WO2019176618A1 - 非水電解質二次電池 - Google Patents

非水電解質二次電池 Download PDF

Info

Publication number
WO2019176618A1
WO2019176618A1 PCT/JP2019/008407 JP2019008407W WO2019176618A1 WO 2019176618 A1 WO2019176618 A1 WO 2019176618A1 JP 2019008407 W JP2019008407 W JP 2019008407W WO 2019176618 A1 WO2019176618 A1 WO 2019176618A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
carbon atoms
sulfur
nonaqueous electrolyte
Prior art date
Application number
PCT/JP2019/008407
Other languages
English (en)
French (fr)
Inventor
健二 撹上
雄太 野原
真梨恵 中西
洋平 青山
Original Assignee
株式会社Adeka
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Adeka filed Critical 株式会社Adeka
Priority to KR1020207022649A priority Critical patent/KR20200130808A/ko
Priority to JP2020506412A priority patent/JP7216073B2/ja
Publication of WO2019176618A1 publication Critical patent/WO2019176618A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • H01M4/602Polymers
    • H01M4/604Polymers containing aliphatic main chain polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a non-aqueous electrolyte secondary battery having a negative electrode having a sulfur-based negative electrode active material, a positive electrode having a positive electrode active material, and a non-aqueous electrolyte.
  • Non-aqueous electrolyte secondary batteries such as lithium ion secondary batteries are small and light, have high energy density, and can be repeatedly charged and discharged, so portable electronic devices such as portable personal computers, handy video cameras, and information terminals. Widely used as a power source for equipment. From the viewpoint of environmental problems, electric vehicles using nonaqueous electrolyte secondary batteries and hybrid vehicles using electric power as a part of power have been put into practical use. Therefore, in recent years, further improvements in the performance of secondary batteries have been demanded from the viewpoints of the usable time of portable electronic devices, the cruising distance of automobiles, and the safety thereof.
  • a lithium ion secondary battery mainly includes a separator, an electrolyte, a positive electrode, and a negative electrode.
  • the positive electrode and the negative electrode usually include a current collector and an electrode mixture layer formed on the current collector.
  • the electrode mixture layer is made of, for example, a slurry composition obtained by dispersing an electrode active material that can occlude / release lithium ions, a binder composition that binds the electrode active material, a conductive additive, and the like in a dispersion medium. It is formed by applying on a current collector and drying. Since electrode active materials greatly affect battery performance, research and development are actively conducted.
  • sulfur-porous carbon composites see, for example, Patent Document 1
  • sulfur-modified organic compounds for example, see Patent Documents 2 to 13
  • an electrode active material sulfur-modified organic compound-based electrode active materials such as sulfur-modified polyacrylonitrile have large charge / discharge capacities, and electrode actives with little decrease in charge / discharge capacities (hereinafter sometimes referred to as cycle characteristics) due to repeated charge / discharge.
  • cycle characteristics charge / discharge capacities
  • the problem to be solved by the present invention has been made in view of the above circumstances, and a nonaqueous electrolyte having excellent cycle characteristics even when a sulfur-carbon composite and a sulfur-modified organic compound are used as a negative electrode active material. It is to provide a secondary battery.
  • the present inventors have found that the above problem can be solved by blending a compound having a specific structure with a nonaqueous electrolyte, and have completed the present invention. That is, the present invention A non-aqueous electrolyte secondary comprising a negative electrode having an active material selected from the group consisting of a sulfur-porous carbon composite and a sulfur-modified organic compound, a positive electrode having a positive electrode active material, and a non-aqueous electrolyte containing a lithium salt A battery,
  • the nonaqueous electrolyte is a nonaqueous electrolyte secondary battery including at least one compound selected from the group consisting of a compound represented by the general formula (1) and a compound represented by the general formula (2).
  • R 1 to R 3 each independently represents a hydrocarbon group having 1 to 10 carbon atoms, and R 4 represents an n-valent hydrocarbon group having 1 to 10 carbon atoms, or at least an oxygen atom or a sulfur atom
  • R 4 represents an n-valent hydrocarbon group having 1 to 10 carbon atoms, or at least an oxygen atom or a sulfur atom
  • Rf represents a fluorine atom or a hydrocarbon group having 1 to 6 carbon atoms containing at least one fluorine atom.
  • the nonaqueous electrolyte secondary battery of the present invention contains a negative electrode having an active material selected from the group consisting of a sulfur-porous carbon composite and a sulfur-modified organic compound, a positive electrode having a positive electrode active material, and a lithium salt.
  • a non-aqueous electrolyte, and the non-aqueous electrolyte contains at least one compound selected from the group consisting of the compound represented by the general formula (1) and the compound represented by the general formula (2).
  • R 1 to R 3 in the general formula (1) each independently represent a hydrocarbon group having 1 to 10 carbon atoms.
  • the hydrocarbon group having 1 to 10 carbon atoms include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a sec-butyl group, an isobutyl group, a tert-butyl group, a pentyl group, an isopentyl group, and a hexyl group.
  • Aliphatic saturated hydrocarbon groups such as heptyl, octyl, 2-ethylhexyl, nonyl and decyl; aliphatic unsaturated carbon such as vinyl, allyl, butenyl, pentenyl, hexenyl and octenyl Hydrogen group; cycloaliphatic hydrocarbon group such as cyclopentyl group, cyclohexyl group, methylcyclohexyl group; phenyl group, methylphenyl group, ethylphenyl group, tert-butylphenyl group, phenylmethyl group, phenylethyl group, naphthyl group, thienyl Group, aromatic hydrocarbon group such as benzothienyl group and the like.
  • the hydrocarbon group having 1 to 10 carbon atoms is preferably a methyl group, an ethyl group, a butyl group, a vinyl group or a phenyl group, and more preferably a methyl group, since excellent cycle characteristics can be obtained.
  • R 1 to R 3 may all be the same group or may be different from each other, but at least one of R 1 to R 3 is preferably a methyl group.
  • R 4 in the general formula (1) represents an n-valent hydrocarbon group having 1 to 10 carbon atoms, or an n-valent hydrocarbon group having 1 to 10 carbon atoms containing at least one oxygen atom or sulfur atom, n represents an integer of 1 to 6.
  • the compound in which R 4 is an n-valent hydrocarbon group having 1 to 10 carbon atoms has n hydrogen atoms of the hydrocarbon having 1 to 10 carbon atoms.
  • the compound is substituted with a group represented by the following general formula (1a).
  • R 1 to R 3 have the same meanings as in general formula (1), and * represents a binding site.
  • Examples of the hydrocarbon having 1 to 10 carbon atoms include a saturated hydrocarbon having 1 to 10 carbon atoms, an unsaturated hydrocarbon having 2 to 10 carbon atoms, and an aromatic hydrocarbon having 6 to 10 carbon atoms.
  • the saturated hydrocarbon having 1 to 10 carbon atoms and the unsaturated hydrocarbon having 2 to 10 carbon atoms may have a linear structure or a branched structure.
  • Examples of the saturated hydrocarbon having 1 to 10 carbon atoms include methane, ethane, propane, butane, pentane, hexane, cyclohexane, heptane, octane, nonane, decane, adamantane and the like.
  • Examples of unsaturated hydrocarbons having 2 to 10 carbon atoms include ethene, ethyne, propene, propyne, 1-butene, 2-butene, 1,3-butadiene, 1-pentene, 2-pentene and 1,3-pentadiene. 1-hexene, 3-hexene, 1,3,5-hexatriene, cyclohexene, 1-heptene, 1-octene, 3-octene, 1,3,5,7-octatetraene, 1-nonene, 1- Examples include decene.
  • Examples of the aromatic hydrocarbon having 6 to 10 carbon atoms include benzene, phenol, methylbenzene, dimethylbenzene, ethylbenzene, butylbenzene, naphthalene and the like.
  • Two hydrogen atoms of an unsaturated hydrocarbon having 2 to 10 carbon atoms or 3 to 4 hydrogen atoms of a saturated hydrocarbon having 1 to 10 carbon atoms are substituted with a group represented by the general formula (1a).
  • the compound containing a double bond may be E-form or Z-form.
  • n hydrogen atoms are substituted with the group represented by the general formula (1a)
  • methane, ethane, ethene and benzene are preferable because excellent cycle characteristics are obtained. More preferred are ethene and benzene.
  • n is preferably 2 to 4 and more preferably 2 because excellent cycle characteristics can be obtained and synthesis is easy.
  • R 4 of the compound represented by the general formula (1) is an n-valent hydrocarbon having 1 to 10 carbon atoms containing at least one oxygen atom or sulfur atom
  • R 4 is an oxygen atom or sulfur atom.
  • R 4 is a divalent to tetravalent aliphatic hydrocarbon having 1 to 10 carbon atoms and containing at least one oxygen atom or sulfur atom
  • R 4 is a divalent to tetravalent aliphatic hydrocarbon having 1 to 10 carbon atoms and containing at least one oxygen atom or sulfur atom
  • compound No. 4-1. 4-18 compounds in which R 4 is a divalent to tetravalent aliphatic hydrocarbon having 1 to 10 carbon atoms and containing at least one oxygen atom or sulfur atom are as follows: Compound No. 4-1. 4-18. Among these, compound no. 4-1, compound no. 4-2, compound no. 4-7 and compound no. 4-10 is preferred, and compound No. 4-1 and compound no. 4-7 is more preferable.
  • R 4 when R 4 is a heterocyclic compound having 2 to 10 carbon atoms containing at least one oxygen atom or sulfur atom, examples of the heterocyclic compound include: Examples include oxolane, thiolane, furan, thiophene, oxane, thiane, pyran, benzofuran, benzothiophene, thienothiophene, dibenzofuran, and dibenzothiophene. Of these, thiophene and furan are preferable, and thiophene is more preferable.
  • R 4 is a divalent heterocyclic compound having 2 to 10 carbon atoms. 5-1. 5-14.
  • Rf represents a fluorine atom or a hydrocarbon group having 1 to 6 carbon atoms containing at least one fluorine atom.
  • the hydrocarbon group having 1 to 6 carbon atoms containing at least one fluorine atom include a fluoromethyl group, a difluoromethyl group, a trifluoromethyl group, a 1-fluoroethyl group, a 2-fluoroethyl group, and 1-fluoroisopropyl.
  • Rf is preferably a fluorine atom or a trifluoromethyl group, and more preferably a fluorine atom because excellent cycle characteristics can be obtained.
  • the nonaqueous electrolyte used in the present invention contains at least one compound selected from the group consisting of the compound represented by the general formula (1) and the compound represented by the general formula (2).
  • a nonaqueous electrolyte secondary battery having excellent cycle characteristics can be obtained even when the sulfur-carbon composite and the sulfur-modified organic compound are used as the negative electrode active material.
  • the content of the compound is preferably 0.01 to 20% by mass in the nonaqueous electrolyte, more preferably 0.05 to 10% by mass, and preferably 0.1 to 5% by mass. Most preferred.
  • the nonaqueous electrolyte used in the present invention may contain a compound represented by the following general formula (3) in order to enhance storage stability.
  • R 5 to R 9 are each independently a hydrogen atom, a halogen atom, a nitrile group, a nitro group, an alkyl group having 1 to 12 carbon atoms, a cycloalkyl group having 5 to 12 carbon atoms, or 6 to 6 carbon atoms
  • R 10 R 14 each independently represents an alkyl group having 1 to 12 carbon atoms, an alkenyl group having 2 to 12 carbon atoms, a cycloalkyl group having 5 to 12 carbon atoms, an aryl group having 6 to 12 carbon atoms, or 7 to 12 carbon atoms.
  • X 1 represents an m-valent hydrocarbon group, and m represents a number of 1 to 3.
  • m is preferably 1.
  • R 5 to R 9 are preferably a hydrogen atom, a methyl group, or an ethyl group, and more preferably a hydrogen atom.
  • R 10 to R 14 are preferably a hydrogen atom, a methyl group, or an ethyl group, and more preferably a methyl group.
  • the content of the compound represented by the general formula (3) is preferably 0.1 to 10% by mass, more preferably 0.5 to 7% by mass, and most preferably 1 to 5% by mass in the nonaqueous electrolyte. preferable. When the content is less than 0.1% by mass, a sufficient effect cannot be exhibited. When the content is more than 10% by mass, an effect commensurate with the addition amount cannot be obtained, and the battery performance may be deteriorated. is there.
  • R 5 to R 9 are a hydrogen atom or an alkyl group
  • R 10 and R 11 are an alkyl group or an alkenyl group
  • X 1 is a monovalent hydrocarbon group
  • m As the compound which is 1, the following compound No. 6-1 to No. 6-15.
  • the non-aqueous electrolyte used in the non-aqueous electrolyte secondary battery of the present invention includes a liquid electrolyte obtained by dissolving an electrolyte in an organic solvent, a polymer gel electrolyte obtained by dissolving an electrolyte in an organic solvent and gelling with a polymer, and an organic solvent. It may be any of pure polymer electrolytes in which an electrolyte is dispersed in a polymer.
  • lithium salt used in the liquid electrolyte and the polymer gel electrolyte when the nonaqueous electrolyte secondary battery of the present invention is a lithium ion secondary battery examples include LiPF 6 , LiBF 4 , LiAsF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (SO 2 F) 2 , LiC (CF 3 SO 2 ) 3 , LiB (CF 3 SO 3 ) 4 , LiB (C 2 O 4) 2, LiBF 2 (C 2 O 4), LiSbF 6, LiSiF 5, LiSCN, LiClO 4, LiCl, LiF, LiBr, LiI, LiAlF 4, LiAlCl 4, LiPO 2 F 2 and their derivatives and the like, and among these, LiPF 6, LiBF 4, LiClO 4, LiAsF 6, L Derivatives of CF 3 SO 3, LiN (CF 3 SO 2) 2, LiN
  • the nonaqueous electrolyte secondary battery of the present invention is a lithium ion secondary battery
  • examples of the lithium salt used for the pure polymer electrolyte include LiN (CF 3 SO 2 ) 2 and LiN (C 2 F 5 SO 2). ) 2 , LiN (SO 2 F) 2 , LiC (CF 3 SO 2 ) 3 , LiB (CF 3 SO 3 ) 4 , LiB (C 2 O 4 ) 2 .
  • the concentration of the lithium salt in the non-aqueous electrolyte of the lithium ion secondary battery is preferably 0.5 to 7 mol / L, and more preferably 0.8 to 1.8 mol / L. If the concentration of the lithium salt is too low, a sufficient current density may not be obtained, and if the concentration of the lithium salt is too high, the stability of the nonaqueous electrolyte may be impaired. Lithium salts can be used in combination of two or more.
  • an organic solvent usually used for the non-aqueous electrolyte can be used.
  • usually used organic solvents include saturated cyclic carbonate compounds, saturated cyclic ester compounds, sulfoxide compounds, sulfone compounds, amide compounds, saturated chain carbonate compounds, chain ether compounds, cyclic ether compounds, and saturated chain ester compounds.
  • Etc saturated cyclic carbonate compounds, saturated cyclic ester compounds, sulfoxide compounds, sulfone compounds, and amide compounds are preferable because they have a high relative dielectric constant, and are particularly preferable for the role of increasing the dielectric constant of nonaqueous electrolytes. Compounds are preferred.
  • the organic solvent can be used alone or in combination of two or more.
  • Examples of the saturated cyclic carbonate compound include ethylene carbonate, 1,2-propylene carbonate, 1,3-propylene carbonate, 1,2-butylene carbonate, 1,3-butylene carbonate, 1,1-dimethylethylene carbonate, and the like. It is done.
  • Examples of the saturated cyclic ester compound include ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -caprolactone, ⁇ -hexanolactone, ⁇ -octanolactone, and the like.
  • Examples of the sulfoxide compound include dimethyl sulfoxide, diethyl sulfoxide, dipropyl sulfoxide, diphenyl sulfoxide, thiophene, and the like.
  • sulfone compound examples include dimethyl sulfone, diethyl sulfone, dipropyl sulfone, diphenyl sulfone, sulfolane (also referred to as tetramethylene sulfone), 3-methyl sulfolane, 3,4-dimethyl sulfolane, 3,4-diphenimethyl sulfolane, Examples include sulfolene, 3-methylsulfolene, 3-ethylsulfolene, and 3-bromomethylsulfolene, with sulfolane and tetramethylsulfolane being preferred.
  • the amide compound examples include N-methylpyrrolidone, dimethylformamide, dimethylacetamide and the like.
  • saturated chain carbonate compounds, chain ether compounds, cyclic ether compounds and saturated chain ester compounds can reduce the viscosity of the nonaqueous electrolyte and increase the mobility of electrolyte ions. Battery characteristics such as output density can be made excellent. Moreover, since it is low-viscosity, the performance of the nonaqueous electrolyte at low temperatures can be enhanced. Among these, a saturated chain carbonate compound is particularly preferable.
  • saturated chain carbonate compound examples include dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, ethyl butyl carbonate, methyl-t-butyl carbonate, diisopropyl carbonate, t-butyl propyl carbonate, and the like.
  • Examples of the chain ether compound or the cyclic ether compound include dimethoxyethane, ethoxymethoxyethane, diethoxyethane, tetrahydrofuran, dioxolane, dioxane, 1,2-bis (methoxycarbonyloxy) ethane, 1,2-bis ( Ethoxycarbonyloxy) ethane, 1,2-bis (ethoxycarbonyloxy) propane, ethylene glycol bis (trifluoroethyl) ether, propylene glycol bis (trifluoroethyl) ether, ethylene glycol bis (trifluoromethyl) ether, diethylene glycol bis (Trifluoroethyl) ether and the like can be mentioned, and among these, dioxolane is preferable.
  • saturated chain ester compound monoester compounds and diester compounds having a total number of carbon atoms in the molecule of 2 to 8 are preferable, and specific compounds include, for example, methyl formate, ethyl formate, methyl acetate, acetic acid Ethyl, propyl acetate, isobutyl acetate, butyl acetate, methyl propionate, ethyl propionate, methyl butyrate, methyl isobutyrate, methyl trimethyl acetate, ethyl trimethyl acetate, methyl malonate, ethyl malonate, methyl succinate, ethyl succinate, Examples include methyl 3-methoxypropionate, ethyl 3-methoxypropionate, ethylene glycol diacetyl, propylene glycol diacetyl, and the like.
