WO2015159341A1 - 運転支援装置および運転支援方法 - Google Patents

運転支援装置および運転支援方法 Download PDF

Info

Publication number
WO2015159341A1
WO2015159341A1 PCT/JP2014/060607 JP2014060607W WO2015159341A1 WO 2015159341 A1 WO2015159341 A1 WO 2015159341A1 JP 2014060607 W JP2014060607 W JP 2014060607W WO 2015159341 A1 WO2015159341 A1 WO 2015159341A1
Authority
WO
WIPO (PCT)
Prior art keywords
driving
vehicle
correction
automatic
mode
Prior art date
Application number
PCT/JP2014/060607
Other languages
English (en)
French (fr)
Inventor
成晃 竹原
公司 飯田
貴久 青柳
哲司 羽下
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2016513510A priority Critical patent/JP6246336B2/ja
Priority to CN201480078026.6A priority patent/CN106232443B/zh
Priority to PCT/JP2014/060607 priority patent/WO2015159341A1/ja
Priority to US15/113,871 priority patent/US9919717B2/en
Priority to DE112014006584.6T priority patent/DE112014006584B4/de
Publication of WO2015159341A1 publication Critical patent/WO2015159341A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/085Changing the parameters of the control units, e.g. changing limit values, working points by control input
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/10Path keeping
    • B60W30/12Lane keeping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • B60W30/16Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/182Selecting between different operative modes, e.g. comfort and performance modes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/04Monitoring the functioning of the control system
    • B60W50/045Monitoring control system parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/082Selecting or switching between different modes of propelling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/10Interpretation of driver requests or demands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/005Handover processes
    • B60W60/0051Handover processes from occupants to vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/005Handover processes
    • B60W60/0053Handover processes from vehicle to occupant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0062Adapting control system settings
    • B60W2050/007Switching between manual and automatic parameter input, and vice versa
    • B60W2050/0073Driver overrides controller
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0062Adapting control system settings
    • B60W2050/007Switching between manual and automatic parameter input, and vice versa
    • B60W2050/0074Driver shifts control to the controller, e.g. by pressing a button
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0062Adapting control system settings
    • B60W2050/0075Automatic parameter input, automatic initialising or calibrating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0062Adapting control system settings
    • B60W2050/0075Automatic parameter input, automatic initialising or calibrating means
    • B60W2050/0083Setting, resetting, calibration
    • B60W2050/0088Adaptive recalibration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/04Monitoring the functioning of the control system
    • B60W50/045Monitoring control system parameters
    • B60W2050/046Monitoring control system parameters involving external transmission of data to or from the vehicle, e.g. via telemetry, satellite, Global Positioning System [GPS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/06Direction of travel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/12Brake pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/18Steering angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/10Historical data
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle
    • B60W2556/50External transmission of data to or from the vehicle of positioning data, e.g. GPS [Global Positioning System] data

