WO2019225588A1 - リチウムイオン二次電池 - Google Patents

リチウムイオン二次電池 Download PDF

Info

Publication number
WO2019225588A1
WO2019225588A1 PCT/JP2019/020058 JP2019020058W WO2019225588A1 WO 2019225588 A1 WO2019225588 A1 WO 2019225588A1 JP 2019020058 W JP2019020058 W JP 2019020058W WO 2019225588 A1 WO2019225588 A1 WO 2019225588A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
active material
electrode active
compound
sulfur
Prior art date
Application number
PCT/JP2019/020058
Other languages
English (en)
French (fr)
Inventor
健二 撹上
洋平 青山
宏美 竹之内
Original Assignee
株式会社Adeka
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Adeka filed Critical 株式会社Adeka
Priority to JP2020521242A priority Critical patent/JPWO2019225588A1/ja
Priority to KR1020207028431A priority patent/KR20210011363A/ko
Priority to CN201980026215.1A priority patent/CN112005417A/zh
Publication of WO2019225588A1 publication Critical patent/WO2019225588A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • H01M4/602Polymers
    • H01M4/604Polymers containing aliphatic main chain polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lithium ion secondary battery having a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material, and a non-aqueous electrolyte.
  • Lithium ion secondary batteries are small and light, have high energy density, high capacity, and can be repeatedly charged and discharged, so they are widely used as power sources for portable electronic devices such as portable personal computers, handy video cameras, and information terminals. It is used. From the viewpoint of environmental problems, electric vehicles using non-aqueous electrolyte secondary batteries and hybrid vehicles using electric power as part of power have been put into practical use.
  • non-aqueous electrolyte secondary batteries depend on their constituent electrodes, separators, electrolytes, etc., and research and development of each constituent member has been actively conducted.
  • an electrode an electrode active material is important together with a binder, a current collector, and the like, and research and development of the electrode active material is actively performed.
  • An organic sulfur-based electrode active material obtained by heat-treating a mixture of an organic compound and sulfur in a non-oxidizing atmosphere has a large charge / discharge capacity, and has a small decrease in charge / discharge capacity due to repeated charge / discharge. It is known as an active material (see, for example, Patent Documents 1 to 12).
  • An organic sulfur-based electrode active material has been studied as a positive electrode active material, but a lithium ion secondary battery using a lithium manganese-based composite oxide as a positive electrode active material and an organic sulfur-based electrode active material as a negative electrode active material (for example, a patent) Reference 9) is also being studied.
  • a lithium ion secondary battery using a lithium-manganese composite oxide as a positive electrode active material and an organic sulfur-based electrode active material as a negative electrode active material does not have sufficient rate characteristics.
  • secondary batteries for automobiles are not only rechargeable in a short time, but also require a large current temporarily to accelerate quickly when starting, so secondary batteries with excellent rate characteristics There is a need for a battery.
  • An object of the present invention is to provide a lithium ion secondary battery that is excellent in rate characteristics and has little reduction in charge / discharge capacity even after repeated high-speed charge / discharge.
  • the present inventors have found that in a lithium ion secondary battery in which the positive electrode active material is a lithium transition metal oxide and the negative electrode active material is an organic sulfur-based electrode active material, the positive electrode active material As a result, it was found that the above-mentioned problems can be solved by using a lithium-containing transition metal phosphate compound together, and the present invention was completed. That is, the present invention relates to a lithium ion secondary battery having a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material, and a non-aqueous electrolyte, wherein the positive electrode active material is a lithium transition metal oxide and a lithium-containing transition metal phosphorus.
  • a lithium ion secondary battery comprising an acid compound, wherein the negative electrode active material is an organic sulfur-based electrode active material.
  • the lithium ion secondary battery of the present invention has a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material, and a non-aqueous electrolyte. Each of these will be described below.
  • an organic sulfur-based electrode active material is used as the negative electrode active material for the negative electrode.
  • the organic sulfur-based electrode active material refers to a compound that has a sulfur-carbon bond, can occlude and release lithium ions, and can be used as an electrode active material for a secondary battery.
  • An organic sulfur-based electrode active material is a compound obtained by heat-treating a mixture of an organic compound and sulfur in a non-oxidizing atmosphere.
  • sulfur-modified polyacrylonitrile sulfur-modified elastomer compound
  • sulfur-modified polynuclear aromatic compound sulfur-modified pitch compounds
  • polythienoacene compounds sulfur-modified polyether compounds
  • sulfur-modified polyamide compounds sulfur-modified aliphatic hydrocarbon oxides, polysulfide carbon, and the like.
  • the sulfur-modified polyacrylonitrile is a compound obtained by heat-treating polyacrylonitrile and elemental sulfur in a non-oxidizing atmosphere.
  • the polyacrylonitrile may be a homopolymer of acrylonitrile or a copolymer of acrylonitrile and other monomers.
  • the battery performance decreases as the acrylonitrile content decreases, so that the acrylonitrile content in the copolymer is preferably at least 90% by mass.
  • monomers other than acrylonitrile include acrylic acid, vinyl acetate, N-vinylformamide, and N-N′methylenebis (acrylamide).
  • the ratio of polyacrylonitrile and elemental sulfur in the heat treatment is preferably 100 parts by mass to 1500 parts by mass, more preferably 150 parts by mass to 1000 parts by mass with respect to 100 parts by mass of polyacrylonitrile.
  • the temperature of the heat treatment is preferably 250 ° C. to 550 ° C., more preferably 350 ° C. to 450 ° C. Since unreacted elemental sulfur becomes a factor that deteriorates the cycle characteristics of the secondary battery, it is preferably removed from the sulfur-modified polyacrylonitrile by, for example, heating or solvent washing after the heat treatment.
  • the sulfur content of the sulfur-modified polyacrylonitrile is preferably 25 to 60% by mass, and more preferably 30 to 55% by mass because a large charge / discharge capacity can be obtained.
  • the sulfur content of the organic sulfur-based electrode active material can be calculated from an analysis result using a CHN analyzer that can analyze sulfur and oxygen.
  • the sulfur-modified elastomer compound is a compound obtained by heat-treating rubber and elemental sulfur in a non-oxidizing atmosphere.
  • the rubber include natural rubber, isoprene rubber, butadiene rubber, styrene-butadiene rubber, acrylonitrile-butadiene rubber, and the like. These rubber
  • gum can be used individually by 1 type, and can also be used in combination of 2 or more type.
  • the raw rubber may be vulcanized rubber or unvulcanized rubber.
  • the ratio of rubber and elemental sulfur in the heat treatment is preferably 100 to 1500 parts by mass, more preferably 150 to 1000 parts by mass with respect to 100 parts by mass of rubber.
  • 1 or more types of well-known vulcanization accelerators can be added.
  • the addition amount of the vulcanization accelerator is preferably 1 part by weight to 250 parts by weight, more preferably 5 parts by weight to 50 parts by weight with respect to 100 parts by weight of the rubber.
  • the heat treatment temperature is preferably 250 ° C. to 550 ° C., more preferably 300 ° C. to 450 ° C.
  • the sulfur content of the sulfur-modified elastomer compound is preferably 40 to 70% by mass, and more preferably 45 to 60% by mass because a large charge / discharge capacity can be obtained.
  • the sulfur-modified polynuclear aromatic ring compound is a compound obtained by heat-treating a polynuclear aromatic ring compound and elemental sulfur in a non-oxidizing atmosphere.
  • the polynuclear aromatic ring compound include benzene type aromatic ring compounds such as naphthalene, anthracene, tetracene, pentacene, phenanthrene, chrysene, picene, pyrene, benzopyrene, perylene, coronene and the like.
  • aromatic ring compounds in which part of the benzene aromatic ring compound is a 5-membered ring, or hetero atom-containing heteroaromatic ring compounds in which some of these carbon atoms are replaced with sulfur, oxygen, nitrogen, etc. include chain or branched alkyl groups having 1 to 12 carbon atoms, alkoxyl groups, hydroxyl groups, carboxyl groups, amino groups, aminocarbonyl groups, aminothio groups, mercaptothiocarbonylamino groups, carboxyalkyl groups. It may have a substituent such as a carbonyl group.
  • the polynuclear aromatic ring compound may be a compound having a repeating structure of an aromatic moiety and a chain hydrocarbon moiety.
  • the aromatic moiety in the compound having a repeating structure of an aromatic moiety and a chain hydrocarbon moiety includes benzene, pyrrolidine, pyrrole, pyridine, imidazole, pyrrolidone, tetrahydrofuran, triazine, thiophene, oxazole, thiazole, thiadiazole , Triazole, phosphole, silole and the like, and two or more of these may be condensed.
  • aromatic sites may be condensed with cyclopentane, cyclohexane, pyrrolidine, tetrahydrofuran or the like.
  • aromatic moieties include a linear or branched alkyl group having 1 to 12 carbon atoms, an alkoxyl group, a hydroxyl group, a carboxyl group, an amino group, an aminocarbonyl group, an aminothio group, a mercaptothiocarbonylamino group, a carboxyalkylcarbonyl group. It may have a substituent such as a group.
  • Examples of the chain hydrocarbon moiety of a compound having a repeating structure of an aromatic moiety and a chain hydrocarbon moiety include linear or branched chain hydrocarbons such as an alkylene group, an alkenylene group, and an alkynylene group.
  • the number of carbon atoms in the chain hydrocarbon moiety is preferably 2 to 20, more preferably 3 to 10, and still more preferably 4 to 8. From the viewpoint of ease of handling and price, an alkylene group or an alkenylene group is preferable.
  • a butane-1,4-diyl group, a hexane-1,6-diyl group, an octane-1,8-diyl group, a vinylene group, 1,3-butadiene-1,4 diyl group and structural isomers thereof are preferred.
  • the ratio of the polynuclear aromatic ring compound and elemental sulfur in the heat treatment is preferably 100 parts by mass to 1500 parts by mass, more preferably 150 parts by mass to 1000 parts by mass with respect to 100 parts by mass of the polynuclear aromatic ring compound.
  • the temperature of the heat treatment is preferably 250 ° C. to 550 ° C., more preferably 300 ° C. to 450 ° C. Since unreacted elemental sulfur becomes a factor that degrades the cycle characteristics of the secondary battery, it is preferably removed from the sulfur-modified polynuclear aromatic ring compound by, for example, heating or solvent washing.
  • the sulfur content of the sulfur-modified polynuclear aromatic ring compound is preferably 40 to 70% by mass, and more preferably 45 to 60% by mass because a large charge / discharge capacity can be obtained.
  • the sulfur-modified pitch compound is a compound obtained by heat-treating pitches and elemental sulfur in a non-oxidizing atmosphere.
  • Pitches include petroleum pitch, coal pitch, mesophase pitch, asphalt, coal tar, coal tar pitch, organic synthetic pitch obtained by polycondensation of condensed polycyclic aromatic hydrocarbon compounds, and heteroatom-containing condensed polycyclic aroma.
  • Pitches are a mixture of various compounds and contain fused polycyclic aromatics.
  • the condensed polycyclic aromatic contained in the pitches may be a single species or a plurality of species. This condensed polycyclic aromatic may contain nitrogen or sulfur in addition to carbon and hydrogen in the ring. For this reason, the main component of coal pitch is considered to be a mixture of a condensed polycyclic aromatic hydrocarbon composed only of carbon and hydrogen and a heteroaromatic compound containing nitrogen, sulfur, etc. in the condensed ring.
  • the ratio of pitches to elemental sulfur in the heat treatment is preferably 100 parts by mass to 1000 parts by mass, more preferably 150 parts by mass to 500 parts by mass with respect to 100 parts by mass of pitches.
  • the temperature of the heat treatment is preferably 300 ° C. to 500 ° C., more preferably 350 ° C. to 500 ° C. Since unreacted elemental sulfur becomes a factor that degrades the cycle characteristics of the secondary battery, it is preferably removed from the sulfur-modified pitch compound by, for example, heating or solvent washing.
  • the sulfur content of the sulfur-modified pitch compound is preferably 25 to 70% by mass and more preferably 30 to 60% by mass because a large charge / discharge capacity can be obtained.
  • the polythienoacene compound is a compound having a polythienoacene structure containing sulfur represented by the following general formula (1).
  • the polythienoacene compound can be obtained by heat-treating an aliphatic polymer compound having a linear structure such as polyethylene, a polymer compound having a thiophene structure such as polythiophene, and elemental sulfur in a non-oxidizing atmosphere.
  • the ratio of the aliphatic polymer compound to elemental sulfur is 100 to 2000 parts by mass of elemental sulfur with respect to 100 parts by mass of the aliphatic polymer compound. Part by weight, preferably 150 parts by weight to 1000 parts by weight.
  • the ratio of the polymer compound having a thiophene structure to elemental sulfur is preferably 100 parts by mass to 1000 parts by mass of elemental sulfur with respect to 100 parts by mass of the polymer compound having a thiophene structure. 150 parts by mass to 800 parts by mass is more preferable.
  • the temperature of the heat treatment is preferably 300 ° C. to 600 ° C., more preferably 350 ° C. to 500 ° C. Since unreacted elemental sulfur becomes a factor that deteriorates the cycle characteristics of the secondary battery, it is preferably removed from the polythienoacene compound by, for example, heating or solvent washing.
  • the sulfur content of the polythienoacene compound is preferably 30 to 80% by mass, and more preferably 40 to 70% by mass because a large charge / discharge capacity can be obtained.
  • the sulfur-modified polyether compound is a compound obtained by heat-treating a polyether compound and elemental sulfur in a non-oxidizing atmosphere.
  • the polyether compound include polyethylene glycol, polypropylene glycol, ethylene oxide / propylene oxide copolymer, polytetramethylene glycol, and the like.
  • the polyether compound may be terminated with an alkyl ether group, an alkylphenyl ether group or an acyl group, or may be an ethylene oxide adduct of a polyol such as glycerin or sorbitol.
  • the ratio of the polyether compound and elemental sulfur in the heat treatment is preferably 100 to 1000 parts by mass, more preferably 200 to 500 parts by mass with respect to 100 parts by mass of the polyether compound.
  • the temperature for the heat treatment is preferably 250 ° C. to 500 ° C., more preferably 300 ° C. to 450 ° C. Since unreacted elemental sulfur becomes a factor that deteriorates the cycle characteristics of the secondary battery, it is preferably removed from the sulfur-modified polyether compound by, for example, heating or solvent washing.
  • the sulfur content of the sulfur-modified polyether compound is preferably 30 to 75% by mass and more preferably 40 to 70% by mass because a large charge / discharge capacity can be obtained.
  • the sulfur-modified polyamide compound is an organic sulfur compound having a carbon skeleton derived from a polymer having an amide bond, and specifically, an aminocarboxylic acid compound and simple sulfur, or a polyamine compound and polycarboxylic acid compound and simple sulfur.
  • the aminocarboxylic acid compound refers to a compound having one amino group and at least one carboxyl group in the molecule.
  • aminocarboxylic acid compounds include 3,4-diaminobenzoic acid, 3,5-diaminobenzoic acid, aminobenzoic acid such as p-aminobenzoic acid and m-aminobenzoic acid, 4-aminophenylacetic acid, 3-aminophenyl Acetic acid, 3- (4-aminophenyl) propionic acid, 3-aminopropionic acid, 4-aminobutanoic acid, 5-aminopentanoic acid, 2,5-diaminopentanoic acid, amino acids such as alanine, arginine, asparagine, aspartic acid, Cysteine, glutamine, glutamic acid, glycine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, se
  • the polyamine compound refers to a compound having at least two amino groups in the molecule.