  • Methyl formate, ethyl formate, methyl acetate, ethyl acetate, propyl acetate, isobutyl acetate, butyl acetate, methyl propionate And ethyl propionate are preferred.
  • organic solvent used for preparing the liquid electrolyte for example, acetonitrile, propionitrile, nitromethane, derivatives thereof, and various ionic liquids can be used.
  • Examples of the polymer used for the polymer gel electrolyte include polyethylene oxide, polypropylene oxide, polyvinyl chloride, polyacrylonitrile, polymethyl methacrylate, polyethylene, polyvinylidene fluoride, and polyhexafluoropropylene.
  • Examples of the polymer used in the pure polymer electrolyte include polyethylene oxide, polypropylene oxide, and polystyrene sulfonic acid.
  • the non-aqueous electrolyte may contain known additives such as an electrode film forming agent, an antioxidant, a flame retardant, and an overcharge preventing agent in order to improve battery life and safety.
  • an electrode film forming agent such as an antioxidant, a flame retardant, and an overcharge preventing agent.
  • an overcharge preventing agent such as an antioxidant, a flame retardant, and an overcharge preventing agent.
  • the electrolyte additive it is usually 0.01 to 10 parts by mass, preferably 0.1 to 5 parts by mass with respect to the whole non-aqueous electrolyte.
  • the negative electrode of the nonaqueous electrolyte secondary battery of the present invention contains a sulfur-porous carbon composite or a sulfur-modified organic compound as a negative electrode active material.
  • the sulfur-porous carbon composite is a material containing elemental sulfur in the pores of porous carbon and capable of occluding and releasing lithium ions and usable as an electrode active material of a secondary battery. .
  • the sulfur content of the sulfur-carbon composite in which elemental sulfur is supported in the pores of the porous carbon does not increase the charge / discharge capacity if the content is too small, and the electron conductivity decreases too much. % By mass to 80% by mass is preferable, and 30% by mass to 70% by mass is more preferable.
  • the porous carbon preferably has an average pore diameter of 100 nm or less, more preferably 50 nm or less, and still more preferably 20 nm or less.
  • the specific surface area of the porous carbon is preferably from 100 m 2 / g to 3000 m 2 / g, more preferably from 200 m 2 / g to 2500 m 2 / g.
  • the average pore diameter and specific surface area of the porous carbon can be determined using a nitrogen adsorption isotherm obtained by adsorbing nitrogen gas to the porous carbon when the porous carbon is heated to liquid nitrogen temperature.
  • the specific surface area can be determined by the Brenauer-Emmet-Teller (BET) method using a nitrogen adsorption isotherm.
  • the pore diameter can be determined by the Barret-Joyner-Halenda (BJH) method using a nitrogen adsorption isotherm (adsorption side). The average pore diameter is calculated from the total pore volume BET specific surface area assuming that the pore structure is cylindrical.
  • the porous carbon used in the sulfur-porous carbon composite is not particularly limited as long as it is a porous carbon material having electrical conductivity, and may be crystalline carbon or amorphous carbon.
  • Examples of such porous carbon include graphite, carbon, carbon black, ketjen black, acetylene black, graphite, carbon fiber, activated carbon, or mesoporous carbon produced by a known production method.
  • the shape of the porous carbon may be spherical, fibrous, hollow, cylindrical, or indefinite. Two or more of these can be used.
  • ketjen black, activated carbon, and mesoporous carbon are preferable because of their large surface area and high electrical conductivity.
  • the method of combining sulfur and porous carbon is not particularly limited, and examples thereof include a method of mechanically mixing with various mills, a liquid phase and / or gas phase method, or a method combining these methods.
  • Examples of the mechanical compounding method include a ball mill such as a planetary ball mill, a rolling ball mill, and a vibration ball mill, a vertical roller mill such as a ring roller mill, a high-speed rotating mill such as a hammer mill and a cage mill, and an air current such as a jet mill.
  • An expression mill etc. are mentioned.
  • the temperature is preferably 115 ° C. or higher, which is the melting point of sulfur, and more preferably 150 ° C. to 350 ° C.
  • the toxic hydrogen sulfide gas may be generated in the complexed environment, it is preferably performed in an inert gas atmosphere such as nitrogen gas or argon gas, and more preferably while the gas is circulated.
  • the sulfur-modified organic compound in the present invention is an organic compound containing at least 25% by mass, preferably 30% by mass or more of sulfur, and can be used as an electrode active material for a secondary battery that can occlude and release lithium ions. Compound.
  • the sulfur-modified organic compound can be obtained by heat-treating an organic compound and sulfur.
  • Examples of the compound obtained by heat treating an organic compound and sulfur include, for example, a sulfur-modified polyacrylonitrile compound, a sulfur-modified elastomer compound, a sulfur-modified pitch compound, a sulfur-modified polynuclear aromatic compound, a sulfur-modified aliphatic hydrocarbon oxide, and a sulfur-modified polyether.
  • Compound, polythienoacene compound, sulfur-modified polyamide compound, polysulfide carbon and the like can be mentioned.
  • These compounds are a mixture of sulfur, polyacrylic compounds, elastomeric compounds, pitch compounds, polynuclear aromatic ring compounds, aliphatic hydrocarbon oxides, polyether compounds, polyacene compounds, polyamide compounds, hexachlorobutadiene, etc. It can be produced by heat-denaturing at 250 ° C. to 600 ° C. in an acidic atmosphere. When these compounds are heated with sulfur, only one of the above compounds can be used, or two or more can be used in combination.
  • the sulfur-modified organic compound used in the present invention is preferably a sulfur-modified polyacrylonitrile compound because a large charge / discharge capacity can be obtained.
  • Non-oxidizing atmosphere means an oxygen concentration of less than 5% by volume, preferably less than 2% by volume, more preferably an atmosphere substantially free of oxygen, that is, an inert gas atmosphere such as nitrogen, helium, argon, It is a sulfur gas atmosphere.
  • the sulfur-modified polyacrylonitrile compound is a compound obtained by heat-treating a polyacrylonitrile compound and elemental sulfur in a non-oxidizing atmosphere.
  • the polyacrylonitrile compound is a homopolymer of acrylonitrile or a copolymer of acrylonitrile and other monomers.
  • the content of acrylonitrile in the copolymer of acrylonitrile and another monomer is preferably at least 90% by mass, and more preferably a polyacrylonitrile homopolymer.
  • the other monomer include acrylic acid, vinyl acetate, N-vinylformamide, and N, N′-methylenebis (acrylamide).
  • the temperature of the heat treatment is preferably 250 ° C. to 550 ° C.
  • the sulfur content of the sulfur-modified polyacrylonitrile is preferably 30 to 60% by mass because a large charge / discharge capacity can be obtained.
  • the sulfur-modified elastomer compound is a compound obtained by heat-treating a mixture of rubber and elemental sulfur in a non-oxidizing atmosphere.
  • the rubber include natural rubber, isoprene rubber, butadiene rubber, styrene butadiene rubber, and acrylonitrile butadiene rubber. These rubber
  • gum can be used individually by 1 type, and can be used in combination of 2 or more type.
  • the raw rubber may be vulcanized rubber or unvulcanized rubber.
  • the temperature of the heat treatment is preferably 250 ° C. to 550 ° C., and the sulfur content of the sulfur-modified elastomer compound is preferably 40 to 70% by mass because a large charge / discharge capacity can be obtained.
  • the sulfur-modified pitch compound is a compound obtained by heat-treating a mixture of pitches and elemental sulfur in a non-oxidizing atmosphere.
  • Pitches include petroleum pitch, coal pitch, mesophase pitch, asphalt, coal tar, coal tar pitch, organic synthetic pitch obtained by polycondensation of condensed polycyclic aromatic hydrocarbon compounds, and heteroatom-containing condensed polycyclic aroma.
  • Pitches are a mixture of various compounds and contain fused polycyclic aromatics.
  • the condensed polycyclic aromatic contained in the pitches may be one kind or plural kinds. This condensed polycyclic aromatic may contain nitrogen or sulfur in addition to carbon and hydrogen in the ring.
  • the temperature of the heat treatment is preferably 300 ° C. to 500 ° C.
  • the sulfur content of the sulfur-modified pitch compound is preferably 25 to 70% by mass because a large charge / discharge capacity can be obtained.
  • Sulfur-modified polynuclear aromatic ring compounds include, for example, a mixture of benzene-based aromatic ring compounds such as naphthalene, anthracene, tetracene, pentacene, phenanthrene, chrysene, picene, pyrene, benzopyrene, perylene, coronene, and simple sulfur in a non-oxidizing atmosphere. It is a compound obtained by heat-treating.
  • aromatic ring compounds in which part of the benzene aromatic ring compound is a 5-membered ring, or hetero atom-containing heteroaromatic ring compounds in which some of these carbon atoms are replaced with sulfur, oxygen, nitrogen, etc. .
  • these polynuclear aromatic ring compounds include chain or branched alkyl groups having 1 to 12 carbon atoms, alkoxyl groups, hydroxyl groups, carboxyl groups, amino groups, aminocarbonyl groups, aminothio groups, mercaptothiocarbonylamino groups, carboxyalkyl groups. You may have substituents, such as a carbonyl group.
  • the temperature of the heat treatment is preferably 250 ° C. to 550 ° C.
  • the sulfur content of the sulfur-modified pitch compound is preferably 40 to 70% by mass because a large charge / discharge capacity can be obtained.
  • Sulfur-modified aliphatic hydrocarbon oxides are obtained by heat-treating aliphatic hydrocarbon oxides such as aliphatic alcohols, aliphatic aldehydes, aliphatic ketones, aliphatic epoxides, and fatty acids and simple sulfur in a non-oxidizing atmosphere.
  • the resulting compound The temperature of the heat treatment is preferably 300 ° C to 500 ° C.
  • the sulfur content of the sulfur-modified aliphatic hydrocarbon oxide is preferably 45 to 75% by mass because a large charge / discharge capacity can be obtained.
  • the sulfur-modified polyether compound is a compound obtained by heat-treating a polyether compound and elemental sulfur in a non-oxidizing atmosphere.
  • the polyether compound include polyethylene glycol, polypropylene glycol, ethylene oxide / propylene oxide copolymer, polytetramethylene glycol, and the like.
  • the polyether compound may be terminated with an alkyl ether group, an alkylphenyl ether group, or an acyl group, or may be an ethylene oxide adduct of a polyol such as glycerin or sorbitol.
  • the temperature of the heat treatment is preferably 250 to 500 ° C.
  • the sulfur content of the sulfur-modified polyether compound is preferably 30 to 75% by mass because a large charge / discharge capacity can be obtained.
  • the polythienoacene compound is a compound having a polythienoacene structure containing sulfur represented by the following general formula (4).
  • the polythienoacene compound is a compound obtained by heat-treating an aliphatic polymer having a linear structure such as polyethylene, a polymer having a thiophene structure such as polythiophene, and elemental sulfur in a non-oxidizing atmosphere.
  • the temperature of the heat treatment is preferably 300 ° C. to 600 ° C.
  • the sulfur content of the polythienoacene compound is preferably 30 to 80% by mass because a large charge / discharge capacity can be obtained.
  • the sulfur-modified polyamide compound is a sulfur-modified organic compound having a carbon skeleton derived from a polymer having an amide bond, specifically, an aminocarboxylic acid compound and simple sulfur, or a polyamine compound and polycarboxylic acid compound and simple sulfur, It is a compound obtained by heat treatment in a non-oxidizing atmosphere.
  • the temperature of the heat treatment is preferably 250 to 600 ° C.
  • the sulfur content of the sulfur-modified polyamide compound is preferably 40 to 70% by mass because a large charge / discharge capacity can be obtained.
  • Polysulfide carbon is a compound represented by the general formula (CS x ) n (where x is 0.5 to 2 and n is a number of 4 or more), for example, an alkali metal sulfide such as sodium sulfide and the like.
  • a precursor obtained by reacting a simple sulfur complex with a halogenated unsaturated hydrocarbon such as hexachlorobutadiene can be obtained by heat treatment.
  • the temperature of the heat treatment is preferably 300 to 450 ° C.
  • the sulfur content of the polysulfide carbon compound is preferably 65 to 75% by mass because a large charge / discharge capacity can be obtained.
  • graphite-based carbon materials such as natural graphite, artificial graphite, expanded graphite, carbon materials such as carbon black, nanocarbon, activated carbon, carbon fiber, coke, soft carbon, hard carbon
  • Vulcanization accelerators such as tetramethylthiuram disulfide, tetraethylthiuram disulfide, tetrabutylthiuram disulfide, tetrakis (2-ethylhexyl) thiuram disulfide, tetramethylthiuram monosulfide, dipentamethylenethiuram tetrasulfide can be used.
  • Vulcanization accelerators such as tetramethylthiuram disulfide, tetraethylthiuram disulfide, tetrabutylthiuram disulfide, tetrakis (2-ethylhexyl) thiuram disulfide, tetramethylthiuram monosulf
  • the shape of the sulfur-modified organic compound is not particularly limited.
  • it is spherical, polyhedral, fibrous, rod-like, plate-like, scale-like, or amorphous, and these may be hollow.
  • a spherical or polyhedral shape is preferable.
  • the particle diameter (D50) is preferably 0.5 to 100 ⁇ m, more preferably 1 ⁇ m to 50 ⁇ m, and even more preferably 1 ⁇ m to 20 ⁇ m.
  • the average particle diameter (D50) refers to a 50% particle diameter measured by a laser diffraction light scattering method.
  • the particle diameter is a volume-based diameter, and the diameter of secondary particles is measured by the laser diffraction light scattering method.
  • the sulfur-porous carbon composite and the sulfur-modified organic compound can have a desired particle size by a method such as pulverization.
  • the pulverization may be dry pulverization performed in a gas or wet pulverization performed in a liquid such as water.
  • Examples of the industrial pulverization method include a ball mill, a roller mill, a turbo mill, a jet mill, a cyclone mill, a hammer mill, a pin mill, a rotating mill, a vibration mill, a planetary mill, an attritor, and a bead mill.
  • the sulfur content of the sulfur-porous carbon composite and the sulfur-modified organic compound can be measured using, for example, a CHN analyzer capable of analyzing sulfur and oxygen, for example, Vario MICRO cube manufactured by Elementer.
  • the negative electrode used in the present invention can be produced according to a known method.
  • the electrode mixture is applied onto the current collector by applying a mixture of the negative electrode active material, the binder, and the conductive auxiliary agent in an organic solvent or water to the current collector and drying the mixture.
  • a negative electrode on which a layer is formed can be produced.
  • binder examples include, for example, styrene-butadiene rubber, butadiene rubber, acrylonitrile-butadiene rubber, ethylene-propylene-diene rubber, styrene-isoprene rubber, fluorine rubber, polyethylene, polypropylene, polyamide, polyamideimide, polyimide, polyacrylonitrile, Polyurethane, polyvinylidene fluoride, polytetrafluoroethylene, styrene-acrylic acid ester copolymer, ethylene-vinyl alcohol copolymer, polymethyl methacrylate, polyacrylate, polyvinyl alcohol, polyethylene oxide, polyvinyl pyrrolidone, polyvinyl ether, polyvinyl chloride , Polyacrylic acid, methylcellulose, carboxymethylcellulose, sodium carboxymethylcellulose, Loin nanofibers, and starch.
  • the binder include, for example, styrene-butadiene rubber, butadiene rubber,
  • an aqueous binder is preferable because it has a low environmental load and sulfur elution hardly occurs.
  • Styrene-butadiene rubber, sodium carboxymethyl cellulose, and polyacrylic acid are more preferable. Only one binder can be used, or two or more binders can be used in combination.
  • the content of the binder is preferably 1 part by mass to 30 parts by mass, and more preferably 1 part by mass to 20 parts by mass with respect to 100 parts by mass of the negative electrode active material.
  • conductive assistant those known as conductive assistants for electrodes can be used. Specifically, natural graphite, artificial graphite, coal tar pitch, carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, thermal black, carbon nanotube, vapor grown carbon fiber (Vapor Carbon Carbon Fiber) : VGCF), graphene, fullerene, needle coke and other carbon materials; metal powders such as aluminum powder, nickel powder and titanium powder; conductive metal oxides such as zinc oxide and titanium oxide; La 2 S 3 and Sm 2 S 3 , Sulfides such as Ce 2 S 3 and TiS 2 .
  • This conductive auxiliary agent can be mixed during the production of the sulfur-modified organic compound.
  • the particle size of the conductive aid is preferably 0.0001 ⁇ m to 100 ⁇ m, and more preferably 0.01 ⁇ m to 50 ⁇ m.
  • the content of the conductive assistant is usually 0.1 to 50 parts by mass, preferably 1 to 30 parts by mass, more preferably 2 to 20 parts by mass with respect to 100 parts by mass of the negative electrode active material.
  • Examples of the solvent for preparing the electrode mixture paste include propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, acetonitrile, propio Nitrile, tetrahydrofuran, 2-methyltetrahydrofuran, dioxane, 1,3-dioxolane, nitromethane, N-methylpyrrolidone, N, N-dimethylformamide, dimethylacetamide, methyl ethyl ketone, cyclohexanone, methyl acetate, methyl acrylate, diethyltriamine, N, N-dimethylaminopropylamine, polyethylene oxide, tetrahydrofuran, dimethyl sulfoxide, sulfolane, ⁇ -butyrolactone, water, alcohol Etc.
  • the amount of solvent used can be adjusted according to the method selected when applying the slurry.
  • the total amount of the negative electrode active material, the binder and the conductive auxiliary agent is 100 parts by mass.
  • it is preferably 20 to 300 parts by mass, more preferably 30 to 200 parts by mass.