Definitions

  • the present invention relates to a vehicle driving support device and a driving support method capable of switching between automatic driving and manual driving.
  • Patent Document 1 discloses a travel control device that calculates the target speed and target acceleration based on the state of the preceding vehicle and map information and controls the travel of the host vehicle.
  • the driving support system described in Patent Literature 2 records feature points corresponding to each of a plurality of types when the host vehicle enters a target area such as a corner, and features points based on the recorded feature points. A variation map indicating the degree of variation for each type is generated. Then, driving assistance is performed so as to reproduce feature points having an average value of the degree of variation in the variation map.
  • Patent Document 2 also stores feature points corresponding to each of a plurality of types when the host vehicle enters the target area in order to perform driving control that does not give the driver a sense of incongruity. Operation control is performed to reproduce.
  • the memory usage is large and the system processing load is high.
  • the present invention has been made to solve the above-described problems, and is a driving support device and a driving support method capable of correcting automatic driving in accordance with the driver while reducing the memory usage and processing load.
  • the purpose is to obtain.
  • a driving support device is a driving support device that supports driving of a vehicle by switching between an automatic driving mode and a manual driving mode by a driver, and the driving of the vehicle is switched from the automatic driving mode to the manual driving mode.
  • an information acquisition unit that acquires the position information of the vehicle and the feature amount of the driving operation by the driver, and the correction target driving in the automatic driving mode from the feature amount of the driving operation by the driver acquired by the information acquisition unit
  • a determination unit that determines an operation and its correction amount, a storage unit that stores the driving operation of the correction target determined by the determination unit and the correction amount in association with the corresponding position information, and a correction target read from the storage unit
  • Correction unit that corrects the driving operation in the automatic operation mode using the driving operation and the correction amount thereof, and correction by the correction unit in the automatic operation mode
  • a vehicle control unit for controlling the vehicle on the driving operation.
  • FIG. 4 is a flowchart of automatic operation mode setting processing in the first embodiment.
  • 3 is a flowchart of processing for storing a correction target and an amount of correction in an automatic operation mode in the first embodiment. It is a figure which shows the outline
  • 3 is a flowchart of a correction process for a driving operation in an automatic driving mode in the first embodiment.
  • FIG. 12 is a flowchart of processing for acquiring a feature amount in a manual operation mode in the second embodiment.
  • 10 is a flowchart of a process for storing a correction target in the automatic operation mode and a correction amount thereof in the second embodiment.
  • 6 is a flowchart of a correction process for a driving operation in an automatic driving mode according to the second embodiment.
  • FIG. 1 is a block diagram showing the configuration of the driving support system according to the present invention.
  • FIG. 2 is a block diagram illustrating a configuration of the ECU that functions as the driving support apparatus according to the first embodiment.
  • a driving support system 1 is a system that is mounted on a vehicle and supports driving of the vehicle by switching between an automatic driving mode and a manual driving mode by a driver.
  • the configuration includes a surrounding monitoring sensor 2, a vehicle speed sensor 3, a gyro sensor 4, a GPS (Global Positioning System) receiver 5, a direction indicator 6, a speed setting switch 7, an automatic driving switch 8, a car navigation system 9, and a map information database.
  • DB Maps Database
  • accelerator actuator 11, accelerator position sensor 12, brake actuator 13, brake position sensor 14, steering actuator 15, steering sensor 16, communication device 17, display device 18, alarm device 19 and ECU (Electronic Control Unit) 20 Is provided.
  • FIG. 1 shows only the components that are directly related to this embodiment, and the other components are not shown.
  • the surrounding monitoring sensor 2 is a sensor that detects the surrounding situation of the vehicle. For example, it is realized by a camera or a millimeter wave sensor, and the presence or absence of obstacles existing in the vicinity including the front, left and right sides and the rear of the own vehicle, the distance from the obstacle to the own vehicle, the relative of the obstacle to the own vehicle Get speed and more.
  • the vehicle speed sensor 3 is a sensor that measures the speed of the host vehicle. For example, the rotational speed of the wheel is detected, and the vehicle speed of the host vehicle is measured from the rotational speed.
  • the gyro sensor 4 is a sensor that detects a change in the direction of the host vehicle. For example, the angular velocity of the host vehicle is detected, and a change in direction is detected from the angular velocity.
  • the GPS receiver 5 measures the current position of the host vehicle based on the GPS signal received from the GPS satellite.
  • the direction indicator 6 instructs a change in the traveling direction of the host vehicle.
  • the vehicle is instructed to the direction of the course of the host vehicle when turning left or right or changing lanes from the blinking state of an indicator lamp installed outside the vehicle.
  • the lighting state of the indicator lamp is transmitted to the ECU 20.
  • the speed setting switch 7 is a switch used for setting the speed of the vehicle. For example, it is used for a vehicle having a function of running the vehicle while maintaining the speed set by the speed setting switch 7 while detecting the preceding vehicle, such as an automatic driving mode or an ACC (Adaptive Cruise Control) mode. Note that the speed set by the speed setting switch 7 is transmitted to the ECU 20.
  • the automatic driving switch 8 accepts a setting for setting the own vehicle to the automatic driving mode or the manual driving mode. Whether the driving of the host vehicle is the automatic driving mode or the manual driving mode is transmitted to the ECU 20.
  • the car navigation system 9 has a function of guiding the route of the host vehicle to a predetermined destination.
  • the car navigation system 9 cooperates with the GPS receiver 5, the communication device 17, the display device 18, the alarm device 19, the map DB 10, and the ECU 20, so that map information around the current location of the host vehicle is given to the driver, Provides the current position of the host vehicle, the location of the destination, the route to the destination, etc.
  • the map DB 10 is a database in which map data is registered, and includes a map data file, an intersection data file, a road data file, and the like.
  • the accelerator actuator 11 performs acceleration / deceleration of the vehicle according to the position of the accelerator pedal or a signal from the ECU 20.
  • the accelerator position sensor 12 is a sensor that detects an operation amount of the accelerator pedal, and transmits a signal indicating the detected operation amount to the ECU 20.
  • the brake actuator 13 decelerates the vehicle according to a brake position or a signal from the ECU 20.
  • the brake position sensor 14 is a sensor that detects an operation amount of the brake pedal (a depression amount of the brake pedal).
  • the steering actuator 15 operates the traveling direction of the vehicle in accordance with the steering amount and steering direction of the steering wheel.
  • the steering sensor 16 is a sensor that detects the steering amount and steering direction of the steering wheel, and transmits a signal indicating the detected steering amount and steering direction to the ECU 20.
  • the communication device 17 is a communication device that acquires information from a traffic infrastructure or the like installed on a road such as an optical vehicle detector (so-called optical beacon).
  • the information to be acquired includes information related to surrounding conditions with poor visibility, traffic control information (for example, information related to traffic lights and signs), and information related to road conditions (for example, information such as traffic accidents and traffic jams).
  • the communication device 17 also includes a communication device that performs inter-vehicle communication with another vehicle or communication via a mobile phone.
  • the display device 18 is a display device that displays various types of information. For example, navigation information is displayed in conjunction with the car navigation system 9. Moreover, the information regarding the control timing and control operation content of the own vehicle is displayed.
  • the alarm device 19 is a device that outputs an alarm. For example, an alarm is output in conjunction with the car navigation system 9. Also, an alarm is output according to the control timing of the host vehicle and the control operation content.
  • the ECU 20 is an ECU that controls the entire driving support system 1, and includes, for example, a CPU, a ROM, a RAM, an input signal circuit, an output signal circuit, a power supply circuit, and the like. Moreover, ECU20 is provided with the information acquisition part 21, the determination part 22, the memory
  • the information acquisition unit 21 acquires the position information of the vehicle and the driving operation of the driver, triggered by the fact that the driving of the vehicle has been switched from the automatic driving mode to the manual driving mode.
  • vehicle position information for example, the current position of the vehicle measured by the GPS receiver 5 is acquired.
  • the driving operation of the driver includes, for example, the traveling direction of the vehicle input from the direction indicator 6, the operation amount of the accelerator pedal detected by the accelerator position sensor 12, the depression amount of the brake pedal detected by the brake position sensor 14,
  • the steering sensor 16 is specified based on an operation amount such as a steering amount and a steering direction of the steering wheel detected by the steering sensor 16.
  • the determination unit 22 determines the driving operation to be corrected and the correction amount thereof in the automatic driving mode from the feature amount of the driving operation by the driver acquired by the information acquisition unit 21. For example, when the vehicle speed set in the automatic operation mode at the current position of the vehicle is more than a predetermined threshold value from the vehicle speed (feature value) in the manual operation mode, this driving operation is targeted for correction, The vehicle speed in the driving mode is determined as the correction amount in the automatic driving mode.
  • the storage unit 23 is a storage unit that stores the driving operation to be corrected in the automatic driving mode and the correction amount determined by the determination unit 22 in association with the corresponding position information. For example, it is constructed in a storage area of a nonvolatile memory provided with the ECU 20 and is appropriately read from the correction unit 24 and the vehicle control unit 25.
  • the correction unit 24 is a correction unit that corrects the driving operation corresponding to the position information in the automatic driving mode using the driving operation to be corrected and the correction amount read from the storage unit 23. For example, when the correction target corresponding to the current position of the vehicle is the vehicle speed, the vehicle speed set in the automatic operation mode is corrected by the correction amount of the vehicle speed read from the storage unit 23.
  • the vehicle control unit 25 controls the operation of the vehicle by switching between the automatic operation mode and the manual operation mode. For example, according to the driving operation set in the automatic driving mode, the position of the accelerator pedal in the accelerator actuator 11 is controlled to accelerate or decelerate the vehicle. Further, the vehicle is decelerated by controlling the brake position in the brake actuator 13 according to the driving operation set in the automatic driving mode. Alternatively, the steering amount and steering direction of the steering wheel in the steering actuator 15 are controlled.
  • the information acquisition unit 21, the determination unit 22, the storage unit 23, the correction unit 24, and the vehicle control unit 25 described above for example, the CPU of the ECU 20 executes a program in which processing unique to the first embodiment is described. Thus, it can be realized as a means in which software and hardware cooperate.
  • the driving support system 1 may set the driving mode of the cruise control function for driving the vehicle at a speed set by the driver as the automatic driving mode, for example.
  • the operation mode of the ACC function for recognizing the surrounding situation of the vehicle and setting the vehicle speed so as not to collide with an obstacle may be an automatic operation mode.
  • the automatic operation mode controls the vehicle speed, the steering amount and the steering direction of the vehicle by acquiring the map information corresponding to the vehicle position, the road-to-vehicle information, the vehicle-to-vehicle information, etc., and setting the route.
  • the operation mode may be an automatic operation function.
  • the automatic operation mode of the driving support system 1 is the operation mode of the automatic driving function described above.
  • the automatic operation mode is set by the user operating the automatic operation switch 8.
  • the driver may operate the automatic operation switch 8 or may automatically switch to the manual operation mode in accordance with a change in the brake position or the accelerator position.
  • the driving support system 1 inputs detection signals from, for example, the accelerator position sensor 12, the brake position sensor 14, and the steering sensor 16 in accordance with switching from the automatic driving mode to the manual driving mode, and based on these detection signals. Then, various feature values of the driving operation in the manual driving mode are acquired while being associated with the vehicle position. Among the feature quantities of the driving operation in the manual operation mode, those having a large difference from the feature quantity of the driving operation set in the automatic operation mode are selected as correction targets, and a correction amount for compensating for the difference is stored.
  • FIG. 3 is a flowchart of the automatic operation mode setting process in the first embodiment.
  • a driver inputs a destination to the car navigation system 9.
  • the car navigation system 9 sets the route to the input destination based on the map data stored in the map DB 10 (step ST101).
  • the car navigation system 9 reads road data corresponding to the route from the map DB 10, road speed limit information, intersection information, curve information on the route, and road-to-vehicle information obtainable by the communication device 17.
  • a speed map on the route is generated (step ST102).
  • the speed map is information describing speed change points on the route.
  • the speed of the vehicle is controlled to be the speed set at each speed change point.
  • the driving mode of the vehicle is switched to the automatic driving mode, and automatic driving is started (step ST103).
  • FIG. 4 is a flowchart of processing for storing the correction target and the correction amount in the automatic operation mode in the first embodiment.
  • FIG. 5 is a diagram showing an outline of an automatic driving section and a manual driving section on a straight road. As shown in FIG. 5, an example is given in which the vehicle 100 is traveling on a straight road by automatic driving, and the driver wants to continue automatic driving but needs to temporarily switch to manual driving.
  • the set speed in the automatic operation mode deviates from the driver's required value based on the reason that the road (straight road) is a bad road, the road width is narrow, or the speed limit is changed. It is expected that the driver has switched to manual driving. For example, since the driving operation in the automatic driving section A shown in FIG. 5 does not match the driver's request, the driver stops the automatic driving and starts the manual driving from the manual driving section.
  • the correction of the automatic operation is executed in the manual operation section as shown in FIG.
  • the information acquisition unit 21 confirms whether or not the vehicle 100 has been changed (switched) from the automatic operation mode to the manual operation mode based on the operation signal of the automatic operation switch 8 (step ST201). If the mode is not changed to the manual operation mode (step ST201; NO), the process returns to step ST201, and the determination process is repeated.
  • the information acquisition unit 21 acquires various feature amounts of the driving operation in the manual driving mode when the vehicle 100 is changed to the manual driving mode (step ST201; YES) (step ST202).
  • the feature amount is an operation amount of each driving operation in a series of vehicle control by the driver. For example, the speed, deceleration, acceleration, steering amount and steering direction of the vehicle 100 that are periodically acquired in the manual driving section may be mentioned.
  • the information acquisition unit 21 checks whether or not the specified section has ended (step ST203). That is, the feature amount continues to be acquired within the specified section.
  • the feature amount may be continuously acquired with the entire manual operation section as one specified section.
  • the manual operation section may be divided into a plurality of specified sections, and the feature amount may be acquired for each specified section.
  • a predetermined section is set for each time point when the speed of the vehicle 100 becomes maximum or minimum, when a deceleration or acceleration generated in the vehicle 100 becomes maximum, or when a steering wheel is turned off.
  • you may set a regulation area by a time division.
  • a defined section may be defined for each distance set for the route on the map, and a feature amount may be acquired within each defined section.
  • a prescribed section may be provided for each speed change point on the route.
  • step ST203 If the specified section has not ended (step ST203; NO), the process returns to step ST202 to continue acquiring feature values.
  • the information acquisition unit 21 calculates a section feature amount (step ST204).
  • the section feature amount is a feature amount obtained by collecting a plurality of feature amounts acquired in a specified section for each specified section. For example, a value obtained by moving and averaging a plurality of feature quantities acquired within a specified section is set as the section feature quantity. In this way, instead of continuing to store all the feature values, the feature values in the specified section are subjected to a moving average or the like and collectively stored as section feature values. As a result, the memory usage can be reduced.
  • the determination unit 22 determines whether or not the feature amount needs to be stored in the storage unit 23 as a correction amount based on the section feature amount calculated by the information acquisition unit 21 (step ST205). For example, when the section feature value is compared with the feature value of the driving operation in the section set in the automatic operation mode and the difference exceeds a predetermined threshold, the setting of the automatic operation mode in this section is the driving The section feature amount is stored as a correction amount.
  • FIG. 6 is a diagram illustrating an example of feature information of driving operations.
  • driving information is information that defines each driving operation, and includes an acceleration operation, a deceleration operation, a steering operation, and the like.
  • Each driving operation specified by the driving information is specified by the feature amount of the corresponding operation.
  • the acceleration operation the acceleration of the vehicle 100 obtained by this operation is a feature amount
  • the steering amount and the steering direction obtained by this operation are feature amounts.
  • the information acquisition unit 21 in addition to the feature amount of the driving operation of the driving information, includes point information indicating the characteristics of the travel path of the vehicle 100 and peripheral information indicating the relationship between the vehicle 100 and other nearby vehicles. Is obtained as information indicating the surrounding situation of the vehicle 100.
  • the point information and the peripheral information assumed contents are set in advance as shown in FIG. 6, and a numerical value “1” is assigned to contents that match the current position of the vehicle 100.
  • the example of FIG. 6 shows a case where the vehicle 100 is traveling in the manual driving section shown in FIG. 5, and “1” is given to “straight road” of the point information.
  • the information acquisition unit 21 acquires the feature amount of the driving operation of the driving information during the manual driving of the vehicle 100, and sets “1” to the content that matches the position of the vehicle 100 for the point information and the surrounding information. Give.
  • the determination unit 22 determines the surrounding situation of the vehicle 100 by combining the contents to which “1” is assigned. At this time, if an event that cannot occur in the normal manual driving occurs around the vehicle 100 as described below, the feature amount related to the driving information is not stored as the correction amount.
