WO2016159212A1 - 有機硫黄材料及びその製造方法 - Google Patents

有機硫黄材料及びその製造方法 Download PDF

Info

Publication number
WO2016159212A1
WO2016159212A1 PCT/JP2016/060615 JP2016060615W WO2016159212A1 WO 2016159212 A1 WO2016159212 A1 WO 2016159212A1 JP 2016060615 W JP2016060615 W JP 2016060615W WO 2016159212 A1 WO2016159212 A1 WO 2016159212A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic sulfur
sulfur
secondary battery
peak
ion secondary
Prior art date
Application number
PCT/JP2016/060615
Other languages
English (en)
French (fr)
Inventor
博 妹尾
敏勝 小島
信彦 竹市
尚功 安藤
Original Assignee
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人産業技術総合研究所 filed Critical 国立研究開発法人産業技術総合研究所
Priority to CN201680031085.7A priority Critical patent/CN107709233B/zh
Priority to EP16773092.8A priority patent/EP3279141B1/en
Priority to US15/563,323 priority patent/US10906869B2/en
Priority to KR1020177030902A priority patent/KR20170133406A/ko
Priority to JP2017510170A priority patent/JP6441462B2/ja
Publication of WO2016159212A1 publication Critical patent/WO2016159212A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C381/00Compounds containing carbon and sulfur and having functional groups not covered by groups C07C301/00 - C07C337/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/70Compounds containing carbon and sulfur, e.g. thiophosgene
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/70Compounds containing carbon and sulfur, e.g. thiophosgene
    • C01B32/72Carbon disulfide
    • C01B32/75Preparation by reacting sulfur or sulfur compounds with hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to an organic sulfur material and a method for producing the same.
  • sulfur is one of the promising candidates for high-capacity electrode materials because it has a high theoretical capacity of about 1672 mAh / g, is rich in resources, and is inexpensive.
  • elemental sulfur causes lithium polysulfide produced during the charge / discharge process to elute into the electrolyte and deposit on the negative electrode, resulting in a decrease in capacity. There is a problem of causing.
  • Patent Document 1 various attempts have been made to combine simple sulfur with various organic materials such as resin and pitch to suppress elution and diffusion of lithium polysulfide into the electrolyte.
  • Patent Document 1 To 3 and Non-Patent Documents 1 to 3).
  • These sulfur-carbon composites have been reported to exhibit relatively high capacity and relatively good cycle characteristics.
  • these sulfur-carbon composites use a carbon material such as porous carbon, or a solid organic material such as polyacrylonitrile (PAN) or pitch as a raw material for a carbon source, and is heated with a raw material containing sulfur or a raw material containing sulfur. It has been produced.
  • organic sulfur materials prepared using PAN as a raw material are listed as promising candidate materials as electrode materials with little cycle deterioration.
  • the diffusion of the substance is slower than the reaction using a liquid raw material or a gas raw material.
  • Tend to be slower than it is preferable to liquefy or vaporize the solid raw material or use a liquid raw material or a gaseous raw material. Since a considerably high temperature is required to liquefy or vaporize the solid raw material, it is disadvantageous from the viewpoint of manufacturing cost and process. Therefore, although it is realistic to make it react using a liquid raw material or a gaseous raw material, producing an organic sulfur material using the organic raw material of a liquid raw material or a gaseous raw material in this way is not considered.
  • the present invention has been made in view of the current state of the prior art described above, and its main purpose is to provide an organic sulfur material having a high capacity and high heat resistance while using a liquid organic raw material.
  • the inventors of the present invention have intensively studied to achieve the above-described object.
  • a solution containing polyethylene glycol or a derivative thereof and a raw material containing sulfur is heat-treated in an inert atmosphere, thereby bringing the high-temperature polyethylene glycol or a derivative thereof (liquid) into contact with the raw material containing sulfur. It was found that the reaction was allowed to proceed, and the liquid organic material was carbonized to efficiently take in sulfur, and an organic sulfur material with high capacity and high heat resistance could be obtained.
  • Polyethylene glycol costs 3000 to 30000 yen (about 27 to 270 dollars) per kg, which is less than 1/10 compared to PAN.
  • the organic sulfur material thus obtained has a Raman spectrum having a specific peak.
  • the present invention has been completed by further research based on such knowledge. That is, the present invention includes the following configurations.
  • Item 1 Containing carbon, hydrogen, oxygen and sulfur as constituent elements, In the Raman spectrum detected by Raman spectroscopy, it has peaks near 482 cm -1 , 846 cm -1 , 1066 cm -1 , 1279 cm -1 , and 1442 cm -1 , and An organic sulfur material with a peak near 1442 cm -1 being the strongest peak.
  • Item 2 Containing carbon, hydrogen, oxygen and sulfur as constituent elements, In the Raman spectrum detected by Raman spectroscopy, it has peaks near 482 cm -1 , 846 cm -1 , 1066 cm -1 , 1279 cm -1 , and 1442 cm -1 , and An organic sulfur material with a peak near 1442 cm -1 being the strongest peak.
  • Item 8. After the heat treatment step, Item 8.
  • Item 9. Item 6.
  • An electrode active material for a battery comprising the organic sulfur material according to any one of Items 1 to 5 or the organic sulfur material obtained by the production method according to any one of Items 6 to 8.
  • the battery electrode active material according to Item 9 which is an electrode active material for a lithium ion secondary battery or a sodium ion secondary battery.
  • Item 11. Item 11.
  • a battery comprising the battery electrode active material according to Item 9 or 10 as a constituent element.
  • Item 12. The battery according to Item 11, which is a lithium ion secondary battery or a sodium ion secondary battery.
  • Item 13. Item 10. The all-solid-state lithium ion secondary battery or all-solid-state sodium ion secondary battery comprising the battery electrode active material according to Item 9 or 10 and a lithium ion conductive solid electrolyte or a sodium ion conductive solid electrolyte as constituent elements. Next battery.
  • Item 14. Item 14. Item 14.
  • the lithium ion conductive solid electrolyte or sodium ion conductive solid electrolyte is a solid electrolyte containing an inorganic compound containing sulfur as a constituent element.
  • the organic sulfur material of the present invention contains sulfur in the gaps in carbon formed by heat treatment (especially calcination) of an organic substance, hardly vaporizes even at a high temperature of 400 ° C., and insertion and desorption of lithium accompanying charging / discharging. In this case, it is possible to prevent sulfur from being liberated as lithium polysulfide and eluting and diffusing into the electrolytic solution, and thus exhibit excellent charge / discharge characteristics (particularly high capacity) and high heat resistance.
  • the organic sulfur material of the present invention can also have excellent cycle characteristics.
  • the organic sulfur material of the present invention is useful as an electrode active material for a battery such as a lithium ion secondary battery (particularly, a positive electrode active material for a battery).
  • an organic sulfur material having the above-described excellent performance can be produced using a liquid organic raw material that has not been reported before.
  • FIG. 2 is a graph (100 to 4250 cm ⁇ 1 ) showing a Raman spectrum of the organic sulfur material obtained in Example 1.
  • FIG. 2 is a graph showing an XAFS spectrum (2460-2500 eV) of the organic sulfur material obtained in Example 1.
  • FIG. The left figure shows the partial fluorescence yield, and the right figure shows the total electron yield.
  • sulfur and lithium sulfide spectra are also shown.
  • 2 is a graph showing a TG-DTA curve (25 to 500 ° C.) of the organic sulfur material obtained in Example 1.
  • FIG. 2 is a graph showing the results of a charge / discharge test of the non-aqueous electrolyte lithium secondary battery obtained in Example 1.
  • FIG. 4 is a graph showing the results of a charge / discharge test of the non-aqueous electrolyte lithium secondary battery obtained in Example 2.
  • FIG. 2 is a graph (200 to 2000 cm ⁇ 1 ) showing a Raman spectrum of the organic sulfur material obtained in Comparative Example 1.
  • FIG. 3 is a graph showing an XAFS spectrum (2460-2500 eV) of the organic sulfur material obtained in Comparative Example 1. The left figure shows the partial fluorescence yield, and the right figure shows the total electron yield. For reference, sulfur and lithium sulfide spectra are also shown.
  • FIG. 3 is a graph showing a TG-DTA curve (25 to 500 ° C.) of the organic sulfur material obtained in Comparative Example 1.
  • FIG. 4 is a graph showing the results of a charge / discharge test of a non-aqueous electrolyte lithium secondary battery obtained in Comparative Example 1.
  • 4 is a graph showing the results of a charge / discharge test of the non-aqueous electrolyte lithium secondary battery obtained in Example 3.
  • FIG. 6 is a graph showing the results of a charge / discharge test of the non-aqueous electrolyte lithium secondary battery obtained in Example 4.
  • FIG. 6 is a graph (100 to 4250 cm ⁇ 1 ) showing a Raman spectrum of the organic sulfur material obtained in Example 5.
  • 6 is a graph showing an XAFS spectrum (2460-2500 eV) of the organic sulfur material obtained in Example 5. The left figure shows the partial fluorescence yield, and the right figure shows the total electron yield. For reference, sulfur and lithium sulfide spectra are also shown.
  • 6 is a graph showing the results of a charge / discharge test of the non-aqueous electrolyte lithium secondary battery obtained in Example 6.
  • FIG. 6 is a graph showing the results of a charge / discharge test of the non-aqueous electrolyte lithium secondary battery obtained in Example 9.
  • 6 is a graph showing the results of a charge / discharge test of a non-aqueous electrolyte lithium secondary battery obtained in Example 12.
  • 14 is a graph showing the results of a charge / discharge test of the non-aqueous electrolyte lithium secondary battery obtained in Example 13.
  • 14 is a graph showing the results of a charge / discharge test of the non-aqueous electrolyte lithium secondary battery obtained in Example 14.
  • 16 is a graph showing the results of a charge / discharge test of the non-aqueous electrolyte lithium secondary battery obtained in Example 15.
  • 6 is a graph showing the results of a charge / discharge test of the non-aqueous electrolyte lithium secondary battery obtained in Example 16.
  • FIG. 6 is a graph showing the results of a charge / discharge test of the non-aqueous electrolyte lithium secondary battery obtained in Example 17.
  • FIG. 20 is a graph showing the results of a charge / discharge test of the non-aqueous electrolyte lithium secondary battery obtained in Example 18.
  • FIG. 20 is a graph showing the results of a charge / discharge test of the non-aqueous electrolyte lithium secondary battery obtained in Example 19.
  • FIG. 6 is a graph showing the results of a charge / discharge test of the non-aqueous electrolyte lithium secondary battery obtained in Example 20.
  • FIG. 6 is a graph showing the results of a charge / discharge test of the non-aqueous electrolyte lithium ion secondary battery obtained in Example 21.
  • FIG. 6 is a graph showing the results of a charge / discharge test of the nonaqueous electrolyte sodium secondary battery obtained in Example 22.
  • FIG. 6 is a graph showing the results of a charge / discharge test of a non-aqueous electrolyte sodium ion secondary battery obtained in Example 23.
  • FIG. 6 is a graph showing the results of a charge / discharge test of a non-aqueous electrolyte magnesium secondary battery obtained in Example 24.
  • FIG. 6 is a graph showing the results of a charge / discharge test of a non-aqueous electrolyte magnesium secondary battery obtained in Example 24.
  • Organic sulfur materials organosulfur material present invention in the Raman spectrum detected by Raman spectroscopy, near 482 cm -1, around 846 cm -1, around 1066 cm -1, around 1279 cm -1, and 1442 cm - It has a peak near 1 and the peak near 1442 cm ⁇ 1 is the strongest peak.
  • the organic sulfur material of the present invention sulfur is included in the carbide resulting from the raw material, and the carbide resulting from the raw material is preferably amorphous. Further, in the organic sulfur material of the present invention, it is considered that sulfur is confined in the carbide skeleton formed by polyethylene glycol-derived carbon atoms, and unreacted sulfur (free sulfur) that has not been incorporated into the organic sulfur material is removed. Since it can be reduced, it is possible to prevent sulfur from being liberated as lithium polysulfide and eluting and diffusing into the electrolyte during lithium insertion and desorption during charging / discharging. Properties (high capacity and excellent cycle characteristics) can be exhibited and heat resistance is also excellent.
  • the organic sulfur material of the present invention contains carbon, hydrogen, oxygen and sulfur as constituent elements.
  • the proportion of each element in the organic sulfur material of the present invention is not particularly limited, but the carbon amount is present to such an extent that high conductivity can be maintained, and SS bonds can be formed to such an extent that free sulfur is hardly generated. It is preferable that there are carbon, hydrogen, oxygen and sulfur that can be held inside the structure. From such a viewpoint, the carbon content in the organic sulfur material of the present invention is 20 to 50% by weight (particularly 25 to 45% by weight), the hydrogen content is 0.01 to 5% by weight (particularly 0.1 to 4% by weight), The oxygen content is preferably 0.1 to 30% by weight (particularly 1 to 25% by weight), and the sulfur content is preferably 45 to 75% by weight (particularly 50 to 70% by weight).
  • the organic sulfur material of the present invention may contain a small amount of different atoms such as nitrogen and phosphorus in addition to the carbon, hydrogen, oxygen and sulfur as long as the effects of the present invention are not impaired. If the content of these different atoms is 10% by weight or less, particularly 5% by weight or less, the influence on the charge / discharge characteristics is limited.
  • the organic sulfur material of the present invention is located near 482 cm ⁇ 1 , 846 cm ⁇ 1 , 1066 cm ⁇ 1 , 1279 cm ⁇ 1 , and 1442 cm ⁇ 1 .
  • a peak is present and the peak near 1442 cm ⁇ 1 is the strongest peak.
  • the Raman spectrum is determined by Raman spectroscopy.
  • the organic sulfur material of the present invention Since the organic sulfur material of the present invention has an SS bond, it has a peak near 482 cm ⁇ 1 indicating the stretching vibration of the SS bond. This peak position can tolerate an error of ⁇ 50 cm ⁇ 1 , in particular ⁇ 30 cm ⁇ 1 . That is, the organic sulfur material of the present invention has a peak at 432 to 532 cm ⁇ 1 , particularly 452 to 512 cm ⁇ 1 .
  • the organic sulfur material of the present invention has a peak around 846 cm ⁇ 1 . This peak position can tolerate an error of ⁇ 50 cm ⁇ 1 , in particular ⁇ 30 cm ⁇ 1 . That is, the organic sulfur material of the present invention has a peak at 796 to 896 cm ⁇ 1 , particularly 816 to 876 cm ⁇ 1 .
  • the organic sulfur material of the present invention has a peak around 1066 cm ⁇ 1 . This peak position can tolerate an error of ⁇ 50 cm ⁇ 1 , in particular ⁇ 30 cm ⁇ 1 . That is, the organic sulfur material of the present invention has a peak at 1016 to 1116 cm ⁇ 1 , particularly 1036 to 1096 cm ⁇ 1 .
  • the organic sulfur material of the present invention has a peak around 1279 cm ⁇ 1 . This peak position can tolerate an error of ⁇ 50 cm ⁇ 1 , in particular ⁇ 30 cm ⁇ 1 . That is, the organic sulfur material of the present invention has a peak at 1229 to 1329 cm ⁇ 1 , particularly from 1249 to 1309 cm ⁇ 1 .
  • the organic sulfur material of the present invention has a peak around 1442 cm ⁇ 1 . This peak position can tolerate an error of ⁇ 50 cm ⁇ 1 , in particular ⁇ 30 cm ⁇ 1 . That is, the organic sulfur material of the present invention has a peak at 1392 to 1492 cm ⁇ 1 , particularly 1412 to 1472 cm ⁇ 1 .
  • the peak near 1442 cm -1 is the strongest peak among these five types of peaks.
  • the “strongest peak” means a peak having the highest peak intensity.
  • the Raman scattering peak intensity near the 482 cm ⁇ 1 the Raman scattering peak intensity near the 846 cm ⁇ 1 , the Raman scattering peak intensity near the 1066 cm ⁇ 1 , and the Raman scattering peak intensity near the 1279 cm ⁇ 1
  • it is preferably 0.4 times or less, more preferably 0.35 times or less of the Raman scattering peak intensity around 1442 cm ⁇ 1 .
  • the organic sulfur material of the present invention has the above five peaks in the Raman spectrum detected by Raman spectroscopy, and further has a Raman scattering intensity in the vicinity of 770 cm ⁇ 1 and / or 1924 cm ⁇ 1. It is preferable to have a peak.
  • the organic sulfur material of the present invention preferably has a peak at 720 to 820 cm ⁇ 1 , particularly 740 to 800 cm ⁇ 1 .
  • the organic sulfur material of the present invention preferably has a peak at 1874 to 1974 cm ⁇ 1 , particularly 1894 to 1954 cm ⁇ 1 .
  • the organic sulfur material of the present invention has peaks near 2469.2 eV, 2472.0 eV, and 2473.2 eV, and the peak intensity near the 2472.0 eV, and the 2473.2 It is preferable that the peak intensity near eV is at least twice the peak intensity near 2469.2 eV.
  • the organic sulfur material of the present invention preferably has a peak around 2469.2 eV. This peak position can tolerate an error of ⁇ 0.5 eV, especially ⁇ 0.3 eV. That is, the organic sulfur material of the present invention preferably has a peak at 2468.7 to 2469.7 eV, particularly 2468.9 to 2469.5 eV.
  • the organic sulfur material of the present invention preferably has a peak around 2472.0 eV. This peak position can tolerate an error of ⁇ 0.5 eV, especially ⁇ 0.3 eV. That is, the organic sulfur material of the present invention preferably has a peak at 2471.5 to 2472.5 247eV, particularly 2471.7 to 2472.3 eV.
  • the organic sulfur material of the present invention has an S—C bond and an S—H bond, it preferably has a peak around 2473.2 eV suggesting a transition from a hybrid orbital of the S—C bond and the S—H bond. This peak position can tolerate an error of ⁇ 0.5 eV, especially ⁇ 0.3 eV. That is, the organic sulfur material of the present invention preferably has a peak at 2472.7 to 2473.7 eV, particularly 2472.9 to 2473.5 eV.
  • the peak intensity in the vicinity of 2472.0 ⁇ ⁇ eV, and the peak intensity in the vicinity of 2473.2 eV are both at least twice the peak intensity in the vicinity of 2469.2 eV, Furthermore, 2.2 times or more is preferable.
  • the upper limit is not particularly limited, but the peak intensity around 2472.0 eV and the peak intensity around 2473.2 eV are both preferably not more than 5 times the peak intensity near 2469.2 eV. Note that when sulfur is treated with a resin (such as PAN) or pitch as in the prior art, it tends to have a strong peak in the vicinity of 2471.7 eV and cannot have a strong peak in the vicinity of 2473.2 eV.
  • the organic sulfur material of the present invention satisfies the above conditions, but may contain other impurities as long as the performance of the organic sulfur material is not impaired.
  • impurities include raw materials and nitrogen that may be mixed during production.
  • residual materials polyethylene glycol or derivatives thereof, free sulfur, etc.
  • products other than the object of the present invention, and the like may be contained as impurities.
  • the amount of these impurities may be in a range that does not hinder the performance of the organic sulfur material described above, and generally, the total amount of organic sulfur compounds that satisfy the above-mentioned conditions is 100% by weight, preferably 30% by weight or less, 20% by weight or less is more preferable.
  • a production method comprising a step of heat-treating a solution containing a raw material containing sulfur and polyethylene glycol or a derivative thereof in an inert atmosphere (particularly heat-treating by a reduction method).
  • a production method comprising a step of heat-treating a solution containing a raw material containing sulfur and polyethylene glycol or a derivative thereof in an inert atmosphere (particularly heat-treating by a reduction method).
  • a production method comprising a step of heat-treating a solution containing a raw material containing sulfur and polyethylene glycol or a derivative thereof in an inert atmosphere (particularly heat-treating by a reduction method).
  • the raw material containing sulfur is not particularly limited, and may contain elements (carbon, hydrogen, nitrogen, oxygen, etc.) that are volatilized or desorbed during the heat treatment in addition to the elemental sulfur. However, it is preferable that the raw material containing sulfur does not contain a metal element. Examples of such a raw material containing sulfur include sulfur (S). In addition, the raw material containing sulfur can also be used individually by 1 type, and can also be used in combination of 2 or more type.
  • the shape of the raw material containing sulfur is not particularly limited and may be either solid or liquid. In the case of a solid, it is preferably a powder having an average particle size of about 0.1 to 100 ⁇ m.
  • the average particle size of the raw material is determined as a particle size at which the cumulative frequency is 50% by the particle size distribution measurement by dry laser diffraction / scattering method.
  • an average particle diameter can also be controlled by using a raw material with a large particle diameter and grind
  • the polyethylene glycol or derivatives thereof any of polyethylene glycol and polyethylene glycol derivatives can be employed.
  • the polyethylene glycol derivative is preferably an alkyl ether of polyethylene glycol (particularly dimethyl ether of polyethylene glycol).
  • the average molecular weight of polyethylene glycol or a derivative thereof is preferably 90 to 20000, more preferably 200 to 6000, from the viewpoint that the lower the molecular weight, the easier it is to vaporize and the easier it is to escape from the reaction system, and the end is easily vaporized and detached.
  • polyethylene glycol or derivatives thereof examples include polyethylene glycol having an average molecular weight of 200 to 20000, ethylene glycol, polyethylene glycol monoalkyl ether (polyethylene glycol monomethyl ether, etc.), monoglyme, diglyme, triglyme, tetra Glyme such as glyme, pentag lime, octaglyme, icosaglyme, polyethylene glycol-polypropylene glycol copolymer, higher molecular weight polyethylene oxide and the like can also be used. These polyethylene glycols or derivatives thereof can be used alone or in combination of two or more.
  • the mixing ratio of the raw material containing sulfur and polyethylene glycol or its derivative is not particularly limited.
  • the sulfur component is evaporated as hydrogen sulfide (H 2 S). Considering that it can be removed by the heating process described later even if the raw material to be contained remains, it is preferable that the raw material containing sulfur is in an excessive amount as compared with polyethylene glycol or a derivative thereof.
  • the amount of polyethylene glycol or its derivative used should be such that the amount of carbon (generated by carbonization of polyethylene glycol or its derivative) is sufficient to ensure sufficient conductivity of the organic sulfur material as the final product. Is preferred.
