WO2019088088A1 - スラリー組成物、及びスラリー組成物を用いた電極 - Google Patents

スラリー組成物、及びスラリー組成物を用いた電極 Download PDF

Info

Publication number
WO2019088088A1
WO2019088088A1 PCT/JP2018/040297 JP2018040297W WO2019088088A1 WO 2019088088 A1 WO2019088088 A1 WO 2019088088A1 JP 2018040297 W JP2018040297 W JP 2018040297W WO 2019088088 A1 WO2019088088 A1 WO 2019088088A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
sulfur
mass
electrode
modified
Prior art date
Application number
PCT/JP2018/040297
Other languages
English (en)
French (fr)
Inventor
健二 撹上
宏美 竹之内
祐樹 濱崎
Original Assignee
株式会社Adeka
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Adeka filed Critical 株式会社Adeka
Priority to EP18872321.7A priority Critical patent/EP3706210A4/en
Priority to CN201880068429.0A priority patent/CN111247674A/zh
Priority to KR1020207011636A priority patent/KR20200081370A/ko
Priority to JP2019550406A priority patent/JPWO2019088088A1/ja
Priority to US16/757,934 priority patent/US20210194005A1/en
Publication of WO2019088088A1 publication Critical patent/WO2019088088A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/137Electrodes based on electro-active polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • H01M4/602Polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a slurry composition that can be suitably used for a secondary battery electrode.
  • Non-aqueous electrolyte secondary batteries such as lithium ion secondary batteries are small and lightweight, have high energy density, and can be repeatedly charged and discharged, and can be used in portable electronic devices such as portable personal computers, handy video cameras, and information terminals. It is widely used as a power source.
  • commercialization of electric vehicles using non-aqueous electrolyte secondary batteries and hybrid vehicles using electric power for part of their motive power has been carried out. Therefore, further performance improvement of the secondary battery is required in recent years.
  • An electrode for a non-aqueous electrolyte secondary battery generally includes a current collector and an electrode mixture layer formed on the current collector. Then, the electrode mixture layer is formed by, for example, applying a slurry composition obtained by dispersing an electrode active material, a binder composition for binding the active material, and the like in a dispersion medium on a current collector and drying it. Be done. Since the electrode active material greatly affects the cell performance, research and development are actively conducted.
  • Sulfur is considered as a positive electrode active material because it is a substance having a theoretically high electric capacity.
  • a compound of sulfur and lithium is formed at the time of discharge, and this compound dissolves in the organic solvent used for the non-aqueous electrolyte.
  • sulfur which is a substance, dissolves gradually and the cycle characteristics of the secondary battery deteriorate.
  • organic sulfur compounds having a sulfur-carbon bond have been developed and are being studied as electrode active materials (see, for example, Patent Documents 1 to 7).
  • the current collector and the electrode mixture layer are not in close contact with each other, the battery performance is greatly reduced.
  • an aluminum foil is usually used because it is inexpensive, but if the adhesion between the current collector and the electrode mixture layer is not sufficient, a carbon coated aluminum foil or stainless steel foil, or a tertiary A current collector having an original network structure is used (see, for example, Patent Document 8).
  • a slurry composition containing an organic sulfur compound such as a sulfur-modified polyacrylonitrile compound in which polyacrylonitrile is modified with sulfur is poor in adhesion to the current collector, and therefore the current collector other than an inexpensive aluminum foil is used It was necessary (see, for example, Patent Documents 2 to 7).
  • JP 2003-151550 A US2011200875A1 JP, 2011-170991, A WO 2012/114651 JP, 2012-099342, A JP, 2012-150933, A JP 2012-150934 A Japanese Patent Application Laid-Open No. 11-073973
  • a possible electrode slurry composition comprising an organic sulfur compound.
  • the present invention is a slurry composition containing an organic sulfur compound, a binder, a conductive aid and a solvent, and having a pH of 4.0 to 9.0.
  • FIG. 1 is a longitudinal sectional view schematically showing an example of the structure of a non-aqueous electrolyte secondary battery (coin type) using the electrode of the present invention.
  • FIG. 2 is a schematic view showing a basic configuration of a non-aqueous electrolyte secondary battery (cylindrical) using the electrode of the present invention.
  • FIG. 3 is a perspective view showing the internal structure of a non-aqueous electrolyte secondary battery (cylindrical) using the electrode of the present invention as a cross section.
  • the slurry composition of the present invention comprises an organic sulfur compound, a binder, a conductive aid and a solvent. Below, each component contained in the slurry composition of this invention is demonstrated.
  • the organic sulfur compound is a compound which can occlude and release lithium ions and can be used as an electrode active material of a secondary battery, and is a compound having a sulfur content of at least 25% by mass or more.
  • the organic sulfur compound for example, a sulfur-modified elastomer compound, a sulfur-modified polynuclear aromatic ring compound, a sulfur-modified pitch compound, a sulfur-modified aliphatic hydrocarbon oxide, a sulfur-modified polyether compound, a polythienoacene compound, a polysulfurized carbon compound, a sulfur-modified Aromatic polyamide compounds and sulfur modified polyacrylonitrile compounds can be mentioned.
  • the sulfur content of the organic sulfur compound can be measured, for example, by elemental analysis using a CHN analyzer (vario MICRO cube manufactured by Elementer) capable of analyzing sulfur and oxygen.
  • the sulfur-modified elastomeric compound is a compound obtained by heat-treating a mixture of rubber and elemental sulfur in a nonoxidizing atmosphere.
  • the rubber include natural rubber, isoprene rubber, butadiene rubber, styrene butadiene rubber and acrylonitrile butadiene rubber. These rubbers can be used alone or in combination of two or more.
  • the raw material rubber may be a vulcanized rubber or a rubber before vulcanization.
  • the ratio of rubber to elemental sulfur in the heat treatment is preferably 100 parts by mass to 1,500 parts by mass of elemental sulfur with respect to 100 parts by mass of rubber, and more preferably 150 parts by mass to 1000 parts by mass.
  • vulcanization accelerators When heat-processing, one or more types of well-known vulcanization accelerators can be added.
  • the amount of the vulcanization accelerator added is preferably 1 to 250 parts by mass, more preferably 5 to 50 parts by mass, with respect to 100 parts by mass of the rubber.
  • the temperature of the heat treatment is preferably 250 ° C. to 550 ° C., and more preferably 300 ° C. to 450 ° C.
  • Unreacted elemental sulfur is a factor that reduces the cycle characteristics of the secondary battery, so it is preferable to remove it from the sulfur-modified elastomer compound, for example, by heating or solvent washing.
  • the sulfur content of the sulfur-modified elastomer compound is preferably 40 to 70% by mass, and more preferably 45 to 60% by mass, because a large charge and discharge capacity can be obtained.
  • the sulfur-modified polynuclear aromatic ring compound is a compound obtained by heat-treating a mixture of a polynuclear aromatic ring compound and elemental sulfur in a nonoxidizing atmosphere.
  • polynuclear aromatic ring compounds include benzene-based aromatic ring compounds such as naphthalene, anthracene, tetracene, pentacene, phenanthrene, chrysene, picene, pyrene, benzopyrene, perylene, and coronene.
  • aromatic ring compounds in which a part of benzene-based aromatic ring compound is a 5-membered ring, or hetero atom-containing heteroaromatic ring compounds in which a part of carbon atoms thereof is replaced with sulfur, oxygen, nitrogen, etc. include linear or branched alkyl groups having 1 to 12 carbon atoms, alkoxyl groups, alkoxyl groups, hydroxyl groups, carboxyl groups, amino groups, aminocarbonyl groups, aminothio groups, mercaptothiocarbonylamino groups, carboxyalkyls It may have a substituent such as a carbonyl group.
  • the polynuclear aromatic ring compound may be a compound having a repeating structure of an aromatic moiety and a chain hydrocarbon moiety.
  • aromatic moiety of the compound having a repeating structure of an aromatic moiety and a chain hydrocarbon moiety in addition to the above, benzene, pyrrolidine, pyrrole, pyridine, imidazole, pyrrolidone, tetrahydrofuran, triazine, thiophene, oxazole, thiazole, thiadiazole, Triazole, phosphole, silole and the like may be mentioned, and two or more aromatics may be condensed, and these aromatic moiety may be condensed with cyclopentane, cyclohexane, pyrrolidine, tetrahydrofuran or the like.
  • substituents such as linear or branched alkyl groups having 1 to 12 carbon atoms, alkoxyl groups, hydroxyl groups, carboxyl groups, amino groups, aminocarbonyl groups, aminocarbonyl groups, aminothio groups, mercaptothiocarbonylamino groups, carboxyalkylcarbonyl groups, etc. May be included.
  • the chain hydrocarbon moiety of the compound having a repeating structure of an aromatic moiety and a chain hydrocarbon moiety is a linear or branched chain hydrocarbon such as an alkylene group, an alkenylene group or an alkynylene group.
  • the carbon number of the chain hydrocarbon moiety is preferably 2 to 20, more preferably 3 to 10, and still more preferably 4 to 8.
  • an alkylene group or an alkenylene group is preferable, and among them, butane-1,4-diyl group, hexane-1,6-diyl group, octane-1,8-diyl group, vinylene group,
  • the 1,3-butadiene-1,4 diyl group and its structural isomers are preferred.
  • the ratio of the polynuclear aromatic ring compound to the elemental sulfur in the heat treatment is preferably 100 parts by mass to 1500 parts by mass of elemental sulfur with respect to 100 parts by mass of the polynuclear aromatic ring compound, and more preferably 150 parts by mass to 1000 parts by mass.
  • the temperature of the heat treatment is preferably 250 ° C. to 550 ° C., and more preferably 300 ° C. to 450 ° C.
  • Unreacted elemental sulfur is a factor that degrades the cycle characteristics of the secondary battery, so it is preferable to remove it from the sulfur-modified polynuclear aromatic ring compound by, for example, heating or solvent washing.
  • the sulfur content of the sulfur-modified polynuclear aromatic ring compound is preferably 40 to 70% by mass, and more preferably 45 to 60% by mass, because a large charge and discharge capacity can be obtained.
  • the sulfur-modified pitch compound is a compound obtained by heat-treating a mixture of pitches and elemental sulfur in a nonoxidizing atmosphere.
  • pitches petroleum pitch, coal pitch, mesophase pitch, asphalt, coal tar, coal tar pitch, organic synthetic pitch obtained by polycondensation of condensed polycyclic aromatic hydrocarbon compounds, and hetero atom-containing condensed polycyclic aromatic Organic synthetic pitch obtained by the polycondensation of a group hydrocarbon compound etc.
  • Pitches are a mixture of various compounds, including fused polycyclic aromatics.
  • the condensed polycyclic aromatics contained in the pitches may be a single type or a plurality of types.
  • the fused polycyclic aromatic ring may contain nitrogen and sulfur in addition to carbon and hydrogen in the ring.
  • the ratio of pitches to elemental sulfur in the heat treatment is preferably 100 parts by mass to 1000 parts by mass of elemental sulfur per 100 parts by mass of the pitches, and more preferably 150 parts by mass to 500 parts by mass.
  • the temperature of the heat treatment is preferably 300 ° C. to 500 ° C., and more preferably 350 ° C. to 500 ° C.
  • Unreacted elemental sulfur is a factor that degrades the cycle characteristics of the secondary battery, so it is preferable to remove it from the sulfur-modified pitch compound, for example, by heating or solvent washing.
  • the sulfur content of the sulfur-modified pitch compound is preferably 25 to 70% by mass, and more preferably 30 to 60% by mass, because a large charge and discharge capacity can be obtained.
  • the sulfur-modified aliphatic hydrocarbon oxide is a compound obtained by heat-treating an aliphatic hydrocarbon oxide and elemental sulfur in a nonoxidizing atmosphere.
  • an aliphatic hydrocarbon oxide refers to a compound having an aliphatic hydrocarbon skeleton and having at least one group selected from the group consisting of a hydroxyl group, a carbonyl group, a carboxyl group or an epoxy group,
  • the hydrogen skeleton may have an unsaturated bond.
  • the aliphatic hydrocarbon skeleton of the aliphatic hydrocarbon oxide may be linear or branched, but linear is preferable because a large charge and discharge capacity can be obtained.
  • the carbon number of the aliphatic hydrocarbon oxide is preferably 4 to 12, more preferably 6 to 10, because a large charge and discharge capacity can be obtained.
  • the aliphatic hydrocarbon oxide preferably has a ratio of the number of carbon atoms to the number of oxygen atoms of 3 or more because oxygen atoms in the aliphatic hydrocarbon oxide are separated by heat treatment with elemental sulfur. 4 or more is more preferable.
  • Preferred aliphatic hydrocarbon oxides include 1-butanol, 2-butanol, 1-pentanol, 3-pentanol, 1-hexanol, 1-heptanol, 1-octanol, 1-nonanol, 1-decanol, 1- Alcohol compounds such as butanol, 1-pentanol, 1-hexanol, 1-heptanol, 1-octanol, 2-octanol, 1-nonanol, 1-decanol; butanal, pentanal, hexanal, heptanal, octanal, nonanal, etc.
  • Ketone compounds such as methyl ethyl ketone, diethyl ketone and methyl hexyl ketone
  • Carboxylic acid compounds of octanoic acid, nonanoic acid and decanoic acid 1,2-butane oxide, 1,2-hexane oxide, 1,2-octane oxide, 1 Epoxy compounds such as 2-decane oxide.
  • the ratio of the aliphatic hydrocarbon oxide to the elemental sulfur in the heat treatment is preferably 100 parts by mass to 1000 parts by mass of elemental sulfur with respect to 100 parts by mass of the aliphatic hydrocarbon oxide, and further 200 to 500 parts by mass. preferable.
  • the temperature of the heat treatment is preferably 300 ° C. to 500 ° C., and more preferably 350 ° C. to 450 ° C. When the temperature of the heat treatment is higher than the boiling point of the aliphatic hydrocarbon oxide, it is preferable to produce the aliphatic hydrocarbon oxide while refluxing.
  • Unreacted elemental sulfur causes the cycle characteristics of the secondary battery to deteriorate, so it is preferable to remove the sulfur from the sulfur-modified aliphatic hydrocarbon oxide, for example, by heating or solvent washing.
  • the sulfur content of the sulfur-modified aliphatic hydrocarbon oxide is preferably 45 to 75% by mass, and more preferably 50 to 70% by mass, because a large charge and discharge capacity can be obtained.
  • the sulfur-modified polyether compound is a compound obtained by heat treatment of a polyether compound and elemental sulfur in a nonoxidizing atmosphere.
  • the polyether compound include polyethylene glycol, polypropylene glycol, ethylene oxide / propylene oxide copolymer, polytetramethylene glycol and the like.
  • the end of the polyether compound may be an alkyl ether group, an alkylphenyl ether group, an acyl group, or may be an ethylene oxide adduct of a polyol such as glycerin or sorbitol.
  • the ratio of the polyether compound to elemental sulfur in the heat treatment is more preferably 100 parts by mass to 1000 parts by mass, and still more preferably 200 parts by mass to 500 parts by mass with respect to 100 parts by mass of the polyether compound.
  • the temperature of the heat treatment is preferably 250 ° C. to 500 ° C., and more preferably 300 ° C. to 450 ° C.
  • Unreacted elemental sulfur is a factor that reduces the cycle characteristics of the secondary battery, so it is preferable to remove it from the sulfur-modified polyether compound, for example, by heating or solvent washing.
  • the sulfur content of the sulfur-modified polyether compound is preferably 30 to 75% by mass, and more preferably 40 to 70% by mass.
  • the polythienoacene compound is a compound represented by the following general formula (1) and having a polythienoacene structure containing sulfur.
  • the polythienoacene compound can be obtained by heat-treating an aliphatic polymer compound having a linear structure such as a polyethylene compound, a polymer compound having a thiophene structure such as polythiophene, and single sulfur in a non-oxidative atmosphere.
  • an aliphatic polymer compound having a linear structure is used as the raw material, the ratio of the aliphatic polymer to the elemental sulfur in the heat treatment is 100 parts by mass to 2000 parts by mass of the elemental sulfur per 100 parts by mass of the aliphatic polymer compound. Part is preferable, and 150 parts by mass to 1000 parts by mass is more preferable.
  • the ratio of the polymer compound having a thiophene structure to the single substance sulfur in the heat treatment is 100 parts by mass to 1000 parts of a single substance sulfur per 100 parts by mass of the polymer compound having a thiophene structure.
  • the parts by mass are preferable, and 150 parts by mass to 800 parts by mass are more preferable.
  • the temperature of the heat treatment is preferably 300 ° C. to 600 ° C., and more preferably 350 ° C. to 500 ° C.
  • Unreacted elemental sulfur is a factor that lowers the cycle characteristics of the secondary battery, so it is preferable to remove it from the polythienoacene compound, for example, by heating or solvent washing.
  • the sulfur content of the polythienoacene compound is preferably 30 to 80% by mass, and more preferably 40 to 70% by mass, because a large charge and discharge capacity can be obtained.
  • the polysulfurized carbon compound is a compound represented by the general formula (CS x ) n (x is 0.5 to 2 and n is a number of 4 or more), and, for example, an alkali metal sulfide and a simple substance sulfur
  • a precursor obtained by reacting a halogenated unsaturated hydrocarbon such as hexachlorobutadiene with the above-mentioned complex can be obtained by heat treatment.
  • a complex of an alkali metal sulfide and elemental sulfur can be obtained by dissolving the alkali metal sulfide in a solvent such as ethanol and reacting with sulfur at 10 to 40 ° C.
  • the ratio of the alkali metal sulfide to the sulfur can be 2 to 6 mol of sulfur per 1 mol of the alkali metal sulfide.
  • the reaction of a complex of an alkali metal sulfide and elemental sulfur with a halogenated unsaturated hydrocarbon is such that the complex is dissolved in an organic solvent such as N-methyl-2-pyrrolidone and halogenated at 10 to 40 ° C.
  • the reaction may be carried out with the unsaturated hydrocarbon, and the amount of the halogenated unsaturated hydrocarbon is preferably 5 to 30 parts by mass with respect to 100 parts by mass of the complex.
  • a precursor obtained by reacting a complex of an alkali metal sulfide and a single sulfur with a halogenated unsaturated hydrocarbon contains excess alkali metal sulfide and a salt of an alkali metal and a halogen. And then heat-treated at 300 to 450.degree. C., preferably 320 to 400.degree.
  • the polysulfurized carbon compound after heat treatment contains unreacted elemental sulfur, which is a factor to deteriorate the cycle characteristics of the secondary battery, so it is preferable to remove it from the polysulfided carbon compound by heating, solvent washing, etc. .
  • the sulfur content of the polysulfurized carbon compound is preferably 65 to 75% by mass, and more preferably 67 to 73% by mass, because a large charge and discharge capacity can be obtained.
  • alkali metal sulfide used for producing the polysulfurized carbon compound examples include lithium sulfide, sodium sulfide and potassium sulfide.