  • polyamine compounds include urea, ethylenediamine, diethylenetriamine, putrescine, cadaverine, hexamethylenediamine, o-phenylenediamine, m-phenylenediamine, p-phenylenediamine, 4-aminobenzenemethanamine, 4-aminobenzeneethanamine, Examples include melamine, 1,2,4-triaminobenzene, 1,3,5-triaminobenzene, benzoguanamine and the like.
  • the polycarboxylic acid compound refers to a compound having at least two carboxyl groups in the molecule.
  • the polycarboxylic acid compound include terephthalic acid, fumaric acid, tartaric acid, maleic acid, benzene-1,3-dicarboxylic acid, phthalic acid, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, Examples include suberic acid, azelaic acid, sebacic acid, and ethylenediaminetetraacetic acid.
  • acid anhydrides such as phthalic anhydride and maleic anhydride may be used.
  • the ratio of the aminocarboxylic acid compound and elemental sulfur in the heat treatment is preferably 100 parts by mass to 500 parts by mass, more preferably 150 parts by mass to 400 parts by mass with respect to 100 parts by mass of the aminocarboxylic acid compound.
  • the ratio of the polyamine compound, the polycarboxylic acid compound, and the elemental sulfur is preferably 100 parts by mass to 500 parts by mass of the elemental sulfur with respect to 100 parts by mass of the total mass of the polyamine compound and the polycarboxylic acid compound, and 150 parts by mass to 400 parts by mass. Is more preferable.
  • the temperature of the heat treatment is preferably 250 ° C. to 600 ° C., more preferably 350 ° C. to 500 ° C.
  • the sulfur content of the sulfur-modified polyamide compound is preferably 40 to 70% by mass, and more preferably 45 to 60% by mass because a large charge / discharge capacity can be obtained.
  • the sulfur-modified aliphatic hydrocarbon oxide is a compound obtained by heat-treating an aliphatic hydrocarbon oxide and elemental sulfur in a non-oxidizing atmosphere.
  • the aliphatic hydrocarbon oxide means a compound having an aliphatic hydrocarbon skeleton and having at least one group selected from the group consisting of a hydroxyl group, a carbonyl group, a carboxyl group or an epoxy group,
  • the hydrocarbon skeleton may have an unsaturated bond.
  • the aliphatic hydrocarbon skeleton of the aliphatic hydrocarbon oxide may be linear or branched, but is preferably linear because a large charge / discharge capacity can be obtained.
  • the number of carbon atoms of the aliphatic hydrocarbon oxide is preferably 4 to 12, and more preferably 6 to 10 because a large charge / discharge capacity can be obtained. Since the oxygen atom in the aliphatic hydrocarbon oxide is released by heat treatment with elemental sulfur, the aliphatic hydrocarbon oxide preferably has a ratio of the number of carbon atoms to the number of oxygen atoms of 3 or more. The above is more preferable.
  • Preferred aliphatic hydrocarbon oxides include 1-butanol, 2-butanol, 1-pentanol, 3-pentanol, 1-hexanol, 1-heptanol, 1-octanol, 1-nonanol, 1-decanol, 1-decanol, Alcohol compounds such as butanol, 1-pentanol, 1-hexanol, 1-heptanol, 1-octanol, 2-octanol, 1-nonanol, 1-decanol; butanol, pentanal, hexanal, heptanol, octanal, nonanal, decanal, etc.
  • Aldehyde compounds such as methyl ethyl ketone, diethyl ketone, methyl hexyl ketone; carboxylic acid compounds of octanoic acid, nonanoic acid, decanoic acid; 1,2-butane oxide, 1,2-hexane oxide, 1,2-octane oxide, 1 Epoxy compounds such as 2-decane oxide.
  • the ratio of the aliphatic hydrocarbon oxide and elemental sulfur in the heat treatment is preferably 100 parts by mass to 1000 parts by mass of elemental sulfur, more preferably 200 parts by mass to 500 parts by mass with respect to 100 parts by mass of the aliphatic hydrocarbon oxide. .
  • the temperature of the heat treatment is preferably 300 ° C. to 500 ° C., more preferably 350 ° C. to 450 ° C. When the temperature of the heat treatment is higher than the boiling point of the aliphatic hydrocarbon oxide, it is preferable to produce the aliphatic hydrocarbon oxide while refluxing.
  • unreacted elemental sulfur becomes a factor that degrades the cycle characteristics of the secondary battery, it is preferably removed from the sulfur-modified aliphatic hydrocarbon oxide, for example, by heating or solvent washing.
  • the sulfur content of the sulfur-modified aliphatic hydrocarbon oxide is preferably 45 to 75% by mass and more preferably 50 to 70% by mass because a large charge / discharge capacity can be obtained.
  • the polysulfide carbon is a compound represented by the general formula (CS x ) n (x is 0.5 to 2, n is a number of 4 or more), for example, alkali metal sulfide such as sodium sulfide. It can be obtained by heat-treating a precursor in which a halogenated unsaturated hydrocarbon such as hexachlorobutadiene is reacted with a complex of a product and elemental sulfur.
  • the temperature of the heat treatment is preferably 320 ° C. to 400 ° C.
  • the sulfur content of the polysulfide carbon compound is preferably 65% by mass to 75% by mass because a large charge / discharge capacity can be obtained.
  • the non-oxidizing atmosphere is a gas phase oxygen concentration of 5% by volume or less, preferably 2% by volume or less, more preferably oxygen.
  • the atmosphere is substantially not contained, and examples thereof include an inert gas atmosphere such as nitrogen, helium, and argon, and a sulfur gas atmosphere.
  • the particle diameter of the organic sulfur-based electrode active material is preferably 0.5 ⁇ m to 100 ⁇ m in terms of average particle diameter.
  • the average particle diameter is a 50% particle diameter (D 50 ) measured by a laser diffraction light scattering method.
  • the particle diameter is a volume-based diameter, and the diameter of secondary particles is measured by the laser diffraction light scattering method.
  • the negative electrode used in the present invention can be produced according to a known method. For example, an electrode mixture on a current collector is dried by applying an electrode mixture paste prepared by slurrying a compound containing a negative electrode active material, a binder and a conductive additive into an organic solvent or water and drying the mixture. A negative electrode on which a layer is formed can be produced.
  • conductive assistant those known as conductive assistants for electrodes can be used. Specifically, carbon black, ketjen black, acetylene black, channel black, furnace black, lamp black, thermal black, carbon nanotube , Carbon materials such as vapor grown carbon fiber (VGCF), graphene, fullerene, and needle coke; metal powders such as aluminum powder, nickel powder, and titanium powder; conductive metal oxides such as zinc oxide and titanium oxide A sulfide; La 2 S 3 , Sm 2 S 3 , Ce 2 S 3 , TiS 2 and the like.
  • the conductive auxiliary agent preferably has an average particle size of 0.0001 ⁇ m to 100 ⁇ m, and more preferably 0.01 ⁇ m to 50 ⁇ m.
  • the content of the conductive additive in the electrode mixture layer is preferably 0.1 to 30% by mass, more preferably 1 to 20% by mass, and further preferably 2 to 15% by mass.
  • binders for electrodes can be used.
  • the binder is preferably an aqueous binder because of its low environmental load, and more preferably styrene-butadiene rubber, sodium carboxymethylcellulose, and polyacrylic acid. Only one binder may be used, or two or more binders may be used in combination.
  • the binder content in the electrode mixture layer is preferably 1% by mass to 30% by mass, and more preferably 1% by mass to 20% by mass.
  • Examples of the solvent for preparing the slurry include propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, acetonitrile, propionitrile, tetrahydrofuran, 2-methyltetrahydrofuran, dioxane, 1,3-dioxolane, nitromethane, N-methylpyrrolidone, N, N-dimethylformamide, dimethylacetamide, methyl ethyl ketone, cyclohexanone, methyl acetate, methyl acrylate, diethyltriamine, N, N-dimethylamino Propylamine, polyethylene oxide, tetrahydrofuran, dimethyl sulfoxide, sulfolane, ⁇ -butyrolactone, water, alcohol, etc.
  • the amount of the solvent used can be adjusted in accordance with the slurry application method.
  • it is preferably 10% by mass to 80% by mass of the slurry, and 20% by mass to 70% by mass. More preferably.
  • the slurry may contain other components in addition to the above components.
  • examples of other components include a viscosity modifier, a reinforcing material, an antioxidant, and a dispersant.
  • Examples of the current collector include conductive materials such as titanium, titanium alloy, aluminum, aluminum alloy, copper, nickel, stainless steel, and nickel-plated steel. The surface of these conductive materials may be coated with carbon. Among these, aluminum is preferable from the viewpoint of conductivity and cost.
  • Examples of the shape of the current collector include a foil shape, a plate shape, and a mesh shape, and a foil shape is preferable. In the case of a foil shape, the thickness of the foil is usually 1 ⁇ m to 100 ⁇ m.
  • the method of applying the slurry to the current collector is not particularly limited, and is a die coater method, comma coater method, curtain coater method, spray coater method, gravure coater method, flexo coater method, knife coater method, doctor blade method, reverse roll.
  • Each method such as a method, a brush coating method, or a dipping method can be used.
  • a die coater method, a doctor blade method, and a knife coater method are preferred because it is possible to obtain a good surface state of the coating layer in accordance with physical properties such as viscosity of the slurry and drying properties.
  • the application may be performed on one side or both sides of the current collector.
  • the method for drying the slurry applied on the current collector is not particularly limited, and it is possible to use a far-infrared ray, an infrared ray, an electron beam, etc. Each method such as irradiation can be used. By this drying, volatile components such as a solvent are volatilized from the slurry coating, and an electrode mixture layer is formed on the current collector. Then, you may press-process an electrode as needed. Examples of the pressing method include a mold pressing method and a roll pressing method.
  • a negative electrode using the organic sulfur-based electrode active material as a negative electrode active material can be pre-doped to previously store and release lithium.
  • the pre-doping of lithium into the negative electrode can be performed according to a known method. For example, an electrolytic doping method in which half-cells are assembled using lithium metal as the counter electrode, and lithium is electrochemically doped, and a lithium metal foil is attached to the electrode and left in the liquid electrolyte to utilize the diffusion of lithium to the electrode For example, a diffusion doping method of doping may be used.
  • a lithium transition metal oxide and a lithium transition metal phosphate compound are used as the positive electrode active material of the positive electrode.
  • the positive electrode active material and the organic sulfur compound described above are used as the negative electrode active material.
  • lithium transition metal oxide examples include lithium cobalt oxide, lithium nickel oxide, lithium manganese oxide, lithium copper oxide, lithium vanadium oxide, and lithium iron oxide.
  • the lithium cobalt oxide includes one or more metal elements other than lithium and cobalt in addition to oxides containing lithium and cobalt as constituent metal elements, and other metal elements.
  • a composite oxide whose ratio is equivalent to or less than cobalt in terms of the number of atoms.
  • Metal elements other than lithium and cobalt include nickel, manganese, aluminum, chromium, iron, vanadium, magnesium, vanadium, titanium, zirconium, niobium, molybdenum, tungsten, copper, zinc, gallium, indium, tin, lanthanum, cerium, etc. Is mentioned.
  • Examples of the lithium cobalt oxide include LiCoO 2 , LiNi 1/3 Co 1/3 Mn 1/3 O 2 , Li 2 MnO 3 —LiCoO 2 .
  • Lithium-nickel-based oxides include oxides containing lithium and nickel as constituent metal elements, as well as one or more metal elements other than lithium and nickel, and the proportion of the other metal elements is an atom.
  • metal elements other than lithium and nickel cobalt, manganese, aluminum, chromium, iron, vanadium, magnesium, vanadium, titanium, zirconium, niobium, molybdenum, tungsten, copper, zinc, gallium, indium, tin, lanthanum, cerium, etc. Is mentioned.
  • lithium nickel oxide examples include LiNiO 2 , LiNi 0.5 Co 0.2 Mn 0.3 O 2 , LiNi 0.8 Co 0.1 Mn 0.1 O 2 , LiNi 0.5 Mn 0.5 O 2 , LiNi 0.80 Co 0.17 Al 0.03 O 2 , LiNi 0.80 Co 0.15 Al 0.05 O 2 , LiNi 0.6 Co 0.2 Mn 0.2 O 2 , Li 2 MnO 3 —LiNiO 2 and the like.
  • Lithium-manganese oxide includes one or more metal elements other than lithium and manganese in addition to oxides containing lithium and manganese as constituent metal elements, and the proportion of the other metal elements is an atom. It refers to a composite oxide that is equivalent to or less than manganese in terms of number. When two or more kinds of metal elements other than lithium and manganese are contained and the proportion of one kind of metal is more than manganese, the proportion of cobalt is equivalent to manganese, and the proportion of nickel is equivalent to manganese In this case, lithium manganese oxide is not included.
  • metal elements other than lithium and nickel include cobalt, nickel, aluminum, chromium, iron, vanadium, magnesium, vanadium, titanium, zirconium, niobium, molybdenum, tungsten, copper, zinc, gallium, indium, tin, lanthanum, cerium, etc. Is mentioned.
  • Lithium manganese oxides include LiMnO 2 , LiMn 2 O 4 , Li 2 MnO 3 , Li 1.1 Mn 1.8 Mg 0.1 O 4 , Li 1.1 Mn 1.85 Al 0.05 O 4 , LiMn 1.8 Al 0.2 O 4 , Li 1.2 Fe 0.4 Examples thereof include Mn 0.4 O 2 , LiNi 0.5 Mn 1.5 O 4 , Li 2 MnO 3 —LiMnO 2 and the like.
  • Examples of the lithium copper oxide include Li 2 CuO 2 .
  • Examples of the lithium vanadium oxide include LiV 3 O 8 and the like.
  • Examples of the lithium iron oxide include LiFe 3 O 4 .
  • lithium transition metal oxide used as the positive electrode active material of the present invention lithium cobalt oxide, lithium nickel oxide, and lithium manganese oxide are preferable, and lithium cobalt oxide and lithium nickel oxide are more preferable. .
  • the lithium-containing transition metal phosphate compound used in combination with a lithium transition metal oxide is a phosphate compound containing lithium and a transition metal.
  • phosphoric acid include orthophosphoric acid (H 3 PO 4 ) and pyrophosphoric acid (H 4 P 2 O 7 ).
  • the transition metal include Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, and Cd. These transition metals can be used alone or in combination of two or more.
  • lithium-containing transition metal phosphate compound examples include lithium-containing iron phosphate compounds such as LiFePO 4 , Li 3 Fe 2 (PO 4 ) 3 , and LiFeP 2 O 7 ; lithium-containing cobalt phosphate compounds such as LiCoPO 4 ; LiMnPO lithium-containing manganese phosphate compounds such as 4; LiNiPO lithium-containing nickel phosphate compounds such as 4, or magnesium part of transition metal atoms as a main component of these lithium transition metal phosphate compound, aluminum, silicon, calcium, titanium , Vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, gallium, strontium, zirconium, niobium, barium and other metals substituted.
  • lithium-containing iron phosphate compounds such as LiFePO 4 , Li 3 Fe 2 (PO 4 ) 3 , and LiFeP 2 O 7
  • lithium-containing cobalt phosphate compounds such as LiCoPO 4
  • the positive electrode active material used in the present invention may be a mixture of lithium transition metal oxide particles and lithium-containing transition metal phosphate compound particles, and a composite of lithium transition metal oxide and lithium-containing transition metal phosphate compound. Particles may be used. In the case of particles in which a lithium transition metal oxide and a lithium-containing transition metal phosphate compound are combined, even if these particles are combined in a mosaic shape, either one is a particle coated on the other side. There may be. In the present invention, particles in which a lithium transition metal oxide and a lithium-containing transition metal phosphate compound are combined are preferable, and particles in which a lithium transition metal oxide is coated with a lithium-containing transition metal phosphate compound are more preferable.
  • the lithium transition metal oxide may be completely covered with the lithium-containing transition metal phosphate compound, or a part of the lithium transition metal oxide may be exposed.
  • the type of transition metal contained in the lithium transition metal oxide and the type of transition metal contained in the lithium-containing transition metal phosphate compound may be the same or different.
  • Particles in which a lithium transition metal oxide is coated with a lithium-containing transition metal phosphate compound can be produced using a known method. For example, a method in which phosphate particles are attached to the surface of lithium transition metal oxide or its precursor particles and then fired, lithium transition metal oxide or its precursor particles are converted to phosphate or phosphoric acid. A method of firing after impregnating with a solution of a lithium transition metal oxide by a mechanochemical reaction by colliding particles of a lithium-containing transition metal phosphate compound with a small particle size against particles of a lithium particle with a large particle size Examples thereof include a method for coating the surface of an object.
