WO2021124522A1 - 電極活物質及びその製造方法、電極合剤層形成用組成物、非水電解質二次電池用電極並びに非水電解質二次電池 - Google Patents

電極活物質及びその製造方法、電極合剤層形成用組成物、非水電解質二次電池用電極並びに非水電解質二次電池 Download PDF

Info

Publication number
WO2021124522A1
WO2021124522A1 PCT/JP2019/049887 JP2019049887W WO2021124522A1 WO 2021124522 A1 WO2021124522 A1 WO 2021124522A1 JP 2019049887 W JP2019049887 W JP 2019049887W WO 2021124522 A1 WO2021124522 A1 WO 2021124522A1
Authority
WO
WIPO (PCT)
Prior art keywords
sulfur
mass
selenium
electrode
active material
Prior art date
Application number
PCT/JP2019/049887
Other languages
English (en)
French (fr)
Inventor
健二 撹上
洋平 青山
智史 横溝
Original Assignee
株式会社Adeka
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Adeka filed Critical 株式会社Adeka
Priority to PCT/JP2019/049887 priority Critical patent/WO2021124522A1/ja
Publication of WO2021124522A1 publication Critical patent/WO2021124522A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/137Electrodes based on electro-active polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1399Processes of manufacture of electrodes based on electro-active polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrode active material that can be suitably used for a non-aqueous electrolyte secondary battery, a method for producing the same, a composition for forming an electrode mixture layer, an electrode for a non-aqueous electrolyte secondary battery, and a non-aqueous electrolyte secondary battery.
  • Non-aqueous electrolyte secondary batteries such as lithium-ion secondary batteries are small and lightweight, have high energy density, and can be repeatedly charged and discharged, and are used in portable electronic devices such as portable personal computers, handy video cameras, and information terminals. Widely used as a power source.
  • electric vehicles using non-aqueous electrolyte secondary batteries and hybrid vehicles using electric power as a part of power are being put into practical use. Therefore, in recent years, further improvement in the performance of secondary batteries has been required.
  • the non-aqueous electrolyte secondary battery is composed of members such as a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte.
  • the positive electrode and the negative electrode usually include a current collector and an electrode mixture layer formed on the current collector.
  • the electrode mixture layer is formed by applying, for example, an electrode active material capable of occluding / releasing lithium ions and a slurry composition in which a binder or the like is dispersed in a dispersion medium on a current collector and drying the mixture. Since electrode active materials have a great influence on battery performance, research and development are being actively carried out.
  • Sulfur is a substance that theoretically has a high charge / discharge capacity, so it is expected as an electrode active material material for power storage devices.
  • the product generated by charging / discharging elutes into the electrolytic solution, there is a problem that the charging / discharging capacity decreases due to repeated charging / discharging (hereinafter, may be referred to as cycle characteristics).
  • a sulfur-porous carbon composite see, for example, Patent Document 1
  • a sulfur-modified organic compound for example, see Patent Documents 2 to 13
  • It has been developed and is attracting attention as an electrode active material for lithium-ion secondary batteries.
  • a sulfur-modified organic compound-based electrode active material such as sulfur-modified polyacrylonitrile is known as an electrode active material having a large charge / discharge capacity and a small decrease in charge / discharge capacity due to repeated charge / discharge.
  • Sulfur which is the same Group 16 element as sulfur, has a higher specific gravity than sulfur, so its weight capacity is as low as 678 mAh / g (sulfur has a weight capacity of 1672 mAh / g), but its volume capacity is 3253 mAh / cm 3, which is the same as that of sulfur. It is comparable to the volume capacity (3467 mAh / cm 3). Further, since selenium has an electric conductivity higher than that of sulfur by 10 orders of magnitude or more, the internal resistance of the secondary battery can be lowered, which is an advantageous material for high-speed charge / discharge (rate) characteristics.
  • the content of selenium atom or tellurium atom in the electrode active material is 15% by mass or more because the charge / discharge capacity cannot be increased if it is too small, and 50% by mass or more if it is large.
  • an object of the present invention is to provide an electrode active material having excellent cycle characteristics and rate characteristics and little storage deterioration while suppressing a cost increase.
  • the present invention is an electrode active material containing a sulfur-modified organic compound and a selenium atom of 0.01 ppm to 100,000 ppm with respect to the sulfur content in the sulfur-modified organic compound.
  • an electrode active material having excellent cycle characteristics and rate characteristics and little storage deterioration while suppressing a cost increase.
  • FIG. 1 is a vertical cross-sectional view schematically showing an example of the structure of a coin-type battery of the non-aqueous electrolyte secondary battery of the present invention.
  • FIG. 2 is a schematic view showing a basic configuration of a cylindrical battery of the non-aqueous electrolyte secondary battery of the present invention.
  • FIG. 3 is a perspective view showing the internal structure of the cylindrical battery of the non-aqueous electrolyte secondary battery of the present invention as a cross section.
  • the electrode active material of the present invention is characterized by containing a sulfur-modified organic compound and a selenium atom of 0.01 ppm to 100,000 ppm in terms of ions with respect to the sulfur content in the sulfur-modified organic compound.
  • ppm is based on mass.
  • the electrode active material of the present invention is a method of heating a raw material mixture containing elemental sulfur, at least one selected from metallic selenium and a selenium compound, and a raw material organic compound to 250 ° C. to 600 ° C. in a non-oxidizing atmosphere. Or, a raw material mixture containing elemental sulfur and a raw material organic compound is heated to 250 ° C. to 600 ° C. in a non-oxidizing atmosphere to obtain a sulfur-modified organic compound, and then at least one selected from metallic selenium and a selenium compound. It can be obtained by adding seeds.
  • the selenium atom in order to keep the selenium atom within the above content range, 200 parts by mass to 800 parts by mass of the raw organic compound and the selenium atom are 0.00001 in terms of atoms with respect to 1000 parts by mass of elemental sulfur. At least one selected from metallic selenium and selenium compounds is mixed in an amount of 100 parts by mass to 100 parts by mass. Further, in the latter method, after the addition of at least one selected from metallic selenium and the selenium compound, further heat treatment may be performed. This heat treatment may be carried out at 250 ° C. to 600 ° C. for 1 minute to 5 hours in a non-oxidizing atmosphere.
  • sulfur various forms such as powdered sulfur, insoluble sulfur, precipitated sulfur, and colloidal sulfur can be used, but powdered sulfur is preferable in consideration of uniform dispersion in the raw material mixture.
  • the selenium atom may exist in any form of metallic selenium, a selenium compound, or a form bonded to a carbon atom in a sulfur-modified organic compound. Further, it may be present as an impurity in sulfur as a raw material.
  • selenium compound examples include selenous acid, selenic acid, peroxomonoselenic acid, selenium monoxide, selenium dioxide, selenium trioxide, selenium disulfide, selenium hexafluoride, selenium tetrafluoride, selenium hexafluoride, and tetrachloride.
  • examples thereof include inorganic selenium compounds such as selenium and organic selenium compounds such as selenol, selenide, diselenide, selenoxide, and selenophene having a hydrocarbon group.
  • the hydrocarbon group contained in the organic selenium compound is an aliphatic hydrocarbon having 1 to 6 carbon atoms, and may be branched or linear.
  • Selenide, diselenide and selenide having a plurality of hydrocarbon groups may have the same hydrocarbon group in the same molecule or may have different hydrocarbon groups.
  • These organic selenium compounds may be in the form of a polymer.
  • a metal selenium and a selenium sulfide compound are used in a method for producing an electrode active material, which comprises heat-treating a raw material mixture containing sulfur, at least one selected from metal selenium and a selenium compound, and an organic compound. It is preferable, and it is more preferable to use metallic selenium and selenium disulfide. As the metal selenium and the selenium compound, only one kind may be used, or two or more kinds may be combined.
  • the average particle size (D50) of the metal selenium and the selenium compound used as raw materials is usually 1 nm to 1000 ⁇ m, preferably 10 nm to 500 ⁇ m, and more preferably 50 nm to 100 ⁇ m. If the average particle size is too small, it will be difficult to handle. On the other hand, if the average particle size is too large, the reaction with the organic compound used as a raw material may be insufficient.
  • the average particle size (D50) means a 50% particle size measured by a laser diffracted light scattering method.
  • the particle diameter is a volume-based diameter, and the diameter of secondary particles is measured by the laser diffracted light scattering method.
  • the content of the selenium atom in the electrode active material is 0.01 ppm to 100,000 ppm, preferably 0.05 ppm to 50,000 ppm, preferably 50 ppm to 20,000 ppm, based on the sulfur content in the sulfur-modified organic compound. More preferably.
  • the content of selenium atoms can be measured in accordance with JIS K0102-67.3 by, for example, inductively coupled plasma emission spectrometry (ICP-AES method), inductively coupled plasma mass spectrometry (ICP-MS analysis), or the like. it can.
  • the lower limit of quantification of the selenium atom is less than 0.01 ppm.
  • Examples of the method for dispersing the raw material mixture containing at least one selected from metallic selenium and the selenium compound include a normal blender, a ball mill, a sand mill, a bead mill, a cyclone mill, a pigment disperser, a grinder, and an ultrasonic disperser. , Homogenizer, rotation / revolution mixer, planetary mixer, fill mix, jet pacer, etc. can be used. When a selenium compound soluble in a solvent is used, it may be dissolved in the solvent and blended.
  • Examples of the sulfur-modified organic compound in the present invention include a sulfur-modified polyacrylonitrile compound, a sulfur-modified elastomer compound, a sulfur-modified pitch compound, a sulfur-modified polynuclear aromatic ring compound, a sulfur-modified aliphatic hydrocarbon oxide, a polythienoacene compound, and a sulfur-modified polyamide.
  • Examples include compounds and polycarbon sulfide.
  • These sulfur-modified organic compounds are a mixture of sulfur and raw material organic compounds such as polyacrylic compounds, elastomer compounds, pitch compounds, polynuclear aromatic ring compounds, aliphatic hydrocarbon oxides, polyacene compounds, polyamide compounds, and hexachlorobutadiene. However, it can be produced by heat-modifying at 250 ° C. to 600 ° C. in a non-oxidizing atmosphere. Only one kind of these raw material organic compounds may be used, or two or more kinds may be used in combination.
  • the non-oxidizing atmosphere is an atmosphere in which the oxygen concentration is less than 5% by volume, preferably less than 2% by volume, and more preferably substantially free of oxygen, that is, the inertness of nitrogen, helium, argon, etc.
  • the sulfur content in the sulfur-modified organic compound is preferably 25% by mass to 80% by mass.
  • a sulfur-modified polyacrylonitrile compound is preferable because a large charge / discharge capacity and stable cycle characteristics can be obtained.
  • the sulfur-modified polyacrylonitrile compound is obtained by heat-treating a polyacrylonitrile compound and elemental sulfur in a non-oxidizing atmosphere.
  • the polyacrylonitrile compound may be a homopolymer of acrylonitrile or a copolymer of acrylonitrile and another monomer. If the content of acrylonitrile in the polyacrylonitrile compound is too small, the battery performance will be low. In a copolymer of acrylonitrile and another monomer, it is relatively easy to carbonize, and the carbide exhibits relatively high conductivity, so that the utilization rate of the electrode active material can be improved and the capacity can be increased.
  • the content of acrylonitrile is preferably at least 90% by mass, more preferably a homopolymer of polyacrylonitrile.
  • examples of other monomers include acrylic acid, vinyl acetate, N-vinylformamide, and N, N'-methylenebis (acrylamide).
  • the temperature of the heat treatment is preferably 250 ° C. to 550 ° C.
  • the sulfur content in the sulfur-modified polyacrylonitrile compound is preferably 30% by mass to 70% by mass because a large charge / discharge capacity can be obtained.
  • the sulfur-modified elastomer compound is obtained by heat-treating a mixture of rubber and elemental sulfur in a non-oxidizing atmosphere.
  • the rubber include natural rubber, isoprene rubber, butadiene rubber, styrene butadiene rubber, acrylonitrile butadiene rubber and the like. One type of these rubbers can be used alone, and two or more types can be used in combination.
  • the raw material rubber may be vulcanized rubber or unvulcanized rubber.
  • the temperature of the heat treatment is preferably 250 ° C. to 550 ° C.
  • the sulfur content in the sulfur-modified elastomer compound is preferably 40% by mass to 70% by mass because a large charge / discharge capacity can be obtained.
  • the sulfur-modified pitch compound is obtained by heat-treating a mixture of pitches and elemental sulfur in a non-oxidizing atmosphere.
  • Pitches include petroleum pitch, coal pitch, mesophase pitch, asphalt, coal tar, coal tar pitch, organic synthetic pitch obtained by polycondensation of condensed polycyclic aromatic hydrocarbon compounds, and heteroatomic condensed polycyclic aromatic carbide. Examples thereof include an organic synthetic pitch obtained by polycondensation of hydrogen compounds.
  • Pitches are a mixture of various compounds and contain condensed polycyclic aromatics.
  • the condensed polycyclic aromatics contained in the pitches may be a single species or a plurality of species. This condensed polycyclic aromatic may contain nitrogen or sulfur in the ring in addition to carbon and hydrogen.
  • the temperature of the heat treatment is preferably 300 ° C. to 500 ° C.
  • the sulfur content in the sulfur-modified pitch compound is preferably 25% by mass to 70% by mass because a large charge / discharge capacity can be obtained.
  • the sulfur-modified polynuclear aromatic ring compound is, for example, a mixture of a benzene-based aromatic ring compound such as naphthalene, anthracene, tetracene, pentacene, phenanthrene, chrysene, picene, pyrene, benzopyrene, perylene, and coronene and simple sulfur in a non-oxidizing atmosphere. Obtained by heat treatment inside.
  • a benzene-based aromatic ring compound such as naphthalene, anthracene, tetracene, pentacene, phenanthrene, chrysene, picene, pyrene, benzopyrene, perylene, and coronene and simple sulfur in a non-oxidizing atmosphere. Obtained by heat treatment inside.
  • Examples thereof include aromatic ring compounds in which a part of the benzene-based aromatic ring compound is a 5-membered ring, or a heteroatom-containing heteroatom-containing heteroaromatic ring compound in which a part of these carbon atoms is replaced with sulfur, oxygen, nitrogen or the like. .. Further, these polynuclear aromatic ring compounds have a chain or branched alkyl group having 1 to 12 carbon atoms, an alkoxyl group, a hydroxyl group, a carboxyl group, an amino group, an aminocarbonyl group, an aminothio group, a mercaptothiocarbonylamino group and a carboxy group. It may have a substituent such as an alkylcarbonyl group.
  • the temperature of the heat treatment is preferably 250 ° C. to 550 ° C.
  • the sulfur content in the sulfur-modified polynuclear aromatic ring compound is preferably 40% by mass to 70% by mass because a large charge / discharge capacity can be obtained.
  • the sulfur-modified aliphatic hydrocarbon oxide is obtained by heat-treating an aliphatic hydrocarbon oxide such as an aliphatic alcohol, an aliphatic aldehyde, an aliphatic ketone, an aliphatic epoxide, and a fatty acid and a simple sulfur in a non-oxidizing atmosphere. Can be obtained.
  • the temperature of the heat treatment is preferably 300 ° C. to 500 ° C.
  • the sulfur content in the sulfur-modified aliphatic hydrocarbon oxide is preferably 45% by mass to 75% by mass because a large charge / discharge capacity can be obtained.
  • the polythienoacene compound is a compound having a sulfur-containing polythienoacene structure represented by the following general formula (1).
  • the polythienoacene compound is obtained by heat-treating an aliphatic polymer compound having a linear structure such as polyethylene, a polymer compound having a thiophene structure such as polythiophene, and simple sulfur in a non-oxidizing atmosphere.
  • the temperature of the heat treatment is preferably 300 ° C. to 600 ° C.
  • the sulfur content in the polythienoacene compound is preferably 30% by mass to 80% by mass because a large charge / discharge capacity can be obtained.
  • the sulfur-modified polyamide compound is a sulfur-modified organic compound having a carbon skeleton derived from a polymer having an amide bond.
  • the aminocarboxylic acid compound and elemental sulfur are heat-treated in a non-oxidizing atmosphere.
  • it is obtained by heat-treating a polyamine compound, a polycarboxylic acid compound, and elemental sulfur in a non-oxidizing atmosphere.
  • the temperature of the heat treatment is preferably 250 ° C. to 600 ° C.