  • the sulfur-modified polyamide compound is an organic sulfur compound having a carbon skeleton derived from a polymer having an amide bond, and specifically, an aminocarboxylic acid compound and a single sulfur, or a polyamine compound and a polycarboxylic acid compound and a single sulfur, It is a compound obtained by heat treatment in an oxidative atmosphere.
  • the aminocarboxylic acid compound refers to a compound having one amino group and at least one carboxyl group in the molecule.
  • aminocarboxylic acid compounds aminobenzoic acid such as 3,4-diaminobenzoic acid, 3,5-diaminobenzoic acid, p-aminobenzoic acid and m-aminobenzoic acid, 4-aminophenylacetic acid, 3-aminophenyl Acetic acid, 3- (4-aminophenyl) propionic acid, 3-aminopropionic acid, 4-aminobutanoic acid, 5-aminopentanoic acid, 2,5-diaminopentanoic acid, amino acids such as alanine, arginine, asparagine, aspartic acid, Cysteine, glutamine, glutamic acid, glycine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine
  • the polyamine compound refers to a compound having at least two amino groups in the molecule.
  • polyamine compounds include urea, ethylenediamine, ethylenetriamine, diethylenetriamine, putrescine, cadaverine, hexamethylenediamine, o-phenylenediamine, m-phenylenediamine, p-phenylenediamine, 4-aminobenzenemethanamine, 4-aminobenzene Ethanamine, melamine, 1,2,4-triaminobenzene, 1,3,5-triaminobenzene, benzoguanamine and the like can be mentioned.
  • the polycarboxylic acid compound refers to a compound having at least two carboxyl groups in the molecule.
  • polycarboxylic acid compounds include terephthalic acid, fumaric acid, tartaric acid, maleic acid, benzene-1,3-dicarboxylic acid, phthalic acid, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, Suberic acid, azelaic acid, sebacic acid, ethylenediaminetetraacetic acid and the like.
  • acid anhydrides such as phthalic anhydride and maleic anhydride can also be used.
  • the ratio of the polyamine compound to the polycarboxylic acid compound is preferably 0.9 to 1.1 in molar ratio.
  • the ratio of the aminocarboxylic acid compound to the single substance sulfur is preferably 100 parts by weight to 500 parts by weight of single sulfur and more preferably 150 parts by weight to 400 parts by weight with respect to 100 parts by weight of the aminocarboxylic acid compound.
  • the ratio of the polyamine compound, the polycarboxylic acid compound and the single substance sulfur is preferably 100 parts by weight to 500 parts by weight of single sulfur, and 150 parts by weight to 400 parts by weight with respect to 100 parts by weight in total of polyamine compound and polycarboxylic acid compound. More preferable.
  • the temperature of the heat treatment is preferably 250 ° C. to 600 ° C., and more preferably 350 ° C. to 500 ° C.
  • Unreacted elemental sulfur is a factor that reduces the cycle characteristics of the secondary battery, so it is preferable to remove it from the sulfur-modified polyamide compound, for example, by heating or solvent washing.
  • the sulfur content of the sulfur-modified polyamide compound is preferably 40 to 70% by mass, and more preferably 45 to 60% by mass, because a large charge and discharge capacity can be obtained.
  • the sulfur-modified polyacrylonitrile compound is a compound obtained by heat-treating a mixture of polyacrylonitrile and elemental sulfur in a nonoxidizing atmosphere.
  • Polyacrylonitrile may be a homopolymer of acrylonitrile.
  • polyacrylonitrile may be a copolymer of acrylonitrile and other monomers.
  • the content of acrylonitrile in the copolymer of acrylonitrile and other monomers is preferably at least 90% by mass, and polyacrylonitrile homopolymer is more preferable.
  • Other monomers include, for example, acrylic acid, vinyl acetate, N-vinylformamide, N, N'-methylenebis (acrylamide).
  • the temperature of the heat treatment of the mixture of polyacrylonitrile and elemental sulfur is preferably 250 ° C to 550 ° C, and more preferably 350 ° C to 450 ° C.
  • the ratio of polyacrylonitrile to elemental sulfur in the heat treatment is preferably 100 parts by mass to 1500 parts by mass of elemental sulfur with respect to 100 parts by mass of polyacrylonitrile, and more preferably 150 parts by mass to 1000 parts by mass.
  • Unreacted elemental sulfur is a factor that reduces the cycle characteristics of the secondary battery, so it is preferable to remove it from the sulfur-modified polyacrylonitrile, for example, by heating or solvent washing.
  • the sulfur content of the sulfur-modified polyacrylonitrile is preferably 25 to 60% by mass, and more preferably 30 to 55% by mass, because a large charge and discharge capacity can be obtained.
  • the nonoxidizing atmosphere has an oxygen concentration of 5% by volume or less, preferably 2% by volume or less, and more preferably contains substantially no oxygen.
  • An atmosphere that is, an inert gas atmosphere such as nitrogen, helium or argon, or a sulfur gas atmosphere can be used.
  • the shape of the organic sulfur compound is not particularly limited, it may be, for example, spherical, polyhedral, fibrous, rod-like, plate-like, scaly, or amorphous, and these may be hollow. Among these shapes, a spherical or polyhedral shape is preferable because the electrode mixture layer is uniformly formed. If the particle size of the organic sulfur compound is too large, a uniform and smooth electrode mixture layer may not be obtained. If the particle size is too small, the handling property in the slurrying step is reduced.
  • the D50) is preferably 0.5 ⁇ m to 100 ⁇ m, more preferably 1 ⁇ m to 50 ⁇ m, and still more preferably 1 ⁇ m to 30 ⁇ m.
  • the average particle size (D50) refers to the 50% particle size measured by the laser diffraction light scattering method.
  • the particle size is a volume based diameter, and the laser diffraction light scattering method measures the diameter of secondary particles.
  • elemental sulfur any of various forms such as powdered sulfur, insoluble sulfur, precipitated sulfur, colloidal sulfur and the like can be used, but powdered sulfur is preferable in consideration of uniform dispersion in the raw material compound.
  • organic sulfur compound a sulfur-modified polyacrylonitrile compound is preferable because no sulfur elution occurs and a secondary battery having excellent cycle characteristics can be obtained.
  • organic sulfur compound only 1 type may be used and 2 or more types may be used in combination.
  • ⁇ Binder> A well-known thing can be used for the binder used by this invention.
  • the binder include, for example, styrene-butadiene rubber, butadiene rubber, acrylonitrile-butadiene rubber, ethylene-propylene-diene rubber, styrene-isoprene rubber, fluororubber, polyethylene, polypropylene, polyamide, polyamideimide, polyimide, polyacrylonitrile, Polyurethane, polyvinylidene fluoride, polytetrafluoroethylene, styrene-acrylic acid ester copolymer, ethylene-vinyl alcohol copolymer, polymethyl methacrylate, polyacrylate, polyvinyl alcohol, polyethylene oxide, polyvinyl pyrrolidone, polyvinyl ether, polyvinyl chloride , Polyacrylic acid, methyl cellulose, carboxymethyl cellulose, sodium carboxymethyl cellulose, Loin nanofibers, and starch.
  • an aqueous binder is preferable because the environmental load is low and elution of sulfur hardly occurs, and styrene-butadiene rubber, sodium carboxymethylcellulose and polyacrylic acid are more preferable. Only one binder may be used, or two or more binders may be used in combination.
  • the content of the binder is preferably 1 part by mass to 30 parts by mass, and more preferably 1 part by mass to 20 parts by mass with respect to 100 parts by mass of the electrode active material.
  • a conductive support agent used by this invention a well-known thing can be used as a conductive support agent of an electrode. Specifically, natural graphite, artificial graphite, coal tar pitch, carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, thermal black, carbon nanotube, vapor grown carbon fiber (vapor grown carbon fiber (vapor grown carbon fiber) Carbon materials such as VGCF), graphene, fullerene, needle coke, etc .; metal powders such as aluminum powder, nickel powder, titanium powder; conductive metal oxides such as zinc oxide, titanium oxide; La 2 S 3 , Sm 2 S 3 And sulfides such as Ce 2 S 3 and TiS 2 .
  • the conductive aid can also be mixed at the time of production of the organic sulfur compound.
  • the particle diameter of the conductive additive is preferably 0.0001 ⁇ m to 100 ⁇ m, and more preferably 0.01 ⁇ m to 50 ⁇ m.
  • the content of the conductive additive is usually 0.1 to 50 parts by mass, preferably 1 to 30 parts by mass, and more preferably 2 to 20 parts by mass with respect to 100 parts by mass of the electrode active material.
  • solvent for preparing the slurry used in the present invention examples include propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, acetonitrile, propio Nitrile, tetrahydrofuran, 2-methyltetrahydrofuran, dioxane, 1,3-dioxolane, nitromethane, N-methylpyrrolidone, N, N-dimethylformamide, dimethylacetamide, methyl ethyl ketone, cyclohexanone, methyl acetate, methyl acrylate, diethyl triamine, N, N-dimethylaminopropylamine, polyethylene oxide, tetrahydrofuran, dimethyl sulfoxide, sulfolane, ⁇ -butyrolactone, water, alcohol Etc.
  • the amount of the solvent used can be adjusted according to the method selected when coating the slurry, for example, in the case of coating by the doctor blade method, the total amount of organic sulfur compound, binder and conductive additive 100 parts by mass On the other hand, 20 to 300 parts by mass is preferable, and 30 to 200 parts by mass is more preferable.
  • the slurry composition of the present invention preferably contains a basic compound.
  • the basic compound include ammonia, alkylamine compounds, ethanolamine compounds, polyamine compounds, aromatic amine compounds, alkali metal hydroxides, carbonate compounds, carboxylate compounds and phosphate compounds.
  • alkylamine compounds include primary alkylamine compounds such as methylamine, ethylamine, propylamine, isopropylamine, butylamine, t-butylamine, i-butylamine, hexylamine and cyclohexylamine; dimethylamine, diethylamine, dipropylamine And secondary alkylamine compounds such as diisopropylamine, dibutylamine and piperidine; and tertiary alkylamine compounds such as trimethylamine, triethylamine, tripropylamine, tributylamine and trioctylamine.
  • primary alkylamine compounds such as methylamine, ethylamine, propylamine, isopropylamine, butylamine, t-butylamine, i-butylamine, hexylamine and cyclohexylamine
  • secondary alkylamine compounds such
  • Examples of ethanolamine compounds include monoethanolamine, diethanolamine, triethanolamine, methylethanolamine, methyldiethanolamine, dimethylethanolamine, ethylethanolamine, diethylethanolamine, ethyldiethanolamine, butylethanolamine, propylethanolamine, butyldiethanolamine and cyclohexyl Diethanolamine etc. are mentioned.
  • Examples of polyamine compounds include ethylene diamine, diethylene triamine, tetramethyl ethylene diamine and piperazine.
  • Examples of the aromatic amine compound include aniline, toluidine, pyridine, bipyridine and phenanthroline.
  • Examples of the alkali metal hydroxide include lithium hydroxide, sodium hydroxide and potassium hydroxide.
  • Examples of the carbonate compound include lithium carbonate, sodium carbonate, potassium carbonate, sodium hydrogen carbonate and potassium hydrogen carbonate.
  • carboxylic acid salt compounds include lithium salt compounds and sodium salt compounds such as acetic acid, propionic acid, fumaric acid, benzoic acid, terephthalic acid, acrylic acid, malonic acid, thiophenecarboxylic acid and the like.
  • Examples of phosphate compounds include disodium hydrogen phosphate, trisodium phosphate, dipotassium hydrogen phosphate and tripotassium phosphate. One of these basic compounds may be used alone, or two or more of these basic compounds may be used in combination.
  • ammonia, alkylamine compounds and polyamine compounds are preferable because they are highly volatile and easy to remove even when used in excess, and ammonia, methylamine, ethylamine, propylamine, isopropylamine, dimethylamine More preferred are diethylamine, dipropylamine, diisopropylamine, trimethylamine and ethylenediamine, with ammonia being most preferred.
  • a binder having a basicity and a conductive auxiliary may be used as the basic compound.
  • the content of the basic compound in the slurry composition of the present invention is preferably such that the pH of the slurry composition is 4.0 to 9.0 at 25 ° C., and more preferably 4.5 to 8.5. .
  • the amount of the basic compound necessary to bring the pH of the slurry composition into the above range depends on the kind of the basic compound and the content of the organic sulfur compound, the binder, the conductive additive and the like in the slurry composition. It can not be stated. However, it is easy for a person skilled in the art to appropriately determine the amount of the pH of the slurry composition falling within the above-mentioned range according to the type of the basic compound and the like.
  • the slurry composition of the present invention may contain, in addition to the above components, other components such as a viscosity modifier, a reinforcing material, an antioxidant and the like as long as the effects of the present invention are not impaired.
  • other components such as a viscosity modifier, a reinforcing material, an antioxidant and the like as long as the effects of the present invention are not impaired.
  • known ones can be used at known mixing ratios.
  • the slurry composition of the present invention has a pH of 4.0 to 9.0 at 25.degree. If the pH is less than 4.0 or the pH is more than 9.0, the capacity or cycle characteristics of a secondary battery manufactured using the slurry composition may be reduced.
  • the slurry composition of the present invention preferably has a pH of 4.5 to 8.5.
  • 0.5 g of the slurry composition was dispersed in 10.0 g of distilled water having a resistivity of 18 M ⁇ ⁇ cm or more, and was subjected to ultrasonic irradiation (frequency 40 kHz, output 160 W) for 10 minutes. It refers to the pH of the dispersion measured at 25 ° C. using a glass electrode type hydrogen ion concentration meter pH tester H98103S (Hanna Instruments Japan Ltd.).
  • a compound such as a basic compound is added to a slurry obtained by a slurrying step of dispersing or dissolving an organic sulfur compound, a binder and a conductive auxiliary in a solvent, and a slurrying step It can be manufactured by a manufacturing method having a step of adjusting the pH of the slurry to 4.0 to pH 9.0.
  • an organic sulfur compound, a binder and a conductive auxiliary are dispersed or dissolved in a solvent.
  • the organic sulfur compound, the binder and the conductive additive are dispersed or dissolved in a solvent, all may be charged at once into the solvent and dispersed, or separately charged and dispersed. It is preferable to perform dispersion treatment by sequentially adding a binder, a conductive auxiliary agent, and an organic sulfur compound in a solvent in order, because the binder, the conductive auxiliary agent, and the organic sulfur compound can be uniformly dispersed in the solvent.
  • the other components may be collectively charged and dispersed in a solvent, or may be charged and dispersed for each additive, but 1 It is preferable to carry out dispersion treatment each time seeding is added.
  • the method of dispersion treatment is not particularly limited, but as an industrial method, for example, an ordinary ball mill, sand mill, bead mill, pigment disperser, leash crusher, ultrasonic disperser, homogenizer, rotation / revolution mixer, planetary mixer , Fill mix, jet paster, etc. can be used.
  • the pH is adjusted to 4.0 to 9.0 by, for example, adding a basic compound to the slurry composition obtained by the slurrying step.
  • the basic compound may be added to the slurry composition as it is, or may be added after being dissolved in a solvent.
  • the basic compound can be added at any dispersion stage of the slurrying process.
  • the electrode of the present invention has a current collector and an electrode mixture layer formed on the current collector.
  • an electrode mixture layer is formed from the slurry composition of the present invention. The current collector and the electrode mixture layer will be described below.
  • a conductive material such as titanium, titanium alloy, aluminum, aluminum alloy, copper, nickel, stainless steel, nickel plated steel or the like is used.
  • the shape of the current collector include foils, plates, nets, foams, non-wovens and the like, and the current collector may be either porous or nonporous.
  • these conductive materials may be surface-treated to improve adhesion and electrical properties.
  • aluminum is preferable in terms of conductivity and cost, and an aluminum foil is particularly preferable.
  • the thickness of the current collector is not particularly limited, but is usually 1 to 100 ⁇ m.
  • the electrode mixture layer of the electrode of the present invention is formed from the slurry composition of the present invention.
  • the electrode mixture layer obtained from a slurry composition containing an organic sulfur compound has insufficient adhesion with the current collector.
  • the adhesion between the electrode mixture layer and the current collector is improved, and the capacity is excellent even if an inexpensive aluminum foil is used. And cycle characteristics can be obtained.
  • an electrode of the present invention in which an electrode mixture layer is formed on the current collector can be produced.
  • the slurry composition of the present invention is applied to a current collector.
  • coating the slurry composition of this invention to a collector is not specifically limited, For example, a die coater method, a comma coater method, a curtain coater method, a spray coater method, a gravure coater method, a flexo coater method, a knife coater method
  • a die coater method, a doctor blade method, and the knife coater method are preferable in that it is possible to obtain a good surface state of the coating layer in accordance with physical properties such as viscosity of the slurry and drying properties.
  • the application of the slurry for a lithium ion secondary battery electrode to a current collector can be carried out on one side of the current collector, and can be carried out on both sides.
  • it can be applied sequentially on each side, and can be applied simultaneously on both sides.
  • the thickness, length and width of the coating layer can be appropriately determined according to the size of the battery and the like.
  • the slurry composition applied on the current collector is dried. It does not specifically limit as a method to dry the slurry composition apply
  • the temperature in the case of heating is, for example, generally about 50 ° C. to 180 ° C., but conditions such as temperature can be appropriately set according to the application amount of the slurry composition, the boiling point of the used solvent, etc. .
  • volatile components such as a solvent are volatilized from the coating film of the slurry composition, and an electrode mixture layer is formed on the current collector, whereby an electrode can be produced.
  • the electrode of the present invention obtained by the above-mentioned electrode manufacturing process can be subjected to press processing under any conditions as required.
  • a method of press treatment a general method can be used, and for example, a die press method or a roll press method is preferable.
  • the pressure of the press treatment is not particularly limited, the range of 0.1t / cm 2 ⁇ 3t / cm 2 is preferred.
  • the electrode manufactured from the slurry composition of this invention is not specifically limited, It can use for the non-aqueous electrical storage apparatus provided with a non-aqueous electrolyte as electrolyte.
  • the power storage device include a primary battery, a secondary battery, an electric double layer capacitor, and a lithium ion capacitor. Especially, it can be used suitably for a non-aqueous electrolyte secondary battery, and can be used suitably for a lithium ion secondary battery.
  • the non-aqueous electrolyte secondary battery mainly includes a positive electrode, a negative electrode, a non-aqueous electrolyte, and a separator.