  • a method in which phosphoric acid particles are attached to the surface of lithium transition metal oxide or its precursor particles and then calcined, or lithium transition metal oxide or its precursor particles are made of phosphate or phosphoric acid.
  • a lithium-containing transition metal phosphate compound is formed in the course of firing.
  • the phosphate used in the lithium-containing transition metal phosphate compound include NH 4 H 2 PO 4 , (NH 4 ) 2 HPO 4 , Li 3 PO 4 , LiH 2 PO 4 , FePO 4 , Zn 3 (PO 4 ) 2 etc.
  • the ratio of the number of moles of phosphorus to the total number of moles of transition metals contained in the positive electrode active material used in the present invention is preferably 0.0001 to 0.2, and is preferably 0.0005 to 0.1. More preferably, it is most preferably 0.001 to 0.05.
  • the positive electrode used in the present invention can be manufactured by replacing the negative electrode active material with a lithium transition metal oxide and a lithium-containing transition metal phosphate compound in the negative electrode manufacturing method described above.
  • the positive electrode active material used in the present invention is acidic in an aqueous solution, an organic solvent is preferably used as a solvent for the slurry, and a solvent-based binder is also preferably used as the binder.
  • Nonaqueous electrolyte examples include a liquid electrolyte obtained by dissolving an electrolyte in an organic solvent, a polymer gel electrolyte obtained by dissolving an electrolyte in an organic solvent and gelling with a polymer, and an electrolyte containing no organic solvent.
  • Examples include a pure polymer electrolyte dispersed in a polymer and an inorganic solid electrolyte.
  • a conventionally known lithium salt is used as the electrolyte used for the liquid electrolyte and the polymer gel electrolyte.
  • a conventionally known lithium salt is used as the electrolyte used for the liquid electrolyte and the polymer gel electrolyte.
  • LiPF 6, LiBF 4, LiClO 4, LiAsF 6, LiCF 3 SO 3, LiN (CF 3 SO 2) 2, LiN (C 2 F 5 SO 2) 2, LiN (S 2 F) 2, and LiC (CF 3 SO 2) 3 and LiCF 3 derivatives of SO 3, and LiC (CF 3 SO 2) is preferably used at least one member selected from the group consisting of 3 derivatives.
  • the electrolyte content in the liquid electrolyte and the polymer gel electrolyte is preferably 0.5 to 7 mol / L, more preferably 0.8 to 1.8 mol / L.
  • Examples of the electrolyte used for the pure polymer electrolyte include LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (SO 2 F) 2 , LiC (CF 3 SO 2 ) 3 , LiB. (CF 3 SO 3 ) 4 and LiB (C 2 O 4 ) 2 may be mentioned.
  • organic solvent used for preparing the non-aqueous electrolyte those usually used for non-aqueous electrolytes can be used alone or in combination of two or more. Specific examples include saturated cyclic carbonate compounds, saturated cyclic ester compounds, sulfoxide compounds, sulfone compounds, amide compounds, saturated chain carbonate compounds, chain ether compounds, cyclic ether compounds, and saturated chain ester compounds. .
  • saturated cyclic carbonate compounds saturated cyclic ester compounds, sulfoxide compounds, sulfone compounds, and amide compounds are preferable because they have a high relative dielectric constant and play a role of increasing the dielectric constant of the nonaqueous electrolyte.
  • a carbonate compound is preferred.
  • saturated cyclic carbonate compounds include ethylene carbonate, 1,2-propylene carbonate, 1,3-propylene carbonate, 1,2-butylene carbonate, 1,3-butylene carbonate, 1,1-dimethylethylene carbonate, and the like. Is mentioned.
  • saturated cyclic ester compound examples include ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -caprolactone, ⁇ -hexanolactone, and ⁇ -octanolactone.
  • sulfoxide compound examples include dimethyl sulfoxide, diethyl sulfoxide, dipropyl sulfoxide, diphenyl sulfoxide, thiophene, and the like.
  • sulfone compound examples include dimethyl sulfone, diethyl sulfone, dipropyl sulfone, diphenyl sulfone, sulfolane (also referred to as tetramethylene sulfone), 3-methyl sulfolane, 3,4-dimethyl sulfolane, 3,4-diphenmethyl sulfolane. , Sulfolane, 3-methylsulfolene, 3-ethylsulfolene, 3-bromomethylsulfolene and the like, and sulfolane and tetramethylsulfolane are preferable.
  • the amide compound examples include N-methylpyrrolidone, dimethylformamide, dimethylacetamide and the like.
  • saturated chain carbonate compounds, chain ether compounds, cyclic ether compounds and saturated chain ester compounds can reduce the viscosity of the nonaqueous electrolyte and increase the mobility of electrolyte ions. Battery characteristics such as output density can be made excellent.
  • a saturated chain carbonate compound is particularly preferred because it has a low viscosity and can enhance the performance of the nonaqueous electrolyte at low temperatures.
  • the saturated chain carbonate compound include dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, ethyl butyl carbonate, methyl-t-butyl carbonate, diisopropyl carbonate, t-butyl propyl carbonate, and the like.
  • Examples of the chain ether compound or the cyclic ether compound include dimethoxyethane, ethoxymethoxyethane, diethoxyethane, tetrahydrofuran, dioxolane, dioxane, 1,2-bis (methoxycarbonyloxy) ethane, 1,2-bis ( Ethoxycarbonyloxy) ethane, 1,2-bis (ethoxycarbonyloxy) propane, ethylene glycol bis (trifluoroethyl) ether, propylene glycol bis (trifluoroethyl) ether, ethylene glycol bis (trifluoromethyl) ether, diethylene glycol bis (Trifluoroethyl) ether and the like can be mentioned, and among these, dioxolane is preferable.
  • saturated chain ester compound monoester compounds and diester compounds having a total number of carbon atoms in the molecule of 2 to 8 are preferable, and specific compounds include, for example, methyl formate, ethyl formate, methyl acetate, acetic acid Ethyl, propyl acetate, isobutyl acetate, butyl acetate, methyl propionate, ethyl propionate, methyl butyrate, methyl isobutyrate, methyl trimethyl acetate, ethyl trimethyl acetate, methyl malonate, ethyl malonate, methyl succinate, ethyl succinate, Examples include methyl 3-methoxypropionate, ethyl 3-methoxypropionate, ethylene glycol diacetyl, propylene glycol diacetyl, and the like.
  • Methyl formate, ethyl formate, methyl acetate, ethyl acetate, propyl acetate, isobutyl acetate, butyl acetate, methyl propionate And ethyl propionate are preferred.
  • organic solvent used for preparing the non-aqueous electrolyte for example, acetonitrile, propionitrile, nitromethane, derivatives thereof, and various ionic liquids can be used.
  • Examples of the polymer used in the polymer gel electrolyte include polyethylene oxide, polypropylene oxide, polyvinyl chloride, polyacrylonitrile, polymethyl methacrylate, polyethylene, polyvinylidene fluoride, and polyhexafluoropropylene.
  • Examples of the polymer used in the pure polymer electrolyte include polyethylene oxide, polypropylene oxide, and polystyrene sulfonic acid.
  • the non-aqueous electrolyte may contain other known additives such as an electrode film forming agent, an antioxidant, a flame retardant, and an overcharge inhibitor, for example, in order to improve battery life and safety.
  • additives such as an electrode film forming agent, an antioxidant, a flame retardant, and an overcharge inhibitor, for example, in order to improve battery life and safety.
  • the amount is usually 0.01 parts by mass to 10 parts by mass, preferably 0.1 parts by mass to 5 parts by mass with respect to the entire nonaqueous electrolyte.
  • the lithium ion secondary battery to which the present invention can be applied may have a separator between the positive electrode and the negative electrode.
  • a polymer microporous film usually used for a nonaqueous electrolyte secondary battery can be used without any particular limitation.
  • the film include polyethylene, polypropylene, polyvinylidene fluoride, polyvinylidene chloride, polyacrylonitrile, polyacrylamide, polytetrafluoroethylene, polysulfone, polyethersulfone, polycarbonate, polyamide, polyimide, polyether such as polyethylene oxide and polypropylene oxide.
  • celluloses such as carboxymethyl cellulose and hydroxypropyl cellulose, polymer compounds mainly composed of poly (meth) acrylic acid and various esters thereof, derivatives thereof, films made of copolymers or mixtures thereof, etc. These films may be coated with a ceramic material such as alumina or silica, magnesium oxide, aramid resin, or polyvinylidene fluoride.
  • a ceramic material such as alumina or silica, magnesium oxide, aramid resin, or polyvinylidene fluoride.
  • These films may be used alone or as a multilayer film by superimposing these films. These films may contain various additives, and the kind and content thereof are not particularly limited.
  • a film made of polyethylene, polypropylene, polyvinylidene fluoride, or polysulfone is preferably used for a secondary battery manufactured by a method for manufacturing a secondary battery.
  • the nonaqueous solvent electrolyte is a pure polymer electrolyte or an inorganic solid electrolyte, the separator may not be included.
  • the exterior member of the lithium ion secondary battery of the present invention a laminate film or a metal container can be used.
  • the thickness of the exterior member is usually 0.5 mm or less, preferably 0.3 mm or less.
  • Examples of the shape of the exterior member include a flat type (thin type), a square type, a cylindrical type, a coin type, and a button type.
  • a multilayer film having a metal layer between resin films can also be used.
  • the metal layer is preferably an aluminum foil or an aluminum alloy foil for weight reduction.
  • a polymer material such as polypropylene, polyethylene, nylon, or polyethylene terephthalate can be used.
  • the laminate film can be formed into the shape of an exterior member by performing heat sealing.
  • the metal container can be formed of, for example, stainless steel, aluminum, aluminum alloy, or the like.
  • the aluminum alloy an alloy containing elements such as magnesium, zinc, and silicon is preferable.
  • transition metals such as iron, copper, nickel, and chromium
  • the present invention will be described in more detail with reference to Examples and Comparative Examples.
  • the present invention is not limited to the following examples.
  • the molar ratio of phosphorus to transition metal is such that the positive electrode active material is made into an aqueous solution using a microwave decomposition apparatus with nitric acid as a decomposing agent, and then each transition metal and It was calculated by quantifying phosphorus.
  • the sulfur content in the organic sulfur-based electrode active material was calculated from the analysis results using a CHN analyzer capable of analyzing sulfur and oxygen.
  • the obtained sulfur-modified product was pulverized using a ball mill and classified by sieving to obtain an organic sulfur-based electrode active material A1 (sulfur-modified polyacrylonitrile) having an average particle diameter of 10 ⁇ m.
  • the obtained organic sulfur-based electrode active material A1 had a sulfur content of 38.4% by mass.
  • Organic sulfur-based electrode active material A2 An organic sulfur-based electrode active material A2 (polythienoacene compound) having an average particle diameter of 10 ⁇ m is obtained by performing the same operation as in Production Example 1 except that polyethylene (core front) of 27 ⁇ m to 32 ⁇ m is used in place of the polyacrylonitrile powder. It was. The obtained organic sulfur-based electrode active material A2 had a sulfur content of 43.8% by mass.
  • Nickel (II) sulfate hexahydrate (manufactured by Wako Pure Chemical Industries), manganese sulfate (II) pentahydrate (manufactured by Wako Pure Chemical Industries) and cobalt sulfate (II) heptahydrate (manufactured by Wako Pure Chemical Industries) was dissolved in water such that the molar ratio of nickel: manganese: cobalt was 1: 1: 1 and the total concentration of each metal ion was 2 mol / L to prepare a transition metal mixed aqueous solution.
  • Positive electrode active material B1 7 g of the positive electrode active material C1 was placed in 10 g of 0.6 mmol / L phosphoric acid aqueous solution, stirred for 1 hour, dried, and then fired at 800 ° C. for 5 hours to obtain the positive electrode active material B1 of Example. It was.
  • the average particle diameter of the positive electrode active material B1 was 10 ⁇ m, and the molar ratio of phosphorus to all transition metals was 0.008.
  • the positive electrode active material B1 phosphorus is considered to be present as LiNiPO 4, LiMnPO 4, LiCoPO lithium-containing transition metal phosphate compounds such as 4, the cross section of the positive electrode active material B1 was observed by X-ray photoelectron spectroscopy However, since phosphorus is hardly seen in the central portion of the positive electrode active material B1 and is large in the outer shell portion, the positive electrode active material B1 has a structure in which a lithium transition metal oxide is coated with a lithium-containing transition metal phosphate compound. it is conceivable that.
  • Example positive electrode active material B2 By putting 7 g of the positive electrode active material C1 in 10 g of an aqueous solution containing 0.3 mmol / L each of nickel nitrate and diammonium hydrogen phosphate, stirring for 1 hour, drying, and baking at 600 ° C. for 5 hours, Example positive electrode active material B2 was obtained.
  • the average particle diameter of the positive electrode active material B2 is 10 ⁇ m, and the molar ratio of phosphorus to all transition metals is 0.005.
  • the positive electrode active material B2 is considered to have a structure in which a lithium transition metal oxide is covered with a lithium-containing transition metal phosphate compound.
  • Positive electrode active material B3 100 parts by mass of the positive electrode active material C1 and 0.25 parts by mass of LiFePO 4 having an average particle diameter of 0.5 ⁇ m were introduced into a mechanochemical apparatus (manufactured by Hosokawa Micron Corporation, model: AMS-Mini), clearance: 1 mm, casing Rotational speed: Mechanochemical treatment was performed at 6000 rpm for 20 minutes. By this treatment, the positive electrode active material B3 of Example, in which the surfaces of the particles of LiNi 1/3 Mn 1/3 Co 1/3 O 2 were coated with LiFePO 4 , was obtained. The average particle diameter of the positive electrode active material B3 is 10 ⁇ m, and the molar ratio of phosphorus to all transition metals is 0.004.
  • This slurry composition was applied to one side of a current collector of carbon-coated aluminum foil (thickness: 22 ⁇ m) by a doctor blade method and dried at 90 ° C. for 3 hours. Then, this electrode was cut into a predetermined size and vacuum-dried at 120 ° C. for 2 hours to produce a disc-shaped negative electrode 1. Further, a disc-shaped negative electrode 2 was prepared by performing the same operation except that the organic sulfur-based electrode active material A2 was used instead of the organic sulfur-based electrode active material A1.
  • this electrode was cut into a predetermined size and vacuum-dried at 150 ° C. for 2 hours to produce a disc-shaped positive electrode 1. Further, disk-like positive electrodes 2 to 4 were produced in the same manner except that the positive electrode active materials B1 to B3 were used instead of the positive electrode active material C1.
  • the positive electrodes 2 to 4 are positive electrodes of Examples, and the positive electrode 1 is a positive electrode of Comparative Examples.
  • LiPF 6 was dissolved at a concentration of 1.0 mol / L in a mixed solvent composed of 50% by volume of ethylene carbonate and 50% by volume of diethyl carbonate to prepare a nonaqueous electrolyte.
  • Negative electrodes 1 and 2 and positive electrodes 1 to 4 were used in the combinations shown in Table 1, and held in a case with a glass filter sandwiched between them. Thereafter, the previously prepared non-aqueous electrolyte was poured into the case, and the case was sealed and sealed to produce a lithium ion secondary battery ( ⁇ 20 mm, coin type with a thickness of 3.2 mm).
  • the lithium ion secondary batteries of Examples 1 to 5 using an organic sulfur-based electrode active material as a negative electrode active material and a combination of a lithium transition metal oxide and a lithium-containing transition metal phosphate compound as a positive electrode active material are positive electrode active materials.
  • the present invention it is possible to provide a lithium ion secondary battery that is excellent in rate characteristics and has little reduction in charge / discharge capacity even after repeated high-speed charge / discharge.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本発明における課題は、レート特性に優れ、高速充放電を繰り返しても充放電容量の低下が少ないリチウムイオン二次電池を提供することにある。 本発明のリチウムイオン二次電池は、正極活物質を含む正極、負極活物質を含む負極、及び非水電解質を有する。正極活物質がリチウム遷移金属酸化物及びリチウム含有遷移金属リン酸化合物である。負極活物質が有機硫黄系電極活物質である。リチウム遷移金属酸化物が、リチウムコバルト系酸化物又はリチウムニッケル系酸化物であることが好適である。正極活物質に含まれる遷移金属の合計のモル数に対するリンのモル数の比が、0.0001~0.2であることも好適である。

