WO2015146649A1 - リチウムイオン二次電池の正極用スラリー、このスラリーを用いて得られる正極及びその製造方法、この正極を用いてなるリチウムイオン二次電池及びその製造方法 - Google Patents

リチウムイオン二次電池の正極用スラリー、このスラリーを用いて得られる正極及びその製造方法、この正極を用いてなるリチウムイオン二次電池及びその製造方法 Download PDF

Info

Publication number
WO2015146649A1
WO2015146649A1 PCT/JP2015/057548 JP2015057548W WO2015146649A1 WO 2015146649 A1 WO2015146649 A1 WO 2015146649A1 JP 2015057548 W JP2015057548 W JP 2015057548W WO 2015146649 A1 WO2015146649 A1 WO 2015146649A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
lithium ion
ion secondary
slurry
secondary battery
Prior art date
Application number
PCT/JP2015/057548
Other languages
English (en)
French (fr)
Inventor
優介 青木
充 花崎
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to CN201580006248.1A priority Critical patent/CN105940530B/zh
Priority to JP2016510237A priority patent/JPWO2015146649A1/ja
Publication of WO2015146649A1 publication Critical patent/WO2015146649A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a positive electrode slurry for a lithium ion secondary battery, a positive electrode obtained using the slurry, a method for producing the same, a lithium ion secondary battery using the positive electrode, and a method for producing the same.
  • Lithium ion secondary batteries are widely used as a power source for portable devices such as mobile phones and laptop computers, and as a drive power source for industrial devices that require long life such as power storage and electric vehicles.
  • portable devices such as mobile phones and laptop computers
  • industrial devices that require long life such as power storage and electric vehicles.
  • consumer devices will be required to be lighter and smaller, and batteries with higher energy density will be required.
  • industrial equipment is required to have high output, large capacity, and long life performance compatible with large batteries.
  • LiMO 2 is a transition metal
  • a positive electrode used in a lithium ion secondary battery usually has a structure in which a positive electrode active material layer is laminated on an aluminum current collector. In addition to the positive electrode active material, the positive electrode active material layer has a positive electrode active material layer. Binders for binding materials and positive electrode active materials and current collectors are used. In order to realize a high capacity and long life of a lithium ion secondary battery, a smaller amount of a material having a high binding force is required as a binder.
  • NMP organic solvent-based N-methylpyrrolidone
  • PVDF Polyvinylidene fluoride
  • the PVDF-based binder cannot satisfactorily bind the positive electrode active materials to each other and the active material and the current collector, and there is a problem that the charge / discharge cycle characteristics of the lithium ion secondary battery are deteriorated.
  • a large amount of PVDF binder is required to ensure sufficient binding between the positive electrode active materials and between the active material and the current collector, resulting in a decrease in the capacity of the lithium ion secondary battery. End up.
  • the production of PVDF-based binders has a high environmental load because NMP solvents have mutagenic properties, and the development of new binders that use water as a solvent has attracted attention.
  • styrene-butadiene rubber (hereinafter also referred to as “SBR”), which is widely used as an aqueous binder for negative electrodes, has attracted attention.
  • CMC carboxymethyl cellulose
  • the SBR binder has a low oxidation resistance as a feature of its structure.
  • the use of an SBR binder may reduce the long life characteristics of the battery.
  • the present invention is a slurry for a positive electrode of an aqueous lithium ion secondary battery, in which reaction between the positive electrode active material and water is suppressed, and has high capacity characteristics, low resistance characteristics, and high charge / discharge cycle maintenance ratio characteristics
  • A Positive electrode active material
  • B Conductive aid
  • C Resin comprising a copolymer of at least one of ethylenically unsaturated carboxylic acid ester and ethylenically unsaturated carboxylic acid and an aromatic vinyl compound A binder
  • D a thickening dispersant
  • E a pH adjuster
  • F water
  • the content of the (E) pH adjuster is 0 with respect to 100 parts by mass of the solid content of the positive electrode active material.
  • a slurry for a positive electrode of a lithium ion secondary battery wherein the slurry is 1 part by mass or more and 1.0 part by mass or less, and the pH of the slurry is 6.0 to 8.0 at 23 ° C.
  • the pH adjuster (E) is selected from a compound consisting of an organic acid and an inorganic acid, and the organic acid contains at least one of a carboxyl group, a sulfo group, and a phosphone group alone or in combination.
  • the pH adjuster (E) is at least one selected from 1,2,3,4-butanetetracarboxylic acid, citric acid, succinic acid, acetic acid, methanesulfonic acid, propylsulfonic acid, and carbonic acid.
  • the pH adjuster (E) is a basic pH additive, and the basic pH additive is selected from an organic basic pH additive and an inorganic basic pH additive.
  • the organic basic pH additive is at least one selected from primary amines, secondary amines, tertiary amines and quaternary ammoniums, and the inorganic basic pH additive is ammonia, lithium hydroxide,
  • the (D) thickening dispersant is a water-soluble polymer composed of carboxymethyl cellulose, polyethylene oxide, polyacrylic acid, poly-N-vinylacetamide, and a copolymer of acrylic acid and N-vinylacetamide.
  • a method for producing a positive electrode for a lithium ion secondary battery comprising a positive electrode current collector including a positive electrode active material layer containing a positive electrode active material, the lithium ion secondary according to any one of [1] to [6]
  • the manufacturing method of the positive electrode for lithium ion secondary batteries which has the process of supplying the slurry for positive electrodes of a battery on the said positive electrode electrical power collector, and forming the said positive electrode active material layer.
  • a step of preparing a slurry for a positive electrode of a lithium ion secondary battery according to any one of [1] to [6], and applying a slurry for a positive electrode of the lithium ion secondary battery to a positive electrode current collector A process for producing a positive electrode for a lithium ion secondary battery by forming a positive electrode active material layer and a process for assembling a lithium ion secondary battery comprising the positive electrode for a lithium ion secondary battery. Production method.
  • a water-based lithium ion is used in which a specific resin binder and a specific thickening dispersant are used in combination, and the pH is adjusted to a neutral range of 6.0 to 8.0 using a pH adjuster.
  • Lithium ion that suppresses the reaction between the positive electrode active material and water in the positive electrode slurry and has high capacity characteristics, low resistance characteristics, and high charge / discharge cycle retention characteristics by using the secondary battery positive electrode slurry.
  • a secondary battery and its positive electrode can be provided.
  • the present invention will be described in detail below.
  • the slurry for the positive electrode of the lithium ion secondary battery of the present invention comprises (A) a positive electrode active material, (B) a conductive auxiliary agent, (C) at least one of an ethylenically unsaturated carboxylic acid ester and an ethylenically unsaturated carboxylic acid and an aroma.
  • the positive electrode active material is not particularly limited as long as it is a positive electrode active material that can be used for a lithium ion secondary battery.
  • chalcogen compounds such as O 5 , or a combination of two or more kinds can be used.
  • ⁇ (B) Conductive aid> Although it will not specifically limit as a conductive support agent if it has electroconductivity, It is preferable to use a carbon material normally. Although it will not specifically limit if it is a carbon material which has electroconductivity as a carbon material, It is preferable to use especially 1 type in graphite, carbon black, carbon fiber, etc., or combining multiple types. Examples of carbon black include acetylene black, ketjen black, furnace black, channel black, and thermal black, and acetylene black and ketjen black are preferable.
  • the content of the conductive auxiliary agent is preferably 1 part by mass or more and 10 parts by mass or less, more preferably 2 parts by mass or more and 8 parts by mass or less, based on 100 parts by mass of the solid content of the component (A). Preferably they are 4 mass parts or more and 6 mass parts or less.
  • the resin binder is a copolymer of an aromatic vinyl compound and at least one of an ethylenically unsaturated carboxylic acid ester and an ethylenically unsaturated carboxylic acid.
  • the resin binder of the present invention is contained in an amount of 0.2 parts by mass or more and 5.0 parts by mass or less, preferably 0.2 parts by mass with respect to 100 parts by mass of the solid content of the positive electrode active material (A). It is contained in an amount of at least part and no more than 3.0 parts by weight. By setting the amount within the above range, it is possible to provide a positive electrode slurry and a positive electrode that have good binding properties between the positive electrode active materials and between the positive electrode active material and the current collector. A lithium ion secondary battery having a discharge capacity and excellent high-temperature charge / discharge cycle characteristics can be provided.
  • the resin binder when the resin binder is less than 0.2 parts by mass with respect to 100 parts by mass of the solid content of the positive electrode active material (A), the binding property between the active material and the current collector tends to decrease. If it exceeds 0.0 parts by mass, the initial discharge capacity of the lithium ion secondary battery tends to decrease.
  • the aromatic vinyl compound in the copolymer of at least one of ethylenically unsaturated carboxylic acid ester and ethylenically unsaturated carboxylic acid and an aromatic vinyl compound is a compound having an ethylenic carbon-carbon double bond and an aromatic ring. is there.
  • the aromatic vinyl compound include styrene, ⁇ -methylstyrene, styrene sulfonic acid and the like. Styrene is preferred as the aromatic vinyl compound.
  • Examples of the ethylenically unsaturated carboxylic acid ester include alkyl esters of ⁇ , ⁇ -unsaturated monocarboxylic acid or dicarboxylic acid (acrylic acid, methacrylic acid, crotonic acid, itaconic acid, maleic acid, fumaric acid, etc.).
  • the alkyl chain of the ester is preferably a linear, branched or cyclic alkyl chain having 1 to 18 carbon atoms, more preferably 2 to 12 carbon atoms, and still more preferably 2 to 8 carbon atoms.
  • the ethylenically unsaturated carboxylic acid ester is preferably a (meth) acrylic acid ester having a linear, branched or cyclic alkyl chain having 2 to 8 carbon atoms.
  • (meth) acrylic acid means methacrylic acid or acrylic acid.
  • At least one of an ethylenically unsaturated carboxylic acid ester and an ethylenically unsaturated carboxylic acid, which is a resin binder, and aromatic vinyl Copolymers with compounds include hydroxyalkyl (meth) acrylate, aminoalkyl (meth) acrylate, vinyl esters such as vinyl acetate and vinyl alkanoate, and monoolefins (ethylene, propylene, butylene, isobutylene, etc.) Carbonyl-containing ethylenically unsaturated monomers such as diolefins (allene, methylallene, butadiene) and diacetone acrylamide, and sulfonic acid-containing ethylenically unsaturated monomers may be copolymerized. These monomers may be used alone or in combination.
  • the resin binder is a styrene- (meth) acrylic acid ester copolymer, a styrene- (meth) acrylic acid copolymer, or a styrene- (meth) acrylic acid ester.
  • the content of the ethylenically unsaturated carboxylic acid ester unit is 100 mol part of the copolymer constituent unit of at least one of the ethylenically unsaturated carboxylic acid ester and the ethylenically unsaturated carboxylic acid and the aromatic vinyl compound, Preferably, it is 25 mol part or more and 85 mol part or less, More preferably, it is 30 mol part or more and 80 mol part or less.
  • the content of the ethylenically unsaturated carboxylic acid ester unit is within the above range, the flexibility and heat resistance of the obtained positive electrode are improved, and the binding properties between the positive electrode active materials and between the active material and the current collector are improved. improves.
  • the content of the ethylenically unsaturated carboxylic acid unit is preferably with respect to 100 mol parts of the copolymer structural unit of at least one of the ethylenically unsaturated carboxylic acid ester and the ethylenically unsaturated carboxylic acid and the aromatic vinyl compound. Is 1 mol part or more and 10 mol part or less, More preferably, it is 1 mol part or more and 5 mol part or less.
  • the content of the ethylenically unsaturated carboxylic monomer unit is within the above range, the emulsion polymerization stability or mechanical stability of the copolymer of the aromatic vinyl compound and the ethylenically unsaturated carboxylic acid is maintained, The binding properties between the positive electrode active materials and between the positive electrode active material and the current collector are improved.
  • the resin binder of the present invention is optionally glycidyl (meta) ) Epoxy group-containing ⁇ , ⁇ -ethylenically unsaturated compounds such as acrylates, hydrolyzable alkoxysilyl group-containing ⁇ , ⁇ -ethylenically unsaturated compounds such as vinyltriethoxysilane and ⁇ -methacryloxypropyltrimethoxysilane, Introducing monomers such as polyfunctional vinyl compounds such as ethylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, allyl (meth) acrylate, divinylbenzene, diallyl phthalate into the copolymer used as the positive electrode binder, Either cross-link themselves, or May be crosslinked in
  • a carbonyl group-containing ⁇ , ⁇ -ethylenically unsaturated compound or the like is introduced into the copolymer, and two or more polyhydrazine compounds, particularly oxalic acid dihydrazide, succinic acid dihydrazide, adipic acid dihydrazide, polyacrylic acid dihydrazide, etc. You may bridge
  • a polymerization method for obtaining a copolymer of an aromatic vinyl compound and at least one of an ethylenically unsaturated carboxylic acid ester and an ethylenically unsaturated carboxylic acid in particular, a conventionally known method is used. However, it is preferable to use an emulsion polymerization method.
  • a normal anionic surfactant or nonionic surfactant is used as the surfactant used in the emulsion polymerization.
  • the anionic surfactant include alkylbenzene sulfonate, alkyl sulfate ester salt, polyoxyethylene alkyl ether sulfate ester salt, fatty acid salt and the like.