  • the amount of sulfur in the raw material containing sulfur is based on 100 parts by weight of the raw material containing sulfur. 10 to 100 parts by weight is preferred, 15 to 90 parts by weight is more preferred, and 20 to 50 parts by weight is even more preferred. In order to effectively use most of the raw materials containing sulfur, it is preferable to increase the amount of polyethylene glycol or its derivative.
  • the raw material containing sulfur and the raw material containing polyethylene glycol or a derivative thereof are preferably used as liquids. Since polyethylene glycol or a derivative thereof satisfying the above conditions is usually a liquid under reflux conditions described later, if a raw material containing sulfur and polyethylene glycol or a derivative thereof are mixed, the raw material containing sulfur and the polyethylene glycol Alternatively, a solution containing the derivative thereof can be obtained. Even when polyethylene glycol or a derivative thereof is not liquid at normal temperature, it can be used as a liquid at a reaction temperature of 250 ° C. or higher.
  • a solution containing a raw material containing sulfur and polyethylene glycol or a derivative thereof is heat-treated in an inert atmosphere using the above raw materials ( Especially heat treatment by reduction method).
  • a raw material (a solution containing a raw material containing sulfur and polyethylene glycol or a derivative thereof) is charged into a reaction vessel (test tube or the like), It is preferable to cool the upper part of the reaction vessel while heating with an electric furnace or the like. At this time, the reaction vessel is preferably semi-sealed. If the length of the test tube is increased, it is not necessary to use a Kimwipe as a sulfur vapor stopper. In this process, the raw material containing sulfur is melted at the bottom of the reaction vessel (may remain solid) and reacts with the heated polyethylene glycol or its derivative, and the polyethylene glycol or its derivative itself can proceed with carbonization. .
  • the heated raw material (a raw material containing sulfur and polyethylene glycol or a derivative thereof) and the reaction intermediate partially evaporate, but return to the reaction system by refluxing.
  • the raw material a raw material containing sulfur and polyethylene glycol or a derivative thereof
  • reacts in a highly active state and the reaction proceeds efficiently.
  • polyethylene glycol or a derivative thereof is carbonized by dehydration and / or dehydrogenation, and sulfur is confined in a skeleton formed by carbon atoms derived from polyethylene glycol or a derivative thereof.
  • a raw material containing sulfur is put into a reaction vessel (test tube or the like), and then liquid polyethylene glycol or a derivative thereof is added little by little, the yield is easily improved.
  • the inert atmosphere is not particularly limited, and a nitrogen gas atmosphere, an argon gas atmosphere, or the like can be employed.
  • the reaction temperature and holding time in this reflux method are not particularly limited, but it depends on the melting point, boiling point, etc. of the raw materials (raw material containing sulfur and polyethylene glycol or derivatives thereof), but is usually 250 ° C. or higher, preferably 300 °C or higher, more preferably 310 to 500 ° C, more preferably 330 to 450 ° C, for 3 to 400 minutes, preferably 5 to 100 minutes, more preferably 10 to 60 minutes, still more preferably 20 to 40 minutes. Can do.
  • each raw material can be reacted more fully, carbonization of polyethylene glycol or a derivative thereof and the reaction of incorporating sulfur can be further sufficiently progressed, and free sulfur can be further reduced.
  • the holding time means the time until the maximum temperature is reached.
  • the organic sulfur material of the present invention described later can be obtained and free sulfur remaining as an unreacted product can be reduced, but free sulfur may be contained. .
  • the inert gas used is not particularly limited, but nitrogen gas, argon gas, etc. can be employed.
  • the flow rate of the inert gas during this free sulfur removal process is not particularly limited. From the viewpoint of separating sulfur vapor generated by heating from the product, 50 to 200 mL / min for 10 g of crude product. It is preferably 100 to 150 mL / min.
  • reaction temperature and holding time of this free sulfur removal process are not particularly limited and depend on the amount of residual sulfur, but usually the temperature at which sulfur vaporizes and / or sublimes, that is, 200 to 450 ° C., preferably It can be held at 250 to 350 ° C., more preferably 270 to 330 ° C., for 0.5 to 5 hours, preferably 1 to 3 hours.
  • the organic sulfur material of the present invention uses the above-described excellent characteristics to make use of lithium ion batteries (particularly lithium ion batteries) such as ion conductors; electronic conductors; lithium primary batteries, lithium ion secondary batteries, and metal lithium secondary batteries.
  • Ion secondary battery electrode active material (especially positive electrode active material); Sodium ion secondary battery electrode active material (especially positive electrode active material); Magnesium ion secondary battery electrode active material (especially positive electrode active material); Calcium ion It can be effectively used as an electrode active material (especially positive electrode active material) of a secondary battery; an electrode active material (especially positive electrode active material) of an aluminum ion secondary battery.
  • the organic sulfur material of the present invention is a material having high conductivity, excellent heat resistance, high capacity, and improved cycle characteristics. Therefore, an electrode active for a lithium ion secondary battery or a sodium ion secondary battery can be improved. It is useful as a material (in particular, a positive electrode active material for lithium ion secondary batteries or a negative electrode active material for sodium ion secondary batteries).
  • the secondary battery or the sodium ion secondary battery may be a non-aqueous electrolyte lithium ion secondary battery or a non-aqueous electrolyte sodium ion secondary battery that uses a non-aqueous solvent electrolyte as an electrolyte, and is lithium ion conductive. It may be an all solid lithium ion secondary battery or an all solid sodium ion secondary battery using a solid electrolyte.
  • the structures of the non-aqueous electrolyte lithium ion secondary battery, the non-aqueous electrolyte sodium ion secondary battery, the all-solid-state lithium ion secondary battery, and the all-solid-type sodium ion secondary battery are based on the organic sulfur material of the present invention. It can be the same as that of a well-known lithium ion secondary battery and a sodium ion secondary battery except using it as a substance.
  • the basic structure is known except that the organic sulfur material of the present invention described above is used as an electrode active material. It can be the same as that of a non-aqueous electrolyte lithium ion secondary battery and a non-aqueous electrolyte sodium ion secondary battery.
  • the organic sulfur material of the present invention described above is used as a positive electrode active material, for example, a positive electrode mixture prepared by mixing the organic sulfur material of the present invention, a conductive material, and a binder, Al, Ni, stainless steel, It can be carried on a positive electrode current collector such as carbon cloth.
  • a positive electrode current collector such as carbon cloth.
  • the conductive material for example, a carbon material such as graphite, coke, carbon black, or acicular carbon can be used.
  • a material containing lithium can be used.
  • lithium metal, sodium metal, graphite doped with lithium or sodium, or the like can be used.
  • These negative electrode active materials can also be supported on a negative electrode current collector made of Al, Cu, Ni, stainless steel, carbon, or the like, using the above-described conductive material, binder, or the like, if necessary.
  • organic sulfur material of the present invention is used by doping lithium or sodium in advance to the positive electrode active material, it is also possible to use a material that does not contain lithium or sodium as the negative electrode.
  • a material that does not contain lithium or sodium for example, in addition to graphite, hardly sinterable carbon, etc., tin, silicon, alloys containing these, SiO, and the like can be used.
  • the organic sulfur material of this invention can also be used as a negative electrode active material.
  • the organic sulfur material of the present invention is used as the negative electrode active material
  • a conventionally known material may be used as the positive electrode, and as the positive electrode active material, lithium cobaltate (LiCoO 2 ), nickel acid
  • lithium cobaltate (LiCoO 2 ) lithium cobaltate
  • nickel acid Use existing materials such as lithium (LiNiO 2 ), lithium manganate (LiMn 2 O 4 ), lithium iron phosphate (LiFePO 4 ), sodium ferrate (LiFeO 2 ), vanadium oxide materials, sulfur materials, etc. Can do.
  • the separator is made of, for example, a polyolefin resin such as polyethylene or polypropylene, a fluororesin, nylon, aromatic aramid, inorganic glass, or the like, and a material such as a porous film, a nonwoven fabric, or a woven fabric can be used.
  • a known electrolyte such as lithium trifluoromethanesulfonylamide (LiTFSA), lithium hexafluorophosphate (LiPF 6 ), sodium hexafluorophosphate (NaPF 6 ), or the like can be used.
  • LiTFSA lithium trifluoromethanesulfonylamide
  • LiPF 6 lithium hexafluorophosphate
  • NaPF 6 sodium hexafluorophosphate
  • a known solvent may be used as a solvent for a nonaqueous solvent secondary battery such as carbonate (ethylene carbonate, diethyl carbonate, etc.), ether (tetraglyme, etc.), nitrile, sulfur-containing compound, etc. it can.
  • all solid-state lithium ion secondary batteries and all solid-state sodium ion secondary batteries all known solid-state lithium ions are used except that the organic sulfur material of the present invention is used as an electrode active material (particularly a positive electrode active material). It can be set as the structure similar to an ion secondary battery and an all-solid-type sodium ion secondary battery.
  • examples of the lithium ion conductive solid electrolyte and the sodium ion conductive solid electrolyte include polymer systems such as a polymer compound containing at least one of a polyethylene oxide polymer compound, a polyorganosiloxane chain, and a polyoxyalkylene chain.
  • a polymer compound containing at least one of a polyethylene oxide polymer compound, a polyorganosiloxane chain, and a polyoxyalkylene chain such as a polymer compound containing at least one of a polyethylene oxide polymer compound, a polyorganosiloxane chain, and a polyoxyalkylene chain.
  • sulfide-based solid electrolytes, oxide-based solid electrolytes, and the like can also be used.
  • the organic sulfur material of the present invention is used as the positive electrode active material, for example, the organic sulfur material, conductive material, binder of the present invention.
  • a positive electrode mixture containing a solid electrolyte can be supported on a positive electrode current collector such as Ti, Al, Ni, and stainless steel.
  • the conductive material for example, carbon materials such as graphite, coke, carbon black, and acicular carbon can be used as in the case of the non-aqueous electrolyte lithium ion secondary battery and the non-aqueous electrolyte sodium ion secondary battery.
  • the positive electrode active material includes lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganate (LiMn 2 O 4 ), phosphorus
  • LiCoO 2 lithium cobaltate
  • LiNiO 2 lithium nickelate
  • LiMn 2 O 4 lithium manganate
  • phosphorus Existing materials such as lithium iron oxide (LiFePO 4 ), vanadium oxide-based materials, and sulfur-based materials can also be used.
  • the negative electrode it is possible to use both a material containing lithium or sodium and a material not containing lithium or sodium, similarly to the non-aqueous electrolyte lithium ion secondary battery and the non-aqueous electrolyte sodium ion secondary battery.
  • a material containing lithium or sodium in addition to graphite, hardly sinterable carbon, etc., lithium metal, sodium metal, tin, silicon and alloys containing these, SiO, and the like can be used.
  • These negative electrode active materials can also be supported on a negative electrode current collector made of Al, Cu, Ni, stainless steel, carbon, or the like, using the above-described conductive material, binder, or the like, if necessary.
  • the organic sulfur material of this invention can also be used as a negative electrode active material.
  • the shape of the non-aqueous electrolyte lithium ion secondary battery, the non-aqueous electrolyte sodium ion secondary battery, the all solid-state lithium ion secondary battery, and the all solid-state sodium ion secondary battery is not particularly limited. Any of a type
  • Example 1 Polyethylene glycol 200 Sulfur (Kishida Chemical Co., Ltd., 99%) 5.1051 g and polyethylene glycol (Kishida Chemical Co., Ltd., average molecular weight 190-210) 1.0256 g test tube (manufactured by Maruemu Co., Ltd., A-30, diameter 30 mm ⁇ Silicon rubber with a length of 200 mm) and an alumina protective tube (SSA-S, inner diameter 2 mm, outer diameter 4 mm, length 230 mm) for inserting nitrogen gas inlet, gas outlet, and thermocouple A stopper was attached (FIG. 1).
  • SSA-S alumina protective tube
  • the lower part of the test tube 100 mm was placed in the electric furnace heating part, heated, and fixed with a heat insulating material, and the upper part of the test tube was exposed to the outside air.
  • a thermocouple K type was inserted into the alumina protective tube, and the temperature of the sample was measured. Nitrogen gas was supplied at 50 mL / min, and the exhaust gas was introduced into an Erlenmeyer flask containing 100 mL of 10% sodium hydroxide to collect hydrogen sulfide in the generated gas.
  • the electric furnace set temperature was gradually raised to 500 ° C. over 20 minutes, and no liquid condensation was observed inside, and the sample was heated for 1 hour until the sample temperature reached 443 ° C.
  • the product inside the test tube was taken out, placed on a quartz boat, placed inside a quartz tube (inner diameter 30 mm, length 900 mm), and sulfur was vaporized and removed at 300 ° C. for 2 hours under a nitrogen stream.
  • the obtained black solid powder was 0.1147 g.
  • the obtained sample was subjected to elemental analysis using a carbon / hydrogen / nitrogen simultaneous determination apparatus, an O microcoder and ion chromatography.
  • the carbon content was 35.3 wt%
  • the hydrogen content was 0.4 wt%
  • the oxygen content was 2.9 wt%.
  • the sulfur content was 61.4% by weight and the nitrogen content was 0.0% by weight (not present).
  • the Raman spectrum of the obtained sample has a main peak at 1441 cm ⁇ 1 as shown in FIG. 2, and 1924 cm ⁇ 1 , 1279 cm ⁇ 1 , 1066 cm ⁇ 1 , 846 cm ⁇ 1 , 772 cm -1, and each 481 cm -1 was confirmed that there is a peak.
  • the relationship between these peak intensities is that the peak intensity at 1924 cm -1 is about 0.06 times the peak intensity at 1441 cm -1 , the peak intensity at 1279 cm -1 is about 0.3 times the peak intensity at 1441 cm -1 , 1066 cm -1 peak intensity is about 0.07 times the peak intensity of 1441 cm -1 , the peak intensity of 846 cm -1 is about 0.04 times the peak intensity of 1441 cm -1 , and the peak intensity of 481 cm -1 is 1441 cm -1 It was about 0.1 times the peak intensity.
  • the conditions of the Raman spectrum are ALMEGA XR manufactured by ThermoFisher SCIENTIFIC, laser wavelength 532 nm, slit 50 ⁇ m pinhole, exposure 5 seconds ⁇ 12 times.
  • the XAFS spectrum was found to have strong absorption peaks at 2472.0 eV and 2473.2 eV, and an absorption peak at 2469.2 eV.
  • the relationship between these peak intensities was as follows: the peak intensity at 2472.0 eV was about three times the peak intensity at 2469.2 eV, and the peak intensity at 2473.2 eV was about three times the peak intensity at 2469.2 eV.
  • the absorption peak of sulfur and lithium sulfide cannot be confirmed in the organic sulfur material of Example 1, as can be understood from the comparison with the absorption peak of sulfur and lithium sulfide shown as a reference, It can be seen that sulfur is not present.
  • the TG-DTA curve was not able to confirm the weight reduction to around 300 ° C., indicating that the organic sulfur material of Example 1 is excellent in heat resistance and is a stable material. .
  • PTFE polytetrafluoroethylene
  • the positive electrode was obtained by pressure bonding to the substrate.
  • lithium metal as the negative electrode lithium trifluoromethanesulfonylamide (LiTFSA) as the electrolyte dissolved in tetraglyme in a molar ratio of 1: 1, polypropylene separator as the separator, constant current mode 0.05 C, cut-off Discharge was started under conditions of 1.0 to 3.0 V, and a charge / discharge test was conducted.
  • the charge / discharge characteristics are as shown in FIG.
  • the initial discharge capacity is about 780 mAh / g, and in the case of an organic sulfur material using polyacrylonitrile (PAN) as a raw material (Comparative Example 1; about 720 mAh / g) ) Higher capacity.
  • the initial charge capacity was about 450 mAh / g, which was higher than that of the organic sulfur material using polyacrylonitrile (PAN) described later as a raw material (Comparative Example 1; about 430 mAh / g).
  • Example 2 Large-scale synthesis of polyethylene glycol 200 The synthesis of Example 1 was scaled up to 51.6 g of sulfur (Kishida Chemical Co., Ltd., 99%) and 25.0 g of polyethylene glycol (Kishida Chemical Co., Ltd., average molecular weight 190-210).
  • Alumina tube diameter 60 mm x length 400 mm
  • an alumina protective tube SSA-S, inner diameter 2 mm, outer diameter 4 mm, long for inserting nitrogen gas inlet, gas outlet and thermocouple
  • a silicone rubber stopper with a thickness of 500 mm) was attached (FIG. 1).
  • the lower part of the test tube 100 mm was placed in the electric furnace heating part, heated, and fixed with a heat insulating material, and the upper part of the test tube was exposed to the outside air.
  • a thermocouple K type was inserted into the alumina protective tube, and the temperature of the sample was measured.
  • Nitrogen gas was supplied at 50 mL / min, and the exhaust gas was introduced into an Erlenmeyer flask containing 100 mL of 10% sodium hydroxide to collect hydrogen sulfide in the generated gas.
  • the electric furnace set temperature was gradually raised to 500 ° C. over 20 minutes. At 280 °C, stagnation of the sample temperature and generation of gas thought to be hydrogen sulfide were observed.
  • the sample was heated for 1 hour until it reached 440 ° C. Thereafter, the furnace was turned sideways by 90 °, and unreacted sulfur was vaporized and removed from the product. After cooling, the product inside the test tube was taken out and ground, passed through a 250 ⁇ m sieve, placed on a quartz boat, placed inside a quartz tube (inner diameter 30 mm, length 900 mm), and sulfur at 300 ° C. for 2 hours under a nitrogen stream. Was vaporized and removed. The obtained black solid powder was 8.888 g.
  • the charge / discharge test was performed in the same manner as in Example 1 except that this organic sulfur material was used as the positive electrode material of the non-aqueous electrolyte lithium secondary battery.
  • the charge / discharge characteristics are as shown in FIG. 6.
  • the initial discharge capacity is about 910 mAh / g, and in the case of an organic sulfur material using polyacrylonitrile (PAN) described later as a raw material (Comparative Example 1; about 720 mAh / g ) Higher capacity.
  • the initial charge capacity was about 550 mAh / g, which was higher than that of the organic sulfur material using polyacrylonitrile (PAN) described later as a raw material (Comparative Example 1; about 430 mAh / g).
  • Comparative Example 1 An organic sulfur material was produced in exactly the same manner as described in Non-Patent Document 3 of polyacrylonitrile . Quartz tube placed in horizontal foil with argon gas, mixed with 5.2994 g of polyacrylonitrile (average molecular weight 150,000; made by Aldrich) pulverized in a mortar with 8.1194 g of sulfur (Kishida Chemical Co., Ltd., 99%) The inside was heated with an electric furnace, and heated until the sample temperature reached 350 ° C. The obtained product was placed on an aluminum foil, placed inside a quartz tube, and sulfur was vaporized and removed at 280 ° C. for 2 hours under an argon stream. The obtained black solid powder was 7.8687 g.
  • the obtained sample was subjected to elemental analysis using a carbon / hydrogen / nitrogen simultaneous determination apparatus, an O microcoder and ion chromatography.
  • the carbon content was 39.2% by weight
  • the hydrogen content was 1.0% by weight
  • the oxygen content was 2.9% by weight.
  • the sulfur content was 43.1% by weight and the nitrogen content was 13.8% by weight.
  • the Raman spectrum of the obtained sample has strong peaks at 1331 cm ⁇ 1 and 1548 cm ⁇ 1 as shown in FIG. 7, and 939 cm ⁇ 1 , 479 cm ⁇ 1 , 381 cm ⁇ 1 , and A peak was present at 317 cm ⁇ 1 , confirming that the material was completely different from Examples 1 and 2.
  • the XAFS spectrum has the strongest absorption peak at 2471.7 eV, which indicates that the material is completely different from Examples 1 and 2.
  • the TG-DTA curve shows that the weight is gradually decreased at 50 ° C. or higher, so that it can be understood that sulfur is removed. For this reason, unlike Examples 1 and 2, it is suggested that the organic sulfur material of Comparative Example 1 contains a considerable amount of free sulfur.
  • the target organic sulfur material could not be produced when polyethylene glycol or its derivatives were not used as raw materials.
  • the charge / discharge test was performed in the same manner as in Example 1 except that this organic sulfur material was used as the positive electrode material of the non-aqueous electrolyte lithium secondary battery.
  • the charge / discharge characteristics are as shown in FIG. 10, and the initial discharge capacity was about 720 ⁇ mAh / g, which was lower than in Examples 1 and 2. In addition, the initial charge capacity was about 430 mAh / g, which was a lower value than in Examples 1 and 2.
  • Example 3 Polyethylene glycol 300 As in Example 1, 7.6441 g of sulfur and 3.0437 g of polyethylene glycol 300 (Kishida Chemical Co., Ltd., average molecular weight 300) were placed in a test tube, heated in an electric furnace while flowing nitrogen, and the sample temperature was 436 ° C. Heated for 1 hour until reached. The obtained product was placed on a quartz boat, placed inside a quartz tube, and sulfur was vaporized and removed at 300 ° C. for 2 hours under a nitrogen stream. The obtained black solid powder was 0.7263 g.
  • the charge / discharge test was performed in the same manner as in Example 1 except that this organic sulfur material was used as the positive electrode material of the non-aqueous electrolyte lithium secondary battery.
  • the charge / discharge characteristics are as shown in FIG. 11.
  • the initial discharge capacity is about 792 mAh / g, which is higher than that of the organic sulfur material using polyacrylonitrile (PAN) as a raw material (Comparative Example 1; about 720mAh / g). High capacity was shown.
  • the initial charge capacity was about 430 mAh / g, which was equivalent to the case of an organic sulfur material using polyacrylonitrile (PAN) as a raw material (Comparative Example 1; about 430 mAh / g).