Description

リチウムイオン二次電池
 本発明は、正極活物質を含む正極、負極活物質を含む負極、及び非水電解質を有するリチウムイオン二次電池に関する。
 リチウムイオン二次電池は、小型で軽量、かつエネルギー密度が高く、高容量で、繰り返し充放電が可能であることから、携帯用パソコン、ハンディビデオカメラ、情報端末等の携帯電子機器の電源として広く用いられている。また、環境問題の観点から、非水電解質二次電池を使用した電気自動車や、動力の一部に電力を利用したハイブリッド車の実用化が行われている。
 非水電解質二次電池の特性は、その構成部材である電極、セパレータ、電解質等に依存し、各構成部材の研究開発が盛んに行われている。電極においては、結着剤、集電体等と共に、電極活物質が重要であり、電極活物質の研究開発が盛んに行われている。
 有機化合物と硫黄との混合物を非酸化性雰囲気下で熱処理することで得られる有機硫黄系電極活物質は、大きな充放電容量を有し、充放電の繰り返しに伴う充放電容量の低下が少ない電極活物質として知られている(例えば、特許文献1~12を参照)。有機硫黄系電極活物質は正極活物質として検討されているが、リチウムマンガン系複合酸化物を正極活物質とし、有機硫黄系電極活物質を負極活物質としたリチウムイオン二次電池(例えば、特許文献9を参照)も検討されている。しかしながら、リチウムマンガン系複合酸化物を正極活物質とし、有機硫黄系電極活物質を負極活物質としたリチウムイオン二次電池では、レート特性が十分ではなく、高速充放電を繰り返すと充放電容量が低下するという問題があった。例えば、自動車用途の二次電池では、短時間で充電可能であるだけでなく、発進時に速やかに加速するためには、一時的に大電流を必要とすることから、レート特性に優れた二次電池が求められている。
特開2003-151550号公報 US8940436 特開2011-028948号公報 特開2011-170991号公報 特開2012-099342号公報 特開2012-150933号公報 特開2012-150934号公報 WO2012/114651号 US2014134485 US10008722 US2018072665 US2018065927
 本発明の課題は、レート特性に優れ、高速充放電を繰り返しても充放電容量の低下が少ないリチウムイオン二次電池を提供することにある。
 本発明者らは上記課題について鋭意検討を行った結果、正極活物質がリチウム遷移金属酸化物であり、負極活物質が有機硫黄系電極活物質であるリチウムイオン二次電池においては、正極活物質としてリチウム含有遷移金属リン酸化合物を併用することにより、上記課題を解決できることを見出し、本発明を完成させた。
 すなわち、本発明は、正極活物質を含む正極、負極活物質を含む負極、及び非水電解質を有するリチウムイオン二次電池であって、正極活物質がリチウム遷移金属酸化物及びリチウム含有遷移金属リン酸化合物からなり、負極活物質が有機硫黄系電極活物質であることを特徴とするリチウムイオン二次電池である。
 本発明のリチウムイオン二次電池は、正極活物質を含む正極、負極活物質を含む負極、及び非水電解質を有する。以下、これらについてそれぞれ説明する。
<負極>
 本発明では、負極の負極活物質として有機硫黄系電極活物質が使用される。本発明において有機硫黄系電極活物質とは、硫黄-炭素結合を有し、リチウムイオンを吸蔵及び放出することができ、二次電池の電極活物質として使用可能な化合物をいう。有機硫黄系電極活物質は、有機化合物と硫黄との混合物を非酸化性雰囲気下で熱処理することで得られる化合物であり、例えば、硫黄変性ポリアクリロニトリル、硫黄変性エラストマー化合物、硫黄変性多核芳香環化合物、硫黄変性ピッチ化合物、ポリチエノアセン化合物、硫黄変性ポリエーテル化合物、硫黄変性ポリアミド化合物、硫黄変性脂肪族炭化水素酸化物、ポリ硫化カーボン等が挙げられる。
 前記硫黄変性ポリアクリロニトリルは、ポリアクリロニトリルと単体硫黄とを非酸化性雰囲気中で加熱処理して得られる化合物である。ポリアクリロニトリルは、アクリロニトリルのホモポリマーであってもよく、また、アクリロニトリルと他のモノマーとのコポリマーであってもよい。ポリアクリロニトリルがコポリマーである場合、アクリロニトリルの含量が低くなると電池性能が低くなることから、コポリマーにおけるアクリロニトリルの含量は少なくとも90質量%以上であることが好ましい。アクリロニトリル以外の他のモノマーとしては、例えば、アクリル酸、酢酸ビニル、N-ビニルホルムアミド、N-N’メチレンビス(アクリルアミド)が挙げられる。
 加熱処理におけるポリアクリロニトリルと単体硫黄との割合は、ポリアクリロニトリル100質量部に対して単体硫黄100質量部~1500質量部が好ましく、150質量部~1000質量部が更に好ましい。加熱処理の温度は250℃~550℃が好ましく、350℃~450℃が更に好ましい。未反応の単体硫黄は二次電池のサイクル特性を低下させる要因となるため、例えば、加熱処理後、加熱や溶媒洗浄等により、硫黄変性ポリアクリロニトリルから除去することが好ましい。硫黄変性ポリアクリロニトリルの硫黄含量は、大きな充放電容量が得られることから、25~60質量%が好ましく、30~55質量%が更に好ましい。なお、有機硫黄系電極活物質の硫黄含量は、硫黄及び酸素が分析可能なCHN分析装置を用いた分析結果から算出できる。
 前記硫黄変性エラストマー化合物は、ゴムと単体硫黄を非酸化性雰囲気中で加熱処理して得られる化合物である。ゴムとしては、例えば、天然ゴム、イソプレンゴム、ブタジエンゴム、スチレン-ブタジエンゴム、アクリロニトリル-ブタジエンゴム等が挙げられる。これらのゴムは、1種を単独で使用することができ、2種以上を組み合わせて使用することもできる。原料のゴムは、加硫ゴムでも加硫前のゴムでも構わない。
 加熱処理におけるゴムと単体硫黄の割合は、ゴム100質量部に対して単体硫黄100質量部~1500質量部が好ましく、150質量部~1000質量部が更に好ましい。加熱処理を行う際には、公知の加硫促進剤を1種以上添加することができる。加硫促進剤の添加量は、ゴム100質量部に対して1質量部~250質量部が好ましく、5質量部~50質量部が更に好ましい。加熱処理温度は250℃~550℃が好ましく、300℃~450℃が更に好ましい。未反応の単体硫黄は二次電池のサイクル特性を低下させる要因となるため、例えば、加熱や溶媒洗浄等により、硫黄変性エラストマー化合物から除去することが好ましい。硫黄変性エラストマー化合物の硫黄含量は、大きな充放電容量が得られることから、40~70質量%が好ましく、45~60質量%が更に好ましい。
 前記硫黄変性多核芳香環化合物は、多核芳香環化合物と単体硫黄を非酸化性雰囲気中で加熱処理して得られる化合物である。多核芳香環化合物としては、例えば、ナフタレン、アントラセン、テトラセン、ペンタセン、フェナントレン、クリセン、ピセン、ピレン、ベンゾピレン、ペリレン、コロネン等のベンゼン系芳香環化合物が挙げられる。また、ベンゼン系芳香環化合物の一部が5員環となった芳香族環化合物、又はこれらの炭素原子の一部が硫黄、酸素、窒素などに置き換わったヘテロ原子含有複素芳香環化合物が挙げられる。更に、これらの多核芳香環化合物は、炭素数1~12の鎖状又は分岐状アルキル基、アルコキシル基、水酸基、カルボキシル基、アミノ基、アミノカルボニル基、アミノチオ基、メルカプトチオカルボニルアミノ基、カルボキシアルキルカルボニル基などの置換基を有していてもよい。
 多核芳香環化合物は、芳香族部位と鎖式炭化水素部位との繰り返し構造を有する化合物であってもよい。芳香族部位と鎖式炭化水素部位との繰り返し構造を持つ化合物における芳香族部位としては、前記のほか、ベンゼン、ピロリジン、ピロール、ピリジン、イミダゾール、ピロリドン、テトラヒドロフラン、トリアジン、チオフェン、オキサゾール、チアゾール、チアジアゾール、トリアゾール、ホスホール、シロール等が挙げられ、これらが2つ以上縮合したものであってもよい。また、これらの芳香族部位とシクロペンタン、シクロヘキサン、ピロリジン、テトラヒドロフラン等が縮合していてもよい。さらに、これらの芳香族部位は、炭素数1~12の鎖状又は分岐状アルキル基、アルコキシル基、水酸基、カルボキシル基、アミノ基、アミノカルボニル基、アミノチオ基、メルカプトチオカルボニルアミノ基、カルボキシアルキルカルボニル基などの置換基を有していてもよい。
 芳香族部位と鎖式炭化水素部位との繰り返し構造を持つ化合物の鎖式炭化水素部位としては、アルキレン基、アルケニレン基、アルキニレン基などの直鎖又は分岐した鎖式炭化水素が挙げられる。鎖式炭化水素部位の炭素数としては、2~20が好ましく、より好ましくは3~10、更に好ましくは4~8である。取扱いの容易性や価格面から、アルキレン基又はアルケニレン基が好ましく、中でも、ブタン-1,4-ジイル基、ヘキサン-1,6-ジイル基、オクタン-1,8-ジイル基、ビニレン基、1,3-ブタジエン-1,4ジイル基及びその構造異性体が好ましい。
 加熱処理における多核芳香環化合物と単体硫黄との割合は、多核芳香環化合物100質量部に対して単体硫黄100質量部~1500質量部が好ましく、150質量部~1000質量部が更に好ましい。加熱処理の温度は250℃~550℃が好ましく、300℃~450℃が更に好ましい。未反応の単体硫黄は二次電池のサイクル特性を低下させる要因となるため、例えば、加熱や溶媒洗浄等により硫黄変性多核芳香環化合物から除去することが好ましい。硫黄変性多核芳香環化合物の硫黄含量は、大きな充放電容量が得られることから、40~70質量%が好ましく、45~60質量%が更に好ましい。
 前記硫黄変性ピッチ化合物は、ピッチ類と単体硫黄とを非酸化性雰囲気中で加熱処理して得られる化合物である。ピッチ類としては、石油ピッチ、石炭ピッチ、メソフェーズピッチ、アスファルト、コールタール、コールタールピッチ、縮合多環芳香族炭化水素化合物の重縮合で得られる有機合成ピッチ、及び、ヘテロ原子含有縮合多環芳香族炭化水素化合物の重縮合で得られる有機合成ピッチ等が挙げられる。ピッチ類は様々な化合物の混合物であり、縮合多環芳香族を含む。ピッチ類に含まれる縮合多環芳香族は、単一種である場合があり、複数種である場合がある。この縮合多環芳香族は、環の中に、炭素と水素以外に、窒素や硫黄を含んでいる場合がある。このため、石炭ピッチの主成分は、炭素と水素のみから成る縮合多環芳香族炭化水素と、縮合環に窒素や硫黄等を含む複素芳香族化合物との混合物と考えられる。
 加熱処理におけるピッチ類と単体硫黄との割合は、ピッチ類100質量部に対し単体硫黄100質量部~1000質量部が好ましく、150質量部~500質量部が更に好ましい。加熱処理の温度は300℃~500℃が好ましく、350℃~500℃が更に好ましい。未反応の単体硫黄は二次電池のサイクル特性を低下させる要因となるため、例えば、加熱や溶媒洗浄等により硫黄変性ピッチ化合物から除去することが好ましい。硫黄変性ピッチ化合物の硫黄含量は、大きな充放電容量が得られることから、25~70質量%が好ましく、30~60質量%が更に好ましい。
 前記ポリチエノアセン化合物は、下記一般式(1)で表される、硫黄を含むポリチエノアセン構造を有する化合物である。
Figure JPOXMLDOC01-appb-C000001