  • Nonionic surfactants include polyoxyethylene alkyl ether, polyoxyethylene alkyl ether, Examples thereof include oxyethylene alkyl phenyl ether, polyoxyethylene polycyclic phenyl ether, polyoxyalkylene alkyl ether, sorbitan fatty acid ester, and polyoxyethylene sulfitan fatty acid ester. These surfactants are used alone or in combination.
  • the amount of the surfactant used when performing the emulsion polymerization is preferably 0.3 parts by mass or more and 3 parts by mass or less with respect to 100 parts by mass of all monomers.
  • the amount of the surfactant used is within the above range, the particle size of the obtained aqueous emulsion becomes the desired particle size, stable emulsion polymerization can be performed, and the adhesion between the positive electrode active material and the current collector is reduced. It is suppressed.
  • radical polymerization initiator used in the emulsion polymerization known and commonly used radical polymerization initiators can be used, for example, ammonium persulfate, potassium persulfate, hydrogen peroxide, t-butyl hydroperoxide and the like. If necessary, these polymerization initiators may be used in combination with a reducing agent such as sodium bisulfite, Rongalite, and ascorbic acid for redox polymerization.
  • a reducing agent such as sodium bisulfite, Rongalite, and ascorbic acid for redox polymerization.
  • the emulsion polymerization method for obtaining the resin binder of the present invention a polymerization method charged in a batch, a polymerization method while continuously supplying each component, and the like are applied.
  • the polymerization is usually carried out with stirring within a temperature range of 30 ° C. or higher and 90 ° C. or lower.
  • the ethylenically unsaturated carboxylic acid copolymerized during the polymerization or after completion of the polymerization is adjusted by adding a basic substance to adjust the pH so that the polymerization stability during emulsion polymerization, mechanical stability, and chemical stability are achieved. Can be improved.
  • the basic substance used at that time ammonia, triethylamine, ethanolamine, caustic soda, or the like can be used, and these are used singly or in combination.
  • the slurry for the lithium ion secondary battery positive electrode used in the present invention increases the binding property between the positive electrode active materials of the slurry and between the positive electrode active material and the current collector, and increases the dispersibility of the positive electrode active material in the slurry,
  • a thickening dispersant is used in combination.
  • the thickening dispersant is not particularly limited as long as it is a water-soluble polymer, and any thickening dispersant can be used regardless of the presence or absence of a side chain or a crosslinked structure.
  • examples include acid ester derivatives and polyvinyl amide.
  • polyethylene oxide, polyacrylic acid, and poly-N-vinylacetamide, a copolymer of acrylic acid and N-vinylacetamide, and a mixture of polyacrylic acid and poly-N-vinylacetamide are more preferable.
  • polysaccharides are also suitable as the water-soluble polymer, and are not limited to sugar skeletons, bonding modes, types of substituents, and the like, and any can be used.
  • cellulose such as carboxymethyl cellulose, carboxyethyl cellulose, carboxymethyl ethyl cellulose, methyl cellulose, ethyl cellulose, hydroxymethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, etc. Derivatives (including these salts) are preferred.
  • carboxymethylcellulose which can impart an appropriate viscosity to the positive electrode slurry of the lithium ion secondary battery.
  • the mass average molecular weight and the degree of etherification of carboxymethylcellulose may be selected as appropriate according to the desired viscosity.
  • water-soluble polymers are preferably used singly or in combination, and it is also preferable to use those obtained by copolymerizing monomers of each water-soluble polymer.
  • the molecular weight of the water-soluble polymer used for the thickening dispersant is not particularly limited, but it is possible to set the molecular weight according to the viscosity of the aqueous solution of the thickening dispersant used when manufacturing the positive electrode slurry of the lithium ion secondary battery. preferable.
  • the thickening dispersant is a rotary viscometer (TVB-25L, manufactured by Toki Sangyo Co., Ltd.) at 23 ° C. in an aqueous solution of 1% by weight thickening dispersant from the viewpoint of thickening and dispersing the positive electrode slurry.
  • the viscosity at 60 revolutions is preferably 1 to 10000 mPa ⁇ s, more preferably 10 to 2000 mPa ⁇ s.
  • the thickening dispersant is contained in an amount of 0.2 parts by mass or more and 5.0 parts by mass or less, preferably 0.2 parts by mass or more, 3.0 parts by mass with respect to 100 parts by mass of the solid content of the positive electrode active material. It is contained in the range below the mass. When the content of the thickening dispersant is within the above range, the positive electrode active material is uniformly dispersed, and a slurry viscosity suitable for coating on the current collector can be obtained.
  • the pH adjuster used in the present invention is used to adjust the pH of the slurry for the positive electrode of the aqueous lithium ion secondary battery at 23 ° C. to a range of 6.0 to 8.0.
  • the reaction between the positive electrode active material and water in the positive electrode slurry can be suppressed by adjusting the pH of the positive electrode slurry at 23 ° C. to 6.0 to 8.0.
  • the pH of the positive electrode slurry is more preferably 6.5 to 7.5 at 23 ° C.
  • the positive electrode slurry generally has a very high reactivity between water and a lithium compound, and the positive electrode active material using a lithium-containing transition metal oxide can easily react with water at the stage of producing the positive electrode slurry.
  • the reaction mechanism lithium in the positive electrode active material is desorbed as lithium ions in water and reacts with water to generate lithium hydroxide. Due to the influence, the pH of the slurry becomes a basic state exceeding 8.0, and various side reactions occur. Focusing on side reactions in lithium ion secondary batteries, the corrosion of the positive electrode on the aluminum current collector under strong base conditions is accelerated, and the binding between the current collector and the active material is greatly reduced. It is considered that the life of the battery is reduced.
  • lithium hydroxide reacts with a carbonate-based solvent, and lithium carbonate, carbon dioxide, and the like are obtained as by-products, which induce gas generation and electrode film formation, which affect battery resistance and battery swelling. It is possible. Furthermore, since the lithium in the positive electrode active material is consumed by these side reactions, the number of lithium ions that can be used for charging and discharging is reduced, causing a reduction in battery capacity.
  • a useful method for controlling the pH of the slurry one is to use a highly acidic aqueous binder for battery electrodes and a thickening dispersant.
  • the blending ratio of the ethylenically unsaturated carboxylic acid is
  • the use of high binders and polycarboxylic acid thickening dispersants can be mentioned, but in order to adjust the pH with higher accuracy, it is necessary to add an acidic pH adjusting additive to the slurry. Can control pH in a wider range and finer.
  • the pH adjusting agent is selected from a compound consisting of an organic acid and an inorganic acid
  • the organic acid is selected from a compound containing at least one of a carboxyl group, a sulfo group and a phosphonic group alone or in combination.
  • the inorganic acid is selected from at least one selected from phosphoric acid, boric acid, and carbonic acid.
  • the organic acid include acetic acid, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, phthalic acid, fumaric acid, citric acid, 1, 2, and the like.
  • Examples include 3,4-butanetetracarboxylic acid, methanesulfonic acid, paratoluenesulfonic acid, camphorsulfonic acid, propylphosphonic acid, vinylphosphonic acid, phenylphosphonic acid, and methylenediphosphonic acid.
  • inorganic acids carbonic acid is preferred.
  • organic acids 1,2,3,4-butanetetracarboxylic acid, citric acid, succinic acid, acetic acid, methanesulfonic acid, and propylphosphonic acid are preferable.
  • the pH adjuster in the present invention is preferably a weak acid from the viewpoint of ease of pH adjustment.
  • the pH adjuster of the positive electrode slurry used in the present invention is 0.1 parts by mass or more and 1.0 part by mass or less, preferably 0.2 parts by mass with respect to 100 parts by mass of the solid content of the positive electrode active material. As described above, it is preferably added in an amount of 0.8 parts by mass or less, more preferably 0.3 parts by mass or more and 0.7 parts by mass or less.
  • the kind of basic pH adjusting additive is not particularly limited as long as it is a compound composed of an organic base and an inorganic base, and one of these or a combination of plural kinds thereof is used.
  • organic bases include primary amines, secondary amines, tertiary amines, and quaternary ammonium salts.
  • inorganic bases include ammonia, lithium hydroxide, sodium hydroxide, potassium hydroxide, and calcium hydroxide. Preferably, it is weak alkaline ammonia.
  • the water used as the dispersion medium for the positive electrode slurry of the present invention is preferably water treated with an ion exchange resin (ion exchange water), water treated with a reverse osmosis membrane water purification system (ultra pure water), or the like.
  • the slurry for the positive electrode of the lithium ion secondary battery used in the present invention comprises (A) a positive electrode active material, (B) a conductive auxiliary agent, (C) an ethylenically unsaturated carboxylic acid ester, and an ethylenically unsaturated carboxylic acid. And a resin binder made of a copolymer of styrene and an aromatic vinyl compound, (D) a thickening dispersant, (E) a pH adjuster, and (F) water dispersed or dissolved in a mixture.
  • a slurry as an aqueous dispersion is preferable, but water and a highly hydrophilic solvent may be added within a range that does not affect the environmental load.
  • Preparation of the slurry for the positive electrode of the lithium ion secondary battery is, for example, (C) a resin binder made of a copolymer of at least one of ethylenically unsaturated carboxylic acid ester and ethylenically unsaturated carboxylic acid and an aromatic vinyl compound; (D) a thickening dispersant, (E) a pH adjuster, and (F) after being dispersed or dissolved in water (or a solvent having a high affinity for water), (A) a positive electrode active material, (B) a conductive assistant.
  • the method of adding an agent is mentioned.
  • the positive electrode for a lithium ion secondary battery of the present invention comprises (A) a positive electrode active material, (B) a conductive auxiliary agent, (C) at least one of an ethylenically unsaturated carboxylic acid ester and an ethylenically unsaturated carboxylic acid, and an aromatic vinyl.
  • a resin binder comprising a copolymer with a compound, (D) a thickening dispersant, and (E) a pH adjuster.
  • a method for producing a positive electrode for a lithium ion secondary battery according to the present invention is a method for producing a positive electrode comprising a positive electrode current collector including a positive electrode active material layer containing a positive electrode active material, and the positive electrode slurry for a lithium ion secondary battery described above. On the positive electrode current collector to form the positive electrode active material layer.
  • the positive electrode of the present invention is manufactured, for example, by applying a slurry for a lithium ion secondary battery positive electrode on a current collector and drying it.
  • a general method can be used as the slurry application method of the present invention, for example, reverse roll method, direct roll method, doctor blade method, knife method, extrusion method, curtain method, gravure method, bar method, dip method, And a squeeze method.
  • the application of the slurry for the positive electrode of the lithium ion secondary battery to the current collector can be performed on one side and both sides of the current collector.
  • coating to both surfaces of an electrical power collector you may apply
  • the thickness, length and width of the coating layer can be appropriately determined according to the size of the battery.
  • a general method can be used as the method for drying the slurry of the present invention.
  • the drying temperature is preferably 50 ° C. or higher and 350 ° C. or lower, more preferably 50 ° C. or higher and 200 ° C. or lower.
  • the current collector used for producing the electrode of the present invention is not particularly limited as long as it is made of metal such as aluminum. Further, the shape of the current collector is not particularly limited, but it is usually preferable to use a sheet-like material having a thickness of 0.001 mm to 0.5 mm.
  • the electrode of the present invention can be pressed as necessary. As a pressing method, a general method can be used, but a mold pressing method and a calendar pressing method are particularly preferable. Although the pressing pressure is not particularly limited, 0.1 t / cm 2 or more, preferably 10t / cm 2 or less.
  • the lithium ion secondary battery of the present invention includes the positive electrode of the present invention.
  • a lithium ion secondary battery for example, a negative electrode and a positive electrode of the present invention are disposed with a permeable separator (for example, a polyethylene or polypropylene porous film) interposed therebetween, and a non-aqueous electrolyte solution is provided therewith.
  • a permeable separator for example, a polyethylene or polypropylene porous film
  • Non-aqueous secondary battery impregnated with a negative electrode a negative electrode layer having a negative electrode layer formed on both sides of a current collector / separator / a laminate comprising the positive electrode / separator of the present invention having a positive electrode layer formed on both sides of a current collector
  • Examples thereof include a cylindrical non-aqueous secondary battery in which a wound body wound in a spiral shape is housed in a bottomed metal casing together with an electrolytic solution.
  • a metal exterior body or an aluminum laminate exterior body can be appropriately used as the exterior body that is a casing.
  • the shape of the battery is not particularly limited, such as a coin shape, a button shape, a sheet shape, a cylindrical shape, a square shape, and a flat shape.
  • the negative electrode used in the lithium ion secondary battery of the present invention for example, a known negative electrode in which a negative electrode layer containing a negative electrode active material and a binder is formed on a current collector can be used.