  • the electrode produced according to the present invention can be used as a positive electrode of a battery and can be used as a negative electrode.
  • an electrode having a known negative electrode active material may be used as the negative electrode, and when used as a negative electrode, an electrode having a known positive electrode active material as the positive electrode is used. do it.
  • the positive electrode in the case of using as a negative electrode in the case of using the electrode manufactured by this invention as a positive electrode and a negative electrode is called opposing electrode.
  • Examples of known negative electrode active materials include natural graphite, artificial graphite, non-graphitizable carbon, graphitizable carbon, lithium, lithium alloy, silicon, silicon alloy, silicon oxide, tin, tin alloy, tin oxide, phosphorus, germanium , Indium, copper oxide, antimony sulfide, titanium oxide, iron oxide, manganese oxide, cobalt oxide, nickel oxide, lead oxide, ruthenium oxide, tungsten oxide, zinc oxide, LiVO 2 , Li 2 VO 4 , Li 4 Ti 5 And complex oxides such as O 12 . Only one type may be used, or two or more types may be used in combination.
  • lithium transition metal complex oxide As a well-known positive electrode active material, lithium transition metal complex oxide, a lithium containing transition metal phosphoric acid compound, a lithium containing silicate compound etc. are mentioned, for example.
  • the transition metal of the lithium transition metal composite oxide is preferably vanadium, titanium, chromium, manganese, iron, cobalt, nickel, copper or the like.
  • lithium transition metal complex oxide examples include lithium cobalt complex oxide such as LiCoO 2 , lithium nickel complex oxide such as LiNiO 2 , lithium manganese complex oxide such as LiMnO 2 , LiMn 2 O 4 and Li 2 MnO 3
  • transition metal atoms that are the main constituents of these lithium transition metal complex oxides, such as aluminum, titanium, vanadium, chromium, manganese, iron, cobalt, lithium, nickel, copper, zinc, magnesium, gallium, zirconium, etc. What was substituted by the other metal etc. are mentioned.
  • Li 1.1 Mn 1.8 Mg 0.1 O 4, Li 1.1 Mn 1.85 Al 0.05 O 4, LiNi 0.5 Co 0.2 Mn 0.3 O 2 , LiNi 0.8 Co 0.1 Mn 0.1 O 2 , LiNi 0.5 Mn 0.5 O 2 , LiNi 0.80 Co 0.17 Al 0.03 O 2 , LiNi 0. 80 Co 0.15 Al 0.05 O 2 , LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiNi 0.6 Co 0.2 Mn 0.2 O 2 , LiMn 1.8 Al 0.2 O 4 , LiMn 1.5 Ni 0.5 O 4 , Li 2 MnO 3 -LiMo 2 (M Co, Ni, Mn) and the like can be mentioned.
  • transition metal of the lithium-containing transition metal phosphate compound vanadium, titanium, manganese, iron, cobalt, nickel and the like are preferable, and as a specific example, phosphorus such as LiFePO 4 and LiMn x Fe 1-x PO 4 Iron compounds, cobalt phosphate compounds such as LiCoPO 4 , and a part of the transition metal atoms that become main components of these lithium transition metal phosphate compounds are aluminum, titanium, vanadium, chromium, manganese, manganese, iron, cobalt, lithium, Those substituted with other metals such as nickel, copper, zinc, magnesium, gallium, zirconium and niobium, and vanadium phosphate compounds such as Li 3 V 2 (PO 4 ) 3 can be mentioned.
  • the lithium-containing silicate compound include Li 2 FeSiO 4 and the like. These may be used alone or in combination of two or more.
  • the counter electrode can be manufactured by replacing the organic sulfur compound with the known negative electrode active material or the known positive electrode active material in the method of producing the slurry composition of the present invention and the method of producing the electrode.
  • the pH adjustment step is essential, but in the case of producing the counter electrode, the pH adjustment step may not be necessary.
  • Non-aqueous electrolyte for example, a liquid electrolyte obtained by dissolving the electrolyte in an organic solvent, a polymer gel electrolyte obtained by dissolving the electrolyte in an organic solvent and gelling it with a polymer, an organic solvent is not contained, and the electrolyte is a polymer
  • distributed are mentioned.
  • lithium salts are used as the electrolyte used for the liquid electrolyte and the polymer gel electrolyte.
  • the electrolyte used in the pure polyelectrolyte for example, LiN (CF 3 SO 2) 2, LiN (C 2 F 5 SO 2) 2, LiN (SO 2 F) 2, LiC (CF 3 SO 2) 3, LiB (CF 3 SO 3) 4, LiB (C 2 O 4) 2 and the like.
  • Li 0.35 TiO 3 and other lithium ion conducting perovskite type crystals Li 7 -La 3 Zr 2 O 13 crystals and other garnet type crystals; 50 Li 4 SiO 4 ⁇ 50 Li 3 BO 3 etc.
  • Crystals of a lithium-phosphorus sulfide system such as Li 10 GeP 2 S 12 , Li 3.25 Ge 0.25 P 0.75 S 4 , 30Li 2 S.26B 2 S 3 .44LiI, 63Li 2 S.
  • Lithium-phosphorus sulfide glass such as 36SiS 2 ⁇ 1Li 3 PO 4 , 57Li 2 S ⁇ 38SiS 2 ⁇ 5Li 4 SiO 4 , 70Li 2 S ⁇ 50 GeS 2 , 50 Li 2 S ⁇ 50 GeS 2 ; Li 7 P 3 S 11 And glass ceramics such as Li 3.25 P 0.95 S 4 and the like.
  • an organic solvent used for preparation of a liquid electrolyte it can be used combining 1 type, or 2 or more types with what is normally used for a non-aqueous electrolyte.
  • saturated cyclic carbonate compounds, saturated cyclic ester compounds, sulfoxide compounds, sulfone compounds, amide compounds, saturated chain carbonate compounds, chain ether compounds, cyclic ether compounds, saturated chain ester compounds and the like can be mentioned. .
  • a saturated cyclic carbonate compound for example, ethylene carbonate, 1,2-propylene carbonate, 1,3-propylene carbonate, 1,2-butylene carbonate, 1,3-butylene carbonate, 1,1-dimethyl ethylene carbonate and the like Can be mentioned.
  • saturated cyclic ester compound examples include ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -caprolactone, ⁇ -hexanolactone, ⁇ -octanolactone and the like.
  • sulfoxide compound examples include dimethyl sulfoxide, diethyl sulfoxide, dipropyl sulfoxide, diphenyl sulfoxide, thiophene and the like.
  • sulfone compound examples include dimethyl sulfone, diethyl sulfone, dipropyl sulfone, diphenyl sulfone, sulfolane (also referred to as tetramethylene sulfone), 3-methylsulfolane, 3,4-dimethylsulfolane, 3,4-diphenymethylsulfolane And sulfolene, 3-methyl sulfolene, 3-ethyl sulfolene, 3-bromomethyl sulfolene and the like, with sulfolane and tetramethyl sulfolane being preferred.
  • the amide compound examples include N-methylpyrrolidone, dimethylformamide, dimethylacetamide and the like.
  • saturated linear carbonate compounds, linear ether compounds, cyclic ether compounds and saturated linear ester compounds can lower the viscosity of the non-aqueous electrolyte and increase the mobility of electrolyte ions.
  • the battery characteristics such as output density can be made excellent.
  • the viscosity is low, the performance of the non-aqueous electrolyte at low temperatures can be enhanced, and a saturated chain carbonate compound is particularly preferable.
  • saturated chain carbonate compound for example, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, ethyl butyl carbonate, methyl-t-butyl carbonate, diisopropyl carbonate, t-butyl propyl carbonate and the like can be mentioned.
  • chain ether compound or cyclic ether compound examples include dimethoxyethane, ethoxymethoxyethane, diethoxyethane, tetrahydrofuran, dioxolane, dioxane, 1,2-bis (methoxycarbonyloxy) ethane, 1,2-bis ( Ethoxycarbonyloxy) ethane, 1,2-bis (ethoxycarbonyloxy) propane, ethylene glycol bis (trifluoroethyl) ether, propylene glycol bis (trifluoroethyl) ether, ethylene glycol bis (trifluoromethyl) ether, diethylene glycol bis (Trifluoroethyl) ether etc. are mentioned, Among these, dioxolane is preferable.
  • the saturated chain ester compound is preferably a monoester compound or diester compound having a total of 2 to 8 carbon atoms in the molecule, and specific examples thereof include methyl formate, ethyl formate, methyl acetate and acetic acid Ethyl, propyl acetate, isobutyl acetate, butyl acetate, methyl propionate, ethyl propionate, methyl butyrate, methyl isobutyrate, methyl trimethylacetate, ethyl trimethylacetate, methyl malonate, ethyl malonate, methyl succinate, ethyl succinate, Methyl 3-methoxypropionate, ethyl 3-methoxypropionate, ethylene glycol diacetyl, propylene glycol diacetyl and the like can be mentioned, and methyl formate, ethyl formate, methyl acetate, ethyl acetate, ethyl a
  • an organic solvent used for preparation of a liquid electrolyte for example, acetonitrile, propionitrile, nitromethane, derivatives thereof, and various ionic liquids can also be used.
  • the content of the electrolyte in the liquid non-aqueous electrolyte is preferably 0.5 to 7 mol / L, more preferably 0.8 to 1.8 mol / L, in the organic solvent.
  • polymer used for the polymer gel electrolyte examples include polyethylene oxide, polypropylene oxide, polyvinyl chloride, polyacrylonitrile, polymethyl methacrylate, polyethylene, polyvinylidene fluoride, polyhexafluoropropylene and the like.
  • polymer used for the pure polymer electrolyte examples include polyethylene oxide, polypropylene oxide and polystyrene sulfonic acid.
  • the electrolytic solution may contain known additives such as, for example, an electrode film forming agent, an antioxidant, a flame retardant, and an overcharge inhibitor for the purpose of improving the battery life and the safety.
  • an electrolyte additive it is usually 0.01 parts by mass to 10 parts by mass, preferably 0.1 parts by mass to 5 parts by mass, with respect to the whole non-aqueous electrolyte.
  • a separator between the positive electrode and the negative electrode it is preferable to use a separator between the positive electrode and the negative electrode, and as the separator, a microporous film of a commonly used polymer can be used without particular limitation.
  • the film include polyethylene, polypropylene, polyvinylidene fluoride, polyvinylidene chloride, polyacrylonitrile, polyacrylamide, polytetrafluoroethylene, polysulfone, polyethersulfone, polyether sulfone, polycarbonate, polyamide, polyimide, polyethylene oxide and polypropylene oxide, and the like.
  • These films may be coated with a ceramic material such as alumina or silica, magnesium oxide, aramid resin, polyvinylidene fluoride, etc.
  • a ceramic material such as alumina or silica, magnesium oxide, aramid resin, polyvinylidene fluoride, etc.
  • these films may be used alone, or these films may be laminated and used as a multilayer film.
  • various additives may be used in these films, and the type and content thereof are not particularly limited.
  • a film made of polyethylene, polypropylene, polyvinylidene fluoride or polysulfone is preferably used for the secondary battery manufactured by the method of manufacturing the secondary battery.
  • those which are micro-porous are used so that the electrolyte may penetrate and the ions may easily permeate.
  • a solution of a polymer compound and a solvent is formed into a film while performing microphase separation, and a “phase separation method” in which the solvent is extracted and removed to make it porous, and a high draft of the molten polymer compound.
  • the film formation is carried out by extrusion, heat treatment is carried out, crystals are arranged in one direction, and further, a gap is formed between the crystals by drawing to obtain porosity, and so on.
  • the separator may not be included.
  • the shape of the secondary battery manufactured by the method for manufacturing a secondary battery having the above structure is not particularly limited in its shape, and can be in various shapes such as coin shape, cylindrical shape, square shape, laminate shape, etc. .
  • FIG. 1 shows an example of a coin battery among non-aqueous electrolyte secondary batteries having the electrode of the present invention
  • FIGS. 2 and 3 show an example of a cylindrical battery.
  • 1 is a positive electrode capable of releasing lithium ions
  • 1a is a positive electrode current collector
  • 2 is a negative electrode capable of absorbing and releasing lithium ions released from the positive electrode
  • 2a A negative electrode current collector
  • 3 is a non-aqueous electrolyte
  • 4 is a stainless steel positive electrode case
  • 5 is a stainless steel negative electrode case
  • 6 is a polypropylene gasket
  • 7 is a polyethylene separator.
  • 11 is a negative electrode
  • 12 is a negative electrode current collector
  • 13 is a positive electrode
  • 14 is a positive electrode current collector
  • 15 is a non-aqueous electrolyte
  • 16 is a separator
  • 17 is a positive electrode terminal
  • 18 is a negative electrode terminal
  • 19 is a negative electrode plate
  • 20 is a negative electrode lead
  • 21 is a positive electrode plate
  • 22 is a positive electrode lead
  • 23 is a case
  • 24 is an insulating plate
  • 25 is a gasket
  • 26 is a safety valve
  • 27 is a PTC element.
  • ⁇ Exterior member> As an exterior member, a laminate film or a metal container can be used.
  • the thickness of the exterior member is usually 0.5 mm or less, preferably 0.3 mm or less.
  • the shape of the exterior member may be flat (thin), square, cylindrical, coin, button or the like.
  • a laminated film can also use the multilayer film which has a metal layer between resin films.
  • the metal layer is preferably aluminum foil or aluminum alloy foil in order to reduce the weight.
  • the resin film for example, a polymer material such as polypropylene, polyethylene, nylon, polyethylene terephthalate can be used.
  • the laminated film can be formed into the shape of the exterior member by sealing by heat fusion.
  • the metal container can be formed of, for example, stainless steel, aluminum or an aluminum alloy.
  • the aluminum alloy an alloy containing an element such as magnesium, zinc or silicon is preferable.
  • the sulfur content of the organic sulfur compound was calculated by elemental analysis using a CHN analyzer (vario MICRO cube manufactured by Elementer) capable of analyzing sulfur and oxygen.
  • Sulfur-Modified Pitch Compound As a pitch compound, 100 parts by mass of coal pitch (coal tar, manufactured by Yoshida Refinery) and 500 parts by mass of single sulfur (manufactured by Sigma Aldrich, average particle diameter: 200 ⁇ m) The reaction was carried out according to Example 1 of 099342 to obtain a reaction product, and the obtained reaction product was pulverized to obtain an organic sulfur compound A3 which is a sulfur-modified pitch compound.
  • the average particle size and sulfur content of the organic sulfur compound A3 were as follows. ⁇ Average particle size 15 ⁇ m -Sulfur content 32.5% by mass
  • Sulfur-Modified Aliphatic Hydrocarbon Oxide As aliphatic hydrocarbon oxide, 100 parts by mass of 1-decanol (manufactured by Tokyo Chemical Industry Co., Ltd.) and 300 parts by mass of elemental sulfur (manufactured by Sigma Aldrich, average particle diameter 200 ⁇ m) are used. The reaction is carried out according to Example 1 of WO 2016/158675 to obtain a reaction product, and the obtained reaction product is pulverized to obtain an organic sulfur compound A4 which is a sulfur-modified aliphatic hydrocarbon oxide. I got The average particle size and sulfur content of the organic sulfur compound A4 were as follows. ⁇ Average particle size 13 ⁇ m -Sulfur content 49.2 mass%
  • the sulfur-modified carboxylic acid compound contains 100 parts by mass of 1-decanoic acid (manufactured by Tokyo Chemical Industry Co., Ltd.) as an aliphatic hydrocarbon oxide, single sulfur (manufactured by Sigma Aldrich, average particle)
  • the reaction is carried out according to Example 14 of WO 2016/158675 using 300 parts by mass of a diameter of 200 ⁇ m to obtain a reaction product, and the obtained reaction product is pulverized to obtain a sulfur-modified aliphatic hydrocarbon
  • An organic sulfur compound A5 which is an oxide was obtained.
  • the average particle size and sulfur content of the organic sulfur compound A5 were as follows. ⁇ Average particle size 15 ⁇ m -Sulfur content 52.7% by mass
  • the average particle size and sulfur content of the organic sulfur compound A6 were as follows. ⁇ Average particle size 13 ⁇ m -Sulfur content 40.4% by mass
  • Sulfur-Modified Polyamide Compound As a compound having a carboxyl group and an amino group in the molecule, 100 parts by mass of 4-aminobenzoic acid (manufactured by Tokyo Kasei Kogyo Co., Ltd.) and elemental sulfur (manufactured by Sigma Aldrich, average particle diameter 200 ⁇ m) The reaction is carried out using 500 parts by mass according to Example 1 of Patent Publication 06099247 to obtain a reaction product, and the obtained reaction product is pulverized to obtain an organic sulfur compound A7 which is a sulfur-modified polyamide compound. The average particle size and sulfur content of the organic sulfur compound A7 were as follows. ⁇ Average particle size 11 ⁇ m -Sulfur content 47.0% by mass
  • Sulfur-Modified Polyacrylonitrile Compound A sulfur-modified polyacrylonitrile compound was synthesized with reference to Example 2 of Patent Document 2.
  • the reaction product was obtained, and the reaction product obtained was pulverized to obtain an organic sulfur compound A8 which is a sulfur-modified polyacrylonitrile compound.
  • the average particle size and sulfur content of the organic sulfur compound A8 were as follows. ⁇ Average particle size 10 ⁇ m -Sulfur content 37.1% by mass
  • LiPF 6 was dissolved in a mixed solvent consisting of 50% by volume of ethylene carbonate and 50% by volume of diethyl carbonate at a concentration of 1.0 mol / L to prepare an electrolyte solution.
  • a battery using an electrode manufactured by using a slurry composition whose pH has been adjusted is set as Examples 1 to 23, and a battery using an electrode manufactured from a slurry composition whose pH adjustment is not sufficient is set as Comparative Examples 1 to 13.
  • Types of organic sulfur compounds, types of basic compounds, pH of the slurry composition, and combinations of current collector types are as shown in Tables 1 and 2.
  • ⁇ Manufacture of positive electrode> Li as a positive electrode active material (Ni 1/3 Co 1/3 Mn 1/3) O 2 ( Nihon Kagaku Sangyo Co., Ltd., trade name: NCM111) 90.0 parts by mass of acetylene black as a conductive additive (manufactured by Denki Kagaku Kogyo) 5.0 parts by mass, and 5.0 parts by mass of polyvinylidene fluoride (made by Kureha) as a binder are added to 90.0 parts by mass of N-methylpyrrolidone as a solvent, and using a rotation / revolution mixer, revolution 1600 rpm, rotation The slurry composition was obtained by dispersing in a solvent for 30 minutes under the condition of 800 rpm.
  • the slurry composition was applied to a current collector made of aluminum foil by a doctor blade method, and allowed to stand at 90 ° C. for 1 hour for drying. Thereafter, this electrode was cut into a predetermined size, and further dried in vacuo at 120 ° C. for 2 hours immediately before use to prepare a positive electrode.
  • ⁇ Charge / discharge evaluation B> The non-aqueous electrolyte secondary batteries of Examples 24 to 26 and Comparative Examples 14 and 15 were placed in a thermostatic chamber at 25 ° C., charge termination voltage was 3.2 V, discharge termination voltage was 0.8 V, charge rate 0.1 C, A total of 105 charge / discharge tests were conducted, five times with a charge / discharge test with a discharge rate of 0.1 C, and 100 times with a charge rate of 0.5 C and a discharge rate of 0.5 C, to measure the discharge capacity.
  • the 105th discharge capacity is shown in Tables 1 and 2.
  • the unit of discharge capacity is mAh / g, and the discharge capacity is a capacity relative to the weight of the positive electrode active material.
  • the non-aqueous electrolyte secondary batteries of Examples 1 to 23 produced using the slurry composition according to the present invention show high charge-discharge capacity even when using inexpensive aluminum foil. I understand.
  • the non-aqueous electrolyte secondary batteries of Comparative Examples 1 to 13 were inferior in charge and discharge capacity to the non-aqueous electrolyte secondary batteries of Examples 1 to 23.
  • an electrode mixture layer having high adhesion to the current collector can be obtained, and as a result, a lithium ion secondary battery having an excellent capacity
  • the slurry composition can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