  • the feature value of the driving operation obtained at this time is not stored as a correction amount.
  • the vehicle 100 is abnormal to avoid an obstacle. It is determined that an event has occurred, and the feature value of the driving operation obtained at this time is not stored as a correction amount.
  • step ST205; NO the vehicle control unit 25 proceeds to the process of step ST208. If it is determined that the feature amount needs to be stored as a correction amount (step ST205; YES), the determination unit 22 adds 1 to the number of times of switching to manual operation and stores it in the storage unit 23 (step ST206). .
  • the number of times of switching to manual operation is the number of times of switching to manual operation on the same travel route, and corresponds to the number of times that correction was required for automatic operation on this route.
  • the correction unit 24 calculates an automatic driving traveling frequency in which automatic driving has been set in the past for the same traveling route as a value indicating whether the driver has actively used automatic driving. As a result, when the number of times of switching to manual driving is remarkably large with respect to the frequency of automatic driving traveling on the same route by automatic driving, the driver can calculate the degree of unsatisfied automatic driving in the traveling portion.
  • the storage unit 23 stores the correction amount determined by the determination unit 22 in association with the position information or speed map of the vehicle 100 (step ST207).
  • the correction amount may be stored for each traveling direction of the vehicle 100. That is, the determination unit 22 determines the driving operation to be corrected and its correction amount in the automatic driving mode for each traveling direction of the vehicle 100 based on the feature amount of the driving operation by the driver acquired by the information acquisition unit 21. To do.
  • the storage unit 23 may store the driving operation to be corrected in the automatic driving mode and the correction amount in association with the corresponding position information and the traveling direction of the vehicle 100. For example, different correction amounts are stored for the way and the way back. By doing in this way, the correction amount according to an actual driving
  • step ST208 the vehicle control unit 25 inquires of the driver whether or not to change the operation mode of the vehicle 100 from the manual operation mode to the automatic operation mode.
  • step ST208; NO the process returns to step ST202 and the above-described process is repeated.
  • step ST208; YES the acquisition and storage of the correction amount is terminated.
  • the vehicle has traveled more than a predetermined section from the position where the automatic operation (automatic operation section A) is switched to the manual operation (manual operation section)
  • the storage of the correction amount may be interrupted.
  • the correction amount saved by switching once to manual operation is used for the next automatic operation correction on the same route.
  • the characteristic amount of the driving operation with respect to the event that occurred temporarily in the manual driving is used as the correction amount, and the automatic driving may be corrected to the driving operation not intended by the driver. Therefore, a certain weight may be given to the operation amount of each driving operation set in the speed map for automatic driving, and the weighted operation amount may be corrected with the correction amount.
  • the weight w is added to -5 km / h which is the difference between the two. Things are the correction amount.
  • w is 0.5
  • the correction amount is ⁇ 2.5 km / h, and is set to 37.5 km / h during the next automatic driving.
  • the weight w is 0.05.
  • the weight w is 0.5.
  • the switching to the manual operation occurs 5 times in the 10 automatic operations
  • the weight w is 0.25.
  • the dissatisfaction with the automatic driving is converted into a numerical value and reflected in the correction amount, whereby the correction suitable for the driver's intention can be performed.
  • FIG. 7 is a flowchart of a correction process for the driving operation in the automatic driving mode according to the first embodiment.
  • the car navigation system 9 sets a route to the destination based on the map data stored in the map DB 10 as in FIG. 3 (step ST301).
  • the car navigation system 9 reads road data corresponding to the route from the map DB 10, road speed limit information, intersection information, curve information on the route, and road-to-vehicle information obtainable by the communication device 17.
  • a speed map on the route is generated based on the weather information and the weather information (step ST302).
  • the correction unit 24 of the ECU 20 is a route that the vehicle 100 has traveled before by searching the data stored in the storage unit 23 for data relating to the route that generated the speed map. Then, it is determined whether or not the correction amount for the automatic operation is stored (step ST303). At this time, when the vehicle has not traveled on the set route before (step ST303; NO), the process proceeds to step ST309.
  • step ST303 When traveling on the set route before and there is a correction amount for automatic driving (step ST303; YES), the correction unit 24 determines that the number of times AN of switching to manual driving in the target section exceeds a predetermined threshold. It is confirmed whether there is (step ST304). When the number of times of switching to manual operation AN is equal to or smaller than a predetermined threshold (step ST304; NO), the process proceeds to step ST307.
  • the correction unit 24 corrects the driving operation set in the speed map with the correction amount for automatic driving (step ST305). .
  • the correction unit 24 calculates the acceleration or deceleration between the two locations based on the vehicle speed set at the location where the current correction is made in the speed map and the vehicle speed set at the location ahead. Calculate (step ST306).
  • the correcting unit 24 determines whether or not the calculated acceleration exceeds a driver's allowable value (threshold value) regarding acceleration, and whether or not the calculated deceleration exceeds a driver's allowable value (threshold value) regarding deceleration. Each of them is determined (step ST307).
  • step ST307 If the calculated acceleration is equal to or less than the threshold value (step ST307; NO), the process returns to step ST303 and the above-described process is repeated. On the other hand, when the calculated acceleration exceeds the threshold value (step ST307; YES), the correction unit 24 is set to a location ahead of the location where the current correction is performed so that the acceleration is equal to or less than the threshold value.
  • the correction amount for the vehicle speed is corrected (step ST308). Since it is not necessary to forcibly reach the set speed of the previous part, the correction amount is corrected so that the vehicle is accelerated within a range that does not cause a sense of incongruity for the driver. That is, the correction unit 24 corrects the correction amount at the previous location so that the amount of change per time at which the vehicle shifts to the corrected vehicle speed at the previous location is equal to or less than a predetermined value. Make it smaller.
  • the correction unit 24 When the calculated deceleration exceeds the threshold value (step ST307; YES), the correction unit 24 is set to a location ahead of the location where the current correction is performed so that the deceleration is equal to or less than the threshold value.
  • the correction amount for the vehicle speed is corrected (step ST308). For example, if the tip of a straight road is a curve and the deceleration to the vehicle speed set at the previous location is large, there is a possibility of sudden braking to reduce the vehicle speed. Therefore, the correction unit 24 corrects the correction amount so that the vehicle is decelerated within a range that does not cause a sense of incongruity for the driver. That is, the correction unit 24 corrects the correction amount at the previous location so that the amount of change per time at which the vehicle shifts to the corrected vehicle speed at the previous location is equal to or less than a predetermined value. Increase
  • the speed map is corrected from the destination side. That is, on the travel route, the current correction location is on the destination side, and the further location is the departure location side.
  • the vehicle control unit 25 starts automatic operation of the vehicle 100 based on the speed map (step ST309). By doing in this way, the speed setting suitable for a driver
  • the above-described correction is performed together with the route setting. For this reason, for example, when a reroute is performed, the new route is corrected by the series of processes described above.
  • the correction amount stored in the storage unit 23 may be appropriately checked or deleted by the driver. For example, a request for confirmation or deletion of correction contents is received by the input device.
  • the information acquisition unit 21 of the ECU 20 reads the correction amount corresponding to the request accepted by the input device from the storage unit 23 and displays it on the display device 18 or deletes it from the storage unit 23.
  • the driving support system 1 may perform driving support for each driver by identifying the driver in advance. In this case, for example, by dividing the portion reflecting the characteristics of the driver A and the portion reflecting the characteristics of the driver B into only conflicting portions, the correction amount of the other may be reflected mutually. Moreover, you may divide completely by both.
  • FIG. 8 is a diagram showing an outline of an automatic driving section and a manual driving section on a road including a curve.
  • the map data and the vehicle position are matched, and the curve is recognized by the detection data of the surrounding monitoring sensor 2 or the road-vehicle communication of the communication device 17.
  • the speed and the steering amount of the vehicle 100 on the curve are optimized.
  • the approach speed to the curve is determined based only on information recognized on the vehicle 100 side, there is a possibility that the speed will not be set to suit the driver's preference. For example, circumstances such as a narrow lane width or difficulty in seeing the tip of a curve are not reflected, and a vehicle speed that is faster than the driver's intention is set. In this case, the driver is more likely to switch to manual driving when entering the same curve.
  • the driving support system 1 acquires the feature value of the driving operation using the switching to the manual driving as a trigger in order to eliminate the above-described problems, and determines the correction amount from the feature value. For example, when the driver performs manual driving when entering the curve with the vehicle 100, switching to manual driving and deceleration before entering the curve, steering amount during curve driving, switching to acceleration or automatic driving when leaving the curve Appears as a feature of driving. A section feature amount is calculated based on these features, and a correction amount is obtained from the section feature amount and reflected in automatic driving.
  • the speed may not be set to suit the driver's preference.
  • the characteristics of driving operation differ depending on signal information at intersections.
  • the driver performs manual driving when entering the intersection with the vehicle 100, if it is a green signal, as in the curve, switching to manual driving and deceleration before entering the intersection, steering amount while driving in the intersection, leaving the intersection
  • acceleration or switching to automatic operation appears as a characteristic of driving operation.
  • the automatic operation is premised on a blue signal, and thus the characteristic amount of the driving operation obtained at this time is not stored as a correction amount.
  • the position information of the vehicle 100 and the feature amount of the driving operation of the driver are triggered by the fact that the driving of the vehicle 100 is switched from the automatic driving mode to the manual driving mode.
  • the driving operation to be corrected and the correction amount thereof in the automatic driving mode are determined from the acquired characteristic amount of the driving operation by the driver.
  • the determined correction target driving operation and the correction amount are stored in association with the corresponding position information, and the correction target driving operation and the correction amount are used to correct the driving operation in the automatic driving mode,
  • the vehicle 100 is controlled by the driving operation corrected in the automatic driving mode.
  • the position information of the vehicle 100 and the characteristic amount of the driving operation of the driver are acquired by using the switching from the automatic driving mode to the manual driving mode as a trigger, so that the memory usage and the processing load can be reduced. Moreover, since the driving operation to be corrected and its correction amount in the automatic driving mode are determined based on the feature amount of the driving operation by the driver, the driving operation in the automatic driving can be corrected according to the driver's request.
  • the traveling direction of the vehicle 100 is further acquired, and the driving operation to be corrected in the automatic driving mode for each traveling direction of the vehicle 100 based on the feature amount of the driving operation by the driver. And a correction amount thereof is determined.
  • the determined correction target driving operation and its correction amount are stored in association with the corresponding position information and the traveling direction of the vehicle, and the correction target driving operation and the correction amount are used to store the position information in the automatic driving mode and The driving operation corresponding to the traveling direction of the vehicle 100 is corrected.
  • working condition is obtained, and it becomes possible to perform the automatic driving
  • the surroundings of the vehicle 100 are further acquired, and the feature amount used as the correction amount of the driving operation to be corrected from the feature amount of the driving operation by the driver based on the surrounding state of the vehicle 100 Determine.
  • the memory usage can be further reduced by not storing the characteristic amount of the driving operation performed by the driver for the transient event as the correction amount.
  • the amount of change per time for changing to the corrected vehicle state is corrected to be equal to or less than a predetermined value, sudden acceleration or sudden deceleration is performed at the place where the driving operation is corrected. Can be prevented.
  • the number of times of switching from the automatic operation mode to the manual operation mode with respect to the number of times of traveling on the same route is calculated as the degree of dissatisfaction with the automatic operation mode, and the correction amount is weighted with the degree of dissatisfaction.
  • the dissatisfaction with the automatic driving is converted into a numerical value and reflected in the correction amount, whereby the correction suitable for the driver's intention can be performed.
  • FIG. FIG. 9 is a diagram showing a server in the driving support system according to Embodiment 2 of the present invention.
  • the driving support system according to the second embodiment includes a communication device 301, a server 302, and a database 303 in the data center 30 in addition to the driving support device mounted on the vehicle 100.
  • the communication device 301 is a communication unit that communicates with the driving support device. For example, a communication connection is established with the driving support device via a mobile phone or the like.
  • the server 302 includes a database (DB) 303 that functions as the storage unit 23 described in the first embodiment, and further includes the determination unit 22 and the correction unit 24 described in the first embodiment.
  • the driving support device mounted on the vehicle 100 includes the information acquisition unit 21 and the vehicle control unit 25 described in the first embodiment. Note that the server 302 may perform route search and speed map generation by registering map data and the like in the DB 303.
  • FIG. 10 is a flowchart of processing for acquiring a feature amount in the manual operation mode in the second embodiment.
  • the process of FIG. 10 is performed by a driving support device mounted on the vehicle 100.
  • the information acquisition unit 21 confirms whether or not the vehicle 100 has been changed from the automatic operation mode to the manual operation mode based on the operation signal of the automatic operation switch 8 (step ST401). ). If the mode is not changed to the manual operation mode (step ST401; NO), the process returns to step ST401, and the above determination process is repeated.
  • the information acquisition unit 21 acquires various feature amounts of the driving operation in the manual operation mode when the vehicle 100 is changed to the manual operation mode (step ST401; YES) (step ST402).
  • the feature amount of the driving operation by the driver in the manual driving mode is transmitted from the information acquisition unit 21 to the server 302 via the communication device 17 (step ST403).
  • FIG. 11 is a flowchart of processing for storing the correction target and the correction amount in the automatic operation mode according to the second embodiment.
  • the server 302 implements the processing in FIG. Server 302 determines whether or not a feature amount is received from the vehicle side via communication device 301 (step ST501). If no feature value is received from the vehicle side (step ST501; NO), the process returns to step ST501 and the above determination process is repeated.
  • the determination unit 22 of the server 302 determines whether the received feature amount needs to be stored as a correction amount.
  • the driving operation to be corrected and the method for determining the correction amount are the same as in the first embodiment.
  • the driving operation to be corrected and its correction amount are stored in the DB 303 in association with the corresponding position information and the traveling direction of the vehicle 100 (step ST502).
  • the case where only the feature amount determined by the determination unit 22 among the feature amounts of the driving operation acquired by the information acquisition unit 21 is stored as the correction amount has been described. Compared to support devices, there is a margin in storage capacity. Therefore, a weight corresponding to the reflection rate at the time of correction may be given to each feature amount and stored in the DB 303 as a correction amount.
  • FIG. 12 is a flowchart of a correction process for the driving operation in the automatic driving mode according to the second embodiment.
  • the server 302 performs the process of FIG. First, the correction unit 24 of the server 302 checks whether or not there is an inquiry about a route and a speed map from the driving support device via the communication device 301 (step ST601). If there is no inquiry (step ST601; NO), the process returns to step ST601 and repeats the determination process.
  • step ST601 When there is an inquiry (step ST601; YES), the correction unit 24 reads the correction amount for the route of the speed map corresponding to the inquiry from the DB 303, and, as in FIG. 7, the automatic operation mode set in this speed map.
  • the driving operation at is corrected (step ST602).
  • the corrected speed map and route are transmitted to the driving support device via the communication device 301 (step ST603).
  • the vehicle control unit 25 starts automatic driving of the vehicle 100 based on the speed map received from the server 302 side.
  • the determination unit 22, the DB 303 that functions as the storage unit 23, and the correction unit 24 are provided in the server 302 that can communicate with the driving support device, thereby obtaining information.
  • the unit 21 transmits the acquired position information of the vehicle 100 and the feature amount of the driving operation by the driver to the server 302, and the vehicle control unit 25 performs the driving operation corrected by the correcting unit 24 received from the server 302 by the vehicle operation 100. To control. Even with this configuration, as in the first embodiment, it is possible to correct the automatic driving according to the driver while reducing the memory usage and the processing load.
  • any combination of each embodiment, any component of each embodiment can be modified, or any component can be omitted in each embodiment. .
  • the driving support device can correct the automatic driving according to the driver while reducing the memory usage and the processing load, the driving support device for the vehicle capable of switching between the automatic driving and the manual driving. It is suitable for.
  • Driving support system 2. Perimeter monitoring sensor, 3. Vehicle speed sensor, 4. Gyro sensor, 5. GPS receiver, 6. Direction indicator, 7. Speed setting switch, 8. Automatic driving switch, 9. Car navigation system, 10. Map information database (DB) , 11 Accelerator actuator, 12 Accelerator pedal sensor, 13 Brake actuator, 14 Brake pedal sensor, 15 Steering actuator, 16 Steering sensor, 17 Communication device, 18 Display device, 19 Alarm device, 20 ECU, 21 Information acquisition unit, 22 Determination unit , 23 storage unit, 24 correction unit, 25 vehicle control unit, 30 data center, 100 vehicle, 301 communication device, 302 server, 303 database (DB).
  • Map information database 11 Accelerator actuator, 12 Accelerator pedal sensor, 13 Brake actuator, 14 Brake pedal sensor, 15 Steering actuator, 16 Steering sensor, 17 Communication device, 18 Display device, 19 Alarm device, 20 ECU, 21 Information acquisition unit, 22 Determination unit , 23 storage unit, 24 correction unit, 25 vehicle control unit, 30 data center, 100 vehicle, 301 communication device, 302 server, 303 database (