  • a known negative electrode active material such as a negative electrode active material containing an element capable of inserting and extracting lithium ions and a carbon material can be used.
  • the negative electrode active material is not particularly limited as long as it is a material capable of occluding and releasing lithium, and non-graphitized carbon, artificial graphite carbon, natural graphite carbon, metallic lithium, aluminum, lead, silicon, tin, etc. and an alloy of lithium , Tin oxide, titanium oxide and the like are used.
  • the negative electrode active material containing an element capable of occluding and releasing lithium ions include, for example, metal compounds, metal oxides, lithium metal compounds, lithium metal oxides (lithium-transition metal composite oxides) And the like).
  • the negative electrode active material in the form of a metal compound include LiAl, Li 4 Si, Li 4.4 Pb, and Li 4.4 Sn.
  • a negative electrode active material in the form of metal oxides SnO, SnO 2, GeO, GeO 2, In 2 O, In 2 O 3, PbO, PbO 2, Pb 2 O 3, Pb 3 O 4, SiO, ZnO etc. are mentioned.
  • Examples of the carbon material include carbon materials such as graphite, amorphous carbon, carbon fiber, coke, activated carbon, carbon nanotube, carbon nanofiber, and fullerene. These negative electrode active materials may be used individually by 1 type, and may use 2 or more types together.
  • the binder that can be used for the negative electrode is not particularly limited, but a known negative electrode binder resin can be used.
  • the material for the current collector of the negative electrode may be a substance having conductivity, and a metal can be used.
  • a metal a metal that is difficult to be alloyed with lithium is preferable, and specific examples include copper, nickel, iron, titanium, vanadium, chromium, manganese, and alloys thereof.
  • the shape of the current collector include a thin film shape, a net shape, and a fiber shape. Among these, a thin film is preferable.
  • the thickness of the current collector is preferably 5 to 30 ⁇ m, more preferably 8 to 25 ⁇ m.
  • an electrolytic solution in which a lithium salt as an electrolyte is dissolved in a non-aqueous organic solvent at a concentration of about 1M is used.
  • the lithium salt LiClO 4, LiBF 4, LiI, LiPF 6, LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, LiAlCl 4, LiCl, LiBr, LiB (C 2 H 5) 4, LiCH 3 SO 3, LiC 4 F 9 SO 3, Li (CF 3 SO 2) 2 N, Li [(CO 2) 2] such as 2 B and the like.
  • non-aqueous organic solvents carbonates such as propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, and methyl ethyl carbonate; lactones such as ⁇ -butyrolactone; trimethoxymethane, 1,2-dimethoxyethane Ethers such as diethyl ether, 2-ethoxyethane, tetrahydrofuran and 2-methyltetrahydrofuran; sulfoxides such as dimethyl sulfoxide; oxolanes such as 1,3-dioxolane and 4-methyl-1,3-dioxolane; acetonitrile, nitromethane , Nitrogen-containing compounds such as NMP; esters such as methyl formate, methyl acetate, butyl acetate, methyl propionate, ethyl propionate, phosphate triester; diglyme, triglyme, Gly
  • a lithium ion secondary battery is obtained, for example, by disposing a positive electrode and a negative electrode with a permeable separator interposed therebetween, and impregnating the non-aqueous electrolyte solution with the separator.
  • a laminate comprising a negative electrode / separator / positive electrode / separator having a negative electrode layer formed on both sides of a current collector and a positive electrode / separator having a positive electrode layer formed on both sides of the current collector is wound into a roll (spiral shape). Let it be the body.
  • the obtained wound body is accommodated in a bottomed metal casing (battery can), and the negative electrode is connected to the negative electrode terminal and the positive electrode is connected to the positive electrode terminal.
  • the metal casing is sealed to obtain a cylindrical lithium ion secondary battery.
  • the method for producing a lithium ion secondary battery according to the present invention comprises the steps of preparing a slurry for a positive electrode of the above-described lithium ion secondary battery, and applying the slurry for a positive electrode of the lithium ion secondary battery to a positive electrode current collector.
  • the step of assembling the lithium ion secondary battery is not particularly limited as long as the positive electrode for a lithium ion secondary battery according to this embodiment is used as the positive electrode.
  • the positive electrode slurry was applied to a 20 ⁇ m thick aluminum foil serving as a current collector so that the thickness after the press treatment was 60 ⁇ m, dried on a hot plate at 50 ° C. for 5 minutes, and then dried at 110 ° C. for 5 minutes.
  • the positive electrode was produced by pressing at a press pressure of 2.5 t / cm 2 using a mold press and attaching a current collecting tab.
  • the positive electrode slurry was applied to a 10 ⁇ m thick copper foil as a current collector so that the thickness after the press treatment was 60 ⁇ m, dried on a hot plate at 50 ° C. for 5 minutes, and then dried at 110 ° C. for 5 minutes.
  • the negative electrode was produced by pressing at a press pressure of 2.5 t / cm 2 using a mold press and attaching a current collecting tab.
  • LiPF 6 was dissolved to a concentration of 1.0 mol / L in a solvent in which ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 2/3 to prepare an electrolytic solution.
  • the positive electrode and the negative electrode prepared as described above are opposed to each other with a polyethylene separator interposed therebetween, and are placed in an aluminum laminate container.
  • the electrolyte solution is placed in a container containing the electrode. 0.0 ml was dropped, and the laminate container was thermocompression bonded while depressurizing to produce a battery.
  • the battery was designed with a theoretical capacity of 16.5 mAh.
  • Example 1 In preparation of the positive electrode slurry, 1.25 g of resin A as the resin binder (2.5 parts by mass of the solid content of the copolymer with respect to 100 parts by mass of the solid content of the positive electrode active material) and carboxy as the thickening dispersant 20 g of a CMC aqueous solution (CMC concentration of 2 mass%) obtained by dissolving methyl cellulose (hereinafter also referred to as “CMC”) (viscosity of 1 mass% CMC aqueous solution at 23 ° C .: 1100 mPa ⁇ s) in water (solid state of positive electrode active material) And 1,2,3,4-butanetetracarboxylic acid dissolved in water as a pH adjuster.
  • CMC methyl cellulose
  • Example 2 In the production of the positive electrode slurry, 1.25 g of resin A as a resin binder and polyethylene oxide (PEO) (viscosity of a 1 mass% PEO aqueous solution at 23 ° C .: 12 mPa ⁇ s) as water thickener were dissolved in water.
  • PEO polyethylene oxide
  • the carbon black LiCo 1/3 Ni 1/3 Mn 1/3 O 2 as the positive electrode active material 20g, as a conductive additive (acetylene black) g was added and the mixture was kneaded in a planetary mixer (Primix Co., Ltd., a high-bis mix 2P-03 type), to produce a positive electrode slurry.
  • Example 3 In the production of the positive electrode slurry, 1.25 g of resin A as a resin binder and poly N-vinylacetamide (hereinafter also referred to as “PNVA”) as a thickening dispersant (viscosity at 23 ° C.
  • PNVA poly N-vinylacetamide
  • PNVA concentration 10 mass%
  • 1,2,3,4-butanetetracarboxylic acid dissolved in water as a pH adjuster 1 g of 4-butanetetracarboxylic acid aqueous solution (concentration of 1,2,3,4-butanetetracarboxylic acid is 10% by mass) is added, and 10 g of water is further added, and a planetary mixer (Primics Co., Ltd., Hibismix 2P was kneaded in -03 type), to, carbon and LiCo 1/3 Ni 1/3 Mn 1/3 O 2 20g, as a conductive additive as a positive electrode active material Rack with the addition of (acetylene black) 1g, were kneaded with a planetary mixer (Primix Co., Ltd., a high-bis mix 2P-03 type), to produce a positive electrode
  • Example 4 In the production of the positive electrode slurry, 1.25 g of resin A as a resin binder and poly N-vinylacetamide / polyacrylic acid copolymer (copolymerization ratio 70/30) as a thickening dispersant (hereinafter referred to as “PNVA / PAa”) 4 g of a PNVA / PAa aqueous solution (PNVA / PAa concentration of 10% by mass) obtained by dissolving (a viscosity of 1% by mass of a PNVA / PAa aqueous solution at 23 ° C .: 450 mPa ⁇ s) in water as a pH adjuster 1,2,3,4-butanetetracarboxylic acid aqueous solution in which 1,2,3,4-butanetetracarboxylic acid is dissolved in water (the concentration of 1,2,3,4-butanetetracarboxylic acid is 10% by mass) ) Is mixed, and 10 g of water is further added
  • the LiCo 1/3 Ni 1/3 Mn 1/3 O 2 as the positive electrode active material 20g with the addition of carbon black (acetylene black) 1 g as a conductive additive, a planetary mixer (manufactured by PRIMIX Corporation, HIVIS MIX 2P -03 type) to prepare a positive electrode slurry.
  • carbon black acetylene black
  • a planetary mixer manufactured by PRIMIX Corporation, HIVIS MIX 2P -03 type
  • Example 5 The positive electrode slurry was prepared in the same manner as in Example 1 except that 2 g of 1,2,3,4-butanetetracarboxylic acid aqueous solution was mixed as an aqueous solution of the pH adjusting agent.
  • Example 6 Preparation of the positive electrode slurry was carried out in the same manner as in Example 1 except that 0.2 g of a 1,2,3,4-butanetetracarboxylic acid aqueous solution was mixed as an aqueous solution of a pH adjusting agent, to prepare a positive electrode slurry.
  • Example 7 Preparation of the positive electrode slurry was performed in the same manner as in Example 1 except that citric acid was used as a pH adjuster and 1 g of a citric acid aqueous solution (citric acid concentration was 10% by mass) was mixed to prepare a positive electrode slurry.
  • Example 8 Preparation of the positive electrode slurry was performed in the same manner as in Example 1 except that succinic acid was used as a pH adjuster and 1 g of a succinic acid aqueous solution (succinic acid concentration was 10% by mass) was mixed to prepare a positive electrode slurry.
  • Example 9 The positive electrode slurry was prepared in the same manner as in Example 1 except that acetic acid was used as a pH adjuster and 1 g of an acetic acid aqueous solution (acetic acid concentration: 10% by mass) was mixed.
  • Example 10 The positive electrode slurry was prepared in the same manner as in Example 1 except that methanesulfonic acid was used as a pH adjusting agent and 1 g of a methanesulfonic acid aqueous solution (methanesulfonic acid concentration: 10% by mass) was mixed. did.
  • Example 11 The positive electrode slurry was prepared in the same manner as in Example 1 except that propylphosphonic acid was used as a pH adjuster and 1 g of a propylphosphonic acid aqueous solution (propyl phosphonic acid concentration was 10% by mass) was mixed. did.
  • Example 12 In the production of the positive electrode slurry, a positive electrode slurry was produced in the same manner as in Example 1 except that carbonic acid was used as a pH adjuster and 1 g of an aqueous carbonated water solution (carbonic acid concentration was 10% by mass) was mixed.
  • Example 2 The positive electrode slurry was prepared in the same manner as in Example 1 except that 1,2,3,4-butanetetracarboxylic acid as a pH adjuster was not mixed.
  • a positive electrode slurry was prepared in the same manner as in Example 1 except that the positive electrode slurry was changed to an emulsion polymer composed of styrene-butadiene rubber ((SBR) solid content 40 mass%) as the resin binder.
  • SBR styrene-butadiene rubber
  • Example 8 In the preparation of the positive electrode slurry, the same procedure as in Example 1 was conducted except that the emulsion polymer was changed to SBR as the resin binder and 1,2,3,4-butanetetracarboxylic acid as the pH adjuster was not mixed. Then, a positive electrode slurry was prepared.
  • Table 3 shows the results of pH and various battery characteristics of the positive electrode slurry.
  • NMC LiCo 1/3 Ni 1/3 Mn 1/3 O 2
  • CMC Carboxymethylcellulose
  • PEO Polyethylene oxide
  • NMC LiCo 1/3 Ni 1/3 Mn 1/3 O 2
  • CMC Carboxymethylcellulose
  • PEO Polyethylene oxide
  • SBR Styrene-butadiene rubber
  • PVDF Polyvinylidene fluoride * 1: Emulsion polymer composed of styrene-butadiene rubber ((SBR) solid content 40 mass%) * 2: Polyvinylidene fluoride (PVDF) (KYNAR (manufactured by ARKEMA, KYNAR) Is a registered trademark of ARKEMA) (PVDF concentration is 10% by mass))
  • the lithium ion secondary battery positive electrode slurry of the present invention tends to be basic with a pH of 9 or more when no pH adjuster is added, while the additive is added. It was found that the pH can be controlled in the neutral range. As a result, side reactions were suppressed in the lithium ion secondary battery, and the consumption of lithium that can be used for charging and discharging in the positive electrode active material associated with the side reaction was reduced, resulting in high capacity and low resistance characteristics of the battery. And high charge / discharge cycle retention characteristics.
  • the thickening dispersant used in combination with the binder can be applied as a water-soluble polymer in cellulose derivatives, polyalkylene oxides, polycarboxylic acid esters, polycarboxylic acids, and polyvinyl amides, which are either homopolymers or copolymers. It was shown that it can be applied in the form.
  • the slurry for a positive electrode of a lithium ion secondary battery of the present invention exhibits excellent battery characteristics when an appropriate amount of a pH adjusting agent is added. That is, it was shown that when the pH adjuster was added in an amount of 0.1 to 1.0 part by mass based on 100 parts by mass of the positive electrode active material, excellent battery characteristics were exhibited.
  • the pH adjusting additive is excessively added as in Comparative Example 6, the corrosion of the aluminum current collector occurs when the pH of the slurry falls below 6.0, and the binding between the active material and the current collector is caused. It is considered that the battery performance greatly deteriorates and the battery performance is remarkably deteriorated.
  • Example 1 and Comparative Examples 6 to 7 the effect of the pH adjuster of the positive electrode slurry is not applicable to all resin binders, and ethylenically unsaturated carboxylic acid esters and ethylenically unsaturated monomers are more effective than SBR binders. It was shown that a high charge / discharge cycle retention characteristic of the battery was selectively exhibited with respect to a resin binder made of a copolymer of a saturated carboxylic acid and an aromatic vinyl compound.
  • the lithium ion secondary battery positive electrode slurry of the present invention has an effect equal to or higher than that of a conventional solvent-based PVDF binder by adding a pH adjusting additive. It was shown that.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 (A)正極活物質、(B)導電助剤、(C)エチレン性不飽和カルボン酸エステル及びエチレン性不飽和カルボン酸の少なくとも一方と芳香族ビニル化合物との共重合体からなる樹脂バインダー、(D)増粘分散剤、(E)pH調整剤、及び(F)水を含み、前記(E)pH調整剤の含有量が、正極活物質の固形分100質量部に対して0.1質量部以上、1.0質量部以下であり、スラリーのpHが23℃で6.0~8.0である、リチウムイオン二次電池の正極用スラリーある。

