寸法(直径)が6μmであり、スポット光SPを走査方向に3μmずつオーバーラップさせてOn/Offさせる場合、タイミング計測部180内のカウンタは、クロック信号CLKを10000カウント(30mm/3μm)したら、描画イネーブル信号SPP1、SPP3、SPP5を降下(H→L)させればよい。
 また、ポリゴンミラーPMの反射面を10面とし、その回転速度をVp(rpm)とすると、各原点信号SZ1、SZ3、SZ5の周波数は、10Vp/60(Hz)となる。したがって、時間間隔がTs1=Ts2=Ts3に安定した場合、時間間隔Ts1は、60/(30Vp)秒となる。一例として、ポリゴンミラーPMの基準の回転速度Vpを8000rpmとすると、時間間隔Ts1は、60/(30・8000)秒=250μSとなる。
 図15のように、描画イネーブル信号SPP1、SPP3、SPP5のOn時間(Hレベルの継続時間)Toaは、ポリゴンミラーPMからのビーム(レーザ光)LBが基板FS上にスポット光として投射される期間(投射期間)であるが、時間間隔Ts1よりも短く設定する必要がある。そこで、例えば、On時間Toaを200μSに設定すると、この間に10000カウントするためのクロック信号CLKの周波数は、10000/200=50(MHz)となる。このようなクロック信号CLKに同期して、パターンデータ(ビットマップ上の「0」または「1」)から生成される描画ラインSLnに対応した描画ビット列データまたはシリアルデータDLn(例えば、10000ビット分)Sdwが、描画用光学素子150に出力される。なお、図3のように、走査ユニットU1、U3、U5の各々に、描画用光学素子106が設けられる構成では、描画ラインSL1に対応した描画ビット列データSdwまたはシリアルデータDL1は走査ユニットU1の描画用光学素子106に送られ、描画ラインSL3に対応した描画ビット列データSdwまたはシリアルデータDL3は走査ユニットU3の描画用光学素子106に送られ、描画ラインSL5に対応した描画ビット列データSdwまたはシリアルデータDL5は走査ユニットU5の描画用光学素子106に送られる。
 本第2の実施の形態では、3つの描画ラインSL1、SL3、SL5の各々に対応したパターンデータから生成される描画ビット列データSdwまたはシリアルデータDLnが、描画イネーブル信号SPP1、SPP3、SPP5(または原点信号SZ1、SZ3、SZ5)に同期して順番に描画用光学素子150のOn/Offのために供給される。
 図16は、そのような描画ビット列データSdwを生成する回路の一例を示し、該回路は、生成回路(パターンデータ生成回路)301、303、305と、OR回路GT8とを有する。生成回路301は、メモリ部BM1、カウンタ部CN1、および、ゲート部GT1を備え、生成回路303は、メモリ部BM3、カウンタ部CN3、および、ゲート部GT3を備え、生成回路305は、メモリ部BM5、カウンタ部CN5、および、ゲート部GT5を備える。この生成回路301、303、305、および、OR回路GT8は、制御装置18の一部を構成する。
 メモリ部BM1、BM3、BM5は各走査ユニットU1、U3、U5が描画露光すべきパターンに対応したビットマップデータ(パターンデータ)を一次記憶するメモリである。カウンタ部CN1、CN3、CN5は、各メモリ部BM1、BM3、BM5内のビットマップデータ(パターンデータ)のうち、次に描画すべき1描画ライン分のビット列(例えば、10000ビット)を1ビットずつクロック信号CLKに同期したシリアルデータDL1、DL3、DL5として、描画イネーブル信号SPP1、SPP3、SPP5がOnの期間中に出力させるためのカウンタである。
 各メモリ部BM1、BM3、BM5内のマップデータは、不図示のアドレスカウンタ等によって、1描画ライン分のデータごとシフトされる。そのシフトは、例えば、メモリ部BM1であれば、1描画ライン分のシリアルデータDL1を出力し終わった後で、次にアクティブとなる走査ユニットU3の原点信号SZ3が発生したタイミングで行われる。同様に、メモリ部BM3内のマップデータのシフトは、シリアルデータDL3が出力し終わった後で、次にアクティブとなる走査ユニットU5の原点信号SZ5が発生したタイミングで行われ、メモリ部BM5内のマップデータのシフトは、シリアルデータDL5が出力し終わった後で、次にアクティブとなる走査ユニットU1の原点信号SZ1が発生したタイミングで行われる。
 このようにして順次生成される各シリアルデータDL1、DL3、DL5は、描画イネーブル信号SPP1、SPP3、SPP5のOn期間中に開かれるゲート部GT1、GT3、GT5を通って、3入力のOR回路GT8に印加される。OR回路GT8は、シリアルデータDL1→DL3→DL5→DL1・・・の順に繰り返し合成したビットデータ列を描画ビット列データSdwとして描画用光学素子150のOn/Offのために出力する。なお、図3のように、走査ユニットU1、U3、U5の各々に、描画用光学素子106が設けられる構成では、ゲート部GT1から出力されるシリアルデータDL1を走査ユニットU1内の描画用光学素子106に送り、ゲート部GT3から出力されるシリアルデータDL3を走査ユニットU3内の描画用光学素子106に送り、ゲート部GT5から出力されるシリアルデータDL5を走査ユニットU5内の描画用光学素子106に送ればよい。
 以上のように、描画用光学素子150(或いは106)のOn/Offは、高速なクロック信号CLK(例えば50MHz)に応答する必要があるが、選択用光学素子50、58、66は、描画イネーブル信号SPP1、SPP3、SPP5(または原点信号SZ1、SZ3、SZ5)に同期して、On/Offを行えばよく、その応答周波数は、先の数値例の場合、時間間隔Toa(またはTs1)が200μSであったので10KHz程度でよく、透過率が高く安価なものを利用できる。なお、タイミング計測部180内のカウンタで計数されたり、図16中のカウンタ部CN1、CN3、CN5で計数されるクロック信号CLKの周波数をFcc、光源装置14からのビームLBのパルス発振の基本周波数をFsとすると、nを1以上(好ましくはn≧2)の整数として、n・Fcc=Fsの関係を満たすように設定するのがよい。
 以上、図13を用いた光導入光学系40aと複数の走査ユニットU1、U3、U5の動作、および図14~図16を用いた各走査ユニットU1、U3、U5による描画タイミング等について説明したが、光導入光学系40bと複数の走査ユニットU2、U4、U6についても同様である。簡単に説明すると、ビームLBが入射する走査ユニットUnは、例えば、走査ユニットU2→走査ユニットU4→走査ユニットU6→走査ユニットU2、というように、順次切り換わる。したがって、制御装置18は、同様に、走査ユニットU2のパターンデータ→走査ユニットU4のパターンデータ→走査ユニットU6のパターンデータ→走査ユニットU2のパターンデータというように、光導入光学系40bの描画用光学素子150に送るオンオフ信号を決定するパターンデータを順次切り換える。そして、制御装置18は、順次切り換えたパターンデータに基づいて光導入光学系40bの描画用光学素子150を制御する。または、図16に示したような回路構成で3つの描画ライン分のパターンデータを合成した描画ビット列データSdwを生成して描画用光学素子150に供給する。これにより、各走査ユニットU2、U4、U6は、描画ラインSL2、SL4、SL6に沿って、強度が変調したビームLBを基板FSに照射することで、パターンデータに基づくパターンを基板FS上に描画することができる。
 以上の上記第2の実施の形態では、上記第1の実施の形態の効果に加え、以下の効果が得られる。すなわち、光導入光学系40a内に1つの描画用光学素子150を設け、該描画用光学素子150を初段の選択用光学素子50より光源装置14a側に配置し、1つの描画用光学素子150で、複数の走査ユニットU1、U3、U5から基板FSに照射されるビームLB1、LB3、LB5の強度をパターンに応じて変調させる。同様に、光導入光学系40b内に1つの描画用光学素子150を設け、該描画用光学素子150を初段の選択用光学素子50より光源装置14b側に配置し、1つの描画用光学素子150で、複数の走査ユニットU2、U4、U6から基板FSに照射されるビームLB2、LB4、LB6の強度をパターンに応じて変調させる。これにより、音響光学変調素子の数を減らすことができ、コストが低廉になる。
 なお、上記第2の実施の形態では、ビームLBを3振り分けする描画ヘッド16で説明したが、上記第1の実施の形態の変形例で説明したように、ビームLBを5振り分けする描画ヘッド16であってもよい(図9および図10参照)。また、図9および図10の場合は、光源装置14は1つなので、描画用光学素子150も1つとなる。
[第2の実施の形態の変形例]
 上記第2の実施の形態は、以下のように変形してもよい。上記第2の実施の形態では、描画用光変調器として描画用光学素子150を光導入光学系40a、40bに設けたが、本変形例では、描画用光学素子150に代えて、光源装置14(14a、14b)内にそれぞれ描画用光変調器を設ける。なお、上記第2の実施の形態と同一の構成については同様の符号を付したり、図示を省略したりし、異なる部分のみ説明する。また、光源装置14a、14bに描画用光変調器を設けた光源装置をそれぞれ光源装置14A、14Bと呼び、光源装置14Aと光源装置14Bとは同一の構成を有するので、光源装置14Aについてのみ説明する。
 図17は、本変形例の光源装置(パルス光源装置、レーザ光源装置)14Aの構成を示す図である。ファイバーレーザ装置としての光源装置14Aは、DFB半導体レーザ素子200、DFB半導体レーザ素子202、偏光ビームスプリッタ204、描画用光変調器としての電気光学素子206、この電気光学素子206の駆動回路206a、偏光ビームスプリッタ208、吸収体210、励起光源212、コンバイナ214、ファイバー光増幅器216、波長変換光学素子218、波長変換光学素子220、複数のレンズ素子GL、およびクロック発生器222aを含む制御回路222を備える。
 DFB半導体レーザ素子(第1固体レーザ素子、第1半導体レーザ光源)200は、所定周波数(発振周波数、基本周波数)Fsで俊鋭若しくは尖鋭のパルス状の種光(レーザ光)S1を発生し、DFB半導体レーザ素子(第2固体レーザ素子、第2半導体レーザ光源)202は、所定周波数Fsで緩慢(時間的にブロード)なパルス状の種光(レーザ光)S2を発生する。DFB半導体レーザ素子200が発生する種光S1の1パルスと、DFB半導体レーザ素子202が発生する種光S2の1パルスとは、エネルギーはほぼ同一であるが、偏光状態が互いに異なり、ピーク強度は種光S1の方が強い。本変形例では、DFB半導体レーザ素子200が発生する種光S1の偏光状態をS偏光とし、DFB半導体レーザ素子202が発生する種光S2の偏光状態をP偏光として説明する。このDFB半導体レーザ素子200、202は、クロック発生器222aで生成されるクロック信号LTC(所定周波数Fs)に応答して、制御回路222の電気的な制御によって、発振周波数Fsで種光S1、S2を発光するように制御される。この制御回路222は、制御装置18によって制御される。
 なお、このクロック信号LTCは、図16に示したカウンタ部CN1、CN3、CN5の各々に供給されるクロック信号CLKのベースとなるもので、クロック信号LTCをn分周(nは2以上の整数が好ましい)したものがクロック信号CLKとなる。また、クロック発生器222aは、クロック信号LTCの基本周波数Fsを±ΔFだけ調整する機能、すなわち、ビームLBのパルス発振の時間間隔を微調する機能も有する。これによって、例えば、スポット光SPの走査速度Vsが僅かに変動しても、基本周波数Fsを微調整することで、描画ラインに渡って描画されるパターンの寸法(描画倍率)を精密に保つことができる。
 偏光ビームスプリッタ204は、S偏光の光を透過し、P偏光の光を反射するものであり、DFB半導体レーザ素子200が発生した種光S1と、DFB半導体レーザ素子202が発生した種光S2とを、電気光学素子206に導く。詳しくは、偏光ビームスプリッタ204は、DFB半導体レーザ素子200が発生したS偏光の種光S1を透過することで種光S1を電気光学素子206に導き、DFB半導体レーザ素子202が発生したP偏光の種光S2を反射することで種光S2を電気光学素子206に導く。DFB半導体レーザ素子200、202、および、偏光ビームスプリッタ204は、種光S1、S2を生成するレーザ光源部(光源部)205を構成する。
 電気光学素子206は、種光S1、S2に対して透過性を有するものであり、例えば、電気光学変調器(EOM:Electro-Optic Modulator)が用いられる。EOMは、先の図16に示した描画ビット列データSdw(またはシリアルデータDLn)のOn/Off状態(ハイ/ロー)に応答して、偏光ビームスプリッタ204を通ってきた種光S1、S2の偏光状態を駆動回路206aによって切り換えるものである。DFB半導体レーザ素子200、DFB半導体レーザ素子202の各々からの種光S1、S2は波長域が800nm以上と長いため、電気光学素子206として、偏光状態の切り換え応答性がGHz程度のものを使うことができる。
 駆動回路206aに入力される描画ビット列データSdw(またはシリアルデータDLn)の1ビットの画素データがOff状態(ロー「0」)のとき、電気光学素子206は、入射した種光S1またはS2の偏光状態を変えずにそのまま偏光ビームスプリッタ208に導く。一方、駆動回路206aに入力される描画ビット列データSdw(またはシリアルデータDLn)がOn状態(ハイ「1」)のとき、電気光学素子206は入射した種光S1またはS2の偏光状態を変えて(偏光方向を90度変えて)偏光ビームスプリッタ208に導く。このように、電気光学素子206を駆動させることによって、電気光学素子206は、描画ビット列データSdw(またはシリアルデータDLn)の画素データがOn状態(ハイ)のとき、S偏光の種光S1をP偏光の種光S1に変換し、P偏光の種光S2をS偏光の種光S2に変換する。
 偏光ビームスプリッタ208は、P偏光の光は透過してレンズ素子GLを介してコンバイナ214に導き、S偏光の光を反射させて吸収体210に導く。励起光源212は励起光を発生し、該発生した励起光は、光ファイバー212aを介してコンバイナ214に導かれる。コンバイナ214は、偏光ビームスプリッタ208から照射された種光と励起光とを合成して、ファイバー光増幅器(光増幅器)216に出力する。ファイバー光増幅器216は、励起光によって励起されるレーザ媒質がドープされている。したがって、合成された種光および励起光が伝送するファイバー光増幅器216内では、励起光によってレーザ媒質が励起されることにより種光が増幅される。ファイバー光増幅器216内にドープされるレーザ媒質としては、エルビウム(Er)、イッテルビウム(Yb)、ツリウム(Tm)等の希土類元素が用いられる。この増幅された種光は、ファイバー光増幅器216の射出端216aから所定の発散角を伴って放射され、レンズ素子GLによって収斂またはコリメートされて波長変換光学素子218に入射する。
 波長変換光学素子(第1の波長変換光学素子)218は、第2高調波発生(Second Harmonic Generation:SHG)によって、入射した種光(波長λ)を、波長がλの1/2の第2高調波に変換する。波長変換光学素子218として、疑似位相整合(Quasi Phase Matching:QPM)結晶であるPPLN(Periodically Poled LiNbO3)結晶が好適に用い
られる。なお、PPLT(Periodically Poled LiTaO3)結晶等を用いることも可能であ
る。
 波長変換光学素子(第2の波長変換光学素子)220は、波長変換光学素子218が変換した第2高調波(波長λ/2)と、波長変換光学素子218によって変換されずに残留した種光(波長λ)との和周波発生(Sum Frequency Generation:SFG)により、波長がλの1/3の第3高調波を発生する。この第3高調波が、370nm以下の波長帯域にピーク波長を有する紫外線光(ビームLB)となる。
 以上のように、図16に示したパターンデータ生成回路から送出される描画ビット列データSdw(またはDLn)を、図17の電気光学素子206に印加する構成とした場合、描画ビット列データSdw(またはDLn)の1ビットの画素データがOff状態(ロー「0」)のとき、電気光学素子206は、入射した種光S1またはS2の偏光状態を変えずにそのまま偏光ビームスプリッタ208に導く。そのため、偏光ビームスプリッタ208を透過する種光は、DFB半導体レーザ素子202からの種光S2となる。したがって、光源装置14Aから最終的に出力されるビームLBは、DFB半導体レーザ素子202からの種光S2と同じ発振プロファイル(時間特性)を有する。すなわち、この場合は、ビームLBは、パルスのピーク強度が低く、時間的にブロードな鈍った特性となる。ファイバー光増幅器216は、そのようにピーク強度が低い種光S2に対する増幅効率が低いため、光源装置14Aから出力されるビームLBは露光に必要なエネルギーまで増幅されない光となる。したがって、この場合は、露光という観点から見れば、実質的に光源装置14AはビームLBを射出していないのと同じ結果となる。つまり、基板FSに照射されるスポット光SPの強度は低レベルとなる。ただし、各描画ラインSLn(SL1~SL6)に沿ってパターン描画が行われない期間(非投射期間、非露光期間)では、種光S2由来の紫外域のビームLBが僅かな強度であっても放射され続けるので、描画ラインSLn(SL1~SL6)が、長時間、基板FS上の同じ位置にある状態が続く場合(例えば、搬送系のトラブルによる基板FSの緊急停止等)が生じる場合は、光源装置14AのビームLBの射出窓に可動シャッターを設けて、射出窓を閉じるようにするとよい。
 一方、図17の電気光学素子206に印加する描画ビット列データSdw(またはDLn)の1ビットの画素データがOn状態(ハイ「1」)のとき、電気光学素子206は、入射した種光S1またはS2の偏光状態を変えて偏光ビームスプリッタ208に導く。そのため、偏光ビームスプリッタ208を透過する種光は、DFB半導体レーザ素子200からの種光S1となる。したがって、光源装置14Aから出力されるビームLBは、DFB半導体レーザ素子200からの種光S1に由来して生成されたものとなる。DFB半導体レーザ素子200からの種光S1はピーク強度が強いため、ファイバー光増幅器216によって効率的に増幅され、光源装置14Aから出力されるビームLBは、基板FSの露光に必要なエネルギーを持つ。つまり、基板FSに照射されるスポット光SPの強度が高レベルとなる。
 このように、光源装置14A内に、描画用光変調器としての電気光学素子206を設けたので、上記第2の実施の形態において描画用光学素子150を制御するのと同様に、電気光学素子206を制御することで、上記第2の実施の形態と同様の効果を得ることができる。つまり、ビームLBが入射する走査ユニットUnのパターンデータ(或いは図15、図16中の描画ビット列データSdw)に基づいて、電気光学素子206をオンオフにスイッチング(駆動)することで、初段の選択用光学素子50に入射するビームLBの強度、すなわち、各走査ユニットUn(U1~U6)によって基板FS上に照射されるビームLBのスポット光SPの強度を描画すべきパターンに応じて変調させることができる。
 なお、図17の構成において、DFB半導体レーザ素子202および偏光ビームスプリッタ204を省略して、DFB半導体レーザ素子200からの種光S1のみを、パターンデータ(描画データ)に基づく電気光学素子206の切り換えで、ファイバー光増幅器216にバースト波状に導光することも考えられる。しかしながら、この構成を採用すると、種光S1のファイバー光増幅器216への入射周期性が描画すべきパターンに応じて大きく乱される。すなわち、ファイバー光増幅器216にDFB半導体レーザ素子202からの種光S1が入射しない状態が続いた後に、ファイバー光増幅器216に種光S1が入射すると、入射直後の種光S1は通常のときよりも大きな増幅率で増幅され、ファイバー光増幅器216からは、規定以上の大きな強度を持つビームが発生するという問題がある。そこで、本変形例では、好ましい態様として、ファイバー光増幅器216に種光S1が入射しない期間に、DFB半導体レーザ素子202からの種光S2(ピーク強度が低いブロードなパルス光)をファイバー光増幅器216に入射することで、このような問題を解決している。
 また、電気光学素子206をスイッチングするようにしたが、パターンデータ(描画ビット列データSdwまたはシリアルデータDLn)に基づいて、DFB半導体レーザ素子200、202を駆動するようにしてもよい。つまり、制御回路222は、パターンデータ(描画ビット列データSdw、またはDLn)に基づいて、DFB半導体レーザ素子200、202を制御して、所定周波数Fsでパルス状に発振する種光S1、S2を選択的(択一的)に発生させる。この場合は、偏光ビームスプリッタ204、208、電気光学素子206、および吸収体210は不要となり、DFB半導体レーザ素子200、202のいずれか一方から選択的にパルス発振される種光S1、S2の一方が、直接コンバイナ214に入射する。このとき、制御回路222は、DFB半導体レーザ素子200からの種光S1と、DFB半導体レーザ素子202からの種光S2とが同時にファイバー光増幅器216に入射しないように、各DFB半導体レーザ素子200、202の駆動を制御する。すなわち、基板FSに各ビームLBnのスポット光SPを照射する場合は、種光S1のみがファイバー光増幅器216に入射するようにDFB半導体レーザ素子200を制御する。また、基板FSにビームLBnのスポット光SPを照射しない(スポット光SPの強度を極めて低くする)場合には、種光S2のみがファイバー光増幅器216に入射するようにDFB半導体レーザ素子202を制御する。このように、基板FSにビームLBnを照射するか否かは、パターンデータ(描画ビット列データSdwのHまたはL)の画素データ(ハイ/ロー)に基づいて決定される。また、この場合の種光S1、S2の偏向状態はともにP偏向でもよい。
 このように、本変形例においても、音響光学変調素子の数を減らすことができ、コストが低廉になる。
 なお、本変形例の光源装置14A、14Bを、上記第1の実施の形態の光源装置14a、14bに用いてもよい。この場合は、光源装置14A、14Bから出力されるDFB半導体レーザ素子200からの種光S1の出力タイミングと、各走査ユニットU1~U6の描画用光学素子106のスイッチングとを、パターンデータ(描画ビット列データSdw)に基づいて制御してもよい。
[第3の実施の形態]
 次に、図18を参照して、第3の実施の形態について説明するが、第3の実施の形態では、第2の実施の形態の変形例で説明した光源装置14A(図17参照)、14Bを用いることを前提とする。ただし、第3の実施の形態に適するように、図17の光源装置14Aの制御回路222内のクロック発生器222aは、図18に示す描画制御用の制御ユニット(制御回路500)からの倍率補正情報CMgに応じて、クロック信号LTCの時間間隔を部分的(離散的)に伸縮する機能を備える。同様に、光源装置14Bの制御回路222内のクロック発生器222aも、倍率補正情報CMgに応じて、クロック信号LTCの時間間隔を部分的(離散的)に伸縮する機能を備える。なお、光源装置14B、光導入光学系40b、および、走査ユニットU2、U4、U6の動作は、光源装置14A、光導入光学系40a、および、走査ユニットU1、U3、U5の動作と同様なので、光源装置14B、光導入光学系40b、および、走査ユニットU2、U4、U6の動作については説明を省略する。また、上記第2の実施の形態の変形例と同一の構成については同様の符号を付したり、図示を省略したりし、異なる部分のみ説明する。
 図18において、1つの光源装置14Aからのビーム(レーザ光)LBは、先の図12、図13の構成と同様に、選択用光学素子50、58、66を介して、それぞれ3つの走査ユニットU1、U3、U5に供給される。選択用光学素子50、58、66の各々は、図14、図15で説明した描画イネーブル(On)信号SPP1、SPP3、SPP5に応答して択一的にビームLBを偏向(スイッチング)し、走査ユニットU1、U3、U5のいずれか1つにビームLBを導く。なお、先に説明したように、各描画ラインに沿ってパターン描画が行われない期間(非投射期間)で、種光S2由来の紫外域のビームLBが僅かな強度であっても放射され続け、各描画ラインが長時間に渡って基板FS上の同じ位置に照射されるような状況が生じる場合を考慮して、光源装置14AのビームLBの射出窓には可動シャッターSSTが設けられる。
 図14で示したように、各走査ユニットU1、U3、U5の原点センサOP1、OP3、OP5からの原点信号SZ1、SZ3、SZ5は、走査ユニットU1、U3、U5ごとのパターンデータを生成する生成回路(パターンデータ生成回路)301、303、305に供給される。生成回路301は、図16中のゲート部GT1、メモリ部BM1、カウンタ部CN1等を含み、カウンタ部CN1は光源装置14Aの制御回路222(クロック発生器222a)から出力されるクロック信号LTCをベースに作られるクロック信号CLK1を計数するように構成される。
 同様に、生成回路303は、図16中のゲート部GT3、メモリ部BM3、カウンタ部CN3等を含み、カウンタ部CN3はクロック信号LTCをベースに作られるクロック信号CLK3を計数するように構成され、生成回路305は、図16中のゲート部GT5、メモリ部BM5、カウンタ部CN5等を含み、カウンタ部CN5はクロック信号LTCをベースに作られるクロック信号CLK5を計数するように構成される。
 それらのクロック信号CLK1、CLK3、CLK5は、各生成回路301、303、305と光源装置14Aとの間のインターフェースとして機能する制御回路500によって、クロック信号LTCを1/n(nは2以上の整数)分周して作られる。そのクロック信号CLK1、CLK3、CLK5の各カウンタ部CN1、CN3、CN5への供給は、描画イネーブル(On)信号SPP1、SPP3、SPP5(図15参照)に応答して、いずれか1つに制限される。すなわち、描画イネーブル信号SPP1がOn(ハイ)のときは、クロック信号LTCを1/n分周したクロック信号CLK1のみがカウンタ部CN1に供給され、描画イネーブル信号SPP3がOn(ハイ)のときは、クロック信号LTCを1/n分周したクロック信号CLK3のみがカウンタ部CN3に供給され、描画イネーブル信号SPP5がOn(ハイ)のときは、クロック信号LTCを1/n分周したクロック信号CLK5のみがカウンタ部CN5に供給される。
 これによって、各生成回路301、303、305の各々から順番に出力されるシリアルデータDL1、DL3、DL5はそれぞれゲート部GT1、GT3、GT5を介して、制御回路500内に設けられた3入力のOR回路GT8(図16参照)によって加算され、描画ビット列データSdwとなって光源装置14A内の電気光学素子206に供給される。なお、生成回路301、303、305、および、制御回路500は、制御装置18の一部を構成する。
 以上の構成は、基本的に図17を用いて説明した光源装置14Aの利用法と同じであるが、本実施の形態では、3つの走査ユニットU1、U3、U5の各々の描画ライン(走査ライン)SL1、SL3、SL5によって描画されるパターンのスポット走査方向(Y方向)の描画倍率を、個別に微調整する機能を設ける。その機能のために、本実施の形態では、走査ユニットU1、U3、U5毎に、描画倍率の補正量に関する情報mg1、mg3、mg5を一時的に記憶するメモリ部BM1a、BM3a、BM5aが設けられる。このメモリ部BM1a、BM3a、BM5aは、図18では独立したものとして図示したが、生成回路301、303、305の各々に設けられたメモリ部BM1、BM3、BM5の一部としてもよい。この補正量に関する情報mg1、mg3、mg5も描画情報の一部を構成する。
 補正量に関する情報mg1、mg3、mg5は、例えば、各描画ラインSL1、SL3、SL5によって描画されるパターンのY方向の寸法を、どれ位の比率で伸縮させるかのレート(ppm)に対応したものである。一例として、各描画ラインSL1、SL3、SL5によって描画可能なY方向の領域の長さを30mmとした場合、それを±200ppm(±6μmに相当)だけ伸縮させたい場合、情報mg1、mg3、mg5には、±200という数値が設定される。なお、情報mg1、mg3、mg5は、レートではなく直接的な伸縮量(±ρμm)で設定しても構わない。また、情報mg1、mg3、mg5は、描画ラインSL1、SL3、SL5の各々に沿った1ライン分のパターンデータ(シリアルデータDLn)毎に逐次設定し直してもよいし、複数ライン分のパターンデータ(シリアルデータDLn)の送出毎に設定し直してもよい。このように、本実施の形態では、基板FSをX方向(長尺方向)に送りつつ、描画ラインSL1、SL3、SL5の各々に沿ってパターン描画が行われている間に、動的にY方向の描画倍率を変えることが可能となり、基板FSの変形や面内歪が判る場合には、それに起因した描画位置精度の劣化を抑えることができる。さらに重ね合わせ露光の際には、既に形成された下地のパターンの変形に対応して重ね精度を大幅に向上させることができる。
 図19は、図18に示した描画装置のうち、代表して走査ユニットU1による標準的なパターン描画の際の各部の信号状態とビームLBの発振状態とのタイムチャートを示す図である。図19において、2次元のマトリックスGmは、描画すべきパターンデータのビットパターンPPを示し、基板FS上での1グリッド(1画素(ピクセル)単位)は、例えばY方向の寸法Pyを3μm、X方向の寸法Pxを3μmに設定される。また、図19において、矢印で示すSL1-1、SL1-2、SL1-3、・・・SL1-6は、基板FSのX方向の移動(長尺方向の副走査)に伴って、描画ラインSL1によって順次描画される描画ラインを示し、各描画ラインSL1-1、SL1-2、SL1-3、・・・、SL1-6のX方向の間隔は、例えば1画素単位の寸法Px(3μm)の1/2となるように、基板FSの搬送速度が設定される。
 さらに、基板FS上に投射されるスポット光SPのXY方向の寸法(スポットサイズφ)は、1画素単位と同程度か、それよりも少し大きめとする。よって、スポット光SPのサイズφは、実効的な直径(ガウス分布の1/e2の幅、またはピーク強度の半値全幅)として、3~4μm程度に設定され、描画ラインSL1に沿ってスポット光SPを連続的に投射する際は、例えばスポット光SPの実効的な直径の1/2でオーバーラップするように、ビームLBの発振周波数Fs(パルス時間間隔)とポリゴンミラーPMによるスポット光SPの走査速度Vsとが設定されている。すなわち、図17に示す光源装置14A内の偏光ビームスプリッタ208から射出される種光をビームLse(図18)とすると、この種光ビームLseは、制御回路222(クロック発生器222a)から出力されるクロック信号LTCの各クロックパルスに応答して図19のように射出される。
 そのクロック信号LTCと、図18中の生成回路301内のカウンタ部CN1に供給されるクロック信号CLK1とは、1:2の周波数比に設定され、クロック信号LTCが100MHzの場合、図18中の制御回路500の1/2分周器によって、クロック信号CLK1は50MHzに設定される。なお、クロック信号LTCとクロック信号CLK1の周波数比は整数倍であればよく、例えばクロック信号CLK1の設定周波数を1/4の25MHzに落とすとともに、スポット光SPの走査速度Vsも半分に落とすように設定してもよい。
 図19に示す描画ビット列データSdwは、生成回路301から出力されるシリアルデータDL1に相当し、ここでは、例えばパターンPPの描画ラインSL1-2上のパターンに対応している。光源装置14A内の電気光学素子206は、描画ビット列データSdwに応答して偏光状態を切り換えるので、種光ビームLseは、描画ビット列データSdwがOn状態(ハイ「1」)の間は、図17中のDFB半導体レーザ素子200からの種光S1によって生成され、描画ビット列データSdwがOff状態(ロー「0」)の間は、図17中のDFB半導体レーザ素子202からの種光S2によって生成される。以上の図19に示した走査ユニットU1の描画露光の動作は、他の走査ユニットU2~U6でも同じある。
 なお、光源装置14Aの制御回路222内に、描画ビット列データSdwがOn状態(ハイ「1」)の間は、クロック信号LTCに応答してDFB半導体レーザ素子200から種光S1(俊鋭なパルス光)を発生させ、描画ビット列データSdwがOff状態(ロー「0」)の間は、クロック信号LTCに応答してDFB半導体レーザ素子202から種光S2(ブロードなパルス光)を発生させるような駆動回路が設けられる場合は、図17、図18中に示した電気光学素子206、図17中に示した偏光ビームスプリッタ208、吸収体210は省略できる。
 このように、種光ビームLseの各パルス光は、図17に示したクロック発生器222aで生成されるクロック信号LTCの各クロックパルスに応答して出力されるので、本実施の形態では、クロック発生器222a内に、クロック信号LTCのパルス間の時間(周期)を部分的に増減するための回路構成を設ける。その回路構成には、クロック信号LTCの源となる基準(標準)クロック発生器と、分周カウンタ回路と、可変遅延回路等が設けられる。
 図20は、クロック発生器222a内の基準クロック発生器からの基準クロック信号TC0と、クロック信号LTCとの関係を示すタイムチャートであり、図17、図18中に示した倍率補正情報CMgに基づく補正が行われない状態を示す。クロック発生器222a内の可変遅延回路は、常に一定周波数Fs(一定の時間Td0)で生成される基準クロック信号TC0を、プリセット値に応じた遅延時間DT0だけ遅延させて、クロック信号LTCとして出力する。したがって、例えば、基準クロック信号TC0が100MHz(Td0=10nS)であれば、プリセット値(遅延時間DT0)に変化が生じない限り、クロック信号LTCも100MHz(Td0=10nS)で生成され続けられる。
 そこで、クロック発生器222a内の分周カウンタ回路によって、基準クロック信号TC0を計数し、その計数値が所定値Nvに達したら、可変遅延回路に設定されるプリセット値を一定量だけ変化させる構成にする。その様子を、図21のタイムチャートにより説明する。図21において、基準クロック信号TC0が分周カウンタ回路によってNvまでカウントされるまで、可変遅延回路に設定されるプリセット値は遅延時間DT0である。その後、基準クロック信号TC0の1つのクロックパルスKnによって、分周カウンタ回路がNvまで計数すると、可変遅延回路に設定されるプリセット値は、直ちに遅延時間DT1に変更される。したがって、基準クロック信号TC0のクロックパルスKnの次に発生するクロックパルスKn+1以降のクロックパルスに基づいて生成されるクロック信号LTCの各クロックパルス(K’n+1以降)は、一律に遅延時間DT1で生成される。
 これによって、可変遅延回路に設定されるプリセット値を一定量変化させたときだけ、すなわち、クロック信号LTCのクロックパルスK’nとクロックパルスK’n+1との間だけが時間間隔Td1に変化し、それ以降のクロック信号LTCのクロックパルスの時間間隔はTd0となる。図21では、遅延時間DT1を遅延時間DT0よりも増加させて、クロック信号LTCの2つのクロックパルス間の時間をTd0よりも増加させたが、減少させることも同様に可能である。なお、分周カウンタ回路は、基準クロック信号TC0をNvまでカウントしたら零リセットされて、再びNvまでの計数を始める。
 可変遅延回路に設定されるプリセット値の初期値を遅延時間DT0、遅延時間の変化量を±ΔDh、分周カウンタ回路が零リセットされる回数をNzとし、分周カウンタ回路がNvまで計数する度(零リセットされる度)に可変遅延回路に順次設定されるプリセット値の遅延時間をDTmとすると、遅延時間DTmは、DTm=DT0+Nz・(±ΔDh)、の関係に設定される。したがって、図21のように、零リセットの回数Nzが1(m=1)の間に設定される遅延時間DT1は、DTm=DT1=DT0±ΔDhとなり、次の零リセット(Nz=2、m=2)が発生した後に設定される遅延時間DT2は、DTm=DT2=DT0+2・(±ΔDh)となる。したがって、遅延時間の変化量±ΔDhは、クロック信号LTCのクロックパルスK’nとクロックパルスK’n+1との間の時間Td1の基準時間Td0からの差分に対応する。
 以上のように、クロック信号LTCの特定の2つのクロックパルス間で時間間隔を変化させる動作は、分周カウンタ回路に設定される所定値Nvに応じて、1つの描画ライン(SL1~SL6)の全長のうちの複数箇所で離散的に実施される。その様子を、図22に示す。図22は、描画ラインSL1の全長に渡って、分周カウンタ回路の計数値が所定値Nvに達する度に零リセットされる複数の位置を補正点CPPとして表したものである。その補正点CPPの各々では、クロック信号LTCの特定の2つのクロックパルス間だけが、時間Td0に対して±ΔDhだけ時間伸縮される。