本発明の課題は、集電体として安価なアルミニウム箔を使用しても、スラリー組成物及び電極合剤層の集電体への密着性が高く、十分な容量を有する電極合剤層が形成可能な、有機硫黄化合物を含む電極用スラリー組成物を提供することである。 本発明は、有機硫黄化合物、バインダー、導電助剤及び溶媒を含み、pHが4.0~9.0である、スラリー組成物に関する。スラリー組成物は、更に、塩基性化合物を含有することが好ましい。また、有機硫黄化合物は、硫黄変性エラストマー化合物、硫黄変性多核芳香環化合物、硫黄変性ピッチ化合物、硫黄変性脂肪族炭化水素酸化物、硫黄変性ポリエーテル化合物、ポリチエノアセン化合物、ポリ硫化カーボン化合物、硫黄変性ポリアミド化合物及び硫黄変性ポリアクリロニトリル化合物からなる群より選ばれる1種又は2種以上であることが好ましい。

Description

スラリー組成物、及びスラリー組成物を用いた電極
 本発明は、二次電池電極に好適に使用できるスラリー組成物に関するものである。
 リチウムイオン二次電池などの非水電解質二次電池は、小型で軽量、かつエネルギー密度が高く、更に繰り返し充放電が可能であり、携帯用パソコン、ハンディビデオカメラ、情報端末等の携帯電子機器の電源として広く用いられている。また、環境問題の観点から、非水電解質二次電池を使用した電気自動車や、動力の一部に電力を利用したハイブリッド車の実用化が行われている。そのため、近年では、二次電池のさらなる性能向上が求められている。
 非水電解質二次電池用の電極は、通常、集電体と、集電体上に形成された電極合剤層とを備えている。そして、電極合剤層は、例えば電極活物質と、活物質を結着するバインダー組成物などとを分散媒に分散させてなるスラリー組成物を集電体上に塗布し、乾燥させることによって形成される。電極活物質は、電池性能に大きく影響することから研究開発が盛んに行われている。
 硫黄は、理論的に高い電気容量を有する物質であることから正極活物質材料として検討されている。しかし、単体硫黄を活物質として用いたリチウムイオン二次電池は、放電時に硫黄とリチウムの化合物が生成し、この化合物が非水電解質に用いる有機溶媒に溶解するため、充放電を繰り返すことで活物質である硫黄が徐々に溶解し、二次電池のサイクル特性が低下するという課題があった。このため、硫黄-炭素結合を有する有機硫黄化合物が開発され、電極活物質として検討されている(例えば特許文献1~7を参照)。
 集電体と電極合剤層が密着していないと、電池性能が大きく低下する。集電体としては、通常、安価なためアルミニウム箔が使用されるが、集電体と電極合剤層との密着性が十分でない場合には、カーボンコートされたアルミニウム箔やステンレス箔、又は三次元網目構造を有する集電体が使用される(例えば特許文献8を参照)。ポリアクリロニトリルを硫黄で変性した硫黄変性ポリアクリロニトリル化合物をはじめとする有機硫黄化合物を含むスラリー組成物は、集電体への密着性が悪いため、安価なアルミニウム箔以外の前記集電体を使用する必要があった(例えば特許文献2~7を参照)。
特開2003-151550号公報 US2011200875A1 特開2011-170991号公報 国際公開第2012/114651号 特開2012-099342号公報 特開2012-150933号公報 特開2012-150934号公報 特開平11-073973号公報
 本発明の課題は、集電体として安価なアルミニウム箔を使用しても、スラリー組成物及び電極合剤層の集電体への密着性が高く、十分な容量を有する電極合剤層が形成可能な、有機硫黄化合物を含む電極用スラリー組成物を提供することである。
 本発明者らは上記課題について鋭意検討を行なった結果、電極用スラリー組成物を特定のpHに調整することにより電極合剤層と集電体の密着性が向上することを見出し、本発明を完成させた。即ち、本発明は、有機硫黄化合物、バインダー、導電助剤及び溶媒を含み、pHが4.0~9.0であるスラリー組成物である。
図1は、本発明の電極を用いた非水電解質二次電池(コイン型)の構造の一例を概略的に示す縦断面図である。 図2は、本発明の電極を用いた非水電解質二次電池(円筒型)の基本構成を示す概略図である。 図3は、本発明の電極を用いた非水電解質二次電池(円筒型)の内部構造を断面として示す斜視図である。
 以下、本発明の実施形態について説明する。本発明のスラリー組成物は、有機硫黄化合物、バインダー、導電助剤及び溶媒を含む。以下で、本発明のスラリー組成物に含まれる各成分について説明する。
<有機硫黄化合物>
 本発明において有機硫黄化合物とはリチウムイオンを吸蔵及び放出することができ、二次電池の電極活物質として使用可能な化合物であって、硫黄の含量が少なくとも25質量%以上の化合物をいう。有機硫黄化合物としては、例えば、硫黄変性エラストマー化合物、硫黄変性多核芳香環化合物、硫黄変性ピッチ化合物、硫黄変性脂肪族炭化水素酸化物、硫黄変性ポリエーテル化合物、ポリチエノアセン化合物、ポリ硫化カーボン化合物、硫黄変性芳香族ポリアミド化合物及び硫黄変性ポリアクリロニトリル化合物が挙げられる。有機硫黄化合物の硫黄含有量は、例えば、硫黄及び酸素が分析可能なCHN分析装置(エレメンター製 vario MICRO cube)を用いて元素分析を行い測定することができる。
 硫黄変性エラストマー化合物は、ゴムと単体硫黄の混合物を非酸化性雰囲気中で加熱処理して得られる化合物である。ゴムとしては、例えば、天然ゴム、イソプレンゴム、ブタジエンゴム、スチレンブタジエンゴム及びアクリロニトリルブタジエンゴム等が挙げられる。これらのゴムは1種を単独で使用することができ、2種以上を組合せて使用することができる。原料のゴムは、加硫ゴムでも加硫前のゴムでもよい。
 加熱処理におけるゴムと単体硫黄との割合は、ゴム100質量部に対して単体硫黄100質量部~1500質量部が好ましく、150質量部~1000質量部が更に好ましい。
 加熱処理を行なう際には、公知の加硫促進剤を1種以上添加することができる。加硫促進剤の添加量は、ゴム100質量部に対して1質量部~250質量部が好ましく、5質量部~50質量部が更に好ましい。
 加熱処理の温度は250℃~550℃が好ましく、300℃~450℃が更に好ましい。
 未反応の単体硫黄は二次電池のサイクル特性を低下させる要因となるため、例えば、加熱や溶媒洗浄等により硫黄変性エラストマー化合物から除去することが好ましい。硫黄変性エラストマー化合物の硫黄含量は、大きな充放電容量が得られることから、40~70質量%が好ましく、45~60質量%が更に好ましい。
 硫黄変性多核芳香環化合物は、多核芳香環化合物と単体硫黄の混合物を非酸化性雰囲気中で加熱処理して得られる化合物である。多核芳香環化合物としては、例えば、ナフタレン、アントラセン、テトラセン、ペンタセン、フェナントレン、クリセン、ピセン、ピレン、ベンゾピレン、ペリレン、コロネン等のベンゼン系芳香環化合物が挙げられる。また、ベンゼン系芳香環化合物の一部が5員環となった芳香族環化合物、又はこれらの炭素原子の一部が硫黄、酸素、窒素などに置き換わったヘテロ原子含有複素芳香環化合物が挙げられる。更に、これらの多核芳香環化合物は、炭素数1~12の鎖状又は分岐状アルキル基、アルコキシル基、水酸基、カルボキシル基、アミノ基、アミノカルボニル基、アミノチオ基、メルカプトチオカルボニルアミノ基、カルボキシアルキルカルボニル基などの置換基を有している場合がある。
 多核芳香環化合物は、芳香族部位と鎖式炭化水素部位との繰り返し構造を有する化合物であってもよい。芳香族部位と鎖式炭化水素部位の繰り返し構造を持つ化合物の芳香族部位としては、前記のほか、ベンゼン、ピロリジン、ピロール、ピリジン、イミダゾール、ピロリドン、テトラヒドロフラン、トリアジン、チオフェン、オキサゾール、チアゾール、チアジアゾール、トリアゾール、ホスホール、シロール等が挙げられ、芳香族が2つ以上縮合していてもよく、これらの芳香族部位とシクロペンタン、シクロヘキサン、ピロリジン、テトラヒドロフラン等が縮合していてもよい。また、これらは炭素数1~12の鎖状又は分岐状アルキル基、アルコキシル基、水酸基、カルボキシル基、アミノ基、アミノカルボニル基、アミノチオ基、メルカプトチオカルボニルアミノ基、カルボキシアルキルカルボニル基などの置換基を有してもよい。
 芳香族部位と鎖式炭化水素部位の繰り返し構造を持つ化合物の鎖式炭化水素部位としては、アルキレン基、アルケニレン基、アルキニレン基などの直鎖又は分岐した鎖式炭化水素である。該鎖式炭化水素部位の炭素数としては、2~20が好ましく、より好ましくは3~10、更に好ましくは4~8である。取扱いの容易性や価格面から、アルキレン基又はアルケニレン基が好ましく、なかでも、ブタン-1,4-ジイル基、ヘキサン-1,6-ジイル基、オクタン-1,8-ジイル基、ビニレン基、1,3-ブタジエン-1,4ジイル基及びその構造異性体が好ましい。
 加熱処理における多核芳香環化合物と単体硫黄との割合は、多核芳香環化合物100質量部に対して単体硫黄100質量部~1500質量部が好ましく、150質量部~1000質量部が更に好ましい。
 加熱処理の温度は250℃~550℃が好ましく、300℃~450℃が更に好ましい。
 未反応の単体硫黄は二次電池のサイクル特性を低下させる要因となるため、例えば、加熱や溶媒洗浄等により硫黄変性多核芳香環化合物から除去することが好ましい。硫黄変性多核芳香環化合物の硫黄含量は、大きな充放電容量が得られることから、40~70質量%が好ましく、45~60質量%が更に好ましい。
 硫黄変性ピッチ化合物は、ピッチ類と単体硫黄との混合物を非酸化性雰囲気中で加熱処理して得られる化合物である。ピッチ類としては、石油ピッチ、石炭ピッチ、メソフェーズピッチ、アスファルト、コールタール、コールタールピッチ、縮合多環芳香族炭化水素化合物の重縮合で得られる有機合成ピッチ、及び、ヘテロ原子含有縮合多環芳香族炭化水素化合物の重縮合で得られる有機合成ピッチ等が挙げられる。ピッチ類は様々な化合物の混合物であり、縮合多環芳香族を含む。ピッチ類に含まれる縮合多環芳香族は、単1種である場合があり、複数種である場合がある。この縮合多環芳香族は、環の中に、炭素と水素以外にも、窒素や硫黄を含んでいる場合がある。
 加熱処理におけるピッチ類と単体硫黄との割合は、ピッチ類が100質量部に対し単体硫黄100質量部~1000質量部が好ましく、150質量部~500質量部が更に好ましい。
 加熱処理の温度は300℃~500℃が好ましく、350℃~500℃が更に好ましい。
 未反応の単体硫黄は二次電池のサイクル特性を低下させる要因となるため、例えば、加熱や溶媒洗浄等により硫黄変性ピッチ化合物から除去することが好ましい。硫黄変性ピッチ化合物の硫黄含量は、大きな充放電容量が得られることから、25~70質量%が好ましく、30~60質量%が更に好ましい。
 硫黄変性脂肪族炭化水素酸化物は、脂肪族炭化水素酸化物と単体硫黄とを非酸化性雰囲気中で加熱処理して得られる化合物である。本発明において、脂肪族炭化水素酸化物とは、脂肪族炭化水素骨格を有し、水酸基、カルボニル基、カルボキシル基又はエポキシ基からなる群から選択される基を少なくとも1つ有する化合物をいい、炭化水素骨格は不飽和結合を有してもよい。脂肪族炭化水素酸化物の脂肪族炭化水素骨格は、直鎖でも分岐鎖でもよいが、大きな充放電容量が得られることから、直鎖が好ましい。脂肪族炭化水素酸化物の炭素数は、大きな充放電容量が得られることから、4~12が好ましく、6~10が更に好ましい。脂肪族炭化水素酸化物中の酸素原子は単体硫黄との加熱処理により離脱することから、脂肪族炭化水素酸化物は、酸素原子数に対する炭素原子数の比が、3以上であることが好ましく、4以上が更に好ましい。
 好ましい脂肪族炭化水素酸化物としては、1-ブタノール、2-ブタノール、1-ペンタノール、3-ペンタノール、1-ヘキサノール、1-ヘプタノール、1-オクタノール、1-ノナノール、1-デカノール、1-ブタノール、1-ペンタノール、1-ヘキサノール、1-ヘプタノール、1-オクタノール、2-オクタノール、1-ノナノール、1-デカノール等のアルコール化合物;ブタナール、ペンタナール、ヘキサナール、ヘプタナール、オクタナール、ノナナール、デカナール等のアルデヒド化合物;メチルエチルケトン、ジエチルケトン、メチルヘキシルケトン等のケトン化合物;オクタン酸、ノナン酸、デカン酸のカルボン酸化合物;1,2-ブタンオキシド、1,2-ヘキサンオキシド、1,2-オクタンオキシド、1,2-デカンオキシド等のエポキシ化合物等が挙げられる。
 加熱処理における脂肪族炭化水素酸化物と単体硫黄との割合は、脂肪族炭化水素酸化物100質量部に対して単体硫黄100質量部~1000質量部が好ましく、200質量部~500質量部が更に好ましい。加熱処理の温度は300℃~500℃が好ましく、350℃~450℃が更に好ましい。加熱処理の温度が、脂肪族炭化水素酸化物の沸点より高い場合は、脂肪族炭化水素酸化物を還流させながら製造することが好ましい。
 未反応の単体硫黄は二次電池のサイクル特性を低下させる要因となるため、例えば、加熱や溶媒洗浄等により硫黄変性脂肪族炭化水素酸化物から除去することが好ましい。硫黄変性脂肪族炭化水素酸化物の硫黄含量は、大きな充放電容量が得られることから、45~75質量%が好ましく、50~70質量%が更に好ましい。
 硫黄変性ポリエーテル化合物は、ポリエーテル化合物と単体硫黄を非酸化性雰囲気中で加熱処理して得られる化合物である。ポリエーテル化合物としては、例えば、ポリエチレングリコール、ポリプロピレングリコール、エチレンオキシド/プロピレンオキシドコポリマー、ポリテトラメチレングリコール等が挙げられる。ポリエーテル化合物は、末端がアルキルエーテル基、アルキルフェニルエーテル基、アシル基であってもよく、グリセリン、ソルビトール等のポリオールのエチレンオキシド付加物であってもよい。
 加熱処理におけるポリエーテル化合物と単体硫黄との割合は、ポリエーテル化合物100質量部に対して100質量部~1000質量部がより好ましく、200質量部~500質量部が更に好ましい。
 加熱処理の温度は250℃~500℃が好ましく、300℃~450℃がより好ましい。
 未反応の単体硫黄は二次電池のサイクル特性を低下させる要因となるため、例えば、加熱や溶媒洗浄等により硫黄変性ポリエーテル化合物から除去することが好ましい。硫黄変性ポリエーテル化合物の硫黄含量は、30~75質量%が好ましく、40~70質量%が更に好ましい。
 ポリチエノアセン化合物は、下記一般式(1)で表される、硫黄を含むポリチエノアセン構造を有する化合物である。
Figure JPOXMLDOC01-appb-C000001