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

 自動運転モードから手動運転モードへ切り替えられたことをトリガとして、車両100の位置情報および運転者の運転操作の特徴量を取得し、これらの特徴量から自動運転モードにおける補正対象の運転操作およびその補正量を判定する。この判定結果を用いて自動運転モードにおける運転操作を補正して、補正された運転操作を含む自動運転モードで車両100を制御する。

Description

運転支援装置および運転支援方法
 この発明は、自動運転と手動運転を切り替え可能な車両の運転支援装置および運転支援方法に関する。
 従来から、道路のカーブの曲率半径、制限速度情報、車線情報などを地図情報から取得して車両の速度を最適化する技術が提案されている。ここで、最適化の基準となる位置と速度を一律に決定すると、好ましい位置よりも手前で車両速度が最小となるか、あるいは加速の開始が著しく遅くなって運転者が期待する運転支援が行われない可能性がある。
 そこで、運転者の運転操作に基づいて最適な速度を学習することも考えられるが、車両の走行中は運転操作に関する情報が莫大な量となり、これらを保存して最適な速度を得るには大容量のメモリと多くの演算処理が必要となる。
 また、運転者が望まない運転操作も学習されるため、運転者にとって違和感のある運転制御が行われる場合もある。
 これに対し、特許文献1には、前方車両の状態と地図情報を基に目標速度と目標加速度を算出して自車両の走行を制御する走行制御装置が開示されている。
 また、特許文献2に記載の運転支援システムは、コーナーなどの対象エリアに自車両が進入した際に複数の種別の各々に対応する特徴点を記録して、記録した特徴点に基づいて特徴点のばらつきの程度を種別ごとに示すばらつきマップを生成する。そして、ばらつきマップにおけるばらつきの程度の平均値を有する特徴点を再現するように運転支援が実施される。
特開2007-168788号公報 特開2011-162075号公報
 特許文献1に記載の装置では、運転者の予想を超える速度で前方車両が運転されている場合や、地図情報に基づき一意に決定された走行速度やステアリング位置が運転者の意図とは異なる場合、装置による走行制御が運転者に違和感を与えるという課題があった。
 また、特許文献2は、運転者に違和感を与えない運転制御を行うために、自車両が対象エリアに進入した際に複数の種別の各々に対応する特徴点を保存して、その特徴点を再現するように運転制御が行われる。しかし、システムが対象とする全てのエリアで特徴点を常に保存していく必要があるため、メモリ使用量が多く、システム処理負荷も高いという課題がある。
 さらに特許文献2に記載される装置では、前方車両の急ブレーキに対応してブレーキを踏んだ場合や、落下物を回避するためにハンドルを切った場合のように、通常行われない運転操作であっても対象エリア内であれば特徴点が保存される。このため、結局、運転者の意図しない運転支援が行われる可能性がある。
 この発明は、上記のような課題を解決するためになされたもので、メモリ使用量および処理負荷を軽減しつつ、運転者に合わせて自動運転を補正することができる運転支援装置および運転支援方法を得ることを目的とする。
 この発明に係る運転支援装置は、自動運転モードと運転者による手動運転モードとを切り替えて車両を運転支援する運転支援装置であって、車両の運転が自動運転モードから手動運転モードへ切り替えられたことをトリガとして、車両の位置情報および運転者による運転操作の特徴量を取得する情報取得部と、情報取得部により取得された運転者による運転操作の特徴量から自動運転モードにおける補正対象の運転操作およびその補正量を判定する判定部と、判定部により判定された補正対象の運転操作およびその補正量を対応する位置情報に紐付けて記憶する記憶部と、記憶部から読み出した補正対象の運転操作およびその補正量を用いて自動運転モードにおける運転操作を補正する補正部と、自動運転モードにおいて補正部により補正された運転操作で車両を制御する車両制御部とを備える。
 この発明によれば、メモリ使用量および処理負荷を軽減しつつ、運転者に合わせて自動運転を補正することができるという効果がある。
この発明に係る運転支援システムの構成を示すブロック図である。 実施の形態1に係る運転支援装置として機能するECUの構成を示すブロック図である。 実施の形態1における自動運転モードの設定処理のフローチャートである。 実施の形態1における自動運転モードの補正対象およびその補正量を保存する処理のフローチャートである。 直線道路における自動運転区間と手動運転区間の概要を示す図である。 運転操作の特徴情報の例を示す図である。 実施の形態1における自動運転モードの運転操作に対する補正処理のフローチャートである。 カーブを含む道路における自動運転区間と手動運転区間の概要を示す図である。 この発明の実施の形態2に係る運転支援システムにおけるサーバを示す図である。 実施の形態2における手動運転モードの特徴量を取得する処理のフローチャートである。 実施の形態2における自動運転モードの補正対象およびその補正量を保存する処理のフローチャートである。 実施の形態2における自動運転モードの運転操作に対する補正処理のフローチャートである。
 以下、この発明をより詳細に説明するため、この発明を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
 図1は、この発明に係る運転支援システムの構成を示すブロック図である。図2は、実施の形態1に係る運転支援装置として機能するECUの構成を示すブロック図である。
 図1において、運転支援システム1は、車両に搭載されて、自動運転モードと運転者による手動運転モードとを切り替えることにより、車両の運転を支援するシステムである。
 その構成として、周辺監視センサ2、車速センサ3、ジャイロセンサ4、GPS(Global Positioning System)受信機5、方向指示器6、速度設定スイッチ7、自動運転スイッチ8、カーナビゲーションシステム9、地図情報データベース(DB)10、アクセルアクチュエータ11、アクセルポジションセンサ12、ブレーキアクチュエータ13、ブレーキポジションセンサ14、ステアリングアクチュエータ15、ステアリングセンサ16、通信装置17、表示装置18、警報装置19およびECU(Electronic Control Unit)20を備える。
 なお、図1には、説明の便宜上、この実施の形態に直接関係がある構成要素のみを記載しており、その他の構成要素については図示を省略している。
 周辺監視センサ2は、車両の周辺状況を検出するセンサである。例えば、カメラまたはミリ波センサから実現されて、自車両の前方、左右側方および後方を含む周辺に存在する障害物の有無や、障害物から自車両までの距離、自車両に対する障害物の相対速度などを取得する。車速センサ3は、自車両の速度を測定するセンサである。例えば、車輪の回転速度を検出し、回転速度から自車両の車速を測定する。またジャイロセンサ4は、自車両の向きの変化を検出するセンサである。例えば、自車両の角速度を検出し、角速度から向きの変化を検出する。GPS受信機5は、GPS衛星から受信したGPS信号に基づいて自車両の現在位置を測位する。
 方向指示器6は、自車両の進行方向の変化を指示する。例えば、車外に設置された表示灯の点滅状態から右左折や車線変更の変更における自車両の進路方向を周囲に指示する。この表示灯の点灯状態はECU20へ送信される。
 速度設定スイッチ7は、車両の速度設定に利用されるスイッチである。例えば、自動運転モードまたはACC(Adaptive Crueise Controll)モードのように、前方車両を検知しながら速度設定スイッチ7で設定された速度を保って車両を走行させる機能を持った車両に用いられる。なお、速度設定スイッチ7で設定された速度はECU20へ送信される。
 自動運転スイッチ8は、自車両を自動運転モードするか、または手動運転モードにするかの設定を受け付ける。自車両の運転が自動運転モードであるか手動運転モードであるかをECU20へ送信する。
 カーナビゲーションシステム9は、自車両を予め定めた目的地まで経路誘導する機能を有する。また、カーナビゲーションシステム9は、GPS受信機5、通信装置17、表示装置18、警報装置19、地図DB10およびECU20と協働することにより、運転者に対して自車両の現在地周辺の地図情報、自車両の現在位置、目的地の位置、目的地までの経路などを提供する。地図DB10は、地図データが登録されたデータベースであり、地図データファイル、交差点データファイル、道路データファイルなどを備えている。
 アクセルアクチュエータ11は、アクセルペダルのポジションまたはECU20からの信号に応じて車両の加減速を行う。アクセルポジションセンサ12は、アクセルペダルの操作量を検出するセンサであり、検出した操作量を示す信号をECU20へ送信する。
 ブレーキアクチュエータ13は、ブレーキのポジションまたはECU20からの信号に応じて車両の減速を行う。ブレーキポジションセンサ14は、ブレーキペダルの操作量(ブレーキペダルの踏下量)を検出するセンサである。ステアリングアクチュエータ15は、ハンドルの操舵量および操舵方向に応じて車両の進行方向を操作する。ステアリングセンサ16は、ハンドルの操舵量および操舵方向を検出するセンサであり、検出した操舵量および操舵方向を示す信号をECU20へ送信する。
 通信装置17は、光学式車両感知器(いわゆる、光ビーコン)などの路上に設置された交通インフラストラクチャなどから情報を取得する通信装置である。取得する情報には、見通しの悪い周辺の状況に係る情報、交通管制情報(例えば、信号機や標識などに関する情報)、道路状況に係る情報(例えば、交通事故や渋滞などの情報)が挙げられる。
 また通信装置17には、他車両との間で行う車車間通信や携帯電話などを介した通信を行う通信装置も含まれる。
 表示装置18は、各種の情報を表示する表示装置である。例えば、カーナビゲーションシステム9と連動してナビゲーション情報を表示する。また、自車両の制御タイミングや制御操作内容に関する情報を表示する。警報装置19は警報を出力する装置である。例えば、カーナビゲーションシステム9と連動して警報を出力する。また、自車両の制御タイミングや制御操作内容に応じて警報を出力する。
 ECU20は、運転支援システム1全体の制御を行うECUであり、例えば、CPUを主体としてROM、RAM、入力信号回路、出力信号回路および電源回路などを備える。
 また、ECU20は、実施の形態1に係る運転支援装置の機能構成として、図2に示すように、情報取得部21、判定部22、記憶部23、補正部24および車両制御部25を備える。
 情報取得部21は、車両の運転が自動運転モードから手動運転モードへ切り替えられたことをトリガとして車両の位置情報および運転者の運転操作を取得する。車両の位置情報としては、例えば、GPS受信機5により測定された車両の現在位置を取得する。また、運転者の運転操作は、例えば、方向指示器6から入力した車両の進行方向、アクセルポジションセンサ12が検出したアクセルペダルの操作量、ブレーキポジションセンサ14が検出したブレーキペダルの踏下量、ステアリングセンサ16が検出したハンドルの操舵量および操舵方向などの操作量に基づいて特定される。
 判定部22は、情報取得部21により取得された運転者による運転操作の特徴量から、自動運転モードにおける補正対象の運転操作およびその補正量を判定する。
 例えば、車両の現在位置において、自動運転モードに設定された車両速度が、手動運転モードにおける車両速度(特徴量)より予め定めた閾値以上のずれがある場合、この運転操作を補正対象とし、手動運転モードにおける車両速度を自動運転モードの補正量と判定する。
 記憶部23は、判定部22により判定された、自動運転モードにおける補正対象の運転操作およびその補正量を、対応する位置情報に紐付けて記憶する記憶部である。例えば、ECU20が備えられた不揮発性メモリの記憶領域に構築されて補正部24および車両制御部25から適宜読み出される。
 補正部24は、記憶部23から読み出した補正対象の運転操作およびその補正量を用いて、自動運転モードにおける位置情報に対応した運転操作を補正する補正部である。
 例えば、車両の現在位置に対応する補正対象が車速である場合は、記憶部23から読み出された車速の補正量で自動運転モードに設定された車速が補正される。
 車両制御部25は、自動運転モードと手動運転モードとを切り替えて車両の運転を制御する。例えば、自動運転モードに設定された運転操作に従って、アクセルアクチュエータ11におけるアクセルペダルのポジションを制御して車両を加減速する。また、自動運転モードに設定された運転操作に従って、ブレーキアクチュエータ13におけるブレーキポジションを制御して車両を減速する。または、ステアリングアクチュエータ15におけるハンドルの操舵量および操舵方向を制御する。
 なお、上述した情報取得部21、判定部22、記憶部23、補正部24および車両制御部25は、例えば、実施の形態1に特有な処理が記述されたプログラムをECU20のCPUが実行することで、ソフトウエアとハードウエアが協働した手段として実現することができる。
 また、運転支援システム1は、例えば、運転者から設定された速度で車両を走行させるクルーズコントロール機能の運転モードを自動運転モードとしてもよい。
 また、車両の周辺状況を認識して障害物に衝突しないように車両速度を設定するACC機能の運転モードを自動運転モードとしてもよい。
 さらに、自動運転モードは、自車位置に対応する地図情報、路車間情報および車車間情報などを取得してルート設定を行うことにより、車両の速度、ハンドルの操舵量および操舵方向を全て制御する自動運転機能の運転モードであってもよい。
 次に動作について説明する。
 以降では、運転支援システム1の自動運転モードが上述した自動運転機能の運転モードであるものとして説明を行う。なお、自動運転モードは、ユーザが自動運転スイッチ8を操作することで設定される。また運転者が手動運転モードに切り替える場合は、自動運転スイッチ8を操作して行ってもよいし、ブレーキポジションまたはアクセルポジションの変化に応じて自動的に手動運転モードに切り替わるようにしてもよい。