 そこで、基準クロック信号TC0を100MHz(Td0=10nS)、スポット光SPの主走査方向の実効的なサイズを3μm、描画ラインSL1(SL2~SL6も同様)の長さを30mmとし、ビームLBの2つの連続したパルス光によって基板FSに投射されるスポット光SPが主走査方向に半分程度(1.5μm)オーバーラップして描画されるものとすると、描画ラインSL1の長さに渡って生成される基準クロック信号TC0のクロック数は20000個となる。また、遅延時間の変化量ΔDhは、基準の時間間隔Td0に対して充分に小さく、例えば2%程度に設定されるものとする。この条件のもとで、描画ラインSL1に沿って描画されるパターンを、150ppmだけ主走査方向(Y方向)に伸縮させる場合、描画ラインSL1の長さ30mmの150ppmは4.5μmに相当する。これらの描画倍率のレート150ppm、或いは実寸長4.5μmに関する情報は、図18中のメモリ部BM1aに情報mg1として保存される。
 したがって、クロック信号LTCの20000個のクロックパルス列のうち、時間Td0に対してΔDhだけ時間伸縮させる補正点CPP(図22)の個数は、4.5μm/(1.5μm×2%)=150となり、図22に示した分周カウンタ回路に設定される最大の所定値Nvは、20000/150より、約133となる。
 また、遅延時間の変化量ΔDhを5%にした場合、補正点CPPの個数は、4.5μm/(1.5μm×5%)=60となり、分周カウンタ回路に設定される最大の所定値Nvは、20000/60より、約333となる。このように、遅延時間の変化量ΔDhが10%未満と小さいため、その補正点CPPで描画すべきパターンが存在したとしても、そのパターンのサイズはスポット光SPのサイズよりも大きいため、補正点CPPでのスポット光SPの主走査方向の僅かな位置ずれによる描画誤差は無視できる。
 以上のような遅延時間の変化量ΔDh、補正点CPPの個数、分周カウンタ回路による所定値Nvの設定等は、図18の制御回路500から出力される倍率補正情報CMg(ppm)に基づいて、図17に示した制御回路222内で演算され、クロック発生器222a内の分周カウンタ回路や可変遅延回路等に設定される。
 以上の実施の形態によれば、光源装置14AからのビームLBは、例えば3つの走査ユニットU1、U3、U5の各々に時分割で順番に供給することができ、各走査ユニットU1、U3、U5の描画ラインSL1、SL3、SL5に沿った描画動作をシリアルに個別に行うことができることから、図18に示したように、走査ユニットU1、U3、U5毎に描画倍率の補正量に関する情報mg1、mg3、mg5を設定することができる。それによって、基板FSのY方向の伸縮が一様ではなく、Y方向に分割したいくつかの領域毎に伸縮率が違っていても、それに対応するように各走査ユニットUnに最適な描画倍率の補正量を設定でき、基板FSの非線形な変形にも対応できるといった利点が得られる。
 以上、被照射体(基板FS)上に集光されるスポット光SPを走査してパターンを描画する装置に接続され、スポット光SPとなるビーム(レーザ光)LBを射出する光源装置14Aには、図17、図18に示すように、所定周期(Td0)のクロックパルス(クロック信号LTC)に応答して、発光時間が所定周期に対して短くピーク強度が高い俊鋭な第1パルス光(種光S1)を発生する第1半導体レーザ光源(200)と、クロックパルスに応答して、発光時間が所定周期よりも短く、且つ第1パルス光(種光S1)の発光時間よりも長くピーク強度が低いブロードな第2パルス光(種光S2)を発生する第2半導体レーザ光源(202)と、第1パルス光(種光S1)或いは第2パルス光(種光S2)を入射するファイバー光増幅器(216)と、描画すべきパターンの情報(描画ビット列データSdw)に基づいて、被照射体上にスポット光SPを投射する描画時には、第1パルス光(種光S1)をファイバー光増幅器に入射させ、被照射体上にスポット光SPを投射しない非描画時には、第2パルス光(種光S2)をファイバー光増幅器(216)に入射させるように切り換える切換え装置が設けられる。その切換え装置は、第1パルス光(種光S1)と第2パルス光(種光S2)のいずれか一方を描画すべきパターン情報に基づいて選択する電気光学素子(206)、或いは、第1パルス光(種光S1)と第2パルス光(種光S2)のいずれか一方が発生するように、描画すべきパターン情報に基づいて第1半導体レーザ光源(200)と第2半導体レーザ光源(202)の駆動を制御する回路、で構成される。
 本第3の実施の形態は、上記第1の実施の形態またはその変形例や、上記第2の実施の形態にも適用可能である。つまり、第3の実施の形態で説明した、光源装置14Aの制御回路222内のクロック発生器222aが、図18に示す描画制御用の制御ユニット(制御回路500)からの倍率補正情報CMgに応じて、クロック信号LTCの時間間隔を部分的(離散的)に伸縮する機能を、上記第1の実施の形態またはその変形例の光源装置14や、上記第2の実施の形態の光源装置14に適用可能である。この場合は、光源装置14は、DFB半導体レーザ素子202、偏光ビームスプリッタ204、電気光学素子206、偏光ビームスプリッタ208、および、吸収体210を有しなくてもよい、つまり、光源装置14は、DFB半導体レーザ素子200が発光したパルス状の種光S1をファイバー光増幅器216で増幅させて、ビームLBとして射出するものであってよい。この場合は、光源装置14は、電気光学素子206を有しないので、生成回路301、303、305が生成したシリアルデータDL1、DL3、DL5は、走査ユニットUnの描画用光学素子106または描画用光学素子150に送られる。
[第4の実施の形態]
 図23は、第4の実施の形態の基板(被照射体)FSに露光処理を施す露光装置EXを含むデバイス製造システム10の概略構成を示す図である。なお、特に断わりのない限り、上記第1~第3の実施の形態(変形例も含む)と同一の構成については同一の符号を付したり、図示を省略したりし、その異なる部分のみを説明する。
 本第4の実施の形態においては、上記第1~第3の実施の形態(変形例も含む)と同様、ビーム走査装置としての露光装置EXは、マスクを用いない直描方式の露光装置、いわゆるラスタースキャン方式の露光装置である。露光装置EXは、上記第1~第3の実施の形態(変形例も含む)で説明した描画ヘッド16の代わりに、ビーム切換部材20および露光ヘッド22を備える。また、露光装置EXは、複数のアライメント顕微鏡AMm(AM1~AM4)も備えている。第1~第3の実施の形態(変形例も含む)では特に説明しなかったが、上記第1~第3の実施の形態の露光装置EXも複数のアライメント顕微鏡AMm(AM1~AM4)を備えている。なお、第4の実施の形態の露光装置EXにおいても、基板搬送機構12、光源装置14´、および、制御装置18を備えていることは言うまでもない。なお、本第4の実施の形態の光源装置14´は、上記第2の実施の形態の変形例で説明した光源装置14(光源装置14A、14B)と同一の構成(図17参照)であることを前提とする。この光源装置14´が射出したビームLBは、ビーム切換部材20を介して露光ヘッド22に入射する。
 ビーム切換部材20は、露光ヘッド22を構成する複数の走査ユニットUn(U1~U6)のうち、スポット光SPの1次元走査を行う1つの走査ユニットUnに、光源装置14´からのビームLBが入射するように、ビームLBの光路を切り換えるものである。このビーム切換部材20については後で詳細に説明する。
 露光ヘッド22は、ビームLBがそれぞれ入射する複数の走査ユニットUn(U1~U6)を備えている。露光ヘッド22は、回転ドラムDRの円周面で支持されている基板FSの一部分に、複数の走査ユニットUn(U1~U6)によってパターンを描画する。露光ヘッド22は、同一構成の複数の走査ユニットUn(U1~U6)を配列した、いわゆるマルチビーム型の露光ヘッドとなっている。図23に示すように、奇数番の走査ユニットU1、U3、U5は、中心面Pocに対して基板FSの搬送方向の上流側(-X方向側)に配置され、且つ、Y方向に沿って配置されている。偶数番の走査ユニットU2、U4、U6は、中心面Pocに対して基板FSの搬送方向の下流側(+X方向側)に配置され、且つ、Y方向に沿って配置されている。奇数番の走査ユニットU1、U3、U5と、偶数番の走査ユニットU2、U4、U6とは、中心面Pocに対して対称に設けられている。つまり、第4の実施の形態においては、奇数番の走査ユニットU1、U3、U5と偶数番の走査ユニットU2、U4、U6との配置が、上記第1~第3の実施の形態(変形例も含む)で説明したものと逆になっている。
 走査ユニットUnは、光源装置14´からのビームLBを基板FSの被照射面上でスポット光SPに収斂させるように投射しつつ、そのスポット光SPを基板FSの被照射面上で所定の直線的な描画ライン(走査線)SLnに沿って、回転するポリゴンミラーPM(図28参照)によって1次元に走査する。
 複数の走査ユニットUn(U1~U6)は、所定の配置関係で配置されている。本第4の実施の形態においては、複数の走査ユニットUn(U1~U6)は、複数の走査ユニットUn(U1~U6)の描画ラインSLn(SL1~SL6)が、図24、図25に示すように、Y方向(基板FSの幅方向、主走査方向)に関して、互いに分離することなく、継ぎ合わされるように配置されている。なお、第1~第3の実施の形態(変形例)で述べたように、各走査ユニットUn(U1~U6)に入射するビームLBを、各々LB1~LB6と表す場合がある。この走査ユニットUnに入射するビームLBは、所定の方向に偏光した直線偏光(P偏光またはS偏光)のビームであり、本第4の実施の形態では、P偏光のビームとする。また、6つの走査ユニットU1~U6の各々に入射するビームLB1~LB6をビームLBnと表すこともある。
 図25に示すように、複数の走査ユニットUn(U1~U6)全部で露光領域Wの幅方向の全てをカバーするように、各走査ユニットUn(U1~U6)は、走査領域を分担している。これにより、各走査ユニットUn(U1~U6)は、基板FSの幅方向に分割された複数の領域毎にパターンを描画することができる。例えば、1つの走査ユニットUnによるY方向の走査長(描画ラインSLnの長さ)を30~60mm程度とすると、奇数番の走査ユニットU1、U3、U5の3個と、偶数番の走査ユニットU2、U4、U6の3個との計6個の走査ユニットUnをY方向に配置することによって、描画可能なY方向の幅を180~360mm程度に広げている。各描画ラインSL1~SL6の長さ(走査長、主走査方向の描画幅)は、原則として同一とする。
 なお、上述したように、実際の各描画ラインSLn(SL1~SL6)は、スポット光SPが被照射面上を実際に走査可能な最大の長さよりも僅かに短く設定される。このように設定することによって、スポット光SPの最大走査長(例えば、31mm)の範囲内で、描画ラインSLn(例えば、走査長は30mm)の位置を主走査方向に微調整したり、描画倍率を微調整したりすることが可能となる。スポット光SPの最大走査長は、主に走査ユニットUn内のポリゴンミラー(回転ポリゴンミラー)PMの後に設けられるfθレンズFT(図28参照)の口径によって決まる。
 複数の描画ラインSLn(SL1~SL6)は、中心面Pocを挟んで、回転ドラムDRの周方向に2列に配置される。奇数番の描画ラインSL1、SL3、SL5は、中心面Pocに対して基板FSの搬送方向の上流側(-X方向側)の基板FSの被照射面上に位置する。偶数番の描画ラインSL2、SL4、SL6は、中心面Pocに対して基板FSの搬送方向の下流側(+X方向側)の基板FSに被照射面上に位置する。描画ラインSL1~SL6は、基板FSの幅方向、つまり、回転ドラムDRの中心軸AXoとほぼ並行となっている。
 描画ラインSL1、SL3、SL5は、基板FSの幅方向(走査方向)に沿って所定の間隔をあけて直線上に配置されている。描画ラインSL2、SL4、SL6も同様に、基板FSの幅方向(走査方向)に沿って所定の間隔をあけて直線上に配置されている。奇数番の描画ラインSL1、SL3、SL5の各々に沿って走査されるビームLBnのスポット光SPの走査方向は、1次元の方向となっており、-Y方向となっている。偶数番の描画ラインSL2、SL4、SL6の各々に沿って走査されるビームLBnのスポット光SPの走査方向は、1次元の方向となっており、+Y方向となっている。
 第4の実施の形態においては、複数の走査ユニットUn(U1~U6)は、ビームLBnのスポット光SPの走査を、予め決められた順番(所定の順番)にしたがって繰り返し行う。例えば、スポット光SPの走査を行う走査ユニットUnの順番が、U1→U2→U3→U4→U5→U6、となっている場合は、まず、走査ユニットU1がスポット光SPの走査を1回行う。そして、走査ユニットU1のスポット光SPの走査が終了すると、走査ユニットU2がスポット光SPの走査を1回行い、その走査が終了すると、走査ユニットU3がスポット光SPの走査を1回行うといった具合に、複数の走査ユニットUn(U1~U6)が所定の順番でスポット光SPの走査を1回ずつ行う。そして、走査ユニットU6のスポット光SPの走査が終了すると、走査ユニットU1のスポット光SPの走査に戻る。このように、複数の走査ユニットUn(U1~U6)は、スポット光SPの走査を所定の順番で繰り返す。
 各走査ユニットUn(U1~U6)は、少なくともXZ平面において、各ビームLBnが回転ドラムDRの中心軸AXoに向かって進むように、各ビームLBnを基板FSに向けて照射する。これにより、各走査ユニットUn(U1~U6)から基板FSに向かって進むビームLBnの光路(ビーム中心軸)は、XZ平面において、基板FSの被照射面の法線と同軸(平行)となる。また、各走査ユニットUn(U1~U6)は、描画ラインSLn(SL1~SL6)に照射するビームLBnが、YZ平面と平行な面内では基板FSの被照射面に対して垂直となるように、ビームLBnを基板FSに向けて照射する。すなわち、被照射面でのスポット光SPの主走査方向に関して、基板FSに投射されるビームLBn(LB1~LB6)はテレセントリックな状態で走査される。ここで、各走査ユニットUn(U1~U6)によって規定される描画ラインSLn(SL1~SL6)の各中点を通って基板FSの被照射面と垂直な線(または光軸とも呼ぶ)を、照射中心軸Len(Le1~Le6)と呼ぶ(図24参照)。
 この各照射中心軸Len(Le1~Le6)は、XZ平面において、描画ラインSL1~SL6と中心軸AXoとを結ぶ線となっている。奇数番の走査ユニットU1、U3、U5の各々の照射中心軸Le1、Le3、Le5は、XZ平面において同じ方向となっており、偶数番の走査ユニットU2、U4、U6の各々の照射中心軸Le2、Le4、Le6は、XZ平面において同じ方向となっている。また、照射中心軸Le1、Le3、Le5と照射中心軸Le2、Le4、Le6とは、XZ平面において、中心面Pocに対して角度が±θとなるように設定されている(図23参照)。
 図23に示したアライメント顕微鏡AMm(AM1~AM4)は、図25に示すように、基板FSに形成されたアライメントマークMKm(MK1~MK4)を検出するためのものであり、Y方向に沿って複数(本第4の実施の形態では、4つ)設けられている。アライメントマークMKm(MK1~MK4)は、基板FSの被照射面上の露光領域Wに描画される所定のパターンと、基板FSとを相対的に位置合わせする(アライメントする)ための基準マークである。アライメント顕微鏡AMm(AM1~AM4)は、回転ドラムDRの円周面で支持されている基板FS上で、アライメントマークMKm(MK1~MK4)を検出する。アライメント顕微鏡AMm(AM1~AM4)は、露光ヘッド22からのビームLBn(LB1~LB6)のスポット光SPによる基板FS上の被照射領域(描画ラインSL1~SL6で囲まれた領域)よりも基板FSの搬送方向の上流側(-X方向側)に設けられている。
 アライメント顕微鏡AMm(AM1~AM4)は、アライメント用の照明光を基板FSに投射する光源と、基板FSの表面のアライメントマークMKm(MK1~MK4)を含む局所領域(観察領域)の拡大像を得る観察光学系(対物レンズを含む)と、その拡大像を基板FSが搬送方向に移動している間に高速シャッターで撮像するCCD、CMOS等の撮像素子とを有する。アライメント顕微鏡AMm(AM1~AM4)が撮像した撮像信号(画像データ)ig(ig1~ig4)は制御装置18に送られる。制御装置18は、撮像信号ig(ig1~ig4)の画像解析と、撮像した瞬間の回転ドラムDRの回転位置の情報(図24に示したスケール部SDを読み取るエンコーダEN1a、EN1bによる計測値)とに基づいて、アライメントマークMKm(MK1~MK4)の位置を検出して、基板FSの位置を高精度に計測する。なお、アライメント用の照明光は、基板FS上の感光性機能層に対してほとんど感度を持たない波長域の光、例えば、波長500~800nm程度の光である。
 アライメントマークMK1~MK4は、各露光領域Wの周りに設けられている。アライメントマークMK1、MK4は、露光領域Wの基板FSの幅方向の両側に、基板FSの長尺方向に沿って一定の間隔DIで複数形成されている。アライメントマークMK1は、基板FSの幅方向の-Y方向側に、アライメントマークMK4は、基板FSの幅方向の+Y方向側にそれぞれ形成されている。このようなアライメントマークMK1、MK4は、基板FSが大きなテンションを受けたり、熱プロセスを受けたりして変形していない状態では、基板FSの長尺方向(X方向)に関して同一位置になるように配置される。さらに、アライメントマークMK2、MK3は、アライメントマークMK1とアライメントマークMK4の間であって、露光領域Wの+X方向側と-X方向側との余白部に基板FSの幅方向(短尺方向)に沿って形成されている。アライメントマークMK2、MK3は、露光領域Wと露光領域Wとの間に形成されている。アライメントマークMK2は、基板FSの幅方向の-Y方向側に、アライメントマークMK3は、基板FSの+Y方向側に形成されている。
 さらに、基板FSの-Y方向の側端部に配列されるアライメントマークMK1と余白部のアライメントマークMK2とのY方向の間隔、余白部のアライメントマークMK2とアライメントマークMK3のY方向の間隔、および基板FSの+Y方向の側端部に配列されるアライメントマークMK4と余白部のアライメントマークMK3とのY方向の間隔は、いずれも同じ距離に設定されている。これらのアライメントマークMKm(MK1~MK4)は、第1層のパターン層の形成の際に一緒に形成されてもよい。例えば、第1層のパターンを露光する際に、パターンが露光される露光領域Wの周りにアライメントマーク用のパターンも一緒に露光してもよい。なお、アライメントマークMKmは、露光領域W内に形成されてもよい。例えば、露光領域W内であって、露光領域Wの輪郭に沿って形成されてもよい。また、露光領域W内にアライメントマークMKmを形成する場合は、露光領域W内に形成される電子デバイスのパターン中の特定位置のパターン部分、或いは特定形状の部分をアライメントマークMKmとして利用してもよい。
 アライメント顕微鏡AM1は、対物レンズによる観察領域(検出領域)Vw1内に存在するアライメントマークMK1を撮像するように配置される。同様に、アライメント顕微鏡AM2~AM4は、対物レンズによる観察領域Vw2~Vw4内に存在するアライメントマークMK2~MK4を撮像するように配置される。したがって、複数のアライメント顕微鏡AM1~AM4は、複数のアライメントマークMK1~MK4の位置に対応して、基板FSの-Y方向側からアライメント顕微鏡AM1~AM4の順で設けられている。アライメント顕微鏡AMm(AM1~AM4)は、X方向に関して、露光位置(描画ラインSL1~SL6)とアライメント顕微鏡AMmの観察領域Vw(Vw1~Vw4)との距離が、露光領域WのX方向の長さよりも短くなるように設けられている。Y方向に設けられるアライメント顕微鏡AMmの数は、基板FSの幅方向に形成されるアライメントマークMKmの数に応じて変更可能である。また、観察領域Vw1~Vw4の基板FSの被照射面上の大きさは、アライメントマークMK1~MK4の大きさやアライメント精度(位置計測精度)に応じて設定されるが、100~500μm角程度の大きさである。なお、第1~第3の実施の形態(変形例も含む)では特に説明しなかったが、上記第1~第3の実施の形態で用いる基板FSにも複数のアライメントマークMKmが形成されている。
 図24に示すように、回転ドラムDRの両端部には、回転ドラムDRの外周面の周方向の全体に亘って環状に形成された目盛を有するスケール部SD(SDa、SDb)が設けられている。このスケール部SD(SDa、SDb)は、回転ドラムDRの外周面の周方向に一定のピッチ(例えば、20μm)で凹状または凸状の格子線を刻設した回折格子であり、インクリメンタル型のスケールとして構成される。このスケール部SD(SDa、SDb)は、中心軸AXo回りに回転ドラムDRと一体に回転する。また、このスケール部SD(SDa、SDb)と対向するように、複数のエンコーダ(スケール読取ヘッド)ENnが設けられている。このエンコーダENnは、回転ドラムDRの回転位置を光学的に検出するものである。回転ドラムDRの-Y方向側の端部に設けられたスケール部SDaに対向して、3つのエンコーダENn(EN1a、EN2a、EN3a)が設けられている。同様に、回転ドラムDRの+Y方向側の端部に設けられたスケール部SDbに対向して、3つのエンコーダENn(EN1b、EN2b、EN3b)が設けられている。なお、第1~第3の実施の形態(変形例も含む)では特に説明しなかったが、上記第1~第3の実施の形態の回転ドラムDRの両端部にはスケール部SD(SDa、SDb)が設けられ、それと対向するように複数のエンコーダEn(EN1a~EN3a、EN1b~EN3b)が設けられている。
 エンコーダENn(EN1a~EN3a、EN1b~EN3b)は、スケール部SD(SDa、SDb)に向けて計測用の光ビームを投射し、その反射光束(回折光)を光電検出することにより、パルス信号である検出信号を制御装置18に出力する。制御装置18は、その検出信号(パルス信号)をカウンタ回路356a(図33参照)でカウントすることにより、回転ドラムDRの回転角度位置および角度変化をサブミクロンの分解能で計測することができる。カウンタ回路356aは、各エンコーダENn(EN1a~EN3a、EN1b~EN3b)の検出信号をそれぞれ個別にカウントする。制御装置18は、回転ドラムDRの角度変化から、基板FSの搬送速度も計測することもできる。各エンコーダENn(EN1a~EN3a、EN1b~EN3b)の各々の検出信号を個別にカウントするカウンタ回路356aは、各エンコーダENn(EN1a~EN3a、EN1b~EN3b)がスケール部SDa、SDbの周方向の一部に形成された原点マーク(原点パターン)ZZを検出すると、そのエンコーダENnに対応するカウント値を0にリセットする。
 エンコーダEN1a、EN1bは、設置方位線Lx1上に配置されている。設置方位線Lx1は、XZ平面において、エンコーダEN1a、EN1bの計測用の光ビームのスケール部SD(SDa、SDb)上への投射位置(読取位置)と、中心軸AXoとを結ぶ線となっている。また、設置方位線Lx1は、XZ平面において、各アライメント顕微鏡AMm(AM1~AM4)の観察領域Vw(Vw1~Vw4)と中心軸AXoとを結ぶ線となっている。
 エンコーダEN2a、EN2bは、中心面Pocに対して基板FSの搬送方向の上流側(-X方向側)に設けられており、且つ、エンコーダEN1a、EN1bより基板FSの搬送方向の下流側(+X方向側)に設けられている。エンコーダEN2a、EN2bは、設置方位線Lx2上に配置されている。設置方位線Lx2は、XZ平面において、エンコーダEN2a、EN2bの計測用の光ビームのスケール部SD(SDa、SDb)上への投射位置と、中心軸AXoとを結ぶ線となっている。この設置方位線Lx2は、XZ平面において、照射中心軸Le1、Le3、Le5と同角度位置となって重なっている。
 エンコーダEN3a、EN3bは、中心面Pocに対して基板FSの搬送方向の下流側(+X方向側)に設けられている。エンコーダEN3a、EN3bは、設置方位線Lx3上に配置されている。設置方位線Lx3は、XZ平面において、エンコーダEN3a、EN3bの計測用の光ビームのスケール部SD(SDa、SDb)上への投射位置と、中心軸AXoとを結ぶ線となっている。この設置方位線Lx3は、XZ平面において、照射中心軸Le2、Le4、Le6と同角度位置となって重なっている。
 このエンコーダEN1a、EN1bからの検出信号のカウント値(回転角度位置)と、エンコーダEN2a、EN2bからの検出信号のカウント値(回転角度位置)と、エンコーダEN3a、EN3bからの検出信号のカウント値(回転角度位置)とは、各エンコーダENnが回転ドラムDRの周回方向の1ヶ所に付設された原点マークZZを検出した瞬間にゼロにリセットされる。そのため、エンコーダEN1a、EN1bに基づくカウント値が第1の値(例えば、100)のときの、回転ドラムDRに巻き付けられている基板FSの設置方位線Lx1上における位置(アライメント顕微鏡AM1~AM4の各観察領域Vw1~Vw4の位置)を第1の位置とした場合に、基板FS上の第1の位置が設置方位線Lx2上の位置(描画ラインSL1、SL3、SL5の位置)まで搬送されると、エンコーダEN2a、EN2bに基づくカウント値は第1の値(例えば、100)となる。同様に、基板FS上の第1の位置が設置方位線Lx3上の位置(描画ラインSL2、SL4、SL6の位置)まで搬送されると、エンコーダEN3a、EN3bに基づく検出信号のカウント値は第1の値(例えば、100)となる。
 ところで、基板FSは、回転ドラムDRの両端のスケール部SDa、SDbより内側に巻き付けられている。図23では、スケール部SD(SDa、SDb)の外周面の中心軸AXoからの半径を、回転ドラムDRの外周面の中心軸AXoからの半径より小さく設定した。しかしながら、図24に示すように、スケール部SD(SDa、SDb)の外周面を、回転ドラムDRに巻き付けられた基板FSの外周面と同一面となるように設定してもよい。つまり、スケール部SD(SDa、SDb)の外周面の中心軸AXoからの半径(距離)と、回転ドラムDRに巻き付けられた基板FSの外周面(被照射面)の中心軸AXoからの半径(距離)とが同一となるように設定してもよい。これにより、エンコーダENn(EN1a、EN1b、EN2a、EN2b、EN3a、EN3b)は、回転ドラムDRに巻き付いた基板FSの被照射面と同じ径方向の位置でスケール部SD(SDa、SDb)を検出することができ、エンコーダENnによる計測位置と処理位置(描画ラインSL1~SL6)とが回転ドラムDRの径方向で異なることで生じるアッベ誤差を小さくすることができる。
 以上のことから、アライメント顕微鏡AMm(AM1~AM4)によって検出されたアライメントマークMKm(MK1~MK4)の位置(エンコーダEN1a、EN1bによるカウント値)に基づいて、制御装置18によって基板FSの長尺方向(X方向)における露光領域Wの描画露光の開始位置が決定され、そのときにエンコーダEN1a、EN1bに基づくカウント値を第1の値(例えば、100)とする。この場合は、エンコーダEN2a、EN2bに基づくカウント値が第1の値(例えば、100)となると、基板FSの長尺方向における露光領域Wの描画露光の開始位置が描画ラインSL1、SL3、SL5上に位置する。したがって、走査ユニットU1、U3、U5は、エンコーダEN2a、EN2bのカウント値に基づいて、スポット光SPの走査を開始することができる。また、エンコーダEN3a、EN3bに基づくカウント値が第1の値(例えば、100)となると、基板FSの長尺方向における露光領域Wの描画露光の開始位置が描画ラインSL2、SL4、SL6上に位置する。したがって、走査ユニットU2、U4、U6は、エンコーダEN3a、EN3bのカウント値に基づいて、スポット光SPの走査を開始することができる。なお、第1~第3の実施の形態(変形例も含む)では特に説明しなかったが、上記第1~第3の実施の形態の露光装置EXもエンコーダENn(EN1a~EN3a、EN1b~EN3b)およびスケール部SD(SDa、SDb)を備えている。
 図26は、ビーム切換部材20の構成図である。ビーム切換部材20は、複数の選択用光学素子AOMn(AOM1~AOM6)と、複数の集光レンズCD1~CD6と、複数の反射ミラーM1~M12と、複数のユニット側入射ミラーIM1~IM6と、複数のコリメートレンズCL1~CL6と、吸収体TRとを有する。選択用光学素子AOMn(AOM1~AOM6)は、ビームLBに対して透過性を有するものであり、超音波信号で駆動される音響光学変調素子(AOM:Acousto-Optic Modulator)である。これらの光学的な部材(選択用光学素子AOM1~AOM6、集光レンズCD1~CD6、反射ミラーM1~M12、ユニット側入射ミラーIM1~IM6、コリメートレンズCL1~CL6、および、吸収体TR)は、板状の支持部材IUBによって支持されている。この支持部材IUBは、複数の走査ユニットUn(U1~U6)の上方で、これらの光学的な部材を下方(-Z方向側)から支持する。したがって、支持部材IUBは、発熱源となる選択用光学素子AOMn(AOM1~AOM6)と複数の走査ユニットUn(U1~U6)との間を断熱する機能も備えている。
 光源装置14´からビームLBは、反射ミラーM1~M12によってその光路がつづらおり状に曲げられて、吸収体TRまで導かれる。以下、選択用光学素子AOMn(AOM1~AOM6)がいずれもオフ状態(超音波信号が印加されていない状態)の場合で、詳述する。光源装置14´からのビームLB(平行光束)は、Y軸と平行に+Y方向に進んで集光レンズCD1を通って反射ミラーM1に入射する。反射ミラーM1で-X方向側に反射したビームLBは、集光レンズCD1の焦点位置(ビームウェスト位置)に配置された第1の選択用光学素子AOM1をストレートに透過し、コリメートレンズCL1によって再び平行光束にされて、反射ミラーM2に至る。反射ミラーM2で+Y方向側に反射したビームLBは、集光レンズCD2を通った後に反射ミラーM3で+X方向側に反射される。
 反射ミラーM3で反射されたビームLBは、集光レンズCD2の焦点位置(ビームウェスト位置)に配置された第2の選択用光学素子AOM2をストレートに透過し、コリメートレンズCL2によって再び平行光束にされて、反射ミラーM4に至る。反射ミラーM4で+Y方向側に反射されたビームLBは、集光レンズCD3を通った後に反射ミラーM5で-X方向側に反射される。反射ミラーM5で-X方向側に反射されたビームLBは、集光レンズCD3の焦点位置(ビームウェスト位置)に配置された第3の選択用光学素子AOM3をストレートに透過し、コリメートレンズCL3によって再び平行光束にされて、反射ミラーM6に至る。反射ミラーM6で+Y方向側に反射されたビームLBは、集光レンズCD4を通った後に反射ミラーM7で+X方向側に反射される。
 反射ミラーM7で反射されたビームLBは、集光レンズCD4の焦点位置(ビームウェスト位置)に配置された第4の選択用光学素子AOM4をストレートに透過し、コリメートレンズCL4によって再び平行光束にされて、反射ミラーM8に至る。反射ミラーM8で+Y方向側に反射されたビームLBは、集光レンズCD5を通った後に反射ミラーM9で-X方向側に反射される。反射ミラーM9で-X方向側に反射されたビームLBは、集光レンズCD5の焦点位置(ビームウェスト位置)に配置された第5の選択用光学素子AOM5をストレートに透過し、コリメートレンズCL5によって再び平行光束にされて、反射ミラーM10に至る。反射ミラーM10で+Y方向側に反射されたビームLBは、集光レンズCD6を通った後に反射ミラーM11で+X方向側に反射される。反射ミラーM11で反射されたビームLBは、集光レンズCD6の焦点位置(ビームウェスト位置)に配置された第6の選択用光学素子AOM6をストレートに透過し、コリメートレンズCL6によって再び平行光束にされ、反射ミラーM12で-Y方向側に反射された後、吸収体TRに至る。この吸収体TRは、ビームLBの外部への漏れを抑制するためにビームLBを吸収する光トラップである。
 以上のように、選択用光学素子AOM1~AOM6は、光源装置14´からのビームLBを順次透過するように配置されるとともに、集光レンズCD1~CD6とコリメートレンズCL1~CL6とによって、各選択用光学素子AOM1~AOM6の内部にビームLBのビームウェストが形成されるように配置される。これにより、選択用光学素子AOM1~AOM6(音響光学変調素子)に入射するビームLBの径を小さくして、回折効率を高くするとともに応答性を高めている。
 各選択用光学素子AOMn(AOM1~AOM6)は、超音波信号(高周波信号)が印加されると、入射したビームLB(0次光)を、高周波の周波数に応じた回折角で回折させた1次回折光を射出ビーム(ビームLBn)として発生させるものである。本第4の実施の形態では、複数の選択用光学素子AOMn(AOM1~AOM6)の各々から1次回折光として射出されるビームLBnをビームLB1~LB6とし、各選択用光学素子AOMn(AOM1~AOM6)は、光源装置14´からのビームLBの光路を偏向する機能を奏するものとして扱う。ただし、上述したように、実際の音響光学変調素子は、1次回折光の発生効率が0次光の80%程度であるため、選択用光学素子AOMn(AOM1~AOM6)の各々で偏向されたビームLB1~LB6は、元のビームLBの強度よりは低下している。また、選択用光学素子AOMn(AOM1~AOM6)のいずれか1つがオン状態のとき、回折されずに直進する0次光が20%程度残存するが、それは最終的に吸収体TRによって吸収される。
 また、選択用光学素子AOMnは、超音波によって透過部材中の所定方向に屈折率の周期的な粗密変化を生じさせる回折格子であるため、入射ビームLBが直線偏光(P偏光かS偏光)である場合、その偏光方向と回折格子の周期方向とは、1次回折光の発生効率(回折効率)が最も高くなるように設定される。図26のように、選択用光学素子AOMnが入射したビームLBをZ方向に回折偏向するように設置される場合、選択用光学素子AOMn内に生成される回折格子の周期方向もZ方向であるので、それと整合するように光源装置14´からのビームLBの偏光方向が設定(調整)される。
 さらに、図26に示すように、複数の選択用光学素子AOMn(AOM1~AOM6)の各々は、偏向されたビームLB1~LB6(1次回折光)を、入射するビームLBに対して-Z方向に偏向するように設置される。選択用光学素子AOMn(AOM1~AOM6)の各々から偏向して射出するビームLB1~LB6は、選択用光学素子AOMn(AOM1~AOM6)の各々から所定距離だけ離れた位置に設けられたユニット側入射ミラーIM1~IM6に投射され、そこで-Z方向に照射中心軸Le1~Le6と平行(同軸)になるように反射される。ユニット側入射ミラーIM1~IM6(以下、単にミラーIM1~IM6とも呼ぶ)で反射されたビームLB1~LB6は、支持部材IUBに形成された開口部TH1~TH6の各々を通って、照射中心軸Le1~Le6に沿うように走査ユニットUn(U1~U6)の各々に入射する。
 各選択用光学素子AOMn(AOM1~AOM6)の構成、機能、作用等は互いに同一のものを用いてもよい。複数の選択用光学素子AOMn(AOM1~AOM6)は、制御装置18からの駆動信号(高周波信号)のオン/オフにしたがって、入射したビームLBを回折させた回折光の発生をオン/オフする。例えば、選択用光学素子AOM1は、制御装置18からの駆動信号(高周波信号)が印加されずにオフの状態のときは、入射したビームLBを回折させずに透過する。したがって、選択用光学素子AOM1を透過したビームLBは、コリメートレンズCL1を透過して反射ミラーM2に入射する。一方、選択用光学素子AOM1は、制御装置18からの駆動信号が印加されてオンの状態のときは、入射したビームLBを回折させてミラーIM1に向かわせる。つまり、この駆動信号によって選択用光学素子AOM1をスイッチングする。ミラーIM1は、選択用光学素子AOM1によって回折されたビームLB1を走査ユニットU1側に反射する。ミラーIM1で反射したビームLB1は、支持部材IUBの開口部TH1を通って照射中心軸Le1に沿って走査ユニットU1に入射する。したがって、ミラーIM1は、反射したビームLB1の光軸が照射中心軸Le1と同軸となるように、入射したビームLB1を反射する。また、選択用光学素子AOM1がオンの状態のとき、選択用光学素子AOM1をストレートに透過するビームLBの0次光(入射ビームの20%程度の強度)は、その後のコリメートレンズCL1~CL6、集光レンズCD2~CD6、反射ミラーM2~M12、および、選択用光学素子AOM2~AOM6を透過して吸収体TRに達する。
 図27Aは、選択用光学素子AOM1によるビームLBの光路の切り換えを+Z方向側からみた図であり、図27Bは、選択用光学素子AOM1によるビームLBの光路の切り換えを-Y方向側からみた図である。駆動信号がオフの状態のときは、選択用光学素子AOM1は、入射したビームLBを回折させずにそのまま反射ミラーM2側に向けて透過する。一方で、駆動信号がオンの状態のときは、選択用光学素子AOM1は、入射したビームLBを-Z方向側に回折させたビームLB1を発生し、それをミラーIM1に向かわせる。したがって、XY平面内においては、選択用光学素子AOM1から射出するビームLB(0次光)および偏向されたビームLB1(1次回折光)の進行方向を変えずに、Z方向に関して、ビームLB1(1次回折光)の進行方向を変えている。このように、制御装置18は、選択用光学素子AOM1に印加すべき駆動信号(高周波信号)をオン/オフ(ハイ/ロー)にすることによって、選択用光学素子AOM1をスイッチングして、ビームLBが後続の選択用光学素子AOM2に向かうか、偏向されたビームLB1が走査ユニットU1に向かうかを切り換える。