 (式中、*は結合手を表す。)
 ポリチエノアセン化合物は、ポリエチレン化合物等の直鎖構造を有する脂肪族のポリマー化合物や、ポリチオフェン等のチオフェン構造を有するポリマー化合物と、単体硫黄を非酸化性雰囲気中で加熱処理して得ることができる。
 原料に直鎖構造を有する脂肪族のポリマー化合物を用いる場合、加熱処理における脂肪族のポリマーと単体硫黄との割合は、脂肪族のポリマー化合物が100質量部に対し単体硫黄100質量部~2000質量部が好ましく、150質量部~1000質量部が更に好ましい。また、原料にチオフェン構造を有するポリマー化合物を用いる場合、加熱処理におけるチオフェン構造を有するポリマー化合物と単体硫黄の割合は、チオフェン構造を有するポリマー化合物が100質量部に対して単体硫黄100質量部~1000質量部が好ましく、150質量部~800質量部が更に好ましい。
 加熱処理の温度は300℃~600℃が好ましく、350℃~500℃が更に好ましい。
 未反応の単体硫黄は二次電池のサイクル特性を低下させる要因となるため、例えば、加熱や溶媒洗浄等によりポリチエノアセン化合物から除去することが好ましい。ポリチエノアセン化合物の硫黄含量は、大きな充放電容量が得られることから、30~80質量%が好ましく、40~70質量%が更に好ましい。
 ポリ硫化カーボン化合物は、一般式(CS(xは0.5~2で、nは4以上の数である)で表される化合物であり、例えば、アルカリ金属硫化物と単体硫黄との複合体に、ヘキサクロロブタジエン等のハロゲン化不飽和炭化水素を反応させた前駆体を、加熱処理することにより得ることができる。アルカリ金属硫化物と単体硫黄との複合体は、アルカリ金属硫化物を、エタノール等の溶媒に溶解し、10~40℃で硫黄と反応させることにより得ることができる。アルカリ金属硫化物と硫黄との割合は、アルカリ金属硫化物1モルに対して硫黄は2~6モルとすることができる。アルカリ金属硫化物と単体硫黄との複合体と、ハロゲン化不飽和炭化水素との反応は、複合体を、N-メチル-2-ピロリドン等の有機溶媒に溶解し、10~40℃でハロゲン化不飽和炭化水素と反応させればよく、複合体100質量部に対してハロゲン化不飽和炭化水素は5~30質量部であることが好ましい。アルカリ金属硫化物と単体硫黄の複合体とハロゲン化不飽和炭化水素を反応させた前駆体は、過剰のアルカリ金属硫化物やアルカリ金属とハロゲンの塩を含有することから、これらを除去するため水等で洗浄した後、300~450℃、好ましくは320~400℃で熱処理する。
 熱処理後のポリ硫化カーボン化合物は未反応の単体硫黄を含んでおり、二次電池のサイクル特性を低下させる要因となるため、例えば、加熱や溶媒洗浄等によりポリ硫化カーボン化合物から除去することが好ましい。ポリ硫化カーボン化合物の硫黄含量は、大きな充放電容量が得られることから、65~75質量%が好ましく、67~73質量%が更に好ましい。
 ポリ硫化カーボン化合物の製造に用いられるアルカリ金属硫化物としては、硫化リチウム、硫化ナトリウム及び硫化カリウム等が挙げられる。
 硫黄変性ポリアミド化合物は、アミド結合を有するポリマー由来の炭素骨格を有する有機硫黄化合物であり、具体的には、アミノカルボン酸化合物と単体硫黄、又はポリアミン化合物とポリカルボン酸化合物と単体硫黄を、非酸化性雰囲気中で加熱処理して得られる化合物である。
 本発明において、アミノカルボン酸化合物とは、分子中に1つのアミノ基と少なくとも1つのカルボキシル基とを有する化合物をいう。アミノカルボン酸化合物としては、3,4-ジアミノ安息香酸、3,5-ジアミノ安息香酸、p-アミノ安息香酸及びm-アミノ安息香酸等のアミノ安息香酸、4-アミノフェニル酢酸、3-アミノフェニル酢酸、3-(4-アミノフェニル)プロピオン酸、3-アミノプロピオン酸、4-アミノブタン酸、5-アミノペンタン酸、2,5-ジアミノペンタン酸、アミノ酸類としてアラニン、アルギニン、アスパラギン、アスパラギン酸、システイン、グルタミン、グルタミン酸、グリシン、ヒスチジン、イソロイシン、ロイシン、リシン、メチオニン、フェニルアラニン、プロリン、セリン、トレオニン、トリプトファン、チロシン、バリン、テアニン、トリコロミン酸、カイニン酸、ドウモイ酸、イボテン酸、アクロメリン酸等が挙げられる。
 本発明において、ポリアミン化合物とは、分子中に少なくとも2つのアミノ基を持つ化合物をいう。ポリアミン化合物としては、例えば、尿素、エチレンジアミン、エチレントリアミン、ジエチレントリアミン、プトレシン、カダベリン、ヘキサメチレンジアミン、o-フェニレンジアミン、m-フェニレンジアミン、p-フェニレンジアミン、4-アミノベンゼンメタンアミン、4-アミノベンゼンエタンアミン、メラミン、1,2,4-トリアミノベンゼン、1,3,5-トリアミノベンゼン、ベンゾグアナミン等が挙げられる。
 本発明において、ポリカルボン酸化合物とは、分子中に少なくとも2つのカルボキシル基を持つ化合物をいう。ポリカルボン酸化合物としては、例えば、テレフタル酸、フマル酸、酒石酸、マレイン酸、ベンゼン-1,3-ジカルボン酸、フタル酸、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、エチレンジアミン四酢酸などがある。また無水フタル酸、無水マレイン酸などの酸無水物を用いることもできる。ポリアミン化合物とポリカルボン化合物とを用いて硫黄変性ポリアミド化合物を製造する場合、ポリアミン化合物とポリカルボン酸化合物との比率は、モル比で0.9~1.1であることが好ましい。
 加熱処理における、アミノカルボン酸化合物と単体硫黄との割合は、アミノカルボン酸化合物100重量部に対し単体硫黄100重量部~500重量部が好ましく、150重量部~400重量部が更に好ましい。ポリアミン化合物とポリカルボン酸化合物と単体硫黄との割合は、ポリアミン化合物とポリカルボン酸化合物の合計質量100重量部に対し単体硫黄100重量部~500重量部が好ましく、150重量部~400重量部が更に好ましい。
 加熱処理の温度は250℃~600℃が好ましく、350℃~500℃が更に好ましい。
 未反応の単体硫黄は二次電池のサイクル特性を低下させる要因となるため、例えば、加熱や溶媒洗浄等により硫黄変性ポリアミド化合物から除去することが好ましい。硫黄変性ポリアミド化合物の硫黄含量は、大きな充放電容量が得られることから、40~70質量%が好ましく、45~60質量%が更に好ましい。
 硫黄変性ポリアクリロニトリル化合物は、ポリアクリロニトリルと単体硫黄との混合物を非酸化性雰囲気中で加熱処理して得られる化合物である。ポリアクリロニトリルは、アクリロニトリルのホモポリマーである場合がある。また、ポリアクリロニトリルは、アクリロニトリルと他のモノマーとのコポリマーである場合がある。ポリアクリロニトリルにおけるアクリロニトリルの含量が低くなると電池性能が低くなり、更に、炭化が比較的容易で炭化物が比較的高い導電性を示し、そのため活物質の利用率が向上して高容量化を図ることができるという観点から、アクリロニトリルと他のモノマーとのコポリマーにおけるアクリロニトリルの含量は少なくとも90質量%であることが好ましく、ポリアクリロニトリルホモポリマーが更に好ましい。他のモノマーとしては、例えば、アクリル酸、酢酸ビニル、N-ビニルホルムアミド、N,N’-メチレンビス(アクリルアミド)が挙げられる。
 ポリアクリロニトリルと単体硫黄との混合物の加熱処理の温度は250℃~550℃が好ましく、350℃~450℃が更に好ましい。加熱処理におけるポリアクリロニトリルと単体硫黄の割合は、ポリアクリロニトリル100質量部に対して単体硫黄100質量部~1500質量部が好ましく、150質量部~1000質量部が更に好ましい。
 未反応の単体硫黄は二次電池のサイクル特性を低下させる要因となるため、例えば、加熱や溶媒洗浄等により、硫黄変性ポリアクリロニトリルから除去することが好ましい。硫黄変性ポリアクリロニトリルの硫黄含量は、大きな充放電容量が得られることから、25~60質量%が好ましく、30~55質量%が更に好ましい。
 有機化合物と硫黄との加熱処理が非酸化性雰囲気下で行われる場合、非酸化性雰囲気は、酸素濃度が5体積%以下、好ましくは2体積%以下、さらに好ましくは酸素を実質的に含有しない雰囲気、即ち窒素、ヘリウム、アルゴン等の不活性ガス雰囲気や、硫黄ガス雰囲気とすることができる。
 有機硫黄化合物の形状は、特に限定されないが、例えば、球状、多面体状、繊維状、棒状、板状、鱗片状、又は無定形状であり、これらは中空状であってもよい。これらの形状の中で、電極合剤層が均一に形成されることから、球状又は多面体状が好ましい。
 有機硫黄化合物の粒子径が大き過ぎると均一で平滑な電極合剤層が得られない場合があり、小さ過ぎるとスラリー化工程でのハンドリング性が低下することから、有機硫黄化合物の平均粒子径(D50)が0.5μm~100μmが好ましく、1μm~50μmがより好ましく、1μm~30μmが更に好ましい。なお、本発明において、平均粒子径(D50)とは、レーザー回折光散乱法により測定された50%粒子径をいう。粒子径は体積基準の直径であり、レーザー回折光散乱法では、二次粒子の直径が測定される。
 単体硫黄としては、粉末硫黄、不溶性硫黄、沈降硫黄、コロイド硫黄等の種々の形態のものをいずれも使用できるが、原料化合物に均一に分散させることを考慮すれば、粉末硫黄が好ましい。
 有機硫黄化合物としては、硫黄の溶出がなく、サイクル特性に優れた二次電池が得られることから、硫黄変性ポリアクリロニトリル化合物が好ましい。有機硫黄化合物を使用する場合には1種のみを使用してもよく、2種以上を組合せて使用してもよい。
<バインダー>
 本発明で用いるバインダーは、公知のものを用いることができる。バインダーの具体例としては、例えば、スチレン-ブタジエンゴム、ブタジエンゴム、アクリロニトリル-ブタジエンゴム、エチレン-プロピレン-ジエンゴム、スチレン-イソプレンゴム、フッ素ゴム、ポリエチレン、ポリプロピレン、ポリアミド、ポリアミドイミド、ポリイミド、ポリアクリロニトリル、ポリウレタン、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、スチレン-アクリル酸エステル共重合体、エチレン-ビニルアルコール共重合体、ポリメチルメタクリレート、ポリアクリレート、ポリビニルアルコール、ポリエチレンオキサイド、ポリビニルピロリドン、ポリビニルエーテル、ポリ塩化ビニル、ポリアクリル酸、メチルセルロース、カルボキシメチルセルロース、カルボキシメチルセルロースナトリウム、セルロースナノファイバー、デンプン等が挙げられる。
 バインダーとしては、環境負荷が低く、硫黄の溶出が起こりにくいため、水系バインダーが好ましく、スチレン-ブタジエンゴム、カルボキシメチルセルロースナトリウム、ポリアクリル酸が更に好ましい。
 バインダーは1種のみ使用してもよく、2種以上を組合せて使用してもよい。
 バインダーの含有量は、電極活物質100質量部に対し、1質量部~30質量部であることが好ましく、1質量部~20質量部であることが更に好ましい。
<導電助剤>
 本発明で用いる導電助剤としては、電極の導電助剤として公知のものを用いることができる。具体的には、天然黒鉛、人造黒鉛、コールタールピッチ、カーボンブラック、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック、カーボンナノチューブ、気相法炭素繊維(Vapor Grown Carbon Fiber:VGCF)、グラフェン、フラーレン、ニードルコークス等の炭素材料;アルミニウム粉、ニッケル粉、チタン粉等の金属粉末;酸化亜鉛、酸化チタン等の導電性金属酸化物;La、Sm、Ce、TiS等の硫化物が挙げられる。この導電助剤は、前記有機硫黄化合物の製造時に混合することも可能である。
 導電助剤の粒子径は、0.0001μm~100μmが好ましく、0.01μm~50μmがより好ましい。
 導電助剤の含有量は、電極活物質100質量部に対し、通常0.1~50質量部であり、好ましくは1~30質量部、より好ましくは2~20質量部である。
<溶媒>
 本発明で用いるスラリーを調製するための溶媒としては、例えばプロピレンカーボネート、エチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート、1,2-ジメトキシエタン、1,2-ジエトキシエタン、アセトニトリル、プロピオニトリル、テトラヒドロフラン、2-メチルテトラヒドロフラン、ジオキサン、1,3-ジオキソラン、ニトロメタン、N-メチルピロリドン、N,N-ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン、N,N-ジメチルアミノプロピルアミン、ポリエチレンオキシド、テトラヒドロフラン、ジメチルスルホキシド、スルホラン、γ-ブチロラクトン、水、アルコール等が挙げられる。溶媒の使用量は、スラリーを塗膜する際に選択する方法にあわせて調整することができ、例えば、ドクターブレード法による塗布の場合、有機硫黄化合物、バインダー及び導電助剤の合計量100質量部に対し、20~300質量部が好ましく、30~200質量部が更に好ましい。
<塩基性化合物>
 本発明のスラリー組成物は、塩基性化合物を含有することが好ましい。
 塩基性化合物としては、アンモニア、アルキルアミン化合物、エタノールアミン化合物、ポリアミン化合物、芳香族アミン化合物、アルカリ金属水酸化物、炭酸塩化合物、カルボン酸塩化合物及びリン酸塩化合物等が挙げられる。
 アルキルアミン化合物としては、例えば、メチルアミン、エチルアミン、プロピルアミン、イソプロピルアミン、ブチルアミン、t-ブチルアミン、i-ブチルアミン、ヘキシルアミン及びシクロヘキシルアミン等の1級アルキルアミン化合物;ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジイソプロピルアミン、ジブチルアミン及びピぺリジン等の2級アルキルアミン化合物;並びに、トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン及びトリオクチルアミン等の3級アルキルアミン化合物等が挙げられる。
 エタノールアミン化合物としては、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、メチルエタノールアミン、メチルジエタノールアミン、ジメチルエタノールアミン、エチルエタノールアミン、ジエチルエタノールアミン、エチルジエタノールアミン、ブチルエタノールアミン、プロピルエタノールアミン、ブチルジエタノールアミン及びシクロヘキシルジエタノールアミン等が挙げられる。
 ポリアミン化合物としては、例えば、エチレンジアミン、ジエチレントリアミン、テトラメチルエチレンジアミン及びピペラジン等が挙げられる。
 芳香族アミン化合物としては、アニリン、トルイジン、ピリジン、ビピリジン及びフェナントロリン等が挙げられる。
 アルカリ金属水酸化物としては、例えば、水酸化リチウム、水酸化ナトリウム及び水酸化カリウム等が挙げられる。
 炭酸塩化合物としては、例えば、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム及び炭酸水素カリウム等が挙げられる。
 カルボン酸塩化合物としては、例えば、酢酸、プロピオン酸、フマル酸、安息香酸、テレフタル酸、アクリル酸、マロン酸、チオフェンカルボン酸等のリチウム塩化合物及びナトリウム塩化合物が挙げられる。
 リン酸塩化合物としては、例えば、リン酸水素二ナトリウム、リン酸三ナトリウム、リン酸水素二カリウム及びリン酸三カリウムが挙げられる。
 これらの塩基性化合物は、1種を単独で使用してもよいし、2種以上を組合せて使用してもよい。
 塩基性化合物としては、過剰に使用しても揮発性が高く除去が容易であることから、アンモニア、アルキルアミン化合物、ポリアミン化合物が好ましく、アンモニア、メチルアミン、エチルアミン、プロピルアミン、イソプロピルアミン、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジイソプロピルアミン、トリメチルアミン、エチレンジアミンが更に好ましく、アンモニアが最も好ましい。
 塩基性化合物として、塩基性を有するバインダー及び導電助剤を用いてもよい。
 本発明のスラリー組成物における塩基性化合物の含有量は、スラリー組成物のpHが25℃において4.0~9.0となる量が好ましく、4.5~8.5となる量がより好ましい。スラリー組成物のpHを上述の範囲とするために必要な塩基性化合物の量は、塩基性化合物の種類や、スラリー組成物における有機硫黄化合物、バインダー及び導電助剤等の含有量によって異なり、一概に述べることはできない。しかしながら、当業者ならば、塩基性化合物の種類等に応じて、スラリー組成物のpHが上述の範囲となる量を適宜決定することは容易である。