(式中、*は結合手を表す。)
 ポリチエノアセン化合物は、ポリエチレン等の直鎖構造を有する脂肪族のポリマー化合物や、ポリチオフェン等のチオフェン構造を有するポリマー化合物と、単体硫黄とを非酸化性雰囲気中で加熱処理して得ることができる。
 ポリチエノアセン化合物の原料に直鎖構造を有する脂肪族のポリマー化合物を用いる場合、脂肪族のポリマー化合物と単体硫黄との割合は、脂肪族のポリマー化合物100質量部に対し単体硫黄100質量部~2000質量部が好ましく、150質量部~1000質量部が更に好ましい。また、原料にチオフェン構造を有するポリマー化合物を用いる場合、チオフェン構造を有するポリマー化合物と単体硫黄との割合は、チオフェン構造を有するポリマー化合物100質量部に対し単体硫黄100質量部~1000質量部が好ましく、150質量部~800質量部が更に好ましい。加熱処理の温度は300℃~600℃が好ましく、350℃~500℃が更に好ましい。未反応の単体硫黄は二次電池のサイクル特性を低下させる要因となるため、例えば、加熱や溶媒洗浄等によりポリチエノアセン化合物から除去することが好ましい。ポリチエノアセン化合物の硫黄含量は、大きな充放電容量が得られることから、30~80質量%が好ましく、40~70質量%が更に好ましい。
 前記硫黄変性ポリエーテル化合物は、ポリエーテル化合物と単体硫黄とを非酸化性雰囲気中で加熱処理して得られる化合物である。ポリエーテル化合物としては、例えば、ポリエチレングリコール、ポリプロピレングリコール、エチレンオキシド/プロピレンオキシドコポリマー、ポリテトラメチレングリコール等が挙げられる。ポリエーテル化合物は、末端がアルキルエーテル基、アルキルフェニルエーテル基、アシル基であってもよく、グリセリン、ソルビトール等のポリオールのエチレンオキシド付加物であってもよい。
 加熱処理におけるポリエーテル化合物と単体硫黄との割合は、ポリエーテル化合物100質量部に対し単体硫黄100質量部~1000質量部が好ましく、200質量部~500質量部が更に好ましい。加熱処理の温度は250℃~500℃が好ましく、300℃~450℃が更に好ましい。未反応の単体硫黄は二次電池のサイクル特性を低下させる要因となるため、例えば、加熱や溶媒洗浄等により硫黄変性ポリエーテル化合物から除去することが好ましい。硫黄変性ポリエーテル化合物の硫黄含量は、大きな充放電容量が得られることから、30~75質量%が好ましく、40~70質量%が更に好ましい。
 前記硫黄変性ポリアミド化合物は、アミド結合を有するポリマー由来の炭素骨格を有する有機硫黄化合物であり、具体的には、アミノカルボン酸化合物と単体硫黄、又はポリアミン化合物とポリカルボン酸化合物と単体硫黄とを、非酸化性雰囲気中で加熱処理して得られる化合物である。
 本発明において、アミノカルボン酸化合物とは、分子中に1つのアミノ基と少なくとも1つのカルボキシル基とを有する化合物をいう。アミノカルボン酸化合物としては、3,4-ジアミノ安息香酸、3,5-ジアミノ安息香酸、p-アミノ安息香酸及びm-アミノ安息香酸等のアミノ安息香酸、4-アミノフェニル酢酸、3-アミノフェニル酢酸、3-(4-アミノフェニル)プロピオン酸、3-アミノプロピオン酸、4-アミノブタン酸、5-アミノペンタン酸、2,5-ジアミノペンタン酸、アミノ酸類としてアラニン、アルギニン、アスパラギン、アスパラギン酸、システイン、グルタミン、グルタミン酸、グリシン、ヒスチジン、イソロイシン、ロイシン、リシン、メチオニン、フェニルアラニン、プロリン、セリン、トレオニン、トリプトファン、チロシン、バリン、テアニン、トリコロミン酸、カイニン酸、ドウモイ酸、イボテン酸、アクロメリン酸等が挙げられる。
 本発明において、ポリアミン化合物とは、分子中に少なくとも2つのアミノ基を持つ化合物をいう。ポリアミン化合物としては、例えば、尿素、エチレンジアミン、ジエチレントリアミン、プトレシン、カダベリン、ヘキサメチレンジアミン、o-フェニレンジアミン、m-フェニレンジアミン、p-フェニレンジアミン、4-アミノベンゼンメタンアミン、4-アミノベンゼンエタンアミン、メラミン、1,2,4-トリアミノベンゼン、1,3,5-トリアミノベンゼン、ベンゾグアナミン等が挙げられる。
 本発明において、ポリカルボン酸化合物とは、分子中に少なくとも2つのカルボキシル基を持つ化合物をいう。ポリカルボン酸化合物としては、例えば、テレフタル酸、フマル酸、酒石酸、マレイン酸、ベンゼン-1,3-ジカルボン酸、フタル酸、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、エチレンジアミン四酢酸などがある。また、無水フタル酸、無水マレイン酸等の酸無水物であってもよい。ポリアミン化合物とポリカルボン酸化合物とを用いて硫黄変性ポリアミド化合物を製造する場合、ポリアミン化合物とポリカルボン酸化合物との比率は、モル比で0.9~1.1であることが好ましい。
 加熱処理における、アミノカルボン酸化合物と単体硫黄との割合は、アミノカルボン酸化合物100質量部に対し単体硫黄100質量部~500質量部が好ましく、150質量部~400質量部が更に好ましい。ポリアミン化合物とポリカルボン酸化合物と単体硫黄との割合は、ポリアミン化合物とポリカルボン酸化合物の合計質量100質量部に対して単体硫黄100質量部~500質量部が好ましく、150質量部~400質量部が更に好ましい。加熱処理の温度は250℃~600℃が好ましく、350℃~500℃が更に好ましい。未反応の単体硫黄は二次電池のサイクル特性を低下させる要因となるため、例えば、加熱や溶媒洗浄等により硫黄変性ポリアミド化合物から除去することが好ましい。硫黄変性ポリアミド化合物の硫黄含量は、大きな充放電容量が得られることから、40~70質量%が好ましく、45~60質量%が更に好ましい。
 前記硫黄変性脂肪族炭化水素酸化物は、脂肪族炭化水素酸化物と単体硫黄とを、非酸化性雰囲気中で加熱処理して得られる化合物である。本発明において、脂肪族炭化水素酸化物とは、脂肪族炭化水素骨格を有し、水酸基、カルボニル基、カルボキシル基又はエポキシ基からなる群から選択される基を少なくとも1つ有する化合物を意味し、炭化水素骨格は不飽和結合を有していてもよい。脂肪族炭化水素酸化物の脂肪族炭化水素骨格は、直鎖であっても、分岐鎖であってもよいが、大きな充放電容量が得られることから、直鎖であることが好ましい。脂肪族炭化水素酸化物の炭素数は、大きな充放電容量が得られることから、4~12が好ましく、6~10が更に好ましい。脂肪族炭化水素酸化物中の酸素原子は単体硫黄との加熱処理により離脱することから、脂肪族炭化水素酸化物は、酸素原子数に対する炭素原子数の比が3以上であることが好ましく、4以上が更に好ましい。
 好ましい脂肪族炭化水素酸化物としては、1-ブタノール、2-ブタノール、1-ペンタノール、3-ペンタノール、1-ヘキサノール、1-ヘプタノール、1-オクタノール、1-ノナノール、1-デカノール、1-ブタノール、1-ペンタノール、1-ヘキサノール、1-ヘプタノール、1-オクタノール、2-オクタノール、1-ノナノール、1-デカノール等のアルコール化合物;ブタナール、ペンタナール、ヘキサナール、ヘプタナール、オクタナール、ノナナール、デカナール等のアルデヒド化合物;メチルエチルケトン、ジエチルケトン、メチルヘキシルケトン等のケトン化合物;オクタン酸、ノナン酸、デカン酸のカルボン酸化合物;1,2-ブタンオキシド、1,2-ヘキサンオキシド、1,2-オクタンオキシド、1,2-デカンオキシド等のエポキシ化合物等が挙げられる。
 加熱処理における脂肪族炭化水素酸化物と単体硫黄との割合は、脂肪族炭化水素酸化物100質量部に対し単体硫黄100質量部~1000質量部が好ましく、200質量部~500質量部が更に好ましい。加熱処理の温度は300℃~500℃が好ましく、350℃~450℃が更に好ましい。加熱処理の温度が、脂肪族炭化水素酸化物の沸点より高い場合は、脂肪族炭化水素酸化物を還流させながら製造することが好ましい。未反応の単体硫黄は二次電池のサイクル特性を低下させる要因となるため、例えば、加熱や溶媒洗浄等により硫黄変性脂肪族炭化水素酸化物から除去することが好ましい。硫黄変性脂肪族炭化水素酸化物の硫黄含量は、大きな充放電容量が得られることから、45~75質量%が好ましく、50~70質量%が更に好ましい。
 前記ポリ硫化カーボンは、一般式(CSxn(xは0.5~2で、nは4以上の数である。)で表される化合物であり、例えば、硫化ナトリウム等のアルカリ金属硫化物と単体硫黄の複合体に、ヘキサクロロブタジエン等のハロゲン化不飽和炭化水素を反応させた前駆体を、加熱処理することにより得ることができる。加熱処理の温度は320℃~400℃が好ましく、ポリ硫化カーボン化合物の硫黄含量は、大きな充放電容量が得られることから、65質量%~75質量%が好ましい。
 有機化合物と硫黄との加熱処理が非酸化性雰囲気下で行われる場合の、非酸化性雰囲気とは、気相の酸素濃度が5体積%以下、好ましくは2体積%以下、更に好ましくは酸素を実質的に含有しない雰囲気であり、例えば窒素、ヘリウム、アルゴン等の不活性ガス雰囲気や、硫黄ガス雰囲気が挙げられる。
 有機硫黄系電極活物質の粒径は、平均粒子径で0.5μm~100μmであることが好ましい。本発明において、平均粒子径とは、レーザー回折光散乱法により測定された50%粒子径(D50)である。粒子径は体積基準の直径であり、レーザー回折光散乱法では、二次粒子の直径が測定される。有機硫黄系電極活物質の平均粒子径を0.5μmよりも小さくするには多大な労力を要するが、電池性能の更なる向上は望めない。また、100μmよりも大きい場合は、平滑な電極合剤層が得られない場合がある。有機硫黄系電極活物質の平均粒子径は、1μm~50μmがより好ましく、1μm~30μmが更に好ましい。
 本発明で用いる負極は、公知の方法に準じて製造することができる。例えば、負極活物質、バインダ及び導電助剤を含む配合物を、有機溶媒又は水でスラリー化した電極合剤ペーストを集電体に塗布して乾燥することにより、集電体上に電極合剤層が形成された負極を製造することができる。
 導電助剤としては、電極の導電助剤として公知のものを用いることができ、具体的には、カーボンブラック、ケッチェンブラック、アセチレンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック、カーボンナノチューブ、気相法炭素繊維(Vapor Grown Carbon Fiber:VGCF)、グラフェン、フラーレン、ニードルコークス等の炭素材料;アルミニウム粉、ニッケル粉、チタン粉等の金属粉末;酸化亜鉛、酸化チタン等の導電性金属酸化物;La、Sm、Ce、TiS等の硫化物が挙げられる。導電助剤は、平均粒子径が0.0001μm~100μmであるものが好ましく、0.01μm~50μmであるものがより好ましい。
 電極合剤層における導電助剤の含有量は、0.1~30質量%が好ましく、1~20質量%がより好ましく、2~15質量%が更に好ましい。
 バインダは、電極のバインダとして公知のものを用いることができ、例えば、スチレン-ブタジエンゴム、ブタジエンゴム、ポリエチレン、ポリプロピレン、ポリアミド、ポリアミドイミド、ポリイミド、ポリアクリロニトリル、ポリウレタン、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、エチレン-プロピレン-ジエンゴム、フッ素ゴム、スチレン-アクリル酸エステル共重合体、エチレン-ビニルアルコール共重合体、アクリロニトリル-ブタジエンゴム、スチレン-イソプレンゴム、ポリメチルメタクリレート、ポリアクリレート、ポリビニルアルコール、ポリビニルエーテル、カルボキシメチルセルロース、カルボキシメチルセルロースナトリウム、メチルセルロース、セルロースナノファイバー、ポリエチレンオキサイド、デンプン、ポリビニルピロリドン、ポリ塩化ビニル、ポリアクリル酸等が挙げられる。
 バインダは、環境負荷が低いため、水系バインダであることが好ましく、スチレン-ブタジエンゴム、カルボキシメチルセルロースナトリウム、ポリアクリル酸がさらに好ましい。バインダは1種のみ使用してもよく、2種以上を組み合わせて使用してもよい。電極合剤層におけるバインダの含有量は、1質量%~30質量%であることが好ましく、1質量%~20質量%であることが更に好ましい。
 スラリーを調製するための溶媒としては、例えばプロピレンカーボネート、エチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート、1,2-ジメトキシエタン、1,2-ジエトキシエタン、アセトニトリル、プロピオニトリル、テトラヒドロフラン、2-メチルテトラヒドロフラン、ジオキサン、1,3-ジオキソラン、ニトロメタン、N-メチルピロリドン、N,N-ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン、N,N-ジメチルアミノプロピルアミン、ポリエチレンオキシド、テトラヒドロフラン、ジメチルスルホキシド、スルホラン、γ-ブチロラクトン、水、アルコール等が挙げられる。溶媒の使用量は、スラリーの塗布方法にあわせて調整することができ、例えば、ドクターブレード法の場合は、スラリーの10質量%~80質量%であることが好ましく、20質量%~70質量%であることが更に好ましい。
 スラリーは、上記の成分に加えて他の成分を含んでいてもよい。他の成分としては、例えば、粘度調整剤、補強材、酸化防止剤、分散剤等が挙げられる。
 集電体としては、チタン、チタン合金、アルミニウム、アルミニウム合金、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼等の導電材料が挙げられる。これらの導電材料は、表面がカーボンでコートされていてもよい。これらの中でも、導電性や価格の観点からアルミニウムが好ましい。集電体の形状としては、箔状、板状、メッシュ状等が挙げられ、箔状が好ましい。箔状の場合、箔の厚さは、通常1μm~100μmである。
 スラリーを集電体に塗布する方法は、特に限定されず、ダイコーター法、コンマコーター法、カーテンコーター法、スプレーコーター法、グラビアコーター法、フレキソコーター法、ナイフコーター法、ドクターブレード法、リバースロール法、ハケ塗り法、ディップ法等の各手法を用いることができる。スラリーの粘性等の物性及び乾燥性に合わせて、良好な塗布層の表面状態を得ることが可能となることから、ダイコーター法、ドクターブレード法、ナイフコーター法が好ましい。塗布は、集電体の片面に施しても、両面に施してもよい。集電体の両面に塗布する場合、片面ずつ逐次塗布してもよく、両面同時に塗布してもよい。また、集電体の表面に連続して塗布してもよく、間欠的に塗布してもよく、ストライプ状で塗布することもできる。塗布層の厚さ、長さや幅は、電池の大きさに応じて、適宜、決定すればよい。
 集電体上に塗布されたスラリーを乾燥する方法は、特に限定されず、温風、熱風、低湿風による乾燥、真空乾燥、加熱炉などに静置する、遠赤外線、赤外線、電子線などの照射等の各手法を用いることができる。この乾燥により、スラリーの塗膜から溶媒等の揮発成分が揮発し、集電体上に電極合剤層が形成される。この後、必要に応じて電極をプレス処理してもよい。プレス処理の方法としては、例えば、金型プレス法、ロールプレス法が挙げられる。
 有機硫黄系電極活物質は、初回不可逆容量を有することから、有機硫黄系電極活物質を負極活物質とする負極は、あらかじめリチウムを吸蔵・放出させるプリドープ処理をすることができる。負極へのリチウムのプリドープは公知の方法に従って行うことができる。例えば、対極に金属リチウムを用いて半電池を組み、電気化学的にリチウムをドープする電解ドープ法、金属リチウム箔を電極に貼り付けて液体電解質の中に放置し電極へのリチウムの拡散を利用してドープする拡散ドープ法等が挙げられる。
<正極>
 本発明では、正極の正極活物質としてリチウム遷移金属酸化物及びリチウム遷移金属リン酸化合物が使用される。これらの組合せを正極活物質として用い且つ負極活物質として上述した有機硫黄化合物を用いることによって、レート特性に優れ、高速充放電を繰り返しても充放電容量の低下が少ないリチウムイオン二次電池が得られる。
 前記リチウム遷移金属酸化物としては、リチウムコバルト系酸化物、リチウムニッケル系酸化物、リチウムマンガン系酸化物、リチウム銅酸化物、リチウムバナジウム酸化物、リチウム鉄酸化物等が挙げられる。
 本発明において、リチウムコバルト系酸化物とは、リチウム及びコバルトを構成金属元素とする酸化物の他、リチウム及びコバルト以外に他の1種又は2種以上の金属元素を含み、他の金属元素の割合が、原子数換算でコバルトと同等又はコバルトよりも少ない割合である複合酸化物をいう。リチウム及びコバルト以外の金属元素を2種以上含み、それらのうち1種の金属の割合がコバルトよりも多い場合は、リチウムコバルト系酸化物には含めない。リチウム及びコバルト以外の金属元素としては、ニッケル、マンガン、アルミニウム、クロム、鉄、バナジウム、マグネシウム、バナジウム、チタン、ジルコニウム、ニオブ、モリブデン、タングステン、銅、亜鉛、ガリウム、インジウム、スズ、ランタン、セリウム等が挙げられる。リチウムコバルト系酸化物としては、LiCoO2、LiNi1/3Co1/3Mn1/32、Li2MnO3-LiCoO2等が挙げられる。
 リチウムニッケル系酸化物とは、リチウム及びニッケルを構成金属元素とする酸化物の他、リチウム及びニッケル以外に他の1種又は2種以上の金属元素を含み、他の金属元素の割合が、原子数換算でニッケルと同等又はニッケルよりも少ない割合である複合酸化物をいう。リチウム及びニッケル以外の金属元素を2種以上含み、それらのうち1種の金属の割合がニッケルよりも多い場合、及びコバルトの割合がニッケルと同等である場合は、リチウムニッケル系酸化物には含めない。リチウム及びニッケル以外の金属元素としては、コバルト、マンガン、アルミニウム、クロム、鉄、バナジウム、マグネシウム、バナジウム、チタン、ジルコニウム、ニオブ、モリブデン、タングステン、銅、亜鉛、ガリウム、インジウム、スズ、ランタン、セリウム等が挙げられる。リチウムニッケル系酸化物としては、LiNiO2、LiNi0.5Co0.2Mn0.32、LiNi0.8Co0.1Mn0.12、LiNi0.5Mn0.52、LiNi0.80Co0.17Al0.032、LiNi0.80Co0.15Al0.052、LiNi0.6Co0.2Mn0.22、Li2MnO3-LiNiO2等が挙げられる。
 リチウムマンガン系酸化物とは、リチウム及びマンガンを構成金属元素とする酸化物の他、リチウム及びマンガン以外に他の1種又は2種以上の金属元素を含み、他の金属元素の割合が、原子数換算でマンガンと同等又はマンガンよりも少ない割合である複合酸化物をいう。リチウム及びマンガン以外の金属元素を2種以上含み、それらのうち1種の金属の割合がマンガンよりも多い場合、コバルトの割合がマンガンと同等である場合、及びニッケルの割合がマンガンと同等である場合は、リチウムマンガン系酸化物には含めない。リチウム及びニッケル以外の金属元素としては、コバルト、ニッケル、アルミニウム、クロム、鉄、バナジウム、マグネシウム、バナジウム、チタン、ジルコニウム、ニオブ、モリブデン、タングステン、銅、亜鉛、ガリウム、インジウム、スズ、ランタン、セリウム等が挙げられる。リチウムマンガン系酸化物としては、LiMnO2、LiMn24、Li2MnO3、Li1.1Mn1.8Mg0.14、Li1.1Mn1.85Al0.054、LiMn1.8Al0.24、Li1.2Fe0.4Mn0.42、LiNi0.5Mn1.54、Li2MnO3-LiMnO2等が挙げられる。
 リチウム銅酸化物としては、Li2CuO2等が挙げられる。リチウムバナジウム酸化物としては、LiV38等が挙げられる。リチウム鉄酸化物としては、LiFe34等が挙げられる。
 本発明の正極活物質として用いるリチウム遷移金属酸化物としては、リチウムコバルト系酸化物、リチウムニッケル系酸化物、リチウムマンガン系酸化物が好ましく、リチウムコバルト系酸化物、リチウムニッケル系酸化物が更に好ましい。
 リチウム遷移金属酸化物と組み合わせて用いられる前記リチウム含有遷移金属リン酸化合物は、リチウム及び遷移金属を含むリン酸化合物である。リン酸としては、例えばオルトリン酸(HPO)及びピロリン酸(H)が挙げられる。遷移金属としては、例えばTi、V、Cr、Mn、Fe、Co、Ni、Cu、Zn及びCdなどが挙げられる。これらの遷移金属は1種を単独で又は2種以上を組み合わせて用いることができる。リチウム含有遷移金属リン酸化合物としては、例えば、LiFePO4、Li3Fe2(PO43、LiFeP27等のリチウム含有リン酸鉄化合物;LiCoPO4等のリチウム含有リン酸コバルト化合物;LiMnPO4等のリチウム含有リン酸マンガン化合物;LiNiPO等のリチウム含有リン酸ニッケル化合物、又はこれらのリチウム遷移金属リン酸化合物の主体となる遷移金属原子の一部をマグネシウム、アルミニウム、ケイ素、カルシウム、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、ガリウム、ストロンチウム、ジルコニウム、ニオブ、バリウム等の他の金属で置換したもの等が挙げられる。