 運転支援システム1は、自動運転モードから手動運転モードへの切り替わりに応じて、例えば、アクセルポジションセンサ12、ブレーキポジションセンサ14およびステアリングセンサ16からの各検出信号を入力し、これらの検出信号に基づいて手動運転モードにおける運転操作の各種の特徴量を車両位置に紐付けながら取得する。手動運転モードにおける運転操作の特徴量のうち、自動運転モードに設定された運転操作の特徴量との差分が大きいものが補正対象として選択され、その差分を補うための補正量が保存される。
 図3は、実施の形態1における自動運転モードの設定処理のフローチャートである。
 運転者が、カーナビゲーションシステム9に目的地を入力する。これにより、カーナビゲーションシステム9は、地図DB10に記憶された地図データに基づいて、入力された目的地までのルートを設定する(ステップST101)。
 ルート設定が完了すると、カーナビゲーションシステム9は、地図DB10からルートに対応する道路データを読み出して、ルートにおける道路の制限速度情報、交差点情報、カーブ情報、および通信装置17によって取得可能な路車間情報や天候情報などを基に、ルート上における速度マップを生成する(ステップST102)。なお、速度マップは、ルート上の速度変更ポイントが記載された情報である。自動運転モードにおいては、各速度変更ポイントに設定された速度になるように車両の速度が制御される。
 この後、運転者が自動運転スイッチ8を押下することにより、車両の運転モードが自動運転モードに切り替えられ、自動運転が開始する(ステップST103)。
 図4は、実施の形態1における自動運転モードの補正対象およびその補正量を保存する処理のフローチャートである。また、図5は、直線道路における自動運転区間と手動運転区間の概要を示す図である。図5に示すように車両100が自動運転で直線道を進行しており、運転者は自動運転を継続したいが一時的に手動運転に切り替える必要が生じた場合を例に挙げる。
 この場合、走行路(直線道路)が悪路である、道幅が狭い、制限速度が変更されているといった理由に基づいて、自動運転モードにおける設定速度が運転者の要求値から乖離しているため、運転者が手動運転に切り替えたことが予想される。例えば、図5に示した自動運転区間Aの運転操作が運転者の要望と合致していないため、運転者が自動運転を止めて手動運転区間から手動運転を開始している。
 自動運転の補正は、図5に示すような手動運転区間で実行される。
 情報取得部21は、自動運転スイッチ8の操作信号などに基づいて、車両100が自動運転モードから手動運転モードへ変更された(切り替わった)かどうかを確認する(ステップST201)。手動運転モードへ変更されなければ(ステップST201;NO)、ステップST201の処理に戻り、上記判定処理を繰り返す。
 情報取得部21は、車両100が手動運転モードへ変更された場合(ステップST201;YES)、手動運転モードにおける運転操作の各種の特徴量を取得する(ステップST202)。なお、特徴量とは、運転者による一連の車両制御における各運転操作の操作量である。例えば、手動運転区間で周期的に取得された車両100の速度、減速度、加速度、ハンドルの操舵量および操舵方向などが挙げられる。
 続いて、情報取得部21は規定区間が終了したか否かを確認する(ステップST203)。すなわち、特徴量は、規定区間内で取得され続ける。
 例えば、手動運転区間全体を1つの規定区間として特徴量を継続して取得してもよい。また手動運転区間を複数の規定区間に分割し、規定区間ごとに特徴量を取得してもよい。
 例えば、車両100の速度が最高または最低となる時点、車両100に生じる減速度または加速度が最大となる時点、ハンドルが切られた時点ごとに規定区間を設定する。
 また時分割で規定区間を設定してもよい。さらに地図上のルートに設定した距離ごとに規定区間を定義し各規定区間内で特徴量を取得してもよい。速度マップがある場合には、ルート上の速度変更ポイントごとに規定区間を設けてもよい。
 規定区間が終了していない場合(ステップST203;NO)、ステップST202に戻って特徴量の取得が続けられる。
 一方、規定区間が終了した場合(ステップST203;YES)、情報取得部21は、区間特徴量を算出する(ステップST204)。区間特徴量とは、規定区間で取得された複数の特徴量を規定区間ごとにまとめた特徴量である。例えば、規定区間内で取得された複数の特徴量を移動平均した値を区間特徴量とする。
 このように特徴量を全て保存し続けるのではなく、規定区間内の特徴量に移動平均などを施して区間特徴量としてまとめて保存する。これによりメモリ使用量を低減することが可能である。
 次に、判定部22は、情報取得部21が算出した区間特徴量に基づいて、特徴量を補正量として記憶部23に記憶する必要があるか否かを判定する(ステップST205)。
 例えば、区間特徴量と自動運転モードに設定された上記区間における運転操作の特徴量とを比較して、これらの差分が予め定めた閾値を超える場合、この区間における自動運転モードの設定は、運転者の要望に合致していないと判断し、この区間特徴量を補正量として保存する。
 また、情報取得部21が車両100の周辺状況をさらに取得し、判定部22が、車両100の周辺状況に基づいて手動運転モードの運転操作の特徴量から補正量とする特徴量を判定してもよい。
 例えば、図6は運転操作の特徴情報の例を示す図である。図6において、運転情報は、各運転操作を規定する情報であり、加速操作、減速操作、ステアリング操作などがある。運転情報で規定される各運転操作は、対応する操作の特徴量により特定される。例えば、加速操作は、この操作により得られた車両100の加速度が特徴量であり、ステアリング操作は、この操作により得られた操舵量および操舵方向が特徴量となる。
 図6の例では、情報取得部21が、運転情報の運転操作の特徴量に加え、車両100の走行路の特徴を示す地点情報、および車両100と周辺の他車両との関係を示す周辺情報を、車両100の周辺状況を示す情報として取得する。
 地点情報および周辺情報については、図6に示すように想定される内容を予め設定しておき、車両100の現在位置に合致する内容に数値“1”を付与する。図6の例は、図5に示した手動運転区間を車両100が走行している場合を示しており、地点情報の“直線道路”に“1”が付与されている。
 このように、情報取得部21は、車両100の手動運転中に運転情報の運転操作の特徴量を取得するとともに、地点情報および周辺情報については車両100の位置に合致する内容に“1”を付与する。判定部22は、“1”が付与された内容を総合して車両100の周辺状況を判断する。このとき、下記のような車両100の周辺で通常の手動運転では起こりえない事象が発生していた場合には運転情報に関する特徴量を補正量として保存しない。
 例えば、図6に示す周辺情報の“前方車あり”に“1”が付与され、車両100が前方車両を追従していると判断された場合、この追従走行は車両100の現在位置で常に発生する事象ではない。このため、このときに得られた運転操作の特徴量は補正量として保存しない。また、周辺情報の“前方車あり”に“1”が付与され、“対向車あり”が“0”のままであり、さらに車両100の速度が前方車の速度より大きく、前方車の追い抜きを行ったと判断された場合についても、車両100の現在位置で常に発生する事象ではない。このため、このときに得られた運転操作の特徴量は補正量として保存しない。
 さらに、当初設定した目的地とは別のルートに切り替えるために加減速を行った場合についても、このときに得られた運転操作の特徴量は補正量として保存しない。
 また、地点情報の“直線道路”に“1”が付与され、走行路が直線道路であるにも関わらず大きなハンドル操作が行われた場合についても、車両100で障害物を避けるような異常な事象が発生したものと判断し、このときに得られた運転操作の特徴量を補正量として保存しない。このようにすることで、一過性の事象に対して運転者が行った運転操作の特徴量を補正量として保存しないことで、メモリ使用量をさらに削減することができる。
 特徴量を補正量として記憶部23に記憶する必要がないと判定された場合(ステップST205;NO)、車両制御部25は、ステップST208の処理に移行する。
 また、特徴量を補正量として記憶する必要があると判定した場合(ステップST205;YES)、判定部22は、手動運転への切り替え回数を+1加算して記憶部23に保存する(ステップST206)。手動運転への切り替え回数とは、同一の走行ルートにおいて手動運転に切り替えられた回数であり、このルートにおける自動運転に補正が必要であった回数に相当する。
 補正部24は、運転者が積極的に自動運転を使用したかを示す値として同一の走行ルートに対して過去に自動運転が設定された自動運転走行頻度を算出する。これにより、同一のルートを自動運転で走行する自動運転走行頻度に対して手動運転へ切り替える回数が著しく多い場合、運転者がその走行部分における自動運転不満度を算出することが可能である。
 次に、記憶部23は、車両100の位置情報あるいは速度マップと関連付けて、判定部22が判定した補正量を記憶する(ステップST207)。
 このとき、車両100の進行方向ごとに補正量を記憶してもよい。すなわち、判定部22が、情報取得部21により取得された運転者による運転操作の特徴量に基づいて、車両100の進行方向ごとに、自動運転モードにおける補正対象の運転操作およびその補正量を判定する。そして、記憶部23が、自動運転モードにおける補正対象の運転操作およびその補正量を対応する位置情報および車両100の進行方向に紐付けて記憶してもよい。例えば、行き道と帰り道で別々の補正量を保存する。
 このようにすることで、実際の走行状況に応じた補正量が得られ、運転者の要望に応じた自動運転を行うことが可能となる。
 ステップST208において、車両制御部25は、車両100の運転モードを手動運転モードから自動運転モードへ変更するか否かを運転者に問い合わせる。ここで、手動運転を継続する場合(ステップST208;NO)、ステップST202の処理に戻り、上述した処理を繰り返す。また自動運転に切り替える場合(ステップST208;YES)、補正量の取得保存を終了する。ただし、自動運転(自動運転区間A)から手動運転(手動運転区間)へ切り替えた位置から予め定めた区間以上走行した場合には、単純に自動運転に設定していないだけの可能性が高い。このため、上記条件を満たす場合は補正量の保存を中断してもよい。
 なお、上述した処理では、手動運転への1度の切り替えで保存された補正量が、同一のルートにおける次回の自動運転の補正に利用される。このため、手動運転において一過的に発生した事象に対する運転操作の特徴量が補正量とされ、運転者が意図しない運転操作に自動運転が補正される可能性もある。そこで、自動運転の速度マップに設定されている各運転操作の操作量に一定の重み付けを行い、重み付けされた操作量を補正量で補正してもよい。
 例えば、自動運転で車速に40km/hと設定されているが、対応する車両位置で手動運転では35km/hで走行した場合、両者の差分である-5km/hに対して重みwを積算したものが補正量になる。wが0.5である場合、補正量は-2.5km/hとなるので、次回の自動運転による走行時には37.5km/hに設定される。
 また、上述した重みwは一定の値としてもよいが、自動運転不満度を利用して算出してもよい。すなわち、同一の走行ルートで行った自動運転に連続して手動運転への切り替えが発生した場合、運転者は、自動運転の設定に不満があることが予想される。
 そこで、同一の走行ルートにおける走行回数Nとそのとき自動運転から手動運転へ切り替えた切り替え回数ANを用いて、下記式(1)から自動運転不満度Nsを算出する。
 そして、重みwの初期量が0.5である場合、下記式(2)から自動運転不満度Nsを用いてさらに重み付けを行う。
 自動運転不満度Ns=切り替え回数AN/走行回数N ・・・(1)
 w=0.5×自動運転不満度Ns ・・・(2)
 例えば、同一の走行ルートの走行回数Nを10とし、10回の自動運転で手動運転への切り替えが発生したものとする。この場合、手動運転への切り替え回数ANが1であると、自動運転不満度Nsは0.1となり、重みwは0.05となる。
 また、ある走行ルートを初めて自動運転で通った際に手動運転への切り替えが発生した場合には、走行回数N=1、切り替え回数AN=1であるので、自動運転不満度Nsは1となる。従って、重みwは0.5となる。
 さらに、10回の自動運転で手動運転への切り替えが5回発生した場合は、走行回数N=10、切り替え回数AN=5であるので、自動運転不満度Nsは、5/10=0.5となり、重みwは0.25となる。このように自動運転への不満を数値化して補正量に反映することにより、運転者の意図にあった補正を行うことができる。
 次に自動運転の補正処理について説明する。
 図7は、実施の形態1における自動運転モードの運転操作に対する補正処理のフローチャートである。まず、カーナビゲーションシステム9は、目的地が入力されると、図3と同様に、地図DB10に記憶された地図データに基づいて目的地までのルートを設定する(ステップST301)。ルート設定が完了すると、カーナビゲーションシステム9は、地図DB10からルートに対応する道路データを読み出して、ルートにおける道路の制限速度情報、交差点情報、カーブ情報、および通信装置17によって取得可能な路車間情報や天候情報などを基にルート上における速度マップを生成する(ステップST302)。
 次に、ECU20の補正部24は、記憶部23に記憶されているデータの中から、速度マップを生成したルートに関するデータを検索することで、車両100で以前に走行したことがあるルートであり、自動運転に対する補正量が記憶されているか否かを判定する(ステップST303)。このとき、設定ルートを以前に走行したことがない場合(ステップST303;NO)、ステップST309の処理に移行する。