 本発明のスラリー組成物は、本発明の効果を損なわない範囲で、前記成分に加え、例えば、粘度調整剤、補強材、酸化防止剤等の他の成分を含有する場合がある。これらの他の成分としては公知のものを、公知の配合比率で使用することができる。
 本発明のスラリー組成物は、25℃におけるpHが4.0~9.0である。pHが4.0未満又はpHが9.0超であると、スラリー組成物を用いて製造した二次電池の容量又はサイクル特性が低下する場合がある。本発明のスラリー組成物は、pHが4.5~8.5であることが好ましい。本発明においてスラリー組成物のpHとは、スラリー組成物0.5gを、抵抗率が18MΩ・cm以上の蒸留水10.0g中に分散し、10分間超音波照射(周波数40kHz、出力160W)した分散液を、ガラス電極式水素イオン濃度計pHテスターH98103S(ハンナ インスツルメンツ・ジャパン株式会社)を用いて25℃で測定したpHをいう。
 本発明のスラリー組成物は、例えば、有機硫黄化合物、バインダー及び導電助剤を溶媒に分散又は溶解させるスラリー化工程、及びスラリー化工程によって得られたスラリーに塩基性化合物等の化合物を添加し、スラリーのpHを4.0~pH9.0に調製する工程を有する製造方法で製造することができる。
<スラリー化工程>
 先ず、有機硫黄化合物、バインダー及び導電助剤を溶媒に分散又は溶解させる。有機硫黄化合物、バインダー及び導電助剤を溶媒に分散又は溶解させる際、すべてを一括して溶媒に仕込んで分散処理してもよく、別々に仕込んで分散処理してもよい。溶媒中に、バインダー、導電助剤、有機硫黄化合物の順番で逐次添加して分散処理を行なうことが、バインダー、導電助剤及び有機硫黄化合物を溶媒に均一に分散できるため好ましい。
 本発明のスラリー組成物が前記他の成分を含有する場合、該他の成分を溶媒に一括して仕込んで分散処理してもよく、添加剤ごとに仕込んで分散処理してもよいが、1種添加するごとに分散処理することが好ましい。
 分散処理の方法としては特に制限されないが、工業的な方法として、例えば、通常のボールミル、サンドミル、ビーズミル、顔料分散機、らい潰機、超音波分散機、ホモジナイザー、自転・公転ミキサー、プラネタリーミキサー、フィルミックス、ジェットペースタ等を使用することができる。
<pH調整工程>
 次に、スラリー化工程により得られたスラリー組成物に、例えば、塩基性化合物を添加することにより、そのpHを4.0~9.0に調整する。塩基性化合物は、スラリー組成物にそのまま添加してもよく、溶剤に溶解してから添加してもよい。塩基性化合物は、スラリー化工程のどの分散段階でも添加することができる。
 次に、本発明の電極について説明する。本発明の電極は、集電体と、集電体上に形成された電極合剤層を有する。本発明の電極は、電極合剤層が本発明のスラリー組成物から形成されている。以下、集電体及び電極合剤層について説明する。
<集電体>
 集電体としては、チタン、チタン合金、アルミニウム、アルミニウム合金、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼等の導電材料が用いられる。集電体の形状としては、箔状、板状、網状、発泡状、不織布状等が挙げられ、集電体は多孔質又は無孔のどちらでもよい。また、これらの導電材料は、密着性や電気特性を改良するために表面処理が施されている場合がある。これらの導電材料の中でも、導電性や価格の観点からアルミニウムが好ましく、アルミニウム箔が特に好ましい。集電体の厚みは、特に制限はないが、通常1~100μmである。
<電極合剤層>
 本発明の電極の電極合剤層は、本発明のスラリー組成物から形成されている。従来、有機硫黄化合物を含有するスラリー組成物から得られる電極合剤層は、集電体との密着が不十分であった。しかしながら、本発明のスラリー組成物を使用して電極合剤層を形成することにより、電極合剤層と集電体との密着性が向上し、安価なアルミニウム箔を使用しても優れた容量及びサイクル特性が得られるようになる。
 本発明のスラリー組成物を、集電体に塗布し、乾燥させることによって、集電体上に電極合剤層が形成された、本発明の電極を製造することができる。
<電極製造工程>
 まず、本発明のスラリー組成物を集電体に塗布する。本発明のスラリー組成物を集電体に塗布する方法は、特に限定されないが、例えば、ダイコーター法、コンマコーター法、カーテンコーター法、スプレーコーター法、グラビアコーター法、フレキソコーター法、ナイフコーター法、ドクターブレード法、リバースロール法、ハケ塗り法、ディップ法等の各手法を用いることができる。スラリーの粘性等の物性及び乾燥性に合わせて、良好な塗布層の表面状態を得ることが可能となる点で、ダイコーター法、ドクターブレード法、ナイフコーター法が好ましい。
 リチウムイオン二次電池電極用スラリーの集電体への塗布は、集電体の片面に施すことができ、両面に施すことができる。集電体の両面に塗布する場合は、片面ずつ逐次塗布することができ、両面同時に塗布することができる。また、集電体の表面に連続に塗布することができ、又は間欠して塗布することができ、ストライプ状で塗布することができる。塗布層の厚さ、長さや幅は、電池の大きさ等に応じて、適宜、決定することができる。
 次に、集電体上に塗布されたスラリー組成物を乾燥させる。集電体上に塗布されたスラリー組成物を乾燥させる方法としては、特に限定されず、公知の方法を用いることができる。乾燥方法としては、例えば、温風、熱風、低湿風による乾燥、真空乾燥、加熱炉などに静置する、遠赤外線や赤外線、又は電子線等を照射することによる乾燥が挙げられる。これらは組合せて実施することができる。加熱する場合の温度は、例えば、一般的には50℃~180℃程度であるが、温度などの条件はスラリー組成物の塗布量、使用した溶媒の沸点等に応じて適宜設定することができる。この乾燥により、スラリー組成物の塗膜から溶媒等の揮発成分が揮発し、集電体上に電極合剤層が形成され、電極を作製することができる。
 また、上記電極製造工程によって得られた本発明の電極は、必要に応じ任意の条件でプレス処理することができる。プレス処理の方法としては、一般的な方法を用いることができ、例えば、金型プレス法又はロールプレス法が好ましい。プレス処理の圧力は、特に限定されないが、0.1t/cm~3t/cmの範囲が好ましい。
 本発明のスラリー組成物から製造された電極は、特に限定されないが、電解質として非水電解質を備える非水系の蓄電装置に用いることができる。蓄電装置としては、例えば、一次電池、二次電池、電気二重層コンデンサ、リチウムイオンキャパシタ等が挙げられる。なかでも非水電解質二次電池に好適に用いることができ、リチウムイオン二次電池により好適に用いることができる。
<電池>
 非水電解質二次電池は、おもに正極、負極、非水電解質、セパレータで構成される。
 本発明により製造された電極は、電池の正極として使用することができ、負極として使用することができる。
<対向電極>
 本発明により製造された電極を正極として使用する場合は、負極として公知の負極活物質を有する電極を使用すればよく、負極として使用する場合は、正極として公知の正極活物質を有する電極を使用すればよい。なお、本発明により製造された電極を、正極として使用する場合の負極、負極として使用する場合の正極を、対向電極という。
 公知の負極活物質としては、例えば、天然黒鉛、人造黒鉛、難黒鉛化炭素、易黒鉛化炭素、リチウム、リチウム合金、珪素、珪素合金、酸化珪素、スズ、スズ合金、酸化スズ、リン、ゲルマニウム、インジウム、酸化銅、硫化アンチモン、酸化チタン、酸化鉄、酸化マンガン、酸化コバルト、酸化ニッケル、酸化鉛、酸化ルテニウム、酸化タングステン、酸化亜鉛の他、LiVO、LiVO、LiTi12等の複合酸化物が挙げられる。1種のみを使用しても良く、2種以上を組合せて使用しても良い。
 公知の正極活物質としては、例えば、リチウム遷移金属複合酸化物、リチウム含有遷移金属リン酸化合物、リチウム含有ケイ酸塩化合物等が挙げられる。前記リチウム遷移金属複合酸化物の遷移金属としてはバナジウム、チタン、クロム、マンガン、鉄、コバルト、ニッケル、銅等が好ましい。リチウム遷移金属複合酸化物の具体例としては、LiCoO等のリチウムコバルト複合酸化物、LiNiO等のリチウムニッケル複合酸化物、LiMnO、LiMn、LiMnO等のリチウムマンガン複合酸化物、これらのリチウム遷移金属複合酸化物の主体となる遷移金属原子の一部をアルミニウム、チタン、バナジウム、クロム、マンガン、鉄、コバルト、リチウム、ニッケル、銅、亜鉛、マグネシウム、ガリウム、ジルコニウム等の他の金属で置換したもの等が挙げられる。置換されたものの具体例としては、例えば、Li1.1Mn1.8Mg0.1、Li1.1Mn1.85Al0.05、LiNi0.5Co0.2Mn0.3、LiNi0.8Co0.1Mn0.1、LiNi0.5Mn0.5、LiNi0.80Co0.17Al0.03、LiNi0.80Co0.15Al0.05、LiNi1/3Co1/3Mn1/3、LiNi0.6Co0.2Mn0.2、LiMn1.8Al0.2、LiMn1.5Ni0.5、LiMnO-LiMo(M=Co,Ni,Mn)等が挙げられる。前記リチウム含有遷移金属リン酸化合物の遷移金属としては、バナジウム、チタン、マンガン、鉄、コバルト、ニッケル等が好ましく、具体例としては、例えば、LiFePO、LiMnFe1-xPO等のリン酸鉄化合物類、LiCoPO等のリン酸コバルト化合物類、これらのリチウム遷移金属リン酸化合物の主体となる遷移金属原子の一部をアルミニウム、チタン、バナジウム、クロム、マンガン、鉄、コバルト、リチウム、ニッケル、銅、亜鉛、マグネシウム、ガリウム、ジルコニウム、ニオブ等の他の金属で置換したもの、Li(PO等のリン酸バナジウム化合物類等が挙げられる。前記リチウム含有ケイ酸塩化合物としては、LiFeSiO等が挙げられる。これらは1種のみを使用しても良く、2種以上を組合せて使用しても良い。
<対向電極の製造方法>
 対向電極は、本発明のスラリー組成物を製造する方法及び電極を製造する方法において、有機硫黄化合物を前記公知の負極活物質又は公知の正極活物質に置き換えることにより製造することができる。本発明のスラリー組成物を製造する方法では、pH調整工程は必須であるが、対向電極を製造する場合はpH調整工程がなくてもよい。
<非水電解質>
 非水電解質としては、例えば、電解質を有機溶媒に溶解して得られる液体電解質、電解質を有機溶媒に溶解し高分子でゲル化した高分子ゲル電解質、有機溶媒を含まず、電解質を高分子に分散させた純正高分子電解質、無機固体電解質等が挙げられる。
 液体電解質及び高分子ゲル電解質に用いる電解質としては、例えば、従来公知のリチウム塩が用いられ、例えば、LiPF、LiBF、LiAsF、LiCFSO、LiCFCO、LiN(CFSO、LiN(CSO、LiN(SOF)、LiC(CFSO、LiB(CFSO、LiB(C、LiBF(C)、LiSbF、LiSiF、LiSCN、LiClO、LiCl、LiF、LiBr、LiI、LiAlF、LiAlCl、LiPO及びこれらの誘導体等が挙げられ、これらの中でも、LiPF、LiBF、LiClO、LiAsF、LiCFSO、LiN(CFSO、LiN(CSO、LiN(SOF)、及びLiC(CFSO並びにLiCFSOの誘導体、及びLiC(CFSOの誘導体からなる群から選ばれる1種以上を用いるのが好ましい。
 純正高分子電解質に用いる電解質としては、例えば、LiN(CFSO、LiN(CSO、LiN(SOF)、LiC(CFSO、LiB(CFSO、LiB(Cが挙げられる。
 無機固体電解質としては、例えば、Li1+x2-y(PO(x=Al,Ge,Sn,Hf,Zr,Sc,Y、B=Ti,Ge,Zn、0<x≦0.5)、LiMPO(M=Mn,Fe,Co,Ni)、LiPO等のリン酸系化合物材料;LiXO(X=As,V)、Li3+x1-x(A=Si,Ge,Ti、B=P,As,V、0<x<0.6)、Li4+xSi1-x(A=B,Al,Ga,Cr,Fe、0<x<0.4)(A=Ni,Co、0<x<0.1)Li4-3yAlSiO(0<y<0.06)、Li4-2yZnGeO(0<y<0.25)、LiAlO、LiBO、LiXO(X=Si,Ge,Ti)、リチウムチタネート(LiTiO、LiTi、LiTiO、LiTiO、LiTi、LiTi12)等のリチウム複合酸化物;LiBr,LiF,LiCl、LiPF、LiBF等のリチウムとハロゲンを含む化合物;LiPON,LiN(SOCF,LiN(SO,LiN、LiN(SO等のリチウムと窒素を含む化合物;La.55Li0.35TiO等のリチウムイオン伝導性を有するペロブスカイト型構造を有する結晶;Li-LaZr13等のガーネット型構造を有する結晶;50LiSiO・50LiBO等のガラス;Li10GeP12,Li3.25Ge0.250.75等のリチウム・リン硫化物系の結晶、30LiS・26B・44LiI、63LiS・36SiS2・1LiPO、57LiS・38SiS・5LiSiO、70LiS・50GeS、50LiS・50GeS等のリチウム・リン硫化物系のガラス;Li11、Li3.250.95等のガラスセラミック等が挙げられる。
 液体電解質の調製に用いる有機溶媒としては、非水電解質に通常用いられているものを1種又は2種以上組合せて用いることができる。具体的には、例えば、飽和環状カーボネート化合物、飽和環状エステル化合物、スルホキシド化合物、スルホン化合物、アマイド化合物、飽和鎖状カーボネート化合物、鎖状エーテル化合物、環状エーテル化合物、飽和鎖状エステル化合物等が挙げられる。
 前記有機溶媒のうち、飽和環状カーボネート化合物、飽和環状エステル化合物、スルホキシド化合物、スルホン化合物及びアマイド化合物は、比誘電率が高いため、非水電解質の誘電率を上げる役割を果たし、特に飽和環状カーボネート化合物が好ましい。斯かる飽和環状カーボネート化合物としては、例えば、エチレンカーボネート、1,2-プロピレンカーボネート、1,3-プロピレンカーボネート、1,2-ブチレンカーボネート、1,3-ブチレンカーボネート、1,1-ジメチルエチレンカーボネート等が挙げられる。前記飽和環状エステル化合物としては、例えば、γ-ブチロラクトン、γ-バレロラクトン、γ-カプロラクトン、δ-ヘキサノラクトン、δ-オクタノラクトン等が挙げられる。前記スルホキシド化合物としては、例えば、ジメチルスルホキシド、ジエチルスルホキシド、ジプロピルスルホキシド、ジフェニルスルホキシド、チオフェン等が挙げられる。前記スルホン化合物としては、例えば、ジメチルスルホン、ジエチルスルホン、ジプロピルスルホン、ジフェニルスルホン、スルホラン(テトラメチレンスルホンともいう)、3-メチルスルホラン、3,4-ジメチルスルホラン、3,4-ジフェニメチルスルホラン、スルホレン、3-メチルスルホレン、3-エチルスルホレン、3-ブロモメチルスルホレン等が挙げられ、スルホラン、テトラメチルスルホランが好ましい。前記アマイド化合物としては、N-メチルピロリドン、ジメチルホルムアミド、ジメチルアセトアミド等が挙げられる。
 前記有機溶媒のうち、飽和鎖状カーボネート化合物、鎖状エーテル化合物、環状エーテル化合物及び飽和鎖状エステル化合物は、非水電解質の粘度を低くすることができ、電解質イオンの移動性を高くすることができる等、出力密度等の電池特性を優れたものにすることができる。また、低粘度であるため、低温での非水電解質の性能を高くすることができ、特に飽和鎖状カーボネート化合物が好ましい。斯かる飽和鎖状カーボネート化合物としては、例えば、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、エチルブチルカーボネート、メチル-t-ブチルカーボネート、ジイソプロピルカーボネート、t-ブチルプロピルカーボネート等が挙げられる。前記の鎖状エーテル化合物又は環状エーテル化合物としては、例えば、ジメトキシエタン、エトキシメトキシエタン、ジエトキシエタン、テトラヒドロフラン、ジオキソラン、ジオキサン、1,2-ビス(メトキシカルボニルオキシ)エタン、1,2-ビス(エトキシカルボニルオキシ)エタン、1,2-ビス(エトキシカルボニルオキシ)プロパン、エチレングリコールビス(トリフルオロエチル)エーテル、プロピレングリコールビス(トリフルオロエチル)エーテル、エチレングリコールビス(トリフルオロメチル)エーテル、ジエチレングリコールビス(トリフルオロエチル)エーテル等が挙げられ、これらの中でも、ジオキソランが好ましい。