  • the sulfur content in the sulfur-modified polyamide compound is preferably 40% by mass to 70% by mass because a large charge / discharge capacity can be obtained.
  • Polycarbon sulfide is a compound represented by the general formula (CS x ) n (x is 0.5 to 2 and n is a number of 4 or more), and is, for example, an alkali metal sulfide such as sodium sulfide. It is obtained by heat-treating a precursor obtained by reacting a complex with elemental sulfur with a halogenated unsaturated hydrocarbon such as hexachlorobutadiene. The temperature of the heat treatment is preferably 300 ° C. to 450 ° C.
  • the sulfur content in the polysulfide carbon compound is preferably 65% by mass to 75% by mass because a large charge / discharge capacity can be obtained.
  • the shapes of the sulfur-modified organic compound and the electrode active material are not particularly limited, but are, for example, spherical, polyhedral, fibrous, rod-shaped, plate-shaped, scaly, or amorphous, and these may be hollow. Good. Among these, a spherical or polyhedral shape is preferable because the electrode mixture layer can be easily formed uniformly.
  • the average particle size of the sulfur-modified organic compound and the electrode active material differs depending on the type of the raw material organic compound. If the average particle size is too small, it will be difficult to handle the powder. On the other hand, if the average particle size is too large, the uniformity and smoothness of the electrode will decrease. Therefore, the average particle size (D50) of the sulfur-modified organic compound and the electrode active material is usually 1 nm to 100 ⁇ m, preferably 10 nm to 50 ⁇ m, and more preferably 50 nm to 30 ⁇ m. If it is less than the lower limit of the above preferable range, the non-aqueous electrolyte secondary battery becomes difficult to handle because its reactivity increases when it is exposed to a high temperature. On the other hand, if the upper limit of the above preferable range is exceeded, the discharge rate may decrease.
  • the sulfur content in the sulfur-modified organic compound can be measured by elemental analysis using, for example, a CHN analyzer (Virio Microcube of Elementer Co., Ltd.) capable of analyzing sulfur and oxygen.
  • a CHN analyzer Virtual Microcube of Elementer Co., Ltd.
  • the electrode active material of the present invention is not particularly limited, but can be suitably used for a secondary battery, particularly a non-aqueous electrolyte secondary battery.
  • the electrode active material of the present invention, a binder, and a conductive auxiliary agent are mixed in the presence of a solvent to prepare a slurry-like composition for forming an electrode mixture layer, which is applied onto a current collector.
  • the electrode for the next battery can be manufactured.
  • binder a known binder can be used.
  • the binder include styrene-butadiene rubber, butadiene rubber, acrylonitrile-butadiene rubber, ethylene-propylene-diene rubber, styrene-isoprene rubber, fluororubber, polyethylene, polypropylene, polyamide, polyacrylamide, polyamideimide, and polyimide.
  • an aqueous binder is preferable, and styrene-butadiene rubber, sodium carboxymethyl cellulose, and polyacrylic acid are more preferable because the environmental load is low and sulfur elution is unlikely to occur.
  • the content of the binder in the composition for forming the electrode mixture layer is preferably 1 part by mass to 30 parts by mass, and more preferably 1 part by mass to 20 parts by mass with respect to 100 parts by mass of the electrode active material. ..
  • a known conductive auxiliary agent for the electrode can be used.
  • conductive auxiliaries include natural graphite, artificial graphite, coal tar pitch, carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, thermal black, roller black, disc black, carbon nanotubes, etc.
  • Carbon material such as vapor grown carbon fiber (VGCF), flaky graphite, graphene, fullerene, needle coke; metal powder such as aluminum powder, nickel powder, titanium powder; conductivity such as zinc oxide, titanium oxide, etc.
  • Metal oxides; sulfides such as La 2 S 3 , Sm 2 S 3 , Ce 2 S 3 and Ti S 2 can be mentioned.
  • the conductive auxiliary agent can also be mixed during the production of the sulfur-modified organic compound or the electrode active material.
  • the average particle size (D50) of the conductive auxiliary agent is preferably 0.0001 ⁇ m to 100 ⁇ m, and more preferably 0.01 ⁇ m to 50 ⁇ m.
  • the content of the conductive auxiliary agent in the composition for forming the electrode mixture layer is usually 0.1 part by mass to 50 parts by mass and 1 part by mass to 30 parts by mass with respect to 100 parts by mass of the electrode active material. It is preferably 2 parts by mass to 20 parts by mass, more preferably.
  • solvent examples include propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, ethylmethyl carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, acetonitrile, propionitrile, tetrahydrofuran, 2-methyltetrahydrofuran, and the like.
  • the amount of the solvent used can be adjusted according to the coating method of the composition for forming the electrode mixture layer.
  • the total amount of the electrode active material, the binder and the conductive auxiliary agent is 100% by mass. It is preferably 20 parts by mass to 300 parts by mass, and more preferably 30 parts by mass to 200 parts by mass.
  • composition for forming an electrode mixture layer of the present invention is, in addition to the above-mentioned components, for example, a viscosity regulator, a reinforcing material, an antioxidant, a pH regulator, a dispersant, etc., as long as the effects of the present invention are not impaired. May contain the components of. As these other components, known ones can be used in known blending ratios.
  • the electrode active material, the binder and the conductive additive of the present invention are dispersed or dissolved in a solvent.
  • the electrode active material, the binder and the conductive auxiliary agent are dispersed or dissolved in the solvent, all of them may be charged in the solvent at once for dispersion treatment, or may be charged separately for dispersion treatment. It is preferable to sequentially add the binder, the conductive auxiliary agent, and the electrode active material to the solvent in this order and perform the dispersion treatment because the binder, the conductive auxiliary agent, and the electrode active material can be uniformly dispersed in the solvent.
  • the other components may be collectively charged into a solvent for dispersion treatment, or may be charged for each component and dispersed treatment. Although it is good, it is preferable to carry out a dispersion treatment every time one kind of component is added.
  • the method of dispersion treatment is not particularly limited, but industrial methods include, for example, ordinary ball mills, sand mills, bead mills, pigment dispersers, grinders, ultrasonic dispersers, homogenizers, rotation / revolution mixers, and planetary mixers. , Fill mix, jet pacer, etc. can be used.
  • the electrode of the present invention has a current collector and an electrode mixture layer made of the above-mentioned electrode mixture layer forming composition formed on the current collector.
  • conductive materials such as titanium, titanium alloy, aluminum, aluminum alloy, copper, nickel, stainless steel, and nickel-plated steel are used.
  • the shape of the current collector include a foil shape, a plate shape, a net shape, a foam shape, a non-woven fabric shape, and the like, and the current collector may be either porous or non-porous.
  • these conductive materials may be surface-treated in order to improve adhesion and electrical properties.
  • aluminum is preferable from the viewpoint of conductivity and price, and aluminum foil is particularly preferable.
  • the thickness of the current collector is not particularly limited, but is usually preferably 5 ⁇ m to 30 ⁇ m.
  • the composition for forming an electrode mixture layer of the present invention is applied onto a current collector.
  • the method for applying the composition for forming an electrode mixture layer of the present invention to a current collector is not particularly limited, but for example, a die coater method, a comma coater method, a curtain coater method, a spray coater method, a gravure coater method, a flexo coater.
  • a method such as a method, a knife coater method, a doctor blade method, a reverse roll method, a brush coating method, and a dip method can be used.
  • Die coater method, comma coater method, doctor blade method and knife in that a good surface condition of the coating layer can be obtained according to the physical properties such as viscosity and the drying property of the composition for forming the electrode mixture layer.
  • the coater method is preferred.
  • the composition for forming the electrode mixture layer may be applied to one side of the current collector or both sides of the current collector.
  • one side may be applied sequentially, or both sides may be applied at the same time. Further, it may be applied continuously, intermittently, or in stripes on the surface of the current collector.
  • the thickness, length and width of the coating layer can be appropriately determined according to the size of the battery and the like.
  • the method for drying the electrode mixture layer forming composition applied on the current collector is not particularly limited, and a known method can be used. Examples of the drying method include drying with warm air, hot air, and low humidity air, vacuum drying, standing in a heating furnace, and drying by irradiating far infrared rays, infrared rays, electron beams, or the like. These drying methods may be carried out in combination.
  • the temperature at the time of heating is generally about 50 ° C. to 180 ° C., but conditions such as temperature are appropriately set according to the coating amount of the composition for forming the electrode mixture layer, the boiling point of the solvent used, and the like. be able to.
  • volatile components such as a solvent are volatilized from the coating film of the composition for forming the electrode mixture layer, the electrode mixture layer is formed on the current collector, and the electrode can be produced.
  • the electrode of the present invention can also be used by pre-doped with lithium.
  • the method for doping the produced electrode with lithium may follow a known method.
  • an electrolytic doping method in which a semi-battery is assembled using metallic lithium as the counter electrode and lithium is electrochemically doped, or a metallic lithium foil is attached to an electrode and then left in an electrolytic solution to provide lithium to the electrode.
  • Examples include, but are not limited to, a pasting doping method in which the electrode active material is doped using diffusion, and a mechanical doping method in which the electrode active material and the lithium metal are mechanically collided with each other to dope the lithium.
  • the electrode of the present invention is not particularly limited, but can be used in a non-aqueous power storage device including a non-aqueous electrolyte as an electrolyte.
  • the power storage device include a primary battery, a secondary battery, an electric double layer capacitor, a lithium ion capacitor, and the like. Among these, it can be suitably used for a non-aqueous electrolyte secondary battery, and can be preferably used for a lithium ion secondary battery.
  • the electrode of the present invention can be suitably used as a positive electrode or a negative electrode of a non-aqueous electrolyte secondary battery.
  • a negative electrode containing a known negative electrode active material is used as a counter electrode, and when the electrode of the present invention is used as a negative electrode, a known positive electrode active material is used.
  • the positive electrode containing the above may be used as the counter electrode.
  • the counter electrode may be produced in the same manner as the method for producing an electrode using the above-mentioned composition for forming an electrode mixture layer.
  • a positive electrode active material or a negative electrode active material, a binder, and a conductive auxiliary agent are mixed in the presence of a solvent to prepare a composition for forming an electrode mixture layer, and this is applied onto a current collector.
  • a solvent to prepare a composition for forming an electrode mixture layer, and this is applied onto a current collector.
  • Known negative electrode active materials include, for example, natural graphite, artificial graphite, carbon-resistant carbon, easily graphitized carbon, lithium, lithium alloy, silicon, silicon alloy, silicon oxide, tin, tin alloy, tin oxide, phosphorus, germanium. , Indium, copper oxide, antimony sulfide, titanium oxide, iron oxide, manganese oxide, cobalt oxide, nickel oxide, lead oxide, ruthenium oxide, tungsten oxide, zinc oxide, LiVO 2 , Li 2 VO 4 , Li 4 Ti 5 Examples thereof include composite oxides such as O 12 and titanium-niobium oxides. These known negative electrode active materials may be used alone or in combination of two or more.
  • known positive electrode active material examples include lithium transition metal composite oxides, lithium-containing transition metal phosphoric acid compounds, lithium-containing silicate compounds, lithium-containing transition metal sulfuric acid compounds, and the like.
  • transition metal in the lithium transition metal composite oxide vanadium, titanium, chromium, manganese, iron, cobalt, nickel, copper and the like are preferable.
  • These known positive electrode active materials may be used alone or in combination of two or more.
  • the lithium transition metal composite oxide examples include a lithium cobalt composite oxide such as LiCoO 2 , a lithium nickel composite oxide such as LiNiO 2 , and a lithium manganese composite oxide such as LiMnO 2 , LiMn 2 O 4 , and Li 2 MnO 3.
  • a lithium cobalt composite oxide such as LiCoO 2
  • a lithium nickel composite oxide such as LiNiO 2
  • a lithium manganese composite oxide such as LiMnO 2 , LiMn 2 O 4
  • Li 2 MnO 3 Li 2 MnO 3.
  • Some of the transition metal atoms that are the main constituents of these lithium transition metal composite oxides are aluminum, titanium, vanadium, chromium, manganese, iron, cobalt, lithium, nickel, copper, zinc, magnesium, gallium, zirconium, etc. Examples thereof include those substituted with other metals.
  • Lithium transition metal composite oxides in which a part of the main transition metal atom is replaced with another metal are, for example, Li 1.1 Mn 1.8 Mg 0.1 O 4 , Li 1.1 Mn 1.85 Al 0.05 O 4 , LiNi 0.5 Co 0.2 Mn 0.3.
  • lithium-containing silicate compound examples include Li 2 FeSiO 4 and the like.
  • lithium-containing transition metal sulfuric acid compound examples include LiFeSO 4 , LiFeSO 4 F and the like.
  • the binder, the conductive auxiliary agent and the solvent used for producing the counter electrode can be used.
  • the content of the binder in the composition for forming the electrode mixture layer used for producing the counter electrode is preferably 1 part by mass to 30 parts by mass, and 1 part by mass to 20 parts by mass with respect to 100 parts by mass of the electrode active material. It is more preferable to have.
  • the content of the conductive auxiliary agent is usually 0 parts by mass to 30 parts by mass, preferably 0.5 parts by mass to 20 parts by mass, and more preferably 1 part by mass to 10 parts by mass with respect to 100 parts by mass of the electrode active material. It is a mass part.
  • the amount of the solvent used can be adjusted according to the coating method of the composition for forming the electrode mixture layer.
  • the total amount of the electrode active material, the binder and the conductive auxiliary agent is 100% by mass. It is preferably 20 parts by mass to 300 parts by mass, and more preferably 30 parts by mass to 200 parts by mass.
  • the composition for forming the electrode mixture layer used for producing the counter electrode is, for example, a viscosity regulator, a reinforcing material, an antioxidant, a pH regulator, a dispersant, etc., in addition to the above-mentioned components, as long as the effect of the present invention is not impaired. It may contain other components. As these other components, known ones can be used in known blending ratios.
  • the non-aqueous electrolyte secondary battery of the present invention is mainly composed of a positive electrode, a negative electrode and a non-aqueous electrolyte.
  • the electrode of the present invention described above is used as a positive electrode.
  • the non-aqueous electrolyte contains a lithium salt and one or more selected from a solvent and a dispersion medium.
  • a solvent is used as a solvent, and as a liquid electrolyte obtained by dissolving a lithium salt, or as a solvent or a dispersion medium, a polymer gel obtained by dissolving a polymer compound in an organic solvent and gelling is used.
  • An electrolyte obtained by dispersing a lithium salt using a polymer as a dispersion medium is defined as a polymer electrolyte), an inorganic solid electrolyte, and the like.
  • an organic solvent usually used for the non-aqueous electrolyte of the non-aqueous electrolyte secondary battery can be used.
  • the organic solvent include, for example, a saturated cyclic carbonate compound, a saturated cyclic ester compound, a sulfoxide compound, a sulfone compound, an amide compound, a saturated chain carbonate compound, a chain ether compound, a cyclic ether compound, a saturated chain ester compound, and the like. Can be mentioned. Only one kind of these organic solvents may be used, or two or more kinds may be used in combination.
  • saturated cyclic carbonate compounds saturated cyclic ester compounds, sulfoxide compounds, sulfone compounds and amide compounds are preferable and saturated because they have a high relative permittivity and play a role in increasing the dielectric constant of non-aqueous electrolytes. Cyclic carbonate compounds are more preferred.