Description

リチウムイオン二次電池の正極用スラリー、このスラリーを用いて得られる正極及びその製造方法、この正極を用いてなるリチウムイオン二次電池及びその製造方法
 本発明は、リチウムイオン二次電池の正極用スラリー、このスラリーを用いて得られる正極及びその製造方法、この正極を用いてなるリチウムイオン二次電池及びその製造方法
に関するものである。
 リチウムイオン二次電池は、携帯電話やノート型パソコン等のポータブル機器の電源や、電力貯蔵用や電気自動車等の高寿命が要求される産業用装置の駆動電源として広く使われている。今後、民生用機器では軽量化や小型化が求められ、さらなる高エネルギー密度を有する電池が求められる。また、産業用機器ではさらなる電気自動車や定置型蓄電設備の普及に伴い、大型電池に対応した高出力、大容量、長寿命性能が求められる。
 リチウムイオン二次電池の高エネルギー密度化、高出力、大容量、長寿命化を実現する手段として、正極の作動電圧を上げ電池の大容量化を実現する方法が注目されている。例えば、リチウム基準で4.3V以上の高電圧でリチウムと電子を安定的に貯蔵、放出することができる、LiMO2(Mは遷移金属)で表されるリチウム含有遷移金属酸化物等を正極活物質の開発が進められている。
 また、リチウムイオン二次電池に用いられる正極は、通常、正極活物質層がアルミニウム集電体に積層された構造を有しており、正極活物質層には、正極活物質の他に正極活物質同士及び正極活物質と集電体とを結着させるための結着剤が用いられている。リチウムイオン二次電池の高容量、長寿命化を実現するためには、結着剤として、より少量で結着力の高い材料が求められている。
 一般的に、リチウムイオン二次電池正極用スラリーを集電体に塗工し、正極を製造する場合、スラリーのバインダーには有機溶剤系のN-メチルピロリドン(以下「NMP」ともいう)を溶剤としたポリフッ化ビニリデン(以下「PVDF」ともいう)が最も汎用的に利用されている。
 しかし、PVDF系バインダーは正極活物質同士および活物質と集電体を良好に結着させることができず、リチウムイオン二次電池の充放電サイクル特性が低下する問題がある。実際に使用する際は、正極活物質同士および活物質と集電体に対し十分な結着性を確保するため、多量のPVDFバインダーを必要とし、結果としてリチウムイオン二次電池の容量が低下してしまう。さらに、PVDF系バインダーの製造は、NMP溶剤に変異原性がある等の理由で環境負荷が高く、溶剤に水を利用する新たなバインダー開発が着目されている。
 一方、正極用水系バインダーの開発において、負極用水系バインダーとして汎用的に利用されているスチレン-ブタジエンゴム(以下「SBR」ともいう)が注目されている。また、水溶媒中で増粘分散剤としてカルボキシメチルセルロース(以下「CMC」ともいう)を併用することで、環境負荷の低い製造が可能であり、かつ正極活物質同士および活物質と集電体に対する良好な結着性を実現している。
 しかし、SBRバインダーはその構造の特徴として、耐酸化性が低いことが挙げられる。高電圧条件下で充放電を繰り返し、耐酸化性が求められるリチウムイオン二次電池の正極において、SBRバインダーの利用は、電池の長寿命特性を低下させる恐れがある。
 さらに、一般的に水とリチウム化合物の反応性は非常に高く、リチウム含有遷移金属酸化物を利用した正極活物質が、正極用スラリーを製造する段階で水と容易に反応することが指摘され、その反応により正極内よりリチウムが脱離し、電池容量の低下や高抵抗化を招くことが示唆される。従って、正極用水系バインダーの開発において、スラリー中での正極活物質と水との反応を抑制する手法を見出すことが重要である。
特開平10-255808号公報 特開平10-241693号公報
 本発明は、水系のリチウムイオン二次電池正極用スラリーであって、正極活物質と水との反応が抑制され、高容量特性、低抵抗特性、および高充放電サイクル維持率特性を兼ね備えたリチウムイオン二次電池を提供できる、水系のリチウムイオン二次電池の正極用スラリー、このスラリーを用いて得られる正極及びその製造方法、この正極を用いてなるリチウムイオン二次電池及びその製造方法ことを目的とする。
 即ち、本発明は以下〔1〕~〔10〕で示される。
〔1〕 (A)正極活物質、(B)導電助剤、(C)エチレン性不飽和カルボン酸エステル及びエチレン性不飽和カルボン酸の少なくとも一方と芳香族ビニル化合物との共重合体からなる樹脂バインダー、(D)増粘分散剤、(E)pH調整剤、及び(F)水を含み、 前記(E)pH調整剤の含有量が、正極活物質の固形分100質量部に対して0.1質量部以上、1.0質量部以下であり、スラリーのpHが23℃で6.0~8.0であることを特徴とするリチウムイオン二次電池の正極用スラリー。
〔2〕 前記(E)pH調整剤が、有機酸、無機酸からなる化合物から選択され、前記有機酸が、カルボキシル基、スルホ基及びホスホン基の少なくとも一種が単独または複合的に1つ以上含まれている化合物から選ばれ、前記無機酸が、リン酸、ホウ酸及び炭酸から選ばれる少なくとも1種から選ばれる、〔1〕に記載のリチウムイオン二次電池の正極用スラリー。
〔3〕 前記(E)pH調整剤が、1,2,3,4-ブタンテトラカルボン酸、クエン酸、コハク酸、酢酸、メタンスルホン酸、プロピルスルホン酸、炭酸から選ばれる少なくとも1種である、〔1〕又は〔2〕に記載のリチウムイオン二次電池の正極用スラリー。
〔4〕 前記(E)pH調整剤が、塩基性のpH用添加剤であり、塩基性のpH用添加剤が、有機塩基性のpH用添加剤、無機塩基性のpH用添加剤から選択され、有機塩基性のpH用添加剤が、一級アミン、二級アミン、三級アミン及び四級アンモニウムから選ばれる少なくとも一種であり、無機塩基性のpH用添加剤が、アンモニア、水酸化リチウム、水酸化ナトリウム、水酸化カリウム及び水酸化カルシウムから選ばれる少なくとも一種である、〔1〕又は〔2〕に記載のリチウムイオン二次電池の正極用スラリー。
〔5〕 前記(C)樹脂バインダーが、正極活物質の固形分100質量部に対して0.2質量部以上、5.0質量部以下で含有する、〔1〕~〔4〕のいずれかに記載のリチウムイオン二次電池正極用スラリー。
〔6〕 前記(D)増粘分散剤が、カルボキシメチルセルロース、ポリエチレンオキシド、ポリアクリル酸、ポリ-N-ビニルアセトアミド、及びアクリル酸とN-ビニルアセトアミドとの共重合体からなる水溶性高分子の一種以上を含む、〔1〕~〔5〕のいずれかに記載のリチウムイオン二次電池の正極用スラリー。
〔7〕 〔1〕~〔6〕のいずれかに記載のリチウムイオン二次電池正極用スラリーを用いて得られるリチウムイオン二次電池用正極。
〔8〕 正極集電体に正極活物質を含む正極活物質層を備えるリチウムイオン二次電池用正極の製造方法であって、〔1〕~〔6〕のいずれかに記載のリチウムイオン二次電池の正極用スラリーを前記正極集電体上に供給して前記正極活物質層を形成する工程を有する、リチウムイオン二次電池用正極の製造方法。
〔9〕 〔7〕に記載のリチウムイオン二次電池用正極を用いて得られるリチウムイオン二次電池。
〔10〕 〔1〕~〔6〕のいずれかに記載のリチウムイオン二次電池の正極用スラリーを調製する工程と、前記リチウムイオン二次電池の正極用スラリーを正極集電体に塗布して正極活物質層を形成し、リチウムイオン二次電池用正極を製造する工程と、前記リチウムイオン二次電池用正極を備えるリチウムイオン二次電池を組み立てる工程と、を有する、リチウムイオン二次電池の製造方法。
 本発明によれば、特定の樹脂バインダーと特定の増粘分散剤とを併用し、さらに、pH調整剤を用いて、pH6.0~8.0の中性域に制御した、水系のリチウムイオン二次電池正極用スラリーを用いることにより、正極用スラリー中での正極活物質と水との反応を抑制し、高容量特性、低抵抗特性、および高充放電サイクル維持率特性を兼ね備えたリチウムイオン二次電池およびその正極を提供することができる。
 以下、本発明を詳しく説明する。
[リチウムイオン二次電池の正極用スラリー]
 本発明のリチウムイオン二次電池の正極用スラリーは、(A)正極活物質、(B)導電助剤、(C)エチレン性不飽和カルボン酸エステル及びエチレン性不飽和カルボン酸の少なくとも一方と芳香族ビニル化合物との共重合体からなる樹脂バインダー、(D)増粘分散剤、(E)pH調整剤、及び(F)水を含み、前記(E)pH調整剤の含有量が、正極活物質の固形分100質量部に対して0.1質量部以上、1.0質量部以下であり、スラリーのpHが23℃で6.0~8.0である。
<(A)正極活物質>
 正極活物質としては、リチウムイオン二次電池に用いることができる正極活物質であれば特に限定されるものではなく、コバルト酸リチウム(LiCoO)、スピネルマンガン酸リチウム(LiMn)、オリビン型リン酸鉄リチウム(LiFePO)、Ni-Mn-Co系、Ni-Mn-Al系、およびNi-Co-Al系等の含ニッケルリチウム複合化合物、LiTiS、LiMnO、LiMoO、LiV等のカルコゲン化合物等のうちの一種、あるいは複数種を組み合わせて用いることができる。
<(B)導電助剤>
 導電助剤としては、導電性を有するものであれば特に限定されないが、通常炭素材料を用いることが好ましい。炭素材料としては、導電性を有する炭素材料であれば特に限定されないが、特にグラファイト、カーボンブラック、カーボンファイバー等のうちの一種、あるいは複数種を組み合わせて用いることが好ましい。
 カーボンブラックとしては、例えば、アセチレンブラック、ケッチェンブラック、ファーネスブラック、チャンネルブラック、及びサーマルブラックが挙げられ、好ましくは、アセチレンブラック、ケッチェンブラックである。
 導電助剤の含有量は、(A)成分の固形分100質量部に対し、1質量部以上、10質量部以下であることが好ましく、より好ましくは2質量部以上、8質量部以下、さらに好ましくは4質量部以上、6質量部以下である。
<(C)樹脂バインダー>
 樹脂バインダーは、エチレン性不飽和カルボン酸エステル及びエチレン性不飽和カルボン酸の少なくとも一方と芳香族ビニル化合物との共重合体である。
 本発明の樹脂バインダーは、(A)正極活物質の固形分100質量部に対して、固形分で、0.2質量部以上、5.0質量部以下で含有し、好ましくは0.2質量部以上、3.0質量部以下で含有する。上記範囲にすることで、正極活物質同士および正極活物質と集電体との結着性が良好な正極用スラリーおよび正極を提供することができ、さらにその正極を利用することで、高い初期放電容量と優れた高温充放電サイクル特性を有するリチウムイオン二次電池を提供することができる。ここで、樹脂バインダーが、(A)正極活物質の固形分100質量部に対して、0.2質量部未満では、活物質と集電体との結着性が低下する傾向があり、5.0質量部を超えると、リチウムイオン二次電池の初期放電容量が低下する傾向がある。
 エチレン性不飽和カルボン酸エステル及びエチレン性不飽和カルボン酸の少なくとも一方と芳香族ビニル化合物との共重合体における、芳香族ビニル化合物は、エチレン性炭素-炭素二重結合と芳香環を有する化合物である。芳香族ビニル化合物としては、例えば、スチレン、α-メチルスチレン、スチレンスルホン酸等が挙げられる。芳香族ビニル化合物としては、スチレンが好ましい。
 エチレン性不飽和カルボン酸エステルとしては、例えば、α,β-不飽和モノカルボン酸もしくはジカルボン酸(アクリル酸、メタクリル酸、クロトン酸、イタコン酸、マレイン酸、フマル酸等)のアルキルエステルが挙げられ、エステルのアルキル鎖は、好ましくは炭素数1~18、より好ましくは炭素数2~12、さらに好ましくは炭素数2~8の直鎖状、分岐状又は環状のアルキル鎖である。エチレン性不飽和カルボン酸エステルとしては、好ましくは、炭素数2~8の直鎖状、分岐状又は環状のアルキル鎖を有する(メタ)アクリル酸エステルである。なお、(メタ)アクリル酸とは、メタクリル酸又はアクリル酸をいう。
 さらに、正極活物質同士および正極活物質と集電体との結着性を損なわない限り、樹脂バインダーである、エチレン性不飽和カルボン酸エステル及びエチレン性不飽和カルボン酸の少なくとも一方と芳香族ビニル化合物との共重合体には、ヒドロキシアルキル(メタ)アクリレート、アミノアルキル(メタ)アクリレート、酢酸ビニルやアルカン酸ビニルに代表されるビニルエステル類、モノオレフィン類(エチレン、プロピレン、ブチレン、イソブチレン等)、ジオレフィン(アレン、メチルアレン、ブタジエン)、ジアセトンアクリルアミド等の含カルボニル基エチレン性不飽和単量体、含スルホン酸エチレン性不飽和単量体が共重合されていてもよい。これらの単量体は、一種、あるいは複数種組み合わせてもよい。
 上述した樹脂バインダーの中でも、リチウムイオン二次電池の正極用スラリー中の正極活物質の分散性を向上させる点、ならびにリチウムイオン二次電池の特性を向上させる目的で、電解液への耐溶出性ならびに正極における耐酸化性をより向上させるという観点から、樹脂バインダーは、スチレン-(メタ)アクリル酸エステル共重合体、スチレン-(メタ)アクリル酸共重合体、又はスチレン-(メタ)アクリル酸エステル-(メタ)アクリル酸共重合体、スチレン-(メタ)アクリル酸エステル-アクリル酸-スチレンスルホン酸ナトリウム共重合体であることが好ましく、スチレン-(メタ)アクリル酸エステル-アクリル酸-スチレンスルホン酸ナトリウム共重合体であることがより好ましい。
 エチレン性不飽和カルボン酸エステル及びエチレン性不飽和カルボン酸の少なくとも一方と芳香族ビニル化合物との共重合体構成単位の100モル部に対して、エチレン性不飽和カルボン酸エステル単位の含有量が、好ましくは、25モル部以上、85モル部以下で、より好ましくは、30モル部以上、80モル部以下である。エチレン性不飽和カルボン酸エステル単位の含有量が上記範囲内にあることで、得られる正極の柔軟性や耐熱性が向上し、正極活物質同士および活物質と集電体との結着性が向上する。
 エチレン性不飽和カルボン酸エステル及びエチレン性不飽和カルボン酸の少なくとも一方と芳香族ビニル化合物との共重合体構成単位の100モル部に対して、エチレン性不飽和カルボン酸単位の含有量が、好ましくは、1モル部以上、10モル部以下で、より好ましくは、1モル部以上、5モル部以下である。エチレン性不飽和カルボン単量体単位の含有量が上記範囲内にあることで、芳香族ビニル化合物とエチレン性不飽和カルボン酸の共重合体の乳化重合安定性又は機械的安定性が維持され、正極活物質同士および正極活物質と集電体との結着性が向上する。
 また、本発明の樹脂バインダー、特にエチレン性不飽和カルボン酸エステル及びエチレン性不飽和カルボン酸の少なくとも一方と芳香族ビニル化合物との共重合体は、必要に応じて、架橋剤となるグリシジル(メタ)アクリレート等のエポキシ基含有α,β-エチレン性不飽和化合物、ビニルトリエトキシシランやγ-メタクリロキシプポピルトリメトキシシラン等の加水分解性アルコキシシリル基含有α,β-エチレン性不飽和化合物、エチレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、アリル(メタ)アクリレート、ジビニルベンゼン、ジアリルフタレート等の多官能ビニル化合物などのモノマーを正極バインダーとして用いられる共重合体に導入し、それ自身同士を架橋させるか、もしくは活性水素基を持つエチレン性不飽和化合物成分と組み合わせて架橋させてもよい。また、カルボニル基含有α,β-エチレン性不飽和化合物等を共重合体に導入し、ポリヒドラジン化合物、特に、シュウ酸ジヒドラジド、コハク酸ジヒドラジド、アジピン酸ジヒドラジド、ポリアクリル酸ジヒドラジド等の2以上のヒドラジド基を有する化合物と組み合わせて架橋させてもよい。
 本発明の樹脂バインダー、特にエチレン性不飽和カルボン酸エステル及びエチレン性不飽和カルボン酸の少なくとも一方と芳香族ビニル化合物との共重合体を得るための重合法としては、従来から公知の方法を用いることができるが、乳化重合法を用いることが好ましい。乳化重合の際に用いられる界面活性剤としては、通常のアニオン性界面活性剤、ノニオン性界面活性剤が用いられる。アニオン性界面活性剤としては、例えばアルキルベンゼンスルホン酸塩、アルキル硫酸エステル塩、ポリオキシエチレンアルキルエーテル硫酸エステル塩、脂肪酸塩等が挙げられ、ノニオン性界面活性剤としては、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレン多環フェニルエーテル、ポリオキシアルキレンアルキルエーテル、ソルビタン脂肪酸エステル、ポリオキシエチレンスルビタン脂肪酸エステル等が挙げられる。これらの界面活性剤は、一種、あるいは複数種を組み合わせて用いる。
 乳化重合を行う際の界面活性剤の使用量は、全単量体の100質量部に対して、0.3質量部以上、3質量部以下であることが好ましい。界面活性剤の使用量が上記範囲内であると、得られた水系エマルジョンの粒子径が所望の粒子径となり、安定した乳化重合が行えるとともに、正極活物質と集電体の密着力の低下が抑制される。
 乳化重合の際に用いられるラジカル重合開始剤としては、公知慣用のラジカル重合開始剤を用いることができる、例えば過硫酸アンモニウム、過硫酸カリウム、過酸化水素、t-ブチルハイドロパーオキサイド等が挙げられる。また、必要に応じて、これらの重合開始剤を重亜硫酸ナトリウム、ロンガリット、アスコルビン酸等の還元剤と併用してレドックス重合としてもよい。