 設定ルートを以前に走行しており、自動運転に対する補正量がある場合(ステップST303;YES)、補正部24は、対象区間における手動運転への切り替え回数ANが、予め定められた閾値を超えているか否かを確認する(ステップST304)。
 手動運転への切り替え回数ANが予め定められた閾値以下の場合(ステップST304;NO)、ステップST307の処理に移行する。
 手動運転への切り替え回数ANが予め定められた閾値を超えた場合(ステップST304;YES)、補正部24は、自動運転に対する補正量で速度マップに設定された運転操作を補正する(ステップST305)。
 次に、補正部24は、速度マップで今回補正を行った箇所に設定されている車両速度とその先の箇所に設定されている車両速度とに基づいて、両箇所間の加速度または減速度を算出する(ステップST306)。
 続いて、補正部24は、算出した加速度が加速に関する運転者の許容値(閾値)を超えているか否か、および、算出した減速度が減速に関する運転者の許容値(閾値)を超えているか否かをそれぞれ判定する(ステップST307)。
 算出した加速度が上記閾値以下であれば(ステップST307;NO)、ステップST303の処理に戻り、上述した処理を繰り返す。
 一方、算出した加速度が上記閾値を超えている場合(ステップST307;YES)、補正部24は、加速度が上記閾値以下となるように、今回補正を行った箇所の先の箇所に設定されている車両速度に対する補正量を修正する(ステップST308)。
 先の箇所の設定速度に無理に到達する必要はないため、運転者にとって違和感のない範囲で加速されるように補正量を修正する。
 すなわち、補正部24が、先の箇所の補正後の車両速度へ変移する時間当たりの変移量が予め定めた値以下になるように、先の箇所における補正量を修正して補正後の車両速度を小さくする。
 補正部24は、算出した減速度が上記閾値を超えている場合(ステップST307;YES)、減速度が上記閾値以下となるように、今回補正を行った箇所の先の箇所に設定されている車両速度に対する補正量を修正する(ステップST308)。例えば、直線道路の先がカーブになっており、先の箇所に設定された車両速度までの減速度が大きい場合、車両速度を落とすために急ブレーキになる可能性がある。
 そこで、補正部24は、運転者にとって違和感のない範囲で減速されるように補正量を修正する。すなわち、補正部24が、先の箇所の補正後の車両速度へ変移する時間当たりの変移量が予め定めた値以下になるように、先の箇所における補正量を修正して補正後の車両速度を大きくする。
 なお、加速度を考慮するため、速度マップの補正は目的地側から行われる。すなわち、走行ルート上では、今回の補正箇所が目的地側にあり、その先の箇所は出発地側となる。
 速度マップのルート上の全ての箇所で上記補正が完了すると、車両制御部25は、この速度マップに基づいて車両100の自動運転を開始する(ステップST309)。
 このようにすることで、同一のルートを次回に走行する場合に、運転者の嗜好に合った速度設定を行うことができる。
 上述した補正はルート設定とともに行われる。このため、例えばリルートされた場合、新たなルートに対して上述した一連の処理によって補正が行われる。
 記憶部23に保存した補正量は、運転者が内容の確認や削除を適宜行えるようにしてもよい。例えば、入力装置で補正内容の確認または削除の要求を受け付ける。ECU20の情報取得部21は、入力装置によって受け付けられた要求に対応する補正量を記憶部23から読み出して表示装置18に表示する、もしくは、記憶部23から削除する。
 また、運転支援システム1において、事前に運転者を識別することにより、運転者ごとの運転支援を行ってもよい。この場合、例えば運転者Aの特性を反映した部分と運転者Bの特性を反映した部分が相反した部分のみに分けることで、他者の補正量が相互に反映されるようにしてもよい。また、両者で完全に分けてもよい。
 図8はカーブを含む道路における自動運転区間と手動運転区間の概要を示す図である。
 車両100の自動運転でカーブを走行する場合には、一般的に、地図データと車両位置とのマッチングを行い、周辺監視センサ2の検出データまたは通信装置17の路車間通信でカーブを認識することにより、カーブにおける車両100の速度およびステアリング量を最適化している。
 しかし、車両100側で認識されている情報だけでカーブへの進入速度を決定すると、運転者の嗜好に合わない速度に設定される可能性がある。例えば、車線幅が狭い、またはカーブの先が見えにくいなどといった事情が反映されず、運転者の意図より速い車両速度が設定される。この場合、運転者は、同一のカーブに進入する際に手動運転に切り替える可能性が高くなる。
 そこで、運転支援システム1では、上述した不具合を解消するために手動運転への切り替わりをトリガとして運転操作の特徴量を取得し、特徴量の中から補正量を決定する。
 例えば、運転者が車両100でカーブに進入する際に手動運転を行う場合、カーブ進入前は手動運転への切り替えと減速、カーブ走行中は操舵量、カーブ離脱時は加速もしくは自動運転への切り替えが運転操作の特徴として現れる。これらの特徴に基づいて区間特徴量を算出し、区間特徴量から補正量を求めて自動運転に反映させる。
 また、交差点においても、車両100側で認識されている情報だけで交差点への進入速度を決定すると、運転者の嗜好に合わない速度に設定される可能性がある。
 例えば、交差点では信号情報によって運転操作の特徴が異なる。運転者が車両100で交差点に進入する際に手動運転を行う場合、青信号であればカーブと同様に、交差点進入前は手動運転への切り替えと減速、交差点内の走行中は操舵量、交差点離脱時は加速もしくは自動運転への切り替えが運転操作の特徴として現れる。
 しかし、黄信号への切り替わりの際に加速を行った場合、自動運転では青信号を前提としているので、このときに得られた運転操作の特徴量は補正量として保存しない。
 以上のように、この実施の形態1によれば、車両100の運転が自動運転モードから手動運転モードへ切り替えられたことをトリガとして、車両100の位置情報および運転者の運転操作の特徴量を取得し、取得された運転者による運転操作の特徴量から、自動運転モードにおける補正対象の運転操作およびその補正量を判定する。そして、判定した補正対象の運転操作およびその補正量を対応する位置情報に紐付けて記憶しておき、補正対象の運転操作およびその補正量を用いて自動運転モードにおける運転操作を補正して、自動運転モードにおいて補正された運転操作で車両100を制御する。
 このように自動運転モードから手動運転モードへ切り替えられたことをトリガとして、車両100の位置情報および運転者の運転操作の特徴量を取得するので、メモリ使用量と処理負荷を軽減することができる。また、運転者による運転操作の特徴量に基づいて自動運転モードにおける補正対象の運転操作およびその補正量を判定するので、自動運転における運転操作を運転者の要望に合わせて補正することができる。
 また、この実施の形態1によれば、車両100の進行方向をさらに取得し、運転者による運転操作の特徴量に基づいて、車両100の進行方向ごとに、自動運転モードにおける補正対象の運転操作およびその補正量を判定する。そして、判定された補正対象の運転操作およびその補正量を対応する位置情報および車両の進行方向に紐付けて記憶し、補正対象の運転操作およびその補正量を用いて自動運転モードにおける位置情報および車両100の進行方向に対応した運転操作を補正する。このようにすることで、実際の走行状況に応じた補正量が得られ、運転者の要望に応じた自動運転を行うことが可能となる。
 さらに、この実施の形態1によれば、車両100の周辺状況をさらに取得し、車両100の周辺状況に基づいて運転者による運転操作の特徴量から補正対象の運転操作の補正量とする特徴量を判定する。このようにすることで、一過性の事象に対して運転者が行った運転操作の特徴量を補正量として保存しないことで、メモリ使用量をさらに削減することができる。
 さらに、この実施の形態1によれば、補正後の車両状態へ変移する時間当たりの変移量が予め定めた値以下となるように補正するので、運転操作を補正した箇所で急加速または急減速が発生することを防止できる。
 さらに、この実施の形態1によれば、同一ルートの走行回数に対する自動運転モードから手動運転モードへの切り替え回数を自動運転モードに対する不満度として算出し、補正量を不満度で重み付けする。このように自動運転への不満を数値化して補正量に反映することにより、運転者の意図にあった補正を行うことができる。
実施の形態2.
 図9は、この発明の実施の形態2に係る運転支援システムにおけるサーバを示す図である。図9に示すように、この実施の形態2に係る運転支援システムは、車両100に搭載された運転支援装置に加えて、データセンタ30における通信装置301、サーバ302およびデータベース303を備える。通信装置301は、運転支援装置との間で通信する通信部である。例えば、携帯電話などを介して運転支援装置と通信接続する。
 サーバ302は、実施の形態1で示した記憶部23として機能するデータベース(DB)303を備え、さらに実施の形態1で示した判定部22および補正部24を備える。
 また、車両100に搭載された運転支援装置は、実施の形態1で示した情報取得部21および車両制御部25を備える。なお、DB303に地図データなども登録することで、サーバ302がルート探索や速度マップの生成を行ってもよい。
 次に動作について説明する。
 図10は、実施の形態2における手動運転モードの特徴量を取得する処理のフローチャートである。図10の処理は、車両100に搭載された運転支援装置が実施する。
 まず、情報取得部21は、実施の形態1と同様に、自動運転スイッチ8の操作信号などに基づいて、車両100が自動運転モードから手動運転モードへ変更されたか否かを確認する(ステップST401)。手動運転モードへ変更されなければ(ステップST401;NO)、ステップST401の処理に戻り、上記判定処理を繰り返す。
 情報取得部21は、車両100が手動運転モードへ変更された場合(ステップST401;YES)、手動運転モードにおける運転操作の各種の特徴量を取得する(ステップST402)。手動運転モードにおける運転者による運転操作の特徴量は、情報取得部21から、通信装置17を介してサーバ302へ送信される(ステップST403)。
 図11は、実施の形態2における自動運転モードの補正対象およびその補正量を保存する処理のフローチャートである。図11の処理は、サーバ302が実施する。
 サーバ302は、通信装置301を介して車両側から特徴量を受信したか否かを判定する(ステップST501)。車両側から特徴量を受信しなければ(ステップST501;NO)、ステップST501の処理に戻り、上記判定処理を繰り返す。
 サーバ302の判定部22は、通信装置301によって車両側から特徴量を受信すると(ステップST501;YES)、受信した特徴量が補正量として記憶する必要があるか否かを判定する。補正対象の運転操作およびその補正量の判定方法は、実施の形態1と同様である。補正対象の運転操作およびその補正量は対応する位置情報および車両100の進行方向に紐付けてDB303に記憶される(ステップST502)。
 なお、実施の形態1では、情報取得部21に取得された運転操作の特徴量のうち、判定部22に判定された特徴量のみを補正量として保存する場合を示したが、DB303は、運転支援装置に比べて記憶容量に余裕がある。そこで、補正時の反映率に相当する重みを各特徴量に付与して補正量としてDB303に保存してもよい。
 図12は、実施の形態2における自動運転モードの運転操作に対する補正処理のフローチャートである。図12の処理は、サーバ302が実施する。
 まず、サーバ302の補正部24が、通信装置301を介して運転支援装置からルートと速度マップの問い合わせがあったか否かを確認する(ステップST601)。
 問い合わせがなければ(ステップST601;NO)、ステップST601に戻って、上記判定処理を繰り返す。
 補正部24は、問い合わせがあった場合(ステップST601;YES)、問い合わせに対応する速度マップのルートに対する補正量をDB303から読み出し、図7と同様にして、この速度マップに設定された自動運転モードにおける運転操作を補正する(ステップST602)。補正された速度マップとルートは、通信装置301を介して運転支援装置へ送信される(ステップST603)。
 車両制御部25は、サーバ302側から受信した速度マップに基づいて、車両100の自動運転を開始する。
 以上のように、この実施の形態2によれば、判定部22、記憶部23として機能するDB303および補正部24が、運転支援装置との間で通信が可能なサーバ302に設けられ、情報取得部21は、取得した車両100の位置情報および運転者による運転操作の特徴量をサーバ302に送信し、車両制御部25は、サーバ302から受信した補正部24により補正された運転操作で車両100を制御する。
 このように構成しても、実施の形態1と同様に、メモリ使用量および処理負荷を軽減しつつ、運転者に合わせて自動運転を補正することができる。
 なお、本発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。
 この発明に係る運転支援装置は、メモリ使用量および処理負荷を軽減しつつ、運転者に合わせて自動運転を補正することができるので、自動運転と手動運転とを切り替え可能な車両の運転支援装置に好適である。
 1 運転支援システム、2 周辺監視センサ、3 車速センサ、4 ジャイロセンサ、5 GPS受信機、6 方向指示器、7 速度設定スイッチ、8 自動運転スイッチ、9 カーナビゲーションシステム、10 地図情報データベース(DB)、11 アクセルアクチュエータ、12 アクセルペダルセンサ、13 ブレーキアクチュエータ、14 ブレーキペダルセンサ、15 ステアリングアクチュエータ、16 ステアリングセンサ、17 通信装置、18 表示装置、19 警報装置、20 ECU、21 情報取得部、22 判定部、23 記憶部、24 補正部、25 車両制御部、30 データセンタ、100 車両、301 通信装置、302 サーバ、303 データベース(DB)。