  • Example 4 Polyethylene glycol 600 As in Example 1, 8.4770 g of sulfur and 3.3982 g of polyethylene glycol 600 (Kishida Chemical Co., Ltd., average molecular weight 600) were placed in a test tube, heated in an electric furnace while flowing nitrogen, and the sample temperature was 426 ° C. Heated for 1 hour until reached. The obtained product was placed on a quartz boat, placed inside a quartz tube, and sulfur was vaporized and removed at 300 ° C. for 2 hours under a nitrogen stream. The obtained black solid powder was 1.0060 g.
  • the charge / discharge test was performed in the same manner as in Example 1 except that this organic sulfur material was used as the positive electrode material of the non-aqueous electrolyte lithium secondary battery.
  • the charge / discharge characteristics are as shown in FIG. 12, and the initial discharge capacity is about 824 mAh / g, which is higher than that of the organic sulfur material using polyacrylonitrile (PAN) as a raw material (Comparative Example 1; about 720mAh / g). High capacity was shown.
  • the initial charge capacity was about 437 mAh / g, which was higher than that of the organic sulfur material using polyacrylonitrile (PAN) as a raw material (Comparative Example 1; about 430 mAh / g).
  • Example 5 Tetraglyme As in Example 1, 4.0848 g of sulfur and 1.5211 g of tetraglyme (Kishida Chemical Co., Ltd.) were placed in a test tube, heated in an electric furnace while flowing nitrogen, and the sample temperature was 454. Heated to 1 ° C. for 1 hour. The obtained product was placed on a quartz boat, placed inside a quartz tube, and sulfur was vaporized and removed at 300 ° C. for 2 hours under a nitrogen stream. The obtained black solid powder was 0.1103 g.
  • the obtained sample was subjected to elemental analysis using a carbon / hydrogen / nitrogen simultaneous determination apparatus, an O microcoder and ion chromatography.
  • the carbon content was 37.8% by weight
  • the hydrogen content was 0.5% by weight
  • the oxygen content was 3.1% by weight
  • the sulfur content was 58.6% by weight and the nitrogen content was 0.0% by weight (not present).
  • the Raman spectrum of the obtained sample has a main peak at 1441 cm ⁇ 1 as shown in FIG. 13, and 1931 cm ⁇ 1 , 1268 cm ⁇ 1 , 1067 cm ⁇ 1 , 838 cm ⁇ 1 , 770 cm -1, and each 481 cm -1 was confirmed that there is a peak.
  • the peak intensity at 1931 cm -1 is about 0.1 times the peak intensity at 1441 cm -1
  • the peak intensity at 1268 cm -1 is about 0.3 times the peak intensity at 1441 cm -1
  • 1067 cm peak intensity of -1 0.1 times the peak intensity of 1441 cm -1
  • 838 cm peak intensity of -1 0.09 times the peak intensity of 1441 cm -1
  • 770 peak intensity of cm -1 is 1441 cm -1
  • the peak intensity at 481 cm -1 was about 0.1 times the peak intensity at 1441 cm -1 .
  • the XAFS spectrum was found to have strong absorption peaks at 2472.0 eV and 2473.2 eV, and an absorption peak at 2469.2 eV.
  • the relationship between these peak intensities was as follows: the peak intensity at 2472.0 eV was about three times the peak intensity at 2469.2 eV, and the peak intensity at 2473.2 eV was about three times the peak intensity at 2469.2 eV.
  • the absorption peak of sulfur and lithium sulfide cannot be confirmed in the organic sulfur material of Example 5, as can be understood from the comparison with the absorption peak of sulfur and lithium sulfide shown as a reference, It can be seen that sulfur is not present.
  • Example 2 The charge / discharge test was performed in the same manner as in Example 1 except that this organic sulfur material was used as the positive electrode material of the non-aqueous electrolyte lithium secondary battery. As a result, the same results as in Example 1 were obtained.Under the conditions employed in the present invention, an organic sulfur material was produced and applied to the positive electrode material of the non-aqueous electrolyte lithium secondary battery. A lithium secondary battery exhibiting a high capacity could be obtained.
  • Example 6 Mass production of tetraglyme As in Example 2, 51.2155 g of sulfur and 24.8068 g of tetraglyme (Kishida Chemical Co., Ltd.) were placed in a test tube, heated in an electric furnace while flowing nitrogen, and the sample temperature The mixture was heated for 1 hour until it reached 457 ° C. The obtained product was placed on a quartz boat, placed inside a quartz tube, and sulfur was vaporized and removed at 300 ° C. for 2 hours under a nitrogen stream. The obtained black solid powder was 6.7746 g.
  • the charge / discharge test was performed in the same manner as in Example 1 except that this organic sulfur material was used as the positive electrode material of the non-aqueous electrolyte lithium secondary battery.
  • the charge / discharge characteristics are as shown in FIG. 15.
  • the initial discharge capacity is about 870 mAh / g, which is higher than that of the organic sulfur material using polyacrylonitrile as a raw material (Comparative Example 1; about 720mAh / g). Indicated.
  • the initial charge capacity was about 440 mAh / g, which was higher than that of the organic sulfur material using polyacrylonitrile as a raw material (Comparative Example 1; about 430 mAh / g).
  • Example 7 Polyethylene glycol 6000 As in Example 1, 5.5001 g of sulfur and polyethylene glycol 6000 (Kishida Chemical Co., Ltd., average molecular weight 6000) 1.3932 g were placed in a test tube, heated in an electric furnace while flowing nitrogen, and the sample temperature was 427 ° C. Heated for 1 hour until reached. The obtained product was placed on a quartz boat, placed inside a quartz tube, and sulfur was vaporized and removed at 300 ° C. for 4 hours under a nitrogen stream. The obtained black solid powder was 0.0971 g.
  • Example 8 Polyethylene glycol 1540 As in Example 1, 6.0186 g of sulfur and 2.2894 g of polyethylene glycol 1540 (Kishida Chemical Co., Ltd., average molecular weight 1540) were taken in a test tube, heated in an electric furnace while flowing nitrogen, and the sample temperature was 428 ° C. Heated for 1 hour until reached. The obtained product was placed on a quartz boat, placed inside a quartz tube, and sulfur was vaporized and removed at 300 ° C. for 2 hours under a nitrogen stream. The obtained black solid powder was 0.7280 g.
  • Example 9 Polyethylene glycol 400 As in Example 1, 8.8828 g of sulfur and 3.5158 g of polyethylene glycol 400 (Kishida Chemical Co., Ltd., average molecular weight 400) were placed in a test tube, heated in an electric furnace while flowing nitrogen, and the sample temperature was 439 ° C. Heated for 1 hour until reached. The obtained product was placed on a quartz boat, placed inside a quartz tube, and sulfur was vaporized and removed at 300 ° C. for 1 hour under a nitrogen stream. The obtained black solid powder was 0.9762 g.
  • the charge / discharge test was performed in the same manner as in Example 1 except that this organic sulfur material was used as the positive electrode material of the non-aqueous electrolyte lithium secondary battery.
  • the charge / discharge characteristics are as shown in FIG. 16, and the initial discharge capacity is about 760 mAh / g, which is higher than that of the organic sulfur material using polyacrylonitrile (PAN) as a raw material (Comparative Example 1; about 720mAh / g). High capacity was shown.
  • PAN polyacrylonitrile
  • Example 10 Polyethylene glycol 1000 As in Example 1, 8.1878 g of sulfur and 3.0762 g of polyethylene glycol 1000 (Kishida Chemical Co., Ltd., average molecular weight 1000) were taken in a test tube, heated in an electric furnace while flowing nitrogen, and the sample temperature was 438 ° C. Heated for 1 hour until reached. The obtained product was placed on a quartz boat, placed inside a quartz tube, and sulfur was vaporized and removed at 300 ° C. for 2 hours under a nitrogen stream. The obtained black solid powder was 1.0672 g.
  • Example 11 Polyethylene glycol 2000 As in Example 1, 4.6656 g of sulfur and 1.2115 g of polyethylene glycol 2000 (Kishida Chemical Co., Ltd., average molecular weight 2000) were taken in a test tube, heated in an electric furnace while flowing nitrogen, and the sample temperature was 438 ° C. Heated for 1 hour until reached. The obtained product was placed on a quartz boat, placed inside a quartz tube, and sulfur was vaporized and removed at 300 ° C. for 2 hours under a nitrogen stream. The obtained black solid powder was 0.2854 g.
  • Example 12 Polyethylene glycol 4000 As in Example 1, 4.7693 g of sulfur and 1.3251 g of polyethylene glycol 4000 (Kishida Chemical Co., Ltd., average molecular weight 4000) were placed in a test tube, heated in an electric furnace while flowing nitrogen, and the sample temperature was 427 ° C. Heated for 1 hour until reached. The obtained product was placed on a quartz boat, placed inside a quartz tube, and sulfur was vaporized and removed at 300 ° C. for 2 hours under a nitrogen stream. The obtained black solid powder was 0.4522 g.
  • the charge / discharge test was performed in the same manner as in Example 1 except that this organic sulfur material was used as the positive electrode material of the non-aqueous electrolyte lithium secondary battery.
  • the charge / discharge characteristics are as shown in FIG. 17, and the initial discharge capacity is about 760 mAh / g, which is higher than that of the organic sulfur material using polyacrylonitrile (PAN) as a raw material (Comparative Example 1; about 720mAh / g). High capacity was shown.
  • PAN polyacrylonitrile
  • Example 13 Polyethylene glycol 4000 mass synthesis
  • the synthesis of Example 12 was scaled up. Specifically, the synthesis was performed as follows. Take 390.0 g of sulfur (Hosoi Chemical Co., Ltd., 99.9%) and 276.0 g of polyethylene glycol 4000 (Kishida Chemical Co., Ltd., average molecular weight 4000) in a mullite tube, put it in a stainless steel container, nitrogen gas inlet, gas outlet A stainless steel lid with an alumina protective tube for inserting a thermocouple was attached. The lower part of the stainless steel container was put into an electric furnace heating part and heated, and a heat insulating material was filled and fixed, and the upper part of the container was exposed to the outside air.
  • thermocouple was inserted into the alumina protective tube, and the temperature of the sample was measured. Nitrogen gas was allowed to flow at 100 mL / min, and the exhaust gas was introduced into an Erlenmeyer flask containing 10% sodium hydroxide to collect hydrogen sulfide in the generated gas. The electric furnace set temperature was gradually increased to 500 ° C. Stagnation of the sample temperature and generation of gas considered to be hydrogen sulfide were observed at 255 °C. The sample was heated for 5 hours until the sample temperature reached 274 ° C.
  • the product inside the test tube was taken out and ground, passed through a 250 ⁇ m sieve, placed on a quartz boat, placed inside a quartz tube (inner diameter 30 mm, length 900 mm), and sulfur at 400 ° C. for 1 hour under a nitrogen stream. Was vaporized and removed.
  • the obtained black solid powder was 112.2 g.
  • the charge / discharge test was performed in the same manner as in Example 1 except that this organic sulfur material was used as the positive electrode material of the non-aqueous electrolyte lithium secondary battery.
  • the charge / discharge characteristics are as shown in FIG. 18.
  • the initial discharge capacity is about 800 mAh / g, which is higher than that of the organic sulfur material using polyacrylonitrile (PAN) as a raw material (Comparative Example 1; about 720mAh / g). High capacity was shown.
  • the initial charge capacity was about 570 mAh / g, which was higher than the case of the organic sulfur material using polyacrylonitrile (PAN) as a raw material (Comparative Example 1; about 430 mAh / g).
  • Example 14 Polyethylene glycol 6000 mass synthesis
  • the synthesis of Example 7 was scaled up. Specifically, the synthesis was performed as follows. Take 325.0 g of sulfur (Hosoi Chemical Co., Ltd., 99.9%) and 230.2 g of polyethylene glycol 6000 (Kishida Chemical Co., Ltd., average molecular weight 6000) in a mullite tube, put it in a stainless steel container, inlet for nitrogen gas, gas outlet A stainless steel lid with an alumina protective tube for inserting a thermocouple was attached. The lower part of the stainless steel container was put into an electric furnace heating part and heated, and a heat insulating material was filled and fixed, and the upper part of the container was exposed to the outside air.
  • thermocouple K type was inserted into the alumina protective tube, and the temperature of the sample was measured. Nitrogen gas was allowed to flow, and the exhaust gas was introduced into an Erlenmeyer flask containing 10% sodium hydroxide to collect hydrogen sulfide in the generated gas. The electric furnace set temperature was gradually raised to 330 ° C over 120 minutes. At 247 ° C, stagnation of the sample temperature and generation of gas thought to be hydrogen sulfide were observed. The sample was heated for 5 hours until the sample temperature reached 288 ° C.
  • the product inside the test tube was taken out and pulverized, passed through a 250 ⁇ m sieve, placed on a quartz boat, placed inside a quartz tube (inner diameter 30 mm, length 900 mm), and sulfur at 400 ° C. for 3 hours under a nitrogen stream. Was vaporized and removed.
  • the obtained black solid powder was 55.2 g.
  • the charge / discharge test was performed in the same manner as in Example 1 except that this organic sulfur material was used as the positive electrode material of the non-aqueous electrolyte lithium secondary battery.
  • the charge / discharge characteristics are as shown in FIG. 19, and the initial discharge capacity is about 870 mAh / g, which is higher than that of the organic sulfur material using polyacrylonitrile (PAN) as a raw material (Comparative Example 1; about 720mAh / g). High capacity was shown.
  • the initial charge capacity was about 560 mAh / g, which was higher than that of the organic sulfur material using polyacrylonitrile (PAN) as a raw material (Comparative Example 1; about 430 mAh / g).
  • Example 15 Triglyme As in Example 1, 3.9896 g of sulfur (Kishida Chemical Co., Ltd., 99%) and 2.9633 g of triethylene glycol dimethyl ether (Triglime; Kishida Chemical Co., Ltd.) were placed in a test tube and flushed with nitrogen. The temperature was raised in an electric furnace while heating for 1 hour until the sample temperature reached 375 ° C. The obtained product was placed on a quartz boat, placed inside a quartz tube, and sulfur was vaporized and removed at 300 ° C. for 4 hours under a nitrogen stream. The obtained black solid powder was 0.0142 g.
  • the charge / discharge test was performed in the same manner as in Example 1 except that this organic sulfur material was used as the positive electrode material of the non-aqueous electrolyte lithium secondary battery.
  • the charge / discharge characteristics are as shown in FIG. 20, and the initial discharge capacity is about 980 mAh / g, which is higher than that of the organic sulfur material using polyacrylonitrile (PAN) as a raw material (Comparative Example 1; about 720mAh / g). High capacity was shown.
  • the initial charge capacity was about 650 mAh / g, which was higher than that of the organic sulfur material using polyacrylonitrile (PAN) as a raw material (Comparative Example 1; about 430 mAh / g).
  • Example 16 Pentaglime As in Example 1, 4.8699 g of sulfur (Kanto Chemical Co., Ltd., 99%) and 2.0591 g of polyethylene glycol dimethyl ether (pentaglime; Aldrich, average molecular weight 250) were added to a test tube (inner diameter 30 mm, The sample was taken up to 300 mm in length, heated in an electric furnace while flowing nitrogen, and heated for 1 hour until the sample temperature reached 435 ° C. The obtained product was placed on a quartz boat, placed inside a quartz tube, and sulfur was vaporized and removed at 300 ° C. for 2 hours under a nitrogen stream. The obtained black solid powder was 0.3146 g.
  • the charge / discharge test was performed in the same manner as in Example 1 except that this organic sulfur material was used as the positive electrode material of the non-aqueous electrolyte lithium secondary battery.
  • the charge / discharge characteristics are as shown in FIG. 21, and the initial discharge capacity is about 840 mAh / g, which is higher than that of the organic sulfur material using polyacrylonitrile (PAN) as a raw material (Comparative Example 1; 1 about 720 mAh / g). High capacity was shown.
  • the initial charge capacity was about 520 mAh / g, which was higher than that of the organic sulfur material using polyacrylonitrile (PAN) as a raw material (Comparative Example 1; about 430 mAh / g).
  • Example 17 Octaglyme As in Example 1, 4.8852 g of sulfur (Kishida Chemical Co., Ltd., 99%) and 1.6494 g of polyethylene glycol dimethyl ether (octaglyme; Aldrich, average molecular weight 500) were added to a test tube (inner diameter 30 mm, The sample was taken up to 300 mm in length, heated in an electric furnace while flowing nitrogen, and heated for 1 hour until the sample temperature reached 438 ° C. The obtained product was placed on a quartz boat, placed inside a quartz tube, and sulfur was vaporized and removed at 300 ° C. for 1.5 hours under a nitrogen stream. The obtained black solid powder was 0.3773 g.
  • the charge / discharge test was performed in the same manner as in Example 1 except that this organic sulfur material was used as the positive electrode material of the non-aqueous electrolyte lithium secondary battery.
  • the charge / discharge characteristics are as shown in FIG. 22, and the initial discharge capacity is about 840 mAh / g, which is higher than that of the organic sulfur material using polyacrylonitrile (PAN) as a raw material (Comparative Example 1; about 720mAh / g). High capacity was shown.
  • the initial charge capacity was about 520 mAh / g, which was higher than that of the organic sulfur material using polyacrylonitrile (PAN) as a raw material (Comparative Example 1; about 430 mAh / g).
  • Example 18 Icosaglime As in Example 1, 47.2 g of sulfur (Kanto Chemical Co., Ltd., 99%) and 26.0 g of polyethylene glycol dimethyl ether (Icosaglime; Aldrich, average molecular weight 1000) were placed in an alumina tanman tube (inner diameter 50 mm, length). The sample was heated in an electric furnace while flowing nitrogen, and heated for 1 hour until the sample temperature reached 308 ° C. The obtained product was placed on a quartz boat, placed inside a quartz tube, and sulfur was vaporized and removed at 300 ° C. for 5 hours under a nitrogen stream. The obtained black solid powder was 9.7693 g.
  • the charge / discharge test was performed in the same manner as in Example 1 except that this organic sulfur material was used as the positive electrode material of the non-aqueous electrolyte lithium secondary battery.
  • the charge / discharge characteristics are as shown in FIG. 23.
  • the initial discharge capacity is about 910 mAh / g, which is higher than that of the organic sulfur material using polyacrylonitrile (PAN) as a raw material (Comparative Example 1; about 720 mAh / g). High capacity was shown.
  • the initial charge capacity was about 620 mAh / g, which was higher than that of the organic sulfur material using polyacrylonitrile (PAN) as a raw material (Comparative Example 1; about 430 mAh / g).
  • Example 19 Polyethylene glycol 200 (LiPF 6 electrolyte) Using the organic sulfur material obtained in Example 2 as the positive electrode material, a battery was produced under the same conditions as in Example 1 except for the electrolytic solution, and a charge / discharge test was performed.
  • the electrolytic solution was prepared as follows. Lithium hexafluorophosphate was dissolved in a 1: 1 (volume ratio) mixed solvent of ethylene carbonate and diethyl carbonate to make 1 M.
  • the charge / discharge characteristics are as shown in FIG. 24.
  • the initial discharge capacity was about 940 mAh / g, and the initial charge capacity was about 730 mAh / g, indicating a high capacity.
  • Example 20 Polyethylene glycol 6000 (LiPF 6 electrolyte) Using the organic sulfur material obtained in Example 14 as the positive electrode material, a battery was produced under the same conditions as in Example 1 except for the electrolytic solution, and a charge / discharge test was performed.
  • the electrolytic solution was prepared as follows. Lithium hexafluorophosphate was dissolved in a 1: 1 (volume ratio) mixed solvent of ethylene carbonate and diethyl carbonate to make 1 M.
  • the charge / discharge characteristics are as shown in FIG. 25.
  • the initial discharge capacity was about 760 mAh / g, and the initial charge capacity was about 570 mAh / g.
  • LiPF 6 electrolyte, LiCoO 2 positive electrode LiPF 6 electrolyte, LiCoO 2 positive electrode
  • lithium hexafluorophosphate dissolved in a 1: 1 (volume ratio) mixed solvent of ethylene carbonate and diethyl carbonate to 1 M was used as the electrolytic solution. Charging was started under conditions of a cut-off of 1.0 to 3.0 V, and charge / discharge tests were performed in the same manner as in Example 1 except for the conditions described here.
  • the charge / discharge characteristics are as shown in FIG. 26.
  • the initial charge capacity was about 890 mAh / g, and the initial discharge capacity was about 610 mAh / g, indicating a high capacity.
  • Example 22 Polyethylene glycol 200 mass synthesis (NaPF 6 electrolyte, Na negative electrode) Using the organic sulfur material obtained in Example 2, using sodium metal as the negative electrode, dissolving sodium hexafluorophosphate as an electrolyte in a 1: 1 (volume ratio) mixed solvent of ethylene carbonate and diethyl carbonate A charge / discharge test was performed in the same manner as in Example 1 except that 1 M was used and the cut-off voltage was 0.7 to 2.7 V. The charge / discharge characteristics are as shown in FIG. 27. The initial discharge capacity was about 860 mAh / g, and the initial charge capacity was about 820 mAh / g.
  • Example 23 Large-scale synthesis of polyethylene glycol 200 (NaPF 6 electrolyte, NaFeO 2 positive electrode)
  • the negative electrode was obtained by pressure bonding to an aluminum mesh.
  • electrolytic solution sodium hexafluorophosphate dissolved in a 1: 1 (volume ratio) mixed solvent of ethylene carbonate and diethyl carbonate to 1 M was used. Charging was started under conditions of a cut-off of 1.0 to 3.0 V, and charge / discharge tests were performed in the same manner as in Example 1 except for the conditions described here.
  • the charge / discharge characteristics are as shown in FIG. 28.
  • the initial charge capacity was about 1080 mAh / g, and the initial discharge capacity was about 520 mAh / g, indicating a high capacity.
  • an organic sulfur material is produced under the conditions employed in the present invention and applied to the negative electrode material of a non-aqueous electrolyte sodium ion secondary battery to obtain a sodium ion secondary battery exhibiting a high capacity. I was able to.
  • Example 24 Large-scale synthesis of polyethylene glycol 200 (Mg (TFSA) 2 electrolyte, Mg negative electrode) Using the organic sulfur material obtained in Example 2, using magnesium metal as the negative electrode, magnesium trifluoromethanesulfonylamide (Mg (TFSA) 2 ) as the electrolyte was dissolved in ethylene glycol dimethyl ether to 0.4 M A charge / discharge test was performed in exactly the same manner as in Example 1 except that the sample was used and that the cut-off voltage was -1.0 to 2.3 V. The charge / discharge characteristics are as shown in FIG. 29. The initial discharge capacity was about 110 mAh / g, and the initial charge capacity was about 110 mAh / g.
  • Mg (TFSA) 2 magnesium trifluoromethanesulfonylamide
  • Example 24 When Mg x Mo 3 S 4 is used as the positive electrode material in the most cited literature (D. Aurbach et al., Nature, 407, 724 (2000).) Compared with being less than 100 mAh / g, since Example 24 has an excellent capacity, the organic sulfur material of the present invention is also useful as a positive electrode material for a magnesium secondary battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