 本発明の樹脂バインダーを得るための乳化重合法としては、一括して仕込む重合方法、各成分を連続供給しながら重合する方法などが適用される。重合は通常30℃以上、90℃以下の温度範囲内で撹拌下に行われる。なお、本発明において共重合したエチレン性不飽和カルボン酸を重合中もしくは重合終了後に塩基性物質を加えてpH調整することにより、乳化重合時の重合安定性、機械的安定性、化学的安定性を向上させることができる。その際使用される塩基性物質としては、アンモニア、トリエチルアミン、エタノールアミン、苛性ソーダ等を使用することができ、これらは、一種、あるいは複数種を組み合わせて用いる。
<(D)増粘分散剤>
 本発明に用いられるリチウムイオン二次電池正極用スラリーには、スラリーの正極活物質同士および正極活物質と集電体に対する結着性を高め、かつスラリー中の正極活物質の分散性を上げ、スラリーの安定性を高めるため、増粘分散剤を併用する。
 増粘分散剤としては、水溶性高分子であれば特に限定されず、側鎖や架橋構造の有無に関係なく、いかなるものも利用可能である。リチウムイオン二次電池の正極用スラリー中の正極活物質の分散性を高めることができる水溶性高分子として、例えばポリアルキレンオキシド、ポリビニルアルコール、ポリカルボン酸誘導体(これらの塩類を含む)、ポリカルボン酸エステル誘導体、ポリビニルアミド等が挙げられる。特に、ポリアルキレンオキシド、ポリカルボン酸、およびポリビニルアミドからなる群から選ばれる少なくとも一種を含むことが好ましい。中でも、ポリエチレンオキシド、ポリアクリル酸、およびポリ-N-ビニルアセトアミド、アクリル酸とN-ビニルアセトアミドとの共重合体、ポリアクリル酸とポリ-N-ビニルアセトアミドとの混合物がより好ましい。
 さらに、水溶性高分子として多糖類も好適であり、糖骨格、結合様式、置換基の種類などに限定されず、いかなるものが利用可能である。特に、正極活物質同士および正極活物質と集電体に対する結着性の向上の観点から、カルボキシメチルセルロース、カルボキシエチルセルロース、カルボキシメチルエチルセルロース、メチルセルロース、エチルセルロース、ヒドロキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース等のセルロース誘導体(これらの塩類を含む)が好ましい。さらに、この中でも、リチウムイオン二次電池の正極用スラリーに適度な粘性を付与することができる、カルボキシメチルセルロースを用いることがより好ましい。ここで、適宜所望の粘度に応じて、カルボキシメチルセルロースの質量平均分子量やエーテル化度を選べばよい。
 これらの水溶性高分子は、一種、あるいは複数種を組み合わせて用いることが好ましく、各々の水溶性高分子のモノマーを共重合させたものを利用することも好適である。
 増粘分散剤に用いる水溶性高分子の分子量については特に限定されないが、リチウムイオン二次電池の正極用スラリーの製造時に用いる、増粘分散剤の水溶液の粘度に応じた分子量を設定することが好ましい。また、増粘分散剤は、正極用スラリーの増粘分散の観点から、1質量%増粘分散剤の水溶液の23℃における、回転式粘度計(TVB-25L、東機産業社製)を用いた60回転における粘度(mPa・s)が、好ましくは1~10000mPa・s、より好ましくは10~2000mPa・sである。上記範囲の粘度を有する増粘分散を用いることにより、増粘分散剤の水溶液の粘度が所望の粘度に保たれ、リチウムイオン二次電池の正極用スラリーにおける(A)~(C)成分の分散性、及び正極活物質同士および正極活物質と集電体に対する結着性が向上し、スラリーの集電体への塗工に優れる。
 また、増粘分散剤は、正極活物質の固形分100質量部に対して、0.2質量部以上、5.0質量部以下で含有され、好ましくは0.2質量部以上、3.0質量以下の範囲で含有される。増粘分散剤の含有量が上記範囲内であることにより、正極活物質が均一に分散され、集電体への塗工に適したスラリー粘度が得られる。
<(E)pH調整剤>
 本発明に用いられるpH調整剤は、23℃における、水系リチウムイオン二次電池の正極用スラリーのpHを6.0~8.0の範囲に調整するために用いるものである。23℃における、正極用スラリーのpHを6.0~8.0に調整することで、正極用スラリー中での正極活物質と水との反応を抑制することができる。さらに、正極用スラリーのpHが23℃で6.5~7.5であることがより好ましい。
 正極用スラリーは、一般的に水とリチウム化合物の反応性が非常に高く、リチウム含有遷移金属酸化物を利用した正極活物質が、正極用スラリーを製造する段階で水と容易に反応することが指摘される。その反応機構として、正極活物質中のリチウムが水中にてリチウムイオンとして脱離し、水と反応し水酸化リチウムが生成されることが挙げられる。その影響により、スラリーのpHが8.0を超える塩基性状態となり、種々の副反応が発生する。リチウムイオン二次電池内での副反応に着目すると、強塩基条件下における正極のアルミニウム集電体への腐食が促進し、集電体と活物質との結着性が大幅に低下することで、電池の低寿命化を招くことが考えられる。また、水酸化リチウムとカーボネート系溶媒とが反応し、炭酸リチウムや二酸化炭素などが副生物として得られ、これらがガス発生や電極被膜形成を誘発し、電池抵抗の増大や電池膨れに影響を及ぼすことが考えられる。さらに、これらの副反応によって正極活物質中のリチウムが消費されてしまうため、充放電に利用可能なリチウムイオン数が減少し、電池容量の低下を引き起こす。
 従って、スラリーのpHを中性域に制御することは、リチウムイオン二次電池特性を維持する上で重要である。特に、正極用スラリーの特性上、強塩基性状態を解消することが重要であり、後述する特定の酸を添加することで水酸化物イオンの発生を抑制し、正極活物質からのリチウムの脱離を抑制することが好ましい。
 ここで、スラリーのpHを制御する有用な方法として、一つは、酸性度の高い電池電極用水系バインダーや増粘分散剤を用いることであり、例えば、エチレン性不飽和カルボン酸の配合比が高いバインダーや、ポリカルボン酸系増粘分散剤の使用が挙げられるが、より精度高くpHの調整を図るためには、酸性のpH調整用添加剤をスラリーに含有させることであり、こちらの手法は、より幅広い範囲でかつ細かなpHの制御が可能である。
 前記pH調整剤は、有機酸、無機酸からなる化合物から選択され、前記有機酸が、カルボキシル基、スルホ基及びホスホン基の少なくとも一種が単独または複合的に1つ以上含まれている化合物から選ばれ、前記無機酸が、リン酸、ホウ酸、炭酸、から選ばれる少なくとも1種から選ばれる。
 前記有機酸としては、例えば、酢酸、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、フタル酸、フマル酸、クエン酸、1,2,3,4-ブタンテトラカルボン酸、メタンスルホン酸、パラトルエンスルホン酸、カンファースルホン酸、プロピルホスホン酸、ビニルホスホン酸、フェニルホスホン酸、メチレンジホスホン酸などが挙げられる。
 無機酸において、好ましくは炭酸である。有機酸において、好ましくは、1,2,3,4-ブタンテトラカルボン酸、クエン酸、コハク酸、酢酸、メタンスルホン酸、プロピルホスホン酸である。
 また、本発明におけるpH調整剤は、pH調整の容易性の観点から、弱酸であることが好ましい。
 本発明に用いられる正極用スラリーのpH調整剤は、正極活物質の固形分100質量部に対して、0.1質量部以上、1.0質量部以下で、好ましくは、0.2質量部以上、0.8質量部以下、より好ましくは0.3質量部以上、0.7質量部以下で添加することが好ましい。pH調整剤の含有量を上記範囲内にすることで、正極における酸の残存が抑制され、これにより、アルミニウム集電体の腐食や集電体と正極活物質との結着性の低下が抑制される。
 一方、正極用スラリーのpHが6.0を下回る酸性の場合でも、アルミニウム集電体が腐食され、集電体と活物質との結着性が低下し、電池の長寿命化の阻害要因となる。その場合、塩基性のpH調整用添加剤を正極用スラリーに含有させることによって、スラリーを中性領域に保つことが好ましい。
 塩基性のpH調整用添加剤の種類としては有機塩基、無機塩基からなる化合物であれば特に限定されることはなく、これらのうちの一種、あるいは複数種を組み合わせて用いる。有機塩基としては一級アミン、二級アミン、三級アミン、四級アンモニウム塩が挙げられ、無機塩基としてはアンモニア、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化カルシウムなどが挙げられるが、好ましくは、弱アルカリ性のアンモニアである。
<(F)水>
 本発明の正極用スラリーの分散媒として用いる水は、イオン交換樹脂で処理された水(イオン交換水)、及び逆浸透膜浄水システムにより処理された水(超純水)などが好ましい。
〔リチウムイオン二次電池の正極用スラリーの製造方法〕
 本発明に用いられるリチウムイオン二次電池の正極用スラリーは、(A)正極活物質、(B)導電助剤、(C)エチレン性不飽和カルボン酸エステル及びエチレン性不飽和カルボン酸の少なくとも一方と芳香族ビニル化合物との共重合体からなる樹脂バインダー、(D)増粘分散剤、(E)pH調整剤、及び(F)水をとの混合物に分散又は溶解させたものである。ここで、水分散体としてのスラリーが好ましいが、環境の負荷に影響のない範囲内で、水と親水性の高い溶媒を加えてもよい。
 リチウムイオン二次電池の正極用スラリーの調製は、例えば、(C)エチレン性不飽和カルボン酸エステル及びエチレン性不飽和カルボン酸の少なくとも一方と芳香族ビニル化合物との共重合体からなる樹脂バインダーと(D)増粘分散剤、(E)pH調整剤、及び(F)水(又は水と親和性の高い溶媒)に分散又は溶解させた後、(A)正極活物質、(B)導電助剤を加える方法が挙げられる。
〔リチウムイオン二次電池用正極とその製造方法〕
 本発明のリチウムイオン二次電池用正極は、(A)正極活物質、(B)導電助剤、(C)エチレン性不飽和カルボン酸エステル及びエチレン性不飽和カルボン酸の少なくとも一方と芳香族ビニル化合物との共重合体からなる樹脂バインダーと(D)増粘分散剤、(E)pH調整剤を含む。
 ここで、上記(A)~(E)については、上述と同様であるため、ここでの説明は省略する。
 本発明のリチウムイオン二次電池用正極の製造方法は、正極集電体に正極活物質を含む正極活物質層を備える正極の製造方法であって、上述したリチウムイオン二次電池の正極用スラリーを前記正極集電体上に供給して前記正極活物質層を形成する工程を有する。
 本発明の正極は、例えば、リチウムイオン二次電池正極用スラリーを集電体上に塗布し、乾燥することにより製造される。本発明のスラリーの塗布方法は一般的な方法を用いることができ、例えばリバースロール法、ダイレクトロール法、ドクターブレード法、ナイフ法、エクストルージョン法、カーテン法、グラビア法、バー法、ディップ法、およびスクイーズ法を挙げることができる。
 リチウムイオン二次電池正極用スラリーの集電体への塗布は、集電体の片面および両面に施すことができる。集電体の両面に塗布する場合は、片面ずつ逐次でも、両面同時に塗布してもよい。また、集電体の表面に連続、あるいは間欠で塗布してもよい。塗布層の厚さ、長さや幅は、電池の大きさに応じて適宜決定することができる。
 本発明のスラリーの乾燥方法は、一般的な方法を用いることができる。特に、熱風、真空、赤外線、遠赤外線、電子線および低温風を単独あるいは組み合わせて用いることが好ましい。乾燥温度は、好ましくは50℃以上、350℃以下で、より好ましくは50℃以上、200℃以下である。
 本発明の電極の製造に用いられる集電体としては、アルミニウムをはじめ、金属製のものであれば特に限定されない。また、集電体の形状についても特に限定されないが、通常厚さ0.001mm以上、0.5mm以下のシート状のものを用いることが好ましい。本発明の電極は、必要に応じてプレスすることができる。プレスの方法としては、一般的な方法を用いることができるが、特に金型プレス法やカレンダープレス法が好ましい。プレス圧は特に限定されないが、0.1t/cm以上、10t/cm以下が好ましい。
〔リチウムイオン二次電池とその製造方法〕
<リチウムイオン二次電池>
 本発明のリチウムイオン二次電池は、本発明の正極を備える。
 リチウムイオン二次電池としては、例えば、負極と本発明の正極とを、透過性のセパレータ(例えば、ポリエチレンあるいはポリプロピレン製の多孔性フィルム)を間に介して配置し、これに非水系の電解液を含浸させた非水系二次電池;集電体の両面に負極層が形成された負極/セパレータ/集電体の両面に正極層が形成された本発明の正極/セパレータからなる積層体をロール状(渦巻状)に巻回した巻回体が、電解液と共に有底の金属ケーシングに収容された筒状の非水系二次電池などが挙げられる。
 本発明の電池は、ケーシングである外装体としては、金属外装体やアルミラミネート外装体が適宜使用できる。電池の形状はコイン型、ボタン型、シート型、円筒型、角形、扁平型など特に限定されない。
 本発明のリチウムイオン二次電池に用いられる負極としては、例えば集電体上に負極活物質やバインダーを含む負極層が形成された公知の負極が使用できる。
 負極活物質としては、リチウムイオンの吸蔵および放出が可能な元素を含有する負極活物質や、炭素材料等、公知の負極活物質が使用できる。
 負極活物質としては、リチウムを吸蔵および放出可能な材料であれば特に限定されず、非黒鉛化炭素、人造黒鉛炭素、天然黒鉛炭素、金属リチウム、アルミニウム、鉛、シリコン、スズなどとリチウムの合金、酸化スズ、酸化チタン等が用いられる。
 前記リチウムイオンの吸蔵および放出が可能な元素を含有する負極活物質の具体的な例としては、例えば、金属化合物、金属酸化物、リチウム金属化合物、リチウム金属酸化物(リチウム-遷移金属複合酸化物を含む)などが挙げられる。金属化合物の形態の負極活物質としては、LiAl、LiSi、Li4.4Pb、Li4.4Sn等が挙げられる。また、金属酸化物の形態の負極活物質としては、SnO、SnO、GeO、GeO、InO、In、PbO、PbO、Pb、Pb、SiO、ZnO等が挙げられる。
 炭素材料としては、例えば黒鉛、非晶質炭素、炭素繊維、コークス、活性炭、カーボンナノチューブ、カーボンナノファイバー、フラーレン等の炭素材料などが挙げられる。
 これらの負極活物質は、1種を単独で用いてもよく、2種以上を併用してもよい。
 また、負極に使用できるバインダーとしては特に限定されないが、公知の負極用バインダー樹脂を使用することができる。
 負極の集電体の材料としては、導電性を有する物質であればよく、金属が使用できる。金属としては、リチウムと合金ができ難い金属が好ましく、具体的には、銅、ニッケル、鉄、チタン、バナジウム、クロム、マンガン、あるいはこれらの合金が挙げられる。
 集電体の形状としては、薄膜状、網状、繊維状が挙げられる。この中では、薄膜状が好ましい。集電体の厚みは、5~30μmが好ましく、8~25μmがより好ましい。
 電解液としては、例えばリチウムイオン二次電池の場合、電解質としてのリチウム塩を1M程度の濃度で非水系有機溶媒に溶解したものが用いられる。
 リチウム塩としては、例えばLiClO、LiBF、LiI、LiPF、LiCFSO、LiCFCO、LiAsF、LiSbF、LiAlCl、LiCl、LiBr、LiB(C)、LiCHSO、LiCSO、Li(CFSO)N、Li[(CO)]Bなどが挙げられる。
 一方、非水系有機溶媒としては、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート等のカーボネート類;γ-ブチロラクトン等のラクトン類;トリメトキシメタン、1,2-ジメトキシエタン、ジエチルエーテル、2-エトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフラン等のエーテル類;ジメチルスルホキシド等のスルホキシド類;1,3-ジオキソラン、4-メチル-1,3-ジオキソラン等のオキソラン類;アセトニトリル、ニトロメタン、NMP等の含窒素類;ギ酸メチル、酢酸メチル、酢酸ブチル、プロピオン酸メチル、プロピオン酸エチル、リン酸トリエステル等のエステル類;ジグライム、トリグライム、テトラグライム等のグライム類;アセトン、ジエチルケトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類;スルホラン等のスルホン類;3-メチル-2-オキサゾリジノン等のオキサゾリジノン類;1,3-プロパンスルトン、4-ブタンスルトン、ナフタスルトン等のスルトン類などが挙げられる。
 電解液は、1種を単独で用いてもよく、2種以上を併用してもよい。
 リチウムイオン二次電池は、例えば正極と負極とを、透過性のセパレータを間に介して配置し、これに非水系の電解液を含浸させることで得られる。
 また、筒状の場合は以下のようにして得られる。
 まず、集電体の両面に負極層が形成された負極/セパレータ/集電体の両面に正極層が形成された正極/セパレータからなる積層体をロール状(渦巻状)に巻回して巻回体とする。得られた巻回体を有底の金属ケーシング(電池缶)に収容し、負極を負極端子に、正極を正極端子に接続する。ついで、金属ケーシングに電解液を含浸させた後、金属ケーシングを封止することにより筒状のリチウムイオン二次電池とする。
<リチウムイオン二次電池の製造方法>
 本発明のリチウムイオン二次電池の製造方法は、上述のリチウムイオン二次電池の正極用スラリーを調製する工程と、前記リチウムイオン二次電池の正極用スラリーを正極集電体に塗布して正極活物質層を形成し、リチウムイオン二次電池用正極を製造する工程と、前記リチウムイオン二次電池用正極を備えるリチウムイオン二次電池を組み立てる工程と、を有する。リチウムイオン二次電池を組み立てる工程としては、本実施形態に係るリチウムイオン二次電池用正極を正極として用いれば特に限定されない。