 前記飽和鎖状エステル化合物としては、分子中の炭素数の合計が2~8であるモノエステル化合物及びジエステル化合物が好ましく、具体的な化合物としては、例えば、ギ酸メチル、ギ酸エチル、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸イソブチル、酢酸ブチル、プロピオン酸メチル、プロピオン酸エチル、酪酸メチル、イソ酪酸メチル、トリメチル酢酸メチル、トリメチル酢酸エチル、マロン酸メチル、マロン酸エチル、コハク酸メチル、コハク酸エチル、3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、エチレングリコールジアセチル、プロピレングリコールジアセチル等が挙げられ、ギ酸メチル、ギ酸エチル、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸イソブチル、酢酸ブチル、プロピオン酸メチル、及びプロピオン酸エチルが好ましい。
 その他、液体電解質の調製に用いる有機溶媒として、例えば、アセトニトリル、プロピオニトリル、ニトロメタンやこれらの誘導体、各種イオン液体を用いることもできる。
 液状非水電解質における、電解質の含有量は、電解質が有機溶媒中に、好ましくは0.5~7mol/L、より好ましくは0.8~1.8mol/Lである。
 高分子ゲル電解質に用いる高分子としては、ポリエチレンオキシド、ポリプロピレンオキシド、ポリビニルクロライド、ポリアクリロニトリル、ポリメチルメタクリレート、ポリエチレン、ポリフッ化ビニリデン、ポリヘキサフルオロプロピレン等が挙げられる。純正高分子電解質に用いる高分子としては、ポリエチレンオキシド、ポリプロピレンオキシド、ポリスチレンスルホン酸が挙げられる。
 ゲル電解質中の配合比率、複合化の方法については特に制限はなく、本技術分野で公知の配合比率、公知の複合化方法を採用すればよい。
 前記電解液は、電池寿命の向上、安全性向上等のため、例えば電極被膜形成剤、酸化防止剤、難燃剤、過充電防止剤等、公知の添加剤を含んでもよい。電解質添加剤を用いる場合、非水電解質全体に対し、通常0.01質量部~10質量部であり、好ましくは、0.1質量部~5質量部である。
<セパレータ>
 本発明の電極を有する非水電解質二次電池では、正極と負極との間にセパレータを用いることが好ましく、該セパレータとしては、通常用いられる高分子の微多孔性のフィルムを特に限定なく使用できる。該フィルムとしては、例えば、ポリエチレン、ポリプロピレン、ポリフッ化ビニリデン、ポリ塩化ビニリデン、ポリアクリロニトリル、ポリアクリルアミド、ポリテトラフルオロエチレン、ポリスルホン、ポリエーテルスルホン、ポリカーボネート、ポリアミド、ポリイミド、ポリエチレンオキシドやポリプロピレンオキシド等のポリエーテル類、カルボキシメチルセルロースやヒドロキシプロピルセルロース等の種々のセルロース類、ポリ(メタ)アクリル酸及びその種々のエステル類等を主体とする高分子化合物やその誘導体、これらの共重合体や混合物からなるフィルム等が挙げられ、これらのフィルムは、アルミナやシリカなどのセラミック材料、酸化マグネシウム、アラミド樹脂、ポリフッ化ビニリデンでコートされていてもよい。
 これらのフィルムは、単独で用いてもよいし、これらのフィルムを重ね合わせて複層フィルムとして用いてもよい。更に、これらのフィルムには、種々の添加剤を用いてもよく、その種類や含有量は特に制限されない。これらのフィルムの中でも、二次電池の製造方法で製造される二次電池には、ポリエチレンやポリプロピレン、ポリフッ化ビニリデン、ポリスルホンからなるフィルムが好ましく用いられる。
 これらのフィルムは、電解質がしみ込んでイオンが透過し易いように、微多孔化がなされたものが用いられる。この微多孔化の方法としては、高分子化合物と溶剤の溶液をミクロ相分離させながら製膜し、溶剤を抽出除去して多孔化する「相分離法」と、溶融した高分子化合物を高ドラフトで押し出し製膜した後に熱処理し、結晶を一方向に配列させ、更に延伸によって結晶間に間隙を形成して多孔化をはかる「延伸法」等が挙げられ、用いられるフィルムによって適宜選択される。
 ポリマー電解質、無機固体電解質を用いるときには、前記セパレータを含まなくてもよい。
 前記構成からなる二次電池の製造方法で製造される二次電池は、その形状には特に制限を受けず、コイン型、円筒型、角型、ラミネート型等、種々の形状とすることができる。図1は、本発明の電極を有する非水電解質二次電池のうち、コイン型電池の一例を、図2及び図3は円筒型電池の一例をそれぞれ示したものである。
 図1に示すコイン型の非水電解質二次電池10において、1はリチウムイオンを放出できる正極、1aは正極集電体、2は正極から放出されたリチウムイオンを吸蔵、放出できる負極、2aは負極集電体、3は非水電解質、4はステンレス製の正極ケース、5はステンレス製の負極ケース、6はポリプロピレン製のガスケット、7はポリエチレン製のセパレータである。
 また、図2及び図3に示す円筒型の非水電解質二次電池10’において、11は負極、12は負極集電体、13は正極、14は正極集電体、15は非水電解質、16はセパレータ、17は正極端子、18は負極端子、19は負極板、20は負極リード、21は正極板、22は正極リード、23はケース、24は絶縁板、25はガスケット、26は安全弁、27はPTC素子である。
<外装部材>
 外装部材としては、ラミネートフィルム又は金属製容器を用いることができる。外装部材の厚さは、通常0.5mm以下であり、好ましくは0.3mm以下である。外装部材の形状としては、扁平型(薄型)、角型、円筒型、コイン型、ボタン型等が挙げられる。
 ラミネートフィルムは、樹脂フィルム間に金属層を有する多層フィルムを用いることもできる。金属層は、軽量化のためにアルミニウム箔若しくはアルミニウム合金箔が好ましい。樹脂フィルムは、例えばポリプロピレン、ポリエチレン、ナイロン、ポリエチレンテレフタレート等の高分子材料を用いることができる。ラミネートフィルムは、熱融着によりシールを行って外装部材の形状に形成することができる。
 金属製容器は、例えば、ステンレス、アルミニウム又はアルミニウム合金等から形成することができる。アルミニウム合金としては、マグネシウム、亜鉛、ケイ素などの元素を含む合金が好ましい。アルミニウム又はアルミニウム合金において、鉄、銅、ニッケル、クロム等の遷移金属の含有量を1%以下にすることで、高温環境下での長期信頼性及び放熱性を飛躍的に向上させることができる。
 以上、本発明の実施形態を説明したが、本発明は、前記実施形態に限定されるものではない。本発明の要旨を逸脱しない範囲において、当業者が行い得る変更、改良等を施した種々の形態にて実施することができる。
 以下に、実施例及び比較例を示し、本発明をより具体的に説明する。なお、本発明は、これらの実施例によって限定されるものではない。
 以下に、実施例及び比較例により本発明を更に詳細に説明する。ただし、以下の実施例等により本発明は何等制限されるものではない。なお、有機硫黄化合物の硫黄含有量は、硫黄及び酸素が分析可能なCHN分析装置(エレメンター製 vario MICRO cube)を用いて元素分析を行い算出した。
<製造例1> 硫黄変性エラストマー化合物
 ゴムとしてジエン系ゴムUBEPOL(宇部興産製、ジエン系ゴムBR150L)を100質量部、単体硫黄(シグマアルドリッチ製、平均粒子径200μm)を1000質量部、加硫促進剤として、ジエチルジチオカルバミン酸亜鉛(東京化成製)を25質量部用い、特開2015-092449号公報の実施例1に準拠して反応を行い反応生成物を得、得られた反応生成物を粉砕して、硫黄変性エラストマー化合物である有機硫黄化合物A1を得た。有機硫黄化合物A1の平均粒子径及び硫黄含有量は下記の通りであった。
・平均粒子径  15μm
・硫黄含有量  45.2質量%
<製造例2> 硫黄変性多核芳香環化合物
 多核芳香環化合物としてアントラセン(東京化成製)100質量部、単体硫黄(シグマアルドリッチ製、平均粒子径200μm)500質量部を用い、特開2012-150934号公報の参考例1に準拠して反応を行い反応生成物を得、得られた反応生成物を粉砕して、硫黄変性多核芳香環化合物である有機硫黄化合物A2を得た。有機硫黄化合物A2の平均粒子径及び硫黄含有量は下記の通りであった。
・平均粒子径  16μm
・硫黄含有量  47.7質量%
<製造例3> 硫黄変性ピッチ化合物
 ピッチ化合物として石炭ピッチ(コールタール、吉田製油所製)を100質量部、単体硫黄(シグマアルドリッチ製、平均粒子径200μm)500質量部を用い、特開2012-099342号公報の実施例1に準拠して反応を行い反応生成物を得、得られた反応生成物を粉砕して、硫黄変性ピッチ化合物である有機硫黄化合物A3を得た。有機硫黄化合物A3の平均粒子径及び硫黄含有量は下記の通りであった。
・平均粒子径  15μm
・硫黄含有量  32.5質量%
<製造例4> 硫黄変性脂肪族炭化水素酸化物
 脂肪族炭化水素酸化物として1-デカノール(東京化成製)を100質量部、単体硫黄(シグマアルドリッチ製、平均粒子径200μm)300質量部を用い、国際公開2016/158675号公報の実施例1に準拠して反応を行い反応生成物を得、得られた反応生成物を粉砕して、硫黄変性脂肪族炭化水素酸化物である有機硫黄化合物A4を得た。有機硫黄化合物A4の平均粒子径及び硫黄含有量は下記の通りであった。
・平均粒子径  13μm
・硫黄含有量  49.2質量%
<製造例5> 硫黄変性脂肪族炭化水素酸化物
 硫黄変性カルボン酸化合物は、脂肪族炭化水素酸化物として1-デカン酸(東京化成製)を100質量部、単体硫黄(シグマアルドリッチ製、平均粒子径200μm)300質量部を用い、国際公開2016/158675号公報の実施例14に準拠して反応を行い反応生成物を得、得られた反応生成物を粉砕して、硫黄変性脂肪族炭化水素酸化物である有機硫黄化合物A5を得た。有機硫黄化合物A5の平均粒子径及び硫黄含有量は下記の通りであった。
・平均粒子径  15μm
・硫黄含有量  52.7質量%
<製造例6> 硫黄変性ポリエーテル化合物
 ポリエーテル化合物として、ポリエチレングリコール4000(東京化成製、mp=56-60℃)を100質量部、単体硫黄(シグマアルドリッチ製、平均粒子径200μm)500質量部を用い、国際公開2016/159212号公報の実施例12に準拠して反応を行い反応生成物を得、得られた反応生成物を粉砕して、硫黄変性ポリエーテル化合物である有機硫黄化合物A6を得た。有機硫黄化合物A6の平均粒子径及び硫黄含有量は下記の通りであった。
・平均粒子径  13μm 
・硫黄含有量  40.4質量%
<製造例7> 硫黄変性ポリアミド化合物
 分子内にカルボキシル基とアミノ基を持つ化合物として、4-アミノ安息香酸(東京化成製)を100質量部、単体硫黄(シグマアルドリッチ製、平均粒子径200μm)を500質量部用い、特許公報06099247号公報の実施例1に準拠して反応を行い反応生成物を得、得られた反応生成物を粉砕して、硫黄変性ポリアミド化合物である有機硫黄化合物A7を得た。有機硫黄化合物A7の平均粒子径及び硫黄含有量は下記の通りであった。
・平均粒子径  11μm
・硫黄含有量  47.0質量%
<製造例8> 硫黄変性ポリアクリロニトリル化合物
 硫黄変性ポリアクリロニトリル化合物は、特許文献2の実施例2を参照して合成した。ポリアクリロニトリル粉末(シグマアルドリッチ製、開口径30μmのふるいで分級)100質量部及び単体硫黄(シグマアルドリッチ製、平均粒子径200μm)200質量部を用い、特許文献2の実施例2に準拠して反応を行い反応生成物を得、得られた反応生成物を粉砕して、硫黄変性ポリアクリロニトリル化合物である有機硫黄化合物A8を得た。有機硫黄化合物A8の平均粒子径及び硫黄含有量は下記の通りであった。
・平均粒子径  10μm
・硫黄含有量  37.1質量%
[実施例1~23及び比較例1~13]
<スラリー組成物の調整>
 電極活物質として有機硫黄化合物A1~A8を92.0質量部、導電助剤としてアセチレンブラック(電気化学工業製)3.5質量部及びカーボンナノチューブ(昭和電工製、商品名VGCF)1.5質量部、並びにバインダーとしてスチレン-ブタジエンゴム(40質量%水分散液、日本ゼオン製)1.5質量部及びカルボキシメチルセルロースナトリウム(ダイセルファインケム製)1.5質量部を、溶媒である水120質量部に添加し、自転・公転ミキサーを用いて、公転1600rpm、自転800rpmの条件で5分間溶媒に分散させてスラリーを得た。次いで、下記の塩基性化合物B1~B8を、スラリー組成物のpHが25℃において表1又は2に示す値となるようにスラリーに添加し、混合して、製造例1~8の有機硫黄化合物を含むスラリー組成物を得た。
<塩基性化合物>
B1:28%アンモニア水溶液
B2:1M水酸化ナトリウム水溶液
B3:2Mトリエチルアミン水溶液
B4:2M酢酸ナトリウム水溶液
B5:4Mピリジン水溶液
B6:2Mテトラメチルエチレンジアミン水溶液
B7:2Mエチレンジアミン水溶液
B8:0.05Mリン酸水素二ナトリウム水溶液
<電極の製造>
 前記スラリー組成物を、ドクターブレード法によりアルミニウム箔による集電体に塗布し、90℃で1時間静置して乾燥した。その後、この電極を所定の大きさにカットし、更に使用直前に120℃で2時間真空乾燥して電極を作製した。この正極の電極容量は、3.5mAh/cmとした。また、下記集電体C2、C3を用い、電極を作製した。
C1:アルミニウム箔(厚さ20μm)
C2:ステンレス箔(厚さ10μm)
C3:カーボンコートアルミニウム箔(アルミニウム厚さ20μm、カーボン層厚さ1μm)
<非水電解液の調製>
 エチレンカーボネート50体積%、ジエチルカーボネート50体積%からなる混合溶媒に、LiPF6を1.0mol/Lの濃度で溶解し電解質溶液を調製した。
<電池の組み立て(1)>
 得られた円形状電極、及びその対極として円形状にカットした厚さ500μmのリチウム金属を用い、セパレータとしてガラスフィルターを挟んでケース内に保持した。その後、先に調製した非水電解液をケース内に注入し、かしめ機によりケースを密閉、封止して、実施例8の非水電解質二次電池(リチウムイオン二次電池、φ20mm、厚さ3.2mmのコイン型)を製作した。
 なお、pH調整したスラリー組成物により製造した電極を用いた電池を、実施例1~23、pH調整が十分ではないスラリー組成物から製造した電極を用いた電池を、比較例1~13とした。有機硫黄化合物の種類、塩基性化合物の種類、スラリー組成物のpH、集電体種の組み合わせは、表1及び2に示す通りである。
<正極の製造>
 正極活物質としてLi(Ni1/3Co1/3Mn1/3)O(日本化学産業製、商品名:NCM111)90.0質量部、導電助剤としてアセチレンブラック(電気化学工業製)5.0質量部、バインダーとしてポリフッ化ビニリデン(クレハ製)5.0質量部を、溶媒であるN-メチルピロリドン90.0質量部に添加し、自転・公転ミキサーを用いて、公転1600rpm、自転800rpmの条件で30分間溶媒に分散させてスラリー組成物を得た。
 このスラリー組成物を、ドクターブレード法によりアルミニウム箔による集電体に塗布し、90℃で1時間静置して乾燥した。その後、この電極を所定の大きさにカットし、さらに使用直前に120℃で2時間真空乾燥して正極を作製した。
<電池の組み立て(2)>
 前記Li(Ni1/3Co1/3Mn1/3)Oを活物質とする正極、及びその対極として有機硫黄化合物を活物質とする負極(A8)を用い、セパレータ(セルガード製、商品名:セルガード2325)を挟んでケース内に保持した。その後、先に調製した非水電解液をケース内に注入し、かしめ機によりケースを密閉、封止して、実施例24~26及び比較例14、15の非水電解質二次電池(リチウムイオン二次電池、φ20mm、厚さ3.2mmのコイン型)を製作した。
<充放電評価A>
 実施例1~23及び比較例1~13の非水電解質二次電池を25℃の恒温槽に入れ、充電終止電圧を3V、放電終止電圧を1Vとし、充電レート0.1C、放電レート0.1Cの充放電試験を3回、引き続き、充電レート0.2C、放電レート0.2Cで3回、充電レート0.5C、放電レート0.5Cで3回、計9回の充放電試験を行い、放電容量を測定した。9回目の放電容量を表1及び2に示す。放電容量の単位はmAh/gである。
<充放電評価B>
 実施例24~26及び比較例14、15の非水電解質二次電池を25℃の恒温槽に入れ、充電終止電圧を3.2V、放電終止電圧を0.8Vとし、充電レート0.1C、放電レート0.1Cの充放電試験を5回、引き続き、充電レート0.5C、放電レート0.5Cで100回、計105回の充放電試験を行い、放電容量を測定した。105回目の放電容量を表1及び表2に示す。放電容量の単位は、mAh/gであり、放電容量は正極活物質の重量に対する容量である。