  • the electrode mixture paste other components such as a viscosity modifier, a reinforcing material, an antioxidant, a pH adjuster, and a dispersant are added in addition to the above-described components as long as the effects of the present invention are not impaired. It doesn't matter.
  • known components can be used at a known blending ratio.
  • the negative electrode active material, the binder, and the conductive additive are dispersed in the solvent, all can be added to the solvent at once and dispersed, or separately added and dispersed. . It is preferable to sequentially add a binder, a conductive additive, and a negative electrode active material in the order of the solvent to the solvent and perform the dispersion treatment because these can be uniformly dispersed in the solvent.
  • the slurry contains other components, the other components can be added to the solvent all at once and dispersed, and each additive can be added and dispersed. It is preferable to do.
  • the dispersion treatment method is not particularly limited, but as an industrial method, for example, a normal ball mill, sand mill, bead mill, cyclone mill, pigment disperser, crushed grinder, ultrasonic disperser, homogenizer, rotation / revolution mixer, Planetary mixers, fill mixes, jet pasters, etc. can be used.
  • a conductive material such as titanium, titanium alloy, aluminum, aluminum alloy, copper, nickel, stainless steel, nickel-plated steel or the like is used.
  • the shape of the current collector include a foil shape, a plate shape, and a net shape, and the current collector may be either porous or non-porous.
  • these conductive materials may be subjected to surface treatment in order to improve adhesion and electrical characteristics.
  • aluminum is preferable from the viewpoint of conductivity and price, and aluminum foil is particularly preferable.
  • the thickness of the current collector is not particularly limited, but is usually 1 to 100 ⁇ m.
  • the method of applying the electrode mixture paste to the current collector is not particularly limited.
  • the die coater method, comma coater method, curtain coater method, spray coater method, gravure coater method, flexo coater method, knife coater method, doctor Each method such as a blade method, a reverse roll method, a brush coating method, and a dipping method can be used.
  • a die coater method, a knife coater method, and a doctor blade method are preferable in that a good surface state of the coating layer can be obtained in accordance with physical properties such as viscosity of the slurry and drying properties.
  • Electrode mixture paste to the current collector can be performed only on one side of the current collector, or can be performed on both sides. In the case of applying to both sides of the current collector, each side can be applied sequentially, or both sides can be applied simultaneously. Moreover, it can apply
  • the thickness, length and width of the coating layer can be appropriately determined according to the size of the battery and the like.
  • a method for drying the electrode mixture paste applied on the current collector is not particularly limited, and a known method can be used.
  • the drying method include drying with warm air, hot air, low-humidity air, vacuum drying, drying by irradiation with far infrared rays, infrared rays, electron beams, or the like. These can be implemented in combination.
  • the temperature for heating is, for example, generally about 50 ° C. to 180 ° C., but conditions such as temperature can be appropriately set according to the coating amount of the slurry composition, the boiling point of the solvent used, and the like. .
  • volatile components such as a solvent are volatilized from the electrode mixture paste, and an electrode mixture layer is formed on the current collector.
  • the positive electrode used by this invention can be manufactured according to the manufacturing method of the said negative electrode.
  • a well-known thing can be used as a positive electrode active material.
  • known positive electrode active materials include lithium transition metal composite oxides, lithium-containing transition metal phosphate compounds, lithium-containing silicate compounds, and lithium-containing transition metal sulfate compounds.
  • the transition metal of the lithium transition metal composite oxide is preferably vanadium, titanium, chromium, manganese, iron, cobalt, nickel, copper or the like.
  • Specific examples of the lithium transition metal composite oxide include lithium cobalt composite oxide such as LiCoO 2 , lithium nickel composite oxide such as LiNiO 2 , and lithium manganese composite oxide such as LiMnO 2 , LiMn 2 O 4 , and Li 2 MnO 3.
  • Lithium transition metal composite oxides in which some of the main transition metal atoms are substituted with other metals include, for example, Li 1.1 Mn 1.8 Mg 0.1 O 4 , Li 1.1 Mn 1.85 Al 0.05 O 4 , LiNi 0.5 Co 0.2 Mn 0.3 O 2 , LiNi 0.8 Co 0.1 Mn 0.1 O 2 , LiNi 0.5 Mn 0.5 O 2 , LiNi 0.
  • the transition metal of the lithium-containing transition metal phosphate compound is preferably vanadium, titanium, manganese, iron, cobalt, nickel or the like, and specific examples include phosphorus such as LiFePO 4 and LiMn x Fe 1-x PO 4.
  • Iron phosphate compounds, cobalt phosphate compounds such as LiCoPO 4 , and some of the transition metal atoms that are the main components of these lithium transition metal phosphate compounds are aluminum, titanium, vanadium, chromium, manganese, iron, cobalt, lithium, Examples thereof include those substituted with other metals such as nickel, copper, zinc, magnesium, gallium, zirconium and niobium, and vanadium phosphate compounds such as Li 3 V 2 (PO 4 ) 3 .
  • the lithium-containing silicate compound include Li 2 FeSiO 4 .
  • Examples of the lithium-containing transition metal sulfate compound include LiFeSO 4 and LiFeSO 4 F. These can use only 1 type and can also be used in combination of 2 or more type.
  • D50 is preferably 0.5 ⁇ m to 100 ⁇ m, more preferably 1 ⁇ m to 50 ⁇ m, and even more preferably 1 ⁇ m to 30 ⁇ m.
  • a separator between the positive electrode and the negative electrode.
  • a commonly used polymer microporous film can be used without any particular limitation.
  • the film include polyethylene, polypropylene, polyvinylidene fluoride, polyvinylidene chloride, polyacrylonitrile, polyacrylamide, polytetrafluoroethylene, polysulfone, polyethersulfone, polycarbonate, polyamide, polyimide, polyethylene oxide and polypropylene oxide.
  • the microporosity method includes a phase separation method in which a polymer compound and a solvent solution are formed into a film while microphase separation is performed, and the solvent is extracted and removed to make it porous.
  • the film is extruded and then heat treated, the crystals are arranged in one direction, and a “stretching method” or the like is performed by forming a gap between the crystals by stretching, and is appropriately selected depending on the film used.
  • the shape of the nonaqueous electrolyte secondary battery of the present invention is not particularly limited, and can be various shapes such as a coin shape, a cylindrical shape, a square shape, and a laminate shape.
  • FIG. 1 shows an example of a coin-type battery of the nonaqueous electrolyte secondary battery of the present invention
  • FIGS. 2 and 3 show examples of a cylindrical battery, respectively.
  • 1 is a positive electrode capable of releasing lithium ions
  • 1a is a positive electrode current collector
  • 2 is a negative electrode capable of inserting and extracting lithium ions released from the positive electrode
  • 2a is A negative electrode current collector
  • 3 is a nonaqueous electrolyte
  • 4 is a positive electrode case made of stainless steel
  • 5 is a negative electrode case made of stainless steel
  • 6 is a gasket made of polypropylene
  • 7 is a separator made of polyethylene.
  • 11 is a negative electrode
  • 12 is a negative electrode current collector
  • 13 is a positive electrode
  • 14 is a positive electrode current collector
  • 15 is a nonaqueous electrolyte
  • 16 is a separator
  • 17 is a positive terminal
  • 18 is a negative terminal
  • 19 is a negative electrode plate
  • 20 is a negative electrode lead
  • 21 is a positive electrode plate
  • 22 is a positive electrode lead
  • 23 is a case
  • 24 is an insulating plate
  • 25 is a gasket
  • 26 is a safety valve 27 are PTC elements.
  • a laminate film or a metal container can be used as the exterior member in the nonaqueous electrolyte secondary battery of the present invention.
  • the thickness of the exterior member is usually 0.5 mm or less, preferably 0.3 mm or less.
  • Examples of the shape of the exterior member include a flat type (thin type), a square type, a cylindrical type, a coin type, and a button type.
  • a multilayer film having a metal layer between resin films can also be used.
  • the metal layer is preferably an aluminum foil or an aluminum alloy foil for weight reduction.
  • a polymer material such as polypropylene, polyethylene, nylon, or polyethylene terephthalate can be used.
  • the laminate film can be formed into the shape of an exterior member by performing heat sealing.
  • the metal container can be formed of, for example, stainless steel, aluminum, aluminum alloy, or the like.
  • the aluminum alloy an alloy containing elements such as magnesium, zinc, and silicon is preferable.
  • transition metals such as iron, copper, nickel, and chromium
  • the obtained sulfur-modified product was pulverized using a ball mill and classified by sieving to obtain sulfur-modified polyacrylonitrile (PANS) having an average particle size of 10 ⁇ m.
  • the sulfur content of PANS was 38.4% by mass.
  • Example 1 ⁇ Preparation of negative electrode-1> 92.0 parts by mass of the sulfur-porous carbon composite produced in Production Example 1 as a negative electrode active material, 3.5 parts by mass of acetylene black (manufactured by Denki Kagaku Kogyo Co., Ltd.) and carbon nanotubes (Showa Denko) 1.5 parts by mass (trade name VGCF), and 1.5 parts by mass (solid content) of styrene-butadiene rubber (40 mass% aqueous dispersion, manufactured by Nippon Zeon Co., Ltd.) and sodium carboxymethylcellulose (Daicel) 1.5 parts by mass of Finechem Co., Ltd.) was added to 120 parts by mass of water as a solvent, and dispersed using a rotation / revolution mixer to obtain an electrode mixture paste as a slurry.
  • the electrode mixture paste was applied to a current collector made of carbon-coated aluminum foil (thickness: 22 ⁇ m) by a doctor blade method, and allowed to stand at 90 ° C. for 3 hours to dry. Thereafter, this electrode was cut into a predetermined size, and further vacuum-dried at 150 ° C. for 2 hours immediately before use to produce negative electrode-1.
  • the electrode mixture paste was applied to a current collector made of an aluminum foil (thickness: 20 ⁇ m) by a doctor blade method, and allowed to stand at 90 ° C. for 3 hours to dry. Then, this electrode was cut into a predetermined size, and further vacuum-dried at 150 ° C. for 2 hours immediately before use to produce a positive electrode.
  • LiPF 6 was dissolved at a concentration of 1.0 mol / L in a mixed solvent composed of 50% by volume of ethylene carbonate and 50% by volume of diethyl carbonate to prepare an electrolyte solution. This is followed by compound no. 1.0% by mass of 2-1 was added to obtain a non-aqueous electrolyte.
  • ⁇ Battery assembly> A glass filter as a separator was sandwiched between the positive electrode and the negative electrode-1 and held in the case. Thereafter, the previously prepared electrolyte was poured, sealed and sealed with a caulking machine, and the non-aqueous electrolyte secondary battery of Example 1 (lithium ion secondary battery, coin type of ⁇ 20 mm, thickness 3.2 mm) was made.
  • Example 1 lithium ion secondary battery, coin type of ⁇ 20 mm, thickness 3.2 mm
  • Negative Electrode-2 was produced by the same production method as Negative Electrode-1.
  • the non-aqueous electrolyte secondary battery of Example 2 was fabricated in the same manner as in Example 1, except that the same positive electrode and electrolyte were used as in Example 1, and that negative electrode-2 was used instead of negative electrode-1.
  • Example 3 Compound No. 1 was added to the electrolyte solution of Example 1. Instead of compound 2-1, compound no. 4-7% by mass was added to obtain a non-aqueous electrolyte of Example 3. The same positive electrode and negative electrode as in Example 2 were used, and the nonaqueous electrolyte secondary battery of Example 3 was produced by the same operation as in Example 1.
  • Example 4 Compound No. 1 was added to the electrolyte solution of Example 1. Instead of compound 2-1, compound no. 5% of 4-4 was added to make a non-aqueous electrolyte of Example 4. The same positive electrode and negative electrode as in Example 2 were used, and the nonaqueous electrolyte secondary battery of Example 4 was produced in the same manner as in Example 1.
  • Example 5 Compound No. 1 was added to the electrolyte solution of Example 1. Instead of compound 2-1, compound no.
  • the nonaqueous electrolyte of Example 5 was obtained by adding 1.0 mass% of 7-1.
  • the same positive electrode and negative electrode as in Example 2 were used, and the nonaqueous electrolyte secondary battery of Example 5 was produced in the same manner as in Example 1.
  • Example 6 Compound No. 1 was added to the electrolyte solution of Example 1. Instead of compound 2-1, compound no. 2-1 0.5% by mass and compound no. The nonaqueous electrolyte of Example 6 was obtained by adding 0.5% by mass of 4-7. The same positive electrode and negative electrode as in Example 2 were used, and the nonaqueous electrolyte secondary battery of Example 6 was produced in the same manner as in Example 1.
  • Example 7 Compound No. 1 was added to the electrolyte solution of Example 1. Instead of compound 2-1, compound no. 2-1 0.5% by mass and compound no. The nonaqueous electrolyte of Example 7 was obtained by adding 0.5 mass% of 7-1. The same positive electrode and negative electrode as in Example 2 were used, and the nonaqueous electrolyte secondary battery of Example 7 was produced in the same manner as in Example 1.
  • Example 8 Compound No. 1 was added to the electrolyte solution of Example 1. Instead of compound 2-1, compound no. 2-1 0.5% by mass and compound no. 7-2 was added in an amount of 0.5% by mass to obtain the nonaqueous electrolyte of Example 8. The same positive electrode and negative electrode as in Example 2 were used, and the nonaqueous electrolyte secondary battery of Example 8 was produced in the same manner as in Example 1.
  • Example 9 Compound No. 1 was added to the electrolyte solution of Example 1. Instead of compound 2-1, compound no. 2-1 0.5% by mass and compound no. 7-3 was added in an amount of 0.5 mass% to obtain a non-aqueous electrolyte of Example 9. The same positive electrode and negative electrode as in Example 2 were used, and a nonaqueous electrolyte secondary battery of Example 9 was produced in the same manner as in Example 1.
  • Example 10 Compound No. 1 was added to the electrolyte solution of Example 1. Instead of compound 2-1, compound no. 2-1 0.5% by mass and compound no. The nonaqueous electrolyte of Example 10 was obtained by adding 0.5% by mass of 7-4. The same positive electrode and negative electrode as in Example 2 were used, and the nonaqueous electrolyte secondary battery of Example 10 was produced in the same manner as in Example 1.
  • Example 11 Compound No. 1 was added to the electrolyte solution of Example 1. Instead of compound 2-1, compound no. 2-1 0.5% by mass and compound no. 7-5 was added in an amount of 0.5% by mass to obtain the nonaqueous electrolyte of Example 11. The same positive electrode and negative electrode as in Example 2 were used, and the nonaqueous electrolyte secondary battery of Example 11 was produced by the same operation as in Example 1.
  • Example 12 Compound No. 1 was added to the electrolyte solution of Example 1. Instead of compound 2-1, compound no. 2-1 0.5% by mass and compound no. The nonaqueous electrolyte of Example 12 was obtained by adding 0.5% by mass of 6-1. The same positive electrode and negative electrode as in Example 2 were used, and the nonaqueous electrolyte secondary battery of Example 12 was produced by the same operation as in Example 1.
  • Example 13 Compound No. 1 was added to the electrolyte solution of Example 1. Instead of compound 2-1, compound no. 4-7 is 0.5 mass% and compound no. The nonaqueous electrolyte of Example 11 was obtained by adding 0.5% by mass of 6-1. The same positive electrode and negative electrode as in Example 2 were used, and a nonaqueous electrolyte secondary battery of Example 13 was produced by the same operation as in Example 1.
  • Example 14 Compound No. 1 was added to the electrolyte solution of Example 1. Instead of compound 2-1, compound no. 4-7 is 0.5 mass% and compound no. The nonaqueous electrolyte of Example 11 was obtained by adding 0.5 mass% of 7-1. The same positive electrode and negative electrode as in Example 2 were used, and the nonaqueous electrolyte secondary battery of Example 14 was produced by the same operation as in Example 1.
  • Example 15 Compound No. 1 was added to the electrolyte solution of Example 1. Instead of compound 2-1, compound no. 4-7 is 0.5 mass% and compound no. 7-2 was added to make a non-aqueous electrolyte of Example 11. The same positive electrode and negative electrode as in Example 2 were used, and a nonaqueous electrolyte secondary battery of Example 15 was produced by the same operation as in Example 1.
  • Example 16 Compound No. 1 was added to the electrolyte solution of Example 1. Instead of compound 2-1, compound no. 4-7 is 0.5 mass% and compound no. The nonaqueous electrolyte of Example 11 was obtained by adding 0.5% by mass of 7-4. The same positive electrode and negative electrode as in Example 2 were used, and the nonaqueous electrolyte secondary battery of Example 16 was produced by the same operation as in Example 1.
  • non-aqueous electrolyte containing at least one compound selected from the group consisting of the compound represented by the general formula (1) and the compound represented by the general formula (2), a high capacity can be obtained even when charging and discharging are repeated. Thus, it is possible to provide a non-aqueous electrolyte secondary battery excellent in cycle characteristics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本発明の課題は、硫黄-炭素複合体及び硫黄変性有機化合物を負極活物質とした場合にも、優れたサイクル特性を有する非水電解質二次電池を提供することにある。 本発明は、硫黄-多孔性炭素複合体及び硫黄変性有機化合物からなる群から選択される活物質を有する負極と、正極活物質を有する正極と、リチウム塩を含有する非水電解質とを有する非水電解質二次電池であって、非水電解質が、特定の構造を有する化合物からなる群から選択される化合物を少なくとも1種含む非水電解質二次電池である。