 同様に、選択用光学素子AOM2は、制御装置18からの駆動信号(高周波信号)がオフの状態のときは、入射したビームLB(選択用光学素子AOM1で回折されずに透過してきたビームLB)を回折させずにコリメートレンズCL2側(反射ミラーM4側)に透過し、制御装置18からの駆動信号がオンの状態のときは、入射したビームLBの回折光であるビームLB2をミラーIM2に向かわせる。このミラーIM2は、選択用光学素子AOM2によって回折されたビームLB2を走査ユニットU2側に反射する。ミラーIM2で反射したビームLB2は、支持部材IUBの開口部TH2を通って照射中心軸Le2と同軸となって走査ユニットU2に入射する。さらに、選択用光学素子AOM3~AOM6は、制御装置18からの駆動信号(高周波信号)がオフの状態のときは、入射したビームLBを回折させずにコリメートレンズCL3~CL6側(反射ミラーM6、M8、M10、M12側)に透過し、制御装置18からの駆動信号がオンの状態ときは、入射したビームLBの1次回折光であるビームLB3~LB6をミラーIM3~IM6に向かわせる。このミラーIM3~IM6は、選択用光学素子AOM3~AOM6によって回折されたビームLB3~LB6を走査ユニットU3~U6側に反射する。ミラーIM3~IM6で反射したビームLB3~LB6は、照射中心軸Le3~Le6と同軸となって、支持部材IUBの開口部TH3~TH6の各々を通って走査ユニットU3~U6に入射する。このように、制御装置18は、選択用光学素子AOM2~AOM6の各々に印加すべき駆動信号(高周波信号)をオン/オフ(ハイ/ロー)にすることによって、選択用光学素子AOM2~AOM6のいずれか1つをスイッチングして、ビームLBが後続の選択用光学素子AOM3~AOM6または吸収体TRに向かうか、偏向されたビームLB2~LB6の1つが、対応する走査ユニットU2~U6に向かうかを切り換える。
 以上のように、ビーム切換部材20は、光源装置14´からのビームLBの進行方向に沿って直列に配置された複数の選択用光学素子AOMn(AOM1~AOM6)を備えることで、ビームLBの光路を切り換えてビームLBnが入射する走査ユニットUnを1つ選択することができる。例えば、走査ユニットU1にビームLB1を入射させたい場合は、選択用光学素子AOM1をオン状態にし、走査ユニットU3にビームLB3を入射させたい場合は、選択用光学素子AOM3をオン状態にすればよい。この複数の選択用光学素子AOMn(AOM1~AOM6)は、複数の走査ユニットUn(U1~U6)に対応して設けられ、対応する走査ユニットUnにビームLBnを入射させるか否かを切り換えている。
 複数の走査ユニットUn(U1~U6)は、所定の順番でスポット光SPの走査を行うという動作を繰り返すので、ビーム切換部材20もこれに対応して、ビームLB1~LB6のいずれか1つが入射する走査ユニットU1~U6を切り換える。例えば、スポット光SPの走査を行う走査ユニットUnの順番が、U1→U2→・・・→U6、となっている場合は、ビーム切換部材20も、これに対応して、ビームLBnが入射する走査ユニットUnを、U1→U2→・・・→U6の順番で切り換える。
 以上のことから、ビーム切換部材20の各選択用光学素子AOMn(AOM1~AOM6)は、走査ユニットUn(U1~U6)の各々のポリゴンミラーPMによるスポット光SPの1回の走査期間の間だけ、オン状態となっていればよい。詳しくは後述するが、ポリゴンミラーPMの反射面数をNp、ポリゴンミラーPMの回転速度をVp(rpm)とすると、ポリゴンミラーPMの反射面RPの1面分の回転角度に対応した時間Tssは、Tss=60/(Np・Vp)〔秒〕となる。例えば、反射面数Npが8、回転速度Vpが3万の場合、ポリゴンミラーPMの1回転は2ミリ秒であり、時間Tssは、0.25ミリ秒となる。これは周波数に換算すると4kHzであり、紫外域の波長のビームLBを描画データに応答して数十MHz程度で高速に変調するための音響光学変調素子に比べると、相当に低い応答周波数の音響光学変調素子でよいことを意味する。そのため、入射するビームLB(0次光)に対して偏向されるビームLB1~LB6(1次回折光)の回折角が大きいものを使うことができ、選択用光学素子AOM1~AOM6をストレートに通過するビームLBの進路に対して、偏向されたビームLB1~LB6を分離するミラーIM1~IM6(図26、図27A、図27B)の配置が容易になる。
 なお、複数の走査ユニットU1~U6は、所定の順番でスポット光SPの走査を1回ずつ行う動作を繰り返すことから、それに対応して、各走査ユニットUnのパターンデータのシリアルデータDLnが、所定の順番で光源装置14´の駆動回路206aに出力される。この駆動回路206aに順次出力されるシリアルデータDLnを描画ビット列データSdwと呼ぶ。例えば、所定の順番が、U1→U2→・・・→U6、となっている場合は、まず、1列分のシリアルデータDL1が駆動回路206aに出力され、続いて、1列分のシリアルデータDL2が駆動回路206aに出力されるといった具合に、描画ビット列データSdwを構成する1列分のシリアルデータDL1~DL6が順次駆動回路206aに出力される。その後、次の列のシリアルデータDL1~DL6が描画ビット列データSdwとして順次駆動回路206aに出力される。この駆動回路206aに描画ビット列データSdwを出力する具体的な構成については後で詳細に説明する。
 走査ユニットUn(U1~U6)の構成は、上記第1~第3の実施の形態で用いたものであってもよいが、本第4の実施の形態では、図28に示すような構成の走査ユニットUnを用いる。また、以下に説明する走査ユニットUnを上記第1~第3の実施の形態の走査ユニットとして用いてもよい。
 以下、図28を参照して第4の実施の形態で用いる走査ユニットUn(U1~U6)の光学的な構成について説明する。なお、各走査ユニットUn(U1~U6)は、同一の構成を有することから、走査ユニットU1についてのみ説明し、他の走査ユニットUnについてはその説明を省略する。また、図28においては、照射中心軸Len(Le1)と平行する方向をZt方向とし、Zt方向と直交する平面上にあって、基板FSがプロセス装置PR1から露光装置EXを経てプロセス装置PR2に向かう方向をXt方向とし、Zt方向と直交する平面上であって、Xt方向と直交する方向をYt方向とする。つまり、図28のXt、Yt、Ztの3次元座標は、図23のX、Y、Zの3次元座標を、Y軸を中心にZ軸方向が照射中心軸Len(Le1)と平行となるように回転させた3次元座標である。
 図28に示すように、走査ユニットU1内には、ビームLB1の入射位置から基板FSの被照射面までのビームLB1の進行方向に沿って、反射ミラーM20、ビームエキスパンダーBE、反射ミラーM21、偏光ビームスプリッタBS、反射ミラーM22、像シフト光学部材SR、フィールドアパーチャFA、反射ミラーM23、λ/4波長板QW、シリンドリカルレンズCYa、反射ミラーM24、ポリゴンミラーPM、fθレンズFT、反射ミラーM25、シリンドリカルレンズCYbが設けられる。さらに、走査ユニットU1内には、基板FSの被照射面からの反射光を偏光ビームスプリッタBSを介して検出するための光学レンズ系G10および光検出器DTSが設けられる。
 走査ユニットU1に入射するビームLB1は、-Zt方向に向けて進み、XtYt平面に対して45°傾いた反射ミラーM20に入射する。この走査ユニットU1に入射するビームLB1の軸線は、照射中心軸Le1と同軸になるように反射ミラーM20に入射する。反射ミラーM20は、ビームLB1を走査ユニットU1に入射させる入射光学部材として機能し、入射したビームLB1を、Xt軸と平行に設定される光軸に沿って反射ミラーM21に向けて-Xt方向に反射する。したがって、Xt軸と平行に進むビームLB1の光軸は、XtZt平面と平行な面内で照射中心軸Le1と直交する。反射ミラーM20で反射したビームLB1は、Xt軸と平行に進むビームLB1の光軸に沿って配置されるビームエキスパンダーBEを透過して反射ミラーM21に入射する。ビームエキスパンダーBEは、透過するビームLB1の径を拡大させる。ビームエキスパンダーBEは、集光レンズBe1と、集光レンズBe1によって収斂された後に発散するビームLB1を平行光にするコリメートレンズBe2とを有する。
 反射ミラーM21は、YtZt平面に対して45°傾いて配置され、入射したビームLB1を偏光ビームスプリッタBSに向けて-Yt方向に反射する。偏光ビームスプリッタBSの偏光分離面は、YtZt平面に対して45°傾いて配置され、P偏光のビームを反射し、P偏光と直交する方向に偏光した直線偏光(S偏光)のビームを透過するものである。走査ユニットU1に入射するビームLB1は、P偏光のビームなので、偏光ビームスプリッタBSは、反射ミラーM21からのビームLB1を-Xt方向に反射して反射ミラーM22側に導く。
 反射ミラーM22は、XtYt平面に対して45°傾いて配置され、入射したビームLB1を、反射ミラーM22から-Zt方向に離れた反射ミラーM23に向けて-Zt方向に反射する。反射ミラーM22で反射されたビームLB1は、Zt軸と平行な光軸に沿って像シフト光学部材SRおよびフィールドアパーチャ(視野絞り)FAを通過して、反射ミラーM23に入射する。像シフト光学部材SRは、ビームLB1の進行方向と直交する平面(XtYt平面)内において、ビームLB1の断面内の中心位置を2次元的に調整する。像シフト光学部材SRは、Zt軸と平行に進むビームLB1の光軸に沿って配置される2枚の石英の平行平板Sr1、Sr2で構成され、平行平板Sr1は、Xt軸回りに傾斜可能であり、平行平板Sr2は、Yt軸回りに傾斜可能である。この平行平板Sr1、Sr2がそれぞれ、Xt軸、Yt軸回りに傾斜することで、ビームLB1の進行方向と直交するXtYt平面において、ビームLB1の中心の位置を2次元に微小量シフトする。この平行平板Sr1、Sr2は、制御装置18の制御の下、図示しないアクチュエータ(駆動部)によって駆動する。
 像シフト光学部材SRを通ったビームLB1は、フィールドアパーチャFAの円形開口を透過して反射ミラーM23に達する。フィールドアパーチャFAの円形開口は、ビームエキスパンダーBEで拡大されたビームLB1の断面内の強度分布の裾野部分をカットする絞りである。フィールドアパーチャFAの円形開口の口径が調整可能な可変虹彩絞りにすると、スポット光SPの強度(輝度)を調整することができる。
 反射ミラーM23は、XtYt平面に対して45°傾いて配置され、入射したビームLB1を、反射ミラーM23から+Xt方向に離れた反射ミラーM24に向けて+Xt方向に反射する。反射ミラーM23で反射したビームLB1は、λ/4波長板QWおよびシリンドリカルレンズCYaを透過して反射ミラーM24に入射する。反射ミラーM24は、入射したビームLB1をポリゴンミラー(回転多面鏡、走査用偏向部材)PMに向けて反射する。ポリゴンミラーPMは、入射したビームLB1を、Xt軸と平行な光軸AXfを有するfθレンズFTに向けて+Xt方向に反射する。ポリゴンミラーPMは、ビームLB1のスポット光SPを基板FSの被照射面上で走査するために、入射したビームLB1をXtYt平面と平行な面内で偏向(反射)する。具体的には、ポリゴンミラーPMは、Zt軸方向に延びる回転軸AXpと、回転軸AXpの周りに形成された複数の反射面RP(本第4の実施の形態では8つの反射面RP)とを有する。回転軸AXpを中心にこのポリゴンミラーPMを所定の回転方向に回転させることで反射面RPに照射されるパルス状のビームLB1の反射角を連続的に変化させることができる。これにより、1つの反射面RPによってビームLB1の反射方向が偏向され、基板FSの被照射面上に照射されるビームLB1のスポット光SPを走査方向(基板FSの幅方向、Yt方向)に沿って走査することができる。
 1つの反射面RPによって、ビームLB1のスポット光SPを描画ラインSL1に沿って走査することができる。このため、ポリゴンミラーPMの1回転で、基板FSの被照射面上にスポット光SPが走査される描画ラインSL1の数は、最大で反射面RPの数と同じ8本となる。ポリゴンミラーPMは、モータ等を含むポリゴン駆動部RMによって一定の速度で回転する。ポリゴン駆動部RMによるポリゴンミラーPMの回転は、制御装置18によって制御される。上述したように、描画ラインSL1の実効的な長さ(例えば30mm)は、このポリゴンミラーPMによってスポット光SPを走査することができる最大走査長(例えば31mm)以下の長さに設定されており、初期設定(設計上)では、最大走査長の中央に描画ラインSL1の中心点(照射中心軸Le1が通る)が設定されている。
 なお、一例として、描画ラインSL1の実効的な長さを30mmとし、実効的なサイズφが3μmのスポット光SPを1.5μmずつオーバーラップさせながらスポット光SPを描画ラインSL1に沿って基板FSの被照射面上に照射する場合は、1回の走査で照射されるスポット光SPの数(光源装置14´からのビームLBのパルス数)は、20000(30mm/1.5μm)となる。また、描画ラインSL1に沿ったスポット光SPの走査時間を200μsecとすると、この間に、パルス状のスポット光SPを20000回照射しなければならないので、光源装置14´の発光周波数Fsは、Fs≧20000回/200μsec=100MHzとなる。
 シリンドリカルレンズCYaは、ポリゴンミラーPMによる走査方向(回転方向)と直交する非走査方向(Zt方向)に関して、入射したビームLB1をポリゴンミラーPMの反射面RP上にスリット状に収斂する。この母線がYt方向と平行となっているシリンドリカルレンズCYaによって、反射面RPがZt方向に対して傾いている場合(XtYt平面の法線に対する反射面RPの傾き)があっても、その影響を抑制することができ、基板FSの被照射面上に照射されるビームLB1の照射位置がXt方向にずれることを抑制する。
 Xt軸方向に延びる光軸AXfを有するfθレンズFTは、ポリゴンミラーPMによって反射されたビームLB1を、XtYt平面において、光軸AXfと平行となるように反射ミラーM25に投射するテレセントリック系のスキャンレンズである。ビームLB1のfθレンズFTへの入射角θは、ポリゴンミラーPMの回転角(θ/2)に応じて変わる。fθレンズFTは、反射ミラーM25およびシリンドリカルレンズCYbを介して、その入射角θに比例した基板FSの被照射面上の像高位置にビームLB1を投射する。焦点距離をfoとし、像高位置をyとすると、fθレンズFTは、y=fo・θ、の関係を満たすように設計されている。したがって、このfθレンズFTによって、ビームLB1(スポット光SP)をYt方向(Y方向)に正確に等速で走査することが可能になる。fθレンズFTへの入射角θが0度のときに、fθレンズFTに入射したビームLB1は、光軸AXf上に沿って進む。
 反射ミラーM25は、入射したビームLB1を、シリンドリカルレンズCYbを介して基板FSに向けて-Zt方向に反射する。fθレンズFTおよび母線がYt方向と平行となっているシリンドリカルレンズCYbによって、基板FSに投射されるビームLB1が基板FSの被照射面上で直径数μm程度(例えば、3μm)の微小なスポット光SPに収斂される。また、基板FSの被照射面上に投射されるスポット光SPは、ポリゴンミラーPMによって、Yt方向に延びる描画ラインSL1によって1次元走査される。なお、fθレンズFTの光軸AXfと照射中心軸Le1とは、同一の平面上にあり、その平面はXtZt平面と平行である。したがって、光軸AXf上に進んだビームLB1は、反射ミラーM25によって-Zt方向に反射し、照射中心軸Le1と同軸になって基板FSに投射される。本第4の実施の形態において、少なくともfθレンズFTは、ポリゴンミラーPMによって偏向されたビームLB1を基板FSの被照射面に投射する投射光学系として機能する。また、少なくとも反射部材(反射ミラーM21~M25)および偏光ビームスプリッタBSは、反射ミラーM20から基板FSまでのビームLB1の光路を折り曲げる光路偏向部材として機能する。この光路偏向部材によって、反射ミラーM20に入射するビームLB1の入射軸と照射中心軸Le1とをほぼ同軸にすることができる。XtZt平面に関して、走査ユニットU1内を通るビームLB1は、ほぼU字状またはコ字状の光路を通った後、-Zt方向に進んで基板FSに投射される。
 このように、基板FSがX方向に搬送されている状態で、各走査ユニットUn(U1~U6)によって、ビームLBnのスポット光SPを走査方向(Y方向)に一次元に走査することで、スポット光SPを基板FSの被照射面に相対的に2次元走査することができる。したがって、基板FSの露光領域Wに所定のパターンを描画露光することができる。
 光検出器DTSは、入射した光を光電変換する光電変換素子を有する。回転ドラムDRの表面には、予め決められた基準パターンが形成されている。この基準パターンが形成された回転ドラムDR上の部分は、ビームLB1の波長域に対して低めの反射率(10~50%)の素材で構成され、基準パターンが形成されていない回転ドラムDR上の他の部分は、反射率が10%以下の材料または光を吸収する材料で構成される。そのため、基板FSが巻き付けられていない状態(または基板FSの透明部を通した状態)で、回転ドラムDRの基準パターンが形成された領域に走査ユニットU1からビームLB1のスポット光SPを照射すると、その反射光が、シリンドリカルレンズCYb、反射ミラーM25、fθレンズFT、ポリゴンミラーPM、反射ミラーM24、シリンドリカルレンズCYa、λ/4波長板QW、反射ミラーM23、フィールドアパーチャFA、像シフト光学部材SR、および、反射ミラーM22を通過して偏光ビームスプリッタBSに入射する。ここで、偏光ビームスプリッタBSと基板FSとの間、具体的には、反射ミラーM23とシリンドリカルレンズCYaとの間には、λ/4波長板QWが設けられている。これにより、基板FSに照射されるビームLB1は、このλ/4波長板QWによってP偏光から円偏光に変換され、基板FSから偏光ビームスプリッタBSに入射する反射光は、このλ/4波長板QWによって、円偏光からS偏光に変換される。したがって、基板FSからの反射光は偏光ビームスプリッタBSを透過し、光学レンズ系G10を介して光検出器DTSに入射する。
 このとき、パルス状のビームLB1(好ましくは、種光S1に由来するビームLB1)が連続して走査ユニットU1に入射される状態で、回転ドラムDRを回転して走査ユニットU1がスポット光SPを走査することで、回転ドラムDRの外周面には、スポット光SPが2次元的に照射される。したがって、回転ドラムDRに形成された基準パターンの画像を光検出器DTSによって取得することができる。具体的には、光検出器DTSから出力される光電信号の強度変化を、スポット光SPのパルス発光のためのクロックパルス信号(光源装置14´内で作られる)に応答して、各走査時間毎にデジタルサンプリングすることでYt方向の1次元の画像データとして取得し、さらに回転ドラムDRの回転角度位置を計測するエンコーダENnの計測値に応答して、副走査方向の一定距離(例えばスポット光SPのサイズφの1/2)毎にYt方向の1次元の画像データをXt方向に並べることにより、回転ドラムDRの表面の2次元の画像情報を所得する。制御装置18は、この取得した回転ドラムDRの基準パターンの2次元の画像情報に基づいて、走査ユニットU1の描画ラインSL1の傾きを計測する。この描画ラインSL1の傾きとは、各走査ユニットUn(U1~U6)間における相対的な傾きであってもよく、回転ドラムDRの中心軸AXoに対する傾き(絶対的な傾き)であってもよい。なお、同様にして、各描画ラインSL2~SL6の傾きも計測することができることはいうまでもない。
 走査ユニットU1のポリゴンミラーPMの周辺には、図29に示すように原点センサ(原点検出器)OP1が設けられている。原点センサOP1は、各反射面RPによるスポット光SPの走査開始を示すパルス状の原点信号SZを出力する。原点センサOP1は、ポリゴンミラーPMの回転位置が、反射面RPによるスポット光SPの走査が開始される直前の所定位置に来ると、原点信号SZを出力する。ポリゴンミラーPMは、走査角度範囲θsで、基板FSに投射されるビームLB1を偏向することができるので、ポリゴンミラーPMで反射したビームLB1の反射方向(偏向方向)が走査角度範囲θs内になると、反射したビームLB1がfθレンズFTに入射する。したがって、原点センサOP1は、反射面RPで反射されるビームLB1の反射方向が走査角度範囲θs内に入る直前の所定位置にポリゴンミラーPMの回転位置が来ると原点信号SZを出力する。なお、走査角度範囲θsと、図7に示す最大走査回転角度範囲αとは、θs=2×α、の関係を有する。
 ポリゴンミラーPMは、反射面RPを8つ有するので、原点センサOP1は、ポリゴンミラーPMが1回転する期間で8回原点信号SZを出力することになる。この原点センサOP1が検出した原点信号SZは制御装置18に送られる。原点センサOP1が原点信号SZを出力してから、スポット光SPの描画ラインSL1に沿った走査が開始される。
 原点センサOP1は、これからスポット光SPの走査(ビームLB1の偏向)を行う反射面RPの隣りの反射面RP(本第4の実施の形態では、ポリゴンミラーPMの回転方向の1つ手前の反射面RP)を用いて、原点信号SZを出力する。各反射面RPを区別するため、便宜上、図29において、現在ビームLB1の偏向を行っている反射面RPをRPaで表し、その他の反射面RPを、反時計方向回り(ポリゴンミラーPMの回転方向とは反対の方向回り)に、RPb~RPhで表す。
 原点センサOP1は、半導体レーザ等の非感光性の波長域のレーザビームBgaを射出する光源部312と、光源部312からのレーザビームBgaを反射させてポリゴンミラーPMの反射面RPbに投射するミラー314、316とを備えるビーム送光系Opaを有する。また、原点センサOP1は、受光部318と、反射面RPbで反射したレーザビームBgaの反射光(反射ビームBgb)を受光部318に導くミラー320、322と、ミラー322で反射された反射ビームBgbを微小なスポット光に集光するレンズ系324とを備えるビーム受光系Opbを有する。受光部318は、レンズ系324によって集光された反射ビームBgbのスポット光を電気信号に変換する光電変換素子を有する。ここで、レーザビームBgaがポリゴンミラーPMの各反射面RPに投射される位置は、レンズ系324の瞳面(焦点の位置)となるように設定されている。
 ビーム送光系Opaとビーム受光系Opbとは、ポリゴンミラーPMの回転位置が、反射面RPによるスポット光SPの走査が開始される直前の所定位置になったときに、ビーム送光系Opaが射出したレーザビームBgaの反射ビームBgbをビーム受光系Opbが受光することができる位置に設けられている。つまり、ビーム送光系Opaとビーム受光系Opbとは、反射面RPの角度が所定の角度位置になったときに、ビーム送光系Opaが射出したレーザビームBgaの反射ビームBgbを受光することができる位置に設けられている。なお、図29の符号Msfは、回転軸AXpと同軸に配置されたポリゴン駆動部RM(図28参照)の回転モータのシャフトである
 受光部318内の前記光電変換素子の受光面の直前には、微小幅のスリット開口を備えた遮光体が設けられている(図示略)。反射面RPbの角度位置が、所定の角度範囲内の間は、反射ビームBgbがレンズ系324に入射して、反射ビームBgbのスポット光が受光部318内の前記遮光体上を一定方向に走査する。その走査中に、遮光体のスリット開口を透過した反射ビームBgbのスポット光が受光部318の前記光電変換素子で受光され、その受光信号が増幅器で増幅されてパルス状の原点信号SZとして出力される。
 原点センサOP1は、上述したように、ビームLB1を偏向する(スポット光SPを走査する)反射面RPaより、回転方向の1つ手前の反射面RPbを用いて原点信号SZを検出する。そのため、隣り合う反射面RP(例えば、反射面RPaと反射面RPb)同士の各なす角ηjが設計値(反射面RPが8つの場合は135度)に対して誤差を持っていると、その誤差のばらつきによって、図30に示すように、原点信号SZの発生タイミングが反射面RP毎に異なってしまう場合がある。
 図30においては、反射面RPbを用いて発生した原点信号SZをSZbとする。同様に、反射面RPc、RPd、RPe、・・・を用いて発生した原点信号SZをSZc、SZd、SZe、・・・とする。ポリゴンミラーPMの隣り合う反射面RP同士のなす角ηjが設計値の場合は、各原点信号SZ(SZb、SZc、SZd、・・・)の発生タイミングの間隔は、時間Tpxとなる。この所定の時間Tpxは、ポリゴンミラーPMが反射面RPの1面分回転するのに要する時間である。しかしながら、図30においては、ポリゴンミラーPMの反射面RPのなす角ηjの誤差によって、反射面RPc、RPdを用いて発生した原点信号SZc、SZdのタイミングが、正規の発生タイミングに対してずれている。また、原点信号SZb、SZc、SZd、SZe、・・・が発生する時間間隔Tp1、Tp2、Tp3、・・・は、ポリゴンミラーPMの製造誤差により、μ秒オーダーでは一定ではない。図30に示すタイムチャートにおいては、Tp1<Tpx、Tp2>Tpx、Tp3<Tpx、となっている。なお、反射面RPの数をNp、ポリゴンミラーPMの回転速度をVpとすると、Tpxは、Tpx=60/(Np×Vp)[秒]、で表される。例えば、Vpが3万rpmで、Npが8とすると、Tpxは、250μ秒となる。
 したがって、ポリゴンミラーPMの隣り合う反射面RP同士の各なす角ηjの誤差によって、各反射面RP(RPa~RPh)によって描画されるスポット光SPの基板FSの被照射面上の描画ラインSL1の描画開始点(走査開始点)の位置が主走査方向にばらつく。これにより、描画ラインSL1の描画終了点の位置も主走査方向にばらつく。つまり、各反射面RPによって描画されるスポット光SPの描画ラインSL1の位置が、走査方向(Y方向)に沿ってシフトするので、各描画ラインSLnの描画開始点および描画終了点の位置がX方向に沿って直線的にならない。このスポット光SPの描画ラインSL1の描画開始点および描画終了点の位置が主走査方向にばらつく要因は、Tp1、Tp2、Tp3、・・・=Tpx、とならないからである。
 そこで、本第4の実施の形態では、図30に示すタイムチャートのように、1つのパルス状の原点信号SZが発生してから時間Tpx後を描画開始点として、スポット光SPの描画を開始する。つまり、制御装置18は、原点信号SZが発生してから時間Tpx後に、ビームLB1が走査ユニットU1に入射するようにビーム切換部材20を制御するとともに、図26に示した光源装置14´の駆動回路206aに、これから走査を行う走査ユニットU1の描画ビット列データSdw、つまり、シリアルデータDL1を出力する。これにより、原点信号SZの検出に用いた反射面RPbと実際にスポット光SPを走査する反射面RPとを同一の反射面にすることができる。
 具体的に説明すると、制御装置18は、走査ユニットU1の原点センサOP1が原点信号SZbを出力してから時間Tpx後に、ビーム切換部材20の選択用光学素子AOM1に、一定時間(オン時間Ton)オンの駆動信号を出力する。この選択用光学素子AOM1がオンになる一定時間(オン時間Ton)は、予め決められた時間であり、ポリゴンミラーPMの1つの反射面RPによってスポット光SPが描画ラインSL1に沿って1回走査される期間(走査期間)をカバーするように設定されている。そして、制御装置18は、ある特定の列、例えば、1列目のシリアルデータDL1を光源装置14´の駆動回路206aに出力する。これにより、走査ユニットU1がスポット光SPの走査を行う走査時間中はビームLB1が走査ユニットU1に入射するので、走査ユニットU1は、ある特定の列(例えば、1列目)のシリアルデータDL1に応じたパターンを描画することができる。このように、走査ユニットU1の原点センサOP1が原点信号SZbを出力してから時間Tpx後に走査ユニットU1がスポット光SPの走査を行うので、原点信号SZbの検出に用いた反射面RPbで、その原点信号SZbに起因したスポット光SPの走査を行うことができる。
 次に、制御装置18は、走査ユニットU1の原点センサOP1が原点信号SZdを出力してから時間Tpx後に、ビーム切換部材20の選択用光学素子AOM1に、一定時間(オン時間Ton)オンの駆動信号を出力する。そして、制御装置18は、次の列、例えば、2列目のシリアルデータDL1を光源装置14´の駆動回路206aに出力する。これにより、走査ユニットU1がスポット光SPの走査を行うのに必要な時間を含む時間中はビームLB1が走査ユニットU1に入射するので、走査ユニットU1は、次の列(例えば、2列目)のシリアルデータDL1に応じたパターンを描画することができる。このように、走査ユニットU1の原点センサOP1が原点信号SZdを出力してから、時間Tpx後に走査ユニットU1がスポット光SPの走査を行うので、原点信号SZdの検出に用いた反射面RPbで、その原点信号SZdに起因したスポット光SPの走査を行うことができる。なお、スポット光SPの走査を、ポリゴンミラーPMの連続した反射面RP毎に行うのではなく1面飛ばしで行う場合は、原点信号SZを1つ飛ばし(1つ置き)で使って描画処理を行う。そのような1つ飛ばしによる描画処理の理由については後で詳しく説明する。
 このようにして、走査ユニットU1の原点センサOP1が原点信号SZを出力してから時間Tpx後に、走査ユニットU1がスポット光SPを走査するように、制御装置18は、ビーム切換部材20を制御するとともに、光源装置14´の駆動回路206aにシリアルデータDL1を出力する。また、制御装置18は、走査ユニットU1による走査が開始される度に、出力するシリアルデータDL1の列を、1列目、2列目、3列目、4列目、・・・、というように列方向にずらしていく。なお、走査ユニットU1によるスポット光SPの1回の走査から次の走査までの間に、他の走査ユニットUn(走査ユニットU2~U6)によるスポット光SPの走査が順番に行われている。他の走査ユニットUn(U2~U6)によるスポット光SPの走査は、走査ユニットU1の走査と同様である。また、原点センサOPn(OP1~OP6)は、各走査ユニットUn(U1~U6)毎に設けられている。
 以上のように、走査ユニットU1の原点信号SZbの検出に用いた反射面RPを用いてスポット光SPの走査を行うことで、ポリゴンミラーPMの隣り合う反射面RP同士の各なす角ηjに誤差があった場合であっても、各反射面RP(RPa~RPh)によって描画されるスポット光SPの基板FSの被照射面上の描画開始点および描画終了点の位置が主走査方向にばらつくことを抑制することができる。
 そのためには、ポリゴンミラーPMが45度回転する時間Tpxが、μ秒オーダーで正確であること、つまり、ポリゴンミラーPMの速度がむらなく精密に等速度で回転させる必要がある。そのように精密に等速度でポリゴンミラーPMを回転させた場合は、原点信号SZの発生に用いられた反射面RPは、常に、時間Tpx後には正確に45度だけ回転してビームLB1をfθレンズFTに向かって反射する角度になっている。したがって、ポリゴンミラーPMの回転等速性を高め、1回転中の速度ムラも極力低減させることで、原点信号SZの発生に用いられる反射面RPの位置とビームLB1を偏向してスポット光SPを走査するために用いられる反射面RPの位置とを異ならせることができる。つまり、原点信号SZの発生タイミングを時間Tpxだけ遅らせるので、結果的にスポット光SPの走査を行う反射面RPを用いて原点信号SZを検出しているのと同等の作用を有する。これにより、原点センサOP1(OPn)の配置の自由度が向上し、剛性が高く安定な構成の原点センサを設けることができる。また、原点センサOP1(OPn)が検出対象とする反射面RPは、ビームLB1(LBn)を偏向する反射面RPの回転方向の1つ手前としたが、ポリゴンミラーPMの回転方向の手前であればよく、1つ手前に限られない。この場合、原点センサOPが検出対象とする反射面RPを、ビームLB1(LBn)を偏向する反射面RPの回転方向のn(1以上の整数)だけ手前にする場合は、原点信号SZが発生してからn×時間Tpx後に描画開始点を設定すればよい。
 さらに、原点センサOP1(OPn)から1つ置きに発生する原点信号SZb、SZd、・・・、の各々に対して、描画開始点をn×時間Tpx後に描画開始点を設定することで、描画ラインSL1毎に対応した画素データ列の読み出し動作、データ転送(通信)動作、或いは補正計算等の処理時間に余裕が生じる。そのため、画素データ列の転送ミス、画素データ列の誤りや部分的な消失を確実に回避することができる。
 なお、以上の図29のように、これからスポット光SPの走査(ビームLB1の偏向)を行う反射面RPの隣りの反射面RP(本第4の実施の形態では、ポリゴンミラーPMの回転方向の1つ手前の反射面RP)を検出する原点センサOPnを設けずに、これからスポット光SPの走査(ビームLB1の偏向)を行う反射面RPと同じ反射面RPを検出する原点センサを設けてもよい。その場合は、図30で説明したように、ポリゴンミラーPMの各反射面RPa~RPh毎に発生する原点信号(パルス状)SZの時間間隔がばらつくので、各反射面RPa~RPh毎に、そのばらつき分に応じた時間的なオフセットを加味する必要がある。
 ここで、図7でも説明したように、ポリゴンミラーPMの反射面RPの数Npが8つで、最大走査回転角度範囲αを15度にした場合は、走査効率(α/β)は1/3となる。例えば、走査ユニットU1がスポット光SPを走査してから次の走査を行うまでの間に、走査ユニットU1以外の2つの走査ユニットUnにビームLBnを振り分けて、スポット光SPの走査を行うことができる。つまり、走査ユニットU1のポリゴンミラーPMが1面分回転する間に、走査ユニットU1を含む3つの走査ユニットUnの各々に、対応するビームLBnを振り分けて、スポット光SPの走査を行うことが可能である。
 しかしながら、ポリゴンミラーPMの走査効率は1/3なので、各走査ユニットUnが最大走査回転角度範囲α(15度)でスポット光SPを走査する場合においては、走査ユニットU1のポリゴンミラーPMが反射面RPの1面分(β=45度)回転する間に、ビームLBnを走査ユニットU1以外の3つ以上の走査ユニットUn(U2~U6)に振り分けることはできない。つまり、走査ユニットU1のスポット光SPの走査の開始から次のスポット光SPの走査の開始までの期間に、ビームLBnを走査ユニットU1以外の3つ以上の走査ユニットUn(U2~U6)に振り分けることはできない。そこで、走査ユニットU1のスポット光SPによる走査の開始から次の走査の開始までの期間に、他の5つの走査ユニットUn(U2~U6)の各々にビームLBnを振り分けて、スポット光SPによる走査を行わせるには、以下の方法が考えられる。
 最大走査回転角度範囲αが15度の場合であっても、実際にスポット光SPの走査が可能なポリゴンミラーPMの走査回転角度範囲α´を、最大走査回転角度範囲α(α=15度)より小さく設定する。具体的には、走査ユニットUn(U1~U6)の各々のポリゴンミラーPMが反射面RPの1面分(β=45度)回転する間に、ビームLBnを振り分けたい走査ユニットUnの数は6つなので、走査回転角度範囲α´を、α´=45/6=7.5度、にする。すなわち、図28中のfθレンズFTに入射するビームLBnの光軸AXfを中心とした振り角を±7.5度に制限する。これにより、各走査ユニットUnのポリゴンミラーPMが45度回転する間(反射面RPの1面分回転する間)に、ビームLBnを6つの走査ユニットUn(U1~U6)のいずれか1つに順番に振分けて入射させることができ、走査ユニットUn(U1~U6)は、スポット光SPによる走査を順番に行うことができる。しかし、この場合だと、実際にスポット光SPの走査が可能な走査回転角度範囲α´が小さくなり過ぎてしまい、スポット光SPが走査される最大走査範囲長、つまり、描画ラインSLnの最大走査長が短くなりすぎるという問題がある。そのような問題を避けるには、スポット光SPが走査される最大走査長を変えないように、焦点距離の長いfθレンズFTを用意し、ポリゴンミラーPMの反射面RPからfθレンズFTまでの距離(作動距離)を長く設定することになる。その場合、fθレンズFTの大型化、走査ユニットUn(U1~U6)のXt方向の寸法の大型化を招くとともに、作動距離が長いことによりビーム走査の安定性が低下する懸念もある。
 一方で、ポリゴンミラーPMの反射面RPの数を少なくして、ポリゴンミラーPMが反射面RPの1面分回転する回転角度βを大きくすることが考えられる。この場合は、描画ラインSLnが短くなったり、走査ユニットUn(U1~U6)を大型化したりすることを抑制しながら、走査ユニットUn(U1~U6)のポリゴンミラーPMが反射面RPの1面分(回転角度β)回転する間に、ビームLBnを振り分けて6つの走査ユニットUn(U1~U6)が順番にスポット光SPを走査することができる。例えば、ポリゴンミラーPMの反射面RPの数を4つにした場合、つまり、ポリゴンミラーPMの形状を正方形にした場合は、ポリゴンミラーPMの反射面RPが1面分回転する回転角度βは90度となる。したがって、走査ユニットU1のポリゴンミラーPMが反射面RPの1面分回転する間に、ビームLBnを振り分けて6つの走査ユニットUn(U1~U6)でスポット光SPの走査を行う場合は、実際にスポット光SPの走査が可能なポリゴンミラーPMの走査回転角度範囲α´が、α´=90/6=15度、となり、上記した最大走査回転角度範囲αと等しくなる。