Figure JPOXMLDOC01-appb-T000002

Figure JPOXMLDOC01-appb-T000003
 実施例及び比較例からわかるように、本発明によるスラリー組成物を用いて製造した実施例1~23の非水電解質二次電池は、安価なアルミニウム箔を用いても高い充放電容量を示すことがわかる。一方、比較例1~13の非水電解質二次電池は、実施例1~23の非水電解質二次電池に比べて充放電容量が劣るものであった。
 本発明によれば、集電体として安価なアルミニウム箔を使用しても、集電体への密着性が高い電極合剤層が得られ、結果、優れた容量を備えたリチウムイオン二次電池が得られるスラリー組成物を提供することができる。
1  正極
1a 正極集電体
2  負極
2a 負極集電体
3  電解質
4  正極ケース
5  負極ケース
6  ガスケット
7  セパレータ
10 コイン型の非水電解質二次電池
10’円筒型の非水電解質二次電池
11 負極
12 負極集電体
13 正極
14 正極集電体
15 電解質
16 セパレータ
17 正極端子
18 負極端子
19 負極板
20 負極リード
21 正極板
22 正極リード
23 ケース
24 絶縁板
25 ガスケット
26 安全弁
27 PTC素子

Claims (8)

  1.  有機硫黄化合物、バインダー、導電助剤及び溶媒を含み、pHが4.0~9.0である、スラリー組成物。
  2.  更に、塩基性化合物を含有する請求項1に記載のスラリー組成物。
  3.  前記塩基性化合物が、アンモニア、アルキルアミン化合物、エタノールアミン化合物、ポリアミン化合物、芳香族アミン化合物、アルカリ金属水酸化物、炭酸塩化合物、カルボン酸塩化合物及びリン酸塩化合物からなる群より選ばれる1種又は2種以上である、請求項2に記載のスラリー組成物。
  4.  前記有機硫黄化合物が、硫黄変性エラストマー化合物、硫黄変性多核芳香環化合物、硫黄変性ピッチ化合物、硫黄変性脂肪族炭化水素酸化物、硫黄変性ポリエーテル化合物、ポリチエノアセン化合物、ポリ硫化カーボン化合物、硫黄変性ポリアミド化合物及び硫黄変性ポリアクリロニトリル化合物からなる群より選ばれる1種又は2種以上である、請求項1~3のいずれか1項に記載のスラリー組成物。
  5.  前記有機硫黄化合物100質量部に対する、前記バインダーの含量が1質量部~30質量部であり、前記導電助剤の含量が0.1質量部~50質量部である請求項1~4のいずれか1項に記載のスラリー組成物。
  6.  集電体と、該集電体上に形成された電極合剤層とを有する電極であって、
     前記電極合剤層が請求項1~5のいずれか1項に記載のスラリー組成物から形成されたものである、電極。
  7.  前記集電体がアルミニウム箔である、請求項6に記載の電極。
  8.  前記電極がリチウムイオン二次電池用電極である、請求項6又は7に記載の電極。
PCT/JP2018/040297 2017-10-31 2018-10-30 スラリー組成物、及びスラリー組成物を用いた電極 WO2019088088A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP18872321.7A EP3706210A4 (en) 2017-10-31 2018-10-30 THICK SUSPENSION COMPOSITION AND ELECTRODE USING THE THICK SUSPENSION COMPOSITION
CN201880068429.0A CN111247674A (zh) 2017-10-31 2018-10-30 浆料组合物及使用了浆料组合物的电极
KR1020207011636A KR20200081370A (ko) 2017-10-31 2018-10-30 슬러리 조성물, 및 슬러리 조성물을 이용한 전극
JP2019550406A JPWO2019088088A1 (ja) 2017-10-31 2018-10-30 スラリー組成物、及びスラリー組成物を用いた電極
US16/757,934 US20210194005A1 (en) 2017-10-31 2018-10-30 Slurry composition, and electrode using slurry composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-211291 2017-10-31
JP2017211291 2017-10-31

Publications (1)

Publication Number Publication Date
WO2019088088A1 true WO2019088088A1 (ja) 2019-05-09

Family

ID=66331854

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/040297 WO2019088088A1 (ja) 2017-10-31 2018-10-30 スラリー組成物、及びスラリー組成物を用いた電極

Country Status (6)

Country Link
US (1) US20210194005A1 (ja)
EP (1) EP3706210A4 (ja)
JP (1) JPWO2019088088A1 (ja)
KR (1) KR20200081370A (ja)
CN (1) CN111247674A (ja)
WO (1) WO2019088088A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020205150A (ja) * 2019-06-14 2020-12-24 国立研究開発法人産業技術総合研究所 非水電解質二次電池用電極スラリー
WO2021060045A1 (ja) * 2019-09-27 2021-04-01 株式会社Adeka 非水電解質二次電池用電極及び当該電極を用いた非水電解質二次電池
WO2022177023A1 (ja) 2021-02-22 2022-08-25 株式会社Adeka 導電性アンダーコート剤
WO2023210232A1 (ja) * 2022-04-26 2023-11-02 株式会社Abri リチウム硫黄電池用正極、リチウム硫黄電池及びその充放電方法
WO2024048320A1 (ja) * 2022-08-29 2024-03-07 富士フイルム株式会社 非水電解液二次電池の製造方法、非水電解液二次電池用スラリー、及び非水電解液二次電池

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6473973A (en) 1987-09-16 1989-03-20 Nec Corp Image area separating device
JPH069924A (ja) 1992-03-25 1994-01-18 Hoechst Ag 水稀釈性二成分塗布調製物、その製造方法、およびその使用方法
JP2003151550A (ja) 2001-11-13 2003-05-23 Hitachi Maxell Ltd 非水二次電池
JP2003178750A (ja) * 2001-12-11 2003-06-27 Hitachi Maxell Ltd 非水二次電池
US20110200875A1 (en) 2008-10-17 2011-08-18 National Institute Of Advanced Industrial Science And Technology Sulfur-modified polyacrylonitrile, manufacturing method therefor, and application thereof
JP2011170991A (ja) 2010-02-16 2011-09-01 Toyota Industries Corp 非水電解液二次電池の電極材料の製造方法、非水電解液二次電池の電極材料およびその電極材料を用いた非水電解液二次電池
JP2012099342A (ja) 2010-11-02 2012-05-24 Toyota Industries Corp 硫黄系正極活物質の製造方法、硫黄系正極活物質、および、リチウムイオン二次電池用正極
JP2012150933A (ja) 2011-01-18 2012-08-09 Toyota Industries Corp 硫黄系正極活物質とその製造方法及びリチウムイオン二次電池用正極。
JP2012150934A (ja) 2011-01-18 2012-08-09 Toyota Industries Corp 硫黄系正極活物質とその製造方法及びリチウムイオン二次電池用正極
WO2012114651A1 (ja) 2011-02-25 2012-08-30 株式会社豊田自動織機 硫黄変性ポリアクリロニトリルおよびその評価方法ならびに硫黄変性ポリアクリロニトリルを用いた正極、非水電解質二次電池、および車両
JP2015092449A (ja) 2013-10-04 2015-05-14 住友ゴム工業株式会社 硫黄系正極活物質およびリチウムイオン二次電池
WO2015146649A1 (ja) * 2014-03-24 2015-10-01 昭和電工株式会社 リチウムイオン二次電池の正極用スラリー、このスラリーを用いて得られる正極及びその製造方法、この正極を用いてなるリチウムイオン二次電池及びその製造方法
WO2016159212A1 (ja) 2015-03-31 2016-10-06 国立研究開発法人産業技術総合研究所 有機硫黄材料及びその製造方法
WO2016158675A1 (ja) 2015-03-31 2016-10-06 国立研究開発法人産業技術総合研究所 有機硫黄材料及びその製造方法
WO2016185663A1 (ja) * 2015-05-18 2016-11-24 信越化学工業株式会社 非水電解質二次電池用負極活物質及び非水電解質二次電池並びに非水電解質二次電池用負極材の製造方法
JP2017195174A (ja) * 2016-04-14 2017-10-26 株式会社Adeka 非水電解質二次電池用電極の製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4436464B2 (ja) 1997-08-29 2010-03-24 三洋電機株式会社 リチウムイオン電池
JP4399904B2 (ja) * 1999-07-15 2010-01-20 日本ゼオン株式会社 リチウムイオン二次電池電極用バインダー組成物およびその利用
JP5440003B2 (ja) * 2009-07-23 2014-03-12 株式会社豊田中央研究所 蓄電デバイス及び電極活物質の製造方法
DE112011101347T5 (de) * 2010-04-16 2013-01-24 Kabushiki Kaisha Toyota Jidoshokki Positive Elektrode für eine Lithium-Ionen-Sekundärbatterie und Lithum-Ionen-Sekundärbatterie umfassen diese Positive Elektrode
CN102208599B (zh) * 2011-05-13 2013-01-23 北京化工大学 一种锂-硫电池正极极片及其制备方法
CN103258990B (zh) * 2013-04-24 2015-08-05 中国科学院苏州纳米技术与纳米仿生研究所 锂硫电池正极材料及其制备方法
JP2015118920A (ja) * 2013-11-12 2015-06-25 太陽インキ製造株式会社 スラリー組成物、電極、非水電解質二次電池および非水電解質二次電極の製造方法
CN105869709A (zh) * 2016-04-22 2016-08-17 苏州协鑫集成科技工业应用研究院有限公司 电极浆料及其制备方法

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6473973A (en) 1987-09-16 1989-03-20 Nec Corp Image area separating device
JPH069924A (ja) 1992-03-25 1994-01-18 Hoechst Ag 水稀釈性二成分塗布調製物、その製造方法、およびその使用方法
JP2003151550A (ja) 2001-11-13 2003-05-23 Hitachi Maxell Ltd 非水二次電池
JP2003178750A (ja) * 2001-12-11 2003-06-27 Hitachi Maxell Ltd 非水二次電池
US20110200875A1 (en) 2008-10-17 2011-08-18 National Institute Of Advanced Industrial Science And Technology Sulfur-modified polyacrylonitrile, manufacturing method therefor, and application thereof
JP2011170991A (ja) 2010-02-16 2011-09-01 Toyota Industries Corp 非水電解液二次電池の電極材料の製造方法、非水電解液二次電池の電極材料およびその電極材料を用いた非水電解液二次電池
JP2012099342A (ja) 2010-11-02 2012-05-24 Toyota Industries Corp 硫黄系正極活物質の製造方法、硫黄系正極活物質、および、リチウムイオン二次電池用正極
JP2012150933A (ja) 2011-01-18 2012-08-09 Toyota Industries Corp 硫黄系正極活物質とその製造方法及びリチウムイオン二次電池用正極。
JP2012150934A (ja) 2011-01-18 2012-08-09 Toyota Industries Corp 硫黄系正極活物質とその製造方法及びリチウムイオン二次電池用正極
WO2012114651A1 (ja) 2011-02-25 2012-08-30 株式会社豊田自動織機 硫黄変性ポリアクリロニトリルおよびその評価方法ならびに硫黄変性ポリアクリロニトリルを用いた正極、非水電解質二次電池、および車両
JP2015092449A (ja) 2013-10-04 2015-05-14 住友ゴム工業株式会社 硫黄系正極活物質およびリチウムイオン二次電池
WO2015146649A1 (ja) * 2014-03-24 2015-10-01 昭和電工株式会社 リチウムイオン二次電池の正極用スラリー、このスラリーを用いて得られる正極及びその製造方法、この正極を用いてなるリチウムイオン二次電池及びその製造方法
WO2016159212A1 (ja) 2015-03-31 2016-10-06 国立研究開発法人産業技術総合研究所 有機硫黄材料及びその製造方法
WO2016158675A1 (ja) 2015-03-31 2016-10-06 国立研究開発法人産業技術総合研究所 有機硫黄材料及びその製造方法
WO2016185663A1 (ja) * 2015-05-18 2016-11-24 信越化学工業株式会社 非水電解質二次電池用負極活物質及び非水電解質二次電池並びに非水電解質二次電池用負極材の製造方法
JP2017195174A (ja) * 2016-04-14 2017-10-26 株式会社Adeka 非水電解質二次電池用電極の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3706210A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020205150A (ja) * 2019-06-14 2020-12-24 国立研究開発法人産業技術総合研究所 非水電解質二次電池用電極スラリー
JP7245465B2 (ja) 2019-06-14 2023-03-24 国立研究開発法人産業技術総合研究所 非水電解質二次電池用電極スラリー
WO2021060045A1 (ja) * 2019-09-27 2021-04-01 株式会社Adeka 非水電解質二次電池用電極及び当該電極を用いた非水電解質二次電池
CN114450819A (zh) * 2019-09-27 2022-05-06 株式会社Adeka 非水电解质二次电池用电极以及使用了该电极的非水电解质二次电池
WO2022177023A1 (ja) 2021-02-22 2022-08-25 株式会社Adeka 導電性アンダーコート剤
WO2023210232A1 (ja) * 2022-04-26 2023-11-02 株式会社Abri リチウム硫黄電池用正極、リチウム硫黄電池及びその充放電方法
WO2024048320A1 (ja) * 2022-08-29 2024-03-07 富士フイルム株式会社 非水電解液二次電池の製造方法、非水電解液二次電池用スラリー、及び非水電解液二次電池

Also Published As

Publication number Publication date
EP3706210A4 (en) 2021-08-04
CN111247674A (zh) 2020-06-05
JPWO2019088088A1 (ja) 2020-11-12
EP3706210A1 (en) 2020-09-09
US20210194005A1 (en) 2021-06-24
KR20200081370A (ko) 2020-07-07

Similar Documents

Publication Publication Date Title
WO2019088088A1 (ja) スラリー組成物、及びスラリー組成物を用いた電極
JP7225199B2 (ja) 有機硫黄系電極活物質
JP7261169B2 (ja) 有機硫黄系電極活物質の製造方法
WO2019181703A1 (ja) 内部短絡による熱暴走の抑制方法
JPWO2018051667A1 (ja) リチウムイオン二次電池
WO2020170833A1 (ja) 電解質用組成物、非水電解質及び非水電解質二次電池
JP2011070802A (ja) 非水電解質二次電池
WO2020017378A1 (ja) 非水電解質二次電池
WO2019225588A1 (ja) リチウムイオン二次電池
WO2021060045A1 (ja) 非水電解質二次電池用電極及び当該電極を用いた非水電解質二次電池
JP2020027695A (ja) 組成物、非水電解質及び非水電解質二次電池
JP2019220415A (ja) 組成物、非水電解質及び非水電解質二次電池
WO2023085245A1 (ja) 組成物、電極、電池及び電極活物質材料
WO2024057992A1 (ja) 硫黄含有材料、硫黄含有電池材料、電極及び電池
JP2021051854A (ja) 非水電解質二次電池の製造方法
JP2023070237A (ja) 電池用添加剤、それを含む非水電解質及び非水電解質二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18872321

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019550406

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018872321

Country of ref document: EP

Effective date: 20200602