 炭素、水素、酸素及び硫黄を構成元素として含有し、ラマン分光法によって検出されたラマンスペクトルにおいて、482 cm-1付近、846 cm-1付近、1066 cm-1付近、1279 cm-1付近、及び1442 cm-1付近にピークを有し、且つ、前記1442 cm-1付近のピークが最強ピークである、有機硫黄材料は、液体有機原料を用いつつも、高容量且つ高耐熱性の有機硫黄材料である。

Description

有機硫黄材料及びその製造方法
 本発明は、有機硫黄材料及びその製造方法に関する。
 近年の携帯電子機器、ハイブリッド車等の高性能化により、それに用いられる電池(特にリチウムイオン二次電池等の二次電池)は益々高容量化が求められている。しかしながら、現行のリチウムイオン二次電池では負極に比べて正極の高容量化が遅れており、最近盛んに研究開発されている高容量型のLi(Ni,Mn,Co)O2系材料でも250~300 mAh/g程度である。
 一方、硫黄は理論容量が約1672 mAh/gと高く、また、資源量が豊富で安価であるため、高容量電極材料の有望な候補の一つである。しかしながら、単体硫黄は、有機電解液を用いた電池系(リチウムイオン二次電池等)においては、充放電過程で生成する多硫化リチウムが電解液に溶出して負極等に析出し、容量低下を引き起こすという問題がある。
 これを解決するため、単体硫黄を樹脂、ピッチ等の様々な有機材料と複合化し、多硫化リチウムの電解液中への溶出及び拡散を抑制する試みが種々行われている(例えば、特許文献1~3及び非特許文献1~3等)。これら硫黄-炭素複合体は、比較的高い容量を示すとともに、比較的良好なサイクル特性を示すことが報告されている。従来、これら硫黄-炭素複合体は、多孔性カーボン等の炭素材料や、ポリアクリロニトリル(PAN)、ピッチ等の固体有機物を炭素源の原料として用いており、単体硫黄又は硫黄を含む原料と加熱することにより作製されてきた。特に、PANを原料に用いて作製した有機硫黄材料は、サイクル劣化の少ない電極材料として有望な候補材料に挙げられている。
特許第5164286号 特許第5142162号 国際公開第2010/044437号
境哲男監修「レアメタルフリー二次電池の最新技術動向」シーエムシー出版(2013) X. Ji et al., Nat. Mater., 8, 500 (2009). J. E. Trevey et al., J. Electrochem. Soc., 159, A1019 (2012).
 上記のような樹脂、ピッチ等を用いた硫黄-炭素複合体は、容量及びサイクル特性には優れるものの、熱重量測定・示差熱分析(TG-DTA)において、250℃付近から重量減少が認められることから、耐熱性は十分とは言い切れない。しかも、通常原料として使用されるPANは、100 g当たり約30000円(約270ドル)と非常に高価な材料でもある。
 また、材料合成の観点からは、固体原料を用いた反応では、物質の拡散が液体原料又は気体原料を用いた反応に比べて遅いため、反応の進行はこれら液体原料又は気体原料を用いた反応に比べて遅い傾向がある。効率よく反応を進行させるためには、固体原料を液化又は気化したり、液体原料又は気体原料を用いたりすることが好ましい。固体原料を液化又は気化するにはかなりの高温が必要となるため、製造コスト及びプロセスの観点からは不利である。そのため、液体原料又は気体原料を用いて反応させることが現実的であるが、このように液体原料又は気体原料の有機原料を用いて有機硫黄材料を作製することは検討すらなされていない。
 本発明は、上記した従来技術の現状に鑑みてなされたものであり、その主な目的は、液体有機原料を用いつつも、高容量且つ高耐熱性の有機硫黄材料を提供することである。
 本発明者らは、上記した目的を達成すべく鋭意研究を重ねてきた。その結果、ポリエチレングリコール又はその誘導体と、硫黄を含む原料とを含有する溶液を不活性雰囲気下で熱処理することにより、高温のポリエチレングリコール又はその誘導体(液体)を、硫黄を含む原料に接触させて反応を進行させ、液体有機物が炭化されて効率良く硫黄を取り込み、高容量及び高耐熱性の有機硫黄材料を得ることができることを見出した。なお、ポリエチレングリコールは、1 kg当たり3000~30000円(約27~270ドル)とPANと比較して10分の1未満と非常に安価である。このようにして得られる有機硫黄材料は、特定のピークを有するラマンスペクトルを有するものである。本発明は、このような知見に基づき、さらに研究を重ね、完成されたものである。即ち、本発明は、以下の構成を包含する。
項1.炭素、水素、酸素及び硫黄を構成元素として含有し、
ラマン分光法によって検出されたラマンスペクトルにおいて、482 cm-1付近、846 cm-1付近、1066 cm-1付近、1279 cm-1付近、及び1442 cm-1付近にピークを有し、且つ、前記1442 cm-1付近のピークが最強ピークである、有機硫黄材料。
項2.前記482 cm-1付近のラマン散乱ピーク強度、前記846 cm-1付近のラマン散乱ピーク強度、前記1066 cm-1付近のラマン散乱ピーク強度、及び前記1279 cm-1付近のラマン散乱ピーク強度が、いずれも、前記1442 cm-1付近のラマン散乱ピーク強度の0.4倍以下である、項1に記載の有機硫黄材料。
項3.ラマン分光法によって検出されたラマンスペクトルにおいて、さらに、770 cm-1付近及び/又は1924 cm-1付近にラマン散乱強度のピークを有する、項1又は2に記載の有機硫黄材料。
項4.X線吸収微細構造スペクトルにおいて、2469.2 eV付近、2472.0 eV付近、及び2473.2 eV付近にピークを有し、且つ、前記2472.0 eV付近のピーク強度、及び前記2473.2 eV付近のピーク強度が、いずれも、前記前記2469.2 eV付近のピーク強度の2倍以上である、項1~3のいずれかに記載の有機硫黄材料。
項5.炭素含有量が20~50重量%であり、水素含有量が0.01~5重量%であり、酸素含有量が0.1~30重量%であり、硫黄含有量が45~75重量%である、項1~4のいずれかに記載の有機硫黄材料。
項6.炭素、水素、酸素及び硫黄を構成元素として含有し、ラマン分光法によって検出されたラマンスペクトルにおいて、482 cm-1付近、846 cm-1付近、1066 cm-1付近、1279 cm-1付近、及び1442 cm-1付近にピークを有し、且つ、前記1442 cm-1付近のピークが最強ピークである有機硫黄材料の製造方法であって、
硫黄を含む原料と、ポリエチレングリコール又はその誘導体とを含む溶液を、不活性雰囲気下で熱処理する工程
を備える、製造方法。
項7.前記熱処理工程が、硫黄を含む原料とポリエチレングリコール又はその誘導体を含む溶液を250℃以上で還流する工程
である、項6に記載の製造方法。
項8.前記熱処理工程の後、
不活性ガス気流下で200~450℃で加熱する工程
を備える、項6又は7に記載の製造方法。
項9.項1~5のいずれかに記載の有機硫黄材料、又は項6~8のいずれかに記載の製造方法により得られた有機硫黄材料を含有する、電池用電極活物質。
項10.リチウムイオン二次電池又はナトリウムイオン二次電池用電極活物質である、項9に記載の電池用電極活物質。
項11.項9又は10に記載の電池用電極活物質を構成要素として含有する、電池。
項12.リチウムイオン二次電池又はナトリウムイオン二次電池である、項11に記載の電池。
項13.項9又は10に記載の電池用電極活物質と、リチウムイオン伝導性固体電解質又はナトリウムイオン伝導性固体電解質とを構成要素として含有する、全固体型リチウムイオン二次電池又は全固体型ナトリウムイオン二次電池。
項14.前記リチウムイオン伝導性固体電解質又はナトリウムイオン伝導性固体電解質が、硫黄を構成元素とする無機化合物を含む固体電解質である、項13に記載の全固体リチウムイオン二次電池又は全固体型ナトリウムイオン二次電池。
 本発明の有機硫黄材料は、有機物を熱処理(特に焼成)して形成されるカーボン中の隙間に硫黄が包摂され、400℃の高温でも気化しにくく、充放電に伴うリチウムの挿入及び脱離の際に硫黄が多硫化リチウムとして遊離して電解液中へ溶出及び拡散することを抑制することができるため、優れた充放電特性(特に高容量)を示すとともに高耐熱性も示す。また、本発明の有機硫黄材料は、優れたサイクル特性も有し得る。
 このため、本発明の有機硫黄材料は、リチウムイオン二次電池等の電池用電極活物質(特に電池用正極活物質)として有用である。
 また、本発明の製造方法によれば、従来には報告のなかった液体の有機原料を用いて、上記のような優れた性能を有する有機硫黄材料を製造することができる。
本発明の製造方法に使用される装置の一例を示す断面概略図である。 実施例1で得られた有機硫黄材料のラマンスペクトルを示すグラフ(100~4250 cm-1)である。 実施例1で得られた有機硫黄材料のXAFSスペクトル(2460~2500 eV)を示すグラフである。なお、左図は部分蛍光収量、右図は全電子収量である。参考として、硫黄及び硫化リチウムのスペクトルも示す。 実施例1で得られた有機硫黄材料のTG-DTA曲線(25~500℃)を示すグラフである。 実施例1で得られた非水電解液リチウム二次電池の充放電試験の結果を示すグラフである。 実施例2で得られた非水電解液リチウム二次電池の充放電試験の結果を示すグラフである。 比較例1で得られた有機硫黄材料のラマンスペクトルを示すグラフ(200~2000 cm-1)である。 比較例1で得られた有機硫黄材料のXAFSスペクトル(2460~2500 eV)を示すグラフである。なお、左図は部分蛍光収量、右図は全電子収量である。参考として、硫黄及び硫化リチウムのスペクトルも示す。 比較例1で得られた有機硫黄材料のTG-DTA曲線(25~500℃)を示すグラフである。 比較例1で得られた非水電解液リチウム二次電池の充放電試験の結果を示すグラフである。 実施例3で得られた非水電解液リチウム二次電池の充放電試験の結果を示すグラフである。 実施例4で得られた非水電解液リチウム二次電池の充放電試験の結果を示すグラフである。 実施例5で得られた有機硫黄材料のラマンスペクトルを示すグラフ(100~4250 cm-1)である。 実施例5で得られた有機硫黄材料のXAFSスペクトル(2460~2500 eV)を示すグラフである。なお、左図は部分蛍光収量、右図は全電子収量である。参考として、硫黄及び硫化リチウムのスペクトルも示す。 実施例6で得られた非水電解液リチウム二次電池の充放電試験の結果を示すグラフである。 実施例9で得られた非水電解液リチウム二次電池の充放電試験の結果を示すグラフである。 実施例12で得られた非水電解液リチウム二次電池の充放電試験の結果を示すグラフである。 実施例13で得られた非水電解液リチウム二次電池の充放電試験の結果を示すグラフである。 実施例14で得られた非水電解液リチウム二次電池の充放電試験の結果を示すグラフである。 実施例15で得られた非水電解液リチウム二次電池の充放電試験の結果を示すグラフである。 実施例16で得られた非水電解液リチウム二次電池の充放電試験の結果を示すグラフである。 実施例17で得られた非水電解液リチウム二次電池の充放電試験の結果を示すグラフである。 実施例18で得られた非水電解液リチウム二次電池の充放電試験の結果を示すグラフである。 実施例19で得られた非水電解液リチウム二次電池の充放電試験の結果を示すグラフである。 実施例20で得られた非水電解液リチウム二次電池の充放電試験の結果を示すグラフである。 実施例21で得られた非水電解液リチウムイオン二次電池の充放電試験の結果を示すグラフである。 実施例22で得られた非水電解液ナトリウム二次電池の充放電試験の結果を示すグラフである。 実施例23で得られた非水電解液ナトリウムイオン二次電池の充放電試験の結果を示すグラフである。 実施例24で得られた非水電解液マグネシウム二次電池の充放電試験の結果を示すグラフである。
 1.有機硫黄材料
 本発明の有機硫黄材料は、ラマン分光法によって検出されたラマンスペクトルにおいて、482 cm-1付近、846 cm-1付近、1066 cm-1付近、1279 cm-1付近、及び1442 cm-1付近にピークを有し、且つ、前記1442 cm-1付近のピークが最強ピークである。
 本発明の有機硫黄材料は、原料に起因する炭化物に硫黄が包摂されており、このうち原料に起因する炭化物は非晶質であることが好ましい。また、本発明の有機硫黄材料においては、ポリエチレングリコール由来の炭素原子が形成する炭化物骨格の中に硫黄が閉じ込められると考えられ、有機硫黄材料に取り込まれなかった未反応の硫黄(遊離硫黄)を低減することができることから、充放電に伴うリチウムの挿入及び脱離の際に硫黄が多硫化リチウムとして遊離して電解液中へ溶出及び拡散することを抑制することができるため、優れた充放電特性(高容量及び優れたサイクル特性)を示すことができるとともに耐熱性にも優れる。
 本発明の有機硫黄材料は、炭素、水素、酸素及び硫黄を構成元素として含有している。
 本発明の有機硫黄材料における各元素の存在割合については、特に限定的ではないが、高い導電性を保持できる程度に炭素量が存在し、遊離硫黄が生じにくい程度にS-S結合が形成できそれらを構造内部に保持できるだけの炭素量、水素量、酸素量及び硫黄量が存在することが好ましい。このような観点から、本発明の有機硫黄材料中の炭素含有量は20~50重量%(特に25~45重量%)、水素含有量は0.01~5重量%(特に0.1~4重量%)、酸素含有量は0.1~30重量%(特に1~25重量%)、硫黄含有量は45~75重量%(特に50~70重量%)であることが好ましい。
 また、本発明の有機硫黄材料には、上記炭素、水素、酸素及び硫黄以外にも、本発明の効果を損なわない範囲で、窒素、リン等の異種原子が少量含まれていてもよい。これらの異種原子の含有量は、10重量%以下、特に5重量%以下であれば、充放電特性に与える影響は限定的である。
 本発明の有機硫黄材料は、ラマン分光法によって検出されたラマンスペクトルにおいて、482 cm-1付近、846 cm-1付近、1066 cm-1付近、1279 cm-1付近、及び1442 cm-1付近にピークを有し、且つ、前記1442 cm-1付近のピークが最強ピークである。本発明において、ラマンスペクトルは、ラマン分光法によって求められる。
 本発明の有機硫黄材料は、S-S結合を有するため、S-S結合の伸縮振動を示す482 cm-1付近のピークを有する。このピーク位置は、±50 cm-1、特に±30 cm-1の誤差が許容され得る。つまり、本発明の有機硫黄材料は、432~532 cm-1、特に452~512 cm-1にピークを有する。
 本発明の有機硫黄材料は、846 cm-1付近のピークを有する。このピーク位置は、±50 cm-1、特に±30 cm-1の誤差が許容され得る。つまり、本発明の有機硫黄材料は、796~896 cm-1、特に816~876 cm-1にピークを有する。
 本発明の有機硫黄材料は、1066 cm-1付近のピークを有する。このピーク位置は、±50 cm-1、特に±30 cm-1の誤差が許容され得る。つまり、本発明の有機硫黄材料は、1016~1116 cm-1、特に1036~1096 cm-1にピークを有する。
 本発明の有機硫黄材料は、1279 cm-1付近のピークを有する。このピーク位置は、±50 cm-1、特に±30 cm-1の誤差が許容され得る。つまり、本発明の有機硫黄材料は、1229~1329 cm-1、特に1249~1309 cm-1にピークを有する。
 本発明の有機硫黄材料は、1442 cm-1付近のピークを有する。このピーク位置は、±50 cm-1、特に±30 cm-1の誤差が許容され得る。つまり、本発明の有機硫黄材料は、1392~1492 cm-1、特に1412~1472 cm-1にピークを有する。
 本発明の有機硫黄材料においては、これら5種のピークのうち、1442 cm-1付近のピークが最強ピークである。なお、本明細書において、「最強ピーク」とは、ピーク強度が最も高いピークを意味する。特に、前記482 cm-1付近のラマン散乱ピーク強度、前記846 cm-1付近のラマン散乱ピーク強度、前記1066 cm-1付近のラマン散乱ピーク強度、及び前記1279 cm-1付近のラマン散乱ピーク強度が、いずれも、前記1442 cm-1付近のラマン散乱ピーク強度の0.4倍以下、さらには0.35倍以下であることが好ましい。なお、従来のように、硫黄を樹脂(PAN等)、ピッチ等で処理した場合は、1331 cm-1付近及び1548 cm-1付近に2種類の強いピークを有する傾向があり、1442 cm-1付近に最強ピークは有し得ない。
 なお、本発明の有機硫黄材料は、ラマン分光法によって検出されたラマンスペクトルにおいて、上記の5種のピークを有するが、さらに、770 cm-1付近及び/又は1924 cm-1付近にラマン散乱強度のピークを有することが好ましい。
 770 cm-1付近のピーク位置は、±50 cm-1、特に±30 cm-1の誤差が許容され得る。つまり、本発明の有機硫黄材料は、720~820 cm-1、特に740~800 cm-1にピークを有することが好ましい。
 1924 cm-1付近のピーク位置は、±50 cm-1、特に±30 cm-1の誤差が許容され得る。つまり、本発明の有機硫黄材料は、1874~1974 cm-1、特に1894~1954 cm-1にピークを有することが好ましい。
 本発明の有機硫黄材料は、X線吸収微細構造(XAFS)スペクトルにおいて、2469.2 eV付近、2472.0 eV付近、及び2473.2 eV付近にピークを有し、且つ、前記2472.0 eV付近のピーク強度、及び前記2473.2 eV付近のピーク強度が、いずれも、前記前記2469.2 eV付近のピーク強度の2倍以上であることが好ましい。
 本発明の有機硫黄材料は、2469.2 eV付近のピークを有することが好ましい。このピーク位置は、±0.5 eV、特に±0.3 eVの誤差が許容され得る。つまり、本発明の有機硫黄材料は、2468.7~2469.7 eV、特に2468.9~2469.5 eVにピークを有することが好ましい。
 本発明の有機硫黄材料は、2472.0 eV付近のピークを有することが好ましい。このピーク位置は、±0.5 eV、特に±0.3 eVの誤差が許容され得る。つまり、本発明の有機硫黄材料は、2471.5~2472.5 eV、特に2471.7~2472.3 eVにピークを有することが好ましい。
 本発明の有機硫黄材料は、S-C結合及びS-H結合を有するため、S-C結合及びS-H結合の混成軌道からの遷移を示唆する2473.2 eV付近のピークを有することが好ましい。このピーク位置は、±0.5 eV、特に±0.3 eVの誤差が許容され得る。つまり、本発明の有機硫黄材料は、2472.7~2473.7 eV、特に2472.9~2473.5 eVにピークを有することが好ましい。