 しかしながら、三角形、正方形のような反射面数Npが少ない多角形のポリゴンミラーPMを高速回転させると空気抵抗(風損)が大きくなり過ぎて、回転速度、回転数が低下(律則)する。例えば、ポリゴンミラーPMを数万rpm(rotation per minute)で高速回転させたい場合であっても、空気抵抗によって回転速度が2~3割程度減少し、所望の高速回転速度、高回転数を得ることはできない。また、ポリゴンミラーPMの外形の大きさを大きくする方法も考えられるが、ポリゴンミラーPMの重量が大きくなり過ぎ、所望の高速回転速度、高回転数を得ることはできない。なお、ポリゴンミラーPMの反射面数Npを少なくしても回転時の風損を低減する手法として、ポリゴンミラーPMの全体を真空環境内に設置したり、空気よりも分子量の小さい気体(ヘリウム等)の環境内に設置したりすることも考えられる。その場合、ポリゴンミラーPMの周囲に、そのような環境を作るための気密構造体を設けることになり、それだけ走査ユニットUn(U1~U6)を大型化することにつながる。
 そこで、本第4の実施の形態においては、反射面数Npが比較的多い多角形、つまり、円形により近い8角形のポリゴンミラーPMを用いつつ、実際にスポット光SPの走査が可能なポリゴンミラーPMの走査回転角度範囲α´を最大走査回転角度範囲α(α=15度)とし、スポット光SPの走査(ビームLBnの偏向)を行うポリゴンミラーPMの反射面RPを1つ置きに設定する。つまり、各走査ユニットUn(U1~U6)によるスポット光SPの走査が、ポリゴンミラーPMの反射面RPの1面置き(1面飛ばし)毎に繰り返される。したがって、走査ユニットU1がスポット光SPを走査してから次の走査を行うまでの間に、走査ユニットU1以外の5つの走査ユニットU2~U6の各々に順番にビームLB2~LB6を振り分けて、スポット光SPの走査を行うことができる。つまり、6つの走査ユニットUn(U1~U6)のうちの着目する1つの走査ユニットUnのポリゴンミラーPMが2面分回転する間に、6つの走査ユニットUn(U1~U6)の各々にビームLB1~LB6を振り分けることによって、6つの走査ユニットUn(U1~U6)の全てがスポット光SPの走査を行うことが可能となる。この場合、各走査ユニットUn(U1~U6)がスポット光SPの走査を開始してから次のスポット光SPの走査を開始するまでに、ポリゴンミラーPMは2面分(90度)回転することになる。このような描画動作を行うために、6つの走査ユニットUn(U1~U6)の各々のポリゴンミラーPMは、回転速度が同一になるように同期制御されるとともに、各ポリゴンミラーPMの反射面RPの角度位置が相互に所定の位相関係となるように同期制御される。
 なお、スポット光SPの走査(ビームLBnの偏向)を行うポリゴンミラーPMの反射面RPを1面置きにすることから、各走査ユニットUn(U1~U6)のポリゴンミラーPMが1回転する間に、描画ラインSLn(SL1~SL6)の各々に沿ったスポット光SPの走査回数は4回となる。そのため、スポット光SPの走査(ビームLBnの偏向)が、ポリゴンミラーPMの連続した反射面RP毎に繰り返される場合、つまり、ポリゴンミラーPMの各反射面RPで行われる場合に比べ、描画ラインSLnの数が半分になるので、基板FSの搬送速度も半分に減速することが好ましい。基板FSの搬送速度を半分にしたくない場合は、各走査ユニットUn(U1~U6)のポリゴンミラーPMの回転速度および発振周波数Fsを2倍に高めることになる。例えば、ポリゴンミラーPMの連続した反射面RP毎にスポット光SPの走査(ビームLBnの偏向)を繰り返す際のポリゴンミラーPMの回転速度が2万rpmで、光源装置14´からのビームLBの発振周波数Fsが200MHzだった場合、ポリゴンミラーPMの1面置きの反射面RP毎にスポット光SPの走査(ビームLBnの偏向)を繰り返す場合は、ポリゴンミラーPMの回転速度は4万rpmに、光源装置14´からのビームLBの発振周波数Fsは400MHzに設定される。
 ここで、制御装置18は、複数の走査ユニットUn(U1~U6)のうち、どの走査ユニットUnがスポット光SPの走査を行うかを原点信号SZに基づいて管理している。しかしながら、各走査ユニットUn(U1~U6)の原点センサOPnは、各反射面RPが所定の角度位置になると原点信号SZを発生するので、この原点信号SZをそのまま用いてしまうと、制御装置18は、各走査ユニットUn(U1~U6)が連続した反射面RP毎にスポット光SPを走査すると判断してしまう。したがって、1つの走査ユニットUnがスポット光SPの走査を行ってから次の走査を行うまでに、ビームLBnをそれ以外の5つの走査ユニットUnに振り分けることができない。そのため、スポット光SPの走査を行うポリゴンミラーPMの反射面RPを1つ置きに設定するためには、原点信号SZを間引いた副原点信号(副原点パルス信号)ZPを生成する必要がある。また、上述したように、スポット光SPの走査(偏向)を行う反射面RPの回転方向の1つ手前の反射面RPを用いて、原点信号SZの検出を行うことから、原点信号SZの発生タイミングを時間Tpxだけ遅延させた副原点信号ZPを生成する必要がある。以下、この副原点信号ZPを生成する副原点生成回路CAの構成について説明する。
 図31は、原点信号SZを間引いてその発生タイミングを時間Tpxだけ遅延させた副原点信号ZPを生成するための副原点生成回路CAの構成図、図32は、図31の副原点生成回路CAによって生成される副原点信号ZPのタイムチャートを示す図である。この副原点生成回路CAは、分周器330と遅延回路332とを有する。分周器330は、原点信号SZの発生タイミングの周波数を1/2に分周して原点信号SZ´として遅延回路332に出力する。遅延回路332は、送られてきた原点信号SZ´を時間Tpxだけ遅延させて、副原点信号ZPとして出力する。この副原点生成回路CAは、各走査ユニットUn(U1~U6)の原点センサOPnに対応して複数に設けられている。
 なお、走査ユニットUnの原点センサOPnに対応する副原点生成回路CAをCAnで表す場合がある。つまり、走査ユニットU1の原点センサOP1に対応する副原点生成回路CAをCA1で表し、走査ユニットU2~U6の原点センサOP2~OP6に対応する副原点生成回路CAをCA2~CA6で表す場合がある。また、走査ユニットUnの原点センサOPnから出力される原点信号SZをSZnで表す場合がある。つまり、走査ユニットU1の原点センサOP1から出力される原点信号SZをSZ1で表し、走査ユニットU2~U6の原点センサOP2~OP6から出力される原点信号SZをSZ2~SZ6で表す場合がある。そして、原点信号SZnに基づいて生成された原点信号SZ´、副原点信号ZPをSZn´、ZPnで表す場合がある。つまり、原点信号SZ1に基づいて生成された原点信号SZ´、副原点信号ZPをSZ1´、ZP1で表し、同様に、原点信号SZ2~SZ6に基づいて生成された原点信号SZ´、副原点信号ZPをSZ2´~SZ6´、ZP2~ZP6で表す場合がある。
 図33は、露光装置EXの電気的な構成を示すブロック図、図34は、原点信号SZ1~SZ6、副原点信号ZP1~ZP6、および、シリアルデータDL1~DL6が出力されるタイミングを示すタイムチャートである。露光装置EXの制御装置18は、回転制御部350、ビーム切換制御部352、描画データ出力制御部354、および、露光制御部356を備える。また、露光装置EXは、各走査ユニットUn(U1~U6)のモータ等を含むポリゴン駆動部RMを駆動させるモータ駆動回路Drm1~Drm6を備える。
 回転制御部350は、モータ駆動回路Drm1~Drm6を制御することで、各走査ユニットUn(U1~U6)のポリゴンミラーPMの回転を制御する。回転制御部350は、モータ駆動回路Drm1~Drm6を制御することで、複数の走査ユニットUn(U1~U6)のポリゴンミラーPMの回転角度位置が互いに所定の位相関係となるように、複数の走査ユニットUn(U1~U6)のポリゴンミラーPMを同期して回転させる。詳しくは、回転制御部350は、複数の走査ユニットU1~U6のポリゴンミラーPMの回転速度(回転数)が互いに同一で、且つ、一定の角度分ずつ回転角度位置の位相がずれるように、複数の走査ユニットUn(U1~U6)のポリゴンミラーPMの回転を制御する。なお、図33中の参照符号PD1~PD6は、回転制御部350からモータ駆動回路Drm1~Drm6に出力される制御信号を表している。
 本第4の実施の形態では、ポリゴンミラーPMの回転速度Vpを3.9万rpm(650rps)とする。また、反射面数Npを8、走査効率(α/β)を1/3、スポット光SPの走査を行う反射面RPを1面置きに設定しているので、6つのポリゴンミラーPM間の回転角度位置の位相差を、最大走査回転角度範囲α、つまり、15度とする。スポット光SPの走査は、U1→U2→・・・→U6の順番で行われるものとする。したがって、この順で6つの走査ユニットU1~U6の各々のポリゴンミラーPMの回転角度位置の位相が15度ずつずれた状態で等速回転するように回転制御部350によって同期制御される。これにより、走査ユニットU1と走査ユニットU4の回転角度位置の位相のずれは、丁度1面分の回転角度に対応した45度となる。そのため、走査ユニットU1と走査ユニットU4の回転角度位置の位相、すなわち原点信号SZ1、SZ4の発生タイミングは揃っていてもよい。同様に、走査ユニットU2と走査ユニットU5の回転角度位置、および、走査ユニットU3と走査ユニットU6の回転角度位置の位相のずれはともに45度なるので、走査ユニットU2と走査ユニットU5の各々からの原点信号SZ2、SZ5の発生タイミング、および、走査ユニットU3と走査ユニットU6の各々からの原点信号SZ3、SZ6の発生タイミングは時間軸上で揃っていてもよい。
 具体的には、回転制御部350は、走査ユニットU1と走査ユニットU4のポリゴンミラーPMの回転、走査ユニットU2と走査ユニットU5のポリゴンミラーPMの回転、および、走査ユニットU3と走査ユニットU6のポリゴンミラーPMの回転のそれぞれが第1の制御状態となるように、各走査ユニットU1~U6のポリゴンミラーPMの回転を各モータ駆動回路Drm1~Drm6を介して制御する。この第1の制御状態とは、ポリゴンミラーPMが1回転する度に出力される周回パルス信号の位相差が0(零)となっている状態である。つまり、走査ユニットU1と走査ユニットU4のポリゴンミラーPMが1回転する度に出力される周回パルス信号の位相差が0(零)となるように、走査ユニットU1と走査ユニットU4のポリゴンミラーPMの回転を制御する。同様に、走査ユニットU2と走査ユニットU5、および、走査ユニットU3と走査ユニットU6のポリゴンミラーPMが1回転する度に出力される周回パルス信号の位相差が0(零)となるように、走査ユニットU2と走査ユニットU5、および、走査ユニットU3と走査ユニットU6のポリゴンミラーPMの回転を制御する。
 この周回パルス信号は、図示しない分周器によって走査ユニットUnの原点信号SZnが8回出力される度に1回出力される信号であってもよい。また、周回パルス信号は、各走査ユニットUn(U1~U6)のポリゴン駆動部RMに設けられたエンコーダ(図示略)から出力される信号であってもよい。周回パルス信号を検出するセンサをポリゴンミラーPMの近傍に設けてもよい。図34に示す例では、走査ユニットUnの原点信号SZnが8回出力される度に1回、周回パルス信号が発生されるものとし、その周回パルス信号の発生に対応した原点信号SZnの一部を点線で表している。なお、各原点信号SZ1と各原点信号SZ4とは、隣り合う反射面RP(例えば、反射面RPaと反射面RPb)同士の各なす角ηjの誤差(図29参照)を考慮しなければ、時間軸上では全て位相が一致している。同様に、各原点信号SZ2と各原点信号SZ5、および、各原点信号SZ3と各原点信号SZ6とは、隣り合う反射面RP同士の各なす角ηjの誤差(図29参照)を考慮しなければ、時間軸上では全て位相が一致している。なお、図34においては、説明をわかり易くするため、隣り合う反射面RP同士の各なす角ηjの誤差はないものとして説明する。
 そして、回転制御部350は、第1の制御状態を保ったまま、走査ユニットU1、U4のポリゴンミラーPMの回転角度位置に対して、走査ユニットU2、U5のポリゴンミラーPMの回転角度位置の位相が15度ずれるように、走査ユニットU2、U5のポリゴンミラーPMの回転を制御する。同様に、回転制御部350は、第1の制御状態を保ったまま、走査ユニットU1、U4のポリゴンミラーPMの回転角度位置に対して走査ユニットU3、U6のポリゴンミラーPMの回転角度位置の位相が30度ずれるように、走査ユニットU3、U6の回転を制御する。このポリゴンミラーPMが15度回転する時間(ビームLBnの最大走査時間)をTsとする。
 具体的には、回転制御部350は、走査ユニットU1、U4により得られた周回パルス信号に対して、走査ユニットU2、U5により得られる周回パルス信号が時間Tsだけ遅れて発生するように、走査ユニットU2、U5のポリゴンミラーPMの回転を制御する(図34参照)。同様に、回転制御部350は、走査ユニットU1、U4により得られた周回パルス信号に対して、走査ユニットU3、U6により得られる周回パルス信号が時間2×Tsだけ遅れて発生するように、走査ユニットU3、U6のポリゴンミラーPMの回転を制御する(図34参照)。ポリゴンミラーPMの回転速度Vpを3.9万rpm(650rps)とすると、時間Tsは、Ts=〔1/(Vp×Np)〕×(α/β)=1/(650×8×3)秒〔約64.1μ秒〕である。このようにして、各走査ユニットU1~U6のポリゴンミラーPMの回転を制御することで、U1→U2→・・・→U6の順番で、各走査ユニットU1~U6がスポット光SPの走査を時分割して行うことが可能になる。
 ビーム切換制御部352は、ビーム切換部材20の選択用光学素子AOMn(AOM1~AOM6)を制御して、1つの走査ユニットUnが走査を開始してから次の走査を開始するまでに、光源装置14´からのビームLBを6つの走査ユニットUn(U1~U6)に振り分ける。そのため、ビーム切換制御部352は、各走査ユニットUn(U1~U6)のポリゴンミラーPMのビームLBnの走査(偏向)が、ポリゴンミラーPMの1つ置きの反射面RP毎に繰り返されるように、選択用光学素子AOM1~AOM6によってビームLBから生成されるビームLB1~LB6のいずれか1つを時分割で各走査ユニットUn(U1~U6)に入射させる。
 具体的に説明すると、ビーム切換制御部352は、原点信号SZn(SZ1~SZ6)に基づいて副原点信号ZPn(ZP1~ZP6)を生成する図31に示したような副原点生成回路CAn(CA1~CA6)を備える。この副原点生成回路CAn(CA1~CA6)によって副原点信号ZPn(ZP1~ZP6)が発生すると、副原点信号ZPn(ZP1~ZP6)の発生に由来する走査ユニットUn(U1~U6)に対応する選択用光学素子AOMn(AOM1~AOM6)を、一定時間(オン時間Ton)オンにする。例えば、副原点信号ZP1が発生すると、副原点信号ZP1の発生に由来する走査ユニットU1に対応する選択用光学素子AOM1を一定時間(オン時間Ton)オンにする。この副原点信号ZPnは、原点センサOPnから出力される原点信号SZnに基づいて生成されたものであり、原点信号SZnの周波数を1/2に分周し、つまり、原点信号SZnを半分に間引き、且つ、時間Tpxだけ遅延させたものである。この一定時間(オン時間Ton)は、副原点信号ZPnが発生した時点から次に走査を行う走査ユニットUnからの副原点信号ZPnが発生する時点までの期間、すなわち、ポリゴンミラーPMが15度だけ回転するのに要する時間Tsに対応している。選択用光学素子AOMnのオン時間Tonが時間Tsより長く設定されると、選択用光学素子AOMnのうちの2つが同時にオン状態になる期間が生じ、スポット光SPによる描画動作をさせるべき走査ユニットUnに、ビームLB1~LB6を正しく導入できないことになる。したがって、オン時間TonはTon≦Tsに設定される。
 このとき、各原点信号SZ1と各原点信号SZ4とは、隣り合う反射面RP(例えば、反射面RPaと反射面RPb)同士の各なす角ηjの誤差を考慮しなければ、時間軸上では全て同期しており、副原点信号ZP1と副原点信号ZP4との位相が約半周期ずれるように設定される(図34参照)。この副原点信号ZP1と副原点信号ZP4との位相の約半周期のずれは、副原点生成回路CAn(CA1~CA6)の分周器330によって行われる。つまり、分周器330は、原点信号SZ1を間引くタイミングと原点信号SZ4を間引くタイミングをほぼ半周期ずらす。
 副原点信号ZP2と副原点信号ZP5との関係も同様に、分周器330によって、副原点信号ZP2と副原点信号ZP5との位相が約半周期ずれるように設定される(図34参照)。また、副原点信号ZP3と副原点信号ZP6との関係も同様に、分周器330によって、副原点信号ZP3と副原点信号ZP6との位相が約半周期ずれるように設定される(図34参照)。
 したがって、図34に示すように、走査ユニットU1~U6毎に生成される副原点信号ZP1~ZP6の発生タイミングは、時間Tsずつずれたものになる。本第4の実施の形態においては、スポット光SPの走査を行う走査ユニットUnの順番は、U1→U2→・・・→U6、となっているので、副原点信号ZPnも、副原点信号ZP1が発生してから時間Ts後に副原点信号ZP2が発生するといった具合に、ZP1→ZP2→・・・→ZP6の順番で時間Ts間隔で発生する。したがって、ビーム切換制御部352は、発生した副原点信号ZPn(ZP1~ZP6)に応じて、ビーム切換部材20の選択用光学素子AOMn(AOM1~AOM6)を制御することで、U1→U2→・・・→U6の順番で走査ユニットUnの各々に、対応するビームLB1~LB6を入射させることができる。つまり、各走査ユニットUn(U1~U6)のポリゴンミラーPMによるビームLBnの走査(偏向)が、ポリゴンミラーPMの1面置きの反射面RP毎に繰り返されるように各走査ユニットUn(U1~U6)に入射するビームLBnを時分割で切り換えることができる。
 描画データ出力制御部354は、走査ユニットUnによってスポット光SPが走査される1描画ラインSLnのパターンに対応する1列分のシリアルデータDLnを描画ビット列データSdwとして光源装置14´の駆動回路206aに出力する。スポット光SPの走査を行う走査ユニットUnの順番は、U1→U2→・・・→U6、となっているので、描画データ出力制御部354は、1列分のシリアルデータDLnが、DL1→DL2→・・・→DL6、の順番で繰り返される描画ビット列データSdwを出力する。
 図35を用いて、描画データ出力制御部354の構成について詳しく説明する。描画データ出力制御部354は、走査ユニットU1~U6の各々に対応した6つの生成回路360、362、364、366、368、370と、OR回路GT8とを有する。生成回路360~370は、同様の構成を有しており、具体的には、生成回路360は、メモリ部BM1、カウンタ部CN1、および、ゲート部GT1を備え、生成回路362は、メモリ部BM2、カウンタ部CN2、および、ゲート部GT2を備える。生成回路364は、メモリ部BM3、カウンタ部CN3、および、ゲート部GT3を備え、生成回路366は、メモリ部BM4、カウンタ部CN4、および、ゲート部GT4を備える。生成回路368は、メモリ部BM5、カウンタ部CN5、および、ゲート部GT5を備え、生成回路370は、メモリ部BM6、カウンタ部CN6、および、ゲート部GT6を備える。この生成回路360~370の構成は、図16に示した生成回路301、303、305と同様の構成であってもよい。
 メモリ部BM1~BM6は、各走査ユニットUn(U1~U6)が描画露光すべきパターンに応じたパターンデータ(ビットマップ)を記憶するメモリである。カウンタ部CN1~CN6は、各メモリ部BM1~BM6に記憶されたパターンデータのうち、次に描画すべき1描画ラインSLn分のシリアルデータDL1~DL6を、1画素ずつクロック信号CLKに同期して出力するためのカウンタである。このカウンタ部CN1~CN6は、図34に示すように、ビーム切換制御部352の副原点生成回路CA1~CA6から副原点信号ZP1~ZP6が出力されてから、1つのシリアルデータDL1~DL6を出力させる。
 各メモリ部BM1~BM6に記憶されたパターンデータは、不図示のアドレスカウンタ等によって、出力されるシリアルデータDL1~DL6が列方向にシフトされる。つまり、不図示のアドレスカウンタによって読み出す列が、1列目、2列目、3列目、・・・、というようにシフトされる。そのシフトは、例えば、走査ユニットU1に対応するメモリ部BM1であればシリアルデータDL1を出力し終わった後で、次に走査を行う走査ユニットU2に対応した副原点信号ZP2が発生したタイミングで行われる。同様に、メモリ部BM2に記憶されたパターンデータのシリアルデータDL2のシフトは、シリアルデータDL2が出力し終わった後で、次に走査を行う走査ユニットU3に対応した副原点信号ZP3が発生したタイミングで行われる。同様に、メモリ部BM3~BM6に記憶されたパターンデータのシリアルデータDL3~DL6のシフトは、シリアルデータDL3~DL6を出力し終わった後で、次に走査を行う走査ユニットU4~U6、U1に対応した副原点信号ZP4~ZP6、ZP1が発生したタイミングで行われる。なお、スポット光SPの走査は、U1→U2→U3→・・・→U6、という順番で行われる。
 このようにして、順次出力されるシリアルデータDL1~DL6は、副原点信号ZP1~ZP6が印加されてから一定時間(オン時間Ton)中に開かれるゲート部GT1~GT6を通って6入力のOR回路GT8に印加される。OR回路GT8は、シリアルデータDL1→DL2→DL3→DL4→DL5→DL6→DL1・・・の順に繰り返し合成されたシリアルデータDLnを描画ビット列データSdwとして光源装置14´の駆動回路206aに出力する。このようにして、各走査ユニットUn(U1~U6)は、スポット光SPの走査を行うと同時に、パターンデータに応じたパターンを描画露光することができる。
 本第4の実施の形態では、走査ユニットUn(U1~U6)毎に、パターンデータを用意し、各走査ユニットUn(U1~U6)のパターンデータの中から、スポット光SPの走査を行う走査ユニットUnの順番にしたがってシリアルデータDL1~DL6を出力するようにした。しかしながら、スポット光SPの走査を行う走査ユニットUnの順番は予め決められているので、各走査ユニットUn(U1~U6)のパターンデータの各シリアルデータDL1~DL6を組み合わせた1つのパターンデータを用意してもよい。つまり、各走査ユニットUn(U1~U6)のパターンデータの各列のシリアルデータDLn(DL1~DL6)を、スポット光SPの走査を行う走査ユニットUnの順番に応じて配列させた1つのパターンデータを構築するようにしてもよい。この場合は、各走査ユニットUn(U1~U6)の原点センサOPnに基づく副原点信号ZPn(ZP1~ZP6)に応じて、1つのパターンデータのシリアルデータDLnを1列目から順番に出力すればよい。
 ところで、図33に示した露光制御部356は、回転制御部350、ビーム切換制御部352、および、描画データ出力制御部354等を制御するものである。露光制御部356は、アライメント顕微鏡AMm(AM1~AM4)が撮像した撮像信号ig(ig1~ig4)を解析して、アライメントマークMKm(MK1~MK4)の基板FS上の位置を検出する。そして、露光制御部356は、検出したアライメントマークMKm(MK1~MK4)の位置に基づいて、基板FS上における露光領域Wの描画露光の開始位置を検出(決定)する。露光制御部356は、カウンタ回路356aを備え、カウンタ回路356aは、図24に示したエンコーダEN1a~EN3a、EN1b~EN3bによって検出された検出信号をカウントする。露光制御部356は、描画露光の開始位置が検出されたときのエンコーダEN1a、EN1bに基づくカウント値(マーク検出位置)と、エンコーダEN2a、EN2bに基づくカウント値(奇数番の描画ラインSLnの位置)とに基づいて、基板FSの描画露光の開始位置が描画ラインSL1、SL3、SL5上に位置するか否かを判断する。露光制御部356は、描画露光の開始位置が描画ラインSL1、SL3、SL5上に位置すると判断すると、描画データ出力制御部354を制御して、走査ユニットU1、U3、U5にスポット光SPの走査を開始させる。なお、回転制御部350およびビーム切換制御部352は、露光制御部356の制御の下、周回パルス信号および副原点信号ZPn(ZP1~ZP6)に基づいて、各走査ユニットUn(U1~U6)のポリゴンミラーPMの回転およびビーム切換部材20によるビームLBnの振り分けを制御しているものとする。
 露光制御部356は、描画露光の開始位置が検出されたときのエンコーダEN1a、EN1bに基づくカウント値(マーク検出位置)と、エンコーダEN3a、EN3bに基づくカウント値(偶数番の描画ラインの位置)とに基づいて、基板FSの描画露光の開始位置が描画ラインSL2、SL4、SL6上に位置するか否かを判断する。露光制御部356は、描画露光の開始位置が描画ラインSL2、SL4、SL6上に位置すると判断すると、描画データ出力制御部354を制御して、走査ユニットU2、U4、U6にスポット光SPの走査を開始させる。
 先の図25に示すように、基板FSの搬送方向(+X方向)に応じて、描画ラインSL1、SL3、SL5の各々における描画露光が先行し、基板FSが所定距離だけ搬送されてから、描画ラインSL2、SL4、SL6の各々における描画露光が行われる。一方で、6つの走査ユニットU1~U6の各ポリゴンミラーPMは相互に一定の角度位相を保って回転制御されているため、副原点信号ZP1~ZP6は、図34のように順次時間Tsだけ位相差を持って発生し続ける。そのため、描画ラインSL1、SL3、SL5における描画露光の開始時点から描画ラインSL2、SL4、SL6における描画露光の開始直前までの間も、副原点信号ZP2、ZP4、ZP6によって図35中のゲート部GT2、GT4、GT6が開かれ、選択用光学素子AOM2、AOM4、AOM6が一定時間Tonだけオン状態になることを繰り返すことになる。そこで、図33の構成において、ビーム切換制御部352内には、露光制御部356において判断されるエンコーダEN1a、EN1bのカウント値、或いはエンコーダEN2a、EN2bのカウント値に基づいて、生成される副原点信号ZP1~ZP6の各々を描画データ出力制御部354に送るか禁止するかを選択する選択ゲート回路を設けるのがよい。併せて、走査ユニットU1~U6の各々に対応した選択用光学素子AOM1~AOM6の各ドライバ回路DRVn(DRV1~DRV6)(図38参照)にも、その選択ゲート回路を介して副原点信号ZP1~ZP6を与えるのがよい。
 ここで、上述したように、描画ラインSL1、SL3、SL5は、描画ラインSL2、SL4、SL6より基板FSの搬送方向の上流側に位置することから、基板FSの露光領域Wの描画露光の開始位置は先に描画ラインSL1、SL3、SL5上まで到達し、その後一定の時間をおいて、描画ラインSL2、SL4、SL6上に到達する。そのため、描画露光の開始位置が描画ラインSL2、SL4、SL6に到達するまでは、走査ユニットU1、U3、U5のみでパターンの描画露光を行うことになる。したがって、先に説明したような副原点信号ZP1~ZP6の選択ゲート回路をビーム切換制御部352内に設けない場合、露光制御部356は、光源装置14´の駆動回路206aに出力する描画ビット列データSdwのうち、シリアルデータDL2、DL4、DL6に対応する部分の画素データを全てロー「(0)」にすることで、実質的に走査ユニットU2、U4、U6による描画露光をキャンセルする。キャンセル期間中は、メモリ部BM2、BM4、BM6から出力されるシリアルデータDL2、DL4、DL6の列は、シフトされず1列目のままである。そして、露光領域Wの描画露光の開始位置が描画ラインSL2、SL4、SL6上に到達してから、シリアルデータDL2、DL4、DL6の出力を開始し、シリアルデータDL2、DL4、DL6の列方向へのシフトが行われる。
 また、同様に、露光領域Wの描画露光の終了位置は、先に描画ラインSL1、SL3、SL5上に到達し、その後一定の時間をおいて、描画ラインSL2、SL4、SL6上に達する。そのため、描画露光の終了位置が描画ラインSL1、SL3、SL5に到達した後、描画ラインSL2、SL4、SL6に到達するまでは、走査ユニットU2、U4、U6のみでパターンの描画露光を行うことになる。そこで、先に説明したような副原点信号ZP1~ZP6の選択ゲート回路をビーム切換制御部352内に設けない場合、露光制御部356は、光源装置14´の駆動回路206aに出力する描画ビット列データSdwのうち、シリアルデータDL1、DL3、DL5に対応する部分の画素データを全てロー「(0)」にすることで、実質的に走査ユニットU1、U3、U5による描画露光をキャンセルする。なお、選択ゲート回路を設けない場合、描画露光のキャンセル中であっても、描画露光がキャンセルされている走査ユニットU1、U3、U5には、ビームLB1、LB3、LB5が導入されるように、選択用光学素子AOM1、AOM3、AOM5は副原点信号ZP1、ZP3、ZP5に応答して選択的に一定時間Tonだけオン状態になることを繰り返す。
 以上のように本第4の実施の形態では、走査ユニットUn(U1~U6)のポリゴンミラーPMの1つ置きの反射面RP毎に、ポリゴンミラーPMの偏向(走査)が繰り返されるようにビーム切換制御部352がビーム切換部材20を制御して、複数の走査ユニットUn(U1~U6)の各々にスポット光SPの1次元走査を順番に行わせた。これにより、スポット光SPが走査される描画ラインSLn(SL1~SL6)の長さを短くせずに、1つのビームLBを複数の走査ユニットUn(U1~U6)に振り分けることができ、有効にビームLBを活用することができる。また、ポリゴンミラーPMの形状(多角形の形状)を円形に近づけることができるので、ポリゴンミラーPMの回転速度が低下することを防止でき、ポリゴンミラーPMを高速に回転させることができる。
 ビーム切換部材20は、光源装置14´からのビームLBの進行方向に沿って直列にn個配置され、ビームLBを回折させて偏向したn個のビームLBnのいずれか1つを選択して、対応する走査ユニットUnに導入させる選択用光学素子AOMn(AOM1~AOM6)を有する。したがって、ビームLBnが入射すべき走査ユニットUn(U1~U6)のいずれか1つを簡単に選択でき、描画露光すべき1つの走査ユニットUnに対して光源装置14´からのビームLBを効率的に集中させることができ、高い露光量が得られる。例えば、光源装置14´からの射出するビームLBを複数のビームスプリッタを使って6つに振幅分割し、分割した6つのビームLBn(LB1~LB6)の各々を、描画データのシリアルデータDL1~DL6によって変調させる描画用の音響光学変調素子を介して6つの走査ユニットU1~U6に導いた場合、描画用の音響光学変調素子でのビーム強度の減衰を20%、走査ユニットUn内でのビーム強度の減衰を30%とすると、1つの走査ユニットUnにおけるスポット光SPの強度は、元のビームLBの強度を100%としたとき、約9.3%となる。一方、本第4の実施の形態のように、光源装置14´からのビームLBを選択用光学素子AOMnによって偏向させて、6つの走査ユニットUnのいずれか1つに入射するようにした場合、選択用光学素子AOMnでのビーム強度の減衰を20%としたとき、1つの走査ユニットUnにおけるスポット光SPの強度は、元のビームLBの強度の約56%になる。
 回転制御部350は、回転速度が互いに同一で、且つ、一定の角度分ずつ回転角度位置の位相がずれるように、複数の走査ユニットUn(U1~U6)のポリゴンミラーPMの回転を制御する。これにより、1つの走査ユニットUnによるスポット光SPの1次元走査から次の1次元走査が行われるまでの間に、他の複数の走査ユニットUnによるスポット光SPの1次元走査を順番に行わせることが可能となる。
 なお、上記第4の実施の形態では、1つのビームLBを6つの走査ユニットUnに振り分ける態様で説明したが、光源装置14´からの1つのビームLBを9つの走査ユニットUn(U1~U9)に振り分けるものであってもよい。この場合は、ポリゴンミラーPMの走査効率(α/β)を1/3とすると、ポリゴンミラーPMが3つの反射面RP分回転する間に、9つの走査ユニットU1~U9にビームLBnを振り分けることができるので、スポット光SPの走査は2つ置きの反射面RP毎に行われることになる。これにより、1つの走査ユニットUnによるスポット光SPの走査がされてから次のスポット光SPの走査を行うまでに、その他の8つの走査ユニットUnにスポット光SPの走査を順番に行わせることができる。また、ポリゴンミラーPMの走査効率を1/3とすると、ポリゴンミラーPMが3つの反射面RP分回転して、1つのビームLBを9つの走査ユニットUnに振り分けることができるので、副原点生成回路CAnの分周器330は、原点信号SZnの発生タイミングの周波数を1/3に分周する。この場合、走査ユニットU1、U4、U7の周回パルス信号は同期している(時間軸上で同位相になっている)。同様に、走査ユニットU2、U5、U8の周回パルス信号は同期しており、走査ユニットU3、U6、U9の周回パルス信号は同期している。そして、走査ユニットU2、U5、U8の周回パルス信号は、走査ユニットU1、U4、U7の周回パルス信号に対して時間Tsだけ遅れて発生し、走査ユニットU3、U6、U9の周回パルス信号は、走査ユニットU1、U4、U7の周回パルス信号に対して2×時間Tsだけ遅れて発生する。また、走査ユニットU1、U4、U7の副原点信号ZP1、ZP4、ZP7の発生タイミングは、1周期の1/3ずつ位相がずれており、同様に、走査ユニットU2、U5、U8の副原点信号ZP2、ZP5、ZP8の発生タイミング、および、走査ユニットU3、U6、U9の副原点信号ZP3、ZP6、ZP9の発生タイミングも、1周期の1/3ずつ位相がずれている。なお、時間Tsは、スポット光SPの走査が可能なポリゴンミラーPMの走査回転角度範囲α´だけポリゴンミラーPMが回転する時間であり、ポリゴンミラーPMが1つの反射面RP分回転する角度βに走査効率を乗算した値が走査回転角度範囲α´となる。
 ポリゴンミラーPMの走査効率を1/3で、1つのビームLBを12個の走査ユニットUn(U1~U12)に振り分ける場合は、ポリゴンミラーPMが4つの反射面RP分回転する間に、12個の走査ユニットU1~U12にビームLBnを振り分けることができるので、スポット光SPの走査は3つ置きの反射面RP毎に行われることになる。また、ポリゴンミラーPMの走査効率を1/3とすると、ポリゴンミラーPMが4つの反射面RP分回転して、光源装置14´からのビームLBを直列に配置された12個の選択用光学素子AOMn(AOM1~AOM12)で択一的に偏向されるビームLBn(LB1~LB12)を、対応する1つの走査ユニットUn(U1~U12)に入射させることができるので、副原点生成回路CAnの分周器330は、原点信号SZnの発生タイミングの周波数を1/4に分周する。この場合、走査ユニットU1、U4、U7、U10の周回パルス信号は同期している(時間軸上で同位相になっている)。同様に、走査ユニットU2、U5、U8、U11の周回パルス信号は同期しており、走査ユニットU3、U6、U9、U12の周回パルス信号は同期している。そして、走査ユニットU2、U5、U8、U11の周回パルス信号は、走査ユニットU1、U4、U7、U10の周回パルス信号に対して時間Tsだけ遅れて発生し、走査ユニットU3、U6、U9、U12の周回パルス信号は、走査ユニットU1、U4、U7、U10の周回パルス信号に対して2×時間Tsだけ遅れて発生する。また、走査ユニットU1、U4、U7、U10の副原点信号ZP1、ZP4、ZP7、ZP10の発生タイミングは、1周期の1/4ずつ位相がずれており、同様に、走査ユニットU2、U5、U8、U11の副原点信号ZP2、ZP5、ZP7、ZP11の発生タイミング、および、走査ユニットU3、U6、U9、U12の副原点信号ZP3、ZP6、ZP9、ZP12の発生タイミングも、1周期の1/4ずつ位相がずれている。