Description

非水電解質二次電池
 本発明は、硫黄系負極活物質を有する負極と、正極活物質を有する正極と、非水電解質とを有する非水電解質二次電池に関するものである。
 リチウムイオン二次電池などの非水電解質二次電池は、小型で軽量、かつエネルギー密度が高く、さらに繰り返し充放電が可能であることから、携帯用パソコン、ハンディビデオカメラ、情報端末等の携帯電子機器の電源として広く用いられている。また、環境問題の観点から、非水電解質二次電池を使用した電気自動車や、電力を動力の一部に利用したハイブリッド車の実用化が行われている。そのため近年では、携帯電子機器の使用可能時間、自動車の航続距離、さらにはそれらの安全性の観点から、二次電池のさらなる性能向上が求められている。
 リチウムイオン二次電池は、主に、セパレータ、電解質、正極、負極を備えて構成される。正極及び負極は、通常、集電体と、集電体上に形成された電極合材層とを備えている。そして、電極合剤層は、例えばリチウムイオンを吸蔵・放出し得る電極活物質と、電極活物質を結着するバインダー組成物、導電助剤などとを分散媒に分散させてなるスラリー組成物を集電体上に塗布し、乾燥させることによって形成される。電極活物質は、電池性能に大きく影響することから、研究開発が盛んに行われている。
 硫黄は、理論的に高い電気容量を有する物質であることから、硫黄-多孔性炭素複合体(例えば、特許文献1を参照)、及び硫黄変性有機化合物(例えば、特許文献2~13を参照)は、電極活物質材料として注目されている。中でも硫黄変性ポリアクリロニトリル等の硫黄変性有機化合物系電極活物質は、大きな充放電容量を有し、充放電の繰り返しに伴う充放電容量の低下(以下、サイクル特性ということがある)が少ない電極活物質として知られている。
 硫黄-炭素複合体及び硫黄変性有機化合物は、主に正極活物質として検討されてきたが、原理的にリチウムデンドライトが発生しにくく、高い安全性をもつ二次電池を作製できる可能性があることから、従来の黒鉛やカーボンに代わる負極活物質としても検討されている(例えば、特許文献10を参照)。しかしながら、これらの硫黄化合物を負極活物質とした非水電解質二次電池では、充分な充放電特性や、サイクル特性が得られないという問題があった。
 一方、電解質では、安全性を高めるまたサイクル特性を向上するため、正極および/または負極における電極表面において生じる電解質の化学反応や分解反応を抑制する目的で、電解質中に保護被膜形成能を有する化合物を添加することが行われている(例えば、特許文献14~16)。しかしながら、硫黄は電気伝導性が低く、負極活物質として用いられることが少なかったことから、硫黄を電極活物質に含む非水電解質二次電池に有効な電解液添加剤はほとんど検討されていなかった。
US9620772 特開2003-151550号公報 US8940436 特開2011-028948号公報 特開2011-170991号公報 特開2012-099342号公報 特開2012-150933号公報 特開2012-150934号公報 WO2012/114651 US2014134485 US100087225 US2018072665 US2018065927 特開2017-191634号公報 US2018226683 WO2016/013480
 本発明が解決しようとする課題は、上記事情に鑑みてなされたものであり、硫黄-炭素複合体及び硫黄変性有機化合物を負極活物質とした場合にも、優れたサイクル特性を有する非水電解質二次電池を提供することである。
 本発明者らは、鋭意検討を行なった結果、非水電解質に特定の構造の化合物を配合することにより、前記課題を解決できることを見出し、本発明を完成させた。すなわち、本発明は、
 硫黄-多孔性炭素複合体及び硫黄変性有機化合物からなる群から選択される活物質を有する負極と、正極活物質を有する正極と、リチウム塩を含有する非水電解質とを有する非水電解質二次電池であって、
 非水電解質が、一般式(1)で表される化合物及び一般式(2)で表される化合物からなる群から選択される化合物を少なくとも1種含む非水電解質二次電池である。
Figure JPOXMLDOC01-appb-C000004
(式中、R~Rはそれぞれ独立に炭素数1~10の炭化水素基を表し、Rは、炭素数1~10のn価の炭化水素基、または酸素原子若しくは硫黄原子を少なくとも1原子含む炭素数1~10のn価の炭化水素基を表し、nは1~6の整数を表す。)
Figure JPOXMLDOC01-appb-C000005
(式中、Rfはフッ素原子、またはフッ素原子を少なくとも1つ含む炭素数1~6の炭化水素基を表す。)
本発明の非水電解質二次電池のコイン型電池の構造の一例を概略的に示す縦断面図である。 本発明の非水電解質二次電池の円筒型電池の基本構成を示す概略図である。 本発明の非水電解質二次電池の円筒型電池の内部構造を断面として示す斜視図である。
 本発明の非水電解質二次電池は、硫黄-多孔性炭素複合体及び硫黄変性有機化合物からなる群から選択される活物質を有する負極と、正極活物質を有する正極と、リチウム塩を含有する非水電解質とを有し、該非水電解質に前記一般式(1)で表される化合物及び前記一般式(2)で示される化合物からなる群から選択される化合物を少なくとも1種含むものである。
 以下、本発明の非水電解質二次電池について、好ましい実施形態に基づき詳細に説明する。
 本発明において、上記一般式(1)のR~Rはそれぞれ独立に炭素数1~10の炭化水素基を表す。炭素数1~10の炭化水素基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、sec-ブチル基、イソブチル基、tert-ブチル基、ペンチル基、イソペンチル基、ヘキシル基、ヘプチル基、オクチル基、2-エチルヘキシル基、ノニル基、デシル基等の脂肪族飽和炭化水素基;ビニル基、アリル基、ブテニル基、ペンテニル基、ヘキセニル基、オクテニル基等の脂肪族不飽和炭化水素基;シクロペンチル基、シクロヘキシル基、メチルシクロヘキシル基等の脂環式炭化水素基;フェニル基、メチルフェニル基、エチルフェニル基、tert-ブチルフェニル基、フェニルメチル基、フェニルエチル基、ナフチル基、チエニル基、ベンゾチエニル基等の芳香族炭化水素基等が挙げられる。
 炭素数1~10の炭化水素基としては、優れたサイクル特性が得られることから、メチル基、エチル基、ブチル基、ビニル基、フェニル基が好ましく、メチル基が更に好ましい。R~Rは全て同一の基でもよいし、それぞれ異なる基でもよいが、R~Rの少なくとも1つがメチル基であることが好ましい。
 上記一般式(1)のRは、炭素数1~10のn価の炭化水素基、または酸素原子若しくは硫黄原子を少なくとも1原子含む炭素数1~10のn価の炭化水素基を表し、nは1~6の整数を表す。
 上記一般式(1)で表される化合物のうち、Rが、炭素数1~10のn価の炭化水素基である化合物は、炭素数1~10の炭化水素のn個の水素原子が、下記一般式(1a)で表される基で置換された化合物と言い換えることができる。
Figure JPOXMLDOC01-appb-C000006
(式中、R~Rは一般式(1)と同義であり、*は結合部位を表す。)
 炭素数1~10の炭化水素としては、炭素数1~10の飽和炭化水素、炭素数2~10の不飽和炭化水素、炭素数6~10の芳香族炭化水素が挙げられる。炭素数1~10の飽和炭化水素及び炭素数2~10の不飽和炭化水素は、直鎖構造であっても、分岐構造であっても構わない。
 炭素数1~10の飽和炭化水素としては、例えば、メタン、エタン、プロパン、ブタン、ペンタン、ヘキサン、シクロヘキサン、ヘプタン、オクタン、ノナン、デカン、アダマンタン等が挙げられる。
 炭素数2~10の不飽和炭化水素としては、例えば、エテン、エチン、プロペン、プロピン、1-ブテン、2-ブテン、1,3-ブタジエン、1-ペンテン、2-ペンテン、1,3-ペンタジエン、1-ヘキセン、3-ヘキセン、1,3,5-ヘキサトリエン、シクロヘキセン、1-ヘプテン、1-オクテン、3-オクテン,1,3,5,7-オクタテトラエン、1-ノネン、1-デセン等が挙げられる。
 炭素数6~10の芳香族炭化水素としては、例えば、ベンゼン、フェノール、メチルベンゼン、ジメチルベンゼン、エチルベンゼン、ブチルベンゼン、ナフタレン等が挙げられる。
 炭素数1~10の飽和炭化水素の2個の水素原子が、一般式(1a)で表される基で置換された化合物として、下記の化合物No.1-1~No.1-13が挙げられる。なお、化合物No.1-12の様な記載は、置換位置が任意の位置であることを示す。
Figure JPOXMLDOC01-appb-C000007
 炭素数2~10の不飽和炭化水素の2個の水素原子、または炭素数1~10の飽和炭化水素の3~4個の水素原子が、一般式(1a)で表される基で置換された化合物として、下記の化合物No.2-1~No.2-23が挙げられる。二重結合を含む化合物は、E体であってもZ体であっても構わない。
Figure JPOXMLDOC01-appb-C000008
 炭素数6~10の芳香族炭化水素の2個の水素原子が一般式(1a)で表される基で置換された化合物として、下記の化合物No.3-1~No.3-7が挙げられる。
Figure JPOXMLDOC01-appb-C000009
 一般式(1a)で表される基で水素原子がn個置換される、炭素数1~10の炭化水素としては、優れたサイクル特性が得られることから、メタン、エタン、エテン、ベンゼンが好ましく、エテン、ベンゼンがさらに好ましい。また、優れたサイクル特性が得られること、及び合成が容易であることから、nは2~4が好ましく、2が更に好ましい。
 一般式(1)で表される化合物のRが、酸素原子または硫黄原子を少なくとも1原子含む炭素数1~10のn価の炭化水素であるとは、Rが、酸素原子または硫黄原子を少なくとも1原子含む炭素数1~10のn価の脂肪族炭化水素、または炭素数2~10のn価の複素環化合物であることをいう。
 一般式(1)で表される化合物のうち、Rが、酸素原子または硫黄原子を少なくとも1原子含む、炭素数1~10の2~4価の脂肪族炭化水素である化合物として、下記の化合物No.4-1~No.4-18が挙げられる。中でも、化合物No.4-1、化合物No.4-2、化合物No.4-7及び化合物No.4-10が好ましく、化合物No.4-1及び化合物No.4-7が更に好ましい。
Figure JPOXMLDOC01-appb-C000010
 一般式(1)で表される化合物のうち、Rが、酸素原子または硫黄原子を少なくとも1原子含む、炭素数2~10の複素環化合物である場合の該複素環化合物としては、例えば、オキソラン、チオラン、フラン、チオフェン、オキサン、チアン、ピラン、ベンゾフラン、ベンゾチオフェン、チエノチオフェン、ジベンゾフラン、ジベンゾチオフェン等が挙げられる。中でも、チオフェン、フランが好ましく、チオフェンが更に好ましい。
一般式(1)で表される化合物のうち、Rが、炭素数2~10の2価の複素環化合物である化合物として、下記の化合物No.5-1~No.5-14が挙げられる。
Figure JPOXMLDOC01-appb-C000011
 一般式(2)で表される化合物において、Rfは、フッ素原子、またはフッ素原子を少なくとの1つ含む炭素数1~6の炭化水素基を表す。フッ素原子を少なくとも1つ含む炭素数1~6の炭化水素基としては、例えば、フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、1-フルオロエチル基、2-フルオロエチル基、1-フルオロイソプロピル基、2-フルオロイソプロピル基、1-フルオロブチル基、2-フルオロブチル基、3-フルオロブチル基、1-フルオロイソブチル基、2-フルオロイソブチル基、2-フルオロ-tert-ブチル基、1-フルオロペンチル基、2-フルオロペンチル基、3-フルオロペンチル基、4-フルオロペンチル基、1-フルオロヘキシル基、1-フルオロシクロヘキシル基等が挙げられる。Rfとしては、優れたサイクル特性が得られることから、フッ素原子、トリフルオロメチル基が好ましく、フッ素原子が更に好ましい。
 本発明で用いる非水電解質は、一般式(1)で表される化合物及び一般式(2)で表される化合物からなる群から選択される化合物を少なくとも1種含む。該化合物を含有させることによって、硫黄-炭素複合体及び硫黄変性有機化合物を負極活物質とした場合にも、優れたサイクル特性を有する非水電解質二次電池が得られる。
 該化合物の含有量は、非水電解質中の0.01~20質量%であることが好ましく、0.05~10質量%であることが更に好ましく、0.1~5質量%であることが最も好ましい。該化合物の含有量が少なすぎる場合には、サイクル特性の向上効果が十分ではなく、また、多すぎる場合には、配合量に見合う効果が得られず、かえって非水電解質二次電池の特性に悪影響を及ぼすことがある。
 本発明で用いる非水電解質は、保存安定性を高めるため、下記一般式(3)で表される化合物を含む場合がある。
Figure JPOXMLDOC01-appb-C000012
(式中、R~Rは、それぞれ独立して水素原子、ハロゲン原子、ニトリル基、ニトロ基、炭素数1~12のアルキル基、炭素数5~12のシクロアルキル基、炭素数6~12のアリール基、炭素数7~12のアラルキル基、炭素数1~12のオキシアルキル基、炭素数1~12のアシル基又は-SiR121314で表される基を表し、R10~R14はそれぞれ独立して炭素数1~12のアルキル基、炭素数2~12のアルケニル基、炭素数5~12のシクロアルキル基、炭素数6~12のアリール基又は炭素数7~12のアラルキル基を表し、Xはm価の炭化水素基を表わし、mは1~3の数を表す。)
 一般式(3)で表される化合物は、mが1であることが好ましい。R~Rは、水素原子、メチル基、エチル基が好ましく、水素原子がより好ましい。R10~R14は、水素原子、メチル基、エチル基が好ましく、メチル基がより好ましい。
 一般式(3)で表される化合物の含有量は非水電解質中の0.1~10質量%であることが好ましく、0.5~7質量%が更に好ましく、1~5質量%が最も好ましい。含有量が0.1質量%よりも少ない場合には十分な効果を発揮できず、10質量%よりも多い場合には添加量に見合った効果が得られず、かえって電池性能を低下させる場合がある。
 一般式(3)で表される化合物のうち、R~Rが水素原子またはアルキル基、R0、R11がアルキル基またはアルケニル基、Xが1価の炭化水素基、m=1である化合物として、下記の化合物No.6-1~No.6-15が挙げられる。
Figure JPOXMLDOC01-appb-C000013
 本発明の非水電解質二次電池に用いる非水電解質は、電解質を有機溶媒に溶解して得られる液体電解質、電解質を有機溶媒に溶解し高分子でゲル化した高分子ゲル電解質、有機溶媒を含まず、電解質を高分子に分散させた純正高分子電解質のいずれの場合もある。