 本発明で用いる正極活物質は、リチウム遷移金属酸化物粒子及びリチウム含有遷移金属リン酸化合物粒子を配合したものであってもよく、リチウム遷移金属酸化物とリチウム含有遷移金属リン酸化合物とが複合化した粒子であってもよい。リチウム遷移金属酸化物とリチウム含有遷移金属リン酸化合物とが複合化した粒子の場合は、これらがモザイク状に複合化した粒子であっても、どちらか一方が他の一方に被覆された粒子であってもよい。本発明においては、リチウム遷移金属酸化物とリチウム含有遷移金属リン酸化合物とが複合化した粒子が好ましく、リチウム遷移金属酸化物がリチウム含有遷移金属リン酸化合物により被覆された粒子が更に好ましい。リチウム遷移金属酸化物は、リチウム含有遷移金属リン酸化合物により完全に被覆されていても、リチウム遷移金属酸化物の一部が露出していても差し支えない。この場合、リチウム遷移金属酸化物に含まれる遷移金属の種類と、リチウム含有遷移金属リン酸化合物に含まれる遷移金属の種類は、同一であってもよく、異なっていてもよい。
 リチウム遷移金属酸化物がリチウム含有遷移金属リン酸化合物により被覆された粒子は、公知の方法を用いて製造することができる。例えば、リチウム遷移金属酸化物又はその前駆体の粒子の表面にリン酸塩の粒子を付着させた後、焼成する方法、リチウム遷移金属酸化物又はその前駆体の粒子を、リン酸塩又はリン酸の溶液に含浸させた後、焼成する方法、大粒径のリチウム遷移金属酸化物の粒子に、小粒径のリチウム含有遷移金属リン酸化合物の粒子を衝突させてメカノケミカル反応によりリチウム遷移金属酸化物の表面を被覆する方法等が挙げられる。リチウム遷移金属酸化物又はその前駆体の粒子の表面にリン酸塩の粒子を付着させた後、焼成する方法や、リチウム遷移金属酸化物又はその前駆体の粒子を、リン酸塩又はリン酸の溶液に含浸させた後、焼成する方法では、焼成の過程でリチウム含有遷移金属リン酸化合物が形成される。リチウム含有遷移金属リン酸化合物に使用されるリン酸塩としては、NH42PO4、(NH42HPO4、Li3PO4、LiH2PO4、FePO4、Zn3(PO42等が挙げられる。
 本発明で用いる正極活物質において、リチウム遷移金属酸化物に対するリチウム含有遷移金属リン酸化合物の割合があまりに小さい場合には、優れたレート特性が得られず、あまりに大きい場合には充放電容量が低下することから、本発明で用いる正極活物質に含まれる遷移金属の合計のモル数に対するリンのモル数の比が0.0001~0.2であることが好ましく、0.0005~0.1であることが更に好ましく、0.001~0.05であることが最も好ましい。なお、遷移金属の合計のモル数に対するリンのモル数の比が小さいほど、リチウム遷移金属酸化物に対するリチウム含有遷移金属リン酸化合物の割合が小さく、このモル比が大きいほどリチウム遷移金属酸化物に対するリチウム含有遷移金属リン酸化合物の割合が大きいといえる。
 本発明で用いる正極は、前述した負極の製造方法の、負極活物質をリチウム遷移金属酸化物及びリチウム含有遷移金属リン酸化合物に置き換えることにより製造することができる。ただし、本発明で用いる正極活物質は、水溶液では酸性を示すことから、スラリーの溶媒として有機溶媒を用いることが好ましく、バインダも溶剤系バインダを用いることが好ましい。
<非水電解質>
 本発明で用いる非水電解質としては、例えば、電解質を有機溶媒に溶解して得られる液体電解質、電解質を有機溶媒に溶解し高分子でゲル化した高分子ゲル電解質、有機溶媒を含まず電解質が高分子に分散した純正高分子電解質、無機固体電解質等が挙げられる。
 液体電解質及び高分子ゲル電解質に用いる電解質としては、例えば、従来公知のリチウム塩が用いられ、例えば、LiPF6、LiBF4、LiAsF6、LiCF3SO3、LiCF3CO2、LiN(CF3SO22、LiN(C25SO22、LiN(SO2F)2、LiC(CF3SO23、LiB(CF3SO34、LiB(C242、LiBF2(C24)、LiSbF6、LiSiF5、LiSCN、LiClO4、LiCl、LiF、LiBr、LiI、LiAlF4、LiAlCl4、LiPO22及びこれらの誘導体等が挙げられ、これらの中でも、LiPF6、LiBF4、LiClO4、LiAsF6、LiCF3SO3、LiN(CF3SO22、LiN(C25SO22、LiN(SO2F)2、及びLiC(CF3SO23並びにLiCF3SO3の誘導体、及びLiC(CF3SO23の誘導体からなる群から選ばれる1種以上を用いるのが好ましい。液体電解質及び高分子ゲル電解質における、電解質の含有量は、好ましくは0.5~7mol/L、より好ましくは0.8~1.8mol/Lである。
 純正高分子電解質に用いる電解質としては、例えば、LiN(CF3SO22、LiN(C25SO22、LiN(SO2F)2、LiC(CF3SO23、LiB(CF3SO34、LiB(C242が挙げられる。
 無機固体電解質としては、Li1+xx2-y(PO43(A=Al,Ge,Sn,Hf,Zr,Sc,Y、B=Ti,Ge,Zn、0<x<0.5)、LiMPO4(M=Mn,Fe,Co,Ni)、Li3PO4等のリン酸系材料;Li3XO4(X=As,V)、Li3+xx1-x4(A=Si,Ge,Ti、B=P,As,V、0<x<0.6)、Li4+xxSi1-x4(A=B,Al,Ga,Cr,Fe、0<x<0.4)(A=Ni,Co、0<x<0.1)Li4-3yAlySiO4(0<y<0.06)、Li4-2yZnyGeO4(0<y<0.25)、LiAlO2、Li2BO4、Li4XO4(X=Si,Ge,Ti)、リチウムチタネート(LiTiO2、LiTi24、Li4TiO4、Li2TiO3、Li2Ti37、Li4Ti512)等のリチウム複合酸化物;LiBr、LiF、LiCl、LiPF6、LiBF4等のリチウムとハロゲンを含む化合物;LiPON,LiN(SO2CF32、LiN(SO2252、Li3N、LiN(SO2372等のリチウムと窒素を含む化合物;La0.55Li0.35TiO3等のリチウムイオン伝導性を有するペロブスカイト構造を有する結晶;Li7-La3Zr213等のガーネット型構造を有する結晶;50Li4SiO4・50Li3BO3等のガラス;Li10GeP212、Li3.25Ge0.250.754等のリチウム・リン硫化物系の結晶、30Li2S・26B23・44LiI、63Li2S・36SiS2・1Li3PO4、57Li2S・38SiS2・5Li4SiO4、70Li2S・30GeS2、50Li2S・50GeS2等のリチウム・リン硫化物系のガラス;Li7311、Li3.250.954、Li10GeP212、Li9.6312、Li9.54Si1.741.4411.7Cl0.3等のガラスセラミック等が挙げられる。
 非水電解質の調製に用いる有機溶媒としては、非水電解質に通常用いられているものを1種又は2種以上組み合わせて用いることができる。具体的には、例えば、飽和環状カーボネート化合物、飽和環状エステル化合物、スルホキシド化合物、スルホン化合物、アマイド化合物、飽和鎖状カーボネート化合物、鎖状エーテル化合物、環状エーテル化合物、飽和鎖状エステル化合物等が挙げられる。
 前記有機溶媒のうち、飽和環状カーボネート化合物、飽和環状エステル化合物、スルホキシド化合物、スルホン化合物及びアマイド化合物は、比誘電率が高いため非水電解質の誘電率を上げる役割を果たすことから好ましく、特に飽和環状カーボネート化合物が好ましい。斯かる飽和環状カーボネート化合物としては、例えば、エチレンカーボネート、1,2-プロピレンカーボネート、1,3-プロピレンカーボネート、1,2-ブチレンカーボネート、1,3-ブチレンカーボネート、1,1-ジメチルエチレンカーボネート等が挙げられる。前記飽和環状エステル化合物としては、例えば、γ-ブチロラクトン、γ-バレロラクトン、γ-カプロラクトン、δ-ヘキサノラクトン、δ-オクタノラクトン等が挙げられる。前記スルホキシド化合物としては、例えば、ジメチルスルホキシド、ジエチルスルホキシド、ジプロピルスルホキシド、ジフェニルスルホキシド、チオフェン等が挙げられる。前記スルホン化合物としては、例えば、ジメチルスルホン、ジエチルスルホン、ジプロピルスルホン、ジフェニルスルホン、スルホラン(テトラメチレンスルホンともいう)、3-メチルスルホラン、3,4-ジメチルスルホラン、3,4-ジフェニメチルスルホラン、スルホレン、3-メチルスルホレン、3-エチルスルホレン、3-ブロモメチルスルホレン等が挙げられ、スルホラン、テトラメチルスルホランが好ましい。前記アマイド化合物としては、N-メチルピロリドン、ジメチルホルムアミド、ジメチルアセトアミド等が挙げられる。
 前記有機溶媒のうち、飽和鎖状カーボネート化合物、鎖状エーテル化合物、環状エーテル化合物及び飽和鎖状エステル化合物は、非水電解質の粘度を低くすることができ、電解質イオンの移動性を高くすることができる等、出力密度等の電池特性を優れたものにすることができる。また、低粘度であり、低温での非水電解質の性能を高くすることができることから、特に飽和鎖状カーボネート化合物が好ましい。飽和鎖状カーボネート化合物としては、例えば、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、エチルブチルカーボネート、メチル-t-ブチルカーボネート、ジイソプロピルカーボネート、t-ブチルプロピルカーボネート等が挙げられる。前記の鎖状エーテル化合物又は環状エーテル化合物としては、例えば、ジメトキシエタン、エトキシメトキシエタン、ジエトキシエタン、テトラヒドロフラン、ジオキソラン、ジオキサン、1,2-ビス(メトキシカルボニルオキシ)エタン、1,2-ビス(エトキシカルボニルオキシ)エタン、1,2-ビス(エトキシカルボニルオキシ)プロパン、エチレングリコールビス(トリフルオロエチル)エーテル、プロピレングリコールビス(トリフルオロエチル)エーテル、エチレングリコールビス(トリフルオロメチル)エーテル、ジエチレングリコールビス(トリフルオロエチル)エーテル等が挙げられ、これらの中でも、ジオキソランが好ましい。
 前記飽和鎖状エステル化合物としては、分子中の炭素数の合計が2~8であるモノエステル化合物及びジエステル化合物が好ましく、具体的な化合物としては、例えば、ギ酸メチル、ギ酸エチル、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸イソブチル、酢酸ブチル、プロピオン酸メチル、プロピオン酸エチル、酪酸メチル、イソ酪酸メチル、トリメチル酢酸メチル、トリメチル酢酸エチル、マロン酸メチル、マロン酸エチル、コハク酸メチル、コハク酸エチル、3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、エチレングリコールジアセチル、プロピレングリコールジアセチル等が挙げられ、ギ酸メチル、ギ酸エチル、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸イソブチル、酢酸ブチル、プロピオン酸メチル、及びプロピオン酸エチルが好ましい。
 その他、非水電解質の調製に用いる有機溶媒として、例えば、アセトニトリル、プロピオニトリル、ニトロメタンやこれらの誘導体、各種イオン液体を用いることもできる。
 高分子ゲル電解質に用いる高分子としては、ポリエチレンオキシド、ポリプロピレンオキシド、ポリビニルクロライド、ポリアクリロニトリル、ポリメチルメタクリレート、ポリエチレン、ポリフッ化ビニリデン、ポリヘキサフルオロプロピレン等が挙げられる。純正高分子電解質に用いる高分子としては、ポリエチレンオキシド、ポリプロピレンオキシド、ポリスチレンスルホン酸が挙げられる。ゲル電解質中の配合比率、複合化の方法については特に制限はなく、本技術分野で公知の配合比率、公知の複合化方法を採用することができる。
 非水電解質は、電池寿命の向上、安全性向上等のため、例えば、電極被膜形成剤、酸化防止剤、難燃剤、過充電防止剤等、公知の他の添加剤を含んでもよい。他の添加剤を用いる場合、非水電解質全体に対し、通常0.01質量部~10質量部であり、好ましくは、0.1質量部~5質量部である。
<その他の部材>
 本発明が適用できるリチウムイオン二次電池は、正極と負極との間にセパレータを有する場合がある。セパレータとしては、非水電解質二次電池に、通常用いられる高分子の微多孔性のフィルムを特に限定なく使用できる。フィルムとしては、例えば、ポリエチレン、ポリプロピレン、ポリフッ化ビニリデン、ポリ塩化ビニリデン、ポリアクリロニトリル、ポリアクリルアミド、ポリテトラフルオロエチレン、ポリスルホン、ポリエーテルスルホン、ポリカーボネート、ポリアミド、ポリイミド、ポリエチレンオキシドやポリプロピレンオキシド等のポリエーテル類、カルボキシメチルセルロースやヒドロキシプロピルセルロース等の種々のセルロース類、ポリ(メタ)アクリル酸及びその種々のエステル類等を主体とする高分子化合物やその誘導体、これらの共重合体や混合物からなるフィルム等が挙げられ、これらのフィルムは、アルミナやシリカなどのセラミック材料や、酸化マグネシウム、アラミド樹脂、ポリフッ化ビニリデンでコートされていても構わない。
 これらのフィルムは、単独で用いても、これらのフィルムを重ね合わせて複層フィルムとして用いてもよい。これらのフィルムは、種々の添加剤を含んでいてもよく、その種類や含有量は特に制限されない。これらのフィルムの中でも、二次電池の製造方法で製造される二次電池には、ポリエチレンやポリプロピレン、ポリフッ化ビニリデン、ポリスルホンからなるフィルムが好ましく用いられる。なお非水溶媒電解質が純正高分子電解質や無機固体電解質の場合には、セパレータを含まない場合もある。
 本発明のリチウムイオン二次電池の外装部材としては、ラミネートフィルム又は金属製容器を用いることができる。外装部材の厚さは、通常0.5mm以下であり、好ましくは0.3mm以下である。外装部材の形状としては、扁平型(薄型)、角型、円筒型、コイン型、ボタン型等が挙げられる。
 ラミネートフィルムは、樹脂フィルム間に金属層を有する多層フィルムを用いることもできる。金属層は、軽量化のためにアルミニウム箔もしくはアルミニウム合金箔が好ましい。樹脂フィルムは、例えばポリプロピレン、ポリエチレン、ナイロン、ポリエチレンテレフタレート等の高分子材料を用いることができる。ラミネートフィルムは、熱融着によりシールを行って外装部材の形状に形成することができる。
 金属製容器は、例えば、ステンレス、アルミニウム又はアルミニウム合金等から形成することができる。アルミニウム合金としては、マグネシウム、亜鉛、ケイ素などの元素を含む合金が好ましい。アルミニウム又はアルミニウム合金において、鉄、銅、ニッケル、クロム等の遷移金属の含有量を1%以下にすることで、高温環境下での長期信頼性及び放熱性を飛躍的に向上させることができる。
 以下に、実施例及び比較例により本発明を更に詳細に説明する。ただし、以下の実施例等により本発明は何ら制限されるものではない。
 以下の実施例等において、遷移金属に対するリンのモル比は、正極活物質を、硝酸を分解剤としてマイクロ波分解装置を用いて水溶液にした後、ICP発光分光分析装置を用いて各遷移金属及びリンを定量することにより算出した。また、有機硫黄系電極活物質における硫黄含量は、硫黄及び酸素が分析可能なCHN分析装置を用いた分析結果から算出した。
〔製造例1:有機硫黄系電極活物質A1〕
 開口径30μmのふるいで分級したポリアクリロニトリル粉末(シグマアルドリッチ製)10質量部及び硫黄粉末(シグマアルドリッチ製、平均粒子径200μm)30質量部を、乳鉢を用いて混合した。特開2013-054957の実施例に準じて、この混合物を有底円筒状ガラス管に収容したのち、ガラス管の下部をルツボ型電気炉に入れ、窒素気流下で発生する硫化水素を除去しながら400℃で1時間加熱した。冷却後、生成物をガラスチューブオーブンに入れ、真空吸引しつつ250℃で3時間加熱することにより単体硫黄を除去した。得られた硫黄変性生成物を、ボールミルを用いて粉砕、ふるいで分級し平均粒子径が10μmの有機硫黄系電極活物質A1(硫黄変性ポリアクリロニトリル)を得た。得られた有機硫黄系電極活物質A1の硫黄含量は38.4質量%であった。
〔製造例2:有機硫黄系電極活物質A2〕
 ポリアクリロニトリルの粉末の代わりに27μm~32μmのポリエチレン(コアフロント製)を使用した以外は製造例1と同様の操作を行い平均粒子径が10μmの有機硫黄系電極活物質A2(ポリチエノアセン化合物)を得た。得られた有機硫黄系電極活物質A2の硫黄含量は43.8質量%であった。
〔製造例3:正極活物質C1〕
 硫酸ニッケル(II)六水和物(和光純薬工業製)、硫酸マンガン(II)五水和物(和光純薬工業製)及び硫酸コバルト(II)七水和物(和光純薬工業製)を、ニッケル:マンガン:コバルトのモル比が1:1:1で、各金属イオンの濃度の合計が2mol/Lになるように水に溶解し、遷移金属混合水溶液を調製した。撹拌機を有するガラス容器に1mol/L炭酸ナトリウム水溶液1000gを入れ、70℃に加温し、窒素気流下で、先に調製した遷移金属混合水溶液500gを1時間かけて滴下し、70℃で更に1時間撹拌を続けた。生成した析出物質をろ過し、蒸留水で洗浄し、乾燥して、ニッケル-マンガン-コバルトの炭酸塩を得た。ニッケル-マンガン-コバルトの炭酸塩と炭酸リチウム(和光純薬工業製)を、リチウム:ニッケル:マンガン:コバルトのモル比が3:1:1:1になるように秤量し、ボールミルを用いて乾式混合し、この混合物を950℃で焼成した。得られた焼成物を、ボールミルを用いて粉砕、ふるいで分級し、平均粒子径が10μmであり、LiNi1/3Mn1/3Co1/32で表される比較例の正極活物質C1を得た。
〔製造例4:正極活物質B1〕
 7gの正極活物質C1を、10gの0.6mmol/Lリン酸水溶液に入れ、1時間撹拌し、乾燥させた後、800℃で5時間焼成することにより、実施例の正極活物質B1を得た。正極活物質B1の平均粒子径は10μmであり、すべての遷移金属に対するリンのモル比は0.008であった。正極活物質B1において、リンは、LiNiPO、LiMnPO4、LiCoPO4等のリチウム含有遷移金属リン酸化合物として存在していると考えられ、正極活物質B1の断面をX線光電子分光分析により観察したところ、リンは正極活物質B1の中心部にはほとんど見られず、外殻部に多いことから、正極活物質B1はリチウム遷移金属酸化物をリチウム含有遷移金属リン酸化合物が被覆した構造であると考えられる。
〔製造例5:正極活物質B2〕
 7gの正極活物質C1を、硝酸ニッケルとリン酸水素二アンモニウムをそれぞれ0.3mmol/L含有する水溶液10gに入れ、1時間撹拌し、乾燥させた後、600℃で5時間焼成することにより、実施例の正極活物質B2を得た。正極活物質B2の平均粒子径が10μmであり、すべての遷移金属に対するリンのモル比は0.005である。正極活物質B2はリチウム遷移金属酸化物をリチウム含有遷移金属リン酸化合物が被覆した構造であると考えられる。
〔製造例6:正極活物質B3〕
 100質量部の正極活物質C1と、0.25質量部の平均粒子径0.5μmのLiFePO4を、メカノケミカル装置(ホソカワミクロン社製、型式:AMS-Mini)に投入し、クリアランス:1mm、ケーシング回転速度:6000rpmにて20分間メカノケミカル処理を行った。この処理により、LiNi1/3Mn1/3Co1/32の粒子の表面がLiFePO4で被覆された、実施例の正極活物質B3を得た。正極活物質B3の平均粒子径は10μmであり、すべての遷移金属に対するリンのモル比は0.004である。
〔負極の製造〕
 電極活物質として84.0質量部の有機硫黄系電極活物質A1、導電助剤として10.0質量部のアセチレンブラック(電気化学工業製)、3.0質量部のカーボンナノチューブ(VGCF:昭和電工製)、バインダとして1.5質量部のスチレン-ブタジエンゴム(水分散液、日本ゼオン製)、及び1.5質量部のカルボキシメチルセルロースナトリウム(ダイセルファインケム製)を、溶媒として130質量部の水に混合し、自転・公転ミキサーを用いて分散しスラリーを調製した。このスラリー組成物を、ドクターブレード法によりカーボンコートアルミニウム箔(厚さ22μm)の集電体の片面に塗布し、90℃で3時間乾燥した。その後、この電極を所定の大きさにカットし、120℃で2時間真空乾燥を行い、円盤状の負極1を作製した。また、有機硫黄系電極活物質A1の代わりに、有機硫黄系電極活物質A2を用いた以外は、同様の操作を行い、円盤状の負極2を作製した。
〔正極の製造〕
 正極活物質として90.0質量部の正極活物質C1、導電助剤として5.0質量部のアセチレンブラック(電気化学工業製)、バインダとして5.0質量部のポリフッ化ビニリデン(クレハ製)を、溶媒としての100質量部のN-メチルピロリドンに混合し、自転・公転ミキサーを用いて分散しスラリーを調製した。このスラリー組成物を、ドクターブレード法によりアルミニウム箔(厚さ20μm)の集電体の片面に塗布し、90℃で3時間乾燥した。その後、この電極を所定の大きさにカットし、150℃で2時間真空乾燥を行い、円盤状の正極1を作製した。また、正極活物質C1の代わりに、正極活物質B1~B3を用いた他は、同様の操作を行い、円盤状の正極2~4を作製した。正極2~4が実施例の正極、正極1が比較例の正極である。
 エチレンカーボネート50体積%、ジエチルカーボネート50体積%からなる混合溶媒に、LiPF6を1.0mol/Lの濃度で溶解し非水電解質を調製した。
〔電池の組み立て〕
 負極1~2、正極1~4を、表1の組合せで用い、セパレータとしてガラスフィルターを挟んでケース内に保持した。その後、先に調製した非水電解質をケース内に注入し、ケースを密閉、封止して、リチウムイオン二次電池(φ20mm、厚さ3.2mmのコイン型)を製作した。