Claims (8)

  1.  自動運転モードと運転者による手動運転モードとを切り替えて車両を運転支援する運転支援装置であって、
     前記車両の運転が前記自動運転モードから前記手動運転モードへ切り替えられたことをトリガとして、前記車両の位置情報および前記運転者による運転操作の特徴量を取得する情報取得部と、
     前記情報取得部により取得された前記運転者による運転操作の特徴量から前記自動運転モードにおける補正対象の運転操作およびその補正量を判定する判定部と、
     前記判定部により判定された前記補正対象の運転操作およびその補正量を対応する位置情報に紐付けて記憶する記憶部と、
     前記記憶部から読み出した前記補正対象の運転操作およびその補正量を用いて前記自動運転モードにおける運転操作を補正する補正部と、
     前記補正部により補正された運転操作を含む前記自動運転モードで前記車両を制御する車両制御部とを備える運転支援装置。
  2.  前記情報取得部は、車両の進行方向をさらに取得し、
     前記判定部は、前記情報取得部により取得された前記運転者による運転操作の特徴量に基づいて、前記車両の進行方向ごとに、前記自動運転モードにおける補正対象の運転操作およびその補正量を判定し、
     前記記憶部は、前記判定部により判定された前記補正対象の運転操作およびその補正量を、対応する位置情報および前記車両の進行方向に紐付けて記憶し、
     前記補正部は、前記記憶部から読み出した前記補正対象の運転操作およびその補正量を用いて、前記自動運転モードにおける前記位置情報および前記車両の進行方向に対応した運転操作を補正することを特徴とする請求項1記載の運転支援装置。
  3.  前記情報取得部は、車両の周辺状況をさらに取得し、
     前記判定部は、前記車両の周辺状況に基づいて前記運転者による運転操作の特徴量から前記補正対象の運転操作の補正量とする特徴量を判定することを特徴とする請求項1記載の運転支援装置。
  4.  前記補正部は、補正後の車両状態へ変移する時間当たりの変移量が予め定めた値以下となるように補正することを特徴とする請求項1記載の運転支援装置。
  5.  前記補正部は、同一ルートの走行回数に対する自動運転モードから手動運転モードへの切り替え回数を自動運転モードに対する不満度として算出し、前記補正量を前記不満度で重み付けすることを特徴とする請求項1記載の運転支援装置。
  6.  前記判定部、前記記憶部および前記補正部は、前記運転支援装置との間で通信が可能なサーバに設けられ、
     前記情報取得部は、取得した前記車両の位置情報および前記運転者による運転操作の特徴量を前記サーバに送信し、
     前記車両制御部は、前記サーバから受信した、前記補正部により補正された運転操作で前記車両を制御することを特徴とする請求項1記載の運転支援装置。
  7.  自動運転モードと運転者による手動運転モードとを切り替えて車両を運転支援する運転支援方法であって、
     情報取得部が、前記車両の運転が前記自動運転モードから前記手動運転モードへ切り替えられたことをトリガとして、前記車両の位置情報および前記運転者による運転操作の特徴量を取得し、
     判定部が、前記情報取得部により取得された前記運転者の運転操作の特徴量から前記自動運転モードにおける補正対象の運転操作およびその補正量を判定し、
     記憶部が、前記自動運転モードにおける補正対象の運転操作およびその補正量を対応する位置情報に紐付けて記憶し、
     補正部が、前記記憶部から読み出した前記補正対象の運転操作およびその補正量を用いて、前記自動運転モードにおける運転操作を補正し、
     車両制御部が、前記補正部により補正された運転操作を含む前記自動運転モードで前記車両を制御する運転支援方法。
  8.  自動運転モードと運転者による手動運転モードとを切り替えて車両を運転支援する運転支援方法であって、
     運転支援装置の情報取得部が、前記車両の運転が前記自動運転モードから前記手動運転モードへ切り替えられたことをトリガとして、前記車両の位置情報および前記運転者による運転操作の特徴量を取得してサーバに送信し、
     前記サーバの判定部が、前記情報取得部により取得された前記運転者の運転操作の特徴量から前記自動運転モードにおける補正対象の運転操作およびその補正量を判定し、
     前記サーバの記憶部が、前記自動運転モードにおける補正対象の運転操作およびその補正量を対応する位置情報に紐付けて記憶し、
     前記サーバの補正部が、前記記憶部から読み出した前記補正対象の運転操作およびその補正量を用いて、前記自動運転モードにおける運転操作を補正し、
     前記運転支援装置の車両制御部が、前記補正部により補正された運転操作を含む前記自動運転モードで前記車両を制御する運転支援方法。
PCT/JP2014/060607 2014-04-14 2014-04-14 運転支援装置および運転支援方法 WO2015159341A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2016513510A JP6246336B2 (ja) 2014-04-14 2014-04-14 運転支援装置および運転支援方法
CN201480078026.6A CN106232443B (zh) 2014-04-14 2014-04-14 驾驶支援装置及驾驶支援方法
PCT/JP2014/060607 WO2015159341A1 (ja) 2014-04-14 2014-04-14 運転支援装置および運転支援方法
US15/113,871 US9919717B2 (en) 2014-04-14 2014-04-14 Driving assistance device and driving assistance method
DE112014006584.6T DE112014006584B4 (de) 2014-04-14 2014-04-14 Fahrassistenzvorrichtung und Fahrassistenzverfahren

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/060607 WO2015159341A1 (ja) 2014-04-14 2014-04-14 運転支援装置および運転支援方法

Publications (1)

Publication Number Publication Date
WO2015159341A1 true WO2015159341A1 (ja) 2015-10-22

Family

ID=54323592

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/060607 WO2015159341A1 (ja) 2014-04-14 2014-04-14 運転支援装置および運転支援方法

Country Status (5)

Country Link
US (1) US9919717B2 (ja)
JP (1) JP6246336B2 (ja)
CN (1) CN106232443B (ja)
DE (1) DE112014006584B4 (ja)
WO (1) WO2015159341A1 (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170094583A (ko) * 2016-02-11 2017-08-21 삼성전자주식회사 운송 기기를 제어하는 제어 장치 및 이의 운송 기기 제어 방법
JP2018025490A (ja) * 2016-08-10 2018-02-15 株式会社デンソー 位置推定装置
CN108068826A (zh) * 2016-11-16 2018-05-25 法乐第(北京)网络科技有限公司 车辆情景模式切换方法、装置及电子设备
WO2018143236A1 (ja) * 2017-01-31 2018-08-09 パイオニア株式会社 情報処理装置、サーバ装置、情報処理システム、情報処理方法、及びプログラム
KR20180104938A (ko) * 2017-03-14 2018-09-27 현대자동차주식회사 차선 변경 장치, 그를 포함하는 시스템, 및 그 방법
KR20180111760A (ko) * 2017-03-03 2018-10-11 바이두닷컴 타임즈 테크놀로지(베이징) 컴퍼니 리미티드 자율 주행 모드를 재진입하는 자율 주행 차량 제어를 위한 종방향 캐스케이디드 제어기 프리셋
US10108190B2 (en) 2016-02-25 2018-10-23 Toyota Jidosha Kabushiki Kaisha Autonomous driving apparatus
KR20190060336A (ko) * 2017-11-24 2019-06-03 현대자동차주식회사 장애물 판단을 위한 파라미터 보정 시스템 및 방법
JP2019125135A (ja) * 2018-01-16 2019-07-25 株式会社デンソー 車両の自動運転制御システム
JP2019139627A (ja) * 2018-02-14 2019-08-22 パイオニア株式会社 表示装置
JP2019159930A (ja) * 2018-03-14 2019-09-19 オムロン株式会社 運転支援装置、運転支援方法、運転支援プログラム、動作制御装置、動作制御方法、及び動作制御プログラム
DE112018001586T5 (de) 2017-04-27 2020-01-02 Hitachi Automotive Systems, Ltd. Fahrzeugsteuervorrichtung
JP2020042853A (ja) * 2017-05-16 2020-03-19 みこらった株式会社 自動車及び自動車用プログラム
KR20200072612A (ko) * 2018-12-12 2020-06-23 현대자동차주식회사 차량의 주행 제어 장치 및 방법, 그리고 차량 시스템
KR20200094686A (ko) * 2019-01-29 2020-08-07 폭스바겐 악티엔게젤샤프트 시스템, 차량, 네트워크 컴포넌트, 장치들, 방법들, 및 차량과 네트워크 컴포넌트를 위한 컴퓨터 프로그램들
JP2022519915A (ja) * 2019-03-19 2022-03-25 馭勢科技(北京)有限公司 自動運転システムのアップグレード方法、自動運転システム及び車載機器
JP2022521808A (ja) * 2019-03-19 2022-04-12 馭勢科技(北京)有限公司 自動運転システムのアップグレード方法、自動運転システム及び車載機器
KR20230083056A (ko) * 2021-12-02 2023-06-09 한국과학기술연구원 자율 주행용 뉴로모픽 프로세서