 本発明の有機硫黄材料においては、これら3種のピークのうち、前記2472.0 eV付近のピーク強度、及び前記2473.2 eV付近のピーク強度が、いずれも、前記2469.2 eV付近のピーク強度の2倍以上、さらには2.2倍以上が好ましい。なお、上限値は特に制限はないが、前記2472.0 eV付近のピーク強度、及び前記2473.2 eV付近のピーク強度は、いずれも、前記2469.2 eV付近のピーク強度の5倍以下が好ましい。なお、従来のように、硫黄を樹脂(PAN等)、ピッチ等で処理した場合は、2471.7 eV付近に強いピークを有する傾向があり、2473.2 eV付近には強いピークは有し得ない。
 本発明の有機硫黄材料は、上記した条件を満足するが、該有機硫黄材料の性能を阻害しない範囲であれば、その他の不純物が含まれていてもよい。この様な不純物としては、原料及び製造時に混入する可能性のある窒素等を例示できる。さらに、原料の残存物(ポリエチレングリコール又はその誘導体、遊離硫黄等)や、本発明の目的物以外の生成物等も不純物として含まれることがある。これらの不純物の量については、上記した有機硫黄材料の性能を阻害しない範囲であればよく、通常、上記した条件を満足する有機硫黄化合物の総量を100重量%として、30重量%以下が好ましく、20重量%以下がより好ましい。
 2.有機硫黄材料の製造方法 
 本発明の有機硫黄材料は、特に制限されないが、硫黄を含む原料と、ポリエチレングリコール又はその誘導体とを含む溶液を、不活性雰囲気下で熱処理する(特に還元法により熱処理する)工程を備える製造方法によって得ることができる。この方法によれば、ポリエチレングリコール又はその誘導体が炭化して導電性を有する状態で硫黄を含む原料と結合し、遊離硫黄の発生を抑制した有機硫黄材料を得ることができる。以下、この方法について具体的に説明する。
 (2-1)原料
 本発明では、原料として、硫黄を含む原料と、ポリエチレングリコール又はその誘導体とを用いる。
 硫黄を含む原料としては、特に限定的ではなく、硫黄元素以外にも、熱処理の過程で揮発又は脱離していく元素(炭素、水素、窒素、酸素等)が含まれていてもよい。ただし、硫黄を含む原料には、金属元素が含まれないことが好ましい。このような硫黄を含む原料としては、例えば、硫黄(S)等が挙げられる。なお、硫黄を含む原料は、1種単独で用いることもでき、2種以上を組合せて用いることもできる。
 硫黄を含有する原料の形状については、特に限定はなく、固体及び液体のいずれでもよく、固体である場合は平均粒径0.1~100μm程度の粉末状であることが好ましい。原料の平均粒径は、乾式のレーザー回折・散乱式による粒度分布測定で、累積度数が50%となる粒径として求める。なお、粒径の大きな原料を使用し、乳鉢等で粉砕することにより、平均粒径を制御することもできる。
 ポリエチレングリコール又はその誘導体としては、ポリエチレングリコールとポリエチレングリコールの誘導体のいずれも採用し得る。より高容量且つ高耐熱性とできる観点から、ポリエチレングリコールの誘導体としては、ポリエチレングリコールのアルキルエーテル(特にポリエチレングリコールのジメチルエーテル)が好ましい。
 また、ポリエチレングリコール又はその誘導体の平均分子量は、低分子量ほど気化しやすく反応系から脱出しやすく、末端が気化及び脱離しやすいという観点から、90~20000が好ましく、200~6000がより好ましい。
 このようなポリエチレングリコール又はその誘導体としては、例えば、平均分子量が200~20000のポリエチレングリコールの他、エチレングリコールや、ポリエチレングリコールモノアルキルエーテル(ポリエチレングリコールモノメチルエーテル等)や、モノグライム、ジグライム、トリグライム、テトラグライム、ペンタグライム、オクタグライム、イコサグライム等のグライムや、ポリエチレングリコール-ポリプロピレングリコール共重合体や、より高分子量のポリエチレンオキシド等も使用することができる。これらのポリエチレングリコール又はその誘導体は、1種単独で用いることもでき、2種以上を組合せて用いることもできる。
 硫黄を含有する原料と、ポリエチレングリコール又はその誘導体との混合割合については、特に限定的ではなく、反応過程において、硫黄成分が硫化水素(H2S)となって蒸散していくこと、硫黄を含有する原料が残存しても後述の加熱工程で除去できることを考慮し、硫黄を含有する原料が、ポリエチレングリコール又はその誘導体に比べて過剰量であることが好ましい。また、ポリエチレングリコール又はその誘導体の使用量は、最終生成物である有機硫黄材料が十分な導電性を確保できる程度の炭素(ポリエチレングリコール又はその誘導体の炭化により生成)量が含まれる程度とすることが好ましい。このような観点から、ポリエチレングリコール又はその誘導体の炭素数、硫黄を含有する原料中の硫黄量等にもよるが、ポリエチレングリコール又はその誘導体の使用量は、硫黄を含有する原料100重量部に対して、10~100重量部が好ましく、15~90重量部がより好ましく、20~50重量部がさらに好ましい。なお、硫黄を含有する原料の多くを有効に使用するためには、ポリエチレングリコール又はその誘導体の使用量を多くすることが好ましい。
 本発明においては、硫黄を含有する原料と、ポリエチレングリコール又はその誘導体を含有する原料とは、液体として使用することが好ましい。上記のような条件を満たすポリエチレングリコール又はその誘導体は、後述の還流条件では通常液体であるため、硫黄を含有する原料とポリエチレングリコール又はその誘導体とを混合すれば、硫黄を含む原料と、ポリエチレングリコール又はその誘導体とを含む溶液を得ることができる。なお、ポリエチレングリコール又はその誘導体が常温で液体ではない場合でも反応温度となる250℃以上では液体として使用可能である。
 (2-2)有機硫黄材料の製造方法
 本発明の製造方法においては、上記原料を用いて、硫黄を含む原料と、ポリエチレングリコール又はその誘導体とを含む溶液を、不活性雰囲気下で熱処理する(特に還元法により熱処理する)。本発明では、硫黄を含む原料とポリエチレングリコール又はその誘導体とを含む溶液を250℃以上で還流することが好ましい。
 還流法による熱処理は、例えば、図1に示されるように、反応容器(試験管等)に原料(硫黄を含む原料と、ポリエチレングリコール又はその誘導体とを含む溶液)を投入し、反応容器下部を電気炉等で加熱しながら反応容器上部を放冷することが好ましい。この際、反応容器は半封することが好ましい。なお、試験管の長さを長くすれば、硫黄蒸気止めとしてのキムワイプを使用しなくてもよい。この過程で、硫黄を含む原料が反応容器底部で溶融し(固体のままでもよい)、加熱されたポリエチレングリコール又はその誘導体と反応するとともに、ポリエチレングリコール又はその誘導体自身は炭化を進行させることができる。加熱された原料物質(硫黄を含む原料と、ポリエチレングリコール又はその誘導体)及び反応中間体は、一部が蒸散するものの、還流することで反応系へと戻る。これを繰り返すことにより、原料物質(硫黄を含む原料と、ポリエチレングリコール又はその誘導体)が高活性な状態で反応し、効率よく反応が進行する。この反応過程において、ポリエチレングリコール又はその誘導体は脱水及び/又は脱水素による炭化が進行するとともに、ポリエチレングリコール又はその誘導体由来の炭素原子が形成する骨格の中に硫黄が閉じ込められると考えられる。なお、この際、反応容器(試験管等)に硫黄を含む原料を投入し、次いで、液体状態のポリエチレングリコール又はその誘導体を少しずつ添加していくと、収量を向上させやすい。
 この還流法において、不活性雰囲気としては、特に制限されず、窒素ガス雰囲気、アルゴンガス雰囲気等が採用できる。
 この還流法における反応温度及び保持時間は、特に限定的ではなく、原料(硫黄を含む原料と、ポリエチレングリコール又はその誘導体)の融点、沸点等にもよるが、通常は250℃以上、好ましくは300℃以上、より好ましくは310~500℃、さらに好ましくは330~450℃において、3~400分間、好ましくは5~100分間、より好ましくは10~60分間、さらに好ましくは20~40分間とすることができる。上記のような反応温度とすることで、各原料をより十分に反応させ、ポリエチレングリコール又はその誘導体の炭化及び硫黄を取り込む反応をより十分に進行させることができ、遊離硫黄をより低減してより高容量とすることができるとともに、ポリエチレングリコール又はその誘導体と硫黄を含む原料との揮発をより抑制し、生成物の収率をより向上させることができる。また、上記のような保持時間とすることで、各原料をより十分に反応させ、ポリエチレングリコール又はその誘導体の炭化及び硫黄を取り込む反応をより十分に進行させることができ、未反応の硫黄(遊離硫黄)をより低減してより高容量とすることができるとともに、ポリエチレングリコール又はその誘導体と硫黄を含む原料との揮発をより抑制し、生成物の収率をより向上させることができる。なお、本発明において、保持時間とは、最高到達温度に達するまでの時間を意味する。
 上記方法で還流反応させることで、後述する本発明の有機硫黄材料が得られるとともに、未反応物として残留する遊離硫黄を低減することが可能であるが、遊離硫黄が含まれていることもある。この場合、反応生成物を不活性ガス気流下で200~450℃で加熱することにより、未反応物として残留する遊離硫黄を気化及び/又は除去することが好ましい。これにより、遊離硫黄が有機硫黄化合物中に残存している場合は、有機硫黄化合物の導電率が低下するとともに、有機電解液を用いた電池系で充放電を繰り返すと多硫化リチウムとして電解液に溶出及び拡散して容量低下を引き起こすが、この工程により、より確実に遊離硫黄を除去し、導電率及び容量をより向上させることができる。
 この遊離硫黄除去プロセスにおいて、使用する不活性ガスとしては、特に制限されないが、窒素ガス、アルゴンガス等が採用できる。
 この遊離硫黄除去プロセスを行う際の不活性ガスの流量は、特に制限されず、加熱により生じた硫黄蒸気を生成物から引き離すという観点から、10 gの粗生成物に対し50~200 mL/分が好ましく、100~150 mL/分がより好ましい。
 この遊離硫黄除去プロセスの反応温度及び保持時間については、特に限定的ではなく、残留硫黄量にも依存するが、通常は硫黄が気化及び/又は昇華する温度、つまり、200~450℃、好ましくは250~350℃、より好ましくは270~330℃で、0.5~5時間、好ましくは1~3時間保持することができる。
 3.電池
 本発明の有機硫黄材料は、上記した優れた特性を利用して、イオン伝導体;電子伝導体;リチウム一次電池、リチウムイオン二次電池、金属リチウム二次電池等のリチウムイオン電池(特にリチウムイオン二次電池)の電極活物質(特に正極活物質);ナトリウムイオン二次電池の電極活物質(特に正極活物質);マグネシウムイオン二次電池の電極活物質(特に正極活物質);カルシウムイオン二次電池の電極活物質(特に正極活物質);アルミニウムイオン二次電池の電極活物質(特に正極活物質)等として有効に利用できる。特に、本発明の有機硫黄材料は、導電性が高く、耐熱性に優れ、高容量な材料であり、サイクル特性も向上し得るため、リチウムイオン二次電池又はナトリウムイオン二次電池用の電極活物質(特にリチウムイオン二次電池用正極活物質又はナトリウムイオン二次電池用負極活物質)として有用である。
 本発明の有機硫黄材料をリチウムイオン二次電池又はナトリウムイオン二次電池用の電極活物質(特にリチウムイオン二次電池用正極活物質又はナトリウムイオン二次電池用負極活物質)として使用するリチウムイオン二次電池又はナトリウムイオン二次電池は、電解質として非水溶媒系電解液を用いる非水電解液リチウムイオン二次電池又は非水電解液ナトリウムイオン二次電池であってもよく、リチウムイオン伝導性固体電解質を用いる全固体型リチウムイオン二次電池又は全固体型ナトリウムイオン二次電池であってもよい。
 非水電解液リチウムイオン二次電池、非水電解液ナトリウムイオン二次電池、全固体型リチウムイオン二次電池及び全固体型ナトリウムイオン二次電池の構造は、本発明の有機硫黄材料を電極活物質として用いること以外は、公知のリチウムイオン二次電池及びナトリウムイオン二次電池と同様とすることができる。
 例えば、非水電解液リチウムイオン二次電池及び非水電解液ナトリウムイオン二次電池については、上記した本発明の有機硫黄材料を電極活物質として使用する他は、基本的な構造は、公知の非水電解液リチウムイオン二次電池及び非水電解液ナトリウムイオン二次電池と同様とすることができる。
 正極については、上記した本発明の有機硫黄材料を正極活物質として用い、例えば、本発明の有機硫黄材料と導電材とバインダーとを混合することで作製した正極合剤をAl、Ni、ステンレス、カーボンクロス等の正極集電体に担持させることができる。導電材としては、例えば、黒鉛、コークス、カーボンブラック、針状カーボン等の炭素材料を用いることができる。負極としては、リチウムを含有する材料を用いることが可能である。例えば、リチウム金属、ナトリウム金属やリチウム又はナトリウムをドープした黒鉛等を用いることができる。これらの負極活物質についても、必要に応じて、上記した導電材、バインダー等を用いて、Al、Cu、Ni、ステンレス、カーボン等からなる負極集電体に担持させることができる。
 上記した本発明の有機硫黄材料を正極活物質に前もってリチウム又はナトリウムをドープして用いる場合、負極としてはリチウム又はナトリウムを含有しない材料を用いることも可能である。例えば、黒鉛、難焼結性炭素等の他、スズ、シリコン及びこれらを含む合金等や、SiO等を用いることができる。また、負極活物質として本発明の有機硫黄材料を使用することもできる。
 また、負極活物質として本発明の有機硫黄材料を使用する場合には、正極としては従来から公知の材料を使用してもよく、正極活物質としては、コバルト酸リチウム(LiCoO2)、ニッケル酸リチウム(LiNiO2)、マンガン酸リチウム(LiMn2O4)、リン酸鉄リチウム(LiFePO4)、鉄酸ナトリウム(LiFeO2)、酸化バナジウム系材料、硫黄系材料等の既存の材料を使用することができる。
 セパレータとしては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン樹脂、フッ素樹脂、ナイロン、芳香族アラミド、無機ガラス等の材質からなり、多孔質膜、不織布、織布等の形態の材料を用いることができる。
 非水電解液を構成する電解質としては、リチウムトリフルオロメタンスルホニルアミド(LiTFSA)、ヘキサフルオロリン酸リチウム(LiPF6)、ヘキサフルオロリン酸ナトリウム(NaPF6)等の公知の電解質を用いることができる。
 非水電解液の溶媒としては、カーボネート(エチレンカーボネート、ジエチルカーボネート等)、エーテル(テトラグライム等)、ニトリル、含硫黄化合物等の非水溶媒系二次電池の溶媒として公知の溶媒を用いることができる。
 また、全固体型リチウムイオン二次電池及び全固体型ナトリウムイオン二次電池についても、本発明の有機硫黄材料を電極活物質(特に正極活物質)として用いること以外は、公知の全固体型リチウムイオン二次電池及び全固体型ナトリウムイオン二次電池と同様の構造とすることができる。
 この場合、リチウムイオン伝導性固体電解質及びナトリウムイオン伝導性固体電解質としては、例えば、ポリエチレンオキサイド系の高分子化合物、ポリオルガノシロキサン鎖及びポリオキシアルキレン鎖の少なくとも一種を含む高分子化合物等のポリマー系固体電解質等の他、硫化物系固体電解質、酸化物系固体電解質等も用いることができる。
 全固体型リチウムイオン二次電池及び全固体型ナトリウムイオン二次電池の正極については、例えば、本発明の有機硫黄材料を正極活物質として用い、例えば、本発明の有機硫黄材料、導電材、バインダー、及び固体電解質を含む正極合剤をTi、Al、Ni、ステンレス等の正極集電体に担持させることができる。導電材については、非水電解液リチウムイオン二次電池及び非水電解液ナトリウムイオン二次電池と同様に、例えば、黒鉛、コークス、カーボンブラック、針状カーボン等の炭素材料を用いることができる。なお、負極活物質に本発明の有機硫黄材料を用いる場合には、正極活物質として、コバルト酸リチウム(LiCoO2)、ニッケル酸リチウム(LiNiO2)、マンガン酸リチウム(LiMn2O4)、リン酸鉄リチウム(LiFePO4)、酸化バナジウム系材料、硫黄系材料等の既存の材料を使用することもできる。
 負極としては、非水電解液リチウムイオン二次電池及び非水電解液ナトリウムイオン二次電池と同様に、リチウム又はナトリウムを含有する材料とリチウム又はナトリウムを含有しない材料を共に用いることが可能である。例えば、黒鉛、難焼結性炭素等の他、リチウム金属、ナトリウム金属、スズ、シリコン及びこれらを含む合金等や、SiO等を用いることができる。これらの負極活物質についても、必要に応じて、上記した導電材、バインダー等を用いて、Al、Cu、Ni、ステンレス、カーボン等からなる負極集電体に担持させることができる。また、負極活物質として本発明の有機硫黄材料を使用することもできる。
 非水電解液リチウムイオン二次電池、非水電解液ナトリウムイオン二次電池、全固体型リチウムイオン二次電池及び全固体型ナトリウムイオン二次電池の形状についても特に限定はなく、円筒型、角型等のいずれであってもよい。
 以下、実施例を挙げて本発明を更に詳細に説明する。しかしながら、本発明は、以下の実施例のみに限定されないことは言うまでもない。
 実施例1: ポリエチレングリコール200
 硫黄(キシダ化学(株), 99 %)5.1051 gとポリエチレングリコール(キシダ化学(株), 平均分子量190~210)1.0256 gとを試験管((株)マルエム製, A-30, 直径30 mm×長さ200 mm)に取り、窒素ガス用入口、ガス出口、熱電対を挿入するためのアルミナ保護管(SSA-S, 内径2 mm, 外径4 mm, 長さ230 mm)を備えたシリコンゴム栓を取り付けた(図1)。電気炉加熱部位に試験管の下部100 mmを入れて加熱し、断熱材を詰めて固定し、試験管の上部を外気にさらしておいた。アルミナ保護管に熱電対(K種)を挿入し、試料の温度を測定した。窒素ガスを毎分50 mL流し、排気を10 %水酸化ナトリウム100 mLを入れた三角フラスコに導いて、発生するガス中の硫化水素を捕集した。電気炉設定温度を500℃に20分かけて徐々に上げ、内部で液体の凝結がみられなくなり、試料温度が443℃に達するまで1時間かけて加熱した。冷却後試験管内部の生成物を取り出し、石英ボートにのせ、石英管(内径30 mm, 長さ900 mm)内部に置き、窒素気流下300℃で2時間硫黄を気化及び除去した。得られた黒色固体粉末は0.1147 gであった。
 得られた試料を炭素・水素・窒素同時定量装置、Oマイクロコーダー及びイオンクロマトグラフィーにより元素分析したところ、炭素含有量が35.3重量%、水素含有量が0.4重量%、酸素含有量が2.9重量%、硫黄含有量が61.4重量%、窒素含有量が0.0重量%(存在しない)であった。