 以下、本発明を実施例に基づき更に詳細に説明するが、本発明は以下の実施例により何ら限定されるものではない。なお、実施例中の「部」および「%」は、特に断りのない場合はそれぞれ質量部、質量%を示す。実施例で得られたリチウムイオン二次電池電極用スラリー、これらスラリーを用いて得られるリチウムイオン二次電池用電極、およびこれら電極を用いて得られるリチウムイオン二次電池およびそれらの性能評価試験は、以下の方法により行った。
 [樹脂バインダー(樹脂A)の作製]
 冷却管、温度計、攪拌機、滴下ロートを有するセパラブルフラスコに、イオン交換水100質量部及び反応性アニオン性乳化剤(三洋化成工業株式会社製、商品名エレミノールJS-20、有効成分40%)0.9質量部を仕込み、75℃に昇温した。次いで、上記反応性アニオン性乳化剤6.5質量部、非反応性アニオン性乳化剤(第一工業製薬株式会社製、商品名ハイテノール08E、ポリオキシエチレンアルキルエーテル硫酸エステル塩)1.2質量部、スチレン149質量部、アクリル酸2-エチルヘキシル131質量部、メタクリル酸2-ヒドロキシエチル5.8質量部、アクリル酸(有効成分80%)5.8質量部、パラスチレンスルホン酸ソーダ1.2質量部、トリメチロールプロパンメタクリレート1.5部及びイオン交換水271質量部を予め混合してなるモノマー乳化物を4時間かけて滴下した。同時に重合開始剤として過硫酸カリウム1.3質量部をイオン交換水29質量部に溶解したものを4時間かけて80℃で滴下重合した。滴下終了後、2時間熟成後室温に冷却し、アンモニア水6.0質量部およびイオン交換水36質量部を添加し、樹脂Aのエマルジョン(固形分40.0%、23℃における回転式粘度計(TVB-25L、東機産業株式会社製)を用いた10回転における粘度:1900mPa・s、pH6.7)を得た。
 [正極用スラリーの作製]
 下記の実施例及び比較例に記載にしたがって、樹脂バインダーおよび増粘分散剤の水溶液と、pH調整剤と、必要に応じて水を加え、プラネタリーミキサー(プライミクス株式会社製、ハイビスミックス2P-03型)にて混練した後、これらに、正極活物質としてLiCo1/3Ni1/3Mn1/32(以下「NMC」ともいう)、及び導電助剤としてカーボンブラックを加えて、プラネタリーミキサー(プライミクス株式会社製、ハイビスミックス2P-03型)にて混練し、正極用スラリーを作製した。
 [スラリーのpH測定]
 1気圧、23℃の条件下、pHメーター(東亜DKK株式会社製、製品名:HM-30G)を用いて測定した。
 [正極の作製]
 正極用スラリーを集電体となる厚さ20μmのアルミニウム箔にプレス処理後の厚さが60μmとなるように塗布し、ホットプレートにて50℃で5分乾燥、次いで110℃で5分乾燥後、金型プレス機を用いてプレス圧2.5t/cmにてプレスし、集電タブを取り付けることで、正極を作製した。
 [負極スラリーの作製]
 負極活物質(SCMG-BR(昭和電工株式会社製))を100質量部に対して、導電助剤としてカーボンブラック(アセチレンブラック)を2質量部、バインダーとしてスチレン-アクリル酸エステル共重合体(ポリゾール LB-200(昭和電工株式会社製、固形分40%、粘度2000mPa・s、pH7.0))(「ポリゾール」は昭和電工株式会社の登録商標である)からなる乳化重合体を4質量部、増粘分散剤としてカルボキシメチルセルロース(CMC)(1質量%のCMC水溶液の23℃における粘度:1100mPa・s)を水に溶解させたCMC水溶液(CMC濃度が2質量%)を50質量部混合し、さらに水を5質量部加えて混練し、負極用スラリーを作製した。
 [負極の作製]
 正極用スラリーを集電体となる厚さ10μmの銅箔にプレス処理後の厚さが60μmとなるように塗布し、ホットプレートにて50℃で5分乾燥、次いで110℃で5分乾燥後、金型プレス機を用いてプレス圧2.5t/cmにてプレスし、集電タブを取り付けることで、負極を作製した。
 [電解液の調製]
 エチレンカーボネートとジエチルカーボネートとを体積比2/3で混合した溶媒に、LiPFを1.0mol/Lの濃度になるように溶解し、電解液を調製した。
 [電池の作製]
 上記の通りに作製した正極および負極を、ポリエチレン製のセパレータを挟んで対向させ、アルミラミネートの容器に入れ、アルゴン雰囲気下のグローボックス中にて、前記電極の入った容器に上記電解液を1.0ml滴下し、脱圧しながらラミネート容器を熱圧着して電池を作製した。なお、この電池の理論容量を16.5mAhとして設計した。
 [電池評価:初期容量]
 日鉄エレックス製充放電試験装置を用いて評価を行った。エージング処理を施した後、25℃条件下、CC-CV充電(上限電圧(4.2V)になるまで0.2C(5時間で満充放電する電流)で充電し、その後CV時間(1.5時間)が経過するまで一定の電圧(4.2V)で充電した)およびCC放電(下限電圧(2.75V)になるまで0.2Cで放電)を2サイクル行った。2回のCC放電時の容量の平均をその電池の初期容量と定めた。
 [電池評価:初期直流抵抗]
 初期容量測定後、25℃条件下、初期容量の60%に相当する容量を0.2Cで充電し、その後0.2Cで1分間CC放電をし、1秒後の放電電流と電圧を測定した。同様のCC放電を0.5C、1.0C、2.0Cでも行い、各々1秒後の放電電流と電圧を測定し、各測定値をプロットし、近似直線の傾きをその電池の初期直流抵抗と定めた。
 [電池評価:充放電サイクル特性]
 45℃条件下、CC-CV充電(上限電圧(4.2V)になるまで2C(30分で満充放電する電流)で充電し、その後CV時間(1.5時間)が経過するまで一定の電圧(4.2V)で充電した)およびCC放電(下限電圧(2.75V)になるまで2Cで放電)を150サイクル繰り返すことで行った。電池の充放電サイクル特性は、容量維持率、すなわち1サイクル目の放電容量に対する150サイクル目の放電容量の割合を求めることで比較した。
 [実施例1]
 正極用スラリーの作製において、樹脂バインダーとして樹脂Aを1.25g(正極活物質の固形分100質量部に対して共重合体の固形分が2.5質量部)、および増粘分散剤としてカルボキシメチルセルロース(以下「CMC」ともいう)(1質量%のCMC水溶液の23℃における粘度:1100mPa・s)を水に溶解させたCMC水溶液(CMC濃度が2質量%)を20g(正極活物質の固形分100質量部に対してCMCの固形分が2.0質量部)、およびpH調整剤として1,2,3,4-ブタンテトラカルボン酸を水に溶解させた1,2,3,4-ブタンテトラカルボン酸水溶液(1,2,3,4-ブタンテトラカルボン酸の濃度が10質量%)を1g(正極活物質100質量に対して1,2,3,4-ブタンテトラカルボン酸の固形分0.5質量部)を、プラネタリーミキサー(プライミクス株式会社製、ハイビスミックス2P-03型)にて混練した後、これらに、正極活物質としてLiCo1/3Ni1/3Mn1/32を20g、導電助剤としてカーボンブラック(アセチレンブラック)を1g(正極活物質の固形分100質量部に対して固形分で5質量部)を添加して、さらに、プラネタリーミキサー(プライミクス株式会社製、ハイビスミックス2P-03型)にて混練し、正極スラリーを作製した。
 [実施例2]
 正極用スラリーの作製において、樹脂バインダーとして樹脂Aを1.25g、増粘分散剤としてポリエチレンオキシド(PEO)(1質量%のPEO水溶液の23℃における粘度:12mPa・s)を水に溶解させたPEO水溶液(PEO濃度が10質量%)を4g、およびpH調整剤として1,2,3,4-ブタンテトラカルボン酸を水に溶解させた1,2,3,4-ブタンテトラカルボン酸水溶液(1,2,3,4-ブタンテトラカルボン酸の濃度が10質量%)を1g混合し、さらに水を10g加えてプラネタリーミキサー(プライミクス株式会社製、ハイビスミックス2P-03型)にて混練した後、これらに、正極活物質としてLiCo1/3Ni1/3Mn1/32を20g、導電助剤としてカーボンブラック(アセチレンブラック)1gを添加して、プラネタリーミキサー(プライミクス株式会社製、ハイビスミックス2P-03型)にて混練し、正極スラリーを作製した。
 [実施例3]
 正極用スラリーの作製において、樹脂バインダーとして樹脂Aを1.25g、増粘分散剤としてポリN-ビニルアセトアミド(以下「PNVA」ともいう)(1質量%のPNVA水溶液の23℃における粘度:30mPa・s)を水に溶解させたPNVA水溶液(PNVA濃度が10質量%)を4g、およびpH調整剤として1,2,3,4-ブタンテトラカルボン酸を水に溶解させた1,2,3,4-ブタンテトラカルボン酸水溶液(1,2,3,4-ブタンテトラカルボン酸の濃度が10質量%)を1g混合し、さらに水を10g加え、プラネタリーミキサー(プライミクス株式会社製、ハイビスミックス2P-03型)にて混練した後、これらに、正極活物質としてLiCo1/3Ni1/3Mn1/32を20g、導電助剤としてカーボンブラック(アセチレンブラック)1gを添加して、プラネタリーミキサー(プライミクス株式会社製、ハイビスミックス2P-03型)にて混練し、正極スラリーを作製した。
 [実施例4]
 正極用スラリーの作製において、樹脂バインダーとして樹脂Aを1.25g、増粘分散剤としてポリN-ビニルアセトアミドとポリアクリル酸の共重合体(共重合比70/30)(以下「PNVA/PAa」ともいう)(1質量%のPNVA/PAa水溶液の23℃における粘度:450mPa・s)を水に溶解させたPNVA/PAa水溶液(PNVA/PAa濃度が10質量%)を4g、およびpH調整剤として1,2,3,4-ブタンテトラカルボン酸を水に溶解させた1,2,3,4-ブタンテトラカルボン酸水溶液(1,2,3,4-ブタンテトラカルボン酸の濃度が10質量%)を1g混合し、さらに水を10g加え、プラネタリーミキサー(プライミクス株式会社製、ハイビスミックス2P-03型)にて混練した後、これらに、正極活物質としてLiCo1/3Ni1/3Mn1/32を20g、導電助剤としてカーボンブラック(アセチレンブラック)1gを添加して、プラネタリーミキサー(プライミクス株式会社製、ハイビスミックス2P-03型)にて混練し、正極スラリーを作製した。
 [実施例5]
 正極用スラリーの作製において、pH調整剤の水溶液として1,2,3,4-ブタンテトラカルボン酸水溶液を2g混合した以外は実施例1と同様に行い、正極用スラリーを作製した。
 [実施例6]
 正極用スラリーの作製において、pH調整剤の水溶液として1,2,3,4-ブタンテトラカルボン酸水溶液を0.2g混合した以外は実施例1と同様に行い、正極用スラリーを作製した。
 [実施例7]
 正極用スラリーの作製において、pH調整剤としてクエン酸を用い、クエン酸水溶液(クエン酸濃度が10質量%)を1g混合した以外は実施例1と同様に行い、正極用スラリーを作製した。
 [実施例8]
 正極用スラリーの作製において、pH調整剤としてコハク酸を用い、コハク酸水溶液(コハク酸濃度が10質量%)を1g混合した以外は実施例1と同様に行い、正極用スラリーを作製した。
 [実施例9]
 正極用スラリーの作製において、pH調整剤として酢酸を用い、酢酸水溶液(酢酸濃度が10質量%)を1g混合した以外は実施例1と同様に行い、正極用スラリーを作製した。
 [実施例10]
 正極用スラリーの作製において、pH調整剤としてメタンスルホン酸を用い、メタンスルホン酸水溶液(メタンスルホン酸濃度が10質量%)を1g混合した以外は実施例1と同様に行い、正極用スラリーを作製した。
 [実施例11]
 正極用スラリーの作製において、pH調整剤としてプロピルホスホン酸を用い、プロピルホスホン酸水溶液(プロピルホスホン酸濃度が10質量%)を1g混合した以外は実施例1と同様に行い、正極用スラリーを作製した。
 [実施例12]
 正極用スラリーの作製において、pH調整剤として炭酸を用い、炭酸水水溶液(炭酸濃度が10質量%)を1g混合した以外は実施例1と同様に行い、正極用スラリーを作製した。
 [比較例1]
 正極用スラリーの作製において、樹脂バインダーを用いず、水を1.25g添加した以外は実施例1と同様に行い、正極用スラリーを作製した。
 [比較例2]
 正極用スラリーの作製において、pH調整剤としての1,2,3,4-ブタンテトラカルボン酸を混合しなかった以外は実施例1と同様に行い、正極用スラリーを作製した。
 [比較例3]
 正極用スラリーの作製において、pH調整剤としての1,2,3,4-ブタンテトラカルボン酸を混合しなかった以外は実施例2と同様に行い、正極用スラリーを作製した。
 [比較例4]
 正極用スラリーの作製において、pH調整剤としての1,2,3,4-ブタンテトラカルボン酸を混合しなかった以外は実施例3と同様に行い、正極用スラリーを作製した。
 [比較例5]
 正極用スラリーの作製において、pH調整剤としての1,2,3,4-ブタンテトラカルボン酸を混合しなかった以外は実施例4と同様に行い、正極用スラリーを作製した。
 [比較例6]
 正極用スラリーの作製において、pH調整剤として1,2,3,4-ブタンテトラカルボン酸水溶液を4g(正極活物質の固形分100質量部に対し2.0質量部)混合した以外は実施例1と同様に行い、正極用スラリーを作製した。
 [比較例7]
 正極用スラリーの作製において、樹脂バインダーとしてスチレン-ブタジエンゴム((SBR)固形分40質量%)からなる乳化重合体に変更した以外は、実施例1と同様に行い、正極用スラリーを作製した。
 [比較例8]
 正極用スラリーの作製において、樹脂バインダーとしてSBRからなる乳化重合体に変更し、pH調整剤としての1,2,3,4-ブタンテトラカルボン酸を混合しなかった以外は、実施例1と同様に行い、正極用スラリーを作製した。
 [比較例9]
 正極用スラリーの作製において、LiCo1/3Ni1/3Mn1/32を100質量部、導電助剤としてカーボンブラック(アセチレンブラック)を5質量部、バインダーとしてポリフッ化ビニリデン(以下「PVDF」ともいう)(KYNAR(ARKEMA社製、KYNARはARKEMA社の登録商標である)(PVDFの濃度が10質量%))を10gとを混合し、さらにN-メチルピロリドン(NMP)を5g加えて混合し、正極用スラリーを作製した。
 正極用スラリーのpH、各種電池特性の結果を表3に示す。
Figure JPOXMLDOC01-appb-T000001
 表中の略語は、以下に示すとおりである。
NMC:LiCo1/3Ni1/3Mn1/32
CMC:カルボキシメチルセルロース
PEO:ポリエチレンオキシド
PNVA:ポリN-ビニルアセトアミド
PNVA/PAa:ポリN-ビニルアセトアミドとポリアクリル酸の共重合体(共重合比70/30)
Figure JPOXMLDOC01-appb-T000002
 表中の略語は、以下に示すとおりである。
NMC:LiCo1/3Ni1/3Mn1/32
CMC:カルボキシメチルセルロース
PEO:ポリエチレンオキシド
PNVA:ポリN-ビニルアセトアミド
PNVA/PAa:ポリN-ビニルアセトアミドとポリアクリル酸の共重合体(共重合比70/30)
SBR:スチレン-ブタジエンゴム
PVDF:ポリフッ化ビニリデン
*1:スチレン-ブタジエンゴム((SBR)固形分40質量%)からなる乳化重合体
*2:ポリフッ化ビニリデン(PVDF)(KYNAR(ARKEMA社製、KYNARはARKEMA社の登録商標である)(PVDFの濃度が10質量%))
Figure JPOXMLDOC01-appb-T000003
 実施例1~4と比較例2~5より、本発明のリチウムイオン二次電池正極用スラリーは、pH調整剤の非添加の場合はpHが9以上の塩基性に傾く一方、添加剤を加えることにより、そのpHを中性領域に制御することができることが分かった。それに伴い、リチウムイオン二次電池内で副反応が抑制され、かつ副反応に伴う正極活物質中の充放電に利用可能なリチウムの消費量が抑えられたため、電池の高容量特性、低抵抗特性、および高充放電サイクル維持率特性が兼ね備わったといえる。さらに、バインダーに併用する増粘分散剤は、水溶性高分子としてセルロース誘導体、ポリアルキレンオキシド、ポリカルボン酸エステル、ポリカルボン酸、およびポリビニルアミドにおいて適用でき、これらはホモポリマー、共重合体いずれの形態でも適用できることが示された。
 実施例1,5~6より、本発明のリチウムイオン二次電池正極用スラリーは、適量のpH調整剤を加えることにより、優れた電池特性を示すことが分かった。すなわち、pH調整剤を正極活物質100質量部に対し0.1~1.0質量部添加した場合、優れた電池特性を発現することが示された。比較例6のようにpH調整用添加剤を過剰に入れた場合、スラリーのpHが6.0を下回ることで、アルミニウム集電体の腐食が発生し、活物質と集電体との結着性が大きく低下し、電池性能が著しく悪化することが考えられる。
 実施例1および比較例6~7より、正極用スラリーのpH調整剤の効果は、全ての樹脂バインダーに対し適用できるわけではなく、SBRバインダーよりも、エチレン性不飽和カルボン酸エステル及びエチレン性不飽和カルボン酸と芳香族ビニル化合物との共重合体からなる樹脂バインダーに対し、選択的に電池の高充放電サイクル維持率特性を発現することが示された。
 実施例1~4と比較例9より、本発明のリチウムイオン二次電池正極用スラリーは、pH調整用添加剤を加えることにより、従来の溶剤系のPVDFバインダーと同等もしくはそれ以上の効果を有することが示された。