  • Examples of the saturated cyclic carbonate compound include ethylene carbonate, 1,2-propylene carbonate, 1,3-propylene carbonate, 1,2-butylene carbonate, 1,3-butylene carbonate, 1,1-dimethylethylene carbonate and the like. Be done.
  • Examples of the saturated cyclic ester compound include ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -caprolactone, ⁇ -hexanolactone, and ⁇ -octanolactone.
  • Examples of the sulfoxide compound include dimethyl sulfoxide, diethyl sulfoxide, dipropyl sulfoxide, diphenyl sulfoxide, thiophene and the like.
  • sulfone compound examples include dimethyl sulfone, diethyl sulfone, dipropyl sulfone, diphenyl sulfone, sulfolane (also referred to as tetramethylene sulfone), 3-methyl sulfolane, 3,4-dimethyl sulfolane, 3,4-diphenylmethyl sulfolane, and the like.
  • examples thereof include sulfolene, 3-methylsulfolene, 3-ethylsulfolene, 3-bromomethylsulfone and the like, and sulfolane and tetramethylsulfone are preferable.
  • the amide compound examples include N-methylpyrrolidone, dimethylformamide, dimethylacetamide and the like.
  • saturated chain carbonate compounds can reduce the viscosity of non-aqueous electrolytes, increase the mobility of electrolyte ions, and improve battery characteristics such as output density.
  • Chain ether compounds, cyclic ether compounds and saturated chain ester compounds are preferred.
  • a saturated chain carbonate compound is particularly preferable because it has a low viscosity and can improve the performance of the non-aqueous electrolyte at a low temperature.
  • saturated chain carbonate compound examples include dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, ethyl butyl carbonate, methyl-t-butyl carbonate, diisopropyl carbonate, t-butyl propyl carbonate and the like.
  • chain ether compound and the cyclic ether compound include dimethoxyethane, ethoxymethoxyethane, diethoxyethane, tetrahydrofuran, dioxolane, dioxane, 1,2-bis (methoxycarbonyloxy) ethane, and 1,2-bis (ethoxycarbonyl).
  • the saturated chain ester compound is preferably a monoester compound or a diester compound having a total number of carbon atoms in the molecule of 2 to 8, and specific compounds include, for example, methyl formate, ethyl formate, methyl acetate, and acetate.
  • organic solvents for example, acetonitrile, propionitrile, nitromethane, derivatives thereof, and various ionic liquids can also be used.
  • Examples of the polymer compound used for preparing the polymer gel include polyethylene oxide, polypropylene oxide, polyvinyl chloride, polyacrylonitrile, polymethylmethacrylate, polyethylene, polyvinylidene fluoride, polyhexafluoropropylene and the like.
  • Examples of the polymer used for preparing the polymer electrolyte (or the polymer electrolyte obtained by dispersing the lithium salt without using a solvent) include polyethylene oxide, polypropylene oxide, polystyrene sulfonic acid and the like.
  • the compounding ratio in the polymer gel-like electrolyte or the polymer electrolyte (or the polymer electrolyte obtained by dispersing the lithium salt without using a solvent) and the method of compounding are not particularly limited and are known in the art. A compounding ratio of the above and a known compounding method can be adopted.
  • the form of the non-aqueous electrolyte is not particularly limited, but since the production process is simple, those containing a solvent are preferable, and liquids are more preferable.
  • the lithium salt used for the non-aqueous electrolyte is not particularly limited, and a known lithium salt can be used.
  • Specific examples of lithium salts include, for example, LiPF 6 , LiBF 4 , LiAsF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN.
  • Lithium salts used for liquid electrolytes and polymer gel electrolytes include LiPF 6 , LiBF 4 , LiClO 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , Use one or more selected from the group consisting of LiN (SO 2 F) 2 , LiPO 2 F 2 , LiC (CF 3 SO 2 ) 3 and LiCF 3 SO 3 derivatives and LiC (CF 3 SO 2 ) 3 derivatives. Is preferable.
  • lithium salt used for the polymer electrolyte examples include LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , It is preferable to use one or more selected from the group consisting of LiN (SO 2 F) 2 , LiC (CF 3 SO 2 ) 3 , LiB (CF 3 SO 3 ) 4 , and LiB (C 2 O 4 ) 2.
  • the concentration of the lithium salt in the non-aqueous electrolyte is preferably 0.5 mol / L to 7 mol / L, and more preferably 0.8 mol / L to 1.8 mol / L.
  • the non-aqueous electrolyte may further contain known electrolyte additives such as an electrode film forming agent, an antioxidant, a flame retardant, and an overcharge inhibitor in order to improve battery life and safety. If the concentration of the electrolyte additive is too small, the additive effect cannot be exhibited, while if it is too large, the characteristics of the non-aqueous electrolyte secondary battery may be adversely affected. Therefore, the concentration of the electrolyte additive is preferably 0.01% by mass to 10% by mass, more preferably 0.1% by mass to 5% by mass, based on the non-aqueous electrolyte.
  • LiMPO 4 Mn, Fe, Co or Ni
  • Lithium and nitrogen-containing compounds La 0.55 Li 0.35 TiO 3 Crystals having a perovskite structure with lithium ion conductivity such as; Crystals having a garnet-type structure such as Li 7- La 3 Zr 2 O 13 ; Glasses such as 50 Li 4 SiO 4 , 50 Li 3 BO 3 ; Li 10 GeP 2 S 12, Li 3.25 Ge 0.25 P 0.75 S 4 lithium phosphorus sulfide-based crystals such as, 30Li 2 S ⁇ 26B 2 S 3 ⁇ 44LiI, 63Li 2 S ⁇ 36SiS 2 ⁇ 1Li 3 PO 4, 57Li 2 S ⁇ 38SiS 2 ⁇ Lithium-phosphoroxide-based glass such as 5Li 4 SiO 4 , 70Li 2 S ⁇ 30 GeS 2 , 50Li 2 S ⁇ 50 GeS 2 ; Li 7 P 3 S 11 , Li 3.25 P 0.95 S 4 , Li 10 GeP 2 S 12 , Li 9.6 P 3 S 12 , Li
  • a commonly used polymer film or glass filter can be used without particular limitation.
  • the polymer film include polyethylene, polypropylene, polyvinylidene fluoride, polyvinylidene chloride, polyacrylonitrile, polyacrylamide, polytetrafluoroethylene, polysulfone, polyether sulfone, polycarbonate, polyamide, polyimide, polyethylene oxide and polypropylene.
  • Examples thereof include films made of a mixture, and these polymer films may be coated with a ceramic material such as alumina or silica, magnesium oxide, an aramid resin, or polyvinylidene chloride. These polymer films may be used alone, or these films may be laminated and used as a multi-layer film. Further, various additives may be used for these polymer films, and the type and content thereof are not particularly limited. Among these polymer films, a film made of polyethylene, polypropylene, polyvinylidene fluoride, or polysulfone is preferably used.
  • the microporous method is a "phase separation method” in which a solution of a polymer compound and a solvent is microphase-separated while forming a film, and the solvent is extracted and removed to make the polymer porous.
  • phase separation method in which crystals are formed by extruding and then heat-treated to arrange the crystals in one direction, and further stretched to form gaps between the crystals to make them porous, which is appropriately selected depending on the polymer film used. ..
  • a polymer electrolyte or a polymer electrolyte obtained by dispersing a lithium salt without using a solvent
  • an inorganic solid electrolyte it is not necessary to include a separator.
  • FIG. 1 is a vertical cross-sectional view schematically showing an example of the structure of a coin-type battery of the non-aqueous electrolyte secondary battery of the present invention.
  • FIG. 2 is a schematic view showing a basic configuration of a cylindrical battery of the non-aqueous electrolyte secondary battery of the present invention.
  • FIG. 3 is a perspective view showing the internal structure of the cylindrical battery of the non-aqueous electrolyte secondary battery of the present invention as a cross section.
  • the coin-shaped non-aqueous electrolyte secondary battery 10 shown in FIG. 1 has a positive electrode current collector 1a, a positive electrode mixture layer 1 formed on the positive electrode current collector 1a and capable of emitting lithium ions, and a positive electrode current collector 1a.
  • the positive electrode case 4 that houses the positive electrode composed of the positive electrode mixture layer 1 and the negative electrode current collector 2a, and the lithium ions formed on the negative electrode current collector 2a and released from the positive electrode mixture layer 1 are stored and stored. It includes a negative electrode mixture layer 2 that can be discharged, a negative electrode case 5 that houses a negative electrode composed of a negative electrode current collector 2a and a negative electrode mixture layer 2, and a separator 7 that is interposed between the positive electrode and the negative electrode.
  • the inside of the positive electrode case 4 and the negative electrode case 5 is filled with the non-aqueous electrolyte 3. Further, the peripheral portions of the positive electrode case 4 and the negative electrode case 5 are sealed by being crimped via a polypropylene gasket 6.
  • the positive electrode plate 21 is composed of a positive electrode current collector 1a and a positive electrode mixture layer 1 formed on the positive electrode current collector 1a and capable of emitting lithium ions.
  • the negative electrode plate 19 is composed of a negative electrode current collector 2a and a negative electrode mixture layer 2 formed on the negative electrode current collector 2a and capable of occluding and releasing lithium ions released from the positive electrode mixture layer 1.
  • the inside of the case 23 is filled with the non-aqueous electrolyte 3.
  • the positive electrode terminal 17, the safety valve 26 provided inside the positive electrode terminal 17, and the PTC (Positive Temperature Coefficient) element 27 are sealed by being crimped via the gasket 6.
  • the negative electrode plate 19 is connected to the negative electrode terminal 18 via the negative electrode lead 20.
  • the positive electrode plate 21 is connected to the positive electrode terminal 17 via the positive electrode lead 22.
  • Examples of the exterior member used for the positive electrode case 4, the negative electrode case 5, and the case 23 include a laminated film or a metal container.
  • the thickness of the exterior member is usually 0.5 mm or less, preferably 0.3 mm or less.
  • Examples of the shape of the exterior member include a flat type (thin type), a square type, a cylindrical type, a coin type, and a button type.
  • the laminate film a multilayer film having a metal layer between resin films can also be used.
  • the metal layer is preferably an aluminum foil or an aluminum alloy foil for weight reduction.
  • the resin film for example, a polymer material such as polypropylene, polyethylene, nylon, or polyethylene terephthalate can be used.
  • the laminated film can be sealed in the shape of an exterior member by heat fusion.
  • the metal container can be formed from, for example, stainless steel, aluminum, an aluminum alloy, or the like.
  • the aluminum alloy an alloy containing elements such as magnesium, zinc, and silicon is preferable.
  • Example 1 Production of selenium-containing sulfur-modified polyacrylonitrile A-1> 200 parts by mass of sulfur (manufactured by Sigma Aldrich), 0.002 parts by mass of selenium (manufactured by high-purity chemicals, average particle diameter 10 ⁇ m, powder), and 100 parts by mass of polyacrylonitrile powder (manufactured by Sigma Aldrich, classified by sieving with an opening diameter of 30 ⁇ m) After putting the mixture mixed with the parts into the alumina tanman pipe, the opening of the alumina tanman pipe was covered with a rubber stopper to which a thermocouple, a gas introduction pipe and a gas discharge pipe were attached.
  • the mixture was heated at a heating rate of 5 ° C./min while introducing argon gas into the alumina tanman tube at a flow rate of 100 cc / min, and the argon gas was stopped when the temperature reached 100 ° C. After that, the heating was stopped at 360 ° C., but the temperature rose to 400 ° C. After cooling to around room temperature, the reaction product was taken out from the alumina tanman tube. The obtained reaction product was pulverized to obtain the selenium-containing sulfur-modified polyacrylonitrile A-1 of Example 1.
  • Example 2 Production of selenium-containing sulfur-modified polyacrylonitrile A-2>
  • the selenium-containing sulfur-modified polyacrylonitrile A-2 of Example 2 was obtained by the same operation as in Example 1 except that the amount of selenium used was changed to 0.1 parts by mass.
  • Example 3 Production of selenium-containing sulfur-modified polyacrylonitrile A-3>
  • the selenium-containing sulfur-modified polyacrylonitrile A-3 of Example 3 was obtained by the same operation as in Example 1 except that the amount of selenium used was changed to 0.4 parts by mass.
  • Example 4 Production of selenium-containing sulfur-modified polyacrylonitrile A-4>
  • the selenium-containing sulfur-modified polyacrylonitrile A-4 of Example 4 was obtained by the same operation as in Example 1 except that the amount of selenium used was changed to 4.0 parts by mass.
  • Example 5 Production of selenium-containing sulfur-modified polyacrylonitrile A-5>
  • the selenium-containing sulfur-modified polyacrylonitrile A-5 of Example 5 was obtained by the same operation as in Example 1 except that the amount of selenium used was changed to 0.00025 parts by mass.
  • Example 6 Production of selenium-containing sulfur-modified polyacrylonitrile A-6>
  • the selenium-containing sulfur-modified polyacrylonitrile A-6 of Example 6 was obtained by the same operation as in Example 1 except that the amount of selenium used was changed to 0.00003 parts by mass.
  • Example 7 ⁇ Preparation of composition for forming electrode mixture layer> Selenium-containing sulfur-modified polyacrylonitrile A-1 90.0 parts by mass as an electrode active material, 5.0 parts by mass of acetylene black (manufactured by Denki Kagaku Kogyo) as a conductive auxiliary agent, and styrene-butadiene rubber (40% by mass) as a binder. % Water dispersion, manufactured by Nippon Zeon) 3.0 parts by mass and sodium carboxymethyl cellulose (manufactured by Daicel FineChem) 2.0 parts by mass were added to 110 parts by mass of water as a solvent, and revolved using a rotation / revolution mixer. A composition for forming an electrode mixture layer was prepared by dispersing in a solvent for 60 minutes under the conditions of 1600 rpm and 800 rpm.
  • a non-aqueous electrolyte solution was prepared by dissolving LiPF 6 at a concentration of 1.0 mol / L in a mixed solvent consisting of 50% by volume of ethylene carbonate and 50% by volume of diethyl carbonate.
  • the prepared circular electrode was used as a positive electrode, and a lithium metal having a thickness of 500 ⁇ m cut into a circular shape was used as a counter electrode thereof, and a glass filter was sandwiched as a separator and held in the case. Then, the previously prepared non-aqueous electrolyte solution is injected into the case, the case is sealed with a caulking machine, and the non-aqueous electrolyte secondary battery of Example 7 (lithium ion secondary battery, ⁇ 20 mm, thickness 3.2 mm). Assembled the coin type).
  • Example 8 The non-aqueous electrolyte secondary battery of Example 8 was assembled by the same operation as in Example 7 except that selenium-containing sulfur-modified polyacrylonitrile A-2 was used instead of selenium-containing sulfur-modified polyacrylonitrile A-1.
  • Example 9 The non-aqueous electrolyte secondary battery of Example 9 was assembled by the same operation as in Example 7 except that the selenium-containing sulfur-modified polyacrylonitrile A-3 was used instead of the selenium-containing sulfur-modified polyacrylonitrile A-1.
  • Example 10 The non-aqueous electrolyte secondary battery of Example 10 was assembled by the same operation as in Example 7 except that the selenium-containing sulfur-modified polyacrylonitrile A-4 was used instead of the selenium-containing sulfur-modified polyacrylonitrile A-1.
  • Example 11 The non-aqueous electrolyte secondary battery of Example 11 was assembled by the same operation as in Example 7 except that the selenium-containing sulfur-modified polyacrylonitrile A-5 was used instead of the selenium-containing sulfur-modified polyacrylonitrile A-1.
  • Example 12 The non-aqueous electrolyte secondary battery of Example 12 was assembled by the same operation as in Example 7 except that the selenium-containing sulfur-modified polyacrylonitrile A-6 was used instead of the selenium-containing sulfur-modified polyacrylonitrile A-1.
  • Comparative Example 3 The non-aqueous electrolyte secondary battery of Comparative Example 3 was assembled by the same operation as in Example 7 except that sulfur-modified polyacrylonitrile A-7 was used instead of the selenium-containing sulfur-modified polyacrylonitrile A-1.
  • Comparative Example 4 The non-aqueous electrolyte secondary battery of Comparative Example 4 was assembled by the same operation as in Example 7 except that the selenium-containing sulfur-modified polyacrylonitrile A-8 was used instead of the selenium-containing sulfur-modified polyacrylonitrile A-1.
  • the battery was placed in a constant temperature bath at 25 ° C., and the charge / discharge test was performed three times with a charge end voltage of 3 V and a discharge end voltage of 1 V, and a charge rate of 0.1 C and a discharge rate of 0.1 C.
  • Table 1 shows the discharge capacity after storage at 60 ° C. as the storage deterioration characteristic when the discharge capacity before storage is 100%.
  • Positive electrode mixture layer 1 Positive electrode mixture layer 1a Positive electrode current collector 2 Negative electrode mixture layer 2a Negative electrode current collector 3 Non-aqueous electrolyte 4 Positive electrode case 5 Negative electrode case 6 Gasket 7 Separator 10 Coin-type non-aqueous electrolyte secondary battery 10'Cylindrical non-aqueous Water electrolyte secondary battery 17 Positive electrode terminal 18 Negative electrode terminal 19 Negative electrode plate 20 Negative electrode lead 21 Positive electrode plate 22 Positive electrode lead 23 Case 24 Insulation plate 26 Safety valve 27 PTC element