 また、得られた試料のラマンスペクトルは図2に示す通り、1441 cm-1に主ピークが存在し、且つ、1924 cm-1、1279 cm-1、1066 cm-1、846 cm-1、772 cm-1、及び481 cm-1にそれぞれピークが存在することが確認できた。これらのピーク強度の関係は、1924 cm-1のピーク強度が1441 cm-1のピーク強度の0.06倍程度、1279 cm-1のピーク強度が1441 cm-1のピーク強度の0.3倍程度、1066 cm-1のピーク強度が1441 cm-1のピーク強度の0.07倍程度、846 cm-1のピーク強度が1441 cm-1のピーク強度の0.04倍程度、481 cm-1のピーク強度が1441 cm-1のピーク強度の0.1倍程度であった。なお、ラマンスペクトルの条件は、分析装置ThermoFisherSCIENTIFIC社製ALMEGA XR、レーザー波長532 nm、スリット50μmピンホール、露光5秒×12回である。
 また、XAFSスペクトルは図3に示す通り、2472.0 eV及び2473.2 eVに強い吸収ピークが存在し、且つ、2469.2 eVに吸収ピークが存在することが分かった。部分蛍光収量の場合、これらのピーク強度の関係は、2472.0 eVのピーク強度が2469.2 eVのピーク強度の3倍程度、2473.2 eVのピーク強度が2469.2 eVのピーク強度の3倍程度であった。なお、図3には、参考として示す硫黄及び硫化リチウムの吸収ピークとの比較からも理解できるように、実施例1の有機硫黄材料には硫黄及び硫化リチウムの吸収ピークが確認できないことから、遊離硫黄が存在していないことが理解できる。
 さらに、TG-DTA曲線は図4に示すとおり、300℃付近まで重量減少が確認できなかったことから、実施例1の有機硫黄材料は耐熱性に優れ、安定な材料であることが示された。
 以上から、炭化の進んだ成分を有し、炭素と硫黄が相互作用を有し、耐熱性に優れた有機硫黄材料を作製することができた。
 得られた有機硫黄材料を正極材料に用い、有機硫黄材料:アセチレンブラック:ポリテトラフルオロエチレン(PTFE)= 5: 4: 1(重量比)でメノウ乳鉢にて混合し、集電体としてアルミニウムメッシュに圧着することで、正極を得た。また、負極としてリチウム金属、電解液としてリチウムトリフルオロメタンスルホニルアミド(LiTFSA)をテトラグライムにモル比1: 1で溶解させたもの、セパレータとしてポリプロピレンセパレータを用いて、定電流モード0.05 Cで、カットオフ1.0~3.0 Vの条件で放電を開始し、充放電試験を行った。充放電特性は図5に示す通りであり、初期放電容量は約780 mAh/gと、後述するポリアクリロニトリル(PAN)を原料に用いた有機硫黄材料の場合(比較例1; 約720 mAh/g)よりも高い容量を示した。また、初期充電容量は約450 mAh/gと、後述するポリアクリロニトリル(PAN)を原料に用いた有機硫黄材料の場合(比較例1; 約430 mAh/g)よりも高い容量を示した。
 以上の結果から、本発明で採用する条件下において、有機硫黄材料を作製し、非水電解液リチウム二次電池の正極材料に適用することにより、高容量を示すリチウム二次電池を得ることができた。
 実施例2: ポリエチレングリコール200大量合成
 実施例1の合成をスケールアップし、硫黄(キシダ化学(株), 99 %)51.6 gとポリエチレングリコール(キシダ化学(株), 平均分子量190~210)25.0 gとをアルミナ管(直径60 mm×長さ400 mm)に取り、窒素ガス用入口、ガス出口、熱電対を挿入するためのアルミナ保護管(SSA-S, 内径2 mm, 外径4 mm, 長さ500 mm)を備えたシリコンゴム栓を取り付けた(図1)。電気炉加熱部位に試験管の下部100 mmを入れて加熱し、断熱材を詰めて固定し、試験管の上部を外気にさらしておいた。アルミナ保護管に熱電対(K種)を挿入し、試料の温度を測定した。窒素ガスを毎分50 mL流し、排気を10 %水酸化ナトリウム100 mLを入れた三角フラスコに導いて、発生するガス中の硫化水素を捕集した。電気炉設定温度を500℃に20分かけて徐々に上げた。280℃で試料温度の停滞と硫化水素と思われるガスの発生が見られた。試料温度が440℃に達するまで1時間かけて加熱した。その後、炉を90°横に倒し、生成物から未反応の硫黄を気化させ、除去した。冷却後試験管内部の生成物を取り出し粉砕し、250μm目のふるいを通し、石英ボートにのせ、石英管(内径30 mm, 長さ900 mm)内部に置き、窒素気流下300℃で2時間硫黄を気化及び除去した。得られた黒色固体粉末は8.888 gであった。
 このようにして得られた有機硫黄材料について、実施例1と同様にラマンスペクトル、XAFSスペクトル及びTG-DTAの測定を行ったところ、実施例1と同様の結果が得られ、炭化の進んだ成分を有し、炭素と硫黄が相互作用を有し、耐熱性に優れた有機硫黄材料を作製することができた。
 この有機硫黄材料を非水電解液リチウム二次電池の正極材料として使用すること以外は実施例1と全く同様にして充放電試験を行った。充放電特性は図6に示す通りであり、初期放電容量は約910 mAh/gと、後述するポリアクリロニトリル(PAN)を原料に用いた有機硫黄材料の場合(比較例1; 約720 mAh/g)よりも高い容量を示した。また、初期充電容量は約550 mAh/gと、後述するポリアクリロニトリル(PAN)を原料に用いた有機硫黄材料の場合(比較例1; 約430 mAh/g)よりも高い容量を示した。
 以上の結果から、本発明で採用する条件下において、有機硫黄材料を作製し、非水電解液リチウム二次電池の正極材料に適用することにより、高容量を示すリチウム二次電池を得ることができた。
 比較例1: ポリアクリロニトリル
 非特許文献3に記載の方法と全く同様にして有機硫黄材料を作製した。乳鉢で粉砕したポリアクリロニトリル(平均分子量150000; Aldrich製)5.2994 gを硫黄8.1194 g(キシダ化学(株), 99 %)と混合し、アルミホイルに取り、アルゴンガスを流しながら水平に置いた石英管中にて電気炉で昇温し、試料温度が350℃に達するまで加熱した。得られた生成物を、アルミホイルにのせ、石英管内部に置き、アルゴン気流下280℃で2時間硫黄を気化及び除去した。得られた黒色固体粉末は7.8687 gであった。
 得られた試料を炭素・水素・窒素同時定量装置、Oマイクロコーダー及びイオンクロマトグラフィーにより元素分析したところ、炭素含有量が39.2重量%、水素含有量が1.0重量%、酸素含有量が2.9重量%、硫黄含有量が43.1重量%、窒素含有量が13.8重量%であった。
 また、得られた試料のラマンスペクトルは図7に示す通り、1331 cm-1及び1548 cm-1に強いピークが存在し、且つ、939 cm-1、479 cm-1、381 cm-1、及び317 cm-1にそれぞれピークが存在しており、実施例1~2とは全く異なる材料であることが確認できた。
 また、XAFSスペクトルは図8に示す通り、2471.7 eVに最強吸収ピークが存在することから、実施例1~2とは全く異なる材料であることが分かった。
 さらに、TG-DTA曲線は図9に示すとおり、50℃以上で徐々に重量が減少していることから、硫黄が除去されていることが理解できる。このため、実施例1~2とは異なり、比較例1の有機硫黄材料は、遊離硫黄を相当含んでいることが示唆されている。
 以上から、ポリエチレングリコール又はその誘導体を原料に用いない場合は、目的とする有機硫黄材料を作製できないことが分かった。
 この有機硫黄材料を非水電解液リチウム二次電池の正極材料として使用すること以外は実施例1と全く同様にして充放電試験を行った。充放電特性は図10に示す通りであり、初期放電容量は約720 mAh/gと、実施例1~2よりも低い値であった。また、初期充電容量も約430 mAh/gと、実施例1~2よりも低い値であった。
 実施例3: ポリエチレングリコール300
 実施例1と同様に硫黄7.6441 gとポリエチレングリコール300(キシダ化学(株), 平均分子量300)3.0437 gとを試験管に取り、窒素を流しながら電気炉中で昇温し、試料温度が436℃に達するまで1時間加熱した。得られた生成物を、石英ボートにのせ、石英管内部に置き、窒素気流下300℃で2時間硫黄を気化及び除去した。得られた黒色固体粉末は0.7263 gであった。
 このようにして得られた有機硫黄材料について、実施例1と同様にラマンスペクトル、XAFSスペクトル及びTG-DTAの測定を行ったところ、実施例1と同様の結果が得られ、炭化の進んだ成分を有し、炭素と硫黄が相互作用を有し、耐熱性に優れた有機硫黄材料を作製することができた。
 この有機硫黄材料を非水電解液リチウム二次電池の正極材料として使用すること以外は実施例1と全く同様にして充放電試験を行った。充放電特性は図11に示す通りであり、初期放電容量は約792 mAh/gと、ポリアクリロニトリル(PAN)を原料に用いた有機硫黄材料の場合(比較例1; 約720mAh/g)よりも高い容量を示した。また、初期充電容量は約430 mAh/gと、ポリアクリロニトリル(PAN)を原料に用いた有機硫黄材料の場合(比較例1; 約430 mAh/g)と同等であった。
 以上の結果から、本発明で採用する条件下において、有機硫黄材料を作製し、非水電解液リチウム二次電池の正極材料に適用することにより、高容量を示すリチウム二次電池を得ることができた。
 実施例4: ポリエチレングリコール600
 実施例1と同様に硫黄8.4770 gとポリエチレングリコール600(キシダ化学(株), 平均分子量600)3.3982 gとを試験管に取り、窒素を流しながら電気炉中で昇温し、試料温度が426℃に達するまで1時間加熱した。得られた生成物を、石英ボートにのせ、石英管内部に置き、窒素気流下300℃で2時間硫黄を気化及び除去した。得られた黒色固体粉末は1.0060 gであった。
 このようにして得られた有機硫黄材料について、実施例1と同様にラマンスペクトル、XAFSスペクトル及びTG-DTAの測定を行ったところ、実施例1と同様の結果が得られ、炭化の進んだ成分を有し、炭素と硫黄が相互作用を有し、耐熱性に優れた有機硫黄材料を作製することができた。
 この有機硫黄材料を非水電解液リチウム二次電池の正極材料として使用すること以外は実施例1と全く同様にして充放電試験を行った。充放電特性は図12に示す通りであり、初期放電容量は約824 mAh/gと、ポリアクリロニトリル(PAN)を原料に用いた有機硫黄材料の場合(比較例1; 約720mAh/g)よりも高い容量を示した。また、初期充電容量は約437 mAh/gと、ポリアクリロニトリル(PAN)を原料に用いた有機硫黄材料の場合(比較例1; 約430 mAh/g)よりも高い容量を示した。
 以上の結果から、本発明で採用する条件下において、有機硫黄材料を作製し、非水電解液リチウム二次電池の正極材料に適用することにより、高容量を示すリチウム二次電池を得ることができた。
 実施例5: テトラグライム
 実施例1と同様に硫黄4.0848 gとテトラグライム(キシダ化学(株))1.5211 gとを試験管に取り、窒素を流しながら電気炉中で昇温し、試料温度が454℃に達するまで1時間加熱した。得られた生成物を、石英ボートにのせ、石英管内部に置き、窒素気流下300℃で2時間硫黄を気化及び除去した。得られた黒色固体粉末は0.1103 gであった。
 得られた試料を炭素・水素・窒素同時定量装置、Oマイクロコーダー及びイオンクロマトグラフィーにより元素分析したところ、炭素含有量が37.8重量%、水素含有量が0.5重量%、酸素含有量が3.1重量%、硫黄含有量が58.6重量%、窒素含有量が0.0重量%(存在しない)であった。
 また、得られた試料のラマンスペクトルは図13に示す通り、1441 cm-1に主ピークが存在し、且つ、1931 cm-1、1268 cm-1、1067 cm-1、838 cm-1、770 cm-1、及び481 cm-1にそれぞれピークが存在することが確認できた。これらのピーク強度の関係は、1931 cm-1のピーク強度が1441 cm-1のピーク強度の0.1倍程度、1268 cm-1のピーク強度が1441 cm-1のピーク強度の0.3倍程度、1067 cm-1のピーク強度が1441 cm-1のピーク強度の0.1倍程度、838 cm-1のピーク強度が1441 cm-1のピーク強度の0.09倍程度、770 cm-1のピーク強度が1441 cm-1のピーク強度の0.08倍程度、481 cm-1のピーク強度が1441 cm-1のピーク強度の0.1倍程度であった。
 また、XAFSスペクトルは図14に示す通り、2472.0 eV及び2473.2 eVに強い吸収ピークが存在し、且つ、2469.2 eVに吸収ピークが存在することが分かった。部分蛍光収量の場合、これらのピーク強度の関係は、2472.0 eVのピーク強度が2469.2 eVのピーク強度の3倍程度、2473.2 eVのピーク強度が2469.2 eVのピーク強度の3倍程度であった。なお、図14には、参考として示す硫黄及び硫化リチウムの吸収ピークとの比較からも理解できるように、実施例5の有機硫黄材料には硫黄及び硫化リチウムの吸収ピークが確認できないことから、遊離硫黄が存在していないことが理解できる。
 以上から、炭化の進んだ成分を有し、炭素と硫黄が相互作用を有する有機硫黄材料を作製することができた。
 この有機硫黄材料を非水電解液リチウム二次電池の正極材料として使用すること以外は実施例1と全く同様にして充放電試験を行った。その結果、実施例1と同様の結果が得られたことから、本発明で採用する条件下において、有機硫黄材料を作製し、非水電解液リチウム二次電池の正極材料に適用することにより、高容量を示すリチウム二次電池を得ることができた。
 実施例6: テトラグライム大量合成
 実施例2と同様に硫黄51.2155gとテトラグライム(キシダ化学(株))24.8068gとを試験管に取り、窒素を流しながら電気炉中で昇温し、試料温度が457℃に達するまで1時間加熱した。得られた生成物を、石英ボートにのせ、石英管内部に置き、窒素気流下300℃で2時間硫黄を気化及び除去した。得られた黒色固体粉末は6.7746 gであった。
 このようにして得られた有機硫黄材料について、実施例1と同様にラマンスペクトル、XAFSスペクトル及びTG-DTAの測定を行ったところ、実施例1と同様の結果が得られ、炭化の進んだ成分を有し、炭素と硫黄が相互作用を有し、耐熱性に優れた有機硫黄材料を作製することができた。
 この有機硫黄材料を非水電解液リチウム二次電池の正極材料として使用すること以外は実施例1と全く同様にして充放電試験を行った。充放電特性は図15に示す通りであり、初期放電容量は約870 mAh/gと、ポリアクリロニトリルを原料に用いた有機硫黄材料の場合(比較例1; 約720mAh/g)よりも高い容量を示した。また、初期充電容量は約440 mAh/gと、ポリアクリロニトリルを原料に用いた有機硫黄材料の場合(比較例1; 約430 mAh/g)よりも高い容量を示した。
 以上の結果から、本発明で採用する条件下において、有機硫黄材料を作製し、非水電解液リチウム二次電池の正極材料に適用することにより、高容量を示すリチウム二次電池を得ることができた。
 実施例7: ポリエチレングリコール6000
 実施例1と同様に硫黄5.5001 gとポリエチレングリコール6000(キシダ化学(株), 平均分子量6000)1.3932 gとを試験管に取り、窒素を流しながら電気炉中で昇温し、試料温度が427℃に達するまで1時間加熱した。得られた生成物を、石英ボートにのせ、石英管内部に置き、窒素気流下300℃で4時間硫黄を気化及び除去した。得られた黒色固体粉末は0.0971 gであった。
 このようにして得られた有機硫黄材料について、実施例1と同様にラマンスペクトル、XAFSスペクトル、TG-DTA及び充放電の測定を行ったところ、実施例1と同様の結果が得られ、炭化の進んだ成分を有し、炭素と硫黄が相互作用を有し、耐熱性に優れ、高容量な有機硫黄材料を作製することができた。
 実施例8: ポリエチレングリコール1540
 実施例1と同様に硫黄6.0186 gとポリエチレングリコール1540(キシダ化学(株), 平均分子量1540)2.2894 gとを試験管に取り、窒素を流しながら電気炉中で昇温し、試料温度が428℃に達するまで1時間加熱した。得られた生成物を、石英ボートにのせ、石英管内部に置き、窒素気流下300℃で2時間硫黄を気化及び除去した。得られた黒色固体粉末は0.7280 gであった。
 このようにして得られた有機硫黄材料について、実施例1と同様にラマンスペクトル、XAFSスペクトル、TG-DTA及び充放電の測定を行ったところ、実施例1と同様の結果が得られ、炭化の進んだ成分を有し、炭素と硫黄が相互作用を有し、耐熱性に優れ、高容量な有機硫黄材料を作製することができた。
 実施例9:ポリエチレングリコール400
 実施例1と同様に硫黄8.8828 gとポリエチレングリコール400(キシダ化学(株), 平均分子量400)3.5158 gとを試験管に取り、窒素を流しながら電気炉中で昇温し、試料温度が439℃に達するまで1時間加熱した。得られた生成物を、石英ボートにのせ、石英管内部に置き、窒素気流下300℃で1時間硫黄を気化及び除去した。得られた黒色固体粉末は0.9762 gであった。
 このようにして得られた有機硫黄材料について、実施例1と同様にラマンスペクトル、XAFSスペクトル及びTG-DTAの測定を行ったところ、実施例1と同様の結果が得られ、炭化の進んだ成分を有し、炭素と硫黄が相互作用を有し、耐熱性に優れた有機硫黄材料を作製することができた。
 この有機硫黄材料を非水電解液リチウム二次電池の正極材料として使用すること以外は実施例1と全く同様にして充放電試験を行った。充放電特性は図16に示す通りであり、初期放電容量は約760 mAh/gと、ポリアクリロニトリル(PAN)を原料に用いた有機硫黄材料の場合(比較例1; 約720mAh/g)よりも高い容量を示した。
 実施例10:ポリエチレングリコール1000
 実施例1と同様に硫黄8.1878 gとポリエチレングリコール1000(キシダ化学(株), 平均分子量1000)3.0762 gとを試験管に取り、窒素を流しながら電気炉中で昇温し、試料温度が438℃に達するまで1時間加熱した。得られた生成物を、石英ボートにのせ、石英管内部に置き、窒素気流下300℃で2時間硫黄を気化及び除去した。得られた黒色固体粉末は1.0672 gであった。
 このようにして得られた有機硫黄材料について、実施例1と同様にラマンスペクトル、XAFSスペクトル及びTG-DTAの測定を行ったところ、実施例1と同様の結果が得られ、炭化の進んだ成分を有し、炭素と硫黄が相互作用を有し、耐熱性に優れた有機硫黄材料を作製することができた。
 実施例11: ポリエチレングリコール2000
 実施例1と同様に硫黄4.6656 gとポリエチレングリコール2000(キシダ化学(株), 平均分子量2000)1.2115 gとを試験管に取り、窒素を流しながら電気炉中で昇温し、試料温度が438℃に達するまで1時間加熱した。得られた生成物を、石英ボートにのせ、石英管内部に置き、窒素気流下300℃で2時間硫黄を気化及び除去した。得られた黒色固体粉末は0.2854 gであった。