 また、上記第4の実施の形態では、走査ユニットUnのポリゴンミラーPMの走査効率を1/3として説明したが、走査効率は、1/2であってもよく、1/4であってもよい。走査効率が1/2の場合は、ポリゴンミラーPMが1つの反射面RP分回転する間に、2つの走査ユニットUnにビームLBnを振り分けることができるので、1つのビームLBnを6つの走査ユニットUnに振り分けたい場合は、スポット光SPの走査が、ポリゴンミラーPMの2つ置きの反射面RP毎に行われることになる。つまり、ポリゴンミラーPMの走査効率が1/2の場合は、ポリゴンミラーPMが3つの反射面RP分回転する間に6つの走査ユニットUnにビームLBnを振り分けることができる。これにより、1つの走査ユニットUnによるスポット光SPの走査がされてから次のスポット光SPの走査を行うまでに、その他の5つの走査ユニットUnにスポット光SPの走査を順番に行わせることができる。また、ポリゴンミラーPMの走査効率を1/2とすると、ポリゴンミラーPMが3つの反射面RP分回転して、1つのビームLBを6つの走査ユニットUnに振り分けることができるので、副原点生成回路CAnの分周器330は、原点信号SZnの発生タイミングの周波数を1/3に分周する。この場合、走査ユニットU1、U3、U5の周回パルス信号は同期している。同様に、走査ユニットU2、U4、U6の周回パルス信号は同期している。そして、走査ユニットU2、U4、U6の周回パルス信号は、走査ユニットU1、U3、U5の周回パルス信号に対して時間Tsだけ遅れて発生する。また、走査ユニットU1、U3、U5の副原点信号ZP1、ZP3、ZP5の発生タイミングは、1周期の1/3ずつ位相がずれており、走査ユニットU2、U4、U6の副原点信号ZP2、ZP4、ZP6の発生タイミングも、1周期の1/3ずつ位相がずれている。
 ポリゴンミラーPMの走査効率が1/4の場合は、ポリゴンミラーPMが1つの反射面RP分回転する間に、4つの走査ユニットUnにビームLBnを振り分けることができるので、1つのビームLBを8つの走査ユニットUnに振り分けたい場合は、スポット光SPの走査が、ポリゴンミラーPMの1つ置きの反射面RP毎に行われることになる。つまり、ポリゴンミラーPMの走査効率が1/4の場合は、ポリゴンミラーPMが2つの反射面RP分回転する間に8つの走査ユニットUnにビームLBnを振り分けることができる。これにより、1つの走査ユニットUnによるスポット光SPの走査がされてから次のスポット光SPの走査を行うまでに、その他の7つの走査ユニットUnにスポット光SPの走査を順番に行わせることができる。また、ポリゴンミラーPMの走査効率を1/4とすると、ポリゴンミラーPMが2つの反射面RP分回転して、1つのビームLBを8つの走査ユニットUnに振り分けることができるので、副原点生成回路CAnの分周器330は、原点信号SZnの発生タイミングの周波数を1/2に分周する。この場合、走査ユニットU1、U5の周回パルス信号は同期しており、走査ユニットU2、U6の周回パルス信号は同期している。同様に、走査ユニットU3、U7の周回パルス信号は同期しており、走査ユニットU4、U8の周回パルス信号は同期している。そして、走査ユニットU2、U6の周回パルス信号は、走査ユニットU1、U5の周回パルス信号に対して時間Tsだけ遅れて発生する。走査ユニットU3、U7の周回パルス信号は、走査ユニットU1、U5の周回パルス信号に対して2×時間Tsだけ遅れて発生し、走査ユニットU4、U8の周回パルス信号は、走査ユニットU1、U5の周回パルス信号に対して3×時間Tsだけ遅れて発生する。また、走査ユニットU1、U5の副原点信号ZP1、ZP5の発生タイミングは、1周期の1/2ずつ位相がずれており、走査ユニットU2、U6の副原点信号ZP2、ZP6の発生タイミングも、1周期の1/2ずつ位相がずれている。同様に、走査ユニットU3、U7の副原点信号ZP3、ZP7の発生タイミング、および、走査ユニットU4、U8の副原点信号ZP4、ZP8も、それぞれ1周期の1/2ずつ位相がずれている。
 また、上記第4の実施の形態では、ポリゴンミラーPMの形状を、8角形としたが(反射面RPが8つ)としたが、6角形、7角形であってもよいし、9角形以上であってもよい。これにより、ポリゴンミラーPMの走査効率も変わる。一般的に、多角形の形状のポリゴンミラーPMの反射面数Npが多くなる程、ポリゴンミラーPMの1反射面RPにおける走査効率は大きくなり、反射面数Npが少なくなる程、ポリゴンミラーPMの走査効率は小さくなる。
 基板FS上にスポット光SPが投射されて走査可能なポリゴンミラーPMの最大走査回転角度範囲αは、fθレンズFTの入射画角(図29中の走査角度範囲θsに相当)で決まるので、その入射画角に対応して、最適な反射面数NpのポリゴンミラーPMを選ぶことができる。先の例のように、入射画角(θs)が30度未満のfθレンズFTの場合、その半分の15度分の回転で反射面RPが変わる24面のポリゴンミラーPM、或いは、30度分の回転で反射面RPが変わる12面のポリゴンミラーPMとしてもよい。この場合、24面のポリゴンミラーPMでは走査効率(α/β)が1/2よりは大きく、1.0よりも小さい状態となるので、6つの走査ユニットU1~U6の各々の24面のポリゴンミラーPMは5面飛ばしでスポット光SPの走査を行うように制御される。また、12面のポリゴンミラーPMでは走査効率が1/3よりも大きく、1/2未満の状態となるので、6つの走査ユニットU1~U6の各々の12面のポリゴンミラーPMは2面飛ばしでスポット光SPの走査を行うように制御される。
[第5の実施の形態]
 上記第4の実施の形態においては、常にスポット光SPの走査(偏向)がポリゴンミラーPMの反射面RPの1面置き毎に繰り返されるものとした。しかし、第5の実施の形態においては、スポット光SPの走査(偏向)が、ポリゴンミラーPMの連続した反射面RP毎に繰り返される第1の状態にするか、ポリゴンミラーPMの反射面RPの1面置き毎に繰り返される第2の状態にするかを任意に切り換えることができるようにした。つまり、走査ユニットU1がスポット光SPの走査を開始してから次の走査を開始するまでに、ビームLBを3つの走査ユニットUnに時分割で振り分けるか、6つの走査ユニットUnに時分割で振り分けるかを切り換えることができる。
 ポリゴンミラーPMの走査効率は1/3なので、スポット光SPの走査をポリゴンミラーPMの連続した反射面RP毎に繰り返す場合は、例えば、走査ユニットU1がスポット光SPを走査してから次の走査を行うまでの間に、走査ユニットU1以外の2つの走査ユニットUnにしかビームLBを振り分けることができない。したがって、2つのビームLBを用意し、1つ目のビームLBを3つの走査ユニットUnに時分割で振り分け、2つ目のビームLBを残りの3つの走査ユニットUnに時分割で振り分ける。したがって、スポット光SPの走査が並行して2つの走査ユニットUnによって行われる。光源装置14´を2つ設けることで2つのビームLBを生成してもよいし、1つの光源装置14´からのビームLBをビームスプリッタ等によって分割することで2つのビームLBを生成してもよい。図36~図40に示す本第5の実施の形態の露光装置EXでは、2つの光源装置14´(14A´、14B´)を備えるものとする(図38参照)。なお、第5の実施の形態においては、上記第4の実施の形態と同様の構成については、同一の参照符号を付し、異なる部分だけを説明する。
 図36は、本第5の実施の形態のビーム切換部材(ビーム配送ユニット)20Aの構成図である。ビーム切換部材20Aは、図26のビーム切換部材20と同様に複数の選択用光学素子AOMn(AOM1~AOM6)、複数の集光レンズCD1~CD6、複数の反射ミラーM1~M12、複数のミラーIM1~IM6、および、複数のコリメートレンズCL1~CL6を有し、その他に、反射ミラーM13、M14と吸収体TR1、TR2とを有する。なお、吸収体TR1は、上記第4の実施の形態で示した図26の吸収体TRに相当するものであり、反射ミラーM12で反射したビームLBを吸収する。
 選択用光学素子AOM1~AOM3は、光学素子モジュール(第1の光学素子モジュール)OM1を構成し、選択用光学素子AOM4~AOM6は、光学素子モジュール(第2の光学素子モジュール)OM2を構成する。この第1の光学素子モジュールOM1の選択用光学素子AOM1~AOM3は、上記第4の実施の形態で説明したように、ビームLBの進行方向に沿って直列に配列された状態にある。同様に、第2の光学素子モジュールOM2の選択用光学素子AOM4~AOM6も、ビームLBの進行方向に沿って直列に配置された状態にある。なお、第1の光学素子モジュールOM1の選択用光学素子AOM1~AOM3に対応する走査ユニットU1~U3を第1の走査モジュールとする。また、第2の光学素子モジュールOM2の選択用光学素子AOM4~AOM6に対応する走査ユニットU4~U6を第2の走査モジュールとする。この第1の走査モジュールの走査ユニットU1~U3、および、第2の走査モジュールの走査ユニットU4~U6は、上記第4の実施の形態で説明したように所定の配置関係で配置されている。
 第5の実施の形態では、反射ミラーM6、M13、M14は、ビームLBの進行方向に関して、第1の光学素子モジュールOM1と第2の光学素子モジュールOM2とを並列に配置する第1の配置状態と、第1の光学素子モジュールOM1と第2の光学素子モジュールOM2とを直列に配置する第2の配置状態とに切り換える配置切換部材(可動部材)SWEを構成する。この配置切換部材SWEは、反射ミラーM6、M13、M14を支持するスライド部材SEを有し、スライド部材SEは、支持部材IUBに対してX方向に移動可能である。このスライド部材SE(配置切換部材SWE)のX方向への移動は、アクチュエータAC(図38参照)によって行われる。このアクチュエータACは、ビーム切換制御部352の駆動制御部352a(図38参照)の制御によって駆動する。
 第1の配置状態のときは、第1の光学素子モジュールOM1と第2の光学素子モジュールOM2との各々に2つの光源装置14´(14A´、14B´)からのビームLBが並行して入射する状態となり、第2の配置状態のときは、1つの光源装置14´(14A´)からのビームLBが第1の光学素子モジュールOM1と第2の光学素子モジュールOM2とに入射する状態となる。つまり、第2の配置状態のときは、第1の光学素子モジュールOM1を透過したビームLBが第2の光学素子モジュールOM2に入射する。図36は、配置切換部材SWEによって第1の光学素子モジュールOM1と第2の光学素子モジュールOM2とが直列に配置された第2の配置状態となっているときの状態を示している。つまり、この第2の配置状態のときは、第1の光学素子モジュールOM1および第2の光学素子モジュールOM2の全ての選択用光学素子AOM1~AOM6がビームLBの進行方向に沿って直列に配置された状態となり、上記第4の実施の形態で示した図26と同一である。したがって、上記第4の実施の形態と同様に、直列に配置された第1の光学素子モジュールOM1および第2の光学素子モジュールOM2の各選択用光学素子AOMn(AOM1~AOM6)によって、第1の走査モジュールおよび第2の走査モジュール(U1~U6)の中から、いずれか1つの偏向されたビームLBnが入射する走査ユニットUnを1つ選択することができる。なお、図36のときの配置切換部材SWEの位置を第2の位置と呼ぶ。また、第1の配置状態のときに、第1の光学素子モジュールOM1(AOM1~AOM3)に入射するビームLBを第1の光源装置14A´からのビームLBaと呼び、第1の配置状態のときに、第2の光学素子モジュールOM2(AOM4~AOM6)に入射するビームを第2の光源装置14B´からのビームLBbと呼ぶ。
 配置切換部材SWEが-X方向側に移動して第1の位置に来ると、第1の光学素子モジュールOM1と第2の光学素子モジュールOM2とが、並列に配置された第1の配置状態になる。図37は、配置切換部材SWEの位置が第1の位置となったときのビームLBa、LBbの光路を示す図である。第1の配置状態のときは、第1の光学素子モジュールOM1にビームLBaが入射し、第2の光学素子モジュールOM2にそれぞれビームLBbが入射する。第1の光学素子モジュールOM1および第2の光学素子モジュールOM2の各々に入射するビームLBを区別するため、第1の光学素子モジュールOM1に入射するビームLBをLBaで表し、第2の光学素子モジュールOM2に直接入射するビームLBをLBbで表す。
 図37に示すように、配置切換部材SWEが第1の位置に移動すると、反射ミラーM6の位置が-X方向にシフトするため、反射ミラーM6で反射したビームLBaは、反射ミラーM7ではなく吸収体TR2に入射する。したがって、第1の光学素子モジュールOM1に入射する第1の光源装置14A´からのビームLBaは、第1の光学素子モジュールOM1(選択用光学素子AOM1~AOM3)のみに入射し、第2の光学素子モジュールOM2に入射しない。つまり、ビームLBaは、選択用光学素子AOM1~AOM3のみを透過することができる。また、配置切換部材SWEの位置が第1の位置になると、第2の光源装置14B´から射出して反射ミラーM13に向かって+Y方向に進むビームLBbが反射ミラーM13、M14によって反射ミラーM7に導かれる。したがって、ビームLBbは、第2の光学素子モジュールOM2(選択用光学素子AOM4~AOM6)のみを透過することができる。
 したがって、第1の光学素子モジュールOM1は、直列に配置された3つの選択用光学素子AOM1~AOM3によって、第1の走査モジュールを構成する3つの走査ユニットU1~U3のうちの1つに、ビームLBaから偏向されたビームLB1~LB3のいずれか1つを入射させることができる。また、第2の光学素子モジュールOM2は、直列に配置された3つの選択用光学素子AOM4~AOM6によって、第2の走査モジュールを構成する3つの走査ユニットU4~U6のうちの1つに、ビームLBbから偏向されたビームLB4~LB6のいずれか1つを入射させることができる。したがって、並列に配置された第1の光学素子モジュールOM1(AOM1~AOM3)と第2の光学素子モジュールOM2(AOM4~AOM6)とによって、第1の走査モジュール(U1~U3)と第2の走査モジュール(U4~U6)との中から、ビームLBが入射する走査ユニットUnをそれぞれ1つ選択することができる。この場合は、第1の走査モジュールのいずれか1つの走査ユニットUnと、第2の走査モジュールのいずれか1つの走査ユニットUnとによってスポット光SPの描画ラインSLnに沿った走査による露光動作が並行して行われる。
 ビーム切換制御部352は、スポット光SPの走査(偏向)が、ポリゴンミラーPMの連続した反射面RP毎に繰り返される第1の状態(第1の描画モード)の場合には、アクチュエータACを制御して、配置切換部材SWEを第1の位置に配置させる。また、ビーム切換制御部352は、ポリゴンミラーPMの反射面RPの1面置き毎に繰り返される第2の状態(第2の描画モード)の場合には、アクチュエータACを制御して、配置切換部材SWEを第2の位置に配置させる。
 図38は、第5の実施の形態におけるビーム切換制御部352の構成を示す図である。図38においては、ビーム切換制御部352の制御対象となる選択用光学素子AOM1~AOM6、および、光源装置14´(14A´、14B´)も図示している。第1の光学素子モジュールOM1からビームLBaを入射する光源装置14´を14A´で表し、第2の光学素子モジュールOM2のみに直接ビームLBbを入射する光源装置14´を14B´で表している。
 配置切換部材SWEが第2の位置にある場合は、図38に示すように、光源装置14A´からのビームLBa(LB)が、AOM1→AOM2→AOM3→・・・・→AOM6、の順で選択用光学素子AOMnを通過(透過)可能であり、選択用光学素子AOM6を通過したビームLBaは吸収体TR1に入射する。また、配置切換部材SWEが第1の位置に移動すると、光源装置14A´からビームLBaが、AOM1→AOM2→AOM3、の順で選択用光学素子AOMnを通過可能であり、選択用光学素子AOM3を通過したビームLBaは吸収体TR2に入射する。さらに、配置切換部材SWEが第1の位置に移動した状態では、光源装置14B´からのビームLBbが、AOM4→AOM5→AOM6、の順で選択用光学素子AOMnを通過可能であり、選択用光学素子AOM6を通過したビームLBは吸収体TR1に入射する。なお、図38の配置切換部材SWEは、概念図であり、図36、図37に示す配置切換部材SWEの実際の構成とは異なっている。図38に示す例では、配置切換部材SWEが第2の位置にあり、つまり、第1の光学素子モジュールOM1と第2の光学素子モジュールOM2とが直列に配置された第2の配置状態にあり、選択用光学素子AOM5がオン状態の場合を示している。これにより、光源装置14A´からのビームLBaから回折によって偏向されたビームLB5が走査ユニットU5に入射することになる。
 ビーム切換制御部352は、選択用光学素子AOM1~AOM6の各々を超音波(高周波)信号で駆動するドライバ回路DRVn(DRV1~DRV6)と、各走査ユニットUn(U1~U6)の原点センサOPnからの原点信号SZn(SZ1~SZ6)に応じて副原点信号ZPn(ZP1~ZP6)を生成する副原点生成回路CAan(CAa1~CAa6)とを有する。ドライバ回路DRVn(DRV1~DRV6)には、副原点信号ZPn(ZP1~ZP6)を受けてから一定時間だけ選択用光学素子AOM1~AOM6をオン状態にするオン時間Tonの情報が露光制御部356から送られる。ドライバ回路DRV1は、副原点生成回路CAa1から副原点信号ZP1が送られてくると、選択用光学素子AOM1をオン時間Tonだけオン状態にする。同様に、ドライバ回路DRV2~DRV6は、副原点生成回路CAa2~CAa6から副原点信号ZP2~ZP6が送られてくると、選択用光学素子AOM2~AOM6をオン時間Tonだけオン状態にする。露光制御部356は、ポリゴンミラーPMの回転速度を変える場合は、それに応じてオン時間Tonの長さを変更する。なお、ドライバ回路DRVn(DRV1~DRV6)は、先の第4の実施の形態における図33のビーム切換制御部352中にも同様に設けられている。
 副原点生成回路CAan(CAa1~CAa6)は、論理回路LCCと遅延回路332とを有する。副原点生成回路CAan(CAa1~CAa6)の論理回路LCCには、各走査ユニットUn(U1~U6)の原点センサOPnからの原点信号SZn(SZ1~SZ6)が入力される。つまり、副原点生成回路CAa1の論理回路LCCには原点信号SZ1が入力され、同様に、副原点生成回路CAa2~CAa6の論理回路LCCには原点信号SZ2~SZ6が入力される。また、各副原点生成回路CAan(CAa1~CAa6)の論理回路LCCには、ステータス信号STSが入力される。このステータス信号(論理値)STSは、ポリゴンミラーPMの連続した反射面RP毎に繰り返される第1の状態の場合は「1」に設定され、ポリゴンミラーPMの反射面RPの1面置き毎に繰り返される第2の状態の場合は「0」に設定されている。このステータス信号STSは、露光制御部356から送られる。
 各論理回路LCCは、入力された原点信号SZn(SZ1~SZ6)に基づいて、原点信号SZn´(SZ1´~SZ6´)を生成し、各遅延回路332に出力する。各遅延回路332は、入力された原点信号SZn´(SZ1´~SZ6´)を時間Tpxだけ遅延させて、副原点信号ZPn(ZP1~ZP6)を出力する。
 図39は、原点信号SZn(SZ1~SZ6)とステータス信号STSを入力する論理回路LCCの構成を示す図である。論理回路LCCは、2入力のORゲートLC1、2入力のANDゲートLC2、および、ワンショットパルス発生器LC3で構成される。ステータス信号STSは、ORゲートLC1の一方の入力信号として印加される。ORゲートLC1の出力信号(論理値)は、ANDゲートLC2の一方の入力信号として印加され、原点信号SZnは、ANDゲートLC2の他方の入力信号として印加される。ANDゲートLC2の出力信号(論理値)は、原点信号SZn´として遅延回路332に入力される。ワンショットパルス発生器LC3は、通常は論理値「1」の信号SDoを出力するが、原点信号SZn´(SZ1´~SZ6´)が発生すると、一定時間Tdpだけ論理値「0」の信号SDoを出力する。つまり、ワンショットパルス発生器LC3は、原点信号SZn´(SZ1´~SZ6´)が発生すると、一定時間Tdpだけ信号SDoの論理値を反転させる。時間Tdpは、2×Tpx>Tdp>Tpx、の関係に設定され、好ましくは、Tdp≒1.5×Tpx、に設定される。
 図40は、図39の論理回路LCCの動作を説明するタイミングチャートを示す図である。図40の左半分は、各走査ユニットUn(U1~U6)によるスポット光SPの走査が面飛ばしをせずに連続した反射面RP毎に行われる第1の状態の場合を示し、右半分は、各走査ユニットUn(U1~U6)によるスポット光SPの走査が反射面RPを1面飛ばして行われる第2の状態の場合を示している。なお、図40においては、説明をわかり易くするため、ポリゴンミラーPMの隣り合う反射面RP(例えば、反射面RPaと反射面RPb)同士の各なす角ηjに誤差が無く、原点信号SZnが時間Tpx間隔で正確に発生しているものとする。
 スポット光SPの走査が面飛ばしをせずに反射面RP毎に行われる第1の状態のときは、ステータス信号STSは「1」なので、ORゲートLC1の出力信号は、信号SDoの状態にかかわらず、常に「1」となっている。したがって、ANDゲートLC2から出力される出力信号(原点信号SZn´)は、原点信号SZnと同じタイミングで出力される。つまり、第1の状態のときは、原点信号SZnと原点信号SZn´とは同じと見做すことができる。第1の状態のときは、ワンショットパルス発生器LC3に印加される原点信号SZn´の時間間隔Tpxは時間Tpdより小さい。そのため、ワンショットパルス発生器LC3からの信号SDoは「0」のままとなる。なお、ポリゴンミラーPMの反射面RP同士の各なす角ηjに誤差がある場合であっても、原点信号SZn´の時間間隔は時間Tpdより小さいことに変わりはない。
 スポット光SPの走査が反射面RPの1面飛ばしで行われる第2の状態になると、ステータス信号STSが「0」に切り換えられる。そのため、ORゲートLC1の出力信号は、信号SDoが「1」のときだけ、「1」となる。信号SDoが「1」の状態(この場合は、ORゲートLC1の出力信号も「1」の状態)で、原点信号SZn(便宜上、この原点信号SZnを1番目の原点信号SZnと呼ぶ)が印加されると、それに応答してANDゲートLC2も原点信号SZn´を出力する。しかしながら、原点信号SZn´が発生すると、ワンショットパルス発生器LC3からの信号SDoは、時間Tpdだけ「0」に変化する。そのため、時間Tpdの間は、ORゲートLC1の2入力はいずれも「0」の信号となるため、ORゲートLC1の出力信号は「0」のままとなる。これにより、時間Tpdの間は、ANDゲートLC2の出力信号も「0」のままとなる。したがって、時間Tpdが経過する前にANDゲートLC2に2番目の原点信号SZnが印加されても、ANDゲートLC2は、原点信号SZn´を出力しない。
 そして、時間Tpdが経過すると、ワンショットパルス発生器LC3からの信号SDoが「1」に反転するので、先の1番目の原点信号SZnの場合と同様に、時間Tpd経過後に印加される3番目の原点信号SZnに応じた原点信号SZn´がANDゲートLC2から出力される。このような動作の繰り返しにより、論理回路LCCは、時間Tpx毎に繰り返し発生する原点信号SZnを、2×時間Tpx毎に繰り返し発生する原点信号SZn´に変換している。別の見方をすれば、論理回路LCCは、時間Tpx毎に繰り返し発生する原点信号SZnのパルスを1つ置きに間引いた原点信号SZn´を生成している、つまり、原点信号SZnの発生タイミングの周波数を1/2に分周している。なお、副原点生成回路CAanの論理回路LCCを、上記第4の実施の形態で説明した副原点生成回路CAnの分周器330(図31)に置き換えてもよい。分周器330に置き換える場合は、分周器330は、第2の状態のときは原点信号SZnを1/2に分周し、また、第1の状態のときは原点信号SZnを分周しないようにすればよい。また、上記第4の実施の形態の副原点生成回路CAnを、本第5の実施の形態の副原点生成回路CAanに置き換えてもよい。なお、第2の状態の場合は、副原点生成回路CAa1の論理回路LCCから出力される原点信号SZ1´と、副原点生成回路CAa4の論理回路LCCから出力される原点信号SZ4´とは半周期位相がずれている。同様に、副原点生成回路CAa2、CAa3の論理回路LCCから出力される原点信号SZ2´、SZ3´と、副原点生成回路CAa5、CAa6の論理回路LCCから出力される原点信号SZ5´、SZ6´とは半周期位相がずれている。
 このように、ビーム切換制御部352の各副原点生成回路CAa1~CAa6の論理回路LCCに入力するステータス信号STSの値を反転させるだけで、ポリゴンミラーPMの連続した反射面RP毎にスポット光SPの走査による描画露光を繰り返す第1の状態にするか、ポリゴンミラーPMの反射面RPの1面置き毎にスポット光SPの走査による描画露光を繰り返す第2の状態にするかを任意に切り換えることができる。
 なお、本第5の実施の形態においても、各走査ユニットUn(U1~U6)のポリゴンミラーPMの回転制御は、上記第4の実施の形態と同様である。つまり、各走査ユニットUn(U1~U6)の原点センサOPnから出力される原点信号SZn(SZ1~SZ6)が、図34に示すような関係を有するように、各走査ユニットUn(U1~U6)のポリゴンミラーPMの回転が制御されている。したがって、スポット光SPの走査が面飛ばしをせずに反射面RP毎に行われる第1の状態のときは、走査ユニットU1~U3は、U1→U2→U3、の順番でスポット光SPの走査を繰り返し行うことができ、走査ユニットU4~U6は、U4→U5→U6、の順番でスポット光SPの走査を繰り返し行うことができる。
 このワンショットパルス発生器LC3に設定される時間Tpdは、露光制御部356からのポリゴンミラーPMの回転速度の情報に応じて変更できることが好ましい。また、1面飛ばしに限らず、2面飛ばしにしてスポット光SPを走査する場合でも、図39のような構成であれば、時間Tpdを、(n+1)×Tpx>Tdp>n×Tpx、の関係に設定するだけで対応することができる。なお、nは、飛ばす反射面RPの数を表している。例えば、nが2の場合は、スポット光SPの走査が反射面RPの2面置きに行われることを意味し、nが3の場合は、スポット光SPの走査が反射面RPの3面置きに行われることを意味する。
 次に、スポット光SPの走査が面飛ばしをせずに反射面RP毎に行われる第1の状態のときに、描画データ出力制御部354による、光源装置14A´、14B´の駆動回路206aへの描画ビット列データSdwの出力制御について簡単に説明する。第1の状態のときは、第1の走査モジュール(走査ユニットU1~U3)と、第2の走査モジュール(走査ユニットU4~U6)とでスポット光SPの走査が並行して行われる。そのため、描画データ出力制御部354は、第1の走査モジュールに入射するビームLBaを射出する光源装置14A´の駆動回路206aには、走査ユニットU1~U3の各々に対応したシリアルデータDL1~DL3を時系列的に合成した描画ビット列データSdwを出力し、第2の走査モジュールに入射するビームLBbを射出する光源装置14B´の駆動回路206aには、走査ユニットU4~U6の各々に対応したシリアルデータDL4~DL6を時系列的に合成した描画ビット列データSdwを出力する。
 また、図35に示した描画データ出力制御部354は、ステータス信号STSが「1」、「0」のいずれの場合も、おおよそそのまま使うことができる。スポット光SPの走査が面飛ばしをせずに反射面RP毎に行われる第1の状態のときは、副原点信号ZP1の発生後、時間Ts後に副原点信号ZP2が発生し、さらに時間Ts後に副原点信号ZP3が発生する。したがって、カウンタ部CN1~CN3によって、DL1→DL2→DL3の順でシリアルデータDL1~DL3が繰り返し出力される。副原点信号ZP1~ZP3が印加されてから一定時間(オン時間Ton)中に開かれるゲート部GT1~GT3を通って、この順次出力されるシリアルデータDL1~DL3は、描画ビット列データSdwとして第1の光源装置14A´の駆動回路206aに入力される。同様に、スポット光SPの走査が面飛ばしをせずに反射面RP毎に行われる第1の状態のときは、副原点信号ZP4の発生後、時間Ts後に副原点信号ZP5が発生し、さらに時間Ts後に副原点信号ZP6が発生する。したがって、カウンタ部CN4~CN6によって、DL4→DL5→DL6の順でシリアルデータDL4~DL6が繰り返し出力される。副原点信号ZP4~ZP6が印加されてから一定時間(オン時間Ton)中に開かれるゲート部GT4~GT6を通って、この順次出力されるシリアルデータDL4~DL6は、描画ビット列データSdwとして第2の光源装置14B´の駆動回路206aに入力される。
 次に、第1の状態のときのシリアルデータDL1~DL6のシフトについて簡単に説明する。シリアルデータDL1の列方向のシフトは、シリアルデータDL1を出し終わった後で、次に走査を行う走査ユニットU2に対応した副原点信号ZP2が発生したタイミングで行われる。シリアルデータDL2の列方向のシフトは、シリアルデータDL2を出し終わった後で、次に走査を行う走査ユニットU3に対応した副原点信号ZP3が発生したタイミングで行われる。シリアルデータDL3の列方向のシフトは、シリアルデータDL3を出し終わった後で、次に走査を行う走査ユニットU1に対応した副原点信号ZP1が発生したタイミングで行われる。また、シリアルデータDL4の列方向のシフトは、シリアルデータDL4を出し終わった後で、次に走査を行う走査ユニットU5に対応した副原点信号ZP5が発生したタイミングで行われる。シリアルデータDL5の列方向のシフトは、シリアルデータDL5を出し終わった後で、次に走査を行う走査ユニットU6に対応した副原点信号ZP6が発生したタイミングで行われる。シリアルデータDL6の列方向のシフトは、シリアルデータDL6を出し終わった後で、次に走査を行う走査ユニットU4に対応した副原点信号ZP4が発生したタイミングで行われる。なお、第2の状態のときの、描画ビット列データSdwの出力制御は、第4の実施の形態と同様なので説明を省略する。また、第1の状態のときの描画ビット列データSdwの出力制御は、上記第1~第3の実施の形態の制御原理と同様であり、出力するシリアルデータDLnの順番が異なるだけである。つまり、DL1→DL3→DL5、DL2→DL4→DL6の順番にシリアルデータDLnをそれぞれ出力するか、DL1→DL2→DL3、DL4→DL5→DL6の順番にシリアルデータDLnをそれぞれ出力するかの違いである。
 また、スポット光SPの走査が反射面RPの1面飛ばしで行われる第2の状態の場合は、面飛ばしをせずに反射面RP毎に行われる第1の状態に比べ、各走査ユニットUn(U1~U6)のスポット光SPの走査開始間隔が長い。例えば、反射面RPの1面飛ばしでスポット光SPの走査を行う場合は、面飛ばしを行わない場合に比べ、各走査ユニットUn(U1~U6)のスポット光SPの走査開始間隔が2倍になる。また、反射面RPを2面飛ばしで行う場合は、面飛ばしを行わない場合に比べ、スポット光SPの走査開始間隔が3倍になる。したがって、第1の状態と第2の状態とで、ポリゴンミラーPMの回転速度および基板FSの搬送速度を同じにしてしまうと、第1の状態と第2の状態とでは、露光結果が異なるものとなってしまう。
 そこで、第1の状態と第2の状態とでポリゴンミラーPMの回転速度および基板FSの搬送速度の少なくとも一方を変更(補正)して、第1の状態と第2の状態とにおける露光結果を同じ状態にする制御モードを、露光制御部356に持たせてもよい。例えば、第1の状態のときのスポット光SPの走査開始間隔と第2の状態のときのスポット光SPの走査開始間隔とが1:2の場合は、露光制御部356は、第1の状態のときのポリゴンミラーPMの回転速度と第2の状態のときのポリゴンミラーPMの回転速度の比が1:2となるように、回転制御部350を制御する。具体的には、第1の状態のときのポリゴンミラーPMの回転速度を2万rpmにし、第2の状態のときのポリゴンミラーPMの回転速度を4万rpmにする。併せて、光源装置14´(14A´、14B´)のビームLB(LBa、LBb)の発光周波数Fsを、例えば第1の状態のときに200MHzであれば、第2の状態のときは400MHzに設定する。これにより、第1の状態のときの副原点信号ZPnの発生タイミングの間隔と、第2の状態のときの副原点信号ZPnの発生タイミングの間隔とをほぼ同一にすることができる。
 また、例えば、第1の状態のときのスポット光SPの走査開始間隔と第2の状態のときのスポット光SPの走査開始間隔とが1:2の場合は、第1の状態のときの基板FSの搬送速度と第2の状態のときの基板FSの搬送速度との比が、2:1となるように駆動ローラR1~R3、回転ドラムDRの回転速度を制御する制御モードを露光制御部356に持たせてもよい。以上のような、ポリゴンミラーPMの回転速度や発光周波数Fs(クロック信号LTCの周波数)を補正する制御モード(走査補正モード)、または基板FSの搬送速度を補正する制御モード(搬送補正モード)のいずれか一方によって、第1の状態のときの基板FS上における描画ラインSLn(SL1~SL6)のX方向の間隔と、第2の状態のときの基板FS上における描画ラインSLn(SL1~SL6)のX方向の間隔とを、同じ間隔(例えば、1.5μm)にすることができる。さらに、第1の状態と第2の状態とで、描画データ出力制御部354内のメモリ部BM1~BM6の各々に記憶されるパターンデータ(ビットマップ)は、何ら補正する必要も無く、そのまま使うことができる。
 また、上記の走査補正モードと搬送補正モードとの両方を使って、第1の状態で基板FS上に描画されるパターンと、第2の状態で基板FS上に描画されるパターンとを同等にするように補正してもよい。例えば、第1の状態(ポリゴンミラーPMの各反射面RP毎のビーム走査の場合)において、ポリゴンミラーPMの回転速度が2万rpm、光源装置14´(14A´、14B´)のビームLBの発光周波数Fsが200MHz、基板FSの搬送速度が5mm/秒であった場合、第2の状態(ポリゴンミラーPMの1反射面RP飛ばしによるビーム走査の場合)では、基板FSの搬送速度を半分ではなく-25%減速させた3.75mm/秒に設定し、ポリゴンミラーPMの回転速度は1.5倍の3万rpm、ビームLBの発光周波数Fsも1.5倍の300MHzに設定するようにしてもよい。このように、走査補正モードと搬送補正モードとの両方を組み合わせると、第2の状態の場合に、基板FSの搬送速度を半分まで低下させる必要がないので、生産性の極端な低下が抑えられる。
 なお、第5の実施の形態においても、上記第4の実施の形態で説明したように、ビームLBa、LBbを振り分ける走査ユニットUnの数は、任意に変更してもよい。また、ポリゴンミラーPMの走査効率も任意に変更してもよい。また、第5の実施の形態においては、ポリゴンミラーPMの走査効率が1/3、走査ユニットUnの数が6つとしたので、6つの選択用光学素子AOMn(AOM1~AOM6)を2つの光学素子モジュールOM1、OM2に分け、それに対応して6つの走査ユニットUn(U1~U6)を2つの走査モジュールに分けた。しかしながら、ポリゴンミラーPMの走査効率が1/M、走査ユニットUnおよび選択用光学素子AOMnの数がQの場合は、Q個の選択用光学素子AOMnをQ/M個の光学素子モジュールOM1、OM2、・・・に分け、Q個の走査ユニットUnをQ/M個の走査モジュールに分ければよい。この場合、各光学素子モジュールOM1、OM2、・・・の各々に含まれる選択用光学素子AOMnの数は等しく、また、Q/M個の走査モジュールの各々に含まれる走査ユニットUnの数も等しくするのが好ましい。なお、このQ/Mは、正数であることが好ましい。つまり、Qは、Mの倍数であることが好ましい。
 例えば、ポリゴンミラーPMの走査効率が1/2、走査ユニットUnおよび選択用光学素子AOMnの数が6つの場合は、6つの選択用光学素子AOMnを3つの光学素子モジュールOM1、OM2、OM3に等しく分け、6つの走査ユニットUnを3つの走査モジュールに等しく分ければよい。そして、第1の状態の場合は、3つの光学素子モジュールOM1、OM2、OM3を並列に配置して、3つの光学素子モジュールOM1、OM2、OM3の各々に3つの光源装置14´からのビームLB(この場合、LBa、LBb、LBc)が並行して入射するようにし、第2の状態の場合は、3つの光学素子モジュールOM1、OM2、OM3を直列に配置して、1つの光源装置14´からのビームLBが3つの光学素子モジュールOM1、OM2、OM3をシリアルに通るように入射させればよい。
 以上のように本第5の実施の形態では、走査ユニットUnのポリゴンミラーPMによるビームLBn(スポット光SP)の偏向(走査)が、ポリゴンミラーPMの連続した反射面RP毎に繰り返される第1の状態(第1の描画モード)と、ポリゴンミラーPMの少なくとも1つ置きの反射面RP毎に繰り返される第2の状態(第2の描画モード)とのいずれか一方に切り換わるように、ビーム切換制御部352がビーム切換部材20Aを制御して、複数の走査ユニットUnの各々によるスポット光SPの1次元走査を順番に行わせた。これにより、上記第4の実施の形態と同様の効果を得ることができるとともに、面飛ばしでスポット光SPの走査を行うか、面飛ばしをしないでスポット光SPの走査を行うかを切り換えることができる。