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160076262A (ko) * 2014-12-22 2016-06-30 엘지전자 주식회사 차량의 주행 모드 전환 장치 및 그 방법
EP3845427A1 (en) * 2015-02-10 2021-07-07 Mobileye Vision Technologies Ltd. Sparse map for autonomous vehicle navigation
US10614640B2 (en) * 2015-08-05 2020-04-07 EZ Lynk SEZC System and method for real time wireless ECU monitoring and reprogramming
US11430273B2 (en) 2015-08-05 2022-08-30 EZ Lynk SEZC Apparatus and method for remote ELD monitoring and ECU reprogramming
US10621796B2 (en) * 2015-08-05 2020-04-14 EZ Lynk SEZC System and method for real time wireless ECU monitoring and reprogramming
US11210871B2 (en) 2015-08-05 2021-12-28 EZ Lynk SEZC System and method for remote emissions control unit monitoring and reprogramming
CN110023162B (zh) * 2016-12-02 2022-02-11 三菱电机株式会社 自动驾驶控制计划制定装置及自动驾驶控制计划的制定方法
JP6648721B2 (ja) * 2017-03-09 2020-02-14 オムロン株式会社 支援装置、支援方法およびプログラム
JP6683805B2 (ja) * 2017-03-10 2020-04-22 バイドゥドットコム タイムズ テクノロジー (ベイジン) カンパニー リミテッドBaidu.com Times Technology (Beijing) Co., Ltd. 自律走行モードへ再進入する自律走行車の制御のための方法及びシステム
CN110914884B (zh) * 2017-07-21 2022-08-30 索尼半导体解决方案公司 车辆控制器和车辆控制方法
JP6944308B2 (ja) 2017-08-18 2021-10-06 ソニーセミコンダクタソリューションズ株式会社 制御装置、制御システム、および制御方法
US10514269B2 (en) * 2017-08-31 2019-12-24 Denso International America, Inc. Automated driving device and assisting device for vehicle
CN107491073B (zh) * 2017-09-05 2021-04-02 百度在线网络技术(北京)有限公司 无人驾驶车辆的数据训练方法和装置
CN110015302B (zh) * 2017-12-22 2022-06-07 德尔福技术有限责任公司 用于在施工区域附近从自动模式改变为手动模式的自动车辆系统和方法
KR102496654B1 (ko) * 2018-02-21 2023-02-07 현대자동차주식회사 차량의 주행모드 전환 제어 장치 및 방법, 그리고 차량 시스템
CN108399776B (zh) * 2018-03-06 2020-10-13 上海豪骋智能科技有限公司 一种基于道路模式的自动驾驶道路分配系统
WO2020014683A1 (en) * 2018-07-13 2020-01-16 Kache.AI Systems and methods for autonomous object detection and vehicle following
KR102049923B1 (ko) 2018-08-27 2019-11-28 현대모비스 주식회사 엠디피에스 시스템의 제어 장치 및 방법
JP7135960B2 (ja) * 2019-03-22 2022-09-13 株式会社デンソー 運転引継装置
CN112654548B (zh) * 2020-05-09 2022-04-05 华为技术有限公司 一种自适应优化自动驾驶系统的方法及装置
US11513498B2 (en) 2020-08-03 2022-11-29 Caterpillar Paving Products Inc. Transitioning between manned control mode and unmanned control mode based on assigned priority
CN112078584B (zh) * 2020-09-03 2021-10-22 广州文远知行科技有限公司 车辆驾驶模式的管理方法、设备及存储介质
CN113401128B (zh) * 2021-08-06 2022-09-13 清华大学 一种基于车云通讯的车辆驾驶模式切换方法
CN113879302A (zh) * 2021-10-21 2022-01-04 中寰卫星导航通信有限公司 一种车辆控制方法、装置、设备及存储介质
CN115497317B (zh) * 2022-09-13 2024-04-12 阿波罗智联(北京)科技有限公司 目标路段确定方法、装置、设备、可读存储介质及产品

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003080970A (ja) * 2001-09-17 2003-03-19 Mitsubishi Motors Corp 車両速度制御装置
JP2009234442A (ja) * 2008-03-27 2009-10-15 Equos Research Co Ltd 運転操作支援装置
WO2011145165A1 (ja) * 2010-05-17 2011-11-24 トヨタ自動車株式会社 運転支援装置
WO2013005293A1 (ja) * 2011-07-04 2013-01-10 トヨタ自動車株式会社 車両用運転支援装置
JP2013193671A (ja) * 2012-03-22 2013-09-30 Toyota Motor Corp 車両走行支援装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3058968B2 (ja) 1991-12-12 2000-07-04 マツダ株式会社 学習制御自動車
US6161072A (en) 1999-01-21 2000-12-12 Intel Corporation Automatic cruise control
EP1302356B1 (en) 2001-10-15 2006-08-02 Ford Global Technologies, LLC. Method and system for controlling a vehicle
JP2003276473A (ja) 2002-03-26 2003-09-30 Toyota Central Res & Dev Lab Inc 目標車速設定装置
JP4277907B2 (ja) 2007-01-22 2009-06-10 株式会社日立製作所 自動車の走行制御装置
US8401736B2 (en) * 2008-06-20 2013-03-19 Toyota Jidosha Kabushiki Kaisha Driving assistance apparatus and driving assistance method
JP5056707B2 (ja) * 2008-10-01 2012-10-24 トヨタ自動車株式会社 車速制御装置
JP5353745B2 (ja) 2010-02-10 2013-11-27 トヨタ自動車株式会社 運転支援システム
JP5212748B2 (ja) * 2010-09-29 2013-06-19 アイシン精機株式会社 駐車支援装置
US8548667B2 (en) * 2011-12-15 2013-10-01 Steering Solutions Ip Holding Corporation Hands on steering wheel detect in lane centering operation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003080970A (ja) * 2001-09-17 2003-03-19 Mitsubishi Motors Corp 車両速度制御装置
JP2009234442A (ja) * 2008-03-27 2009-10-15 Equos Research Co Ltd 運転操作支援装置
WO2011145165A1 (ja) * 2010-05-17 2011-11-24 トヨタ自動車株式会社 運転支援装置
WO2013005293A1 (ja) * 2011-07-04 2013-01-10 トヨタ自動車株式会社 車両用運転支援装置
JP2013193671A (ja) * 2012-03-22 2013-09-30 Toyota Motor Corp 車両走行支援装置

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102464926B1 (ko) * 2016-02-11 2022-11-08 삼성전자주식회사 운송 기기를 제어하는 제어 장치 및 이의 운송 기기 제어 방법
KR20170094583A (ko) * 2016-02-11 2017-08-21 삼성전자주식회사 운송 기기를 제어하는 제어 장치 및 이의 운송 기기 제어 방법
US10108190B2 (en) 2016-02-25 2018-10-23 Toyota Jidosha Kabushiki Kaisha Autonomous driving apparatus
JP2018025490A (ja) * 2016-08-10 2018-02-15 株式会社デンソー 位置推定装置
CN108068826A (zh) * 2016-11-16 2018-05-25 法乐第(北京)网络科技有限公司 车辆情景模式切换方法、装置及电子设备
WO2018143236A1 (ja) * 2017-01-31 2018-08-09 パイオニア株式会社 情報処理装置、サーバ装置、情報処理システム、情報処理方法、及びプログラム
JPWO2018143236A1 (ja) * 2017-01-31 2019-11-21 パイオニア株式会社 情報処理装置、サーバ装置、情報処理方法、及びプログラム
KR20180111760A (ko) * 2017-03-03 2018-10-11 바이두닷컴 타임즈 테크놀로지(베이징) 컴퍼니 리미티드 자율 주행 모드를 재진입하는 자율 주행 차량 제어를 위한 종방향 캐스케이디드 제어기 프리셋
KR102047945B1 (ko) * 2017-03-03 2019-11-22 바이두닷컴 타임즈 테크놀로지(베이징) 컴퍼니 리미티드 자율 주행 모드를 재진입하는 자율 주행 차량 제어를 위한 종방향 캐스케이디드 제어기 프리셋
KR20180104938A (ko) * 2017-03-14 2018-09-27 현대자동차주식회사 차선 변경 장치, 그를 포함하는 시스템, 및 그 방법
KR102262579B1 (ko) 2017-03-14 2021-06-09 현대자동차주식회사 차선 변경 장치, 그를 포함하는 시스템, 및 그 방법
JPWO2018198746A1 (ja) * 2017-04-27 2020-05-14 日立オートモティブシステムズ株式会社 車両制御装置
US11148684B2 (en) 2017-04-27 2021-10-19 Hitachi Automotive Systems, Ltd. Vehicle control device
DE112018001586T5 (de) 2017-04-27 2020-01-02 Hitachi Automotive Systems, Ltd. Fahrzeugsteuervorrichtung
JP2020042853A (ja) * 2017-05-16 2020-03-19 みこらった株式会社 自動車及び自動車用プログラム
KR20190060336A (ko) * 2017-11-24 2019-06-03 현대자동차주식회사 장애물 판단을 위한 파라미터 보정 시스템 및 방법
KR102406520B1 (ko) * 2017-11-24 2022-06-10 현대자동차주식회사 장애물 판단을 위한 파라미터 보정 시스템 및 방법
JP7225536B2 (ja) 2018-01-16 2023-02-21 株式会社デンソー 車両の自動運転制御システム
JP2019125135A (ja) * 2018-01-16 2019-07-25 株式会社デンソー 車両の自動運転制御システム
JP2019139627A (ja) * 2018-02-14 2019-08-22 パイオニア株式会社 表示装置
JP2019159930A (ja) * 2018-03-14 2019-09-19 オムロン株式会社 運転支援装置、運転支援方法、運転支援プログラム、動作制御装置、動作制御方法、及び動作制御プログラム
KR20200072612A (ko) * 2018-12-12 2020-06-23 현대자동차주식회사 차량의 주행 제어 장치 및 방법, 그리고 차량 시스템
KR102645050B1 (ko) 2018-12-12 2024-03-11 현대자동차주식회사 차량의 주행 제어 장치 및 방법, 그리고 차량 시스템
KR102423370B1 (ko) * 2019-01-29 2022-07-25 폭스바겐 악티엔게젤샤프트 시스템, 차량, 네트워크 컴포넌트, 장치들, 방법들, 및 차량과 네트워크 컴포넌트를 위한 컴퓨터 프로그램들
KR20200094686A (ko) * 2019-01-29 2020-08-07 폭스바겐 악티엔게젤샤프트 시스템, 차량, 네트워크 컴포넌트, 장치들, 방법들, 및 차량과 네트워크 컴포넌트를 위한 컴퓨터 프로그램들
JP2022519915A (ja) * 2019-03-19 2022-03-25 馭勢科技(北京)有限公司 自動運転システムのアップグレード方法、自動運転システム及び車載機器
JP2022521808A (ja) * 2019-03-19 2022-04-12 馭勢科技(北京)有限公司 自動運転システムのアップグレード方法、自動運転システム及び車載機器
JP7104250B2 (ja) 2019-03-19 2022-07-20 馭勢科技(北京)有限公司 自動運転システムのアップグレード方法、自動運転システム及び車載機器
JP7121864B2 (ja) 2019-03-19 2022-08-18 馭勢科技(北京)有限公司 自動運転システムのアップグレード方法、自動運転システム及び車載機器
KR20230083056A (ko) * 2021-12-02 2023-06-09 한국과학기술연구원 자율 주행용 뉴로모픽 프로세서
KR102653754B1 (ko) 2021-12-02 2024-04-03 한국과학기술연구원 자율 주행용 뉴로모픽 프로세서

Also Published As

Publication number Publication date
CN106232443A (zh) 2016-12-14
DE112014006584B4 (de) 2022-09-22
DE112014006584T5 (de) 2017-03-23
CN106232443B (zh) 2018-10-02
US9919717B2 (en) 2018-03-20
JPWO2015159341A1 (ja) 2017-04-13
US20160347328A1 (en) 2016-12-01
JP6246336B2 (ja) 2017-12-13

Similar Documents

Publication Publication Date Title
JP6246336B2 (ja) 運転支援装置および運転支援方法
US11623646B2 (en) Autonomous driving system
KR102138051B1 (ko) 운전 지원 장치
US10943133B2 (en) Vehicle control device, vehicle control method, and storage medium
US10981569B2 (en) Autonomous driving system
JP4929114B2 (ja) 車両用情報報知装置、情報提供システム、情報報知方法
JP5760835B2 (ja) 走行支援装置及び走行支援システム
JP6490486B2 (ja) 経路探索装置及び経路探索方法
JP2018025993A (ja) 自動運転システム
US20200174470A1 (en) System and method for supporting autonomous vehicle
US20200279481A1 (en) Server and Vehicle Assistance System
JP5803844B2 (ja) 割込予測装置、割込予測方法、及び運転支援システム
JP2019182093A (ja) 挙動予測装置
JP2008087545A (ja) 走行制御装置及び走行制御方法
US20190278286A1 (en) Vehicle control device, vehicle control method, and storage medium
CN115443234B (zh) 车辆行为推定方法、车辆控制方法及车辆行为推定装置
US11938935B2 (en) Vehicle driving control apparatus
JP2012137999A (ja) 運転支援装置及び運転支援方法
WO2020115516A1 (ja) 走行支援方法、及び走行支援装置
KR102384462B1 (ko) 차량 제어 장치 및 방법
JP2021060941A (ja) 物体認識方法及び物体認識システム
JP2019090834A (ja) 経路探索装置及び経路探索装置の経路探索方法
JP6548029B2 (ja) 自動運転システム
JP7334107B2 (ja) 車両制御方法及び車両制御装置
CN114148328A (zh) 用于控制车辆驾驶的装置和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14889289

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016513510

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15113871

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112014006584

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14889289

Country of ref document: EP

Kind code of ref document: A1