Abstract

硫黄変性有機化合物と、硫黄変性有機化合物中の硫黄含有量に対し、0.01ppm~100,000ppmのセレン原子とを含有する電極活物質。

Description

電極活物質及びその製造方法、電極合剤層形成用組成物、非水電解質二次電池用電極並びに非水電解質二次電池
 本発明は、非水電解質二次電池に好適に使用できる電極活物質及びその製造方法、電極合剤層形成用組成物、非水電解質二次電池用電極並びに非水電解質二次電池に関する。
 リチウムイオン二次電池などの非水電解質二次電池は、小型で軽量、かつエネルギー密度が高く、更に繰り返し充放電が可能であり、携帯用パソコン、ハンディビデオカメラ、情報端末等の携帯電子機器の電源として広く用いられている。また、環境問題の観点から、非水電解質二次電池を使用した電気自動車や、動力の一部に電力を利用したハイブリッド車の実用化が行われている。そのため、近年では、二次電池のさらなる性能向上が求められている。
 非水電解質二次電池は、正極、負極、セパレータ、非水電解質等の部材から構成される。正極及び負極は、通常、集電体と、集電体上に形成された電極合剤層とを備えている。電極合剤層は、例えばリチウムイオンを吸蔵・放出し得る電極活物質と、バインダーなどを分散媒に分散させてなるスラリー組成物を集電体上に塗布し、乾燥させることによって形成される。電極活物質は、電池性能に大きく影響することから研究開発が盛んに行われている。
 硫黄は、理論的に高い充放電容量を有する物質であることから、蓄電デバイスの電極活物質材料として期待されている。しかし、充放電に伴って生じる生成物が電解液中へ溶出するため、充放電の繰り返しを伴う充放電容量の低下(以下、サイクル特性ということがある)が問題となっている。
 そこで、充放電に伴ったサイクル特性の低下を抑制するため、硫黄-多孔性炭素複合体(例えば、特許文献1を参照)や、硫黄変性有機化合物(例えば、特許文献2~13を参照)が開発され、リチウムイオン二次電池の電極活物質材料として注目されている。なかでも硫黄変性ポリアクリロニトリル等の硫黄変性有機化合物系電極活物質は、大きな充放電容量を有し、なおかつ充放電の繰り返しに伴う充放電容量の低下が少ない電極活物質として知られている。
 硫黄と同じ第16族元素であるセレンは、硫黄と比べ比重が大きいため、重量容量こそ678mAh/gと低い(硫黄の重量容量は1672mAh/g)ものの、体積容量は3253mAh/cm3と硫黄の体積容量(3467mAh/cm3)に匹敵する。さらにセレンは、電気伝導度が10桁以上硫黄よりも高いことから、二次電池の内部抵抗を低くすることができ、高速充放電(レート)特性に有利な材料である。
 セレンやテルルは、硫黄と同様に、充放電に伴って生じる生成物が電解液に溶出し、容量低下や充放電効率、サイクル特性の低下が問題となっている。これらの課題の解決方法として、ポリマーの骨格に硫黄原子及びテルル原子を導入した電極活物質(例えば、特許文献14を参照)や、ポリマーの骨格にセレン原子を導入した正極材料(例えば、特許文献15を参照)などが提案されているものの、サイクル特性やレート特性は充分なものではなかった。
国際公開第2012/086196号 特開2003-151550号公報 国際公開第2010/044437号 特開2011-028948号公報 特開2011-170991号公報 特開2012-099342号公報 特開2012-150933号公報 特開2012-150934号公報 国際公開第2012/114651号 特開2014-096326号公報 特開2015-092449号公報 国際公開第2016/158675号 国際公開第2016/159212号 特開2017-188303号公報 中国特許出願公開第106033806号明細書
 特許文献14及び15において、電極活物質中のセレン原子又はテルル原子の含有量は、少なすぎると充放電容量が高くできないため、15質量%以上、多いものだと50質量%以上である。
 セレン原子やテルル原子等の元素は硫黄と比べ元素の天然資源存在量が少ないため、単位重量当たりの価格は、例えばセレンの場合、硫黄よりも2~3桁高価なものである。そのため、電極活物質中のセレン原子やテルル原子の含有量が多くなると、非水電解質二次電池のコストの大幅な上昇に直結することとなる。
 従って、本発明は、コスト上昇を抑えたうえで、サイクル特性及びレート特性に優れ、保存劣化の少ない電極活物質を提供することを目的とする。
 そこで、発明者らは、上記課題を解決するために鋭意検討を進めた結果、硫黄変性有機化合物と、硫黄変性有機化合物中の硫黄含有量に対し、特定量のセレン原子とを含む電極活物質を、非水電解質二次電池に用いることで、コスト上昇を抑えたうえで、サイクル特性及びレート特性を向上させ、保存劣化を少なくできることを見いだし、本発明を完成させた。
 即ち、本発明は、硫黄変性有機化合物と、硫黄変性有機化合物中の硫黄含有量に対し、0.01ppm~100,000ppmのセレン原子とを含有する電極活物質である。
 本発明によれば、コスト上昇を抑えたうえで、サイクル特性及びレート特性に優れ、保存劣化の少ない電極活物質を提供することができる。
図1は、本発明の非水電解質二次電池のコイン型電池の構造の一例を概略的に示す縦断面図である。 図2は、本発明の非水電解質二次電池の円筒型電池の基本構成を示す概略図である。 図3は、本発明の非水電解質二次電池の円筒型電池の内部構造を断面として示す斜視図である。
<電極活物質>
 本発明の電極活物質は、硫黄変性有機化合物と、硫黄変性有機化合物中の硫黄含有量に対し、イオン換算で0.01ppm~100,000ppmのセレン原子とを含有することを特徴とする。なお、本明細書において、ppmは質量基準である。
 本発明の電極活物質は、単体硫黄と、金属セレン及びセレン化合物から選ばれる少なくとも1種と、原料有機化合物とを含む原料混合物を、非酸化性雰囲気下で250℃~600℃に加熱する方法や、単体硫黄と、原料有機化合物とを含む原料混合物を、非酸化性雰囲気下で250℃~600℃に加熱して硫黄変性有機化合物を得た後、金属セレン及びセレン化合物から選ばれる少なくとも1種を添加する方法で得ることができる。前者の方法では、セレン原子を上記含有量の範囲内とするために、1000質量部の単体硫黄に対し、200質量部~800質量部の原料有機化合物、並びにセレン原子が原子換算で0.00001質量部~100質量部となる量の、金属セレン及びセレン化合物から選ばれる少なくとも1種を混合する。また、後者の方法では、金属セレン及びセレン化合物から選ばれる少なくとも1種の添加後、さらに加熱処理を行ってもよい。この加熱処理は、非酸化性雰囲気下、250℃~600℃で1分~5時間行えばよい。
<硫黄>
 硫黄としては、粉末硫黄、不溶性硫黄、沈降硫黄、コロイド硫黄等の種々の形態のものをいずれも使用できるが、原料混合物において均一に分散させることを考慮すれば、粉末硫黄が好ましい。
<セレン原子>
 本発明の電極活物質において、セレン原子は、金属セレンの形態、セレン化合物の形態あるいは硫黄変性有機化合物中の炭素原子と結合した形態のいずれの形態で存在してもよい。また、原料となる硫黄中に不純物として存在していてもよい。
 セレン化合物としては、例えば、亜セレン酸、セレン酸、ペルオキソ一セレン酸、一酸化セレン、二酸化セレン、三酸化セレン、二硫化セレン、六硫化セレン、四フッ化セレン、六フッ化セレン、四塩化セレン等の無機セレン化合物、炭化水素基を有するセレノール、セレニド、ジセレニド、セレノキシド、セレノフェン等の有機セレン化合物が挙げられる。有機セレン化合物に含まれる炭化水素基は、炭素原子数が1~6の脂肪族炭化水素であり、分岐していても、直鎖状であってもよい。炭化水素基を複数有するセレニド、ジセレニド及びセレノキシドでは、同一分子内に同じ炭化水素基を有してもよいし、異なる炭化水素基を有してもよい。これらの有機セレン化合物は、高分子状としてもよい。
 本発明において、硫黄と、金属セレン及びセレン化合物から選ばれる少なくとも1種と、有機化合物とを含む原料混合物を加熱処理することを含む電極活物質の製造方法では、金属セレン及び硫化セレン化合物を用いることが好ましく、金属セレン及び二硫化セレンを用いることがより好ましい。金属セレン及びセレン化合物は、1種のみを使用してもよいし、2種以上組み合わせてもよい。
 原料として用いる金属セレン及びセレン化合物の平均粒子径(D50)は、通常1nm~1000μmであり、好ましくは10nm~500μmであり、より好ましくは50nm~100μmである。平均粒子径が小さ過ぎると、取り扱いが困難なものとなる。一方、平均粒子径が大き過ぎると、原料として用いる有機化合物との反応が不十分になる可能性がある。
 なお、本発明において、平均粒子径(D50)とは、レーザー回折光散乱法により測定された50%粒子径をいう。粒子径は体積基準の直径であり、レーザー回折光散乱法では、二次粒子の直径が測定される。
 電極活物質におけるセレン原子の含有量は、少な過ぎるとサイクル特性及びレート特性の改善効果が十分ではなく、一方、多過ぎると、製造する二次電池のコスト上昇につながる上に、サイクル特性及び保存劣化特性の改善効果が十分ではない。そのため、セレン原子の含有量は、硫黄変性有機化合物中の硫黄含有量に対し、0.01ppm~100,000ppmであり、0.05ppm~50,000ppmであることが好ましく、50ppm~20,000ppmであることがより好ましい。セレン原子の含有量は、例えば、誘導プラズマ発光分析法(ICP-AES法)、誘導プラズマ質量分析法(ICP-MS分析法)等により、JIS K0102-67・3に準拠して測定することができる。なお、本発明において、セレン原子の定量下限は0.01ppm未満である。
 金属セレン及びセレン化合物から選ばれる少なくとも1種を含む原料混合物の分散処理の方法としては、例えば、通常のブレンダー、ボールミル、サンドミル、ビーズミル、サイクロンミル、顔料分散機、らい潰機、超音波分散機、ホモジナイザー、自転・公転ミキサー、プラネタリーミキサー、フィルミックス、ジェットペースタ等を使用することができる。また、溶媒に可溶なセレン化合物を用いる場合には、溶媒に溶解して配合してもよい。
<硫黄変性有機化合物>
 本発明における硫黄変性有機化合物としては、例えば、硫黄変性ポリアクリロニトリル化合物、硫黄変性エラストマー化合物、硫黄変性ピッチ化合物、硫黄変性多核芳香環化合物、硫黄変性脂肪族炭化水素酸化物、ポリチエノアセン化合物、硫黄変性ポリアミド化合物、ポリ硫化カーボン等が挙げられる。これらの硫黄変性有機化合物は、硫黄と、ポリアクリル化合物、エラストマー化合物、ピッチ化合物、多核芳香族環化合物、脂肪族炭化水素酸化物、ポリアセン化合物、ポリアミド化合物、ヘキサクロロブタジエン等の原料有機化合物とを混合し、非酸化性雰囲気下、250℃~600℃で加熱変性して製造することができる。これらの原料有機化合物は、1種のみを使用してもよいし、2種以上を組み合わせて使用してもよい。非酸化性雰囲気とは、酸素濃度が5体積%未満であり、好ましくは2体積%未満であり、より好ましくは、酸素を実質的に含有しない雰囲気、即ち、窒素、ヘリウム、アルゴン等の不活性ガス雰囲気や、硫黄ガス雰囲気のことである。より大きな充放電容量を得る観点から、硫黄変性有機化合物中の硫黄含有量は、25質量%~80質量%であることが好ましい。これらの硫黄変性有機化合物の中でも、大きな充放電容量と安定したサイクル特性が得られることから、硫黄変性ポリアクリロニトリル化合物が好ましい。
 硫黄変性ポリアクリロニトリル化合物は、ポリアクリロニトリル化合物と単体硫黄とを、非酸化性雰囲気中で加熱処理して得られる。ポリアクリロニトリル化合物は、アクリロニトリルのホモポリマーであってもよいし、アクリロニトリルと他のモノマーとのコポリマーであってもよい。ポリアクリロニトリル化合物におけるアクリロニトリルの含有量が少な過ぎると電池性能が低くなる。炭化が比較的容易であり、炭化物が比較的高い導電性を示し、そのため電極活物質の利用率が向上して高容量化を図ることができるという観点から、アクリロニトリルと他のモノマーとのコポリマーにおけるアクリロニトリルの含有量は少なくとも90質量%であることが好ましく、ポリアクリロニトリルのホモポリマーであることがより好ましい。他のモノマーとしては、例えば、アクリル酸、酢酸ビニル、N-ビニルホルムアミド、N,N’-メチレンビス(アクリルアミド)が挙げられる。加熱処理の温度は250℃~550℃であることが好ましい。硫黄変性ポリアクリロニトリル化合物中の硫黄含有量は、大きな充放電容量が得られることから、30質量%~70質量%であることが好ましい。
 硫黄変性エラストマー化合物は、ゴムと単体硫黄との混合物を、非酸化性雰囲気中で加熱処理して得られる。ゴムとしては、例えば、天然ゴム、イソプレンゴム、ブタジエンゴム、スチレンブタジエンゴム、アクリロニトリルブタジエンゴム等が挙げられる。これらのゴムは1種を単独で使用することができ、2種以上を組合せて使用することができる。原料のゴムは、加硫ゴムでも加硫前のゴムでもよい。加熱処理の温度は、250℃~550℃であることが好ましい。硫黄変性エラストマー化合物中の硫黄含有量は、大きな充放電容量が得られることから、40質量%~70質量%であることが好ましい。
 硫黄変性ピッチ化合物は、ピッチ類と単体硫黄との混合物を、非酸化性雰囲気中で加熱処理して得られる。ピッチ類としては、石油ピッチ、石炭ピッチ、メソフェーズピッチ、アスファルト、コールタール、コールタールピッチ、縮合多環芳香族炭化水素化合物の重縮合で得られる有機合成ピッチ、ヘテロ原子含有縮合多環芳香族炭化水素化合物の重縮合で得られる有機合成ピッチ等が挙げられる。ピッチ類は様々な化合物の混合物であり、縮合多環芳香族を含む。ピッチ類に含まれる縮合多環芳香族は、単一種であってもよいし、複数種であってもよい。この縮合多環芳香族は、環の中に、炭素及び水素以外に、窒素や硫黄を含んでいる場合がある。加熱処理の温度は、300℃~500℃であることが好ましい。硫黄変性ピッチ化合物中の硫黄含有量は、大きな充放電容量が得られることから、25質量%~70質量%であることが好ましい。
 硫黄変性多核芳香環化合物は、例えば、ナフタレン、アントラセン、テトラセン、ペンタセン、フェナントレン、クリセン、ピセン、ピレン、ベンゾピレン、ペリレン、コロネン等のベンゼン系芳香環化合物と単体硫黄との混合物を、非酸化性雰囲気中で加熱処理して得られる。また、ベンゼン系芳香環化合物の一部が5員環となった芳香族環化合物、又はこれらの炭素原子の一部が硫黄、酸素、窒素などに置き換わったヘテロ原子含有複素芳香環化合物が挙げられる。更に、これらの多核芳香環化合物は、炭素原子数1~12の鎖状又は分岐状アルキル基、アルコキシル基、水酸基、カルボキシル基、アミノ基、アミノカルボニル基、アミノチオ基、メルカプトチオカルボニルアミノ基、カルボキシアルキルカルボニル基などの置換基を有してもよい。加熱処理の温度は、250℃~550℃であることが好ましい。硫黄変性多核芳香環化合物中の硫黄含有量は、大きな充放電容量が得られることから、40質量%~70質量%であることが好ましい。