 第1の状態の場合は、ポリゴンミラーPMの走査効率(α/β)が1/2未満となる場合に、走査効率の逆数に応じた数の走査ユニットUnを1つの走査モジュールとしてグループ化し、そのグループ化された走査モジュールの複数を用いて、各走査モジュール毎に、その内の1つの走査ユニットUnがスポット光SPの1次元走査を行う。これにより、複数の描画ラインSLnのうち、走査モジュールの数と同じ数の描画ラインSLnを同時にスポット光SPで走査させることができる。また、第2の状態の場合は、ポリゴンミラーPMの少なくとも1つ置きの反射面RP毎にビーム走査を行うように制御されるので、ポリゴンミラーPMの走査効率(α/β)の逆数に応じた数よりも多い複数の走査ユニットUnがあっても、ビームLBを有効に活用しつつ、その複数の走査ユニットUnの全てが、描画ラインSLnに沿ってスポット光SPを走査させることができる。
 上記の第1の状態の場合、グループ化された2つの走査モジュールには、光源装置14A´、14B´の各々からのビームLBa、LBbが並行して入射されるので、ビーム切換部材20A内の選択用光学素子AOM1~AOM6の各々は、ビーム切換制御部352によって、グループ化された走査モジュール単位で、ビームLB1~LB6が対応する走査ユニットU1~U6に時分割で入射するように、オン/オフ状態をスイッチングされる。
 ビーム切換部材20Aに設けられた配置切換部材SWEは、第1の光源装置14A´からのビームLBaを、6つの走査ユニットU1~U6のうちの3つの走査ユニットU1~U3の各々にビームLB1~LB3として振り分け、且つ、第2の光源装置14B´からのビームLBbを、残りの3つの走査ユニットU4~U6の各々にビームLB4~LB6として振り分けるように、ビームLBaの光路に沿って3つの選択用光学素子AOM1~AOM3が直列に連なり、且つ、ビームLBbの光路に沿って選択用光学素子AOM4~AOM6が直列に連なる第1の配置状態と、1つの光源装置14A´からのビームLBaを、6つの走査ユニットU1~U6の各々にビームLB1~LB6として振り分けるように、ビームLBaの光路に沿って6つの選択用光学素子AOM1~AOM6が直列に連なる第2の配置状態とを切り換えるものである。
 これにより、第1の状態の場合は、配置切換部材SWEによって第1の配置状態に設定することで、各走査ユニットU1~U6の各々が、ポリゴンミラーPMの連続した反射面RP毎にスポット光SPによる走査を繰り返すことができるとともに、6つの走査ユニットU1~U6のうちの2つの走査ユニットがほぼ同時にスポット光SPによる走査を行うことができる。また、第2の状態の場合は、配置切換部材SWEによって第2の配置状態に設定することで、ポリゴンミラーPMの少なくとも1つ置きの反射面RP毎のビーム走査ではあるが、6つの走査ユニットU1~U6の全てでスポット光SPによる走査を繰り返すことができる。
 したがって、本第5の実施の形態によれば、描画装置の初期設置時のセットアップでは、1つの光源装置14A´を使って、第2の配置状態になるように配置切換部材SWEを設定し、その後に基板FSの搬送速度を上げたい場合は、第2の光源装置14B´を増設して、第1の配置状態になるように配置切換部材SWEを設定すればよく、ハードウェア上では、光源装置の増設、配置切換部材SWEの切り換え、と言った簡単な操作で描画装置をグレードアップできる。
 なお、上記各実施の形態では、ポリゴンミラーPMのビームLBnの偏向を行う反射面RPに対して、ポリゴンミラーPMの回転方向の1つ手前の反射面RPを用いて、原点信号SZnの検出を行ったが、ビームLBnの偏向を行う反射面RP自体を用いて原点信号SZnの検出を行うようにしてもよい。この場合は、原点信号SZn、または原点信号SZnから求められる原点信号SZn´を時間Tpxだけ遅延させる必要はないので、原点信号SZn、または原点信号SZn´を副原点信号ZPnとすればよい。
 また、上記第4および第5の実施の形態では、光源装置14´(14A´、14B´)の描画用光変調器としての電気光学素子206を、描画ビット列データSdwを用いてスイッチングするようにしたが、第2の実施の形態のように、描画用光変調器として描画用光学素子AOMを用いてもよい。この描画用光学素子AOMは、音響光学変調素子(AOM:Acousto-Optic Modulator)である。つまり、上記第4の実施の形態においては、光源装置14´と初段の選択用光学素子AOM1との間に描画用光学素子AOMを配置し、描画用光学素子AOMを透過した光源装置14´からのビームLBが選択用光学素子AOM1に入射するようにしてもよい。この場合は、描画用光学素子AOMは、描画ビット列データSdwに応じてスイッチングされる。この場合であっても、上記第4の実施の形態と同様の効果を得ることができる。
 また、上記第5の実施の形態においては、第1の光源装置14A´と第1の光学素子モジュールOM1の初段の選択用光学素子AOM1との間と、第2の光源装置14B´と第2の光学素子モジュールOM2の初段の選択用光学素子AOM4との間に、それぞれ描画用光学素子AOM(AOMa、AOMb)が配置される。つまり、描画用光学素子AOMaを透過した光源装置14A´からのビームLBaが選択用光学素子AOM1に入射し、描画用光学素子AOMbを透過した光源装置14B´からのビームLBbが選択用光学素子AOM4に入射する。この場合は、第1の状態の場合は、描画用光学素子AOMaは、シリアルデータDL1~DL3で構成される描画ビット列データSdwに応じてスイッチングされ、描画用光学素子AOMbは、シリアルデータDL4~DL6で構成される描画ビット列データSdwに応じてスイッチングされる。また、第2の状態の場合は、描画用光学素子AOMaのみが、シリアルデータDL1~DL6で構成される描画ビット列データSdwに応じてスイッチングされる。
 また、第1の実施の形態のように、描画用光変調器としての描画用光学素子AOMを走査ユニットUn毎に設けてもよい。この場合は、描画用光学素子AOMは、各走査ユニットUnの反射ミラーM20(図28参照)の手前に設けてもよい。この各走査ユニットUn(U1~U6)の描画用光学素子AOMは、各シリアルデータDLn(DL1~DL6)に応じてスイッチングされる。例えば、走査ユニットU3の描画用光学素子AOMは、シリアルデータDL3に応じてスイッチングされる。
[第6の実施の形態]
 図41は、第6の実施の形態によるビーム切換部材(ビーム配送ユニット)20Bの構成を示し、ここでは、1つの光源装置14´から射出してビーム切換部材20Bに入射するビームLBw(LB)が円偏光の平行光束になっているものとする。ビーム切換部材20Bには、6つの選択用光学素子AOM1~AOM6、2つの吸収体TR1、TR2、6つのレンズ系CG1~CG6、ミラーM30、M31、M32、集光レンズCG0、そして、偏光ビームスプリッタBS1と2つの描画用光学素子(音響光学変調素子)AOMa、AOMbが設けられる。なお、上記第4の実施の形態または上記第5の実施の形態と同様の構成については、同一の参照符号を付している。
 ビーム切換部材20Bに入射するビームLBwは、集光レンズCG0を通って偏光ビームスプリッタBS1によって、直線P偏光のビームLBpと直線S偏光のビームLBsに分離される。偏光ビームスプリッタBS1で反射されたS偏光のビームLBsは、描画用光学素子AOMaに入射する。描画用光学素子AOMaに入射したビームLBsは、集光レンズCG0の集光作用によって、描画用光学素子AOMa内でビームウェストとなるように収斂される。描画用光学素子AOMaには、ドライバ回路DRVnを介して、図19で示したような描画ビット列データSdw(DLn)が印加される。その描画ビット列データSdwは、ここでは奇数番の走査ユニットU1、U3、U5の各々に対応したシリアルデータDL1、DL3、DL5を合成したものとなっている。したがって、描画用光学素子AOMaは、描画ビット列データSdw(DLn)が「1」のときに、オン状態となって、入射したビームLBsの1次回折光を、偏向された描画ビーム(強度変調されたビーム)としてミラーM31に向けて射出する。ミラーM31で反射した描画ビームは、レンズ系CG1を通って選択用光学素子AOM1に入射する。また、描画ビット列データSdw(DLn)が「0」のときに描画用光学素子AOMaから射出される0次光(LBs)は、ミラーM31で反射されるが、後続のレンズ系CG1に入射しないような角度で進む。なお、レンズ系CG1は、描画用光学素子AOMaから発散して射出する描画ビームを選択用光学素子AOM1の回折部分で集光してビームウェストにする。
 選択用光学素子AOM1を透過した描画ビームは、レンズ系CG1と同様のレンズ系CG3を介して選択用光学素子AOM3に入射し、選択用光学素子AOM3を透過した描画ビームは、レンズ系CG1と同様のレンズ系CG5を介して選択用光学素子AOM5に入射する。図41では、3つの選択用光学素子AOM1、AOM3、AOM5がビーム光路に沿って直列に配置され、そのうちの選択用光学素子AOM3のみがオン状態となって、描画用光学素子AOMaで強度変調された描画ビームが、対応する走査ユニットU3にビームLB3として入射される状態を示している。なお、レンズ系CG1、CG3、CG5は、図26や図36中の1枚のコリメートレンズCLと1枚の集光レンズCDとを組み合わせたものに相当する。
 一方、偏光ビームスプリッタBS1を透過したP偏光のビームLBpは、ミラーM30で反射されて描画用光学素子AOMbに入射する。描画用光学素子AOMbに入射したビームLBpは、集光レンズCG0の集光作用によって、描画用光学素子AOMb内でビームウェストとなるように収斂される。描画用光学素子AOMbには、ドライバ回路DRVnを介して、図19で示したような描画ビット列データSdw(DLn)が印加される。描画ビット列データSdwは、偶数番の走査ユニットU2、U4、U6の各々に対応したシリアルデータDL2、DL4、DL6を合成したものとなっている。したがって、描画用光学素子AOMbは、描画ビット列データSdw(DLn)が「1」のときに、オン状態となって、入射したビームLBpの1次回折光を、偏向された描画ビーム(強度変調されたビーム)としてミラーM32に向けて射出する。ミラーM32で反射した描画ビームは、レンズ系CG1と同様のレンズ系CG2を通って選択用光学素子AOM2に入射する。また、描画ビット列データSdw(DLn)が「0」のときに描画用光学素子AOMbから射出される0次光(LBp)は、ミラーM32で反射されるが、後続のレンズ系CG2に入射しないような角度で進む。なお、レンズ系CG2は、描画用光学素子AOMbから発散して射出する描画ビームを選択用光学素子AOM2の回折部分で集光してビームウェストにする。
 選択用光学素子AOM2を透過した描画ビームは、レンズ系CG1と同様のレンズ系CG4を介して選択用光学素子AOM4に入射し、選択用光学素子AOM4を透過した描画ビームは、レンズ系CG1と同様のレンズ系CG6を介して選択用光学素子AOM6に入射する。図41では、3つの選択用光学素子AOM2、AOM4、AOM6がビーム光路に沿って直列に配置され、そのうちの選択用光学素子AOM2のみがオン状態となって、描画用光学素子AOMbで強度変調された描画ビームが、対応する走査ユニットU2にビームLB2として入射される状態を示している。なお、レンズ系CG2、CG4、CG6は、図26や図36中の1枚のコリメートレンズCLと1枚の集光レンズCDとを組み合わせたものに相当する。
 以上の図41のようなビーム切換部材(ビーム配送ユニット)20Bを用いると、1つの光源装置14´からのビームLBwを偏光ビームスプリッタBS1で2つに分割し、その一方のビームLBsから描画用光学素子AOMaによって生成される描画ビーム(LB1、LB3、LB5)を、奇数番の走査ユニットU1、U3、U5のいずれか1つに順番に入射させ、偏光ビームスプリッタBS1で分割された他方のビームLBpから描画用光学素子AOMbによって生成される描画ビーム(LB2、LB4、LB6)を、偶数番の走査ユニットU2、U4、U6のいずれか1つに順番に入射させることができる。
 この第6の実施の形態では、光源装置14´からのビームLBwを偏光ビームスプリッタBS1で2つに分割した後に、描画用光学素子AOMa、AOMbでパターンデータに基づいたビームLBの強度変調が行われるため、6つの走査ユニットU1~U6の各々によるスポット光SPの強度は、偏光ビームスプリッタBS1での減衰を-50%、描画用光学素子AOMa、AOMbと各選択用光学素子AOMnでの減衰を-20%、各走査ユニットU1~U6内での減衰を-30%とすると、元のビームLBwの強度(100%)の約22.4%になる。しかしながら、6つの走査ユニットU1~U6の各々のポリゴンミラーPMの走査効率が1/3以下であり、1つの光源装置14´からのビームLBwを使う場合は、ポリゴンミラーPMの反射面RPを1面飛ばしでビーム走査することなく、6つの描画ラインSLnの各々でスポット光SPの走査によるパターン描画ができる。
〔変形例1〕
 第6の実施の形態のように、奇数番の選択用光学素子AOM1、AOM3、AOM5に入射するビームLBsと、偶数番の選択用光学素子AOM2、AOM4、AOM6に入射するビームLBpとの偏光方向が直交している場合、奇数番の選択用光学素子AOMnと偶数番の選択用光学素子AOMnとは、ビーム入射軸の回りに相対的に90度回転して配置する必要がある。図42は、例えば、奇数番の選択用光学素子AOM1、AOM3、AOM5のうちの選択用光学素子AOM3を偶数番の選択用光学素子AOMnに対して90度回転させて配置する場合の構成を示す。選択用光学素子AOM3は、レンズ系CG3を通ったS偏光の描画ビームを入射するので、回折効率が高い方向はXY平面と平行なY方向になる。すなわち、選択用光学素子AOM3内に生成される回折格子の周期方向がY方向になるように、選択用光学素子AOM3を90度回転して配置する。
 このような選択用光学素子AOM3の配置により、選択用光学素子AOM3がオン状態のときに偏向されて射出するビームLB3は、0次光の進行方向に対して、Y方向に傾いて進む。そのため、0次光の光路からビームLB3を分離して、ビームLB3が支持部材IUBの開口部TH3をZ方向に通過させるように、選択用光学素子AOM3からのビームLB3をXY平面内で反射させるミラーIM3aと、ミラーIM3aで反射されたビームLB3を開口部TH3に通すように-Z方向に反射するミラーIM3bが設けられる。他の奇数番の選択用光学素子AOM1、AOM5の各々についても、同様に、ミラーIM1aとIM1bの組、ミラーIM5aとIM5bの組が設けられる。さらに、図41の構成では、描画用光学素子AOMa、AOMbに入射するビームLBs、LBpの偏光方向が直交していることから、描画用光学素子AOMa、AOMbはビーム入射軸の回りに相対的に90度回転させた関係で配置することになる。
 ただし、図41中の偏光ビームスプリッタBS1を振幅分割のビームスプリッタやハーフミラーにする場合は、ビームLBwの偏光方向を一方向のみ(例えばP偏光)にすれば、描画用光学素子AOMa、AOMbの一方、奇数番の選択用光学素子AOMnと偶数番の選択用光学素子AOMnの一方を、図42のように相対的に90度回転させて配置する必要はない。
〔変形例2〕
 第6の実施の形態では、6つの選択用光学素子AOM1~AOM6の各々に対応した走査ユニットU1~U6の全てが、ポリゴンミラーPMの全ての反射面RP毎に描画ラインSL1~SL6の各々に沿ったスポット光SPの走査を行える構成となっている。そこで、奇数番の選択用光学素子AOM1、AOM3、AOM5を順番に通ってきたビーム(描画用光学素子AOMaで変調されたビーム)を入射するように、図41の選択用光学素子AOM5と吸収体TR2の間に、さらに3つの選択用光学素子AOM7、AOM9、AOM11を直列に設け、偶数番の選択用光学素子AOM2、AOM4、AOM6を順番に通ってきたビーム(描画用光学素子AOMbで変調されたビーム)を入射するように、選択用光学素子AOM6と吸収体TR1の間に、さらに3つの選択用光学素子AOM8、AOM10、AOM12を直列に設ける。そして、選択用光学素子AOM7~AOM12の各々で偏向(スイッチング)されたビームLB7~LB12が導入される6つの走査ユニットU7~U12を増設し、合計12個の走査ユニットU1~U12を基板FSの幅方向(Y方向)に配置する。これによって、12本の描画ラインSL1~SL12の継ぎ描画露光が可能となり、Y方向の最大露光幅を2倍に拡大できる。
 この場合、走査ユニットU1~U12の各々のポリゴンミラーPMの走査効率が1/3以下である場合、第1の描画モジュールとしてグループ化される奇数番の走査ユニットU1、U3、U5、U7、U9、U11、および第2の描画モジュールとしてグループ化される偶数番の走査ユニットU2、U4、U6、U8、U10、U12は、いずれも、ポリゴンミラーPMの反射面RPの1面置きにビームLBnを走査する。このようにすると、基板FSのY方向の幅が大きくなった場合でも、走査ユニットU7~U12、選択用光学素子AOM7~AOM12等を追加するだけで、大きな露光領域W(図5、図25)に対するパターン描画が可能となる。このように、6つの走査ユニットU7~U12と選択用光学素子AOM7~AOM12を増設して、12個の走査ユニットU1~U12にする構成は、先の第5の実施の形態(図36~図38)で説明した2つの光源装置14A´、14B´を用いる場合にも同様に適用できる。
〔変形例3〕
 図43は、変形例3による基板FSの搬送形態と走査ユニットUn(描画ラインSLn)との配置関係を示し、ここでは、変形例2のように12個の走査ユニットU1~U12を設け、各走査ユニットUnの描画ラインSL1~SL12をY方向に継ぎ描画露光できるように、回転ドラムDR上に配置する。また、図23に示した基板搬送機構12における回転ドラムDRや各種のローラR1~R3、RT1、RT2等の回転軸方向(Y方向)の長さをHd、12個の走査ユニットUnによる継ぎ描画によって露光可能なY方向の最大描画幅をSh(Sh<Hd)、露光可能な基板FS0の最大支持幅をTfとする。変形例3における12の描画ラインSL1~SL12の各々に対応する12の走査ユニットU1~U12の各々は、図41(第6の実施の形態)のように、1つの光源装置14´からのビームLBwをビームスプリッタやハーフミラーで2分割する方式のビーム切換部材(ビーム配送ユニット)20B、或いは、図38(第5の実施の形態)のように、2つの光源装置14A´、14B´の各々からのビームLBa、LBbを用いる方式のビーム切換部材(ビーム配送ユニット)20Aから、対応する12のビームLB1~LB12を時分割で入射するように構成される。したがって、例えば各描画ラインSL1~SL12のY方向の長さが50mmの場合、最大描画幅Shは600mmとなり、一例として最大支持幅Tfとなる基板FS0の幅を650mm、回転ドラムDRの長さHdを700mm程度にすることができる。
 図43のような描画装置によって、最大支持幅Tfと同じ幅の基板FS0の露光を行う場合、先の図24、図25で示した4つのアライメント顕微鏡AM1~AM4(観察領域Vw1~Vw4)の他に、3つのアライメント顕微鏡AM5~AM7(観察領域Vw5~Vw7)をY方向に増設する。その場合、基板FS0の幅方向の両側に位置するアライメント顕微鏡AM1(観察領域Vw1)とアライメント顕微鏡AM7(観察領域Vw7)は、基板FS0の両側に、X方向に一定ピッチで形成されるアライメントマークを検出する。また、アライメント顕微鏡AM4(観察領域Vw4)は、最大支持幅Tfのほぼ中央に位置するように配置される。
 また、先の各実施の形態で説明したような6つの走査ユニットU1~U6の各々による描画ラインSL1~SL6によって露光領域Wにパターン描画が可能な基板FS1の場合、その幅Tf1は、回転ドラムDRの最大支持幅Tfの半分程度であるので、基板FS1は、例えば、回転ドラムDRの外周面の-Y方向側に寄せて搬送される。その際、基板FS1上のアライメントマークMK1~MK4(図25)の各々は、4つのアライメント顕微鏡AM1~AM4の各観察領域Vw1~Vw4によって検出可能である。そして、基板FS1の露光の場合は、6つの走査ユニットU1~U6だけを使用すればよいので、走査ユニットU1~U6の各々は、ポリゴンミラーPMの連続した反射面RPごとのビーム走査、またはポリゴンミラーPMの1反射面RP置きのビーム走査のどちらのモードでも、各描画ラインSL1~SL6に沿ったスポット走査が可能である。
 例えば、第5の実施の形態のように、2つの光源装置14A´、14B´の各々からのビームLBa、LBbをともに使うように設定されている場合、光源装置14A´からのビームLBaは、奇数番の走査ユニットU1、U3、U5、U7、U9、U11の各々に対応した選択用光学素子AOM1、AOM3、AOM5、AOM7、AOM9、AOM11を直列に透過するように、ビーム切換部材20A内でグループ化され、光源装置14A´からのビームLBaは、偶数番の走査ユニットU2、U4、U6、U8、U10、U12の各々に対応した選択用光学素子AOM2、AOM4、AOM6、AOM8、AOM10、AOM12を直列に透過するように、ビーム切換部材20A内でグループ化される。そして、基板FS1の露光の際には、ポリゴンミラーPMの連続した反射面RP毎に出力される3つの原点信号SZ1、SZ3、SZ5のみに基づいて、奇数番の走査ユニットU1、U3、U5の順番で、ポリゴンミラーPMの連続した反射面RP毎のビーム走査が繰り返されるように制御され、ポリゴンミラーPMの連続した反射面RP毎に出力される3つの原点信号SZ2、SZ4、SZ6のみに基づいて、偶数番の走査ユニットU2、U4、U6の順番で、ポリゴンミラーPMの連続した反射面RP毎のビーム走査が繰り返されるように制御される。
 さらに、最大支持幅Tfよりは小さく、基板FS1の幅Tf1よりも大きい幅Tf2の基板FS2に対して露光を行う場合は、基板FS2を回転ドラムDRの最大支持幅Tfの中央部分に合せるようにして搬送する。その際、基板FS2上の露光領域Wは、Y方向に連接した8個の走査ユニットU3~U10の各々による描画ラインSL3~SL10によって描画されるものとする。このような場合、光源装置14A´からのビームLBa(強度変調されたビーム)を入射する奇数番の4つの選択用光学素子AOM3、AOM5、AOM7、AOM9が、時分割でビームLB3、LB5、LB7、LB9のいずれか1つを順番に生成し、光源装置14B´からのビームLBb(強度変調されたビーム)を入射する偶数番の4つの選択用光学素子AOM4、AOM6、AOM8、AOM10が、時分割でビームLB4、LB6、LB8、LB10のいずれか1つを順番に生成するように制御される。したがって、少なくとも8個の走査ユニットU3~U10の各々は、ポリゴンミラーPMの1反射面RP置きのビーム走査のモードに設定される。
 そして、基板FS2の露光の際には、奇数番の走査ユニットU3、U5、U7、U9の各々のポリゴンミラーPMの1反射面RP置きに出力される4つの副原点信号ZP3、ZP5、ZP7、ZP9のみに基づいて、奇数番の走査ユニットU3、U5、U7、U9の順番で、ポリゴンミラーPMの1反射面RP置き毎にビーム走査が繰り返されるように制御され、偶数番の走査ユニットU4、U6、U8、U10の各々のポリゴンミラーPMの1反射面RP置きに出力される4つの副原点信号ZP4、ZP6、ZP8、ZP10のみに基づいて、偶数番の走査ユニットU4、U6、U8、U10の順番で、ポリゴンミラーPMの1反射面RP置きのビーム走査が繰り返されるように制御される。なお、図43では、基板FS2上の幅方向の両側に形成されるアライメントマーク(図25中のアライメントマークMK1、MK4に相当)が、アライメント顕微鏡AM2、AM6の各観察領域Vw2、Vw6で検出されるような関係で配置されているが、露光領域WのY方向のサイズによっては、必ずしもそのような関係で配置できないこともある。その場合は、7つのアライメント顕微鏡AM1~AM7のうちの幾つかをY方向に移動可能な構成を設け、観察領域Vw1~Vw7のY方向の位置間隔を調整可能としておくとよい。
 以上の変形例3によれば、露光すべき基板FSの幅や露光領域WのY方向の寸法に応じて、必要な走査ユニットUnのみを使った効率的な露光が可能となる。また、図43のように12個の走査ユニットU1~U12の各々のポリゴンミラーPMの走査効率が1/3以下である場合は、例えば、各ポリゴンミラーPMの3反射面RP置きにビーム走査を行うようにすれば、1つの光源装置14´からのビームであっても、最大描画幅Shに渡って良好にパターン描画が可能となる。
 また、9個の走査ユニットU1~U9で描画装置を構成する場合は、奇数番の5個の走査ユニットU1、U3、U5、U7、U9と、偶数番の4個の走査ユニットU2、U4、U6、U8とが使われる。そのため、9個の走査ユニットU1~U9の全てによる描画ラインSL1~SL9によって露光領域Wにパターン描画する際は、ポリゴンミラーPMの走査効率が1/3以下である場合、例えば、各ポリゴンミラーPMの1反射面RP置きにビーム走査を行うようにすればよい。ただし、この場合は、奇数番の走査ユニットU1、U3、U5、U7、U9の各々の原点信号SZnから生成される副原点信号ZP1、ZP3、ZP5、ZP7、ZP9のみを、その順番で参照することを繰り返して、奇数番の描画ラインSL1、SL3、SL5、SL7、SL9の各々でのスポット走査を行い、偶数番の走査ユニットU2、U4、U6、U8の各々の原点信号SZnから生成される副原点信号ZP2、ZP4、ZP6、ZP8のみを、その順番で参照することを繰り返して、偶数番の描画ラインSL2、SL4、SL6、SL8の各々でのスポット走査を行えばよい。
 以上、変形例3では、描画ラインSLnに沿って光源装置14´からのビームのスポット光SPを走査する複数の走査ユニットUnを、各描画ラインSLnによって描画されるパターンが基板FS上で描画ラインSLnの方向(主走査方向)に継がれるように配置し、複数の走査ユニットと基板FSとを主走査方向と交差する副走査方向に相対移動させる描画装置を用いたパターン描画方法であって、複数の走査ユニットUnのうちで、基板FSの主走査方向の幅、または基板FS上のパターン描画される露光領域の主走査方向の幅、或いはその露光領域の位置に対応した特定の走査ユニットを選定することと、光源装置14´からのビームを配送するビーム配送ユニットを介して、特定の走査ユニットの各々で描画すべきパターンデータに基づいて強度変調されたビームを特定の走査ユニットの各々に択一的に順次供給することと、を含むパターン描画方法が提供される。これにより、変形例3では、基板FSの幅が変わったり、基板FS上の露光領域Wの幅や位置が変わったりしても、基板FSのY方向の搬送位置を適切に定めることで、高い継ぎ精度を維持した精密なパターン描画が可能となる。なお、その際、複数の走査ユニットの全てのポリゴンミラーPMの間で、回転速度や回転角度位相を同期させるのではなく、パターン描画に寄与する特定の走査ユニットのポリゴンミラーPMの間でだけ、回転速度や回転角度位相を同期させてもよい。
〔変形例4〕
 さらに、9個の走査ユニットU1~U9を使う描画装置の別の構成として、奇数番と偶数番とでグループ分けするのではなく、単純に、走査ユニットUnが並んだ順に2つのグループに分けることもできる。すなわち、6個の走査ユニットU1~U6による第1の走査モジュールと、3個の走査ユニットU7~U9による第2の走査モジュールとに分け、第1の走査モジュールに対しては、第1の光源装置14A´からのビームLBaを供給し、第2の走査モジュールに対しては、第2の光源装置14B´からのビームLBbを供給するようにしてもよい。その場合、ポリゴンミラーPMの走査効率(α/β)が、1/4<(α/β)≦1/3であると、第1の走査モジュール内の6個の走査ユニットU1~U6の各々は、先の第4の実施の形態(図33)と同様に、ポリゴンミラーPMの1反射面RP置きのビーム走査によって、各描画ラインSL1~SL6に沿ったスポット光SPの走査を行うことになる。
 これに対して、第2の走査モジュール内の3個の走査ユニットU7~U9の各々は、ポリゴンミラーPMの全ての反射面RP毎にビーム走査することができる。したがって、3個の走査ユニットU7~U9の各々が、そのままポリゴンミラーPMの全ての反射面RP毎にビーム走査を行ってしまうと、6個の走査ユニットU1~U6の各々による各描画ラインSL1~SL6におけるスポット光SPの走査の繰り返し時間間隔ΔTc1と、3個の走査ユニットU7~U9の各々による各描画ラインSL7~SL9におけるスポット光SPの走査繰り返し時間間隔ΔTc2とが、ΔTc1=2ΔTc2の関係になり、描画ラインSL1~SL6によって基板FS上に描画されるパターンと、描画ラインSL7~SL9によって基板FS上に描画されるパターンとは異なったものになってしまい、良好な継ぎ露光ができない。
 そこで、ポリゴンミラーPMの全ての反射面RP毎のビーム走査が可能な3個の走査ユニットU7~U9の各々においても、ポリゴンミラーPMの1反射面RP置きのビーム走査を行わせるように制御する。このような制御は、走査ユニットU7~U9の各々から発生する原点信号SZ7~SZ9を、図31の回路、または図38中の副原点生成回路CAan等に入力して副原点信号ZP7~ZP9を生成すること、その副原点信号ZP7~ZP9に応答して、対応する選択用光学素子AOM7~AOM9の各々を一定時間Tonだけ順次オン状態にするとともに、描画ラインSL7~SL9の各々で描画すべきパターンに対応した描画用のシリアルデータDL7~DL9の各々を第2の光源装置14B´内の電気光学素子206の駆動回路206aに順次送出することで実現できる。
〔変形例5〕
 図44は、変形例5による選択用光学素子AOMnのドライバ回路DRVnの構成を示す。先の各実施の形態や変形例で説明したように、複数の走査ユニットUnの各々が、ポリゴンミラーPMの1反射面RP以上置きにビーム走査するような場合、光源装置14´(14A´、14B´)から射出されるビームLB(LBa、LBb)や、描画用光学素子AOMa、AOMbから射出されるビームLBs、LBpは、その光路に沿って配置された複数の選択用光学素子AOMnを透過する。図44では、ビームLBが、選択用光学素子AOM1、AOM2を透過した後、選択用光学素子AOM3でスイッチングされて、走査ユニットU3に向かうビームLB3が発生している。一般に、選択用光学素子AOMn内の光学材料は、紫外波長域のビームLB(例えば波長355nm)に対して比較的高い透過率を有しているが、数パーセント程度の減衰率を持っている。
 個々の選択用光学素子AOMnの透過率を95%とした場合、図44のように選択用光学素子AOM3がオン状態となるとき、選択用光学素子AOM3に入射するビームLBの強度は、2つの選択用光学素子AOM1、AOM2による減衰を受けるので、選択用光学素子AOM1に入射する元のビーム強度(100%)に対して、約90%(0.952)になる。さらに、6個の選択用光学素子AOM1~AOM6が連なっている場合、最後の選択用光学素子AOM6に入射するビームLBの強度は、5つの選択用光学素子AOM1~AOM5による減衰を受けるので、元のビーム強度(100%)に対して、約77%(0.955)になる。
 このことから、6個の選択用光学素子AOM1~AOM6の各々に入射するビームLBの強度は、順番に、100%、95%、90%、85%、81%、77%となる。このことは、選択用光学素子AOM1~AOM6の各々で偏向されて射出するビームLB1~LB6の強度も、その比率で変わってくることを意味する。そこで、本変形例5では、図38で示した複数の選択用光学素子AOMnの各々のドライバ回路DRVnにおいて、選択用光学素子AOM1~AOM6の駆動条件を調整して、ビームLB1~LB6の強度の変動を少なくするように制御する。
 図44において、ドライバ回路DRV1~DRV6(DRV5、DRV6は図示を省略)はいずれも同じ構成であるので、詳細な説明はドライバ回路DRV1のみについて行う。先の図38に示したように、ドライバ回路DRV1~DRV6の各々には、選択用光学素子AOM1~AOM6(図44では、AOM5、AOM6の図示を省略)の各々のオン状態のオン時間Tonを設定する情報と副原点信号ZP1~ZP6とが入力される。また、図44の構成では、選択用光学素子AOM1~AOM6の各々に超音波を印加するための高周波発信源400が共通に設けられる。ドライバ回路DRV1は、高周波発信源400からの高周波信号を受けて、それを高電圧の振幅に増幅するアンプ402に伝達するか否かを高速に切り換えるスイッチング素子401と、オン時間Tonを設定する情報と副原点信号ZP1とに基づいてスイッチング素子401の開閉を制御するロジック回路403と、アンプ402の増幅率(ゲイン)を調整して選択用光学素子AOM1に印加する高圧の高周波信号の振幅を調整するゲイン調整器404とを備える。
 選択用光学素子AOM1に印加する高圧の高周波信号の振幅を許容範囲内で変えると、選択用光学素子AOM1の回折効率が微調でき、偏向されて射出するビームLB1(1次回折光)の強度を変えることが可能である。そこで、本変形例5では、光源装置14´に近い側の選択用光学素子AOM1のドライバ回路DRV1から、光源装置14´から離れた側の選択用光学素子AOM6のドライバ回路DRV6の順に、各選択用光学素子AOMnに印加される高圧の高周波信号の振幅が高くなるように、ゲイン調整器404を調整する。例えば、ビームLBの光路の終端の選択用光学素子AOM6に印加される高圧の高周波信号の振幅を最も回折効率が高くなるような値Va6に設定し、ビームLBの光路の最初の選択用光学素子AOM1に印加される高圧の高周波信号の振幅を、許容範囲内で回折効率が低下した状態となるような値Va1に設定する。その間の選択用光学素子AOM2~AOM5に印加される高圧の高周波信号の振幅Va2~Va5は、Va1<Va2<Va3<Va4<Va5<Va6になるように設定される。
 以上の設定により、6個の選択用光学素子AOM1~AOM6の各々から射出されるビームLB1~LB6の強度バラツキを緩和、若しくは抑えることが可能である。これによって、各描画ラインSL1~SL6の各々によって描画されるパターンの露光量のバラツキを抑えることができ、高精度なパターン描画が可能となる。なお、各ドライバ回路DRV1~DRV6によって設定される高圧の高周波信号の振幅Va1~Va6は、その順番で漸次大きくする必要はなく、例えば、Va1=Va2<Va3=Va4<Va5=Va6の関係であってもよい。また、各走査ユニットU1~U6毎に、スポット光SPとなる描画用のビームLB1~LB6の強度を調整する方式は、変形例5のような方法以外に、各走査ユニットU1~U6内の光路中に、所定の透過率を有する減光フィルタ(NDフィルタ)を設ける方法であってもよい。
 なお、図44のドライバ回路DRVnでは、高周波発信源400からの高周波信号をスイッチング素子401によってアンプ402に伝達するか否かを切り換えるものとした。しかしながら、選択用光学素子AOMnのオン/オフの切り換え時の応答性(立上り特性)を高めるために、回折効率が実質的にゼロとみなせる状態、例えば、1次回折光の強度がオン時の強度に対して1/1000以下になるような低レベルの高周波信号を、選択用光学素子AOMnに常に印加し続け、オン状態のときだけ適正な高レベルの高周波信号を選択用光学素子AOMnに印加するようにしてもよい。図45は、そのようなドライバ回路DRVnの構成を示し、ここでは代表してドライバ回路DRV1の構成を示し、図44中の部材と同じものには同じ符号を付してある。
 図45の構成では、直列接続された2つの抵抗RE1、RE2を追加する。抵抗RE1、RE2の直列回路は、スイッチング素子401の手前で高周波発信源400に並列に挿入され、抵抗比RE2/(RE1+RE2)で分圧された高周波発信源400からの高周波信号が、常時アンプ402に印加されている。抵抗RE2を可変抵抗器にし、スイッチング素子401がオフ(非導通)状態のときに、選択用光学素子AOM1から射出する1次回折光、すなわち、ビームLB1の強度が充分に小さな値(例えば本来の強度の1/1000以下)となるように、選択用光学素子AOM1に印加される高周波信号のレベルを調整する。このように、抵抗RE1、RE2によって、選択用光学素子AOM1に高周波信号のバイアス(嵩上げ)を印加することで、応答性を高められる。なお、この場合、スイッチング素子401がオフ(非導通)状態の間も、極めて弱い強度ではあるが、ビームLB1が対応する走査ユニットU1に入射するので、何らかのトラブルによって、描画動作中に基板FSの搬送速度が低減したり、停止したりするような場合は、光源装置14´(14A´、14B´)の出口に設けたシャッターを閉じたり、減光フィルターを挿入したりする。
〔変形例6〕
 以上の各実施の形態、各変形例では、シート状の基板FSを回転ドラムDRの外周面に密接させた状態で、円筒面状に湾曲した基板FSの表面に、複数の走査ユニットUnの各々による描画ラインSLnに沿ってパターン描画を行うようにした。しかしながら、例えば、国際公開第2013/150677号パンフレットに開示されているように、基板FSを平面状に支持しつつ長尺方向に送りながら露光処理するような構成であってもよい。この場合、基板FSの表面がXY平面と平行に設定されるものとすると、例えば、図23、図24に示した奇数番の走査ユニットU1、U3、U5の各照射中心軸Le1、Le3、Le5と、偶数番の走査ユニットU2、U4、U6の各照射中心軸Le2、Le4、Le6とが、XZ平面と平行な面内でみると互いにZ軸と平行で、且つ、X方向に一定の間隔で位置するように複数の走査ユニットU1~U6を配置すればよい。