 本発明の非水電解質二次電池がリチウムイオン二次電池である場合の、液体電解質及び高分子ゲル電解質に用いるリチウム塩としては、例えば、LiPF、LiBF、LiAsF、LiCFSO、LiCFCO、LiN(CFSO、LiN(CSO、LiN(SOF)、LiC(CFSO、LiB(CFSO、LiB(C、LiBF(C)、LiSbF、LiSiF、LiSCN、LiClO、LiCl、LiF、LiBr、LiI、LiAlF、LiAlCl、LiPO及びこれらの誘導体等が挙げられ、これらの中でも、LiPF、LiBF、LiClO、LiAsF、LiCFSO、LiN(CFSO、LiN(CSO、LiN(SOF)、及びLiC(CFSO並びにLiCFSOの誘導体、及びLiC(CFSOの誘導体からなる群から選ばれる1種以上を用いることが好ましい。
 本発明の非水電解質二次電池がリチウムイオン二次電池である場合の、純正高分子電解質に用いるリチウム塩としては、例えば、LiN(CFSO、LiN(CSO、LiN(SOF)、LiC(CFSO、LiB(CFSO、LiB(Cが挙げられる。
 リチウムイオン二次電池の非水電解質における、リチウム塩の濃度は、0.5~7mol/Lが好ましく、0.8~1.8mol/Lがより好ましい。リチウム塩の濃度が低すぎると十分な電流密度が得られないことがあり、リチウム塩の濃度が高すぎると非水電解質の安定性を損なう恐れがある。リチウム塩は、2種以上を組み合わせて使用することができる。
 非水電解質に用いる有機溶媒としては、非水電解質に通常使用される有機溶媒を使用することができる。通常使用される有機溶媒としては、例えば、飽和環状カーボネート化合物、飽和環状エステル化合物、スルホキシド化合物、スルホン化合物、アマイド化合物、飽和鎖状カーボネート化合物、鎖状エーテル化合物、環状エーテル化合物、飽和鎖状エステル化合物等が挙げられる。これらのうち、飽和環状カーボネート化合物、飽和環状エステル化合物、スルホキシド化合物、スルホン化合物及びアマイド化合物は、比誘電率が高いため、非水電解質の誘電率を上げる役割を果たすために好ましく、特に飽和環状カーボネート化合物が好ましい。有機溶媒は、1種のみ、又は2種以上組み合わせて使用することができる。
 飽和環状カーボネート化合物としては、例えば、エチレンカーボネート、1,2-プロピレンカーボネート、1,3-プロピレンカーボネート、1,2-ブチレンカーボネート、1,3-ブチレンカーボネート、1,1-ジメチルエチレンカーボネート等が挙げられる。
 飽和環状エステル化合物としては、例えば、γ-ブチロラクトン、γ-バレロラクトン、γ-カプロラクトン、δ-ヘキサノラクトン、δ-オクタノラクトン等が挙げられる。 スルホキシド化合物としては、例えば、ジメチルスルホキシド、ジエチルスルホキシド、ジプロピルスルホキシド、ジフェニルスルホキシド、チオフェン等が挙げられる。
 スルホン化合物としては、例えば、ジメチルスルホン、ジエチルスルホン、ジプロピルスルホン、ジフェニルスルホン、スルホラン(テトラメチレンスルホンともいう)、3-メチルスルホラン、3,4-ジメチルスルホラン、3,4-ジフェニメチルスルホラン、スルホレン、3-メチルスルホレン、3-エチルスルホレン、3-ブロモメチルスルホレン等が挙げられ、スルホラン、テトラメチルスルホランが好ましい。
 アマイド化合物としては、N-メチルピロリドン、ジメチルホルムアミド、ジメチルアセトアミド等が挙げられる。
 前記有機溶媒のうち、飽和鎖状カーボネート化合物、鎖状エーテル化合物、環状エーテル化合物及び飽和鎖状エステル化合物は、非水電解質の粘度を低くすることができ、電解質イオンの移動性を高くすることができる等、出力密度等の電池特性を優れたものにすることができる。また、低粘度であるため、低温での非水電解質の性能を高くすることができる。これらの中でも、特に飽和鎖状カーボネート化合物が好ましい。
 飽和鎖状カーボネート化合物としては、例えば、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、エチルブチルカーボネート、メチル-t-ブチルカーボネート、ジイソプロピルカーボネート、t-ブチルプロピルカーボネート等が挙げられる。
 また、鎖状エーテル化合物又は環状エーテル化合物としては、例えば、ジメトキシエタン、エトキシメトキシエタン、ジエトキシエタン、テトラヒドロフラン、ジオキソラン、ジオキサン、1,2-ビス(メトキシカルボニルオキシ)エタン、1,2-ビス(エトキシカルボニルオキシ)エタン、1,2-ビス(エトキシカルボニルオキシ)プロパン、エチレングリコールビス(トリフルオロエチル)エーテル、プロピレングリコールビス(トリフルオロエチル)エーテル、エチレングリコールビス(トリフルオロメチル)エーテル、ジエチレングリコールビス(トリフルオロエチル)エーテル等が挙げられ、これらの中でも、ジオキソランが好ましい。
 前記飽和鎖状エステル化合物としては、分子中の炭素数の合計が2~8であるモノエステル化合物及びジエステル化合物が好ましく、具体的な化合物としては、例えば、ギ酸メチル、ギ酸エチル、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸イソブチル、酢酸ブチル、プロピオン酸メチル、プロピオン酸エチル、酪酸メチル、イソ酪酸メチル、トリメチル酢酸メチル、トリメチル酢酸エチル、マロン酸メチル、マロン酸エチル、コハク酸メチル、コハク酸エチル、3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、エチレングリコールジアセチル、プロピレングリコールジアセチル等が挙げられ、ギ酸メチル、ギ酸エチル、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸イソブチル、酢酸ブチル、プロピオン酸メチル、及びプロピオン酸エチルが好ましい。
 その他、液体電解質の調製に用いる有機溶媒として、例えば、アセトニトリル、プロピオニトリル、ニトロメタンやこれらの誘導体、各種イオン液体を用いることもできる。
 高分子ゲル電解質に用いる高分子としては、ポリエチレンオキシド、ポリプロピレンオキシド、ポリビニルクロライド、ポリアクリロニトリル、ポリメチルメタクリレート、ポリエチレン、ポリフッ化ビニリデン、ポリヘキサフルオロプロピレン等が挙げられる。純正高分子電解質に用いる高分子としては、ポリエチレンオキシド、ポリプロピレンオキシド、ポリスチレンスルホン酸が挙げられる。
 ゲル電解質中の配合比率、複合化の方法については特に制限はなく、本技術分野で公知の配合比率、公知の複合化方法を採用することができる。
 非水電解質は、電池寿命の向上、安全性向上等のため、電極被膜形成剤、酸化防止剤、難燃剤、過充電防止剤等、公知の添加剤を含んでもよい。電解質添加剤を用いる場合、非水電解質全体に対し、通常0.01質量部~10質量部であり、好ましくは、0.1質量部~5質量部である。
 本発明の非水電解質二次電池の負極は、負極活物質として、硫黄-多孔性炭素複合体または硫黄変性有機化合物を含有する。
 硫黄-多孔性炭素複合体とは、多孔性炭素の細孔内に単体硫黄を含有したものであり、リチウムイオンを吸蔵、放出し得る、二次電池の電極活物質として使用可能なものをいう。多孔性炭素の細孔内に単体硫黄を担持した硫黄-炭素複合体の硫黄含有量は、含有量が少な過ぎると充放電容量が大きくならず、多過ぎる電子伝導性が低下することから、25質量%~80質量%が好ましく、30質量%~70質量%がより好ましい。
 多孔性炭素は、平均細孔径が100nm以下であるものが好ましく、50nm以下であるものがより好ましく、20nm以下であるものが更に好ましい。多孔性炭素の比表面積は、100m/g~3000m/gが好ましく、200m/g~2500m/gがより好ましい。
 本発明において、多孔性炭素の平均細孔径及び比表面積は、多孔性炭素を液体窒素温度化において、多孔質炭素に窒素ガスを吸着させて得られる窒素吸着等温線を用いて求めることができる。
 具体的には、窒素吸着等温線を用いて、Brenaure-Emmet-Teller(BET)法により比表面積を求めることができる。また、窒素吸着等温線(吸着側)を用いて、Barret-Joyner-Halenda(BJH)法により細孔径を求めることができる。平均細孔径は、細孔構造を円筒型であると仮定して、全細孔容積BET比表面積から算出される。
 硫黄-多孔性炭素複合体に使用される多孔性炭素は、多孔性で電気伝導性を有する炭素材料であれば特に限定されず、結晶性炭素でも非晶質性炭素でも構わない。このような多孔性炭素としては、例えば、グラファイト、カーボン、カーボンブラック、ケッチェンブラック、アセチレンブラック、黒鉛、炭素繊維、活性炭、または公知の製造方法により作製されたメソポーラスカーボン等が挙げられる。多孔性炭素の形状は、球状、繊維状、中空状、円筒状、不定形のいずれでも構わない。これらは2種以上用いることができる。
 前記多孔性炭素の中では、表面積が大きく、かつ電気伝導性が高いことから、ケッチェンブラック、活性炭、及びメソポーラスカーボンが好ましい。
 硫黄と多孔性炭素を複合化する方法としては、特に限定されないが、各種ミルで機械的に混合する方法や、液相及び/または気相法、あるいはこれらの方法を組み合わせた方法が挙げられる。
 機械的に複合化する方法としては、例えば、遊星ボールミル、転動ボールミル、振動ボールミル等のボールミル、リングローラーミル等の竪型ローラーミル、ハンマーミル、ケージミル等の高速回転ミル、ジェットミル等の気流式ミル等が挙げられる。
 液相及び/または気相法で複合化する方法としては、具体的には、例えば、硫黄を加熱して溶融硫黄とするか、溶媒を用いて硫黄溶液とし、多孔性炭素による吸着能を利用して吸着充填させることができる。原料を加熱して複合化させる場合には、温度は硫黄の融点である115℃以上が好ましく、150℃~350℃がより好ましい。複合化させる環境は、毒性のある硫化水素ガスが発生する場合があるため、窒素ガス、アルゴンガス等の不活性ガス雰囲気下で行うのが好ましく、前記ガスを流通させながら行うのがより好ましい。温度や圧力を調整することにより、硫黄を気化させて吸着充填することもできる。その際、充填量を高めるために、減圧と加圧を繰り返す等の操作をすることもできる。
 本発明における硫黄変性有機化合物とは、硫黄を少なくとも25質量%以上、好ましくは30質量%以上含有した有機化合物であり、リチウムイオンを吸蔵、放出し得る、二次電池の電極活物質として使用可能な化合物をいう。
 硫黄変性有機化合物は、有機化合物と硫黄を加熱処理することにより得られる。有機化合物と硫黄を加熱処理した化合物としては、例えば、硫黄変性ポリアクリロニトリル化合物、硫黄変性エラストマー化合物、硫黄変性ピッチ化合物、硫黄変性多核芳香環化合物、硫黄変性脂肪族炭化水素酸化物、硫黄変性ポリエーテル化合物、ポリチエノアセン化合物、硫黄変性ポリアミド化合物、ポリ硫化カーボン等が挙げられる。これらの化合物は、硫黄と、ポリアクリル化合物、エラストマー化合物、ピッチ化合物、多核芳香族環化合物、脂肪族炭化水素酸化物、ポリエーテル化合物、ポリアセン化合物、ポリアミド化合物、ヘキサクロロブタジエン等を混合し、非酸化性雰囲気中250℃~600℃で加熱変性して製造することができる。これらの化合物を硫黄と加熱する際、前記の化合物の中から1種のみ使用することもでき、2種以上を組み合わせて使用することもできる。本発明で用いる硫黄変性有機化合物としては、大きな充放電容量が得られることから、硫黄変性ポリアクリロニトリル化合物が好ましい。
 非酸化性雰囲気とは、酸素濃度が5体積%未満、好ましくは2体積%未満、更に好ましくは、酸素を実質的に含有しない雰囲気、即ち、窒素、ヘリウム、アルゴン等の不活性ガス雰囲気や、硫黄ガス雰囲気のことである。
 硫黄変性ポリアクリロニトリル化合物は、ポリアクリロニトリル化合物と単体硫黄を、非酸化性雰囲気中で加熱処理して得られる化合物である。ポリアクリロニトリル化合物は、アクリロニトリルのホモポリマーであるか、アクリロニトリルと他のモノマーとのコポリマーである。ポリアクリロニトリル化合物におけるアクリロニトリルの含量が低くなると電池性能が低くなり、更に、炭化が比較的容易で炭化物が比較的高い導電性を示し、そのため活物質の利用率が向上して高容量化を図ることができるという観点から、アクリロニトリルと他のモノマーとのコポリマーにおけるアクリロニトリルの含量は少なくとも90質量%であることが好ましく、ポリアクリロニトリルホモポリマーが更に好ましい。他のモノマーとしては、例えば、アクリル酸、酢酸ビニル、N-ビニルホルムアミド、N,N’-メチレンビス(アクリルアミド)が挙げられる。加熱処理の温度は、250℃~550℃が好ましく、硫黄変性ポリアクリロニトリルの硫黄含量は、大きな充放電容量が得られることから、30~60質量%が好ましい。
 硫黄変性エラストマー化合物は、ゴムと単体硫黄の混合物を、非酸化性雰囲気中で加熱処理して得られる化合物である。ゴムとしては、例えば、天然ゴム、イソプレンゴム、ブタジエンゴム、スチレンブタジエンゴム及びアクリロニトリルブタジエンゴム等が挙げられる。これらのゴムは1種を単独で使用することができ、2種以上を組合せて使用することができる。原料のゴムは、加硫ゴムでも加硫前のゴムでも構わない。加熱処理の温度は、250℃~550℃が好ましく、硫黄変性エラストマー化合物の硫黄含量は、大きな充放電容量が得られることから、40~70質量%が好ましい。
 硫黄変性ピッチ化合物は、ピッチ類と単体硫黄との混合物を、非酸化性雰囲気中で加熱処理して得られる化合物である。ピッチ類としては、石油ピッチ、石炭ピッチ、メソフェーズピッチ、アスファルト、コールタール、コールタールピッチ、縮合多環芳香族炭化水素化合物の重縮合で得られる有機合成ピッチ、及び、ヘテロ原子含有縮合多環芳香族炭化水素化合物の重縮合で得られる有機合成ピッチ等が挙げられる。ピッチ類は様々な化合物の混合物であり、縮合多環芳香族を含む。ピッチ類に含まれる縮合多環芳香族は、1種である場合があり、複数種である場合もある。この縮合多環芳香族は、環の中に、炭素と水素以外にも、窒素や硫黄を含んでいる場合がある。加熱処理の温度は、300℃~500℃が好ましく、硫黄変性ピッチ化合物の硫黄含量は、大きな充放電容量が得られることから、25~70質量%が好ましい。
 硫黄変性多核芳香環化合物は、例えば、ナフタレン、アントラセン、テトラセン、ペンタセン、フェナントレン、クリセン、ピセン、ピレン、ベンゾピレン、ペリレン、コロネン等のベンゼン系芳香環化合物と単体硫黄の混合物を、非酸化性雰囲気中で加熱処理して得られる化合物である。また、ベンゼン系芳香環化合物の一部が5員環となった芳香族環化合物、又はこれらの炭素原子の一部が硫黄、酸素、窒素などに置き換わったヘテロ原子含有複素芳香環化合物が挙げられる。更に、これらの多核芳香環化合物は、炭素数1~12の鎖状又は分岐状アルキル基、アルコキシル基、水酸基、カルボキシル基、アミノ基、アミノカルボニル基、アミノチオ基、メルカプトチオカルボニルアミノ基、カルボキシアルキルカルボニル基などの置換基を有していても構わない。加熱処理の温度は、250℃~550℃が好ましく、硫黄変性ピッチ化合物の硫黄含量は、大きな充放電容量が得られることから、40~70質量%が好ましい。