 このようにして得られた有機硫黄材料について、実施例1と同様にラマンスペクトル、XAFSスペクトル、TG-DTA及び充放電の測定を行ったところ、実施例1と同様の結果が得られ、炭化の進んだ成分を有し、炭素と硫黄が相互作用を有し、耐熱性に優れ、高容量な有機硫黄材料を作製することができた。
 実施例12: ポリエチレングリコール4000
 実施例1と同様に硫黄4.7693 gとポリエチレングリコール4000(キシダ化学(株), 平均分子量4000)1.3251 gとを試験管に取り、窒素を流しながら電気炉中で昇温し、試料温度が427℃に達するまで1時間加熱した。得られた生成物を、石英ボートにのせ、石英管内部に置き、窒素気流下300℃で2時間硫黄を気化及び除去した。得られた黒色固体粉末は0.4522 gであった。
 このようにして得られた有機硫黄材料について、実施例1と同様にラマンスペクトル、XAFSスペクトル及びTG-DTAの測定を行ったところ、実施例1と同様の結果が得られ、炭化の進んだ成分を有し、炭素と硫黄が相互作用を有し、耐熱性に優れた有機硫黄材料を作製することができたことを確認した。
 この有機硫黄材料を非水電解液リチウム二次電池の正極材料として使用すること以外は実施例1と全く同様にして充放電試験を行った。充放電特性は図17に示す通りであり、初期放電容量は約760 mAh/gと、ポリアクリロニトリル(PAN)を原料に用いた有機硫黄材料の場合(比較例1; 約720mAh/g)よりも高い容量を示した。
 実施例13: ポリエチレングリコール4000大量合成
 実施例12の合成をスケールアップした。具体的には、以下のように合成を行った。硫黄(細井化学工業(株), 99.9 %)390.0 gとポリエチレングリコール4000(キシダ化学(株), 平均分子量4000)276.0 gとをムライト管に取り、ステンレス容器に入れ、窒素ガス用入口、ガス出口、熱電対を挿入するためのアルミナ保護管を備えたステンレス蓋を取り付けた。電気炉加熱部位にステンレス容器の下部を入れて加熱し、断熱材を詰めて固定し、容器の上部を外気にさらしておいた。アルミナ保護管に熱電対を挿入し、試料の温度を測定した。窒素ガスを毎分100 mL流し、排気を10 %水酸化ナトリウムを入れた三角フラスコに導いて、発生するガス中の硫化水素を捕集した。電気炉設定温度を500℃へ徐々に上げた。255℃で試料温度の停滞と硫化水素と思われるガスの発生が見られた。試料温度が274℃に達するまで5時間かけて加熱した。冷却後試験管内部の生成物を取り出し粉砕し、250μm目のふるいを通し、石英ボートにのせ、石英管(内径30 mm、長さ900 mm)内部に置き、窒素気流下400℃で1時間硫黄を気化及び除去した。得られた黒色固体粉末は112.2 gであった。
 このようにして得られた有機硫黄材料について、実施例1と同様にラマンスペクトル、XAFSスペクトル及びTG-DTAの測定を行ったところ、実施例1と同様の結果が得られ、炭化の進んだ成分を有し、炭素と硫黄が相互作用を有し、耐熱性に優れた有機硫黄材料を作製することができた。
 この有機硫黄材料を非水電解液リチウム二次電池の正極材料として使用すること以外は実施例1と全く同様にして充放電試験を行った。充放電特性は図18に示す通りであり、初期放電容量は約800 mAh/gと、ポリアクリロニトリル(PAN)を原料に用いた有機硫黄材料の場合(比較例1; 約720mAh/g)よりも高い容量を示した。また、初期充電容量は約570 mAh/gと、ポリアクリロニトリル(PAN)を原料に用いた有機硫黄材料の場合(比較例1; 約430 mAh/g)よりも高い容量を示した。
 以上の結果から、本発明で採用する条件下において、有機硫黄材料を作製し、非水電解液リチウム二次電池の正極材料に適用することにより、高容量を示すリチウム二次電池を得ることができた。
 実施例14: ポリエチレングリコール6000大量合成
 実施例7の合成をスケールアップした。具体的には、以下のように合成を行った。硫黄(細井化学工業(株), 99.9 %)325.0 gとポリエチレングリコール6000(キシダ化学(株), 平均分子量6000)230.2 gとをムライト管に取り、ステンレス容器に入れ、窒素ガス用入口、ガス出口、熱電対を挿入するためのアルミナ保護管を備えたステンレス蓋を取り付けた。電気炉加熱部位にステンレス容器の下部を入れて加熱し、断熱材を詰めて固定し、容器の上部を外気にさらしておいた。アルミナ保護管に熱電対(K種)を挿入し、試料の温度を測定した。窒素ガスを流し、排気を10 %水酸化ナトリウムを入れた三角フラスコに導いて、発生するガス中の硫化水素を捕集した。電気炉設定温度を330℃に120分かけて徐々に上げた。247℃で試料温度の停滞と硫化水素と思われるガスの発生が見られた。試料温度が288℃に達するまで5時間かけて加熱した。冷却後試験管内部の生成物を取り出し粉砕し、250μm目のふるいを通し、石英ボートにのせ、石英管(内径30 mm、長さ900 mm)内部に置き、窒素気流下400℃で3時間硫黄を気化及び除去した。得られた黒色固体粉末は55.2 gであった。
 このようにして得られた有機硫黄材料について、実施例1と同様にラマンスペクトル、XAFSスペクトル及びTG-DTAの測定を行ったところ、実施例1と同様の結果が得られ、炭化の進んだ成分を有し、炭素と硫黄が相互作用を有し、耐熱性に優れた有機硫黄材料を作製することができた。
 この有機硫黄材料を非水電解液リチウム二次電池の正極材料として使用すること以外は実施例1と全く同様にして充放電試験を行った。充放電特性は図19に示す通りであり、初期放電容量は約870 mAh/gと、ポリアクリロニトリル(PAN)を原料に用いた有機硫黄材料の場合(比較例1; 約720mAh/g)よりも高い容量を示した。また、初期充電容量は約560 mAh/gと、ポリアクリロニトリル(PAN)を原料に用いた有機硫黄材料の場合(比較例1; 約430 mAh/g)よりも高い容量を示した。
 以上の結果から、本発明で採用する条件下において、有機硫黄材料を作製し、非水電解液リチウム二次電池の正極材料に適用することにより、高容量を示すリチウム二次電池を得ることができた。
 実施例15: トリグライム
 実施例1と同様に硫黄(キシダ化学(株), 99%)3.9896gとトリエチレングリコールジメチルエーテル(トリグライム; キシダ化学(株))2.9633 gとを試験管に取り、窒素を流しながら電気炉中で昇温し、試料温度が375℃に達するまで1時間加熱した。得られた生成物を、石英ボートにのせ、石英管内部に置き、窒素気流下300℃で4時間硫黄を気化及び除去した。得られた黒色固体粉末は0.0142 gであった。
 このようにして得られた有機硫黄材料について、実施例1と同様にラマンスペクトル、XAFSスペクトル及びTG-DTAの測定を行ったところ、実施例1と同様の結果が得られ、炭化の進んだ成分を有し、炭素と硫黄が相互作用を有し、耐熱性に優れた有機硫黄材料を作製することができた。
 この有機硫黄材料を非水電解液リチウム二次電池の正極材料として使用すること以外は実施例1と全く同様にして充放電試験を行った。充放電特性は図20に示す通りであり、初期放電容量は約980 mAh/gと、ポリアクリロニトリル(PAN)を原料に用いた有機硫黄材料の場合(比較例1; 約720mAh/g)よりも高い容量を示した。また、初期充電容量は約650 mAh/gと、ポリアクリロニトリル(PAN)を原料に用いた有機硫黄材料の場合(比較例1; 約430 mAh/g)よりも高い容量を示した。
 以上の結果から、本発明で採用する条件下において、有機硫黄材料を作製し、非水電解液リチウム二次電池の正極材料に適用することにより、高容量を示すリチウム二次電池を得ることができた。
 実施例16: ペンタグライム
 実施例1と同様に硫黄(関東化学(株), 99 %)4.8699 gとポリエチレングリコールジメチルエーテル(ペンタグライム; アルドリッチ, 平均分子量250)2.0591 gとを試験管(内径30 mm、長さ300 mm)に取り、窒素を流しながら電気炉中で昇温し、試料温度が435℃に達するまで1時間加熱した。得られた生成物を、石英ボートにのせ、石英管内部に置き、窒素気流下300℃で2時間硫黄を気化及び除去した。得られた黒色固体粉末は0.3146 gであった。
 このようにして得られた有機硫黄材料について、実施例1と同様にラマンスペクトル、XAFSスペクトル及びTG-DTAの測定を行ったところ、実施例1と同様の結果が得られ、炭化の進んだ成分を有し、炭素と硫黄が相互作用を有し、耐熱性に優れた有機硫黄材料を作製することができた。
 この有機硫黄材料を非水電解液リチウム二次電池の正極材料として使用すること以外は実施例1と全く同様にして充放電試験を行った。充放電特性は図21に示す通りであり、初期放電容量は約840 mAh/gと、ポリアクリロニトリル(PAN)を原料に用いた有機硫黄材料の場合(比較例1; 約720mAh/g)よりも高い容量を示した。また、初期充電容量は約520 mAh/gと、ポリアクリロニトリル(PAN)を原料に用いた有機硫黄材料の場合(比較例1; 約430 mAh/g)よりも高い容量を示した。
 以上の結果から、本発明で採用する条件下において、有機硫黄材料を作製し、非水電解液リチウム二次電池の正極材料に適用することにより、高容量を示すリチウム二次電池を得ることができた。
 実施例17: オクタグライム
 実施例1と同様に硫黄(キシダ化学(株), 99 %)4.8852 gとポリエチレングリコールジメチルエーテル(オクタグライム; アルドリッチ, 平均分子量500)1.6494 gとを試験管(内径30 mm、長さ300 mm)に取り、窒素を流しながら電気炉中で昇温し、試料温度が438℃に達するまで1時間加熱した。得られた生成物を、石英ボートにのせ、石英管内部に置き、窒素気流下300℃で1.5時間硫黄を気化及び除去した。得られた黒色固体粉末は0.3773 gであった。
 このようにして得られた有機硫黄材料について、実施例1と同様にラマンスペクトル、XAFSスペクトル及びTG-DTAの測定を行ったところ、実施例1と同様の結果が得られ、炭化の進んだ成分を有し、炭素と硫黄が相互作用を有し、耐熱性に優れた有機硫黄材料を作製することができた。
 この有機硫黄材料を非水電解液リチウム二次電池の正極材料として使用すること以外は実施例1と全く同様にして充放電試験を行った。充放電特性は図22に示す通りであり、初期放電容量は約840 mAh/gと、ポリアクリロニトリル(PAN)を原料に用いた有機硫黄材料の場合(比較例1; 約720mAh/g)よりも高い容量を示した。また、初期充電容量は約520 mAh/gと、ポリアクリロニトリル(PAN)を原料に用いた有機硫黄材料の場合(比較例1; 約430 mAh/g)よりも高い容量を示した。
 以上の結果から、本発明で採用する条件下において、有機硫黄材料を作製し、非水電解液リチウム二次電池の正極材料に適用することにより、高容量を示すリチウム二次電池を得ることができた。
 実施例18: イコサグライム
 実施例1と同様に硫黄(関東化学(株), 99 %)47.2 gとポリエチレングリコールジメチルエーテル(イコサグライム; アルドリッチ, 平均分子量1000)26.0 gをアルミナタンマン管(内径50 mm、長さ180 mm)に取り、窒素を流しながら電気炉中で昇温し、試料温度が308℃に達するまで1時間加熱した。得られた生成物を、石英ボートにのせ、石英管内部に置き、窒素気流下300℃で5時間硫黄を気化及び除去した。得られた黒色固体粉末は9.7693 gであった。
 このようにして得られた有機硫黄材料について、実施例1と同様にラマンスペクトル、XAFSスペクトル及びTG-DTAの測定を行ったところ、実施例1と同様の結果が得られ、炭化の進んだ成分を有し、炭素と硫黄が相互作用を有し、耐熱性に優れた有機硫黄材料を作製することができた。
 この有機硫黄材料を非水電解液リチウム二次電池の正極材料として使用すること以外は実施例1と全く同様にして充放電試験を行った。充放電特性は図23に示す通りであり、初期放電容量は約910 mAh/gと、ポリアクリロニトリル(PAN)を原料に用いた有機硫黄材料の場合(比較例1; 約720mAh/g)よりも高い容量を示した。また、初期充電容量は約620 mAh/gと、ポリアクリロニトリル(PAN)を原料に用いた有機硫黄材料の場合(比較例1; 約430 mAh/g)よりも高い容量を示した。
 以上の結果から、本発明で採用する条件下において、有機硫黄材料を作製し、非水電解液リチウム二次電池の正極材料に適用することにより、高容量を示すリチウム二次電池を得ることができた。
 実施例19: ポリエチレングリコール200(LiPF 6 電解液)
 実施例2で得られた有機硫黄材料を正極材料に用い、電解液以外は実施例1と全く同じ条件で電池を作製し充放電試験を行った。なお、電解液は以下の通り調製した。ヘキサフルオロリン酸リチウムをエチレンカーボネートとジエチルカーボネートの1: 1(体積比)混合溶媒に溶解させ1 Mとした。
 充放電特性は図24に示す通りであり、初期放電容量は約940 mAh/g、初期充電容量は約730 mAh/gと、高い容量を示した。
 以上の結果から、電解質としてLiPF6を用いた場合にも、本発明で採用する条件下において、有機硫黄材料を作製し、非水電解液リチウム二次電池の正極材料に適用することにより、高容量を示すリチウム二次電池を得ることができた。
 実施例20: ポリエチレングリコール6000(LiPF 6 電解液)
 実施例14で得られた有機硫黄材料を正極材料に用い、電解液以外は実施例1と全く同じ条件で電池を作製し充放電試験を行った。なお、電解液は以下の通り調製した。ヘキサフルオロリン酸リチウムをエチレンカーボネートとジエチルカーボネートの1: 1(体積比)混合溶媒に溶解させ1 Mとした。
 充放電特性は図25に示す通りであり、初期放電容量は約760 mAh/g、初期充電容量は約570 mAh/gと、高い容量を示した。
 以上の結果から、電解質としてLiPF6を用いた場合にも、本発明で採用する条件下において、有機硫黄材料を作製し、非水電解液リチウム二次電池の正極材料に適用することにより、高容量を示すリチウム二次電池を得ることができた。
 実施例21: ポリエチレングリコール200大量合成(LiPF 6 電解液、LiCoO 2 正極)
 実施例2で得られた有機硫黄材料を負極に用い、有機硫黄材料:アセチレンブラック:ポリテトラフルオロエチレン(PTFE)=5: 4: 1(重量比)でメノウ乳鉢にて混合し、集電体としてアルミニウムメッシュに圧着することで、負極を得た。正極は、コバルト酸リチウム(LiCoO2):アセチレンブラック:PTFE=84: 8: 8(重量比)でメノウ乳鉢にて混合し、集電体としてアルミニウムメッシュに圧着することで得た。また、電解液としてヘキサフルオロリン酸リチウムをエチレンカーボネートとジエチルカーボネートの1: 1(体積比)混合溶媒に溶解させ1 Mとしたものを用いた。カットオフ1.0~3.0 Vの条件で充電を開始し、ここに記した以外の条件については実施例1と全く同様にして充放電試験を行った。
 充放電特性は図26に示す通りであり、初期充電容量は約890 mAh/g、初期放電容量は約610 mAh/gと、高い容量を示した。
 以上の結果から、電解質としてLiPF6を用い、正極としてLiCoO2を用いた場合にも、本発明で採用する条件下において、有機硫黄材料を作製し、非水電解液リチウムイオン二次電池の負極材料に適用することにより、高容量を示すリチウムイオン二次電池を得ることができた。
 実施例22: ポリエチレングリコール200大量合成(NaPF 6 電解液、Na負極)
 実施例2で得られた有機硫黄材料を使用し、負極として金属ナトリウムを使用すること、電解液としてヘキサフルオロリン酸ナトリウムをエチレンカーボネートとジエチルカーボネートの1: 1(体積比)混合溶媒に溶解させ1 Mとしたものを用いること、及びカットオフ電圧を0.7~2.7 Vにすること以外は実施例1と全く同様にして充放電試験を行った。充放電特性は図27に示す通りであり、初期放電容量は約860 mAh/g、初期充電容量は約820 mAh/gと、高い容量を示した。
 以上の結果から、電解質としてNaPF6を用い、負極としてNaを用いた場合にも、本発明で採用する条件下において、有機硫黄材料を作製し、非水電解液ナトリウム二次電池の正極材料に適用することにより、高容量を示すナトリウム二次電池を得ることができた。
 実施例23: ポリエチレングリコール200大量合成(NaPF 6 電解液、NaFeO 2 正極)
 実施例2で得られた有機硫黄材料を負極に用い、有機硫黄材料:アセチレンブラック:ポリテトラフルオロエチレン(PTFE)=5: 4: 1(重量比)でメノウ乳鉢にて混合し、集電体としてアルミニウムメッシュに圧着することで、負極を得た。正極は、鉄酸ナトリウム(NaFeO2):アセチレンブラック:PTFE=84: 8: 8(重量比)でメノウ乳鉢にて混合し、集電体としてアルミニウムメッシュに圧着することで得た。また、電解液としてヘキサフルオロリン酸ナトリウムをエチレンカーボネートとジエチルカーボネートの1: 1(体積比)混合溶媒に溶解させ1 Mとしたものを用いた。カットオフ1.0~3.0 Vの条件で充電を開始し、ここに記した以外の条件については実施例1と全く同様にして充放電試験を行った。
 充放電特性は図28に示す通りであり、初期充電容量は約1080 mAh/g、初期放電容量は約520 mAh/gと、高い容量を示した。
 以上の結果から、本発明で採用する条件下において、有機硫黄材料を作製し、非水電解液ナトリウムイオン二次電池の負極材料に適用することにより、高容量を示すナトリウムイオン二次電池を得ることができた。
 実施例24: ポリエチレングリコール200大量合成(Mg(TFSA) 2 電解液、Mg負極)
 実施例2で得られた有機硫黄材料を使用し、負極として金属マグネシウムを使用すること、電解液としてマグネシウムトリフルオロメタンスルホニルアミド(Mg(TFSA)2)をエチレングリコールジメチルエーテルに溶解させて0.4 Mとしたものを用いること、及びカットオフ電圧を-1.0~2.3 Vにすること以外は実施例1と全く同様にして充放電試験を行った。充放電特性は図29に示す通りであり、初期放電容量は約110 mAh/g、初期充電容量は約110 mAh/gであった。フルセルで作動するマグネシウム二次電池として最も引用されている文献(D. Aurbach et al., Nature, 407, 724 (2000).)の正極材料としてMgxMo3S4を使用した場合は容量が100 mAh/g弱であることと比較すると、実施例24では優れた容量を有するため、本発明の有機硫黄材料はマグネシウム二次電池用正極材料としても有用である。 