Claims (50)

  1.  レーザ光の走査スポットによって被照射体上に所定のパターンを描画するパターン描画装置であって、
     前記レーザ光を射出する光源装置と、
     前記レーザ光を入射して前記走査スポットを生成するために、前記レーザ光を走査する光走査部材と光学レンズ系とを含み、前記走査スポットが前記被照射体上の異なる領域を走査するように設置された複数の描画ユニットと、
     前記光源装置からの前記レーザ光を前記複数の描画ユニットのうちの選択された前記描画ユニットに入射させるか否かを切り換えるために、前記光源装置からの前記レーザ光の進行方向に沿って直列に配置される複数の選択用光学素子と、
     を備える、パターン描画装置。
  2.  請求項1に記載のパターン描画装置において、
     前記描画ユニットの前記光走査部材は、前記複数の選択用光学素子によって前記描画ユニットに前記レーザ光が入射する期間に同期させて、前記走査スポットが前記被照射体を走査するように該レーザ光を走査する、パターン描画装置。
  3.  請求項1または2に記載のパターン描画装置において、
     前記複数の描画ユニットの各々は、前記走査スポットによって前記被照射体上に描画されるパターンを規定する描画データに基づいて、前記走査スポットの強度を変調させる描画用光学素子を備える、パターン描画装置。
  4.  請求項3に記載のパターン描画装置において、
     前記選択用光学素子および前記描画用光学素子は、前記レーザ光に対して透過性を有する音響光学変調素子である、パターン描画装置。
  5.  請求項1または2に記載のパターン描画装置において、
     前記複数の選択用光学素子のうちの最も前記光源装置側に位置する初段の前記選択用光学素子よりも前記光源装置側に設けられ、前記走査スポットによって前記被照射体上に描画されるべきパターンを規定する前記複数の描画ユニットの各々の描画データに基づいて、前記初段の選択用光学素子に入射する前記レーザ光の強度を変調させる描画用光変調器を備える、パターン描画装置。
  6.  請求項5に記載のパターン描画装置において、
     前記選択用光学素子および前記描画用光変調器は、前記レーザ光に対して透過性を有する音響光学変調素子である、パターン描画装置。
  7.  レーザ光の走査スポットによって被照射体上に所定のパターンを描画するパターン描画装置であって、
     前記レーザ光を射出する光源装置と、
     前記レーザ光を入射して前記走査スポットを生成するために、前記レーザ光を走査する光走査部材と光学レンズ系とを含み、前記走査スポットが前記被照射体上の異なる領域を走査するように設置された複数の描画ユニットと、
     前記光源装置からの前記レーザ光を前記複数の描画ユニットに選択的に入射させるために、前記光源装置からの前記レーザ光の進行方向に沿って直列に配置される複数の選択用光学素子と、
     前記走査スポットによって前記被照射体上に描画されるべきパターンを規定する前記複数の描画ユニットの各々の描画データに基づいて、前記複数の選択用光学素子に入射する前記レーザ光の強度を変調する描画用光変調器と、
     を備える、パターン描画装置。
  8.  請求項7に記載のパターン描画装置は、
     前記複数の描画ユニットの各々に順番に所定の走査時間だけ前記レーザ光が入射されるように、前記複数の選択用光学素子の各々を制御するとともに、前記複数の描画ユニットの各々の前記描画データのうち、前記所定の走査時間だけ前記レーザ光が入射される前記描画ユニットの前記描画データに基づいて、前記描画用光変調器を制御する制御部を備える、パターン描画装置。
  9.  請求項7または8に記載のパターン描画装置において、
     前記描画用光変調器は、前記レーザ光に対して透過性を有する音響光学変調素子である、パターン描画装置。
  10.  請求項5または7に記載のパターン描画装置において、
     前記描画用光変調器は、前記光源装置内に設けられて、前記光源装置内で生成される前記レーザ光の偏光状態を前記描画データに基づいて電気的に切り換える電気光学素子である、パターン描画装置。
  11.  請求項1~10のいずれか1項に記載のパターン描画装置において、
     前記光走査部材は、回転することで前記レーザ光を走査するポリゴンミラーである、パターン描画装置。
  12.  請求項1~11のいずれか1項に記載のパターン描画装置において、
     前記光源装置は、ファイバー光増幅器と波長変換光学素子とを含むファイバーレーザ装置である、パターン描画装置。
  13.  請求項12に記載のパターン描画装置において、
     前記ファイバーレーザ装置は、
     所定周波数で俊鋭なパルス状の種光を発生する第1固体レーザ素子と、
     前記所定周波数で緩慢なパルス状の種光を発生する第2固体レーザ素子と、
     前記走査スポットによって前記被照射体上に描画すべきパターンに応じた描画データに基づいて、前記第1固体レーザ素子からの種光と前記第2固体レーザ素子からの種光のいずれか一方をファイバー光増幅器に選択的に入射させるように、前記第1固体レーザ素子と前記第2固体レーザ素子を電気的に制御する回路と、
     を含む、パターン描画装置。
  14.  請求項1~13のいずれか1項に記載のパターン描画装置において、
     前記レーザ光は、370nm以下の波長帯域にピーク波長を有する紫外線光である、パターン描画装置。
  15.  請求項14に記載のパターン描画装置において、
     前記光源装置は、前記走査スポットの前記被照射体上での寸法をDs、前記光走査部材による前記走査スポットの前記被照射体上での走査速度をVsとしたとき、発振周波数FsがVs/Ds以上となるパルスレーザ光を発生するパルスレーザ装置である、パターン描画装置。
  16.  発振周期を調整可能なパルス状のビームを発生するパルス光源装置と、
     前記パルス光源装置からのビームを被照射体上にスポット光として投射するとともに、該スポット光の前記被照射体への投射期間と非投射期間とが所定の周期で繰り返されるように前記ビームを偏向させて、前記投射期間の間に前記被照射体上の第1描画ラインに沿って前記スポット光を走査する第1描画ユニットと、
     前記パルス光源装置からのビームを前記被照射体上にスポット光として投射するとともに、前記投射期間と前記非投射期間とが所定の周期で繰り返されるように前記ビームを偏向させて、前記投射期間の間に前記第1描画ラインと異なる前記被照射体上の第2描画ラインに沿って前記スポット光を走査する第2描画ユニットと、
     前記第1描画ユニットにおける前記投射期間が前記第2描画ユニットにおける前記非投射期間に対応し、前記第2描画ユニットにおける前記投射期間が前記第1描画ユニットにおける前記非投射期間に対応するように、前記第1描画ユニットと前記第2描画ユニットとを同期制御する第1の制御系と、
     前記第1描画ユニットにおける前記投射期間の間は、前記第1描画ラインによって描画されるべきパターンの第1描画情報に基づいて前記ビームの発振が制御され、前記第2描画ユニットにおける前記投射期間の間は、前記第2描画ラインによって描画されるべきパターンの第2描画情報に基づいて前記ビームの発振が制御されるように、前記パルス光源装置を制御する第2の制御系と、
     を備える、パターン描画装置。
  17.  請求項16に記載のパターン描画装置において、
     前記第1描画ユニットは前記ビームを偏向する第1偏向部材を備え、前記第2描画ユニットは前記ビームを偏向する第2偏向部材を備え、
     前記第1偏向部材と前記第2偏向部材の各々は、前記投射期間の時間に対して前記非投射期間の時間が2倍以上になるように設定される、パターン描画装置。
  18.  請求項17に記載のパターン描画装置において、
     前記スポット光の寸法をDs、前記スポット光の走査速度をVsとしたとき、前記第2の制御系は、前記パルス光源装置からの前記ビームを、少なくとも前記投射期間の間はVs/Ds以上の基本周波数Fsでパルス発振させるクロック信号を生成するクロック発生器を備える、パターン描画装置。
  19.  請求項18に記載のパターン描画装置において、
     前記第1描画情報は、前記第1描画ラインの長さに渡って描画されるべきパターンを前記スポット光の走査方向に伸縮させるための第1倍率補正情報を含み、前記第2描画情報は、前記第2描画ラインの長さに渡って描画されるべきパターンを前記スポット光の走査方向に伸縮させるための第2倍率補正情報を含み、
     前記クロック発生器は、前記第1描画ユニットにおける前記投射期間の間は、前記基本周波数Fsでパルス発振される前記パルス状のビームの発振周期が前記第1倍率補正情報に基づいて部分的に伸縮され、前記第2描画ユニットにおける前記投射期間の間は、前記基本周波数Fsでパルス発振される前記パルス状のビームの発振周期が前記第2倍率補正情報に基づいて部分的に伸縮されるように、前記クロック信号の周期を部分的に伸縮する、パターン描画装置。
  20.  被照射体上に集光される紫外レーザ光のスポット光を描画データに応じて強度変調しつつ、前記スポット光と前記被照射体とを相対走査することにより、前記被照射体上にパターンを描画するパターン描画装置であって、
     前記紫外レーザ光の元となる種光を発生する光源部と、前記種光を入射して増幅する光増幅器と、増幅された前記種光から前記紫外レーザ光を生成する波長変換光学素子とを含むレーザ光源装置と、
     前記スポット光を強度変調するために、前記光源部から発生する前記種光の強度を前記描画データに応じて変調する描画用変調装置と、
     を備える、パターン描画装置。
  21.  請求項20に記載のパターン描画装置であって、
     前記レーザ光源装置の前記光源部は、ピーク強度が大きい尖鋭なパルス状の第1種光を生成するための第1レーザ素子と、ピーク強度が小さい緩慢なパルス状の第2種光を生成するための第2レーザ素子とを含み、
     前記描画用変調装置は、前記描画データに基づいて前記第1種光と前記第2種光のいずれか一方を前記光増幅器に選択的に入射する電気光学素子を含む、パターン描画装置。
  22.  請求項21に記載のパターン描画装置であって、
     前記レーザ光源装置は、前記第1種光と前記第2種光とをパルス状に発生させるために、前記第1レーザ素子と前記第2レーザ素子とを所定周波数のクロック信号に応答してパルス発振させる駆動回路を含む、パターン描画装置。
  23.  請求項22に記載のパターン描画装置であって、
     前記スポット光の前記被照射体上での実効的なサイズをDs、前記スポット光と前記被照射体との相対走査の速度をVsとしたとき、前記クロック信号の所定周波数Fsを、Vs/Ds以上に設定する、パターン描画装置。
  24.  被照射体上に集光される紫外レーザ光のスポット光を描画データに応じて強度変調しつつ、前記スポット光と前記被照射体とを相対走査することにより、前記被照射体上にパターンを描画するパターン描画方法であって、
     前記紫外レーザ光の元となる種光を光増幅器によって増幅し、増幅された前記種光を波長変換光学素子によって前記紫外レーザ光に変換する変換工程と、
     前記スポット光を強度変調するために、前記光増幅器に入射する前記種光の強度を前記描画データに応じて変調する変調工程と、
     を含む、パターン描画方法。
  25.  請求項24に記載のパターン描画方法であって、
     前記種光は、ピーク強度が大きいパルス状の第1種光と、ピーク強度が小さいパルス状の第2種光とを含み、
     前記変調工程は、前記描画データに応じて、前記第1種光と前記第2種光のいずれか一方を前記光増幅器に選択的に入射させる、パターン描画方法。
  26.  請求項25に記載のパターン描画方法であって、
     前記第1種光の発振周波数と前記第2種光の発振周波数を同一の周波数Fs、前記スポット光の前記被照射体上での実効的なサイズをDs、前記スポット光と前記被照射体との相対走査の速度をVsとしたとき、前記周波数Fsを、Fs≧Vs/Dsに設定する、パターン描画方法。
  27.  前記被照射体として用意された光感応性の基板を第1方向に移動させつつ、請求項24~26のいずれか1項に記載のパターン描画方法によって、前記基板の光感応層にデバイス用のパターンを描画することと、
     前記光感応層の前記スポット光の照射部分と非照射部分の違いに応じて、所定のパターン材料を選択的に形成することと、
     を含む、デバイス製造方法。
  28.  被照射体上に集光されるスポット光によってパターンを描画する装置に接続され、前記スポット光となるビームを射出するレーザ光源装置であって、
     所定周期のクロックパルスに応答して、発光時間が前記所定周期に対して短くピーク強度が高い俊鋭な第1パルス光を発生する第1半導体光源と、
     前記クロックパルスに応答して、発光時間が前記所定周期よりも短く、且つ前記第1パルス光の発光時間よりも長くピーク強度が低いブロードな第2パルス光を発生する第2半導体光源と、
     前記第1パルス光、または前記第2パルス光を入射するファイバー光増幅器と、
     描画すべきパターン情報の入力に基づいて、前記被照射体上への前記スポット光の投射時には、前記第1パルス光を前記ファイバー光増幅器に入射させ、前記被照射体上への前記スポット光の非投射時には、前記第2パルス光を前記ファイバー光増幅器に入射させるように光学的に切り換える切換え部材と、
     を備える、レーザ光源装置。
  29.  請求項28に記載のレーザ光源装置であって、
     前記第1パルス光のエネルギーと前記第2パルス光のエネルギーとがほぼ同一となるように、前記クロックパルスに応答して前記第1半導体光源と前記第2半導体光源との発光を制御する制御回路を備える、レーザ光源装置。
  30.  請求項29に記載のレーザ光源装置であって、
     前記切換え部材は、前記第1パルス光と前記第2パルス光とを同時に入射し、前記第1パルス光と前記第2パルス光のいずれか一方が前記ファイバー光増幅器に入射するように、前記パターン情報に基づいて偏光状態を制御する電気光学変調器を含む、レーザ光源装置。
  31.  請求項30に記載のレーザ光源装置であって、
     前記第1パルス光または前記第2パルス光を増幅するための励起光を前記ファイバー光増幅器に入射する励起光源と、
     前記ファイバー光増幅器で増幅された前記第1パルス光または前記第2パルス光の波長を、紫外波長に変換する波長変換光学素子と、
     を備える、レーザ光源装置。
  32.  光源装置からのビームを繰り返し偏向する回転多面鏡と、偏向された前記ビームを入射して被照射体上で1次元走査されるスポット光に集光する投射光学系とを備えた走査ユニットを、所定の位置関係で複数配置したビーム走査装置であって、
     複数の前記走査ユニットのうち前記スポット光の1次元走査を行う1つの前記走査ユニットに、前記光源装置からの前記ビームが入射するように、前記ビームの光路を切り換えるビーム切換部材と、
     前記走査ユニットの前記回転多面鏡による前記ビームの偏向が、前記回転多面鏡の少なくとも1つ置きの反射面毎に繰り返されるように前記ビーム切換部材を制御して、複数の前記走査ユニットの各々に前記スポット光の1次元走査を順番に行わせるビーム切換制御部と、
     を備える、ビーム走査装置。
  33.  請求項32に記載のビーム走査装置であって、
     前記ビーム切換部材は、前記光源装置からの前記ビームの進行方向に沿って直列に配置され、前記ビームの光路を切り換えて、前記ビームが入射する前記走査ユニットを1つ選択する複数の選択用光学素子を有する、ビーム走査装置。
  34.  請求項33に記載のビーム走査装置であって、
     複数の前記選択用光学素子の各々は、複数の前記走査ユニットの各々に対応して設けられ、対応する前記走査ユニットに前記ビームを入射させるか否かを切り換える、ビーム走査装置。
  35.  請求項32~34のいずれか1項に記載のビーム走査装置であって、
     回転速度が互いに同一で、且つ、一定の角度分ずつ回転角度位置の位相がずれるように、複数の前記走査ユニットの前記回転多面鏡の回転を制御して、1つの前記走査ユニットによる前記スポット光の1次元走査から次の1次元走査が行われるまでの間に、他の複数の前記走査ユニットによる前記スポット光の1次元走査を順番に行わせる回転制御部を備える、ビーム走査装置。
  36.  光源装置からのビームを繰り返し偏向するために一定の回転速度で回転する回転多面鏡と、偏向された前記ビームを入射して被照射体上で1次元走査されるスポット光に集光する投射光学系とを備えた走査ユニットを、所定の位置関係で複数配置した走査モジュールを複数有するビーム走査装置であって、
     複数の前記走査ユニットのうち前記スポット光の1次元走査を行う前記走査ユニットに、前記光源装置からの前記ビームが入射するように、前記ビームの光路を切り換えるビーム切換部材と、
     各前記走査ユニットの前記回転多面鏡による前記ビームの偏向が、前記回転多面鏡の連続した反射面毎に繰り返される第1の状態と、前記回転多面鏡の少なくとも1つ置きの反射面毎に繰り返される第2の状態とのいずれか一方に切り換わるように、前記ビーム切換部材を制御して、複数の前記走査ユニットの各々に前記スポット光の1次元走査を順番に行わせるビーム切換制御部と、
     を備える、ビーム走査装置。
  37.  請求項36に記載のビーム走査装置であって、
     前記ビーム切換制御部は、前記第1の状態の場合は、各前記走査モジュールの1つの前記走査ユニットが並行して前記スポット光の1次元走査を行うように前記ビーム切換部材を制御して、前記走査モジュール毎に、前記走査モジュールの複数の前記走査ユニットの各々に前記スポット光の1次元走査を順番に行わせ、前記第2の状態の場合は、全ての前記走査モジュールの複数の前記走査ユニットのうち、1つの走査ユニットが前記スポット光の1次元走査を行うように前記ビーム切換部材を制御して、全ての前記走査モジュールの複数の前記走査ユニットの各々に前記スポット光の1次元走査を順番に行わせる、ビーム走査装置。
  38.  請求項37に記載のビーム走査装置であって、
     前記ビーム切換制御部は、前記第1の状態の場合は、各前記走査モジュールに、前記光源装置からの前記ビームが並行して入射するように前記ビーム切換部材を制御する、ビーム走査装置。
  39.  請求項36~38のいずれか1項に記載のビーム走査装置であって、
     前記ビーム切換部材は、
     前記光源装置からの前記ビームの進行方向に沿って直列に配置され、前記ビームの光路を切り換えて、前記走査モジュールの複数の前記走査ユニットのうち、前記ビームが入射する前記走査ユニットを1つ選択する複数の選択用光学素子を備え、複数の前記走査モジュールに対応して設けられた複数の光学素子モジュールと、
     前記光源装置からの前記ビームを複数の前記光学素子モジュールの各々に並行して入射させるために、前記ビームの進行方向に関して、複数の前記光学素子モジュールを並列に配置した第1の配置状態と、前記光源装置からの1つ前記ビームを複数の前記光学素子モジュールに入射させるために、前記ビームの進行方向に関して、複数の前記光学素子モジュールを直列に配置した第2の配置状態とに切り換える配置切換部材と、
     を有し、
     前記ビーム切換制御部は、前記第1の状態の場合は、前記配置切換部材を制御して複数の前記光学素子モジュールを前記第1の配置状態にし、前記第2の状態の場合は、前記配置切換部材を制御して複数の前記光学素子モジュールを前記第2の配置状態にする、ビーム走査装置。
  40.  請求項39に記載のビーム走査装置であって、
     前記光学素子モジュールの複数の前記選択用光学素子の各々は、前記光学素子モジュールが対応する前記走査モジュールの複数の前記走査ユニットの各々に対応して設けられ、対応する前記走査ユニットに前記ビームを入射させるか否かを切り換える、ビーム走査装置。
  41.  請求項36~40のいずれか1項に記載のビーム走査装置であって、
     前記第1の状態の場合は、前記走査モジュール毎に、複数の前記走査ユニットの前記回転多面鏡の回転角度位置が一定の角度分ずつ位相がずれるように、前記回転多面鏡の回転を制御して、走査モジュール毎に、1つの前記走査ユニットによる前記スポット光の1次元走査から次の1次元走査が行われるまでの間に、他の複数の前記走査ユニットによる前記スポット光の1次元走査を順番に行わせ、前記第2の状態の場合は、全ての前記走査モジュールの複数の前記走査ユニットの前記回転多面鏡の回転角度位置が一定の角度分ずつ位相がずれるように、前記回転多面鏡の回転を制御して、全ての前記走査モジュールの複数の前記走査ユニットのうち、いずれか1つの前記走査ユニットによる前記スポット光の1次元走査から次の1次元走査が行われるまでの間に、それ以外の複数の前記走査ユニットによる前記スポット光の1次元走査を順番に行わせる回転制御部を備える、ビーム走査装置。
  42.  回転多面鏡によって繰り返し偏向されるビームを入射して被照射体上で1次元走査されるスポット光に集光する投射光学系を備えた走査ユニットを、所定の位置関係で複数配置して、前記被照射体をビーム走査するビーム走査方法であって、
     前記複数の走査ユニットの各々の前記回転多面鏡の回転角度位置が互いに所定の位相関係となるように複数の前記回転多面鏡を同期回転させることと、
     複数の前記走査ユニットの各々による前記スポット光の1次元走査を順番に行うために、前記回転多面鏡による前記ビームの偏向が、前記回転多面鏡の少なくとも1つ置きの反射面毎に繰り返されるように、前記ビームが入射する前記走査ユニットを切り換えることと、
     を含む、ビーム走査方法。
  43.  請求項42に記載のビーム走査方法であって、
     回転速度が互いに同一で、且つ、前記回転角度位置が一定の角度分ずつ位相がずれるように、複数の前記走査ユニットの前記回転多面鏡の回転を制御することで、1つの前記走査ユニットによる前記スポット光の1次元走査から次の1次元走査が行われるまでの間に、他の複数の前記走査ユニットが前記スポット光の1次元走査を順番に行う、ビーム走査方法。
  44.  一定の回転速度で回転する回転多面鏡によって繰り返し偏向されるビームを入射して被照射体上で1次元走査されるスポット光に集光する投射光学系を備えた走査ユニットを、所定の位置関係で複数配置したビーム走査装置によって、前記被照射体をビーム走査するビーム走査方法であって、
     前記複数の走査ユニットの各々の前記回転多面鏡の回転角度位置が互いに所定の位相関係となるように複数の前記回転多面鏡を同期回転させることと、
     前記回転多面鏡による前記ビームの偏向が、前記回転多面鏡の連続した反射面毎に繰り返されるように、前記ビームが入射する前記走査ユニットを切り換えることで、複数の前記走査ユニットの各々が前記スポット光の1次元走査を順番に行う第1の走査工程と、
     前記回転多面鏡による前記ビームの偏向が、前記回転多面鏡の少なくとも1つ置きの反射面毎に繰り返されるように、前記ビームが入射する前記走査ユニットを切り換えることで、複数の前記走査ユニットの各々が前記スポット光の1次元走査を順番に行う第2の走査工程と、
     前記第1の走査工程と前記第2の走査工程とを切り換える切換工程と、
     を含む、ビーム走査方法。
  45.  請求項44に記載のビーム走査方法であって、
     前記ビーム走査装置は、前記走査ユニットの2つ以上を所定の位置関係で配置した第1の走査モジュールと、前記走査ユニットの2つ以上を所定の位置関係で配置した第2の走査モジュールと、前記ビームを射出する光源装置とを含み、
     前記第1の走査工程では、前記第1の走査モジュールと前記第2の走査モジュールの各々に、前記光源装置からの前記ビームを並行して入射する、ビーム走査方法。
  46.  請求項45に記載のビーム走査方法であって、
     前記第1の走査工程では、前記走査モジュール毎に、複数の前記走査ユニットの前記回転多面鏡の回転角度位置が一定の角度分ずつ位相がずれるように、前記回転多面鏡の回転を制御して、前記走査モジュール毎に、1つの前記走査ユニットによる前記スポット光の1次元走査から次の1次元走査が行われるまでの間に、他の複数の前記走査ユニットが前記スポット光の1次元走査を順番に行い、
     前記第2の走査工程では、前記第1の走査モジュールと前記第2の走査モジュールの各々に含まれる前記走査ユニットの前記回転多面鏡の回転角度位置が一定の角度分ずつ位相がずれるように、前記回転多面鏡の回転を制御して、複数の前記走査ユニットのうち、いずれか1つの前記走査ユニットによる前記スポット光の1次元走査から次の1次元走査が行われるまでの間に、それ以外の複数の前記走査ユニットが前記スポット光の1次元走査を順番に行う、ビーム走査方法。
  47.  描画ラインに沿って光源装置からのビームのスポット光を主走査する複数の走査ユニットを、各描画ラインによって描画されるパターンが基板上で前記描画ラインの主走査の方向に継がれるように配置し、前記複数の走査ユニットと前記基板とを前記主走査の方向と交差する副走査の方向に相対移動させる描画装置を用いたパターン描画方法であって、
     前記複数の走査ユニットのうちで、前記基板の前記主走査の方向の幅、または前記基板上のパターン描画される露光領域の前記主走査の方向の幅、或いは位置に対応した特定の走査ユニットを選定することと、
     前記光源装置からの前記ビームを配送するビーム配送ユニットを介して、前記特定の走査ユニットの各々で描画すべきパターンデータに基づいて前記ビームを強度変調して、前記特定の走査ユニットの各々に択一的に順次供給することと、
     を含む、パターン描画方法。
  48.  請求項47に記載のパターン描画方法であって、
     前記複数の走査ユニットの各々は、前記ビームを1次元に偏向走査する回転ポリゴンミラーを備え、少なくとも前記特定の走査ユニットの各々の前記回転ポリゴンミラーは、互いに回転速度と回転角度位相とが同期した状態で回転させられる、パターン描画方法。
  49.  請求項48に記載のパターン描画方法であって、
     前記ビーム配送ユニットは、前記特定の走査ユニットの各々の前記回転ポリゴンミラーが、前記ビームを前記回転ポリゴンミラーの全ての反射面毎に偏向走査する第1の描画モードと、前記回転ポリゴンミラーの少なくとも1つの反射面置きに偏向走査する第2の描画モードとのいずれかに変更するように、前記ビームの前記特定の走査ユニットへの配送を選択的に切り換える選択用光学素子を備える、パターン描画方法。
  50.  請求項49に記載のパターン描画方法であって、
     前記特定の走査ユニットの各々は、前記回転ポリゴンミラーの各反射面が所定の角度位置になるたびにパルス状の原点信号を発生する原点検出器を備え、
     前記第1の描画モードの際は、前記原点信号に応答して前記選択用光学素子を駆動し、前記第2の描画モードの際は、前記原点信号を少なくとも1つ置きに間引いたパルス状の副原点信号に応答して前記選択用光学素子を駆動する、パターン描画方法。
PCT/JP2015/062692 2014-04-28 2015-04-27 パターン描画装置、パターン描画方法、デバイス製造方法、レーザ光源装置、ビーム走査装置、および、ビーム走査方法 WO2015166910A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
KR1020197016105A KR102078979B1 (ko) 2014-04-28 2015-04-27 패턴 노광 장치
KR1020197002361A KR101967598B1 (ko) 2014-04-28 2015-04-27 패턴 노광 장치
KR1020197009529A KR102060289B1 (ko) 2014-04-28 2015-04-27 패턴 묘화 장치
KR1020207004046A KR102164337B1 (ko) 2014-04-28 2015-04-27 패턴 노광 장치
KR1020197008297A KR101988825B1 (ko) 2014-04-28 2015-04-27 패턴 묘화용 광원 장치 및 노광용 광원 장치
CN201580034744.8A CN106489093B (zh) 2014-04-28 2015-04-27 图案描绘装置、图案描绘方法、器件制造方法、激光光源装置、光束扫描装置及方法
KR1020167029590A KR101963488B1 (ko) 2014-04-28 2015-04-27 패턴 묘화 장치, 패턴 묘화 방법, 디바이스 제조 방법, 레이저 광원 장치, 빔 주사 장치 및 빔 주사 방법
KR1020187027312A KR101998541B1 (ko) 2014-04-28 2015-04-27 패턴 묘화 장치, 패턴 묘화 방법 및 디바이스 제조 방법