 硫黄変性脂肪族炭化水素酸化物は、脂肪族アルコール、脂肪族アルデヒド、脂肪族ケトン、脂肪族エポキシド、脂肪酸等の脂肪族炭化水素酸化物と単体硫黄とを、非酸化性雰囲気中で加熱処理して得られる。加熱処理の温度は300℃~500℃であることが好ましい。硫黄変性脂肪族炭化水素酸化物中の硫黄含有量は、大きな充放電容量が得られることから、45質量%~75質量%であることが好ましい。
 ポリチエノアセン化合物は、下記一般式(1)で表される、硫黄を含むポリチエノアセン構造を有する化合物である。
Figure JPOXMLDOC01-appb-C000001
 ポリチエノアセン化合物は、ポリエチレン等の直鎖構造を有する脂肪族のポリマー化合物や、ポリチオフェン等のチオフェン構造を有するポリマー化合物と、単体硫黄とを、非酸化性雰囲気中で加熱処理して得られる。加熱処理の温度は、300℃~600℃であることが好ましい。ポリチエノアセン化合物中の硫黄含有量は、大きな充放電容量が得られることから、30質量%~80質量%であることが好ましい。
 硫黄変性ポリアミド化合物は、アミド結合を有するポリマー由来の炭素骨格を有する硫黄変性有機化合物であり、具体的には、アミノカルボン酸化合物と単体硫黄とを、非酸化性雰囲気中で加熱処理するか、又はポリアミン化合物とポリカルボン酸化合物と単体硫黄とを、非酸化性雰囲気中で加熱処理して得られる。加熱処理の温度は、250℃~600℃であることが好ましい。硫黄変性ポリアミド化合物中の硫黄含有量は、大きな充放電容量が得られることから、40質量%~70質量%であることが好ましい。
 ポリ硫化カーボンは、一般式(CSxn(xは0.5~2で、nは4以上の数である)で表される化合物であり、例えば、硫化ナトリウム等のアルカリ金属硫化物と単体硫黄との複合体に、ヘキサクロロブタジエン等のハロゲン化不飽和炭化水素を反応させた前駆体を、加熱処理して得られる。加熱処理の温度は300℃~450℃であることが好ましい。ポリ硫化カーボン化合物中の硫黄含有量は、大きな充放電容量が得られることから、65質量%~75質量%であることが好ましい。
 硫黄変性有機化合物及び電極活物質の形状は、特に限定されないが、例えば、球状、多面体状、繊維状、棒状、板状、鱗片状、又は無定形状であり、これらは中空状であってもよい。これらの中でも、電極合剤層を均一に形成しやすいことから、球状又は多面体状が好ましい。
 硫黄変性有機化合物及び電極活物質の平均粒子径は、原料有機化合物の種類により異なる。平均粒子径が小さ過ぎると粉体を取り扱う上で作業が難しくなる。一方、平均粒子径が大き過ぎると電極の均一性・平滑性が低下する。そのため、硫黄変性有機化合物及び電極活物質の平均粒子径(D50)は、通常1nm~100μmであり、好ましくは10nm~50μmであり、より好ましくは50nm~30μmである。上記好ましい範囲の下限値未満であると、非水電解質二次電池が高温に曝された際に反応性が高まるために扱いにくくなる。一方、上記好ましい範囲の上限値を超えると、放電レートが低下するおそれがある。
 硫黄変性有機化合物中の硫黄含有量は、例えば、硫黄及び酸素が分析可能なCHN分析装置(エレメンター社Virio Microcube)を用いた元素分析により測定することができる。
 本発明の電極活物質は、特に限定されるものではないが、二次電池、特に非水電解質二次電池に好適に用いることができる。本発明の電極活物質と、バインダーと、導電助剤とを溶媒存在下で混合してスラリー状の電極合剤層形成用組成物を調製し、これを集電体上に塗布することにより二次電池用電極を作製することができる。
<バインダー>
 バインダーとしては、公知のものを用いることができる。バインダーの具体例としては、例えば、スチレン-ブタジエンゴム、ブタジエンゴム、アクリロニトリル-ブタジエンゴム、エチレン-プロピレン-ジエンゴム、スチレン-イソプレンゴム、フッ素ゴム、ポリエチレン、ポリプロピレン、ポリアミド、ポリアクリルアミド、ポリアミドイミド、ポリイミド、ポリアクリロニトリル、ポリウレタン、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、スチレン-アクリル酸エステル共重合体、エチレン-ビニルアルコール共重合体、ポリメチルメタクリレート、ポリアクリレート、ポリビニルアルコール、ポリエチレンオキサイド、ポリビニルピロリドン、ポリビニルエーテル、ポリ塩化ビニル、ポリアクリル酸、アクリル酸、メチルセルロース、カルボキシメチルセルロース、カルボキシメチルセルロースナトリウム、セルロースナノファイバー、デンプン等が挙げられる。これらのバインダーは、1種のみを使用してもよいし、2種以上を組合せて使用してもよい。これらの中でも、環境負荷が低く、硫黄の溶出が起こりにくいため、水系バインダーが好ましく、スチレン-ブタジエンゴム、カルボキシメチルセルロースナトリウム及びポリアクリル酸がより好ましい。
 電極合剤層形成用組成物におけるバインダーの含有量は、電極活物質100質量部に対し、1質量部~30質量部であることが好ましく、1質量部~20質量部であることがより好ましい。
<導電助剤>
 導電助剤としては、電極の導電助剤として公知のものを用いることができる。導電助剤の具体例としては、天然黒鉛、人造黒鉛、コールタールピッチ、カーボンブラック、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック、ローラーブラック、ディスクブラック、カーボンナノチューブ、気相法炭素繊維(Vapor Grown Carbon Fiber:VGCF)、薄片化黒鉛、グラフェン、フラーレン、ニードルコークス等の炭素材料;アルミニウム粉、ニッケル粉、チタン粉等の金属粉末;酸化亜鉛、酸化チタン等の導電性金属酸化物;La23、Sm23、Ce23、TiS2等の硫化物が挙げられる。これらの導電助剤は、1種のみを使用してもよいし、2種以上を組合せて使用してもよい。また、導電助剤は、硫黄変性有機化合物又は電極活物質の製造時に混合することも可能である。
 導電助剤の平均粒子径(D50)は、0.0001μm~100μmであることが好ましく、0.01μm~50μmであることがより好ましい。
 電極合剤層形成用組成物における導電助剤の含有量は、電極活物質100質量部に対し、通常0.1質量部~50質量部であり、1質量部~30質量部であることが好ましく、2質量部~20質量部であることがより好ましい。
<溶媒>
 溶媒としては、例えば、プロピレンカーボネート、エチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート、1,2-ジメトキシエタン、1,2-ジエトキシエタン、アセトニトリル、プロピオニトリル、テトラヒドロフラン、2-メチルテトラヒドロフラン、ジオキサン、1,3-ジオキソラン、ニトロメタン、N-メチルピロリドン、N,N-ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン、N,N-ジメチルアミノプロピルアミン、ポリエチレンオキシド、テトラヒドロフラン、ジメチルスルホキシド、スルホラン、γ-ブチロラクトン、水、アルコール等が挙げられる。溶媒の使用量は、電極合剤層形成用組成物の塗布方法にあわせて調整することができ、例えば、ドクターブレード法による塗布の場合、電極活物質、バインダー及び導電助剤の合計量100質量部に対し、20質量部~300質量部であることが好ましく、30質量部~200質量部であることがより好ましい。
 本発明の電極合剤層形成用組成物は、本発明の効果を損なわない範囲で、前記成分に加え、例えば、粘度調整剤、補強材、酸化防止剤、pH調整剤、分散材等の他の成分を含有してもよい。これらの他の成分としては公知のものを、公知の配合比率で使用することができる。
<電極合剤層形成用組成物の調製方法>
 先ず、本発明の電極活物質、バインダー及び導電助剤を溶媒に分散又は溶解させる。電極活物質、バインダー及び導電助剤を溶媒に分散又は溶解させる際、すべてを一括して溶媒に仕込んで分散処理してもよいし、別々に仕込んで分散処理してもよい。溶媒中に、バインダー、導電助剤、及び電極活物質の順番で逐次添加し、分散処理を行なうと、バインダー、導電助剤及び電極活物質を溶媒に均一に分散できるため好ましい。
 本発明の電極合剤層形成用組成物が前記他の成分を含有する場合、他の成分を溶媒に一括して仕込んで分散処理してもよいし、成分ごとに仕込んで分散処理してもよいが、成分を1種添加するごとに分散処理することが好ましい。
 分散処理の方法としては特に制限されないが、工業的な方法として、例えば、通常のボールミル、サンドミル、ビーズミル、顔料分散機、らい潰機、超音波分散機、ホモジナイザー、自転・公転ミキサー、プラネタリーミキサー、フィルミックス、ジェットペースタ等を使用することができる。
<電極>
 次に、本発明の電極について説明する。本発明の電極は、集電体と、集電体上に形成された上記電極合剤層形成用組成物からなる電極合剤層とを有する。
<集電体>
 集電体としては、チタン、チタン合金、アルミニウム、アルミニウム合金、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼等の導電材料が用いられる。集電体の形状としては、箔状、板状、網状、発泡状、不織布状等が挙げられ、集電体は多孔質又は無孔のどちらでもよい。また、これらの導電材料は、密着性や電気特性を改良するために表面処理が施されている場合がある。これらの導電材料の中でも、導電性や価格の観点からアルミニウムが好ましく、アルミニウム箔が特に好ましい。集電体の厚みは、特に制限はないが、通常5μm~30μmであることが好ましい。
<電極の作製方法>
 本発明の電極合剤層形成用組成物を集電体上に塗布する。本発明の電極合剤層形成用組成物を集電体に塗布する方法は、特に限定されないが、例えば、ダイコーター法、コンマコーター法、カーテンコーター法、スプレーコーター法、グラビアコーター法、フレキソコーター法、ナイフコーター法、ドクターブレード法、リバースロール法、ハケ塗り法、ディップ法等の各手法を用いることができる。電極合剤層形成用組成物の粘性等の物性及び乾燥性に合わせて、良好な塗布層の表面状態を得ることが可能となる点で、ダイコーター法、コンマコーター法、ドクターブレード法及びナイフコーター法が好ましい。
 電極合剤層形成用組成物の集電体上への塗布は、集電体の片面に施してもよいし、両面に施してもよい。集電体の両面に塗布する場合は、片面ずつ逐次塗布してもよいし、両面同時に塗布してもよい。また、集電体の表面に、連続的に塗布してもよいし、間欠的に塗布してもよいし、ストライプ状に塗布してもよい。塗布層の厚さ、長さ及び幅は、電池の大きさ等に応じて、適宜、決定することができる。
 次に、集電体上に塗布された電極合剤層形成用組成物を乾燥させる。集電体上に塗布された電極合剤層形成用組成物を乾燥させる方法としては、特に限定されず、公知の方法を用いることができる。乾燥方法としては、例えば、温風、熱風、低湿風による乾燥、真空乾燥、加熱炉などに静置する、遠赤外線や赤外線、又は電子線等を照射することによる乾燥が挙げられる。これらの乾燥方法は組合せて実施してもよい。加熱する場合の温度は、一般的には50℃~180℃程度であるが、温度などの条件は電極合剤層形成用組成物の塗布量、使用した溶媒の沸点等に応じて適宜設定することができる。この乾燥により、電極合剤層形成用組成物の塗膜から溶媒等の揮発成分が揮発し、集電体上に電極合剤層が形成され、電極を作製することができる。
 本発明の電極は、リチウムをあらかじめドープして用いることもできる。作製した電極にリチウムをドープする方法は、公知の方法に従えばよい。例えば、対極に金属リチウムを用いて半電池を組み、電気化学的にリチウムをドープする電解ドープ法や、金属リチウム箔を電極に貼り付けた後、電解液の中に放置し電極へのリチウムの拡散を利用してドープする貼り付けドープ法、電極活物質とリチウム金属とを機械的に衝突させ、リチウムをドープするメカニカルドープ法等が挙げられるが、これらに限定されるものではない。
 本発明の電極は、特に限定されないが、電解質として非水電解質を備える非水系の蓄電装置に用いることができる。蓄電装置としては、例えば、一次電池、二次電池、電気二重層コンデンサ、リチウムイオンキャパシタ等が挙げられる。これらの中でも、非水電解質二次電池に好適に用いることができ、リチウムイオン二次電池により好適に用いることができる。
 本発明の電極は、非水電解質二次電池の正極として、又は負極として好適に使用することができる。本発明の電極を非水電解質二次電池の正極として用いる場合には、公知の負極活物質を含む負極を対極として、また、本発明の電極を負極として用いる場合には、公知の正極活物質を含む正極を対極として用いればよい。対極は、上記した電極合剤層形成用組成物を用いて電極を作製する方法と同様に作製すればよい。具体的には、正極活物質又は負極活物質と、バインダーと、導電助剤とを溶媒存在下で混合して電極合剤層形成用組成物を調製し、これを集電体上に塗布することにより対極を作製することができる。なお、電気伝導性が高い公知の負極活物質又は公知の正極活物質を用いる場合には、集電体を用いなくてもよい。
<公知の負極活物質>
 公知の負極活物質としては、例えば、天然黒鉛、人造黒鉛、難黒鉛化炭素、易黒鉛化炭素、リチウム、リチウム合金、珪素、珪素合金、酸化珪素、スズ、スズ合金、酸化スズ、リン、ゲルマニウム、インジウム、酸化銅、硫化アンチモン、酸化チタン、酸化鉄、酸化マンガン、酸化コバルト、酸化ニッケル、酸化鉛、酸化ルテニウム、酸化タングステン、酸化亜鉛の他、LiVO2、Li2VO4、Li4Ti512、チタンニオブ系酸化物等の複合酸化物が挙げられる。これらの公知の負極活物質は、1種のみで使用してもよいし、2種以上を組合せて使用してもよい。
<公知の正極活物質>
 公知の正極活物質としては、例えば、リチウム遷移金属複合酸化物、リチウム含有遷移金属リン酸化合物、リチウム含有ケイ酸塩化合物、リチウム含有遷移金属硫酸化合物等が挙げられる。リチウム遷移金属複合酸化物中の遷移金属としては、バナジウム、チタン、クロム、マンガン、鉄、コバルト、ニッケル、銅等が好ましい。これらの公知の正極活物質は、1種のみで使用してもよいし、2種以上を組合せて使用してもよい。