 硫黄変性脂肪族炭化水素酸化物は、脂肪族アルコール、脂肪族アルデヒド、脂肪族ケトン、脂肪族エポキシド、脂肪酸等の脂肪族炭化水素酸化物と単体硫黄を、非酸化性雰囲気中で加熱処理して得られる化合物である。加熱処理の温度は、300℃~500℃が好ましい。硫黄変性脂肪族炭化水素酸化物の硫黄含量は、大きな充放電容量が得られることから、45~75質量%が好ましい。
 硫黄変性ポリエーテル化合物は、ポリエーテル化合物と単体硫黄を非酸化性雰囲気中で加熱処理して得られる化合物である。ポリエーテル化合物としては、例えば、ポリエチレングリコール、ポリプロピレングリコール、エチレンオキシド/プロピレンオキシドコポリマー、ポリテトラメチレングリコール等が挙げられる。ポリエーテル化合物は、末端がアルキルエーテル基、アルキルフェニルエーテル基、アシル基であっても構わないし、グリセリン、ソルビトール等のポリオールのエチレンオキシド付加物であっても差し支えない。加熱処理の温度は、250~500℃が好ましい。硫黄変性ポリエーテル化合物の硫黄含量は、大きな充放電容量が得られることから、30~75質量%が好ましい。
 ポリチエノアセン化合物は、下記一般式(4)で表される、硫黄を含むポリチエノアセン構造を有する化合物である。
Figure JPOXMLDOC01-appb-C000014
(式中、*は結合手を表す。)
 ポリチエノアセン化合物は、ポリエチレン等の直鎖構造を有する脂肪族のポリマーや、ポリチオフェン等のチオフェン構造を有するポリマーと、単体硫黄とを非酸化性雰囲気中で加熱処理して得られる化合物である。加熱処理の温度は、300℃~600℃が好ましい。ポリチエノアセン化合物の硫黄含量は、大きな充放電容量が得られることから、30~80質量%が好ましい。
 硫黄変性ポリアミド化合物は、アミド結合を有するポリマー由来の炭素骨格を有する硫黄変性有機化合物であり、具体的には、アミノカルボン酸化合物と単体硫黄、又はポリアミン化合物とポリカルボン酸化合物と単体硫黄を、非酸化性雰囲気中で加熱処理して得られる化合物である。加熱処理の温度は、250~600℃が好ましい。硫黄変性ポリアミド化合物の硫黄含量は、大充放電容量が得られることから、40~70質量%が好ましい。
 ポリ硫化カーボンは、一般式(CS(xは0.5~2で、nは4以上の数である)で表される化合物であり、例えば、硫化ナトリウム等のアルカリ金属硫化物と単体硫黄の複合体に、ヘキサクロロブタジエン等のハロゲン化不飽和炭化水素を反応させた前駆体を、加熱処理することにより得ることができる。加熱処理の温度は、300~450℃が好ましく、ポリ硫化カーボン化合物の硫黄含量は、大きな充放電容量が得られることから、65~75質量%が好ましい。
 前記加熱処理時に、前記材料に加えて、天然黒鉛、人造黒鉛、膨張黒鉛等の黒鉛系炭素材料、カーボンブラック、ナノカーボン、活性炭、カーボンファイバー、コークス、ソフトカーボン、ハードカーボン等の炭素材料や、テトラメチルチウラムジスルフィド、テトラエチルチウラムジスルフィド、テトラブチルチウラムジスルフィド、テトラキス(2-エチルへキシル)チウラムジスルフィド、テトラメチルチウラムモノスルフィド、ジペンタメチレンチウラムテトラスルフィド等の加硫促進剤を用いることができる。
 これらは1種のみ使用することもでき、2種以上を組み合わせて使用することもできる。炭素材料や加硫促進剤は、公知の配合率により、公知の配合処方で配合することができる。
 硫黄変性有機化合物の形状は、特に限定されないが、例えば、球状、多面体状、繊維状、棒状、板状、鱗片状、又は無定形状であり、これらは中空状であっても構わない。これらの中で、電極合剤層が均一に形成されることから、球状又は多面体状が好ましい。
 硫黄-多孔性炭素複合体及び硫黄変性有機化合物の粒子径は、粒子径が小さいと粉体を取り扱う上で作業が難しくなり、一方大きいと電極の均一性・平滑性が低下することから、平均粒子径(D50)が、0.5~100μmであることが好ましく、1μm~50μmであることがより好ましく、1μm~20μmであることが更に好ましい。本発明において、平均粒子径(D50)とは、レーザー回折光散乱法により測定された50%粒子径をいう。粒子径は体積基準の直径であり、レーザー回折光散乱法では、二次粒子の直径が測定される。
 硫黄-多孔性炭素複合体及び硫黄変性有機化合物は、粉砕等の方法により所望の粒径とすることができる。粉砕は、気体中で行う乾式粉砕でも、水等の液体中で行う湿式粉砕でもよい。工業的な粉砕方法としては、例えば、ボールミル、ローラーミル、ターボミル、ジェットミル、サイクロンミル、ハンマーミル、ピンミル、回転ミル、振動ミル、遊星ミル、アトライター、ビーズミルが挙げられる。
 硫黄-多孔性炭素複合体及び硫黄変性有機化合物の硫黄含有量は、例えば、硫黄及び酸素が分析可能なCHN分析装置、例えば、エレメンター社製vario MICRO cubeなどを用いて測定することができる。
 本発明で用いる負極は、公知の方法に準じて製造することができる。例えば、負極活物質、バインダー及び導電助剤を含む配合物を、有機溶媒又は水でスラリー化した電極合剤ペーストを集電体に塗布して乾燥することにより、集電体上に電極合剤層が形成された負極を製造することができる。
 上記バインダーは、公知のものを用いることができる。バインダーの具体例としては、例えば、スチレン-ブタジエンゴム、ブタジエンゴム、アクリロニトリル-ブタジエンゴム、エチレン-プロピレン-ジエンゴム、スチレン-イソプレンゴム、フッ素ゴム、ポリエチレン、ポリプロピレン、ポリアミド、ポリアミドイミド、ポリイミド、ポリアクリロニトリル、ポリウレタン、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、スチレン-アクリル酸エステル共重合体、エチレン-ビニルアルコール共重合体、ポリメチルメタクリレート、ポリアクリレート、ポリビニルアルコール、ポリエチレンオキサイド、ポリビニルピロリドン、ポリビニルエーテル、ポリ塩化ビニル、ポリアクリル酸、メチルセルロース、カルボキシメチルセルロース、カルボキシメチルセルロースナトリウム、セルロースナノファイバー、デンプン等が挙げられる。
 バインダーとしては、環境負荷が低く、硫黄の溶出が起こりにくいため、水系バインダーが好ましく、スチレン-ブタジエンゴム、カルボキシメチルセルロースナトリウム、ポリアクリル酸が更に好ましい。
 バインダーは1種のみ使用することもでき、2種以上を組合せて使用することもできる。
 バインダーの含有量は、負極活物質100質量部に対し、1質量部~30質量部であることが好ましく、1質量部~20質量部であることが更に好ましい。
 上記導電助剤は、電極の導電助剤として公知のものを用いることができる。具体的には、天然黒鉛、人造黒鉛、コールタールピッチ、カーボンブラック、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック、カーボンナノチューブ、気相法炭素繊維(Vapor Grown Carbon Fiber:VGCF)、グラフェン、フラーレン、ニードルコークス等の炭素材料;アルミニウム粉、ニッケル粉、チタン粉等の金属粉末;酸化亜鉛、酸化チタン等の導電性金属酸化物;La、Sm、Ce、TiS等の硫化物が挙げられる。この導電助剤は、前記硫黄変性有機化合物の製造時に混合することも可能である。
 導電助剤の粒子径は、0.0001μm~100μmが好ましく、0.01μm~50μmがより好ましい。
 導電助剤の含有量は、負極活物質100質量部に対し、通常0.1~50質量部であり、好ましくは1~30質量部、より好ましくは2~20質量部である。
 上記電極合剤ペーストを調製するための溶媒としては、例えばプロピレンカーボネート、エチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート、1,2-ジメトキシエタン、1,2-ジエトキシエタン、アセトニトリル、プロピオニトリル、テトラヒドロフラン、2-メチルテトラヒドロフラン、ジオキサン、1,3-ジオキソラン、ニトロメタン、N-メチルピロリドン、N,N-ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン、N,N-ジメチルアミノプロピルアミン、ポリエチレンオキシド、テトラヒドロフラン、ジメチルスルホキシド、スルホラン、γ-ブチロラクトン、水、アルコール等が挙げられる。溶媒の使用量は、スラリーを塗布する際に選択する方法にあわせて調整することができ、例えば、ドクターブレード法による塗布の場合、負極活物質、バインダー及び導電助剤の合計量100質量部に対し、20~300質量部が好ましく、30~200質量部が更に好ましい。
 電極合剤ペーストには、本発明の効果を損なわない範囲で、前記成分に加え、例えば、粘度調整剤、補強材、酸化防止剤、pH調整剤、分散剤等の他の成分を含有させても構わない。これらの他の成分としては公知のものを、公知の配合比率で使用することができる。
 電極合剤ペーストの調製において、負極活物質、バインダー及び導電助剤を溶媒に分散させる際、すべてを一括して溶媒に加えて分散処理することができ、別々に加えて分散処理することもできる。溶媒中に、バインダー、導電助剤、負極活物質の順番で逐次添加して分散処理を行なうと、これらを溶媒に均一に分散できるため好ましい。
 スラリーが他の成分を含有する場合、他の成分を溶媒に一括して加えて分散処理することができ、添加剤ごとに加えて分散処理することもできるが、1種添加するごとに分散処理することが好ましい。
 分散処理の方法としては特に制限されないが、工業的な方法として、例えば、通常のボールミル、サンドミル、ビーズミル、サイクロンミル、顔料分散機、らい潰機、超音波分散機、ホモジナイザー、自転・公転ミキサー、プラネタリーミキサー、フィルミックス、ジェットペースタ等を使用することができる。
 上記集電体としては、チタン、チタン合金、アルミニウム、アルミニウム合金、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼等の導電材料が用いられる。集電体の形状としては、箔状、板状、網状等が挙げられ、集電体は多孔質又は無孔のどちらでも構わない。また、これらの導電材料は、密着性や電気特性を改良するために表面処理が施されている場合がある。これらの導電材料の中でも、導電性や価格の観点からアルミニウムが好ましく、アルミニウム箔が特に好ましい。集電体の厚みは、特に制限はないが、通常1~100μmである。
 電極合剤ペーストを集電体に塗布する方法は、特に限定されないが、例えば、ダイコーター法、コンマコーター法、カーテンコーター法、スプレーコーター法、グラビアコーター法、フレキソコーター法、ナイフコーター法、ドクターブレード法、リバースロール法、ハケ塗り法、ディップ法等の各手法を用いることができる。スラリーの粘性等の物性及び乾燥性に合わせて、良好な塗布層の表面状態を得ることが可能となる点で、ダイコーター法、ナイフコーター法、ドクターブレード法が好ましい。
 電極合剤ペーストの集電体への塗布は、集電体の片面にのみ行なうことができ、両面に行うこともできる。集電体の両面に塗布する場合は、片面ずつ逐次塗布することができ、両面同時に塗布することもできる。また、集電体の表面に連続に塗布することができ、間欠して塗布することもでき、ストライプ状で塗布しても構わない。塗布層の厚さ、長さや幅は、電池の大きさ等に応じて、適宜、決定することができる。
 集電体上に塗布された電極合剤ペーストを乾燥させる方法としては、特に限定されず、公知の方法を用いることができる。乾燥方法としては、例えば、温風、熱風、低湿風による乾燥、真空乾燥、加熱炉などに静置する、遠赤外線や赤外線、又は電子線等を照射することによる乾燥が挙げられる。これらは組合せて実施することができる。加熱する場合の温度は、例えば、一般的には50℃~180℃程度であるが、温度などの条件はスラリー組成物の塗布量、使用した溶媒の沸点等に応じて適宜設定することができる。この乾燥により、電極合剤ペーストから溶媒等の揮発成分が揮発し、集電体上に電極合剤層が形成される。
 本発明で用いる正極は、前記の負極の製造方法に準じて製造することができる。
 正極活物質としては、公知のものを用いることができる。公知の正極活物質としては、例えば、リチウム遷移金属複合酸化物、リチウム含有遷移金属リン酸化合物、リチウム含有ケイ酸塩化合物、リチウム含有遷移金属硫酸化合物等が挙げられる。前記リチウム遷移金属複合酸化物の遷移金属としてはバナジウム、チタン、クロム、マンガン、鉄、コバルト、ニッケル、銅等が好ましい。リチウム遷移金属複合酸化物の具体例としては、LiCoO等のリチウムコバルト複合酸化物、LiNiO等のリチウムニッケル複合酸化物、LiMnO、LiMn、LiMnO等のリチウムマンガン複合酸化物、これらのリチウム遷移金属複合酸化物の主体となる遷移金属原子の一部をアルミニウム、チタン、バナジウム、クロム、マンガン、鉄、コバルト、リチウム、ニッケル、銅、亜鉛、マグネシウム、ガリウム、ジルコニウム等の他の金属で置換したもの等が挙げられる。主体となる遷移金属原子の一部を他の金属で置換したリチウム遷移金属複合酸化物は、例えば、Li1.1Mn1.8Mg0.1、Li1.1Mn1.85Al0.05、LiNi0.5Co0.2Mn0.3、LiNi0.8Co0.1Mn0.1、LiNi0.5Mn0.5、LiNi0.80Co0.17Al0.03、LiNi0.80Co0.15Al0.05、LiNi1/3Co1/3Mn1/3、LiNi0.6Co0.2Mn0.2、LiMn1.8Al0.2、LiNi0.5Mn1.5、LiMnO-LiMO(M=Co,Ni,Mn)等が挙げられる。前記リチウム含有遷移金属リン酸化合物の遷移金属としては、バナジウム、チタン、マンガン、鉄、コバルト、ニッケル等が好ましく、具体例としては、例えば、LiFePO、LiMnFe1-xPO等のリン酸鉄化合物類、LiCoPO等のリン酸コバルト化合物類、これらのリチウム遷移金属リン酸化合物の主体となる遷移金属原子の一部をアルミニウム、チタン、バナジウム、クロム、マンガン、鉄、コバルト、リチウム、ニッケル、銅、亜鉛、マグネシウム、ガリウム、ジルコニウム、ニオブ等の他の金属で置換したもの、Li(PO等のリン酸バナジウム化合物類等が挙げられる。前記リチウム含有ケイ酸塩化合物としては、LiFeSiO等が挙げられる。リチウム含有遷移金属硫酸化合物としては、LiFeSO、LiFeSOF等が挙げられる。これらは1種のみを使用することができ、2種以上を組合せて使用することもできる。
 正極活物質の粒子径は、粒子径が大き過ぎると均一で平滑な電極合剤層が得られない場合があり、小さ過ぎるとスラリー化工程でのハンドリング性が低下することから、平均粒子径(D50)が0.5μm~100μmであることが好ましく、1μm~50μmであることがより好ましく、1μm~30μmであることが更に好ましい。