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014092862A JP6349924B2 (ja) 2014-04-28 2014-04-28 パターン描画装置
JP2014-092862 2014-04-28
JP2015083669A JP6569281B2 (ja) 2015-04-15 2015-04-15 ビーム走査装置およびビーム走査方法
JP2015-083669 2015-04-15

Publications (1)

Publication Number Publication Date
WO2015166910A1 true WO2015166910A1 (ja) 2015-11-05

Family

ID=54358637

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/062692 WO2015166910A1 (ja) 2014-04-28 2015-04-27 パターン描画装置、パターン描画方法、デバイス製造方法、レーザ光源装置、ビーム走査装置、および、ビーム走査方法

Country Status (4)

Country Link
KR (7) KR102164337B1 (ja)
CN (5) CN109212748B (ja)
TW (5) TWI624689B (ja)
WO (1) WO2015166910A1 (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017102280A (ja) * 2015-12-02 2017-06-08 株式会社ニコン デバイス形成装置、パターン形成装置、デバイス形成方法、およびパターン形成方法
JP2017102151A (ja) * 2015-11-30 2017-06-08 株式会社ニコン パターン描画装置およびパターン描画方法
JP2017107036A (ja) * 2015-12-09 2017-06-15 株式会社ニコン パターン描画装置、およびパターン描画方法
WO2018061633A1 (ja) * 2016-09-29 2018-04-05 株式会社ニコン ビーム走査装置およびパターン描画装置
WO2018066285A1 (ja) * 2016-10-04 2018-04-12 株式会社ニコン ビーム走査装置、パターン描画装置、およびパターン描画装置の精度検査方法
WO2018066338A1 (ja) * 2016-10-05 2018-04-12 株式会社ニコン パターン描画装置
WO2018150996A1 (ja) * 2017-02-20 2018-08-23 株式会社ニコン パターン描画装置、及びパターン描画方法
WO2018164087A1 (ja) * 2017-03-10 2018-09-13 株式会社ニコン パターン描画装置、及びパターン露光装置
CN109791280A (zh) * 2016-10-04 2019-05-21 株式会社尼康 光束扫描装置及图案描绘装置
CN109791371A (zh) * 2016-10-04 2019-05-21 株式会社尼康 图案描绘装置及图案描绘方法
CN110031965A (zh) * 2016-05-06 2019-07-19 株式会社尼康 描绘装置
JP2020021079A (ja) * 2019-09-04 2020-02-06 株式会社ニコン パターン描画装置
US11143862B2 (en) 2016-03-30 2021-10-12 Nikon Corporation Pattern drawing device, pattern drawing method, and method for manufacturing device
CN114080293A (zh) * 2020-06-09 2022-02-22 株式会社片冈制作所 激光加工装置、激光加工系统、旋转器单元装置、激光加工方法及探针卡的生产方法
US11409199B2 (en) 2017-10-25 2022-08-09 Nikon Corporation Pattern drawing device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180018568A (ko) * 2015-06-17 2018-02-21 가부시키가이샤 니콘 패턴 묘화 장치 및 패턴 묘화 방법
JP6651768B2 (ja) * 2015-09-28 2020-02-19 株式会社ニコン パターン描画装置
JP7441076B2 (ja) * 2020-03-03 2024-02-29 株式会社Screenホールディングス 描画装置
JP2022105463A (ja) * 2021-01-02 2022-07-14 大船企業日本株式会社 プリント基板のレーザ加工方法およびプリント基板のレーザ加工機

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10142538A (ja) * 1996-11-12 1998-05-29 Asahi Optical Co Ltd マルチヘッド走査光学系を持つレーザ描画装置
JP2000507003A (ja) * 1996-12-18 2000-06-06 イーテック システムズ,インコーポレーテッド 短波長パルスレーザ走査装置
JP2000263271A (ja) * 1999-01-14 2000-09-26 Hitachi Via Mechanics Ltd レーザ加工方法およびレーザ加工機
JP2002277777A (ja) * 2001-03-19 2002-09-25 Ricoh Co Ltd 光学ユニットおよびこれを用いる画像形成装置
JP2003048093A (ja) * 2001-08-03 2003-02-18 Matsushita Electric Ind Co Ltd レーザ加工装置およびその加工方法
JP2014032277A (ja) * 2012-08-02 2014-02-20 Nikon Corp 紫外レーザ装置、この紫外レーザ装置を備えた露光装置及び検査装置
JP2014115626A (ja) * 2012-11-19 2014-06-26 Ricoh Co Ltd 光走査装置及び画像形成装置

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19829986C1 (de) * 1998-07-04 2000-03-30 Lis Laser Imaging Systems Gmbh Verfahren zur Direktbelichtung von Leiterplattensubstraten
IL133889A (en) * 2000-01-05 2007-03-08 Orbotech Ltd Pulse light pattern writer
JP2001021821A (ja) * 1999-07-09 2001-01-26 Matsushita Electric Ind Co Ltd 画像形成装置
JP2001272617A (ja) * 2000-03-28 2001-10-05 Noritsu Koki Co Ltd レーザビーム走査ユニット及び写真処理装置
WO2002054837A2 (en) * 2001-01-04 2002-07-11 Laser Imaging Systems Gmbh & Co. Kg Direct pattern writer
JP2002341121A (ja) * 2001-05-15 2002-11-27 Canon Inc 反射ミラーの製造方法及び反射ミラー及びそれを用いた画像読み取り装置、画像形成装置
JP2004085853A (ja) * 2002-08-27 2004-03-18 Hitachi Printing Solutions Ltd 多ビーム走査装置およびそれを用いた画像出力装置
ATE442606T1 (de) * 2003-02-17 2009-09-15 Seiko Epson Corp Scanner
US7450274B2 (en) * 2003-05-07 2008-11-11 Ricoh Company, Ltd. Optical scanning apparatus, image forming apparatus, and beam positioning method
KR100754064B1 (ko) * 2003-11-03 2007-08-31 삼성전기주식회사 광변조기를 이용한 스캐닝 장치
JP2006053438A (ja) * 2004-08-13 2006-02-23 Fuji Photo Film Co Ltd 走査露光装置
KR100636238B1 (ko) * 2005-06-01 2006-10-19 삼성전자주식회사 스캐너 및 이를 구비한 화상형성장치
SG152187A1 (en) * 2007-10-25 2009-05-29 Asml Netherlands Bv Inspection method and apparatus, lithographic apparatus, lithographic processing cell and device manufacturing method
JP5142372B2 (ja) * 2007-11-26 2013-02-13 株式会社リコー ミラー、光走査装置及び画像形成装置
JP5431312B2 (ja) * 2008-05-21 2014-03-05 パナソニック株式会社 プロジェクタ
JP5448240B2 (ja) * 2008-10-10 2014-03-19 株式会社ニコン 表示素子の製造装置
GB0913911D0 (en) * 2009-08-10 2009-09-16 Optos Plc Improvements in or relating to laser scanning systems
JP5604745B2 (ja) * 2010-11-11 2014-10-15 株式会社ブイ・テクノロジー 露光装置
US8531751B2 (en) * 2011-08-19 2013-09-10 Orbotech Ltd. System and method for direct imaging
JP6143540B2 (ja) * 2012-06-08 2017-06-07 キヤノン株式会社 画像形成装置
CN103552244B (zh) * 2013-11-04 2016-06-08 北京工业大学 基于多激光器扫描系统的3d激光打印装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10142538A (ja) * 1996-11-12 1998-05-29 Asahi Optical Co Ltd マルチヘッド走査光学系を持つレーザ描画装置
JP2000507003A (ja) * 1996-12-18 2000-06-06 イーテック システムズ,インコーポレーテッド 短波長パルスレーザ走査装置
JP2000263271A (ja) * 1999-01-14 2000-09-26 Hitachi Via Mechanics Ltd レーザ加工方法およびレーザ加工機
JP2002277777A (ja) * 2001-03-19 2002-09-25 Ricoh Co Ltd 光学ユニットおよびこれを用いる画像形成装置
JP2003048093A (ja) * 2001-08-03 2003-02-18 Matsushita Electric Ind Co Ltd レーザ加工装置およびその加工方法
JP2014032277A (ja) * 2012-08-02 2014-02-20 Nikon Corp 紫外レーザ装置、この紫外レーザ装置を備えた露光装置及び検査装置
JP2014115626A (ja) * 2012-11-19 2014-06-26 Ricoh Co Ltd 光走査装置及び画像形成装置

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017102151A (ja) * 2015-11-30 2017-06-08 株式会社ニコン パターン描画装置およびパターン描画方法
JP2017102280A (ja) * 2015-12-02 2017-06-08 株式会社ニコン デバイス形成装置、パターン形成装置、デバイス形成方法、およびパターン形成方法
JP2017107036A (ja) * 2015-12-09 2017-06-15 株式会社ニコン パターン描画装置、およびパターン描画方法
US11143862B2 (en) 2016-03-30 2021-10-12 Nikon Corporation Pattern drawing device, pattern drawing method, and method for manufacturing device
CN110031965A (zh) * 2016-05-06 2019-07-19 株式会社尼康 描绘装置
CN110031965B (zh) * 2016-05-06 2021-09-10 株式会社尼康 描绘装置
CN109804314A (zh) * 2016-09-29 2019-05-24 株式会社尼康 光束扫描装置及图案描绘装置
KR102456403B1 (ko) 2016-09-29 2022-10-20 가부시키가이샤 니콘 빔 주사 장치 및 패턴 묘화 장치
KR20190053950A (ko) * 2016-09-29 2019-05-20 가부시키가이샤 니콘 빔 주사 장치 및 패턴 묘화 장치
WO2018061633A1 (ja) * 2016-09-29 2018-04-05 株式会社ニコン ビーム走査装置およびパターン描画装置
CN109804314B (zh) * 2016-09-29 2022-04-01 株式会社尼康 光束扫描装置
JP7056572B2 (ja) 2016-09-29 2022-04-19 株式会社ニコン ビーム走査装置およびパターン描画装置
JPWO2018061633A1 (ja) * 2016-09-29 2019-07-11 株式会社ニコン ビーム走査装置およびパターン描画装置
CN109791371A (zh) * 2016-10-04 2019-05-21 株式会社尼康 图案描绘装置及图案描绘方法
CN113552778B (zh) * 2016-10-04 2023-10-20 株式会社尼康 图案描绘装置及图案描绘方法
KR102414046B1 (ko) 2016-10-04 2022-06-29 가부시키가이샤 니콘 패턴 묘화 장치 및 패턴 묘화 방법
WO2018066285A1 (ja) * 2016-10-04 2018-04-12 株式会社ニコン ビーム走査装置、パターン描画装置、およびパターン描画装置の精度検査方法
JPWO2018066285A1 (ja) * 2016-10-04 2019-07-18 株式会社ニコン ビーム走査装置、パターン描画装置、およびパターン描画装置の精度検査方法
TWI735672B (zh) * 2016-10-04 2021-08-11 日商尼康股份有限公司 光束掃描裝置、圖案描繪裝置、及圖案描繪裝置之精度檢查方法
KR20190055243A (ko) * 2016-10-04 2019-05-22 가부시키가이샤 니콘 패턴 묘화 장치 및 패턴 묘화 방법
KR20190057371A (ko) * 2016-10-04 2019-05-28 가부시키가이샤 니콘 빔 주사 장치, 패턴 묘화 장치 및 패턴 묘화 장치의 정밀도 검사 방법
JP7040453B2 (ja) 2016-10-04 2022-03-23 株式会社ニコン ビーム走査装置、パターン描画装置、およびパターン描画装置の精度検査方法
CN109791280B (zh) * 2016-10-04 2022-01-07 株式会社尼康 光束扫描装置
CN113552778A (zh) * 2016-10-04 2021-10-26 株式会社尼康 图案描绘装置及图案描绘方法
CN109791280A (zh) * 2016-10-04 2019-05-21 株式会社尼康 光束扫描装置及图案描绘装置
KR102450792B1 (ko) * 2016-10-04 2022-10-06 가부시키가이샤 니콘 빔 주사 장치, 패턴 묘화 장치 및 패턴 묘화 장치의 정밀도 검사 방법
CN109791371B (zh) * 2016-10-04 2021-08-06 株式会社尼康 图案描绘装置及图案描绘方法
KR20190056439A (ko) * 2016-10-05 2019-05-24 가부시키가이샤 니콘 패턴 묘화 장치
JPWO2018066338A1 (ja) * 2016-10-05 2019-08-15 株式会社ニコン パターン描画装置
WO2018066338A1 (ja) * 2016-10-05 2018-04-12 株式会社ニコン パターン描画装置
KR102428752B1 (ko) * 2016-10-05 2022-08-04 가부시키가이샤 니콘 패턴 묘화 장치
CN109844645A (zh) * 2016-10-05 2019-06-04 株式会社尼康 图案描绘装置
CN109844645B (zh) * 2016-10-05 2021-07-23 株式会社尼康 图案描绘装置
JP7021637B2 (ja) 2016-10-05 2022-02-17 株式会社ニコン パターン描画装置
CN110325922B (zh) * 2017-02-20 2022-06-17 株式会社尼康 图案描绘装置、及图案描绘方法
JPWO2018150996A1 (ja) * 2017-02-20 2019-12-12 株式会社ニコン パターン描画装置、及びパターン描画方法
KR20190117533A (ko) * 2017-02-20 2019-10-16 가부시키가이샤 니콘 패턴 묘화 장치 및 패턴 묘화 방법
CN110325922A (zh) * 2017-02-20 2019-10-11 株式会社尼康 图案描绘装置、及图案描绘方法
TWI753104B (zh) * 2017-02-20 2022-01-21 日商尼康股份有限公司 圖案描繪裝置、及圖案描繪方法
KR102610675B1 (ko) 2017-02-20 2023-12-07 가부시키가이샤 니콘 패턴 묘화 장치 및 패턴 묘화 방법
JP7036041B2 (ja) 2017-02-20 2022-03-15 株式会社ニコン パターン描画装置、及びパターン描画方法
WO2018150996A1 (ja) * 2017-02-20 2018-08-23 株式会社ニコン パターン描画装置、及びパターン描画方法
JPWO2018164087A1 (ja) * 2017-03-10 2020-01-09 株式会社ニコン パターン描画装置、及びパターン露光装置
WO2018164087A1 (ja) * 2017-03-10 2018-09-13 株式会社ニコン パターン描画装置、及びパターン露光装置
JP7070542B2 (ja) 2017-03-10 2022-05-18 株式会社ニコン パターン描画装置、及びパターン露光装置
US11409199B2 (en) 2017-10-25 2022-08-09 Nikon Corporation Pattern drawing device
JP2020021079A (ja) * 2019-09-04 2020-02-06 株式会社ニコン パターン描画装置
CN114080293A (zh) * 2020-06-09 2022-02-22 株式会社片冈制作所 激光加工装置、激光加工系统、旋转器单元装置、激光加工方法及探针卡的生产方法

Also Published As

Publication number Publication date
CN109212748A (zh) 2019-01-15
CN110095862B (zh) 2021-08-27
TW202040212A (zh) 2020-11-01
CN109343214B (zh) 2021-05-18
CN106489093B (zh) 2019-04-19
KR20190011826A (ko) 2019-02-07
TWI684789B (zh) 2020-02-11
CN106489093A (zh) 2017-03-08
TWI695187B (zh) 2020-06-01
KR20190033661A (ko) 2019-03-29
TW201602636A (zh) 2016-01-16
KR101963488B1 (ko) 2019-03-28
CN110095862A (zh) 2019-08-06
KR20160145611A (ko) 2016-12-20
KR101967598B1 (ko) 2019-04-09
TW201819986A (zh) 2018-06-01
KR101998541B1 (ko) 2019-07-09
TWI712820B (zh) 2020-12-11
CN109061874B (zh) 2021-05-18
TWI624689B (zh) 2018-05-21
KR102060289B1 (ko) 2019-12-27
CN109343214A (zh) 2019-02-15
KR20190039610A (ko) 2019-04-12
KR20180108870A (ko) 2018-10-04
KR20200018727A (ko) 2020-02-19
TW202040211A (zh) 2020-11-01
TWI712819B (zh) 2020-12-11
KR102078979B1 (ko) 2020-02-19
KR101988825B1 (ko) 2019-06-12
TW202014756A (zh) 2020-04-16
KR20190067259A (ko) 2019-06-14
CN109212748B (zh) 2021-05-18
KR102164337B1 (ko) 2020-10-12
CN109061874A (zh) 2018-12-21

Similar Documents

Publication Publication Date Title
WO2015166910A1 (ja) パターン描画装置、パターン描画方法、デバイス製造方法、レーザ光源装置、ビーム走査装置、および、ビーム走査方法
JP6349924B2 (ja) パターン描画装置
JP2017067823A (ja) パターン描画装置およびパターン描画方法
JP6520590B2 (ja) パターン描画装置およびパターン描画方法
JP6569281B2 (ja) ビーム走査装置およびビーム走査方法
JP6870755B2 (ja) パターン描画方法
JP6583451B2 (ja) パターン描画装置
KR102414046B1 (ko) 패턴 묘화 장치 및 패턴 묘화 방법
JP6582782B2 (ja) パターン描画装置
JP6690214B2 (ja) パターン描画装置
JP2019200433A (ja) パターン描画方法
JP6504293B2 (ja) パターン描画装置
JP6835163B2 (ja) パターン露光装置
JP2020021078A (ja) パターン描画装置
JP2018045254A (ja) パターン描画装置
JP2017058494A (ja) パターン描画装置、パターン描画方法、基板処理装置、および、デバイス製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15785739

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167029590

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15785739

Country of ref document: EP

Kind code of ref document: A1