 リチウム遷移金属複合酸化物の具体例としては、LiCoO2等のリチウムコバルト複合酸化物、LiNiO2等のリチウムニッケル複合酸化物、LiMnO2、LiMn24、Li2MnO3等のリチウムマンガン複合酸化物、これらのリチウム遷移金属複合酸化物の主体となる遷移金属原子の一部をアルミニウム、チタン、バナジウム、クロム、マンガン、鉄、コバルト、リチウム、ニッケル、銅、亜鉛、マグネシウム、ガリウム、ジルコニウム等の他の金属で置換したもの等が挙げられる。主体となる遷移金属原子の一部を他の金属で置換したリチウム遷移金属複合酸化物は、例えば、Li1.1Mn1.8Mg0.14、Li1.1Mn1.85Al0.054、LiNi0.5Co0.2Mn0.32、LiNi0.8Co0.1Mn0.12、LiNi0.5Mn0.52、LiNi0.80Co0.17Al0.032、LiNi0.80Co0.15Al0.052、LiNi1/3Co1/3Mn1/32、LiNi0.6Co0.2Mn0.22、LiMn1.8Al0.24、LiNi0.5Mn1.54、Li2MnO3-LiMO2(M=Co、Ni又はMn)等が挙げられる。
 リチウム含有遷移金属リン酸化合物中の遷移金属としては、バナジウム、チタン、マンガン、鉄、コバルト、ニッケル等が好ましく、具体例としては、例えば、LiFePO4、LiMxFe1-xPO4(M=Co、Ni又はMn)等のリン酸鉄化合物類、LiCoPO4等のリン酸コバルト化合物類、これらのリチウム遷移金属リン酸化合物の主体となる遷移金属原子の一部をアルミニウム、チタン、バナジウム、クロム、マンガン、鉄、コバルト、リチウム、ニッケル、銅、亜鉛、マグネシウム、ガリウム、ジルコニウム、ニオブ等の他の金属で置換したもの、Li32(PO43等のリン酸バナジウム化合物類等が挙げられる。
 リチウム含有ケイ酸塩化合物としては、Li2FeSiO4等が挙げられる。
 リチウム含有遷移金属硫酸化合物としては、LiFeSO4、LiFeSO4F等が挙げられる。
 対極の作製に用いるバインダー、導電助剤及び溶媒としては、本発明の電極活物質を用いて電極を作製する際に用いたバインダー、導電助剤及び溶媒と同じものを用いることができる。
 対極の作製に用いる電極合剤層形成用組成物におけるバインダーの含有量は、電極活物質100質量部に対し、1質量部~30質量部であることが好ましく、1質量部~20質量部であることが更に好ましい。導電助剤の含有量は、電極活物質100質量部に対し、通常0質量部~30質量部であり、好ましくは0.5質量部~20質量部であり、より好ましくは1質量部~10質量部である。溶媒の使用量は、電極合剤層形成用組成物の塗布方法にあわせて調整することができ、例えば、ドクターブレード法による塗布の場合、電極活物質、バインダー及び導電助剤の合計量100質量部に対し、20質量部~300質量部であることが好ましく、30質量部~200質量部であることがより好ましい。
 対極の作製に用いる電極合剤層形成用組成物は、本発明の効果を損なわない範囲で、前記成分に加え、例えば、粘度調整剤、補強材、酸化防止剤、pH調整剤、分散剤等の他の成分を含有してもよい。これらの他の成分としては公知のものを、公知の配合比率で使用することができる。
<非水電解質二次電池>
 本発明の非水電解質二次電池は、主に、正極、負極及び非水電解質で構成される。この非水電解質二次電池では、上記した本発明の電極が正極として用いられる。また、本発明においては、正極と負極との間にセパレータを介在させることが好ましい。
<非水電解質>
 非水電解質は、リチウム塩と、溶媒及び分散媒から選ばれる1種以上とを含有する。非水電解質としては、溶媒として有機溶媒を用い、リチウム塩を溶解して得られる液体状電解質、溶媒又は分散媒として、有機溶媒に高分子化合物を溶解してゲル化した高分子ゲルを用い、リチウム塩を溶解又は分散して得られる高分子ゲル状電解質、分散媒として高分子を用い、溶媒を用いずにリチウム塩を分散させて得られる高分子電解質(本明細書では、溶媒を用いず、高分子を分散媒としてリチウム塩を分散して得られる電解質を高分子電解質と定義する)、無機系固体電解質等を挙げることができる。
 非水電解質に用いる溶媒としては、非水電解質二次電池の非水電解質に通常使用される有機溶媒を使用することができる。有機溶媒の具体例としては、例えば、飽和環状カーボネート化合物、飽和環状エステル化合物、スルホキシド化合物、スルホン化合物、アマイド化合物、飽和鎖状カーボネート化合物、鎖状エーテル化合物、環状エーテル化合物、飽和鎖状エステル化合物等が挙げられる。これらの有機溶媒は、1種のみを使用してもよいし、2種以上を組み合わせて使用してもよい。これらの有機溶媒の中でも、比誘電率が高く、非水電解質の誘電率を上げる役割を果たすという点で、飽和環状カーボネート化合物、飽和環状エステル化合物、スルホキシド化合物、スルホン化合物及びアマイド化合物が好ましく、飽和環状カーボネート化合物がより好ましい。
 飽和環状カーボネート化合物としては、例えば、エチレンカーボネート、1,2-プロピレンカーボネート、1,3-プロピレンカーボネート、1,2-ブチレンカーボネート、1,3-ブチレンカーボネート、1,1-ジメチルエチレンカーボネート等が挙げられる。
 飽和環状エステル化合物としては、例えば、γ-ブチロラクトン、γ-バレロラクトン、γ-カプロラクトン、δ-ヘキサノラクトン、δ-オクタノラクトン等が挙げられる。
 スルホキシド化合物としては、例えば、ジメチルスルホキシド、ジエチルスルホキシド、ジプロピルスルホキシド、ジフェニルスルホキシド、チオフェン等が挙げられる。
 スルホン化合物としては、例えば、ジメチルスルホン、ジエチルスルホン、ジプロピルスルホン、ジフェニルスルホン、スルホラン(テトラメチレンスルホンともいう)、3-メチルスルホラン、3,4-ジメチルスルホラン、3,4-ジフェニメチルスルホラン、スルホレン、3-メチルスルホレン、3-エチルスルホレン、3-ブロモメチルスルホレン等が挙げられ、スルホラン、テトラメチルスルホランが好ましい。
 アマイド化合物としては、N-メチルピロリドン、ジメチルホルムアミド、ジメチルアセトアミド等が挙げられる。
 有機溶媒の中でも、非水電解質の粘度を低くすることができ、電解質イオンの移動性を高くして出力密度等の電池特性を優れたものにすることができるという点で、飽和鎖状カーボネート化合物、鎖状エーテル化合物、環状エーテル化合物及び飽和鎖状エステル化合物が好ましい。また、低粘度であり、低温での非水電解質の性能を高くすることができるという点で、飽和鎖状カーボネート化合物が特に好ましい。
 飽和鎖状カーボネート化合物としては、例えば、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、エチルブチルカーボネート、メチル-t-ブチルカーボネート、ジイソプロピルカーボネート、t-ブチルプロピルカーボネート等が挙げられる。
 鎖状エーテル化合物及び環状エーテル化合物としては、例えば、ジメトキシエタン、エトキシメトキシエタン、ジエトキシエタン、テトラヒドロフラン、ジオキソラン、ジオキサン、1,2-ビス(メトキシカルボニルオキシ)エタン、1,2-ビス(エトキシカルボニルオキシ)エタン、1,2-ビス(エトキシカルボニルオキシ)プロパン、エチレングリコールビス(トリフルオロエチル)エーテル、プロピレングリコールビス(トリフルオロエチル)エーテル、エチレングリコールビス(トリフルオロメチル)エーテル、ジエチレングリコールビス(トリフルオロエチル)エーテル等が挙げられ、これらの中でも、ジオキソランが好ましい。
 飽和鎖状エステル化合物としては、分子中の炭素原子数の合計が2~8であるモノエステル化合物及びジエステル化合物が好ましく、具体的な化合物としては、例えば、ギ酸メチル、ギ酸エチル、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸イソブチル、酢酸ブチル、プロピオン酸メチル、プロピオン酸エチル、酪酸メチル、イソ酪酸メチル、トリメチル酢酸メチル、トリメチル酢酸エチル、マロン酸メチル、マロン酸エチル、コハク酸メチル、コハク酸エチル、3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、エチレングリコールジアセチル、プロピレングリコールジアセチル等が挙げられ、ギ酸メチル、ギ酸エチル、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸イソブチル、酢酸ブチル、プロピオン酸メチル、及びプロピオン酸エチルが好ましい。
 その他の有機溶媒として、例えば、アセトニトリル、プロピオニトリル、ニトロメタンやこれらの誘導体、各種イオン液体を用いることもできる。
 高分子ゲルの調製に用いる高分子化合物としては、ポリエチレンオキシド、ポリプロピレンオキシド、ポリビニルクロライド、ポリアクリロニトリル、ポリメチルメタクリレート、ポリエチレン、ポリフッ化ビニリデン、ポリヘキサフルオロプロピレン等が挙げられる。
 高分子電解質(あるいは、溶媒を用いずにリチウム塩を分散させて得られる高分子電解質)の調製に用いる高分子としては、ポリエチレンオキシド、ポリプロピレンオキシド、ポリスチレンスルホン酸等が挙げられる。
 高分子ゲル状電解質又は高分子電解質(あるいは、溶媒を用いずにリチウム塩を分散させて得られる高分子電解質)中の配合比率、複合化の方法については特に制限はなく、本技術分野で公知の配合比率、公知の複合化方法を採用することができる。
 非水電解質の形態は特に制限されるものではないが、製造工程が簡便であることから、溶媒を含むものが好ましく、液体であることがより好ましい。
 非水電解質に用いるリチウム塩としては、特に限定されるものではなく、公知のリチウム塩を使用することができる。リチウム塩の具体例としては、例えば、LiPF6、LiBF4、LiAsF6、LiCF3SO3、LiCF3CO2、LiN(CF3SO22、LiN(C25SO22、LiN(SO2F)2、LiC(CF3SO23、LiB(CF3SO34、LiB(C242、LiBF2(C24)、LiSbF6、LiSiF5、LiSCN、LiClO4、LiCl、LiF、LiBr、LiI、LiAlF4、LiAlCl4、LiPO22、これらの誘導体等が挙げられる。
 液体状電解質及び高分子ゲル状電解質に用いるリチウム塩としては、LiPF6、LiBF4、LiClO4、LiCF3SO3、LiN(CF3SO22、LiN(C25SO22、LiN(SO2F)2、LiPO22、LiC(CF3SO23並びにLiCF3SO3の誘導体及びLiC(CF3SO23の誘導体からなる群から選ばれる1種以上を用いるのが好ましい。
 高分子電解質(あるいは、溶媒を用いずにリチウム塩を分散させて得られる高分子電解質)に用いるリチウム塩としては、LiN(CF3SO22、LiN(C25SO22、LiN(SO2F)2、LiC(CF3SO23、LiB(CF3SO34、LiB(C242からなる群から選ばれる1種以上を用いるのが好ましい。
 非水電解質中のリチウム塩の濃度は、低過ぎると十分な電流密度が得られないことがあり、一方、高過ぎると非水電解質の安定性を損なう恐れがある。そのため、リチウム塩の濃度は、0.5mol/L~7mol/Lであることが好ましく、0.8mol/L~1.8mol/Lであることがより好ましい。
 非水電解質は、電池寿命の向上、安全性向上等のため、電極被膜形成剤、酸化防止剤、難燃剤、過充電防止剤等、公知の電解質添加剤を更に含んでもよい。電解質添加剤を用いる場合の濃度は、少な過ぎると添加効果が発揮できず、一方、多過ぎるとかえって非水電解質二次電池の特性に悪影響を及ぼすことがある。そのため、電解質添加剤の濃度は、非水電解質に対し、0.01質量%~10質量%であることが好ましく、0.1質量%~5質量%であることがより好ましい。
 無機系固体電解質としては、Li1+xx2-y(PO43(A=Al、Ge、Sn、Hf、Zr、Sc又はY、B=Ti、Ge又はZn、0<x<0.5)、LiMPO4(M=Mn、Fe、Co又はNi)、Li3PO4等のリン酸系材料;Li3XO4(X=As又はV)、Li3+xx1-x4(A=Si、Ge又はTi、B=P、As又はV、0<x<0.6)、Li4+xxSi1-x4(A=B、Al、Ga、Cr又はFe、0<x<0.4)(A=Ni又はCo、0<x<0.1)Li4-3yAlySiO4(0<y<0.06)、Li4-2yZnyGeO4(0<y<0.25)、LiAlO2、Li2BO4、Li4XO4(X=Si、Ge又はTi)、リチウムチタネート(LiTiO2、LiTi24、Li4TiO4、Li2TiO3、Li2Ti37、Li4Ti512)等のリチウム複合酸化物;LiBr、LiF、LiCl、LiPF6、LiBF4等のリチウムとハロゲンを含む化合物;LiPON,LiN(SO2CF32、LiN(SO2252、Li3N、LiN(SO2372等のリチウムと窒素を含む化合物;La0.55Li0.35TiO3等のリチウムイオン伝導性を有するペロブスカイト構造を有する結晶;Li7-La3Zr213等のガーネット型構造を有する結晶;50Li4SiO4・50Li3BO3等のガラス;Li10GeP212、Li3.25Ge0.250.754等のリチウム・リン硫化物系の結晶、30Li2S・26B23・44LiI、63Li2S・36SiS2・1Li3PO4、57Li2S・38SiS2・5Li4SiO4、70Li2S・30GeS2、50Li2S・50GeS2等のリチウム・リン硫化物系のガラス;Li7311、Li3.250.954、Li10GeP212、Li9.6312、Li9.54Si1.741.4411.7Cl0.3等のガラスセラミック等が挙げられる。
<セパレータ>
 セパレータとしては、通常用いられる高分子フィルムやガラスフィルターを特に限定なく使用できる。高分子フィルムの具体例としては、例えば、ポリエチレン、ポリプロピレン、ポリフッ化ビニリデン、ポリ塩化ビニリデン、ポリアクリロニトリル、ポリアクリルアミド、ポリテトラフルオロエチレン、ポリスルホン、ポリエーテルスルホン、ポリカーボネート、ポリアミド、ポリイミド、ポリエチレンオキシドやポリプロピレンオキシド等のポリエーテル類、カルボキシメチルセルロースやヒドロキシプロピルセルロース等の種々のセルロース類、ポリ(メタ)アクリル酸及びその種々のエステル類等を主体とする高分子化合物やその誘導体、これらの共重合体や混合物からなるフィルム等が挙げられ、これらの高分子フィルムは、アルミナやシリカなどのセラミック材料、酸化マグネシウム、アラミド樹脂、ポリフッ化ビニリデンでコートされていてもよい。これらの高分子フィルムは、単独で用いてもよいし、これらのフィルムを重ね合わせて複層フィルムとして用いてもよい。更に、これらの高分子フィルムには、種々の添加剤を用いてもよく、その種類や含有量は特に制限されない。これらの高分子フィルムの中でも、ポリエチレン、ポリプロピレン、ポリフッ化ビニリデン、ポリスルホンからなるフィルムが好ましく用いられる。