Claims (14)

  1. 炭素、水素、酸素及び硫黄を構成元素として含有し、
    ラマン分光法によって検出されたラマンスペクトルにおいて、482 cm-1付近、846 cm-1付近、1066 cm-1付近、1279 cm-1付近、及び1442 cm-1付近にピークを有し、且つ、前記1442 cm-1付近のピークが最強ピークである、有機硫黄材料。
  2. 前記482 cm-1付近のラマン散乱ピーク強度、前記846 cm-1付近のラマン散乱ピーク強度、前記1066 cm-1付近のラマン散乱ピーク強度、及び前記1279 cm-1付近のラマン散乱ピーク強度が、いずれも、前記1442 cm-1付近のラマン散乱ピーク強度の0.4倍以下である、請求項1に記載の有機硫黄材料。
  3. ラマン分光法によって検出されたラマンスペクトルにおいて、さらに、770 cm-1付近及び/又は1924 cm-1付近にラマン散乱強度のピークを有する、請求項1又は2に記載の有機硫黄材料。
  4. X線吸収微細構造スペクトルにおいて、2469.2 eV付近、2472.0 eV付近、及び2473.2 eV付近にピークを有し、且つ、前記2472.0 eV付近のピーク強度、及び前記2473.2 eV付近のピーク強度が、いずれも、前記前記2469.2 eV付近のピーク強度の2倍以上である、請求項1~3のいずれかに記載の有機硫黄材料。
  5. 炭素含有量が20~50重量%であり、水素含有量が0.01~5重量%であり、酸素含有量が0.1~30重量%であり、硫黄含有量が45~75重量%である、請求項1~4のいずれかに記載の有機硫黄材料。
  6. 炭素、水素、酸素及び硫黄を構成元素として含有し、ラマン分光法によって検出されたラマンスペクトルにおいて、482 cm-1付近、846 cm-1付近、1066 cm-1付近、1279 cm-1付近、及び1442 cm-1付近にピークを有し、且つ、前記1442 cm-1付近のピークが最強ピークである有機硫黄材料の製造方法であって、
    硫黄を含む原料と、ポリエチレングリコール又はその誘導体とを含む溶液を、不活性雰囲気下で熱処理する工程
    を備える、製造方法。
  7. 前記熱処理工程が、硫黄を含む原料とポリエチレングリコール又はその誘導体を含む溶液を250℃以上で還流する工程
    である、請求項6に記載の製造方法。
  8. 前記熱処理工程の後、
    不活性ガス気流下で200~450℃で加熱する工程
    を備える、請求項6又は7に記載の製造方法。
  9. 請求項1~5のいずれかに記載の有機硫黄材料、又は請求項6~8のいずれかに記載の製造方法により得られた有機硫黄材料を含有する、電池用電極活物質。
  10. リチウムイオン二次電池又はナトリウムイオン二次電池用電極活物質である、請求項9に記載の電池用電極活物質。
  11. 請求項9又は10に記載の電池用電極活物質を構成要素として含有する、電池。
  12. リチウムイオン二次電池又はナトリウムイオン二次電池である、請求項11に記載の電池。
  13. 請求項9又は10に記載の電池用電極活物質と、リチウムイオン伝導性固体電解質又はナトリウムイオン伝導性固体電解質とを構成要素として含有する、全固体型リチウムイオン二次電池又は全固体型ナトリウムイオン二次電池。
  14. 前記リチウムイオン伝導性固体電解質又はナトリウムイオン伝導性固体電解質が、硫黄を構成元素とする無機化合物を含む固体電解質である、請求項13に記載の全固体型リチウムイオン二次電池又は全固体型ナトリウムイオン二次電池。
     
PCT/JP2016/060615 2015-03-31 2016-03-31 有機硫黄材料及びその製造方法 WO2016159212A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201680031085.7A CN107709233B (zh) 2015-03-31 2016-03-31 有机硫材料及其制造方法
EP16773092.8A EP3279141B1 (en) 2015-03-31 2016-03-31 Material obtained from sulfur and an organic starting material and method of producing same
US15/563,323 US10906869B2 (en) 2015-03-31 2016-03-31 Organic sulfur material and method for producing same
KR1020177030902A KR20170133406A (ko) 2015-03-31 2016-03-31 유기 황 재료 및 그 제조 방법
JP2017510170A JP6441462B2 (ja) 2015-03-31 2016-03-31 有機硫黄材料及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015073622 2015-03-31
JP2015-073622 2015-03-31

Publications (1)

Publication Number Publication Date
WO2016159212A1 true WO2016159212A1 (ja) 2016-10-06

Family

ID=57004389

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/060615 WO2016159212A1 (ja) 2015-03-31 2016-03-31 有機硫黄材料及びその製造方法

Country Status (6)

Country Link
US (1) US10906869B2 (ja)
EP (1) EP3279141B1 (ja)
JP (1) JP6441462B2 (ja)
KR (1) KR20170133406A (ja)
CN (1) CN107709233B (ja)
WO (1) WO2016159212A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018190376A1 (ja) * 2017-04-14 2018-10-18 株式会社村田製作所 マグネシウム-硫黄二次電池用正極及びその製造方法、並びに、マグネシウム-硫黄二次電池
WO2019088088A1 (ja) 2017-10-31 2019-05-09 株式会社Adeka スラリー組成物、及びスラリー組成物を用いた電極
WO2019167875A1 (ja) * 2018-03-01 2019-09-06 株式会社Adeka 有機硫黄系電極活物質
WO2019189146A1 (ja) * 2018-03-30 2019-10-03 株式会社Adeka リチウムイオン二次電池、及びその作動方法
JP2021012792A (ja) * 2019-07-04 2021-02-04 トヨタ自動車株式会社 ナトリウムイオン電池用固体電解質
WO2021060045A1 (ja) 2019-09-27 2021-04-01 株式会社Adeka 非水電解質二次電池用電極及び当該電極を用いた非水電解質二次電池
WO2021069951A1 (ja) * 2019-10-09 2021-04-15 日産自動車株式会社 リチウムイオンニ次電池用正極活物質

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6685557B2 (ja) 2015-03-31 2020-04-22 国立研究開発法人産業技術総合研究所 有機硫黄材料及びその製造方法
WO2019176618A1 (ja) 2018-03-13 2019-09-19 株式会社Adeka 非水電解質二次電池
WO2019208153A1 (ja) 2018-04-25 2019-10-31 株式会社Adeka 非水電解質二次電池
CN112005417A (zh) 2018-05-23 2020-11-27 株式会社艾迪科 锂离子二次电池
US20220340693A1 (en) * 2019-09-27 2022-10-27 Adeka Corporation Production method of sulfur-modified polyacrylonitrile

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010044437A1 (ja) * 2008-10-17 2010-04-22 独立行政法人産業技術総合研究所 硫黄変性ポリアクリロニトリル、その製造方法、及びその用途
JP2011028948A (ja) * 2009-07-23 2011-02-10 Toyota Central R&D Labs Inc 蓄電デバイス及び電極活物質の製造方法
JP2012028117A (ja) * 2010-07-22 2012-02-09 Toyota Central R&D Labs Inc 蓄電デバイス及び電極活物質の製造方法
WO2012132173A1 (ja) * 2011-03-29 2012-10-04 株式会社豊田自動織機 非水電解質二次電池および車両
WO2013001693A1 (ja) * 2011-06-28 2013-01-03 株式会社豊田自動織機 硫黄系正極活物質とその製造方法及びリチウムイオン二次電池用正極
JP2014096326A (ja) * 2012-11-12 2014-05-22 Toyota Industries Corp 二次電池用負極活物質、並びにこれを用いた負極及び二次電池
JP2015005421A (ja) * 2013-06-21 2015-01-08 トヨタ自動車株式会社 電極体及び全固体電池
WO2015050086A1 (ja) * 2013-10-04 2015-04-09 住友ゴム工業株式会社 硫黄系正極活物質およびリチウムイオン二次電池

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5142162B1 (ja) 1969-12-29 1976-11-13
JP4208451B2 (ja) * 2001-10-16 2009-01-14 日立マクセル株式会社 ポリ硫化カーボンおよびそれを用いた非水電解質電池
JP5164286B2 (ja) 2010-11-02 2013-03-21 株式会社豊田自動織機 硫黄系正極活物質の製造方法、硫黄系正極活物質、および、リチウムイオン二次電池用正極
JP6685557B2 (ja) * 2015-03-31 2020-04-22 国立研究開発法人産業技術総合研究所 有機硫黄材料及びその製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010044437A1 (ja) * 2008-10-17 2010-04-22 独立行政法人産業技術総合研究所 硫黄変性ポリアクリロニトリル、その製造方法、及びその用途
JP2011028948A (ja) * 2009-07-23 2011-02-10 Toyota Central R&D Labs Inc 蓄電デバイス及び電極活物質の製造方法
JP2012028117A (ja) * 2010-07-22 2012-02-09 Toyota Central R&D Labs Inc 蓄電デバイス及び電極活物質の製造方法
WO2012132173A1 (ja) * 2011-03-29 2012-10-04 株式会社豊田自動織機 非水電解質二次電池および車両
WO2013001693A1 (ja) * 2011-06-28 2013-01-03 株式会社豊田自動織機 硫黄系正極活物質とその製造方法及びリチウムイオン二次電池用正極
JP2014096326A (ja) * 2012-11-12 2014-05-22 Toyota Industries Corp 二次電池用負極活物質、並びにこれを用いた負極及び二次電池
JP2015005421A (ja) * 2013-06-21 2015-01-08 トヨタ自動車株式会社 電極体及び全固体電池
WO2015050086A1 (ja) * 2013-10-04 2015-04-09 住友ゴム工業株式会社 硫黄系正極活物質およびリチウムイオン二次電池

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11355746B2 (en) 2017-04-14 2022-06-07 Murata Manufacturing Co., Ltd. Magnesium-sulfur secondary battery positive electrode, method for producing same, and magnesium-sulfur secondary battery
WO2018190376A1 (ja) * 2017-04-14 2018-10-18 株式会社村田製作所 マグネシウム-硫黄二次電池用正極及びその製造方法、並びに、マグネシウム-硫黄二次電池
JPWO2018190376A1 (ja) * 2017-04-14 2020-03-05 株式会社村田製作所 マグネシウム−硫黄二次電池用正極及びその製造方法、並びに、マグネシウム−硫黄二次電池
WO2019088088A1 (ja) 2017-10-31 2019-05-09 株式会社Adeka スラリー組成物、及びスラリー組成物を用いた電極
WO2019167875A1 (ja) * 2018-03-01 2019-09-06 株式会社Adeka 有機硫黄系電極活物質
US11594732B2 (en) 2018-03-01 2023-02-28 Adeka Corporation Organo sulfur-based electrode active material
JPWO2019167875A1 (ja) * 2018-03-01 2021-02-25 株式会社Adeka 有機硫黄系電極活物質
JP7225199B2 (ja) 2018-03-01 2023-02-20 株式会社Adeka 有機硫黄系電極活物質
WO2019189146A1 (ja) * 2018-03-30 2019-10-03 株式会社Adeka リチウムイオン二次電池、及びその作動方法
JPWO2019189146A1 (ja) * 2018-03-30 2021-04-01 株式会社Adeka リチウムイオン二次電池、及びその作動方法
JP7304339B2 (ja) 2018-03-30 2023-07-06 株式会社Adeka リチウムイオン二次電池、及びその作動方法
JP2021012792A (ja) * 2019-07-04 2021-02-04 トヨタ自動車株式会社 ナトリウムイオン電池用固体電解質
KR20220071224A (ko) 2019-09-27 2022-05-31 가부시키가이샤 아데카 비수 전해질 이차 전지용 전극 및 당해 전극을 사용한 비수 전해질 이차 전지
WO2021060045A1 (ja) 2019-09-27 2021-04-01 株式会社Adeka 非水電解質二次電池用電極及び当該電極を用いた非水電解質二次電池
WO2021069951A1 (ja) * 2019-10-09 2021-04-15 日産自動車株式会社 リチウムイオンニ次電池用正極活物質

Also Published As

Publication number Publication date
US10906869B2 (en) 2021-02-02
JPWO2016159212A1 (ja) 2017-12-28
US20180065927A1 (en) 2018-03-08
EP3279141B1 (en) 2020-02-26
EP3279141A1 (en) 2018-02-07
EP3279141A4 (en) 2018-10-17
CN107709233A (zh) 2018-02-16
CN107709233B (zh) 2021-05-14
KR20170133406A (ko) 2017-12-05
JP6441462B2 (ja) 2018-12-19

Similar Documents

Publication Publication Date Title
JP6441462B2 (ja) 有機硫黄材料及びその製造方法
JP5737679B2 (ja) ナトリウム二次電池
KR102537180B1 (ko) 유기 황 재료 및 그의 제조 방법
JP5164286B2 (ja) 硫黄系正極活物質の製造方法、硫黄系正極活物質、および、リチウムイオン二次電池用正極
JP5263557B2 (ja) 非水電解質二次電池用正極の製造方法、非水電解質二次電池用正極ならびに非水電解質二次電池
US10361451B2 (en) Sulfide solid electrolyte material, lithium solid battery, and producing method for sulfide solid electrolyte material
US9397333B2 (en) Method for manufacturing carbon-sulfur composite, carbon-sulfur composite manufactured thereby, and lithium-sulfur battery
JP5142162B2 (ja) リチウムイオン二次電池用正極活物質の製造方法及びリチウムイオン二次電池用正極
KR20110070868A (ko) 황 변성 폴리아크릴로니트릴, 그 제조 방법, 및 그 용도
WO2013001693A1 (ja) 硫黄系正極活物質とその製造方法及びリチウムイオン二次電池用正極
WO2012132173A1 (ja) 非水電解質二次電池および車両
WO2013076958A1 (ja) 非水電解質二次電池用正極材料、非水電解質二次電池、および非水電解質二次電池用正極材料の製造方法
WO2013084445A1 (ja) 非水電解質二次電池
JP2013191330A (ja) 非水電解質二次電池および車両
JP2013089337A (ja) 非水電解質二次電池およびその製造方法
JP5164295B2 (ja) リチウムイオン二次電池用正極およびその製造方法
JP2013191327A (ja) 非水電解質二次電池および車両
WO2019150725A1 (ja) 炭素被覆シリコン材料
JP2013161653A (ja) 硫黄系正極活物質及び非水系二次電池
JP6760597B2 (ja) 電極スラリー及びそれを用いた電極の製造方法
JP2019036505A (ja) リチウム硫黄電池用負極およびリチウム硫黄電池
JP2013191329A (ja) 非水電解質二次電池および車両
JP5660730B2 (ja) 非水電解質二次電池用正極活物質及びその製造方法並びに非水電解質二次電池
JP2013191328A (ja) 非水電解質二次電池および車両
JP6410146B2 (ja) 硫黄含有化合物、正極およびリチウムイオン二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16773092

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017510170

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15563323

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177030902

Country of ref document: KR

Kind code of ref document: A