 本発明の非水電解質二次電池では、正極と負極との間にセパレータを用いることが好ましく、該セパレータとしては、通常用いられる高分子の微多孔性のフィルムを特に限定なく使用できる。該フィルムとしては、例えば、ポリエチレン、ポリプロピレン、ポリフッ化ビニリデン、ポリ塩化ビニリデン、ポリアクリロニトリル、ポリアクリルアミド、ポリテトラフルオロエチレン、ポリスルホン、ポリエーテルスルホン、ポリカーボネート、ポリアミド、ポリイミド、ポリエチレンオキシドやポリプロピレンオキシド等のポリエーテル類、カルボキシメチルセルロースやヒドロキシプロピルセルロース等の種々のセルロース類、ポリ(メタ)アクリル酸及びその種々のエステル類等を主体とする高分子化合物やその誘導体、これらの共重合体や混合物からなるフィルム等が挙げられ、これらのフィルムは、アルミナやシリカなどのセラミック材料、酸化マグネシウム、アラミド樹脂、ポリフッ化ビニリデンでコートされている場合がある。
 これらのフィルムは、単独で用いることができ、これらのフィルムを重ね合わせて複層フィルムとして用いることもできる。更に、これらのフィルムには、種々の添加剤を用いることができ、その種類や含有量は特に制限されない。これらのフィルムの中でも、二次電池の製造方法で製造される二次電池には、ポリエチレンやポリプロピレン、ポリフッ化ビニリデン、ポリスルホンからなるフィルムが好ましく用いられる。
 これらのフィルムは、非水電解質がしみ込んでイオンが透過し易いように、微多孔化がなされたものが用いられる。この微多孔化の方法としては、高分子化合物と溶剤の溶液をミクロ相分離させながら製膜し、溶剤を抽出除去して多孔化する「相分離法」と、溶融した高分子化合物を高ドラフトで押し出し製膜した後に熱処理し、結晶を一方向に配列させ、更に延伸によって結晶間に間隙を形成して多孔化をはかる「延伸法」等が挙げられ、用いられるフィルムによって適宜選択される。
 本発明の非水電解質二次電池においては、その形状に特に制限を受けず、コイン型、円筒型、角型、ラミネート型等、種々の形状とすることができる。図1は、本発明の非水電解質二次電池のコイン型電池の一例を、図2及び図3は円筒型電池の一例をそれぞれ示したものである。
 図1に示すコイン型の非水電解質二次電池10において、1はリチウムイオンを放出できる正極、1aは正極集電体、2は正極から放出されたリチウムイオンを吸蔵、放出できる負極、2aは負極集電体、3は非水電解質、4はステンレス製の正極ケース、5はステンレス製の負極ケース、6はポリプロピレン製のガスケット、7はポリエチレン製のセパレータである。
 また、図2及び図3に示す円筒型の非水電解質二次電池10’において、11は負極、12は負極集電体、13は正極、14は正極集電体、15は非水電解質、16はセパレータ、17は正極端子、18は負極端子、19は負極板、20は負極リード、21は正極板、22は正極リード、23はケース、24は絶縁板、25はガスケット、26は安全弁、27はPTC素子である。
 本発明の非水電解質二次電池における外装部材としては、ラミネートフィルム又は金属製容器を用いることができる。外装部材の厚さは、通常0.5mm以下であり、好ましくは0.3mm以下である。外装部材の形状としては、扁平型(薄型)、角型、円筒型、コイン型、ボタン型等が挙げられる。
 ラミネートフィルムは、樹脂フィルム間に金属層を有する多層フィルムを用いることもできる。金属層は、軽量化のためにアルミニウム箔若しくはアルミニウム合金箔が好ましい。樹脂フィルムは、例えばポリプロピレン、ポリエチレン、ナイロン、ポリエチレンテレフタレート等の高分子材料を用いることができる。ラミネートフィルムは、熱融着によりシールを行って外装部材の形状に形成することができる。
 金属製容器は、例えば、ステンレス、アルミニウム又はアルミニウム合金等から形成することができる。アルミニウム合金としては、マグネシウム、亜鉛、ケイ素などの元素を含む合金が好ましい。アルミニウム又はアルミニウム合金において、鉄、銅、ニッケル、クロム等の遷移金属の含有量を1%以下にすることで、高温環境下での長期信頼性及び放熱性を飛躍的に向上させることができる。
 以上、本発明の実施形態を説明したが、本発明は、前記実施形態に限定されるものではない。本発明の要旨を逸脱しない範囲において、当業者が行い得る変更、改良等を施した種々の形態にて実施することができる。
 以下に、実施例及び比較例により本発明を更に詳細に説明する。ただし、以下の実施例等により本発明は何ら制限されるものではない。なお、実施例中の「部」や「%」は、特にことわらない限り、質量基準である。硫黄-多孔性炭素複合体及び硫黄変性有機化合物の硫黄含有量は、硫黄及び酸素が分析可能なCHN分析装置(エレメンター社製vario MICRO cube)を用いて元素分析を行い算出した。
[製造例1]硫黄-多孔性炭素複合体の製造
 硫黄-多孔性炭素複合体は、特許文献1の実施例1を参照し、合成した。硫黄(シグマアルドリッチ社製、純度>99.5%)10重量部、ケッチェンブラック(ライオン・スペシャリティ・ケミカルズ社製、EC600JD)10重量部、を乳鉢で混合し、窒素ガス雰囲気下で電気炉にて加熱処理した。加熱は150℃で6時間保持した後、300℃で3時間保持した。それぞれの温度まで室温から10℃/minで昇温し、反応後は室温まで自然放冷して、硫黄含有量46.3質量%の硫黄-炭素複合体を得た。
[製造例2]硫黄変性ポリアクリロニトリルの製造
 開口径30μmのふるいで分級したポリアクリロニトリル粉末(シグマアルドリッチ社製)10質量部及び硫黄粉末(シグマアルドリッチ社製、平均粒子径200μm)30質量部を、乳鉢を用いて混合した。特開2013-054957号公報の実施例を参照し、この混合物を有底円筒状ガラス管に収容したのち、ガラス管の下部をルツボ型電気炉に入れ、窒素気流下で発生する硫化水素を除去しながら400℃で1時間加熱した。冷却後、生成物をガラスチューブオーブンに入れ、真空吸引しつつ250℃で3時間加熱することにより単体硫黄を除去した。得られた硫黄変性生成物を、ボールミルを用いて粉砕し、ふるいで分級して平均粒子径が10μmの硫黄変性ポリアクリロニトリル(PANS)を得た。PANSの硫黄含量は38.4質量%であった。
[実施例1]
<負極-1の作製>
 負極活物質として、製造例1で製造した硫黄-多孔性炭素複合体を92.0質量部、導電助剤としてアセチレンブラック(電気化学工業社製)を3.5質量部及びカーボンナノチューブ(昭和電工社製、商品名VGCF)を1.5質量部、並びに、バインダーとしてスチレン-ブタジエンゴム(40質量%水分散液、日本ゼオン社製)1.5質量部(固形分)及びカルボキシメチルセルロースナトリウム(ダイセルファインケム社製)1.5質量部を、溶媒である水120質量部に添加し、自転・公転ミキサーを用いて分散しスラリーとして電極合剤ペーストを得た。
 前記電極合剤ペーストを、ドクターブレード法によりカーボンコートアルミニウム箔(厚さ22μm)からなる集電体に塗布し、90℃で3時間静置して乾燥した。その後、この電極を所定の大きさにカットし、更に使用直前に150℃で2時間真空乾燥して負極-1を作製した。
<正極の作製>
 正極活物質としてLiNi1/3Co1/3Mn1/3を90質量部、導電助剤としてアセチレンブラック(電気化学工業社製)を5.0質量部、バインダーとしてポリフッ化ビニリデン(クレハ社製)を5.0質量部、溶媒としてN-メチルピロリドンを80質量部加え、自転・公転ミキサーを用いて分散し、電極合剤ペーストを得た。
 前記電極合剤ペーストを、ドクターブレード法によりアルミニウム箔(厚さ20μm)からなる集電体に塗布し、90℃で3時間静置して乾燥した。その後、この電極を所定の大きさにカットし、更に使用直前に150℃で2時間真空乾燥して正極を作製した。
<非水電解質の調製>
 エチレンカーボネート50体積%、ジエチルカーボネート50体積%からなる混合溶媒に、LiPFを1.0mol/Lの濃度で溶解し電解質溶液を調製した。これに化合物No.2-1を1.0質量%加え、非水電解質とした。
<電池の組み立て>
 セパレータであるガラスフィルターを、前記の正極及び負極-1で挟みこんでケース内に保持した。その後、先に調製した電解液を注入し、かしめ機により密閉、封止して、実施例1の非水電解質二次電池(リチウムイオン二次電池、φ20mm、厚さ3.2mmのコイン型)を作製した。
<実施例2>
 負極活物質として、硫黄-多孔性炭素複合体の代わりに製造例2で製造した硫黄変性ポリアクリロニトリルを用い、負極-1と同じ製造方法で負極-2を作製した。正極、電解質は実施例1と同じものを用い、負極-1の代わりに負極-2を用いて、実施例1と同様の操作により実施例2の非水電解質二次電池を作製した。
<実施例3>
 実施例1の電解質溶液に、化合物No.2-1の代わりに化合物No.4-7を1.0質量%加え、実施例3の非水電解質とした。正極及び負極は実施例2と同じものを用い、実施例1と同様の操作により実施例3の非水電解質二次電池を作製した。
<実施例4>
 実施例1の電解質溶液に、化合物No.2-1の代わりに、置換位置がα及びα’位である化合物No.5-4を1.0質量%加え、実施例4の非水電解質とした。正極及び負極は実施例2と同じものを用い、実施例1と同様の操作により実施例4の非水電解質二次電池を作製した。
<実施例5>
 実施例1の電解質溶液に、化合物No.2-1の代わりに化合物No.7-1を1.0質量%加え、実施例5の非水電解質とした。正極及び負極は実施例2と同じものを用い、実施例1と同様の操作により実施例5の非水電解質二次電池を作製した。
<実施例6>
 実施例1の電解質溶液に、化合物No.2-1の代わりに、化合物No.2-1を0.5質量%及び化合物No.4-7を0.5質量%加え、実施例6の非水電解質とした。正極及び負極は実施例2と同じものを用い、実施例1と同様の操作により実施例6の非水電解質二次電池を作製した。
<実施例7>
 実施例1の電解質溶液に、化合物No.2-1の代わりに、化合物No.2-1を0.5質量%及び化合物No.7-1を0.5質量%加え、実施例7の非水電解質とした。正極及び負極は実施例2と同じものを用い、実施例1と同様の操作により実施例7の非水電解質二次電池を作製した。
<実施例8>
 実施例1の電解質溶液に、化合物No.2-1の代わりに、化合物No.2-1を0.5質量%及び化合物No.7-2を0.5質量%加え、実施例8の非水電解質とした。正極及び負極は実施例2と同じものを用い、実施例1と同様の操作により実施例8の非水電解質二次電池を作製した。
<実施例9>
 実施例1の電解質溶液に、化合物No.2-1の代わりに、化合物No.2-1を0.5質量%及び化合物No.7-3を0.5質量%加え、実施例9の非水電解質とした。正極及び負極は実施例2と同じものを用い、実施例1と同様の操作により実施例9の非水電解質二次電池を作製した。
<実施例10>
 実施例1の電解質溶液に、化合物No.2-1の代わりに、化合物No.2-1を0.5質量%及び化合物No.7-4を0.5質量%加え、実施例10の非水電解質とした。正極及び負極は実施例2と同じものを用い、実施例1と同様の操作により実施例10の非水電解質二次電池を作製した。
<実施例11>
 実施例1の電解質溶液に、化合物No.2-1の代わりに、化合物No.2-1を0.5質量%及び化合物No.7-5を0.5質量%加え、実施例11の非水電解質とした。正極及び負極は実施例2と同じものを用い、実施例1と同様の操作により実施例11の非水電解質二次電池を作製した。
<実施例12>
 実施例1の電解質溶液に、化合物No.2-1の代わりに、化合物No.2-1を0.5質量%及び化合物No.6-1を0.5質量%加え、実施例12の非水電解質とした。正極及び負極は実施例2と同じものを用い、実施例1と同様の操作により実施例12の非水電解質二次電池を作製した。
<実施例13>
 実施例1の電解質溶液に、化合物No.2-1の代わりに、化合物No.4-7を0.5質量%及び化合物No.6-1を0.5質量%加え、実施例11の非水電解質とした。正極及び負極は実施例2と同じものを用い、実施例1と同様の操作により実施例13の非水電解質二次電池を作製した。
<実施例14>
 実施例1の電解質溶液に、化合物No.2-1の代わりに、化合物No.4-7を0.5質量%及び化合物No.7-1を0.5質量%加え、実施例11の非水電解質とした。正極及び負極は実施例2と同じものを用い、実施例1と同様の操作により実施例14の非水電解質二次電池を作製した。
<実施例15>
 実施例1の電解質溶液に、化合物No.2-1の代わりに、化合物No.4-7を0.5質量%及び化合物No.7-2を0.5質量%加え、実施例11の非水電解質とした。正極及び負極は実施例2と同じものを用い、実施例1と同様の操作により実施例15の非水電解質二次電池を作製した。
<実施例16>
 実施例1の電解質溶液に、化合物No.2-1の代わりに、化合物No.4-7を0.5質量%及び化合物No.7-4を0.5質量%加え、実施例11の非水電解質とした。正極及び負極は実施例2と同じものを用い、実施例1と同様の操作により実施例16の非水電解質二次電池を作製した。
<比較例1>
 実施例1の電解質溶液に、化合物No.2-1の代わりに化合物No.7-2を1.0質量%加えて非水電解質を調製した以外は実施例1と同様の操作により比較例1の非水電解質二次電池を作製した。
<比較例2>
 実施例1の電解質溶液に、化合物No.2-1の代わりに化合物No.7-2を1.0質量%加えて非水電解質を調製した以外は、実施例2と同様の操作により比較例2の非水電解質二次電池を作製した。
<比較例3>
 実施例1の電解質溶液に、化合物No.2-1の代わりに化合物No.7-4を1.0質量%加えて非水電解質を調製した以外は、実施例2と同様の操作により比較例3の非水電解質二次電池を作製した。
<比較例4>
 実施例1の電解質溶液に、化合物No.2-1の代わりに化合物No.7-5を1.0質量%加えて非水電解質を調製した以外は、実施例2と同様の操作により比較例4の非水電解質二次電池を作製した。
<比較例5>
 実施例1の電解質溶液に、化合物No.2-1の代わりに化合物No.7-6を1.0質量%加えて非水電解質を調製した以外は、実施例2と同様の操作により比較例5の非水電解質二次電池を作製した。
<比較例6>
 実施例1の電解質溶液に、化合物No.2-1を加えない以外は、実施例2と同様の操作により比較例6の非水電解質二次電池を作製した。
 なお、No.7-1~No.7-6は下式に示す化合物を用いた。
Figure JPOXMLDOC01-appb-C000015
<充放電評価>
 実施例1~11及び比較例1~6の非水電解質二次電池を、25℃の恒温槽に入れ、充電終止電圧を3.3V、放電終止電圧を0.8Vとし、充電レート0.1C、放電レート0.1Cの充放電試験を5サイクル行った。引き続き、充電レート1.0C、放電レート1.0Cで65サイクル行い、合計70サイクルの充放電試験を行って、放電容量を測定した。30サイクル目の放電容量に対する70サイクル目の放電容量の相対値を表1に示す。放電容量の単位はmAh/gである。