Figure JPOXMLDOC01-appb-T000002
〔充放電試験方法〕
 リチウムイオン二次電池を25℃の恒温槽に入れ、充電終止電圧を3.2V、放電終止電圧を0.8Vとし、充電レート0.1C、放電レート0.1Cの充放電を5サイクル、次いで充電レート5C、放電レート5Cの充放電を100サイクル行い、各サイクルの充電容量と放電容量(単位:mAh/g)を測定した。
 充電レート0.1C、放電レート0.1Cの充放電で5サイクル目の放電容量に対する、充電レート5C、放電レート5Cの充放電で1サイクル目の放電容量の割合をレート特性(%)とし、充電レート5C、放電レート5Cの充放電で1サイクル目の放電容量に対する、充電レート5C、放電レート5Cの充放電で100サイクル目の放電容量の割合を容量維持率(%)とした。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000003
 負極活物質として有機硫黄系電極活物質を用い、正極活物質としてリチウム遷移金属酸化物及びリチウム含有遷移金属リン酸化合物の組合せを用いた実施例1~5のリチウムイオン二次電池は、正極活物質としてリチウム遷移金属酸化物のみを用いた比較例1及び2のリチウムイオン二次電池と比較して、レート特性に優れ、高速充放電を繰り返しても充放電容量の低下が少ないという特性を有していた。
 本発明によれば、レート特性に優れ、高速充放電を繰り返しても充放電容量の低下が少ないリチウムイオン二次電池を提供することができる。