Claims (10)

  1.  (A)正極活物質、(B)導電助剤、(C)エチレン性不飽和カルボン酸エステル及びエチレン性不飽和カルボン酸の少なくとも一方と芳香族ビニル化合物との共重合体からなる樹脂バインダー、(D)増粘分散剤、(E)pH調整剤、及び(F)水を含み、
     前記(E)pH調整剤の含有量が、正極活物質の固形分100質量部に対して0.1質量部以上、1.0質量部以下であり、スラリーのpHが23℃で6.0~8.0であることを特徴とするリチウムイオン二次電池の正極用スラリー。
  2.  前記(E)pH調整剤が、有機酸、無機酸からなる化合物から選択され、
     前記有機酸が、カルボキシル基、スルホ基及びホスホン基の少なくとも一種が単独または複合的に1つ以上含まれている化合物から選ばれ、
     前記無機酸が、リン酸、ホウ酸及び炭酸から選ばれる少なくとも1種から選ばれる、請求項1に記載のリチウムイオン二次電池の正極用スラリー。
  3.  前記(E)pH調整剤が、1,2,3,4-ブタンテトラカルボン酸、クエン酸、コハク酸、酢酸、メタンスルホン酸、プロピルスルホン酸、炭酸から選ばれる少なくとも1種である、請求項1又は2に記載のリチウムイオン二次電池の正極用スラリー。
  4.  前記(E)pH調整剤が、塩基性のpH用添加剤であり、
     塩基性のpH用添加剤が、有機塩基性のpH用添加剤、無機塩基性のpH用添加剤から選択され、
     有機塩基性のpH用添加剤が、一級アミン、二級アミン、三級アミン及び四級アンモニウムから選ばれる少なくとも一種であり、
     無機塩基性のpH用添加剤が、アンモニア、水酸化リチウム、水酸化ナトリウム、水酸化カリウム及び水酸化カルシウムから選ばれる少なくとも一種である、請求項1又は2に記載のリチウムイオン二次電池の正極用スラリー。
  5.  前記(C)樹脂バインダーが、正極活物質の固形分100質量部に対して0.2質量部以上、5.0質量部以下で含有する、請求項1~4のいずれかに記載のリチウムイオン二次電池正極用スラリー。
  6.  前記(D)増粘分散剤が、カルボキシメチルセルロース、ポリエチレンオキシド、ポリアクリル酸、ポリ-N-ビニルアセトアミド、及びアクリル酸とN-ビニルアセトアミドとの共重合体からなる水溶性高分子の一種以上を含む、請求項1~5のいずれかに記載のリチウムイオン二次電池の正極用スラリー。
  7.  請求項1~6のいずれかに記載のリチウムイオン二次電池正極用スラリーを用いて得られるリチウムイオン二次電池用正極。
  8.  正極集電体に正極活物質を含む正極活物質層を備えるリチウムイオン二次電池用正極の製造方法であって、請求項1~6のいずれかに記載のリチウムイオン二次電池の正極用スラリーを前記正極集電体上に供給して前記正極活物質層を形成する工程を有する、リチウムイオン二次電池用正極の製造方法。
  9.  請求項7に記載のリチウムイオン二次電池用正極を用いて得られるリチウムイオン二次電池。
  10.  請求項1~6のいずれかに記載のリチウムイオン二次電池の正極用スラリーを調製する工程と、前記リチウムイオン二次電池の正極用スラリーを正極集電体に塗布して正極活物質層を形成し、リチウムイオン二次電池用正極を製造する工程と、前記リチウムイオン二次電池用正極を備えるリチウムイオン二次電池を組み立てる工程と、を有する、リチウムイオン二次電池の製造方法。
PCT/JP2015/057548 2014-03-24 2015-03-13 リチウムイオン二次電池の正極用スラリー、このスラリーを用いて得られる正極及びその製造方法、この正極を用いてなるリチウムイオン二次電池及びその製造方法 WO2015146649A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580006248.1A CN105940530B (zh) 2014-03-24 2015-03-13 锂离子二次电池正极用浆料、使用该浆料得到的正极及其制造方法、使用该正极而得的锂离子二次电池及其制造方法
JP2016510237A JPWO2015146649A1 (ja) 2014-03-24 2015-03-13 リチウムイオン二次電池の正極用スラリー、このスラリーを用いて得られる正極及びその製造方法、この正極を用いてなるリチウムイオン二次電池及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-059735 2014-03-24
JP2014059735 2014-03-24

Publications (1)

Publication Number Publication Date
WO2015146649A1 true WO2015146649A1 (ja) 2015-10-01

Family

ID=54195172

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/057548 WO2015146649A1 (ja) 2014-03-24 2015-03-13 リチウムイオン二次電池の正極用スラリー、このスラリーを用いて得られる正極及びその製造方法、この正極を用いてなるリチウムイオン二次電池及びその製造方法

Country Status (4)