Figure JPOXMLDOC01-appb-T000016
 一般式(1)で表される化合物及び一般式(2)で示される化合物からなる群から選択される化合物を少なくとも1種含む非水電解質を使用することで、充放電を繰り返しても高容量を維持することができる、サイクル特性に優れた非水電解質二次電池を提供することが可能となる。
1  正極
1a 正極集電体
2  負極
2a 負極集電体
3  非水電解質
4  正極ケース
5  負極ケース
6  ガスケット
7  セパレータ
10 コイン型の非水電解質二次電池
10’円筒型の非水電解質二次電池
11 負極
12 負極集電体
13 正極
14 正極集電体
15 非水電解質
16 セパレータ
17 正極端子
18 負極端子
19 負極板
20 負極リード
21 正極板
22 正極リード
23 ケース
24 絶縁板
25 ガスケット
26 安全弁
27 PTC素子

Claims (6)

  1.  硫黄-多孔性炭素複合体及び硫黄変性有機化合物からなる群から選択される活物質を有する負極と、正極活物質を有する正極と、リチウム塩を含有する非水電解質とを有する非水電解質二次電池であって、
     非水電解質が、一般式(1)で表される化合物及び一般式(2)で表される化合物からなる群から選択される化合物を少なくとも1種含む非水電解質二次電池。
    Figure JPOXMLDOC01-appb-C000001
    (式中、R~Rはそれぞれ独立に炭素数1~10の炭化水素基を表し、Rは、炭素数1~10のn価の炭化水素基、または酸素原子若しくは硫黄原子を少なくとも1原子含む炭素数1~10のn価の炭化水素基を表し、nは1~6の整数を表す。)
    Figure JPOXMLDOC01-appb-C000002
    (式中、Rfはフッ素原子、またはフッ素原子を少なくとも1つ含む炭素数1~6の炭化水素基を表す。)
  2.  一般式(1)で表される化合物及び一般式(2)で表される化合物からなる群から選択される化合物の含有量が、非水電解質中の0.01質量%~20質量%である請求項1に記載の非水電解質二次電池。
  3.  一般式(1)のRが、炭素数2~10の不飽和炭化水素基、炭素数6~10の芳香族基、炭素数2~10の複素環基、または酸素原子若しくは硫黄原子を少なくとも1原子含む炭素数2~10の脂肪族炭化水素基を表し、nが2である請求項1または2に記載の非水電解質二次電池。
  4.  一般式(2)のRfがフッ素原子またはトリフルオロメチル基である請求項1または2に記載の非水電解質二次電池。
  5.  更に、非水電解質が、一般式(3)で表される化合物を少なくとも1種含む、請求項1~4のいずれか1項に記載の非水電解質二次電池。
    Figure JPOXMLDOC01-appb-C000003
    (式中、R~Rは、それぞれ独立して水素原子、ハロゲン原子、ニトリル基、ニトロ基、炭素数1~12のアルキル基、炭素数5~12のシクロアルキル基、炭素数6~12のアリール基、炭素数7~12のアラルキル基、炭素数1~12のオキシアルキル基、炭素数1~12のアシル基又は-SiR121314で表される基を表し、R10~R14はそれぞれ独立して炭素数1~12のアルキル基、炭素数2~12のアルケニル基、炭素数5~12のシクロアルキル基、炭素数6~12のアリール基又は炭素数7~12のアラルキル基を表し、Xはm価の炭化水素基を表し、mは1~3の数を表す。)
  6.  硫黄変性有機化合物が、硫黄変性ポリアクリロニトリルである請求項1~5のいずれか1項に記載の非水電解質二次電池。
PCT/JP2019/008407 2018-03-13 2019-03-04 非水電解質二次電池 WO2019176618A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020207022649A KR20200130808A (ko) 2018-03-13 2019-03-04 비수전해질 이차전지
JP2020506412A JP7216073B2 (ja) 2018-03-13 2019-03-04 非水電解質二次電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-045326 2018-03-13
JP2018045326 2018-03-13

Publications (1)

Publication Number Publication Date
WO2019176618A1 true WO2019176618A1 (ja) 2019-09-19

Family

ID=67906576

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/008407 WO2019176618A1 (ja) 2018-03-13 2019-03-04 非水電解質二次電池

Country Status (3)

Country Link
JP (1) JP7216073B2 (ja)
KR (1) KR20200130808A (ja)
WO (1) WO2019176618A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220048079A (ko) 2020-10-12 2022-04-19 박민호 양자 난수 발생기와 물리적 복제방지 기능을 내장한 반도체 보안 칩과, 그 보안 칩에 내장되어 동작하는 디지털 지갑

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006216553A (ja) * 2005-02-03 2006-08-17 Samsung Sdi Co Ltd 有機電解液及びそれを採用したリチウム電池
JP2013118168A (ja) * 2011-11-01 2013-06-13 Adeka Corp 非水電解液二次電池
JP2014096326A (ja) * 2012-11-12 2014-05-22 Toyota Industries Corp 二次電池用負極活物質、並びにこれを用いた負極及び二次電池
JP2015523693A (ja) * 2013-06-03 2015-08-13 エルジー・ケム・リミテッド 硫黄−リチウムイオン電池用電極組立体及びそれを含む硫黄−リチウムイオン電池
WO2015137253A1 (ja) * 2014-03-14 2015-09-17 株式会社Adeka 非水電解液及び非水電解液二次電池
WO2019073831A1 (ja) * 2017-10-11 2019-04-18 株式会社Adeka シリルエステル化合物の分解抑制方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003151550A (ja) 2001-11-13 2003-05-23 Hitachi Maxell Ltd 非水二次電池
CN102160217B (zh) 2008-10-17 2014-02-05 独立行政法人产业技术综合研究所 硫改性聚丙烯腈、其制备方法及其用途
JP5440003B2 (ja) 2009-07-23 2014-03-12 株式会社豊田中央研究所 蓄電デバイス及び電極活物質の製造方法
JP5467264B2 (ja) 2010-02-16 2014-04-09 株式会社豊田自動織機 非水電解液二次電池の電極材料の製造方法、非水電解液二次電池の電極材料およびその電極材料を用いた非水電解液二次電池
JP5164286B2 (ja) 2010-11-02 2013-03-21 株式会社豊田自動織機 硫黄系正極活物質の製造方法、硫黄系正極活物質、および、リチウムイオン二次電池用正極
US9620772B2 (en) 2010-12-24 2017-04-11 Idemitsu Kosan Co., Ltd. Positive electrode material containing a composite of sulfur and a porous conductive substance, and glass or glass ceramic particles for lithium ion batteries, and lithium ion battery
JP5142162B2 (ja) 2011-01-18 2013-02-13 株式会社豊田自動織機 リチウムイオン二次電池用正極活物質の製造方法及びリチウムイオン二次電池用正極
JP2012150933A (ja) 2011-01-18 2012-08-09 Toyota Industries Corp 硫黄系正極活物質とその製造方法及びリチウムイオン二次電池用正極。
JP5618112B2 (ja) 2011-02-25 2014-11-05 株式会社豊田自動織機 硫黄変性ポリアクリロニトリルおよびその評価方法ならびに硫黄変性ポリアクリロニトリルを用いた正極、非水電解質二次電池、および車両
JP2017191634A (ja) 2014-07-23 2017-10-19 株式会社Adeka 非水電解液二次電池、非水電解液及び化合物
EP3242886A4 (en) 2015-01-08 2018-08-29 Moerae Matrix, Inc., Formulation of mk2 inhibitor peptides
CN107709233B (zh) 2015-03-31 2021-05-14 国立研究开发法人产业技术综合研究所 有机硫材料及其制造方法
EP3279140B1 (en) 2015-03-31 2020-03-11 National Institute of Advanced Industrial Science and Technology Material obtained from sulfur and an organic starting material and method of producing same
CN108140887B (zh) 2015-09-17 2021-03-12 株式会社艾迪科 非水电解液及非水电解液二次电池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006216553A (ja) * 2005-02-03 2006-08-17 Samsung Sdi Co Ltd 有機電解液及びそれを採用したリチウム電池
JP2013118168A (ja) * 2011-11-01 2013-06-13 Adeka Corp 非水電解液二次電池
JP2014096326A (ja) * 2012-11-12 2014-05-22 Toyota Industries Corp 二次電池用負極活物質、並びにこれを用いた負極及び二次電池
JP2015523693A (ja) * 2013-06-03 2015-08-13 エルジー・ケム・リミテッド 硫黄−リチウムイオン電池用電極組立体及びそれを含む硫黄−リチウムイオン電池
WO2015137253A1 (ja) * 2014-03-14 2015-09-17 株式会社Adeka 非水電解液及び非水電解液二次電池
WO2019073831A1 (ja) * 2017-10-11 2019-04-18 株式会社Adeka シリルエステル化合物の分解抑制方法

Also Published As

Publication number Publication date
KR20200130808A (ko) 2020-11-20
JP7216073B2 (ja) 2023-01-31
JPWO2019176618A1 (ja) 2021-03-11

Similar Documents

Publication Publication Date Title
WO2019167875A1 (ja) 有機硫黄系電極活物質
JP7480284B2 (ja) 球状化カーボン系負極活物質、その製造方法、それを含む負極、及びリチウム二次電池
JP5478693B2 (ja) 二次電池用正極活物質及びその製造方法
WO2019208153A1 (ja) 非水電解質二次電池
JP2022510984A (ja) リチウム二次電池用負極活物質、その製造方法、およびこれを含むリチウム二次電池
US20190334173A1 (en) Composite graphite particles, method for producing same, and use thereof
WO2019181703A1 (ja) 内部短絡による熱暴走の抑制方法
KR20200081370A (ko) 슬러리 조성물, 및 슬러리 조성물을 이용한 전극
WO2020067609A1 (ko) 리튬 이차 전지용 음극 활물질 및 이를 포함하는 리튬 이차 전지
JP2024503797A (ja) リチウム二次電池用負極活物質、その製造方法およびそれを含むリチウム二次電池
EP3706215A1 (en) Method for producing organo-sulfur electrode active material
WO2020170833A1 (ja) 電解質用組成物、非水電解質及び非水電解質二次電池
WO2022004696A1 (ja) 硫黄変性ポリアクリロニトリル、それを含む電極活物質、該電極活物質を含む二次電池用電極、該電極の製造方法及び該電極を用いた非水電解質二次電池
WO2019176618A1 (ja) 非水電解質二次電池
WO2019189146A1 (ja) リチウムイオン二次電池、及びその作動方法
WO2020017378A1 (ja) 非水電解質二次電池
JP2020027695A (ja) 組成物、非水電解質及び非水電解質二次電池
JP2019220415A (ja) 組成物、非水電解質及び非水電解質二次電池
WO2023085245A1 (ja) 組成物、電極、電池及び電極活物質材料
WO2021060044A1 (ja) 硫黄変性ポリアクリロニトリルの製造方法
WO2024057992A1 (ja) 硫黄含有材料、硫黄含有電池材料、電極及び電池
WO2021251234A1 (ja) 電極及びリチウムイオン二次電池
WO2021124522A1 (ja) 電極活物質及びその製造方法、電極合剤層形成用組成物、非水電解質二次電池用電極並びに非水電解質二次電池
JP2021051854A (ja) 非水電解質二次電池の製造方法
WO2021060045A1 (ja) 非水電解質二次電池用電極及び当該電極を用いた非水電解質二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19767537

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020506412

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19767537

Country of ref document: EP

Kind code of ref document: A1