Claims (4)

  1.  正極活物質を含む正極、負極活物質を含む負極、及び非水電解質を有するリチウムイオン二次電池であって、正極活物質がリチウム遷移金属酸化物及びリチウム含有遷移金属リン酸化合物からなり、負極活物質が有機硫黄系電極活物質であるリチウムイオン二次電池。
  2.  リチウム遷移金属酸化物が、リチウムコバルト系酸化物又はリチウムニッケル系酸化物である請求項1に記載のリチウムイオン二次電池。
  3.  正極活物質に含まれる遷移金属の合計のモル数に対するリンのモル数の比が、0.0001~0.2である請求項1又は2に記載のリチウムイオン二次電池。
  4.  有機硫黄系電極活物質が硫黄変性ポリアクリロニトリルである請求項1~3のいずれか1項に記載のリチウムイオン二次電池。
PCT/JP2019/020058 2018-05-23 2019-05-21 リチウムイオン二次電池 WO2019225588A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020521242A JPWO2019225588A1 (ja) 2018-05-23 2019-05-21 リチウムイオン二次電池
KR1020207028431A KR20210011363A (ko) 2018-05-23 2019-05-21 리튬이온 이차전지
CN201980026215.1A CN112005417A (zh) 2018-05-23 2019-05-21 锂离子二次电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018099196 2018-05-23
JP2018-099196 2018-05-23

Publications (1)

Publication Number Publication Date
WO2019225588A1 true WO2019225588A1 (ja) 2019-11-28

Family

ID=68615830

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/020058 WO2019225588A1 (ja) 2018-05-23 2019-05-21 リチウムイオン二次電池

Country Status (4)

Country Link
JP (1) JPWO2019225588A1 (ja)
KR (1) KR20210011363A (ja)
CN (1) CN112005417A (ja)
WO (1) WO2019225588A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014096326A (ja) * 2012-11-12 2014-05-22 Toyota Industries Corp 二次電池用負極活物質、並びにこれを用いた負極及び二次電池
JP2014518432A (ja) * 2011-05-31 2014-07-28 コカン カンパニー リミテッド リチウム二次電池
JP2016081927A (ja) * 2014-10-14 2016-05-16 東莞新能源科技有限公司 速やかに充電可能なリチウムイオン電池

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003151550A (ja) 2001-11-13 2003-05-23 Hitachi Maxell Ltd 非水二次電池
KR101331382B1 (ko) 2008-10-17 2013-11-20 가부시키가이샤 도요다 지도숏키 황 변성 폴리아크릴로니트릴, 그 제조 방법, 및 그 용도
JP5440003B2 (ja) 2009-07-23 2014-03-12 株式会社豊田中央研究所 蓄電デバイス及び電極活物質の製造方法
JP5467264B2 (ja) 2010-02-16 2014-04-09 株式会社豊田自動織機 非水電解液二次電池の電極材料の製造方法、非水電解液二次電池の電極材料およびその電極材料を用いた非水電解液二次電池
JP5164286B2 (ja) 2010-11-02 2013-03-21 株式会社豊田自動織機 硫黄系正極活物質の製造方法、硫黄系正極活物質、および、リチウムイオン二次電池用正極
JP2012150933A (ja) 2011-01-18 2012-08-09 Toyota Industries Corp 硫黄系正極活物質とその製造方法及びリチウムイオン二次電池用正極。
JP5142162B2 (ja) 2011-01-18 2013-02-13 株式会社豊田自動織機 リチウムイオン二次電池用正極活物質の製造方法及びリチウムイオン二次電池用正極
JP5618112B2 (ja) 2011-02-25 2014-11-05 株式会社豊田自動織機 硫黄変性ポリアクリロニトリルおよびその評価方法ならびに硫黄変性ポリアクリロニトリルを用いた正極、非水電解質二次電池、および車両
WO2015045386A1 (ja) * 2013-09-25 2015-04-02 国立大学法人東京大学 非水系二次電池
US9692041B2 (en) * 2013-10-02 2017-06-27 Samsung Electronics Co., Ltd. Lithium battery and method of preparing cathode active material for the lithium battery
JP6132102B2 (ja) 2013-10-04 2017-05-24 住友ゴム工業株式会社 硫黄系正極活物質の製造方法およびリチウムイオン二次電池の製造方法
CN107531623B (zh) 2015-03-31 2021-05-11 国立研究开发法人产业技术综合研究所 有机硫材料及其制造方法
CN107709233B (zh) 2015-03-31 2021-05-14 国立研究开发法人产业技术综合研究所 有机硫材料及其制造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014518432A (ja) * 2011-05-31 2014-07-28 コカン カンパニー リミテッド リチウム二次電池
JP2014096326A (ja) * 2012-11-12 2014-05-22 Toyota Industries Corp 二次電池用負極活物質、並びにこれを用いた負極及び二次電池
JP2016081927A (ja) * 2014-10-14 2016-05-16 東莞新能源科技有限公司 速やかに充電可能なリチウムイオン電池

Also Published As

Publication number Publication date
CN112005417A (zh) 2020-11-27
KR20210011363A (ko) 2021-02-01
JPWO2019225588A1 (ja) 2021-05-27

Similar Documents

Publication Publication Date Title
US11594732B2 (en) Organo sulfur-based electrode active material
WO2019088088A1 (ja) スラリー組成物、及びスラリー組成物を用いた電極
WO2019181703A1 (ja) 内部短絡による熱暴走の抑制方法
WO2019208153A1 (ja) 非水電解質二次電池
JP7261169B2 (ja) 有機硫黄系電極活物質の製造方法
WO2022004696A1 (ja) 硫黄変性ポリアクリロニトリル、それを含む電極活物質、該電極活物質を含む二次電池用電極、該電極の製造方法及び該電極を用いた非水電解質二次電池
WO2019189146A1 (ja) リチウムイオン二次電池、及びその作動方法
WO2019225588A1 (ja) リチウムイオン二次電池
US20220376257A1 (en) Sulfur-modified polyacrylonitrile
WO2021060045A1 (ja) 非水電解質二次電池用電極及び当該電極を用いた非水電解質二次電池
US20220340693A1 (en) Production method of sulfur-modified polyacrylonitrile
WO2023085245A1 (ja) 組成物、電極、電池及び電極活物質材料
WO2024057992A1 (ja) 硫黄含有材料、硫黄含有電池材料、電極及び電池
WO2021124522A1 (ja) 電極活物質及びその製造方法、電極合剤層形成用組成物、非水電解質二次電池用電極並びに非水電解質二次電池
JP2021051854A (ja) 非水電解質二次電池の製造方法
WO2024095854A1 (ja) 正極活物質用硫黄含有材料、リチウムイオン二次電池、リチウムイオン二次電池の充放電方法及び正極活物質層形成用組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19806662

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020521242

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19806662

Country of ref document: EP

Kind code of ref document: A1