 これらの高分子フィルムは、非水電解質がしみ込んでイオンが透過し易いように、微多孔化がなされたものが用いられる。この微多孔化の方法としては、高分子化合物と溶剤の溶液をミクロ相分離させながら製膜し、溶剤を抽出除去して多孔化する「相分離法」、溶融した高分子化合物を高ドラフトで押し出し製膜した後に熱処理し、結晶を一方向に配列させ、更に延伸によって結晶間に間隙を形成して多孔化をはかる「延伸法」等が挙げられ、用いられる高分子フィルムによって適宜選択される。
 高分子ゲル状電解質、高分子電解質(あるいは、溶媒を用いずにリチウム塩を分散させて得られる高分子電解質)、無機系固体電解質を用いるときには、セパレータを含まなくてもよい。
 このように構成される非水電解質二次電池は、その形状には特に制限を受けず、コイン型、円筒型、角型、ラミネート型等、種々の形状とすることができる。図1は、本発明の非水電解質二次電池のコイン型電池の構造の一例を概略的に示す縦断面図である。図2は、本発明の非水電解質二次電池の円筒型電池の基本構成を示す概略図である。図3は、本発明の非水電解質二次電池の円筒型電池の内部構造を断面として示す斜視図である。
 図1に示すコイン型の非水電解質二次電池10は、正極集電体1aと、正極集電体1a上に形成され、リチウムイオンを放出できる正極合剤層1と、正極集電体1a及び正極合剤層1から構成される正極を収容する正極ケース4と、負極集電体2aと、負極集電体2a上に形成され、正極合剤層1から放出されたリチウムイオンを吸蔵及び放出できる負極合剤層2と、負極集電体2a及び負極合剤層2から構成される負極を収容する負極ケース5と、正極と負極との間に介在するセパレータ7とを備える。正極ケース4及び負極ケース5の内部は、非水電解質3で満たされている。また、正極ケース4及び負極ケース5の周縁部は、ポリプロピレン製のガスケット6を介してかしめられることにより密閉されている。
 また、図2及び図3に示す円筒型の非水電解質二次電池10’は、負極板19と正極板21とがセパレータ7を介して巻回された電極体と、電極体を収容するケース23と、電極体を挟むように配置された一対の絶縁板24とを備える。正極板21は、正極集電体1aと、正極集電体1a上に形成され、リチウムイオンを放出できる正極合剤層1とから構成される。負極板19は、負極集電体2aと、負極集電体2a上に形成され、正極合剤層1から放出されたリチウムイオンを吸蔵及び放出できる負極合剤層2とから構成される。ケース23の内部は、非水電解質3で満たされている。ケース23の開放端部では、正極端子17と、正極端子17の内側に設けられた安全弁26及びPTC(Positive Temperature Coefficient)素子27とがガスケット6を介してかしめられることにより密閉されている。負極板19は、負極リード20を介して負極端子18と接続されている。正極板21は、正極リード22を介して正極端子17と接続されている。
<外装部材>
 正極ケース4、負極ケース5及びケース23に用いられる外装部材としては、ラミネートフィルム又は金属製容器が挙げられる。外装部材の厚さは、通常0.5mm以下であり、好ましくは0.3mm以下である。外装部材の形状としては、扁平型(薄型)、角型、円筒型、コイン型、ボタン型等が挙げられる。
 ラミネートフィルムは、樹脂フィルム間に金属層を有する多層フィルムを用いることもできる。金属層は、軽量化のためにアルミニウム箔若しくはアルミニウム合金箔が好ましい。樹脂フィルムは、例えばポリプロピレン、ポリエチレン、ナイロン、ポリエチレンテレフタレート等の高分子材料を用いることができる。ラミネートフィルムは、熱融着によりシールを行って外装部材の形状に形成することができる。
 金属製容器は、例えば、ステンレス、アルミニウム又はアルミニウム合金等から形成することができる。アルミニウム合金としては、マグネシウム、亜鉛、ケイ素などの元素を含む合金が好ましい。アルミニウム又はアルミニウム合金において、鉄、銅、ニッケル、クロム等の遷移金属の含有量を1%以下にすることで、高温環境下での長期信頼性及び放熱性を飛躍的に向上させることができる。
 以上、本発明の実施形態を説明したが、本発明は、前記実施形態に限定されるものではない。本発明の要旨を逸脱しない範囲において、当業者が行い得る変更、改良等を施した種々の形態にて実施することができる。
 以下に、実施例及び比較例を示し、本発明をより具体的に説明する。なお、本発明は、これらの実施例によって限定されるものではない。
<実施例1 セレン含有硫黄変性ポリアクリロニトリルA-1の製造>
 硫黄(シグマアルドリッチ製)200質量部と、セレン(高純度化学製、平均粒子径10μm、粉末)0.002質量部と、ポリアクリロニトリル粉末(シグマアルドリッチ製、開口径30μmのふるいで分級)100質量部とを混合した混合物を、アルミナタンマン管に入れた後、アルミナタンマン管の開口部を、熱電対、ガス導入管及びガス排出管が取り付けられたゴム栓で蓋をした。アルミナタンマン管内にアルゴンガスを100cc/分の流量で導入しながら、混合物を5℃/分の昇温速度で加熱し、100℃に達したところでアルゴンガスを止めた。その後、360℃で加熱を止めたが、温度は400℃まで上昇した。室温付近まで冷却した後、アルミナタンマン管から反応生成物を取り出した。得られた反応生成物を粉砕して、実施例1のセレン含有硫黄変性ポリアクリロニトリルA-1を得た。セレン含有硫黄変性ポリアクリロニトリルA-1の平均粒子径、硫黄含有量及び硫黄含有量に対するセレン量(セレン/硫黄質量比)は下記の通りであった。
・平均粒子径 8μm
・硫黄含有量 37.1質量%
・セレン/硫黄質量比=9.3ppm
<実施例2 セレン含有硫黄変性ポリアクリロニトリルA-2の製造>
 セレンの使用量を0.1質量部に変更した以外は、実施例1と同様の操作で実施例2のセレン含有硫黄変性ポリアクリロニトリルA-2を得た。セレン含有硫黄変性ポリアクリロニトリルA-2の平均粒子径、硫黄含有量及びセレン/硫黄質量比は下記の通りであった。
・平均粒子径 8μm
・硫黄含有量 37.8質量%
・セレン/硫黄質量比=468ppm
<実施例3 セレン含有硫黄変性ポリアクリロニトリルA-3の製造>
 セレンの使用量を0.4質量部に変更した以外は、実施例1と同様の操作で実施例3のセレン含有硫黄変性ポリアクリロニトリルA-3を得た。セレン含有硫黄変性ポリアクリロニトリルA-3の平均粒子径、硫黄含有量及びセレン/硫黄質量比は下記の通りであった。
・平均粒子径 8μm
・硫黄含有量 37.5質量%
・セレン/硫黄質量比=1750ppm
<実施例4 セレン含有硫黄変性ポリアクリロニトリルA-4の製造>
 セレンの使用量を4.0質量部に変更した以外は、実施例1と同様の操作で実施例4のセレン含有硫黄変性ポリアクリロニトリルA-4を得た。セレン含有硫黄変性ポリアクリロニトリルA-4の平均粒子径、硫黄含有量及びセレン/硫黄質量比は下記の通りであった。
・平均粒子径 8μm
・硫黄含有量 37.7質量%
・セレン/硫黄質量比=16200ppm
<実施例5 セレン含有硫黄変性ポリアクリロニトリルA-5の製造>
 セレンの使用量を、0.00025質量部に変更した以外は、実施例1と同様の操作で実施例5のセレン含有硫黄変性ポリアクリロニトリルA-5を得た。セレン含有硫黄変性ポリアクリロニトリルA-5の平均粒子径、硫黄含有量及びセレン/硫黄質量比は下記の通りであった。
・平均粒子径 8μm
・硫黄含有量 37.7質量%
・セレン/硫黄質量比=0.90ppm
<実施例6 セレン含有硫黄変性ポリアクリロニトリルA-6の製造>
 セレンの使用量を0.00003質量部に変更した以外は、実施例1と同様の操作で実施例6のセレン含有硫黄変性ポリアクリロニトリルA-6を得た。セレン含有硫黄変性ポリアクリロニトリルA-6の平均粒子径、硫黄含有量及びセレン/硫黄質量比は下記の通りであった。
・平均粒子径 8μm
・硫黄含有量 37.6質量%
・セレン/硫黄質量比=0.095ppm
 <比較例1 硫黄変性ポリアクリロニトリルA-7の製造>
 セレンを使用しない以外は、実施例1と同様の操作で比較例1の硫黄変性ポリアクリロニトリルA-7を得た。硫黄変性ポリアクリロニトリルA-7の平均粒子径及び硫黄含有量は下記の通りであった。なお、セレン含有量は検出限界以下であった。
・平均粒子径 8μm
・硫黄含有量 37.2質量%
<比較例2 セレン含有硫黄変性ポリアクリロニトリルA-8の製造>
 セレンの使用量を40質量部に変更した以外は、実施例1と同様の操作で比較例2のセレン含有硫黄変性ポリアクリロニトリルA-8を得た。セレン含有硫黄変性ポリアクリロニトリルA-8の平均粒子径、硫黄含有量及びセレン/硫黄質量比は下記の通りであった。
・平均粒子径 8μm
・硫黄含有量 26.5質量%
・セレン/硫黄質量比=185,200ppm
[実施例7]
<電極合剤層形成用組成物の調製>
 電極活物質としてのセレン含有硫黄変性ポリアクリロニトリルA-1 90.0質量部、導電助剤としてのアセチレンブラック(電気化学工業製)5.0質量部、並びにバインダーとしてのスチレン-ブタジエンゴム(40質量%水分散液、日本ゼオン製)3.0質量部及びカルボキシメチルセルロースナトリウム(ダイセルファインケム製)2.0質量部を、溶媒である水110質量部に添加し、自転・公転ミキサーを用いて、公転1600rpm、自転800rpmの条件で60分間溶媒に分散させて電極合剤層形成用組成物を調製した。
<電極の作製>
 電極合剤層形成用組成物を、ドクターブレード法によりカーボンコートされたアルミニウム箔からなる集電体上に塗布し、90℃で1時間静置して乾燥させた。その後、この電極を円形状に切断し、更に使用直前に120℃で2時間真空乾燥して円形状電極を作製した。この円形状電極の電極容量は、3.0mAh/cm2であった。
<非水電解質溶液の調製>
 エチレンカーボネート50体積%及びジエチルカーボネート50体積%からなる混合溶媒に、LiPF6を1.0mol/Lの濃度で溶解し非水電解質溶液を調製した。
<電池の組み立て>
 作製した円形状電極を正極として用い、その対極として円形状に切断した厚さ500μmのリチウム金属を用い、セパレータとしてガラスフィルターを挟んでケース内に保持した。その後、先に調製した非水電解質溶液をケース内に注入し、かしめ機によりケースを密閉して、実施例7の非水電解質二次電池(リチウムイオン二次電池、φ20mm、厚さ3.2mmのコイン型)を組み立てた。
[実施例8]
 セレン含有硫黄変性ポリアクリロニトリルA-1の代わりにセレン含有硫黄変性ポリアクリロニトリルA-2を用いた以外は、実施例7と同様の操作により実施例8の非水電解質二次電池を組み立てた。
[実施例9]
 セレン含有硫黄変性ポリアクリロニトリルA-1の代わりにセレン含有硫黄変性ポリアクリロニトリルA-3を用いた以外は、実施例7と同様の操作により実施例9の非水電解質二次電池を組み立てた。
[実施例10]
 セレン含有硫黄変性ポリアクリロニトリルA-1の代わりにセレン含有硫黄変性ポリアクリロニトリルA-4を用いた以外は、実施例7と同様の操作により実施例10の非水電解質二次電池を組み立てた。
[実施例11]
 セレン含有硫黄変性ポリアクリロニトリルA-1の代わりにセレン含有硫黄変性ポリアクリロニトリルA-5を用いた以外は、実施例7と同様の操作により実施例11の非水電解質二次電池を組み立てた。
[実施例12]
 セレン含有硫黄変性ポリアクリロニトリルA-1の代わりにセレン含有硫黄変性ポリアクリロニトリルA-6を用いた以外は、実施例7と同様の操作により実施例12の非水電解質二次電池を組み立てた。
[比較例3]
 セレン含有硫黄変性ポリアクリロニトリルA-1の代わりに硫黄変性ポリアクリロニトリルA-7を用いた以外は、実施例7と同様の操作により比較例3の非水電解質二次電池を組み立てた。
[比較例4]
 セレン含有硫黄変性ポリアクリロニトリルA-1の代わりにセレン含有硫黄変性ポリアクリロニトリルA-8を用いた以外は、実施例7と同様の操作により比較例4の非水電解質二次電池を組み立てた。
<サイクル特性の評価>
 実施例7~12並びに比較例3及び4の非水電解質二次電池を25℃の恒温槽に入れ、充電終止電圧を3V、放電終止電圧を1Vとし、充電レート0.1C、放電レート0.1Cの充放電試験を3回行った。その後、45℃の恒温槽に入れ、充電レート1.0C、放電レート1.0Cで100回、計103回の充放電試験を行い、放電容量(mAh/g)を測定した。103回目の放電容量と5回目の放電容量との比をサイクル特性として表1に示す。
<レート特性の評価>
 実施例7~12並びに比較例3及び4の非水電解質二次電池を25℃の恒温槽に入れ、充電終止電圧を3V、放電終止電圧を1Vとし、充電レート0.1C、放電レート0.1Cの充放電試験を3回、引き続き、充電レート1.0C、放電レート1.0Cで3回、充電レート3.0C、放電レート3.0Cで3回、計9回の充放電試験を行い、放電容量(mAh/g)を測定した。9回目の放電容量と3回目の放電容量との比をレート特性として表1に示す。
<保存劣化特性の評価>
 実施例7~12並びに比較例3及び4の非水電解質二次電池を25℃の恒温槽に入れ、充電終止電圧を3V、放電終止電圧を1Vとし、充電レート0.1C、放電レート0.1Cの充放電試験を3回、引き続き、充電レート0.1Cの充電試験を1回行った。その後、60℃の恒温槽に入れ、30日間保存した。さらに、25℃の恒温槽に入れ、充電終止電圧を3V、放電終止電圧を1Vとし、充電レート0.1C、放電レート0.1Cの充放電試験を3回行った。保存前の放電容量を100%としたときの60℃保存後の放電容量を保存劣化特性として表1に示す。
Figure JPOXMLDOC01-appb-T000002
 1  正極合剤層
 1a 正極集電体
 2  負極合剤層
 2a 負極集電体
 3  非水電解質
 4  正極ケース
 5  負極ケース
 6  ガスケット
 7  セパレータ
 10 コイン型の非水電解質二次電池
 10’ 円筒型の非水電解質二次電池
 17 正極端子
 18 負極端子
 19 負極板
 20 負極リード
 21 正極板
 22 正極リード
 23 ケース
 24 絶縁板
 26 安全弁
 27 PTC素子