Country Link
JP (1) JPWO2015146649A1 (ja)
CN (1) CN105940530B (ja)
TW (1) TWI683470B (ja)
WO (1) WO2015146649A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019088088A1 (ja) * 2017-10-31 2019-05-09 株式会社Adeka スラリー組成物、及びスラリー組成物を用いた電極
WO2019093313A1 (ja) * 2017-11-08 2019-05-16 株式会社Gsユアサ 正極、非水電解質蓄電素子、正極の製造方法、及び非水電解質蓄電素子の製造方法
KR20190111898A (ko) * 2017-01-31 2019-10-02 유니버시떼 드 리에즈 배터리 전극을 위한 가요성 박막
CN111406331A (zh) * 2017-12-01 2020-07-10 昭和电工株式会社 非水系电池电极用浆料的制造方法
US10720647B2 (en) * 2016-01-29 2020-07-21 Zeon Corporation Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non- aqueous secondary battery
US20200350590A1 (en) * 2017-12-26 2020-11-05 Showa Denko K. K. Binder for nonaqueous battery electrodes, slurry for nonaqueous battery electrodes, nonaqueous battery electrode, and nonaqueous battery
KR20210024031A (ko) 2018-10-23 2021-03-04 쇼와 덴코 가부시키가이샤 N-비닐카르복실산아미드의 중합체를 포함하는 수성 도공액용 조성물
WO2021140899A1 (ja) * 2020-01-09 2021-07-15 株式会社日本触媒 組成物、スラリー、電極の製造方法及びアルカリ二次電池
US11108041B2 (en) 2016-12-08 2021-08-31 Gs Yuasa International Ltd. Nonaqueous electrolyte energy storage device and method for producing the same
US20220238854A1 (en) * 2019-06-13 2022-07-28 Grst International Limited Method of preparing cathode for secondary battery
WO2023120048A1 (ja) * 2021-12-24 2023-06-29 パナソニックIpマネジメント株式会社 二次電池用正極およびその製造方法、ならびに二次電池
JP7475091B1 (ja) 2023-07-20 2024-04-26 宝泉株式会社 リチウムイオン電池の正極用スラリー及びその製造方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106571468A (zh) * 2016-11-14 2017-04-19 深圳拓邦股份有限公司 高镍三元锂离子电池正极浆料及其制备方法
CN106450244A (zh) * 2016-12-19 2017-02-22 苏州格瑞动力电源科技有限公司 一种锂离子电池正极材料制备方法
CN111699579B (zh) * 2018-02-09 2024-02-09 株式会社力森诺科 非水系电池电极用浆液、以及非水系电池电极和非水系电池的制造方法
EP3879610A1 (en) * 2018-11-07 2021-09-15 Tpr Co., Ltd. Binder
CN111599984A (zh) * 2019-02-21 2020-08-28 贝特瑞新材料集团股份有限公司 一种正极片和包含该正极片的锂离子电池及其制备方法
KR20220015380A (ko) * 2019-05-31 2022-02-08 니폰 제온 가부시키가이샤 이차 전지 정극용 바인더 조성물, 이차 전지 정극용 도전재 페이스트 조성물, 이차 전지 정극용 슬러리 조성물, 이차 전지용 정극 및 그 제조 방법, 그리고 이차 전지
CN110459771B (zh) * 2019-08-23 2020-10-27 珠海格力电器股份有限公司 正极浆料、正极极片及电池
CN110943218A (zh) * 2019-10-30 2020-03-31 天津力神电池股份有限公司 一种正极浆料及制备方法和正极片、磷酸铁锂电池
CN111129457A (zh) * 2019-12-19 2020-05-08 名添科技(深圳)有限公司 一种水性三元正极浆料及其制备方法
CN112805856B (zh) * 2019-12-24 2023-02-17 昭和电工株式会社 非水系二次电池电极粘合剂及非水系二次电池电极
JP2023520126A (ja) * 2020-03-20 2023-05-16 ジーアールエスティー・インターナショナル・リミテッド 二次電池用カソード及びカソードスラリー
CN111653784B (zh) * 2020-06-16 2022-06-17 合肥国轩高科动力能源有限公司 一种负极浆料以及含有该负极浆料的锂离子电池及其制备方法
FI20215234A1 (en) * 2021-03-03 2022-09-04 Kemira Oyj CATHODE COMPOSITION FOR A LITHIUM ION BATTERY
CN112864395B (zh) * 2021-03-10 2022-11-04 合肥国轩高科动力能源有限公司 一种锂离子电池正极浆料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0869791A (ja) * 1994-08-30 1996-03-12 Matsushita Electric Ind Co Ltd 非水電解液二次電池の製造方法
JP2009064564A (ja) * 2007-09-04 2009-03-26 Sanyo Electric Co Ltd 非水電解質電池用正極の製造方法、それに用いられるスラリー及び非水電解質電池
JP2011134649A (ja) * 2009-12-25 2011-07-07 Toyo Ink Sc Holdings Co Ltd 非水系二次電池電極用樹脂微粒子
JP2013077533A (ja) * 2011-09-12 2013-04-25 Tokyo Univ Of Science 二次電池電極用水系組成物および二次電池正極用電極
JP2013178926A (ja) * 2012-02-28 2013-09-09 Asahi Glass Co Ltd 非水系二次電池用正極合剤

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HUE039254T2 (hu) * 2009-05-29 2018-12-28 Arkema Inc Vizes polivinilidén-fluorid kompozíció
CN103370816A (zh) * 2011-02-14 2013-10-23 昭和电工株式会社 使用电池电极用粘结剂获得的浆料、使用该浆料获得的电极和使用该电极获得的锂离子二次电池
JPWO2012115096A1 (ja) * 2011-02-23 2014-07-07 日本ゼオン株式会社 二次電池用負極、二次電池、負極用スラリー組成物及び二次電池用負極の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0869791A (ja) * 1994-08-30 1996-03-12 Matsushita Electric Ind Co Ltd 非水電解液二次電池の製造方法
JP2009064564A (ja) * 2007-09-04 2009-03-26 Sanyo Electric Co Ltd 非水電解質電池用正極の製造方法、それに用いられるスラリー及び非水電解質電池
JP2011134649A (ja) * 2009-12-25 2011-07-07 Toyo Ink Sc Holdings Co Ltd 非水系二次電池電極用樹脂微粒子
JP2013077533A (ja) * 2011-09-12 2013-04-25 Tokyo Univ Of Science 二次電池電極用水系組成物および二次電池正極用電極
JP2013178926A (ja) * 2012-02-28 2013-09-09 Asahi Glass Co Ltd 非水系二次電池用正極合剤

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10720647B2 (en) * 2016-01-29 2020-07-21 Zeon Corporation Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non- aqueous secondary battery
US11108041B2 (en) 2016-12-08 2021-08-31 Gs Yuasa International Ltd. Nonaqueous electrolyte energy storage device and method for producing the same
KR102277605B1 (ko) 2017-01-31 2021-07-15 유니버시떼 드 리에즈 배터리 전극을 위한 가요성 박막
KR20190111898A (ko) * 2017-01-31 2019-10-02 유니버시떼 드 리에즈 배터리 전극을 위한 가요성 박막
JPWO2019088088A1 (ja) * 2017-10-31 2020-11-12 株式会社Adeka スラリー組成物、及びスラリー組成物を用いた電極
CN111247674A (zh) * 2017-10-31 2020-06-05 株式会社艾迪科 浆料组合物及使用了浆料组合物的电极
WO2019088088A1 (ja) * 2017-10-31 2019-05-09 株式会社Adeka スラリー組成物、及びスラリー組成物を用いた電極
JP7205484B2 (ja) 2017-11-08 2023-01-17 株式会社Gsユアサ 正極、非水電解質蓄電素子、正極の製造方法、及び非水電解質蓄電素子の製造方法
JPWO2019093313A1 (ja) * 2017-11-08 2020-12-03 株式会社Gsユアサ 正極、非水電解質蓄電素子、正極の製造方法、及び非水電解質蓄電素子の製造方法
WO2019093313A1 (ja) * 2017-11-08 2019-05-16 株式会社Gsユアサ 正極、非水電解質蓄電素子、正極の製造方法、及び非水電解質蓄電素子の製造方法
CN111406331B (zh) * 2017-12-01 2023-08-15 株式会社力森诺科 非水系电池电极用浆料的制造方法
CN111406331A (zh) * 2017-12-01 2020-07-10 昭和电工株式会社 非水系电池电极用浆料的制造方法
US11631855B2 (en) 2017-12-01 2023-04-18 Showa Denko K. K. Method for producing slurry for nonaqueous battery electrodes
US20200350590A1 (en) * 2017-12-26 2020-11-05 Showa Denko K. K. Binder for nonaqueous battery electrodes, slurry for nonaqueous battery electrodes, nonaqueous battery electrode, and nonaqueous battery
US11764359B2 (en) * 2017-12-26 2023-09-19 Resonac Corporation Binder including copolymer of styrene, (meth)acrylate, and surfactant having unsaturated bond, slurry having the same, nonaqueous battery electrode using the same, and nonaqueous battery using the same
KR20210024031A (ko) 2018-10-23 2021-03-04 쇼와 덴코 가부시키가이샤 N-비닐카르복실산아미드의 중합체를 포함하는 수성 도공액용 조성물
EP3984087A4 (en) * 2019-06-13 2024-05-01 GRST International Limited CATHODE SLUDGES FOR SECONDARY BATTERY
US20220238854A1 (en) * 2019-06-13 2022-07-28 Grst International Limited Method of preparing cathode for secondary battery
US11611063B2 (en) * 2019-06-13 2023-03-21 Grst International Limited Method of preparing cathode for secondary battery
EP3963648A4 (en) * 2019-06-13 2024-04-24 GRST International Limited METHOD FOR PREPARING A CATHODE FOR A SECONDARY BATTERY
JPWO2021140899A1 (ja) * 2020-01-09 2021-07-15
JP7270071B2 (ja) 2020-01-09 2023-05-09 株式会社日本触媒 組成物、スラリー、電極の製造方法及びアルカリ二次電池
WO2021140899A1 (ja) * 2020-01-09 2021-07-15 株式会社日本触媒 組成物、スラリー、電極の製造方法及びアルカリ二次電池
WO2023120048A1 (ja) * 2021-12-24 2023-06-29 パナソニックIpマネジメント株式会社 二次電池用正極およびその製造方法、ならびに二次電池
JP7475091B1 (ja) 2023-07-20 2024-04-26 宝泉株式会社 リチウムイオン電池の正極用スラリー及びその製造方法

Also Published As

Publication number Publication date
TWI683470B (zh) 2020-01-21
CN105940530B (zh) 2019-03-08
TW201603377A (zh) 2016-01-16
CN105940530A (zh) 2016-09-14
JPWO2015146649A1 (ja) 2017-04-13

Similar Documents

Publication Publication Date Title
WO2015146649A1 (ja) リチウムイオン二次電池の正極用スラリー、このスラリーを用いて得られる正極及びその製造方法、この正極を用いてなるリチウムイオン二次電池及びその製造方法
JP6485885B2 (ja) リチウムイオン二次電池用負極、その製造方法およびリチウムイオン二次電池
WO2011145419A1 (ja) リチウムイオン二次電池電極用バインダー、これら電極用バインダーを用いて得られるスラリー、これらスラリーを用いて得られる電極およびこれら電極を用いて得られるリチウムイオン二次電池
JP7007270B2 (ja) 電極用導電性樹脂組成物及び電極組成物、並びにそれを用いた電極及びリチウムイオン電池
WO2012111425A1 (ja) 電池電極用バインダーを用いて得られるスラリー、これらスラリーを用いて得られる電極およびこれら電極を用いて得られるリチウムイオン二次電池
US20180102542A1 (en) Binder for nonaqueous electrolyte secondary battery electrode, and use thereof
CN108475786B (zh) 二次电池电极用水系粘合剂组合物、二次电池电极用浆料、粘合剂、二次电池电极及二次电池
JP2971451B1 (ja) リチウム二次電池
JP6774415B2 (ja) リチウムイオン二次電池の正極用スラリー、リチウムイオン二次電池の正極用スラリーを用いて得られるリチウムイオン二次電池用正極およびその製造方法、並びに、リチウムイオン二次電池用正極を備えたリチウムイオン二次電池およびその製造方法
US10541423B2 (en) Electrode mixture layer composition for nonaqueous electrolyte secondary battery, manufacturing method thereof and use therefor
JP2021158125A (ja) リチウムイオン電池負極用スラリー及びその製造方法、リチウムイオン電池用負極、並びにリチウムイオン電池
JPWO2018168615A1 (ja) 電気化学素子電極用導電材分散液、電気化学素子電極用スラリー組成物およびその製造方法、電気化学素子用電極、並びに、電気化学素子
TWI795390B (zh) 非水電解質電池用黏合劑組成物、以及使用其之非水電解質電池用黏合劑水溶液、非水電解質電池用漿體組成物、非水電解質電池用電極、及非水電解質電池
JP6922456B2 (ja) リチウムイオン電池正極用バインダー水溶液、リチウムイオン電池正極用粉体状バインダー、リチウムイオン電池正極用スラリー、リチウムイオン電池用正極、リチウムイオン電池
JP6462125B2 (ja) 非水系電池電極用バインダー用組成物、非水系電池電極用バインダー、非水系電池電極用組成物、非水系電池電極、及び非水系電池
WO2015146648A1 (ja) リチウムイオン二次電池の正極用スラリー、このスラリーを用いて得られる正極及びその製造方法、並びにこの正極を用いてなるリチウムイオン二次電池及びその製造方法
JP6822892B2 (ja) 二次電池負極用スラリー、二次電池電極、二次電池、二次電池電極の製法、及び水溶性バインダーの二次電池負極用スラリーとしての使用
JP5835581B2 (ja) 蓄電デバイスの電極用バインダー組成物
WO2015119084A1 (ja) リチウムイオン二次電池電極形成用組成物、リチウムイオン二次電池用電極及びリチウムイオン二次電池、並びにリチウムイオン二次電池電極形成用組成物の製造方法
JPWO2014098233A1 (ja) エネルギーデバイス電極用バインダ樹脂材料、エネルギーデバイス電極及びエネルギーデバイス
WO2021131813A1 (ja) 電極バインダー用共重合体、電極バインダー樹脂組成物、及び非水系二次電池電極
JP2016076311A (ja) 電極用バインダー組成物
WO2024142959A1 (ja) 非水系二次電池負極用バインダー組成物および非水系二次電池負極
JPWO2019054173A1 (ja) 電気化学素子電極用スラリー組成物、電気化学素子用電極、電気化学素子、および電気化学素子電極用スラリー組成物の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15769358

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016510237

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15769358

Country of ref document: EP

Kind code of ref document: A1