Claims (8)

  1.  硫黄変性有機化合物と、
     前記硫黄変性有機化合物中の硫黄含有量に対し、0.01ppm~100,000ppmのセレン原子と
    を含有する電極活物質。
  2.  前記セレン原子を0.05ppm~50,000ppmを含有する請求項1に記載の電極活物質。
  3.  前記硫黄含有量が25質量%~80質量%である請求項1又は2に記載の電極活物質。
  4.  前記硫黄変性有機化合物が硫黄変性ポリアクリロニトリルである請求項1~3のいずれか一項に記載の電極活物質。
  5.  請求項1~4のいずれか一項に記載の電極活物質と、バインダーと、導電助剤とを含む電極合剤層形成用組成物。
  6.  請求項5に記載の電極合剤層形成用組成物からなる電極合剤層が集電体上に形成された非水電解質二次電池用電極。
  7.  請求項6に記載の非水電解質二次電池用電極を正極とする非水電解質二次電池。
  8.  請求項1に記載の電極活物質の製造方法であって、
     1000質量部の単体硫黄に対し、200質量部~800質量部の原料有機化合物、並びにセレン原子が原子換算で0.00001質量部~100質量部となる量の、金属セレン及びセレン化合物から選ばれる少なくとも1種を混合する工程と、
     前記工程で得られた混合物を非酸化性雰囲気下で250℃~600℃に加熱する工程と
    を有する電極活物質の製造方法。
PCT/JP2019/049887 2019-12-19 2019-12-19 電極活物質及びその製造方法、電極合剤層形成用組成物、非水電解質二次電池用電極並びに非水電解質二次電池 WO2021124522A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/049887 WO2021124522A1 (ja) 2019-12-19 2019-12-19 電極活物質及びその製造方法、電極合剤層形成用組成物、非水電解質二次電池用電極並びに非水電解質二次電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/049887 WO2021124522A1 (ja) 2019-12-19 2019-12-19 電極活物質及びその製造方法、電極合剤層形成用組成物、非水電解質二次電池用電極並びに非水電解質二次電池

Publications (1)

Publication Number Publication Date
WO2021124522A1 true WO2021124522A1 (ja) 2021-06-24

Family

ID=76477437

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/049887 WO2021124522A1 (ja) 2019-12-19 2019-12-19 電極活物質及びその製造方法、電極合剤層形成用組成物、非水電解質二次電池用電極並びに非水電解質二次電池

Country Status (1)

Country Link
WO (1) WO2021124522A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000511342A (ja) * 1996-05-22 2000-08-29 モルテック コーポレイション 複合カソード、新規複合カソードを含む化学電池、およびそれらを製造するプロセス
JP2012133918A (ja) * 2010-12-20 2012-07-12 Toyota Central R&D Labs Inc 蓄電デバイス及び電極活物質の製造方法
JP2014523094A (ja) * 2011-07-11 2014-09-08 ビーエーエスエフ ソシエタス・ヨーロピア 金属硫化物を含む電極材料
JP2017188303A (ja) * 2016-04-05 2017-10-12 住友ゴム工業株式会社 リチウムイオン二次電池用正極活物質、正極およびリチウムイオン二次電池
JP2017218584A (ja) * 2016-06-02 2017-12-14 株式会社Adeka 硫黄変性ポリアクリロニトリルの製造方法
US20180090751A1 (en) * 2016-09-29 2018-03-29 Uchicago Argonne, Llc Selenium-doped sulfur cathodes for rechargeable batteries
CN108461729A (zh) * 2018-03-13 2018-08-28 温州大学 一种碲硫复合碳材料及其制备方法与应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000511342A (ja) * 1996-05-22 2000-08-29 モルテック コーポレイション 複合カソード、新規複合カソードを含む化学電池、およびそれらを製造するプロセス
JP2012133918A (ja) * 2010-12-20 2012-07-12 Toyota Central R&D Labs Inc 蓄電デバイス及び電極活物質の製造方法
JP2014523094A (ja) * 2011-07-11 2014-09-08 ビーエーエスエフ ソシエタス・ヨーロピア 金属硫化物を含む電極材料
JP2017188303A (ja) * 2016-04-05 2017-10-12 住友ゴム工業株式会社 リチウムイオン二次電池用正極活物質、正極およびリチウムイオン二次電池
JP2017218584A (ja) * 2016-06-02 2017-12-14 株式会社Adeka 硫黄変性ポリアクリロニトリルの製造方法
US20180090751A1 (en) * 2016-09-29 2018-03-29 Uchicago Argonne, Llc Selenium-doped sulfur cathodes for rechargeable batteries
CN108461729A (zh) * 2018-03-13 2018-08-28 温州大学 一种碲硫复合碳材料及其制备方法与应用

Similar Documents

Publication Publication Date Title
EP2772968B1 (en) Composite positive active material, method of preparing the same, and positive electrode and lithium battery containing the material
WO2012141301A1 (ja) リチウム二次電池
KR20140094959A (ko) 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지
JP2017520892A (ja) リチウム電池用正極
WO2018110263A1 (ja) 複合黒鉛粒子、その製造方法及びその用途
EP3780170A1 (en) Method for suppressing thermal runaway caused by internal short circuit
US10224538B2 (en) Positive electrode for rechargeable lithium battery and rechargeable lithium battery including the same
KR20200081370A (ko) 슬러리 조성물, 및 슬러리 조성물을 이용한 전극
US10446834B2 (en) Positive active material, manufacturing method thereof, and positive electrode and lithium battery including the material
WO2022004696A1 (ja) 硫黄変性ポリアクリロニトリル、それを含む電極活物質、該電極活物質を含む二次電池用電極、該電極の製造方法及び該電極を用いた非水電解質二次電池
WO2020170833A1 (ja) 電解質用組成物、非水電解質及び非水電解質二次電池
JPH09199112A (ja) 非水電解液二次電池
KR101044577B1 (ko) 고전압 리튬 이차 전지
JP7304339B2 (ja) リチウムイオン二次電池、及びその作動方法
WO2021124522A1 (ja) 電極活物質及びその製造方法、電極合剤層形成用組成物、非水電解質二次電池用電極並びに非水電解質二次電池
KR20220075740A (ko) 리튬이온 이차전지용 금속계-카본 복합 음극재, 이의 제조방법 및 이를 포함하는 이차전지
WO2020017378A1 (ja) 非水電解質二次電池
JP2021118031A (ja) 非水電解質二次電池
US20220376257A1 (en) Sulfur-modified polyacrylonitrile
JPWO2020045561A1 (ja) 捲回型電極体
JPWO2019176618A1 (ja) 非水電解質二次電池
WO2024057992A1 (ja) 硫黄含有材料、硫黄含有電池材料、電極及び電池
WO2022004697A1 (ja) 硫黄変性ポリアクリロニトリル、それを含む電極活物質、該電極活物質を含む二次電池用電極、該電極の製造方法及び該電極を用いた非水電解質二次電池
JP2021051854A (ja) 非水電解質二次電池の製造方法
US20220340693A1 (en) Production method of sulfur-modified polyacrylonitrile

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19956739

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19956739

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP