WO2015121899A1 - 電力用半導体モジュール - Google Patents

電力用半導体モジュール Download PDF

Info

Publication number
WO2015121899A1
WO2015121899A1 PCT/JP2014/003464 JP2014003464W WO2015121899A1 WO 2015121899 A1 WO2015121899 A1 WO 2015121899A1 JP 2014003464 W JP2014003464 W JP 2014003464W WO 2015121899 A1 WO2015121899 A1 WO 2015121899A1
Authority
WO
WIPO (PCT)
Prior art keywords
self
power semiconductor
semiconductor module
positive
wiring pattern
Prior art date
Application number
PCT/JP2014/003464
Other languages
English (en)
French (fr)
Inventor
美子 玉田
純一 中嶋
中山 靖
林田 幸昌
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201480075304.2A priority Critical patent/CN105981274B/zh
Priority to DE112014006352.5T priority patent/DE112014006352T5/de
Priority to US15/117,327 priority patent/US9899328B2/en
Priority to JP2015562568A priority patent/JP6366612B2/ja
Publication of WO2015121899A1 publication Critical patent/WO2015121899A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5386Geometry or layout of the interconnection structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/50Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor for integrated circuit devices, e.g. power bus, number of leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/64Impedance arrangements
    • H01L23/645Inductive arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/64Impedance arrangements
    • H01L23/66High-frequency adaptations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/072Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/14Mounting supporting structure in casing or on frame or rack
    • H05K7/1422Printed circuit boards receptacles, e.g. stacked structures, electronic circuit modules or box like frames
    • H05K7/1427Housings
    • H05K7/1432Housings specially adapted for power drive units or power converters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/14Mounting supporting structure in casing or on frame or rack
    • H05K7/1422Printed circuit boards receptacles, e.g. stacked structures, electronic circuit modules or box like frames
    • H05K7/1427Housings
    • H05K7/1432Housings specially adapted for power drive units or power converters
    • H05K7/14329Housings specially adapted for power drive units or power converters specially adapted for the configuration of power bus bars
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/58Structural electrical arrangements for semiconductor devices not otherwise provided for
    • H01L2223/64Impedance arrangements
    • H01L2223/66High-frequency adaptations
    • H01L2223/6605High-frequency electrical connections
    • H01L2223/6611Wire connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48111Disposition the wire connector extending above another semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • H01L2224/48139Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate with an intermediate bond, e.g. continuous wire daisy chain
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49113Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting different bonding areas on the semiconductor or solid-state body to a common bonding area outside the body, e.g. converging wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49175Parallel arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49811Additional leads joined to the metallisation on the insulating substrate, e.g. pins, bumps, wires, flat leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5385Assembly of a plurality of insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10254Diamond [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1027IV
    • H01L2924/10272Silicon Carbide [SiC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1032III-V
    • H01L2924/1033Gallium nitride [GaN]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1203Rectifying Diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19107Disposition of discrete passive components off-chip wires

Definitions

  • the present invention relates to a current imbalance suppression technique for a power semiconductor module used in a power conversion device such as an inverter that is required to be downsized.
  • Insulated power semiconductor modules used in power converters such as inverters have a wiring pattern formed on a metal plate serving as a heat sink via an insulating layer, and a power semiconductor element that performs switching operation is provided thereon. ing. This power semiconductor element is connected to an external terminal and sealed with resin.
  • Di / dt Di / dt
  • a power semiconductor module suitable for the power capacity is selected, or if there is no suitable power capacity, a plurality of power semiconductor modules have been connected in parallel. It was. However, when a plurality of power semiconductor modules are connected in parallel, it is necessary to increase the footprint because it is necessary to separate the modules in order to ensure an insulation distance.
  • Patent Document 1 In order to solve this drawback, there is one in which power semiconductor elements are arranged in parallel in the same package (for example, see Patent Document 1). As in Patent Document 1, even if a plurality of external terminals are provided for connection to an external circuit, terminals of a plurality of power semiconductor elements arranged in parallel in the same package are external terminals in the package. When connected together, there is not much effect in reducing inductance, and di / dt at the time of OFF increases with an increase in current capacity, so that surge voltage increases and power semiconductor elements may be destroyed. .
  • the inventor has invented a power semiconductor module having a plurality of external terminals and a plurality of circuits arranged in parallel inside the power semiconductor module in order to reduce the inductance of the power semiconductor element (for example, Patent Documents). 2).
  • the present invention has been made to solve the above-described problems.
  • substrates on which different wiring patterns are mounted are arranged adjacent to each other so as to be mirror-symmetric.
  • a power semiconductor module capable of suppressing current imbalance while maintaining a low inductance is obtained.
  • a power semiconductor module comprises a self-extinguishing semiconductor element connected in series, a positive / negative arm having a series connection point of the self-extinguishing semiconductor element, and a positive electrode side connected to the positive / negative arm A substrate on which a plurality of wiring patterns connecting the self-extinguishing semiconductor element of the positive and negative arms and the positive electrode, the negative electrode, and the AC electrode are formed.
  • the direction of the current flowing through the adjacent wiring patterns is the same, and one of the wiring patterns is arranged mirror-symmetrically with respect to the other wiring pattern.
  • the substrates on which different wiring patterns are mounted are arranged adjacent to each other so as to be mirror-symmetric, the current flowing between the adjacent wiring patterns is made uniform, and between the substrates and between the power semiconductor elements. Current imbalance can be suppressed.
  • 1 is a schematic top view of a power semiconductor module according to a first embodiment of the present invention.
  • 1 is a schematic side view of a power semiconductor module according to a first embodiment of the present invention.
  • 1 is a schematic side view of a power semiconductor module according to a first embodiment of the present invention. It is the upper surface schematic diagram which removed the main electrode of the semiconductor module for electric power of Embodiment 1 of this invention. It is an equivalent circuit diagram of the power semiconductor module according to the first embodiment of the present invention. It is a current pathway figure at the time of the commutation which flows into the wiring pattern etc. of the insulated substrate of the negative electrode side of the power semiconductor module of Embodiment 1 of this invention.
  • FIG. 1 is a schematic top view of a power semiconductor module according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic side view of the power semiconductor module according to the first embodiment of the present invention.
  • FIG. 3 is a schematic side view of the power semiconductor module according to the first embodiment of the present invention. 2 shows a schematic side view when viewed from the X side in FIG. 1, and FIG. 3 shows a schematic side view when viewed from the Y side in FIG.
  • FIG. 4 is a schematic top view of the power semiconductor module according to Embodiment 1 of the present invention from which main electrodes (positive electrode, negative electrode, and AC electrode) have been removed.
  • FIG. 1 is a schematic top view of a power semiconductor module according to Embodiment 1 of the present invention from which main electrodes (positive electrode, negative electrode, and AC electrode) have been removed.
  • main electrodes positive electrode, negative electrode, and AC electrode
  • FIG. 4 shows a chip layout of the self-extinguishing semiconductor element 6 and the free wheel diode 7 with the main electrode removed from FIG.
  • FIG. 5 is an equivalent circuit diagram of the power semiconductor module according to the first embodiment of the present invention.
  • the direction viewed from the X side is the X direction
  • the direction viewed from the Y side is the Y direction.
  • a power semiconductor module 100 includes a base plate 1, an insulating substrate 2 as a substrate, a drain (collector) wiring pattern 3, a source (emitter) wiring pattern 4, and a ceramics insulating substrate. 5, self-extinguishing semiconductor element 6, freewheeling diode 7, solder 9, positive electrode 10 as a positive electrode, negative electrode 11 as a negative electrode, AC electrode 12, bonding wire 21 as a wiring material, positive electrode 10 A positive electrode terminal 40 that is a terminal portion of the negative electrode 11, an AC terminal 42 that is a terminal portion of the AC electrode 12, a sealing material 50, a case 51, a lid 52, and a nut 53.
  • the power semiconductor module 100 has one surface of the base plate 1 that is a metal radiator that dissipates heat generated by the self-extinguishing semiconductor element 6 and the free-wheeling diode 7 constituting the power semiconductor module 100.
  • a ceramic insulating substrate 5 which is an insulating material to which metal foil is bonded by brazing or the like, is bonded by solder 9.
  • wiring patterns 3 and 4 are bonded to the surface of the ceramic insulating substrate 5 opposite to the surface bonded to the base plate 1 by brazing or the like with a metal foil.
  • the insulating substrate 2 is constituted by the ceramic insulating substrate 5 and the wiring patterns 3 and 4 to which the metal foil is bonded.
  • the material of the insulating substrate is not limited to ceramics, and may be a metal substrate using a resin insulating material.
  • a metal substrate using a resin insulating material instead of using a plurality of insulating substrates for positive and negative arms, for example, a single metal substrate is used, and a wiring pattern is formed on the metal substrate so as to be mirror-symmetrical. A plurality can be formed and used. The same effect can be obtained even with a metal substrate using such a resin insulating material.
  • the wiring patterns are arranged so as to be mirror-symmetric when viewed from above, and the mirror-symmetric reference line is set between the wiring patterns that are mirror-symmetric.
  • a self-extinguishing semiconductor element 6 and a free-wheeling diode 7 are formed by solder 9 on the surface of the drain (collector) wiring pattern 3 and the source (emitter) wiring pattern 4 facing the surface where the ceramic insulating substrate 5 is bonded. It is joined. Further, a positive electrode 10, a negative electrode 11, and an AC electrode 12 are joined to the drain (collector) wiring pattern 3 and the source (emitter) wiring pattern 4.
  • solder 9 is used as a bonding material, the bonding material is not limited to solder, and other bonding methods may be used.
  • the positive electrode 10, the negative electrode 11, and the AC electrode 12 are respectively connected to an external circuit on the module upper surface, a positive terminal 40 that is a terminal portion of the positive electrode 10, and a terminal of the negative electrode 11.
  • the negative electrode terminal 41 which is a part and the alternating current terminal 42 which is a terminal part of the alternating current electrode 12 are provided.
  • the positive terminal 40, the negative terminal 41, and the AC terminal 42 have holes for screw insertion, and a case in which a nut is embedded is installed under these terminals.
  • the power semiconductor module 100 is surrounded by a case 51, and a sealing material 50 is injected into the case 51 in order to insulate the inside of the case 51. Thereafter, the lid 52 is fitted into the case 51 and bonded with an adhesive or the like.
  • the source (emitter) wiring pattern 4 of the self-extinguishing semiconductor element 6 and the free-wheeling diode 7 and the surface not soldered are joined to the wiring pattern or the like by the bonding wire 21.
  • a wire is used as the wiring material, it is not limited to a wire and may be formed by other joining methods.
  • a parallel circuit called an arm in which a self-extinguishing semiconductor element 6 and a free-wheeling diode 7 are connected in antiparallel as power semiconductor elements is connected in series in the power semiconductor module 100.
  • the positive arm, the negative arm, that is, one phase of the power conversion circuit is configured.
  • the power semiconductor module 100 of the present embodiment is a power semiconductor module generally called “2 in 1” having a positive arm and a negative arm in the same case (same package).
  • the case is the outer shape of the power semiconductor module.
  • the case is referred to as a case.
  • the outer peripheral portion of the resin serves as a case and performs the same function.
  • the power semiconductor module 100 includes a positive arm and a negative arm, and is divided into a total of four blocks, two for each positive and negative arm as surrounded by a dotted line.
  • each block includes a plurality of parallel-connected self-extinguishing semiconductor elements 6 and a plurality of parallel-connected free-wheeling diodes 7 in antiparallel. Is connected to.
  • the positive block 102 and the negative block 112 are illustrated in a simplified manner, but have the same configuration as the positive block 101 and the negative block 111.
  • the self-extinguishing semiconductor element 6 is represented as a MOSFET (Metal-Oxide-Semiconductor, Field-Effect Transistor), but the self-extinguishing semiconductor element 6 is limited to a MOSFET. Any other self-extinguishing semiconductor element such as an IGBT (Insulated Gate Bipolar Transistor) or a bipolar transistor may be used. Further, in the present embodiment, a diode element such as a Schottky barrier diode is provided externally to the self-extinguishing semiconductor element 6 as the free-wheeling diode 7. Or a parasitic diode.
  • MOSFET Metal-Oxide-Semiconductor, Field-Effect Transistor
  • a gate control circuit for the self-extinguishing semiconductor element 6 is shown in the equivalent circuit of FIG. 5, and a positive side gate 13G, a positive side control source 13E, a negative side gate 14G, and a negative side control source 14E are shown as terminals.
  • FIGS. 1 to 4 relating to the internal structure of the module only the structure relating to the circuit of the main circuit is shown, and the structure relating to the control circuit is omitted and simplified.
  • a wiring pattern for controlling the self-extinguishing semiconductor element 6 is formed on the insulating substrate 2, and a gate or control source electrode on the self-extinguishing semiconductor element 6 and a gate or A control source electrode is electrically connected, and is exposed to the upper surface of the power semiconductor module, and has a mechanism that can be connected to an external conductor.
  • the wiring pattern of the control circuit is likely to be induced by the main circuit current of the self-extinguishing semiconductor element 6, that is, the current flowing in the wiring patterns 3 and 4, the wiring pattern of the control circuit is used to suppress current imbalance. It is desirable that the gate and the control source be parallel to each other.
  • Si Si
  • SiC Sicon Carbide
  • GaN GaN
  • diamond diamond
  • the insulating substrate 2 in which two types of wiring patterns 3, 4 on which a plurality of self-extinguishing semiconductor elements 6 and a plurality of free-wheeling diodes 7 are mounted is divided into a block 101 and a block 102. These are connected in parallel through the main electrodes of the positive electrode 10 and the AC electrode 12 to form a positive arm.
  • the insulating substrate 2 in which the arrangement of the two kinds of wiring patterns 3 and 4 on which the plurality of self-extinguishing semiconductor elements 6 and the plurality of free-wheeling diodes 7 are mounted is the block 111 and the block 112. These are connected in parallel via the main electrodes of the AC electrode 12 and the negative electrode 11 to form a negative arm.
  • FIG. 6 is a current path diagram at the time of commutation flowing through the wiring pattern of the insulating substrate on the negative electrode side of the power semiconductor module according to the first embodiment of the present invention.
  • 6A shows the negative arm portion when the insulating substrate 2 (mirror-symmetric insulating substrate) having a mirror-symmetrical wiring pattern is arranged side by side
  • FIG. 6B shows the same wiring pattern.
  • the portion of the negative arm when the insulating substrates 2 (same insulating substrates) are arranged side by side is shown in FIG. 6C.
  • the part of the negative arm in the case where 2 (mirror-symmetric insulating substrate) are arranged side by side is shown.
  • the direction of di / dt on the current path when the self-extinguishing semiconductor element 6 is turned on is indicated by an arrow.
  • the interaction between the wiring patterns of the adjacent insulating substrates 2 occurs due to di / dt indicated by the thick arrow.
  • the direction of the thick line arrow indicating the di / dt of the current flowing between the adjacent wiring patterns is opposite.
  • di / dt is large, such as when the self-extinguishing semiconductor element 6 is turned on / off, there is an effect of canceling out magnetic fluxes generated by currents flowing in the opposite directions.
  • the source wiring pattern 4 indicated by the thin line arrow of the self-extinguishing semiconductor element 6 on the right insulating substrate 2 the source wiring pattern 4 is not adjacent to the source wiring pattern 4 of the adjacent insulating substrate 2.
  • the parasitic inductance of the source wiring pattern 4 of the self-extinguishing semiconductor element 6 of the left insulating substrate 2 is smaller than that of the source wiring pattern 4 of the right insulating substrate 2.
  • the parasitic inductance is unbalanced between the insulating substrates 2 arranged on the left and right.
  • the thick line indicating the di / dt of the current flowing between the adjacent wiring patterns The directions of the arrows are the same, and the effect of canceling the magnetic flux generated when di / dt is large cannot be obtained. Therefore, the parasitic inductance generated in the current path indicated by the thick-line arrow indicates that the insulating substrate 2 having the same wiring pattern is placed sideways when the insulating substrates 2 having the wiring pattern having a mirror symmetry are arranged side by side. It turns out that it becomes larger than the case where it arranges.
  • the gate voltage of the self-extinguishing semiconductor element 6 Variations, that is, imbalance of currents flowing through the self-extinguishing semiconductor element 6 pose a problem.
  • This current imbalance needs to be reduced because it affects the life of the power semiconductor module in a power cycle or the like.
  • the variation in the gate voltage that is the cause of the current imbalance is often caused by the variation in the source (emitter) potential of the self-extinguishing semiconductor element 6.
  • the degree of imbalance of the parasitic inductance of the source wiring pattern 4 of the self-extinguishing semiconductor element 6 between the adjacent insulating substrates 2 is different.
  • the gate voltage that is, the current of the self-extinguishing semiconductor element 6 mounted on the insulating substrate 2 of FIG. 6B
  • an imbalance occurs in FIG. 6B, but an imbalance hardly occurs in FIG. That is, an effect of suppressing an imbalance of current flowing in the self-extinguishing semiconductor element 6 between the adjacent insulating substrates 2 can be obtained by the mirror-symmetric wiring pattern.
  • the source wiring pattern 4 is generated because the source wiring pattern 4 is not close to the adjacent insulating substrate 2, the current flowing in the reverse direction to the adjacent wiring pattern in the substrate is small, and the current conduction distance is short. The effect of canceling out the magnetic fluxes to each other is small.
  • the wiring patterns are mirror-symmetrical, the interaction received by the source wiring patterns 4 of the left and right insulating substrates 2 is the same, and the parasitic inductances of these wiring patterns are the same as in the case of FIG. Since the balance hardly occurs, it is possible to suppress the unbalance of the current flowing through the self-extinguishing semiconductor element 6.
  • the current imbalance between the insulating substrates 2 can be suppressed by arranging the wiring patterns in mirror symmetry.
  • the wiring pattern arrangement is not limited to that shown in FIGS. 6A and 6C, and any wiring pattern may be used as long as it is a mirror-symmetric arrangement.
  • the parasitic inductance of the source wiring pattern 4 or the main electrode configured in series with the parasitic inductance L that causes this variation is large, the parasitic inductance L is relatively small, and the variation of the source potential is also small. As a result, it is possible to suppress unbalance of currents flowing through the plurality of self-extinguishing semiconductor elements 6.
  • the di / dt flowing in the adjacent wiring pattern is more likely when the mirror-symmetric insulating substrates of the present invention are arranged side by side than when the same insulating substrates are arranged side by side.
  • the parasitic inductance of the current path indicated by the thick-line arrows connected in series is increased, the parasitic inductance L is relatively reduced and the variation in the source potential can be reduced.
  • variations in the gate voltage of the plurality of self-extinguishing semiconductor elements 6 are suppressed, and an effect of suppressing current imbalance of the plurality of self-extinguishing semiconductor elements 6 is obtained.
  • the current unbalance effect in the self-extinguishing semiconductor element 6 is obtained when the wiring patterns as shown in FIGS. 6A and 6C are mirror-symmetrically arranged.
  • the insulating substrate 2 of the same arm is arranged in parallel in the Y direction shown in FIG. 1, and the self-extinguishing semiconductor element 6 and the free wheel diode 7 are also arranged on the insulating substrate 2 in the Y direction. Since they are aligned, di / dt of the thick arrow described above is in the Y direction, and di / dt of the very thick arrow is in the X direction. Therefore, the inductance of the current path indicated by the thick arrow is not affected by the interaction suppression due to the mirror-symmetric arrangement of the insulating substrate 2.
  • the current path flowing in the same direction as the alignment direction of the self-extinguishing semiconductor element 6 and the current path ahead intersect at right angles, thereby increasing the parasitic inductance in the X direction. Since the parasitic inductance in the Y direction can be made relatively small, an effect of suppressing current imbalance can be obtained.
  • FIG. 6C Although the parasitic inductance in the X direction is not as large as in FIG. 6A, the parasitic inductance in the X direction is larger than that in FIG. Since the parasitic inductance in the Y direction can be reduced, an effect of suppressing current imbalance can be obtained.
  • the insulating substrate 2 constituting the positive arm and the negative arm is disposed to face the X direction.
  • the insulating substrate 2 constituting each arm can be composed of two types having the same mirror symmetry.
  • two methods of constructing the positive arm and the negative arm there are two methods of constructing the positive arm and the negative arm.
  • the positive electrode block 101 and the negative electrode block 111 have the same wiring pattern
  • the positive electrode block 102 and the negative electrode block 112 have the same wiring pattern.
  • the substrate 2 is rotated 180 ° and arranged so as to face the X direction.
  • FIG. 7 is a current path diagram at the time of commutation flowing through the wiring pattern or the like of the insulating substrate of the power semiconductor module according to the first embodiment of the present invention.
  • the direction of di / dt in the current path (excluding the main electrode) of the positive arm and the negative arm of the power semiconductor module 100 of the present embodiment is indicated by arrows.
  • FIG. 8 is a current path diagram at the time of commutation flowing through a wiring pattern or the like of an insulating substrate of another power semiconductor module according to the first embodiment of the present invention.
  • the direction of di / dt in the current path (excluding the main electrode) of the positive arm and the negative arm of the power semiconductor module 110 of the present embodiment is indicated by arrows.
  • FIG. 8 shows another configuration example in which the arrangement of the positive arms is different from the configuration example shown in FIG.
  • the positive electrode block 101, the negative electrode block 112, the positive electrode block 102, and the negative electrode block 111 are the structures using the insulated substrate 2 comprised with the same wiring pattern, respectively. That is, in the configuration of FIG. 8, the insulating substrate 2 adjacent to the positive arm and the negative arm is also mirror-symmetric.
  • the current path shown in FIGS. 7 and 8 indicates di / dt on the current path when a large di / dt occurs during commutation when the self-extinguishing semiconductor element 6 of the negative arm is turned on. .
  • the current path during commutation is such that the positive electrode side passes through the self-extinguishing semiconductor element 6 and the negative electrode side passes through the freewheeling diode 7. 8 differs from FIG. 8 in that the current path flowing through the wiring pattern of the insulating substrate 2 is substantially the same.
  • the di / dt direction of the thick line arrow of the source wiring pattern 4 is not adjacent between the adjacent insulating substrates 2 in the positive arm with respect to the direction of di / dt shown in the drawing.
  • the configuration is the same as that shown in (c). Since the source wiring pattern 4 is not close to the adjacent insulating substrate 2 and the current flowing in the reverse direction to the adjacent wiring pattern in the same insulating substrate 2 is small and the conduction distance of the current is short, the generated magnetic fluxes are mutually connected. The effect of counteracting is small. However, because of the mirror-symmetrical arrangement, the interaction received by the source wiring patterns 4 arranged on the left and right insulating substrates 2 is equivalent, and the current imbalance suppression effect can be obtained as in the case of FIG.
  • the negative arm has the same configuration as that shown in FIG. 6A, and because the source wiring pattern 4 is adjacent, the direction of di / dt becomes the same, and the parasitic inductance of the current path indicated by the thick line arrow As a result, the same effect as the negative electrode current imbalance suppression effect shown in FIG. 6A can be obtained.
  • the current path indicated by the thick line arrow is adjacent to the adjacent insulating substrate of the positive arm and the negative arm (mirror symmetry), and the di / dt direction of the flowing current is opposite, indicating the thick line arrow. The parasitic inductance generated in the current path is reduced.
  • the parasitic inductance of the current path indicated by the thick line arrow is compared with the parasitic inductance of the current path indicated by the very thick arrow. Therefore, the inductance becomes relatively small and the variation in the source potential can be reduced, so that the imbalance of the current flowing through the self-extinguishing semiconductor element 6 can be suppressed.
  • both the positive arm and the negative arm can perform the same operation as the negative electrode side shown in FIG. Therefore, the current path indicated by the thick line arrow of the source wiring 4 of the self-extinguishing semiconductor element 6 or the free wheel diode 7 has no effect of canceling the magnetic flux generated by di / dt between the adjacent insulating substrates 2.
  • the parasitic inductance at the arrow is large. Therefore, in both the positive arm and the negative arm, the parasitic inductance of the current path indicated by the thick arrow increases, so that the parasitic inductance of the current path indicated by the thick arrow becomes relatively small and the source potential varies.
  • the same effect as the effect of suppressing the unbalance of the current flowing through the self-extinguishing semiconductor element 6 can be obtained even on the positive electrode side.
  • the positive arm and the negative arm have the same wiring pattern arrangement, the direction of the thick arrow is the same, and the parasitic inductance increases in this portion.
  • the increase amount of the parasitic inductance in the thick line portion is smaller than the increase amount of the parasitic inductance in the very thick arrow portion, and does not affect the variation of the source potential.
  • all the opposing wiring patterns in the module are the same, the operation balance within the power semiconductor module is uniform, and stable operation as a power semiconductor module is possible. As described above, in any of the configurations of FIGS.
  • FIG. 7 and 8 it is possible to obtain an effect of suppressing current imbalance.
  • the positive arm and the negative arm have different configurations.
  • the negative arm is the same as the positive arm, that is, the same configuration can be applied to the left-right reversed configuration of FIG. 8 (using the negative arm of FIG. 7).
  • the effect of suppressing current imbalance can be obtained.
  • the main electrode is arranged in such a manner that the positive electrode 10, the negative electrode 11, and the AC electrode 12 are stacked, so that there is one terminal of the power semiconductor module.
  • the positive electrode 10 and the AC electrode 12 or the AC electrode 12 and the negative electrode 11 are laminated from the insulating substrate, and the positive electrode 10 and the negative electrode 111 are laminated on the upper part of the power semiconductor module. It is possible to reduce the parasitic inductance.
  • the substrates on which different wiring patterns are mounted are arranged adjacent to each other so as to be mirror-symmetric, the current flowing between the adjacent wiring patterns can be made uniform. it can. As a result, current imbalance between the substrates and between the power semiconductor elements can be suppressed, and the reliability of the power semiconductor module can be improved.
  • the number of substrates constituting the power semiconductor module can be reduced, and current imbalance between the substrates and between the power semiconductor elements. This makes it possible to reduce the cost of the power semiconductor module.
  • a plurality of different wiring patterns are arranged adjacent to each other so as to be mirror-symmetric on one substrate, so that the number of substrates can be reduced, The cost of the power semiconductor module can be reduced while suppressing the current imbalance between the power semiconductor elements.
  • FIG. The second embodiment is different in that a plurality of pairs of positive and negative arms having a pair of mirror symmetry used in the first embodiment are arranged. By arranging a plurality of pairs of positive and negative arms having mirror symmetry in this way, it is possible to suppress an imbalance of current flowing through the self-extinguishing semiconductor element in each mirror symmetry portion.
  • FIG. 9 is a schematic top view of the power semiconductor module according to the second embodiment of the present invention.
  • FIG. 10 is a schematic side view of the power semiconductor module according to the second embodiment of the present invention.
  • FIG. 11 is a schematic side view of the power semiconductor module according to the second embodiment of the present invention. 10 shows a schematic side view when viewed from the X side in FIG. 9, and FIG. 11 shows a schematic side view when viewed from the Y side in FIG.
  • FIG. 12 is a schematic top view of the power semiconductor module according to Embodiment 2 of the present invention from which main electrodes (positive electrode, negative electrode, and AC electrode) have been removed.
  • FIG. 1 positive electrode, negative electrode, and AC electrode
  • FIG. 12 shows a chip layout of the self-extinguishing semiconductor element 6 and the free-wheeling diode 7 by removing the main electrode from FIG.
  • FIG. 13 is an equivalent circuit diagram of the power semiconductor module according to the first embodiment of the present invention.
  • the direction viewed from the X side is the X direction
  • the direction viewed from the Y side is the Y direction.
  • the power semiconductor module 200 of the second embodiment includes a base plate 1, an insulating substrate 2 as a substrate, a drain (collector) wiring pattern 3, a source (emitter) wiring pattern 4, and a ceramics insulating substrate. 5, self-extinguishing semiconductor element 6, freewheeling diode 7, solder 9, positive electrode 10 as a positive electrode, negative electrode 11 as a negative electrode, AC electrode 12, bonding wire 21 as a wiring material, positive electrode 10 A positive electrode terminal 40 that is a terminal portion of the negative electrode 11, an AC terminal 42 that is a terminal portion of the AC electrode 12, a sealing material 50, a case 51, a lid 52, and a nut 53.
  • the power semiconductor module 200 has one surface of the base plate 1 that is a metal radiator that dissipates heat generated by the self-extinguishing semiconductor element 6 and the free wheeling diode 7 constituting the power semiconductor module 200.
  • a ceramic insulating substrate 5 which is an insulating material to which metal foil is bonded by brazing or the like, is bonded by solder 9.
  • wiring patterns 3 and 4 are bonded to the surface of the ceramic insulating substrate 5 opposite to the surface bonded to the base plate 1 by brazing or the like with a metal foil.
  • the insulating substrate 2 is constituted by the ceramic insulating substrate 5 and the wiring patterns 3 and 4 to which the metal foil is bonded.
  • the material of the insulating substrate is not limited to ceramics, and may be a metal substrate using a resin insulating material.
  • a metal substrate using a resin insulating material instead of using a plurality of insulating substrates for positive and negative arms, for example, a single metal substrate is used, and a wiring pattern is formed on the metal substrate so as to be mirror-symmetrical. A plurality can be formed and used. The same effect can be obtained even with a metal substrate using such a resin insulating material.
  • a self-extinguishing semiconductor element 6 and a free-wheeling diode 7 are formed by solder 9 on the surface of the drain (collector) wiring pattern 3 and the source (emitter) wiring pattern 4 facing the surface where the ceramic insulating substrate 5 is bonded. It is joined. Further, a positive electrode 10, a negative electrode 11, and an AC electrode 12 are joined to the drain (collector) wiring pattern 3 and the source (emitter) wiring pattern 4.
  • solder 9 is used as a bonding material, the bonding material is not limited to solder, and other bonding methods may be used.
  • the positive electrode 10, the negative electrode 11, and the AC electrode 12 are respectively connected to an external circuit on the module upper surface, a positive terminal 40 that is a terminal portion of the positive electrode 10, and a terminal of the negative electrode 11.
  • the negative electrode terminal 41 which is a part and the alternating current terminal 42 which is a terminal part of the alternating current electrode 12 are provided.
  • the positive terminal 40, the negative terminal 41, and the AC terminal 42 have holes for screw insertion, and a case in which a nut is embedded is installed under these terminals.
  • the power semiconductor module 200 is surrounded by a case 51, and a sealing material 50 is injected into the case 51 in order to insulate the inside of the case 51. Thereafter, the lid 52 is fitted into the case 51 and bonded with an adhesive or the like.
  • the source (emitter) wiring pattern 4 of the self-extinguishing semiconductor element 6 and the free-wheeling diode 7 and the surface not soldered are joined to the wiring pattern or the like by the bonding wire 21.
  • a wire is used as the wiring material, it is not limited to a wire and may be formed by other joining methods.
  • a parallel circuit called an arm in which a self-extinguishing semiconductor element 6 and a free-wheeling diode 7 are connected in antiparallel as power semiconductors is connected in series in the power semiconductor module 200.
  • the positive and negative arms, that is, one phase of the power conversion circuit is configured.
  • the power semiconductor module 200 of the present embodiment is a power semiconductor module generally called “2 in 1” having a positive arm and a negative arm in the same case (same package).
  • the case is the outer shape of the power semiconductor module.
  • the case is referred to as a case.
  • the outer peripheral portion of the resin serves as a case and performs the same function.
  • the power semiconductor module 200 includes a positive arm and a negative arm, and is divided into a total of 8 blocks of 4 for each of the positive and negative arms as surrounded by a dotted line.
  • each block includes a plurality of parallel-connected self-extinguishing semiconductor elements 6 and a plurality of parallel-connected free-wheeling diodes 7 in antiparallel. Is connected to.
  • the blocks 102 to 104 on the positive electrode side and the blocks 112 to 114 on the negative electrode side are illustrated in a simplified manner, but have the same configuration as the block 101 on the positive electrode side and the block 111 on the negative electrode side.
  • the self-extinguishing semiconductor element 6 is represented as a MOSFET (Metal-Oxide-Semiconductor, Field-Effect Transistor), but the self-extinguishing semiconductor element 6 is limited to a MOSFET. Any other self-extinguishing semiconductor element such as an IGBT (Insulated Gate Bipolar Transistor) or a bipolar transistor may be used. Further, in the present embodiment, a diode element such as a Schottky barrier diode is provided externally to the self-extinguishing semiconductor element 6 as the free-wheeling diode 7. Or a parasitic diode.
  • MOSFET Metal-Oxide-Semiconductor, Field-Effect Transistor
  • a gate control circuit of the self-extinguishing semiconductor element 6 is described in the equivalent circuit of FIG. 13, and a positive side gate 13G, a positive side control source 13E, a negative side gate 14G, and a negative side control source 14E are shown as terminals.
  • FIGS. 9 to 12 relating to the internal structure of the module only the structure relating to the circuit of the main circuit is shown, and the structure relating to the control circuit is omitted and simplified.
  • a wiring pattern for controlling the self-extinguishing semiconductor element 6 is formed on the insulating substrate 2, and the gate or control source electrode of the self-extinguishing semiconductor element 6 and the gate or control for connection to the outside are provided.
  • a source electrode is electrically connected, exposed to the upper surface of the power semiconductor module, and provided with a mechanism that can be connected to an external conductor.
  • the wiring pattern of the control circuit is likely to be induced by the main circuit current of the self-extinguishing semiconductor element 6, that is, the current flowing in the wiring patterns 3 and 4, the wiring pattern of the control circuit is used to suppress current imbalance. It is desirable that the gate and the control source be parallel to each other. Further, not only Si (Silicon) but also semiconductor elements using SiC (Silicon Carbide), GaN (Gallium Nitride), or diamond as raw materials as the material of the semiconductor element can be obtained. In particular, when SiC, GaN, or the like capable of high-speed operation is used, a more remarkable effect can be obtained.
  • the power semiconductor module 200 includes a positive arm and a negative arm, and is divided into a total of 8 blocks of 4 for each of the positive and negative arms as surrounded by a dotted line. That is, the number of blocks is different from the first embodiment.
  • the insulating substrates 2 having different arrangements of the two kinds of wiring patterns 3 and 4 on which a plurality of self-extinguishing semiconductor elements 6 and a plurality of free-wheeling diodes 7 are mounted constitute blocks 101 to 104. Then, they are connected in parallel via the main electrodes of the positive electrode 10 and the AC electrode 12 to constitute a positive arm. Similarly, on the negative electrode side, the insulating substrates 2 having different arrangements of the two kinds of wiring patterns 3 and 4 on which a plurality of self-extinguishing semiconductor elements 6 and a plurality of free-wheeling diodes 7 are mounted constitute blocks 111 to 114.
  • the insulating substrate 2 is connected to the source (emitter) of the self-extinguishing semiconductor element 6 and the anode of the free-wheeling diode 7 by the wiring pattern 3 and the bonding wire 21 on which the self-extinguishing semiconductor element 6 and the free-wheeling diode 7 are mounted.
  • FIG. 14 is a current path diagram at the time of commutation flowing through the wiring pattern of the insulating substrate on the negative electrode side of the power semiconductor module according to the second embodiment of the present invention.
  • FIG. 14A shows the negative arm portion when the insulating substrate 2 (mirror-symmetric insulating substrate) having a mirror-symmetrical wiring pattern is arranged side by side
  • FIG. 14B shows the same wiring pattern.
  • the portion of the negative arm in the case where the insulating substrates 2 (same insulating substrates) as the arrangement are arranged side by side is shown.
  • the effect of the present invention will be described with reference to FIG.
  • the direction of di / dt on the current path when the self-extinguishing semiconductor element 6 is turned on is indicated by an arrow.
  • the interaction between the wiring patterns of the adjacent insulating substrates 2 occurs due to di / dt indicated by the thick arrow.
  • the direction of the thick arrow indicating the di / dt of the current flowing between the adjacent wiring patterns is opposite.
  • di / dt is large, such as when the self-extinguishing semiconductor element 6 is turned on / off, there is an effect of canceling out magnetic fluxes generated by currents flowing in the opposite directions.
  • the source wiring pattern 4 indicated by the thin line arrow of the self-extinguishing semiconductor element 6 on the leftmost insulating substrate 2 the source wiring pattern 4 is not close to the source wiring pattern 4 of the adjacent insulating substrate 2.
  • the effect of canceling the generated magnetic fluxes is small. That is, when compared between the insulating substrates 2, the parasitic wiring inductance of the source wiring pattern 4 of the self-extinguishing semiconductor element 6 on the leftmost insulating substrate 2 is larger than that of the source wiring pattern 4 of the other right insulating substrate 2. Therefore, current imbalance occurs between the insulating substrates 2 arranged on the same base plate 1.
  • the thick line arrows indicating the di / dt of the current flowing between adjacent wiring patterns The directions are the same, and the effect of canceling the magnetic flux generated when di / dt is large cannot be obtained. Therefore, the parasitic inductance generated in the current path indicated by the thick-line arrow indicates that the insulating substrate 2 having the same wiring pattern is placed sideways when the insulating substrates 2 having the wiring pattern having a mirror symmetry are arranged side by side. It turns out that it becomes larger than the case where it arranges.
  • the wiring patterns are mirror-symmetrically arranged, so that the self-extinguishing type of the insulating substrate 2 is provided.
  • the interaction received by the source wiring pattern 4 of the semiconductor element 6 is the same between the pair of left and right insulating substrates 2 and the parasitic inductance is the same.
  • current imbalance is unlikely to occur between the pair of left and right insulating substrates 2.
  • the source wiring pattern 4 is adjacent to one location, but the same current can be obtained by arranging the insulating substrate 2 so that the source wiring pattern 4 is adjacent to two locations. An unbalance suppression effect can be obtained.
  • the degree of unbalance of the parasitic inductance of the source wiring pattern 4 of the self-extinguishing semiconductor element 6 between the adjacent insulating substrates 2 is different.
  • the gate voltage that is, the current of the self-extinguishing semiconductor element 6 mounted between the insulating substrates 2 disposed on the base plate 1
  • the wiring pattern is not disposed mirror-symmetrically.
  • FIG. 14A the wiring pattern is arranged mirror-symmetrically, so that current imbalance hardly occurs. That is, an effect of suppressing an imbalance of current flowing in the self-extinguishing semiconductor element 6 between the adjacent insulating substrates 2 can be obtained by the mirror-symmetric wiring pattern.
  • the current of the self-extinguishing semiconductor element 6 is determined by the gate voltage, in the power semiconductor module in which the self-extinguishing semiconductor elements are arranged in multiple parallels, Variations in the gate voltage of the self-extinguishing semiconductor element 6, that is, an imbalance in current flowing through the self-extinguishing semiconductor element 6 poses a problem.
  • This current imbalance needs to be reduced because it affects the life of the power semiconductor module in a power cycle or the like.
  • the gate voltage variation that is the cause of this current imbalance is often caused by variations in the source (emitter) potential of the self-extinguishing semiconductor element 6.
  • the parasitic inductance of the source wiring pattern 4 or the main electrode configured in series with the parasitic inductance causing the variation is large, the parasitic inductance L is relatively small, and the variation of the source potential is also small.
  • the imbalance of the current flowing through the self-extinguishing semiconductor element 6 can be suppressed.
  • the direction of the current flowing in the adjacent wiring pattern is unified in the case where the mirror-symmetric insulating substrates of the present invention are arranged than in the case where the same insulating substrates are arranged side by side.
  • the parasitic inductance of the current path indicated by the thick-line arrows connected in series is increased, so that the parasitic inductance L is relatively reduced and the variation in source potential can be reduced.
  • variations in the gate voltage of the self-extinguishing semiconductor element 6 are suppressed, and an effect of suppressing current imbalance in the self-extinguishing semiconductor element 6 is obtained.
  • the insulating substrates 2 of the same arm are arranged in parallel in the Y direction shown in FIG. 6 and the free-wheeling diode 7 are also aligned in the Y direction on the insulating substrate 2, so that the current path indicated by the thick arrow is in the Y direction and the current path indicated by the very thick arrow is in the X direction. Yes. Therefore, the inductance of the current path indicated by the thick arrow is not affected by the interaction suppression due to the mirror-symmetric arrangement.
  • the current path flowing in the same direction as the alignment direction of the self-extinguishing semiconductor element 6 and the current path ahead intersect at right angles, thereby increasing the parasitic inductance in the X direction. Since the parasitic inductance in the Y direction can be made relatively small, an effect of suppressing current imbalance can be obtained.
  • the insulating substrate 2 constituting the positive arm and the negative arm is disposed to face the X direction.
  • the insulating substrate 2 constituting each arm can be composed of two types having the same mirror symmetry.
  • FIG. 15 is a current path diagram at the time of commutation flowing through the wiring pattern or the like of the insulating substrate of the power semiconductor module according to the second embodiment of the present invention.
  • the current paths (excluding the main electrode) of the positive arm and the negative arm of the power semiconductor module 200 of the second embodiment are indicated by arrows.
  • FIG. 16 is a current path diagram at the time of commutation flowing through a wiring pattern or the like of an insulating substrate of another power semiconductor module according to the second embodiment of the present invention.
  • the current paths (excluding the main electrode) of the positive arm and the negative arm of the power semiconductor module 210 of the second embodiment are indicated by arrows.
  • FIG. 16 shows another configuration example in which the arrangement of the negative arms is different from the configuration example shown in FIG.
  • the positive electrode blocks 101 and 103 and the negative electrode blocks 112 and 114, the positive electrode blocks 102 and 104, and the negative electrode blocks 111 and 113 are configured using the insulating substrate 2 configured with the same wiring pattern. That is, in the configuration of FIG. 16, the adjacent insulating substrate 2 of the positive arm and the negative arm is also mirror-symmetric.
  • the current paths shown in FIG. 15 and FIG. 16 show the current paths when a large di / dt occurs during commutation when the self-extinguishing semiconductor element 6 of the negative arm is turned on.
  • FIG. 16 is different from FIG. 16 in that the current path flowing through the wiring pattern of the insulating substrate 2 is substantially the same.
  • the direction of di / dt of the thick line arrow of the source wiring pattern 4 described above with respect to the direction of di / dt shown in the figure is that the source wiring pattern 4 is adjacent in the positive arm and the negative arm. There are places.
  • the direction of current flow in this portion is the same, the parasitic inductance of the current path indicated by the thick line arrow increases, and the same effect as the current unbalance suppression effect on the negative electrode side shown in FIG. Can do.
  • the current path indicated by the thick line arrow is adjacent to the adjacent insulating substrate 2 of the positive arm and the negative arm (mirror symmetry), and the direction of the flowing current is opposite, so the current path indicated by the thick line arrow
  • the parasitic inductance generated in the circuit is reduced. Therefore, by reducing the parasitic inductance of the current path indicated by the thick line arrow in both the positive arm and the negative arm, the parasitic inductance of the current path indicated by the thick line arrow is compared with the parasitic inductance of the current path indicated by the very thick arrow. Therefore, the inductance becomes relatively small and the variation in the source potential can be reduced, so that the imbalance of the current flowing through the self-extinguishing semiconductor element 6 can be suppressed.
  • the same effect as the effect of suppressing the unbalance of the current flowing through the self-extinguishing semiconductor element 6 can be obtained even on the positive electrode side.
  • the positive arm and the negative arm have the same wiring pattern arrangement, the direction of the thick arrow is the same, and the parasitic inductance increases in this portion.
  • the increase amount of the parasitic inductance in the thick line arrow portion is smaller than the increase amount of the parasitic inductance in the very thick arrow portion, and does not affect the variation of the source potential.
  • all the opposing wiring patterns in the module are the same, the operation balance within the power semiconductor module is uniform, and stable operation as a power semiconductor module is possible. As described above, in any of the configurations of FIGS.
  • the self-extinguishing semiconductor elements 6 mounted on the insulating substrate 2 are illustrated as four in parallel, but the effect of the present invention can be obtained if the number of parallel elements is two or more. It is a thing and is not limited to 4 parallel. Further, although the number of insulating substrates 2 is also shown as four in parallel, the effect of the present invention can be obtained as long as the number of insulating substrates 2 in parallel is two or more, and is not limited to four.
  • the main electrode is arranged in such a manner that a positive electrode, a negative electrode, and an AC electrode are laminated, so that even if there is one module terminal, the main electrode is separated from the insulating substrate.
  • An electrode and an AC electrode or an AC electrode and a negative electrode are stacked, and further, a positive electrode and a negative electrode are stacked at the upper part of the module, so that inductance can be reduced.
  • the insulating substrates 2 on which different wiring patterns are mounted are arranged adjacent to each other so as to be mirror-symmetrical, the current flowing between the adjacent wiring patterns is made uniform. be able to. As a result, current imbalance between the insulating substrates 2 and between the self-extinguishing semiconductor elements 6 can be suppressed, and the reliability of the power semiconductor module can be improved.
  • the number of the insulating substrates 2 is only required to be mirror-symmetrically arranged so that the wiring patterns 4 are adjacent to each other, and the current flowing between the adjacent wiring patterns can be made uniform regardless of the number of the arranged substrates.
  • current imbalance between the insulating substrates 2 and between the self-extinguishing semiconductor elements 6 can be suppressed, and the reliability of the power semiconductor module can be improved.
  • the number of substrates constituting the power semiconductor module can be reduced, and current imbalance between the substrates and between the power semiconductor elements. This makes it possible to reduce the cost of the power semiconductor module.
  • a plurality of different wiring patterns are arranged adjacent to each other so as to be mirror-symmetric on one substrate, so that the number of substrates can be reduced, and between the substrates and The cost of the power semiconductor module can be reduced while suppressing the current imbalance between the power semiconductor elements.
  • Embodiment 3 FIG.
  • the third embodiment is different in that the source wiring pattern including the mirror-symmetric part of the adjacent insulating substrate used in the first and second embodiments is connected by a bonding wire.
  • FIG. 17 is a schematic top view of the power semiconductor module according to Embodiment 3 of the present invention from which the main electrodes (positive electrode, negative electrode, and AC electrode) have been removed.
  • FIG. 17 shows a chip layout of the self-extinguishing semiconductor element 6 and the free-wheeling diode 7 with the main electrode removed.
  • the main electrode (not shown) is omitted because it has the same shape as in the second embodiment.
  • FIG. 18 is a schematic top view of the conventional power semiconductor module with the main electrode removed.
  • FIG. 18 shows a chip layout such as the self-extinguishing semiconductor element 6 and the freewheeling diode 7 with the main electrode removed.
  • the insulating substrate is not arranged mirror-symmetrically.
  • FIG. 19 is a schematic top view of the main electrode (positive electrode, negative electrode, and AC electrode) of another power semiconductor module according to Embodiment 3 of the present invention.
  • FIG. 19 shows a chip layout of the self-extinguishing semiconductor element 6 and the free-wheeling diode 7 with the main electrode removed.
  • the main electrode (not shown) is omitted because it has the same shape as in the second embodiment.
  • the power semiconductor module 300 includes a base plate 1, an insulating substrate 2 as a substrate, a drain (collector) wiring pattern 3, a source (emitter) wiring pattern 4, a ceramics insulating substrate 5, An arc extinguishing type semiconductor element 6, a reflux diode 7, a bonding wire 22, and a case 51 are provided.
  • the power semiconductor module 300 has one surface of the base plate 1 that is a metal radiator that dissipates heat generated by the self-extinguishing semiconductor element 6 and the free-wheeling diode 7 constituting the power semiconductor module 300.
  • a ceramic insulating substrate 5 which is an insulating material to which metal foil is bonded by brazing or the like, is bonded by solder 9.
  • wiring patterns 3 and 4 are bonded to the surface of the ceramic insulating substrate 5 opposite to the surface bonded to the base plate 1 by brazing or the like with a metal foil.
  • the insulating substrate 2 is constituted by the ceramic insulating substrate 5 and the wiring patterns 3 and 4 to which the metal foil is bonded.
  • the material of the insulating substrate is not limited to ceramics, and may be a metal substrate using a resin insulating material.
  • a metal substrate using a resin insulating material instead of using a plurality of insulating substrates for positive and negative arms, for example, a single metal substrate is used, and a wiring pattern is formed on the metal substrate so as to be mirror-symmetrical. A plurality can be formed and used. The same effect can be obtained even with a metal substrate using such a resin insulating material.
  • a self-extinguishing semiconductor element 6 and a free-wheeling diode 7 are formed by solder 9 on the surface of the drain (collector) wiring pattern 3 and the source (emitter) wiring pattern 4 facing the surface where the ceramic insulating substrate 5 is bonded. It is joined. Further, the source (emitter) wiring patterns 4 of the adjacent insulating substrates 2 are connected and made conductive by bonding wires 22.
  • a wire is used as the wiring material, it is not limited to a wire and may be formed by other joining methods.
  • a power semiconductor module 310 in the conventional example includes a base plate 1, an insulating substrate 2 as a substrate, a drain (collector) wiring pattern 3, a source (emitter) wiring pattern 4, a ceramics insulating substrate 5, a self-extinguishing type.
  • a semiconductor element 6, a reflux diode 7, a bonding wire 22 as a wiring material, and a case 51 are provided.
  • the power semiconductor module 300 of the third embodiment is different in that the wiring pattern is not mirror-symmetrically arranged.
  • the wiring pattern constituting the main circuit of the insulating substrate 2 is connected only by the main electrode and connected in parallel.
  • a current path is used. It is effective to increase. Therefore, in the third embodiment, the parallel source (emitter) patterns 4 are connected by the bonding wires 22 in order to increase the current path.
  • the wiring pattern of the adjacent insulating substrate 2 is mirror-symmetrical, the potentials at both ends of the bonding wire 22 between the insulating substrates 2 match, and the bonding wire 22 is connected to the bonding wire 22. It is possible to prevent a large current from flowing. As shown in FIG.
  • the impedance between the patterns can be further reduced by connecting the source wiring patterns 4 using the plurality of bonding wires 22.
  • An example is shown in FIG.
  • a power semiconductor module 300 includes a base plate 1, an insulating substrate 2 as a substrate, a drain (collector) wiring pattern 3, a source (emitter) wiring pattern 4, a ceramics insulating substrate 5, An arc extinguishing type semiconductor element 6, a reflux diode 7, a bonding wire 22, and a case 51 are provided.
  • FIG. 19 illustrates the case where four insulating substrates are mounted on each of the positive electrode side and the negative electrode side, the same effect can be obtained when there are two or three substrates or five or more substrates. Further, the same effect can be obtained if the combination of the patterns of the insulating substrate on the positive electrode side and the negative electrode side is a mirror pattern symmetrical even if it is a combination other than the illustrated one.
  • the insulating substrates 2 on which different wiring patterns are mounted are arranged adjacent to each other so as to be mirror-symmetrical, the current flowing between the adjacent wiring patterns is made uniform. be able to. As a result, current imbalance between the insulating substrates 2 and between the self-extinguishing semiconductor elements 6 can be suppressed, and the reliability of the power semiconductor module can be improved.
  • the current path in the power semiconductor module 300 can be increased, and the inductance can be reduced.
  • the number of substrates constituting the power semiconductor module can be reduced, and current imbalance between the substrates and between the power semiconductor elements. This makes it possible to reduce the cost of the power semiconductor module.
  • a plurality of different wiring patterns are arranged adjacent to each other so as to be mirror-symmetric on one substrate, so that the number of substrates can be reduced, and between the substrates and The cost of the power semiconductor module can be reduced while suppressing the current imbalance between the power semiconductor elements.

Abstract

配線パターンのインダクタンスの割合を増大させ、絶縁基板に搭載された自己消弧型半導体素子のソース電位のばらつきを低減することで、電流アンバランスが抑制可能な電力用半導体モジュールを得る。自己消弧型半導体素子(6)を直列接続して構成され、自己消弧型半導体素子(6)の直列接続点を有する正負アームと、正負アームに接続される正極側電極(10)、負極側電極(11)、および交流電極(12)と、正負アームの自己消弧型半導体素子(6)と正極側電極(10)、負極側電極(11)、および交流電極(12)とを接続する複数の配線パターン(3,4)が形成された基板(2)とを備え、隣接する配線パターン(4)に流れる電流の方向が同じで、一方の配線パターン(4)が他方の配線パターン(4)に対して鏡面対称に配置されたことを特徴とする電力用半導体モジュール。

Description

電力用半導体モジュール
 この発明は、小型化が求められるインバータなど電力変換装置に使用される電力用半導体モジュールの電流アンバランス抑制技術に関するものである。
 インバータなどの電力変換装置に使用される絶縁型の電力用半導体モジュールは、放熱板となる金属板に絶縁層を介して配線パターンが形成され、その上にスイッチング動作する電力用半導体素子が設けられている。この電力用半導体素子は、外部端子と接続され、樹脂にて封止されている。
 大電流、高電圧でスイッチング動作する電力変換装置では、電力用半導体素子がオフする際の電流の時間変化率di/dtと電力変換装置に含まれる配線インダクタンスLとにより、サージ電圧(ΔV=L・di/dt)が発生し、このサージ電圧が電力用半導体素子に印加される。配線インダクタンスLが大きくなると、電力用半導体素子の耐圧を超えるサージ電圧が発生し、電力用半導体素子の破壊の原因となることがある。このため、電力変換装置として低インダクタンス化が求められ、電力用半導体モジュールにも低インダクタンス化が求められている。
 ところで、電力用変換装置としては、必要な電流容量を満たすため、それに見合う電力用半導体モジュールを選定するか、あるいは、見合うものがなければ、複数の電力用半導体モジュールを並列接続して使用されてきた。しかしながら、複数の電力用半導体モジュールを並列接続して使用する場合、絶縁距離を確保するためにモジュール間隔を離す必要があり、フットプリントが増加するという欠点がある。
 この欠点を解決するために、同一パッケージ内に電力用半導体素子が多並列で配置されたものがある(例えば、特許文献1参照)。特許文献1のように、外部回路と接続するために複数の外部端子を備えていても、同一パッケージ内で多並列に配置された複数の電力用半導体素子の端子同士がパッケージ内で外部端子に一括して接続されていると、インダクタンスの低減効果はあまりなく、電流容量の増加とともにオフ時のdi/dtが増加するため、サージ電圧が増大し、電力用半導体素子が破壊する可能性がある。
 そこで、発明者は電力用半導体素子の低インダクタンス化を実施するべく、複数の外部端子を備え、電力用半導体モジュール内部で回路が複数並列化された電力用半導体モジュールを発明した(例えば、特許文献2参照)。
特許公報第3519227号(第3頁、第2,6図) 国際公開第2013/128787号(第5頁、第1図)
 しかしながら、従来の電力用半導体モジュールにおいては、従来よりも電力用半導体素子が多並列で構成される大電流・高電圧用途で用いる場合、特許文献2のように外部端子を複数具備することで、低インダクタンス化は可能である。一方、電力用半導体モジュールの絶縁距離を確保する上で、外部端子を複数配置することができずに、外部端子を一つずつにまとめざるを得ない場合がある。このような電力用半導体モジュール内部で多並列に接続された電力用半導体素子の電流アンバランスが発生するという問題点があるということが、その後の発明者の研究によって判明した。
 本発明は、上記の問題点を解決するためになされたもので、各電位において外部端子が一つである場合に、異なる配線パターンを搭載する基板を鏡面対称となるように隣接して配置することで、低インダクタンス化を保持したまま電流アンバランス抑制が可能な電力用半導体モジュールを得るものである。
 この発明に係る電力用半導体モジュールは、自己消弧型半導体素子を直列接続して構成され、前記自己消弧型半導体素子の直列接続点を有する正負アームと、前記正負アームに接続される正極側電極、負極側電極、および交流電極と、前記正負アームの前記自己消弧型半導体素子と前記正極側電極、前記負極側電極、および前記交流電極とを接続する複数の配線パターンが形成された基板とを備え、隣接する前記配線パターンに流れる電流の方向が同じで、一方の前記配線パターンが他方の前記配線パターンに対して鏡面対称に配置されたことを備える。
 この発明によれば、異なる配線パターンを搭載する基板を鏡面対称となるように隣接して配置したので、隣接する配線パターン間での流れる電流が均一化され、基板間および電力用半導体素子間の電流アンバランスを抑制することができる。
この発明の実施の形態1の電力用半導体モジュールの上面模式図である。 この発明の実施の形態1の電力用半導体モジュールの概略側面図である。 この発明の実施の形態1の電力用半導体モジュールの概略側面図である。 この発明の実施の形態1の電力用半導体モジュールの主電極を取り除いた上面模式図である。 この発明の実施の形態1の電力用半導体モジュールの等価回路図である。 この発明の実施の形態1の電力用半導体モジュールの負極側の絶縁基板の配線パターン等に流れる転流時の電流経路図である。 この発明の実施の形態1の電力用半導体モジュールの絶縁基板の配線パターン等に流れる転流時の電流経路図である。 この発明の実施の形態1の他の電力用半導体モジュールの絶縁基板の配線パターン等に流れる転流時の電流経路図である。 この発明の実施の形態2の電力用半導体モジュールの上面模式図である。 この発明の実施の形態2の電力用半導体モジュールの概略側面図である。 この発明の実施の形態2の電力用半導体モジュールの概略側面図である。 この発明の実施の形態2の電力用半導体モジュールの主電極を取り除いた上面模式図である。 この発明の実施の形態2の電力用半導体モジュールの等価回路図である。 この発明の実施の形態2の電力用半導体モジュールの負極側の絶縁基板の配線パターン等に流れる転流時の電流経路図である。 この発明の実施の形態2の電力用半導体モジュールの絶縁基板の配線パターン等に流れる転流時の電流経路図である。 この発明の実施の形態2の他の電力用半導体モジュールの絶縁基板の配線パターン等に流れる転流時の電流経路図である。 この発明の実施の形態3の電力用半導体モジュールの主電極を取り除いた上面模式図である。 従来例における電力用半導体モジュールの主電極を取り除いた上面模式図である。 この発明の実施の形態3の他の電力用半導体モジュールの主電極を取り除いた上面模式図である。
実施の形態1.
 図1は、この発明の実施の形態1の電力用半導体モジュールの上面模式図である。図2は、この発明の実施の形態1の電力用半導体モジュールの概略側面図である。図3は、この発明の実施の形態1の電力用半導体モジュールの概略側面図である。図2には、図1におけるX側から見た場合の、図3には、図1におけるY側から見た場合の概略側面図を示す。図4は、この発明の実施の形態1の電力用半導体モジュールの主電極(正極電極、負極電極、および交流電極)を取り除いた上面模式図である。図4には、図1から主電極を取り除き、自己消弧型半導体素子6や還流ダイオード7などのチップレイアウトを示す。図5は、この発明の実施の形態1の電力用半導体モジュールの等価回路図である。ここで、X側から見た方向をX方向、Y側から見た方向をY方向とする。
 図1から図4において、本実施の形態1の電力用半導体モジュール100は、ベース板1、基板である絶縁基板2、ドレイン(コレクタ)配線パターン3、ソース(エミッタ)配線パターン4、セラミクス絶縁基板5、自己消弧型半導体素子6、還流ダイオード7、はんだ9、正極側電極である正極電極10、負極側電極である負極電極11、交流電極12、配線材であるボンディングワイヤ21、正極電極10の端子部である正極端子40、負極電極11の端子部である負極端子41、交流電極12の端子部である交流端子42、封止材50、ケース51、蓋52、ナット53を備える。
 本実施の形態1の電力用半導体モジュール100は、電力用半導体モジュール100を構成する自己消弧型半導体素子6と還流ダイオード7との発熱を放熱する金属放熱体であるベース板1の一方の面に、金属箔がロウ付けなどで接合された絶縁材であるセラミクス絶縁基板5が、はんだ9により接合されている。一方、セラミクス絶縁基板5のベース板1と接合された面と対向する面には、金属箔により配線パターン3,4がロウ付けなどにより接合されている。金属箔が接合されたセラミクス絶縁基板5と配線パターン3,4とにより絶縁基板2が構成されている。ただし、絶縁基板の材料としては、セラミクスに限定されるものではなく、樹脂絶縁材を用いた金属基板であっても良い。樹脂絶縁材を用いた金属基板の場合は、正負アーム分の複数枚の絶縁基板を用いるのではなく、例えば1枚の金属基板を用い、この金属基板上に鏡面対称となるように配線パターンを複数個形成して用いることができる。このような樹脂絶縁材料を用いた金属基板であっても同様の効果を得ることができる。また、図1または図4に示すように、上面から見た場合において鏡面対称となるように配線パターンが配置され、この鏡面対称の基準線はこれら鏡面対称となる配線パターン間に設定される。
 また、ドレイン(コレクタ)配線パターン3とソース(エミッタ)配線パターン4とのセラミクス絶縁基板5が接合された面と対向する面には、自己消弧型半導体素子6と還流ダイオード7がはんだ9により接合されている。さらに、ドレイン(コレクタ)配線パターン3、ソース(エミッタ)配線パターン4に正極電極10、負極電極11、および交流電極12が接合されている。ただし、はんだ9を接合材として用いているが、はんだに限定されるものではなく、その他の接合方法によるものでも良い。
 正極電極10、負極電極11、および交流電極12には、それぞれに大電流が流れるため、外部回路と接続するためにネジを使用するのが一般的である。しかし、ネジに限定されるものではなく、大電流を流すことが可能であればその他の接合方法であっても良い。本実施の形態1では、正極電極10、負極電極11、および交流電極12は、それぞれモジュール上面に外部回路と接続するための、正極電極10の端子部である正極端子40、負極電極11の端子部である負極端子41、および交流電極12の端子部である交流端子42を備えている。そして、これら正極端子40、負極端子41、および交流端子42にはネジ挿入用の穴があり、これらの端子の下にはナットの埋め込まれたケースが設置されている。また、電力用半導体モジュール100は、ケース51で周囲を囲われており、ケース51内部を絶縁するためにケース51内部に封止材50が注入される。その後、ケース51に蓋52を嵌合し、接着剤などで接着させる。
 自己消弧型半導体素子6と還流ダイオード7のソース(エミッタ)配線パターン4と、はんだ接合されていない面は、ボンディングワイヤ21により配線パターン等に接合される。ただし、配線材としては、ワイヤを用いているが、ワイヤに限定されるものではなく、その他の接合方法によるものでも良い。
 図1から図5において、電力用半導体モジュール100内部には、電力用半導体素子として自己消弧型半導体素子6と還流ダイオード7とが逆並列で接続されたアームと呼ばれる並列回路が2直列に接続され、正アーム、負アーム、つまり電力変換回路の1相分を構成している。
 本実施の形態の電力用半導体モジュール100は、正アームと負アームとを同一ケース(同一パッケージ)内に備えた「2in1」と一般的に呼ばれる電力用半導体モジュールである。ケースは電力用半導体モジュールの外形となるものである。なお、本実施の形態では、ケースと称しているが、電力用半導体モジュールを樹脂封止などで外形を形成するような場合には、樹脂の外周部がケースとなり、同等の機能を果たす。
 図5の等価回路図に示すように、電力用半導体モジュール100は、正アームと負アームとが構成され、点線で囲んだように正負の各アームの2つずつの計4ブロックに分けられる。さらに、正極側のブロック101と負極側のブロック111に示すように、1つのブロックは各々複数の並列接続された自己消弧型半導体素子6と複数個の並列接続された還流ダイオード7が逆並列に接続されたものである。図5中においては、正極側のブロック102と負極側のブロック112は簡略化して記載しているが、正極側のブロック101と負極側のブロック111と同様な構成である。
 ここで、図5の等価回路図中には、自己消弧型半導体素子6をMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)として表記したが、自己消弧型半導体素子6はMOSFETに限定するものではなくIGBT(Insulated Gate Bipolar Transistor)やバイポーラトランジスタなどのその他の自己消弧型半導体素子であれば、どのようなものであってもよい。さらに、本実施の形態では還流ダイオード7としてショットキーバリアダイオードなどのダイオード素子を自己消弧型半導体素子6に対して外付けに設けるものとしているが、還流ダイオード7が自己消弧型半導体素子6の寄生ダイオードであってもよい。また、図5の等価回路中には自己消弧型半導体素子6のゲート制御回路を記載し、端子として正極側ゲート13G、正極側制御ソース13E、負極側ゲート14G、負極側制御ソース14Eを示したが、モジュール内部構造に関する図1~4においては、主回路の回路に関する構造のみ図示し制御回路に関する構造は省略し簡素化して図示している。実際には絶縁基板2上に自己消弧型半導体素子6の制御用の配線パターンが構成され、自己消弧型半導体素子6上のゲートまたは制御ソース電極と、外部との接続のためのゲートまたは制御ソース電極とが電気的に接続され、電力用半導体モジュールの上面などに露出し、外部導体と接続できるような機構を備える。これらは、その他の実施例においても同じであり、本発明の効果には影響を及ぼさない。ただし、制御回路の配線パターンは自己消弧型半導体素子6の主回路電流つまり配線パターン3,4に流れる電流による誘導を受けやすいので、電流のアンバランスを抑制するには、制御回路の配線パターンの形状はゲートと制御ソースとが平行であることが望ましい。さらに、半導体素子の材料として、Si(Silicon)だけでなく、SiC(Silicon Carbide)やGaN(Gallium Nitride)やダイヤモンドが原料となる半導体素子でも効果は得られる。特に、高速動作が可能なSiCやGaNなどを用いた場合は、より顕著な効果を得ることが可能である。
 図4に示すように、複数個の自己消弧型半導体素子6と複数個の還流ダイオード7とが搭載された2種類の配線パターン3,4の配置の異なる絶縁基板2がブロック101とブロック102とを構成し、それらが正極電極10と交流電極12との主電極を介して並列接続されて正アームを構成する。負極側に関しても同様に、複数個の自己消弧型半導体素子6と複数個の還流ダイオード7が搭載された2種類の配線パターン3,4の配置の異なる絶縁基板2がブロック111とブロック112とを構成し、それらが交流電極12と負極電極11との主電極を介して並列接続されて負アームを構成する。絶縁基板2には、自己消弧型半導体素子6と還流ダイオード7とが搭載される配線パターン3と、ボンディングワイヤ21によって自己消弧型半導体素子6のソース(エミッタ)や還流ダイオード7のアノードに接続される配線パターン4の2種類がある。これら2つの絶縁基板2の配線パターン3,4がブロック101とブロック102と、あるいはブロック111とブロック112とにおいて、鏡面対称となるように構成したことが本発明の特徴である。
 図6は、この発明の実施の形態1の電力用半導体モジュールの負極側の絶縁基板の配線パターン等に流れる転流時の電流経路図である。図6(a)には、配線パターンが鏡面対称配置である絶縁基板2(鏡面対称絶縁基板)を横に並べた場合の負アームの部分を、図6(b)には、配線パターンが同一配置である絶縁基板2(同一絶縁基板)を横に並べた場合の負アームの部分を、図6(c)には、図6(a)で示した配線パターンが鏡面対称配置である絶縁基板2(鏡面対称絶縁基板)を左右入れ替えて横に並べた場合の負アームの部分を示した。本発明の効果について図6を用いて説明する。ここで、図6には、自己消弧型半導体素子6がオンしたときの電流経路上のdi/dtの向きを矢印で示した。特に、極太線矢印で示したdi/dtによって、隣接する絶縁基板2の配線パターン間の相互作用が発生する。
 図6(b)に示すように配線パターンが同一配置である絶縁基板2を横に並べた場合では、隣接する配線パターン間に流れる電流のdi/dtを示す極太線矢印の向きは反対向きであり、自己消弧型半導体素子6のオンオフ時のようなdi/dtが大きいときには、この逆方向に流れる電流により発生する磁束を互いに打ち消す効果がある。また、右側の絶縁基板2の自己消弧型半導体素子6の細線矢印を示したソース配線パターン4については、このソース配線パターン4が隣の絶縁基板2のソース配線パターン4と近接していないことや、同一絶縁基板2内の隣接する配線パターンに逆方向に流れる電流が小さく、電流の導通距離も短いため発生する磁束を互いに打ち消す効果は小さい。つまり、隣接する絶縁基板2間で比較すると左側の絶縁基板2の自己消弧型半導体素子6のソース配線パターン4のほうが右側の絶縁基板2のソース配線パターン4に比べて寄生インダクタンスが小さくなるため、左右に配置された絶縁基板2間において寄生インダクタンスのアンバランスが発生する。
 一方、図6(a)の本実施の形態のように配線パターンが鏡面対称配置である絶縁基板2を横に並べた場合では、隣接する配線パターン間に流れる電流のdi/dtを示す極太線矢印の向きは同じ向きであり、di/dtが大きいときに発生する磁束を打ち消す効果は得られない。したがって、極太線矢印を示した電流経路に発生する寄生インダクタンスは、配線パターンが鏡面対称配置である絶縁基板2を横に並べた場合のほうが、配線パターンが同一配置である絶縁基板2を横に並べた場合よりも大きくなることがわかる。また、隣接する絶縁基板2間で比較した場合、配線パターンが鏡面対称の配置をしていることで、左右の絶縁基板2間の自己消弧型半導体素子6のソース配線パターン4が受ける相互作用は左右の絶縁基板2間で同じとなり、寄生インダクタンスは同じとなる。
 自己消弧型半導体素子6を流れる電流はゲート電圧によって決まるため、自己消弧型半導体素子6を多並列で配置するような電力用半導体モジュールにおいては、自己消弧型半導体素子6のゲート電圧のばらつき、つまり自己消弧型半導体素子6を流れる電流のアンバランスが問題となる。この電流アンバランスは、パワーサイクルなどにおける電力用半導体モジュールの寿命に影響を及ぼすため低減することが必要である。そして、この電流アンバランスの原因であるゲート電圧のばらつきは、自己消弧型半導体素子6のソース(エミッタ)電位ばらつきに起因することが多い。
 上述したように、図6(a)と図6(b)において、隣接する絶縁基板2間の自己消弧型半導体素子6のソース配線パターン4の寄生インダクタンスのアンバランスの程度が異なり、左右それぞれの絶縁基板2に搭載される自己消弧型半導体素子6のゲート電圧すなわち電流に関して、図6(b)ではアンバランスが発生するが、図6(a)ではアンバランスは発生しにくい。つまり、鏡面対称の配線パターンによって、隣接する絶縁基板2間の自己消弧型半導体素子6に流れる電流のアンバランスを抑制する効果が得られる。
 図6(c)において、ソース配線パターン4は隣の絶縁基板2と近接していないことや、同基板内の隣の配線パターンに逆方向に流れる電流が小さく、電流の導通距離も短いため発生する磁束を互いに打ち消す効果は小さい。しかしながら、配線パターンが鏡面対称であることにより、左右それぞれの絶縁基板2のソース配線パターン4が受ける相互作用は同等となり、それらの配線パターンの寄生インダクタンスは図6(a)の場合と同様にアンバランスが発生しにくいため、自己消弧型半導体素子6に流れる電流のアンバランスを抑制することが可能である。このように、配線パターンを鏡面対称に配置したことにより、絶縁基板2間の電流アンバランスを抑制することができる。そして、配線パターンの配置としては、図6(a)や図6(c)に限定されるものではなく、鏡面対称の配置であればどのような配置の配線パターンであってもよい。
 これまで、複数の絶縁基板2間で発生する電流のアンバランスの抑制効果について説明してきたが、本発明においては、同一絶縁基板2内における複数の自己消弧型半導体素子6間の電流のアンバランスを抑制する効果も得られるので、それについて以下で説明する。本実施の形態における同一絶縁基板2内における4つの自己消弧型半導体素子6のソース電位のばらつきは、図6中の横方向(Y方向)に示す太線矢印を示した電流経路による寄生インダクタンスLと電流変化率di/dtとによって発生する。したがって、このばらつきの原因となる寄生インダクタンスLに直列接続で構成されるソース配線パターン4や主電極の寄生インダクタンスが大きければ、相対的に寄生インダクタンスLが小さくなり、ソース電位のばらつきも小さくなる。その結果、複数の自己消弧型半導体素子6を流れる電流のアンバランスを抑制することができる。ここで、図6で先に説明したように、本発明の鏡面対称絶縁基板を横に並べた場合のほうが、同一絶縁基板を横に並べた場合よりも、隣接する配線パターンに流れるdi/dtの向きが統一されていることで、直列接続される極太線矢印を示した電流経路の寄生インダクタンスが大きくなるので、相対的に寄生インダクタンスLが小さくなり、ソース電位のばらつきを小さくできる。その結果、複数の自己消弧型半導体素子6のゲート電圧のばらつきが抑制され、複数の自己消弧型半導体素子6の電流のアンバランスを抑制する効果が得られる。この自己消弧型半導体素子6における電流のアンバランス効果は、図6(a)や図6(c)に示すような配線パターンが鏡面対称配置である場合に得られる。
 また、図6(a)において、図1で示したY方向に同アームの絶縁基板2は並列に並んでおり、自己消弧型半導体素子6や還流ダイオード7も絶縁基板2上でY方向に整列しているため、先に述べた太線矢印のdi/dtはY方向に、極太線矢印のdi/dtはX方向に向いている。したがって、太線矢印を示した電流経路のインダクタンスは絶縁基板2の鏡面対称の配置による相互作用抑制の影響は受けない。つまり、本構造のように、自己消弧型半導体素子6の整列方向と同方向に流れる電流経路と、その先の電流経路が直角に交差していることにより、X方向の寄生インダクタンスを大きくし、相対的にY方向の寄生インダクタンスを小さくできるので、電流アンバランスを抑制する効果が得られる。ここで、図6(c)についても、同様で、図6(a)ほどはX方向の寄生インダクタンスは大きくならないものの、図6(b)に比べるとX方向の寄生インダクタンスが大きく、相対的にY方向の寄生インダクタンスを小さくできるので、電流のアンバランスを抑制する効果が得られる。
 さらに、本実施の形態では、正アームと負アームとを構成する絶縁基板2が、X方向に対向して配置される。各アームを構成する絶縁基板2は同じ鏡面対称の2種類で構成できる。ここで、鏡面対称になる2種類の絶縁基板2を用いた場合、正アームと負アームとの構成方法は2通りできる。そのうち、本実施の形態では、図4に示すように、正極ブロック101と負極ブロック111とは、同じ配線パターンである絶縁基板2、正極ブロック102と負極ブロック112とは、同じ配線パターンである絶縁基板2を使用して180°回転させてX方向に対向するように配置している。
 図7は、この発明の実施の形態1の電力用半導体モジュールの絶縁基板の配線パターン等に流れる転流時の電流経路図である。図7には、本実施の形態の電力用半導体モジュール100の正アーム、負アームの電流経路(主電極を除く)におけるdi/dtの向きを矢印で示した。図8は、この発明の実施の形態1の他の電力用半導体モジュールの絶縁基板の配線パターン等に流れる転流時の電流経路図である。図8には、本実施の形態の電力用半導体モジュール110の正アーム、負アームの電流経路(主電極を除く)におけるdi/dtの向きを矢印で示した。図8は、図7に示した構成例に対して正アームの並びの異なる別の構成例を示す。図8において、正極ブロック101と負極ブロック112と、正極ブロック102と負極ブロック111とが、それぞれ同じ配線パターンで構成された絶縁基板2を用いた構成である。つまり、図8の構成では、正アームと負アームとの隣接する絶縁基板2も鏡面対称である。図7や図8で示す電流経路は負アームの自己消弧型半導体素子6がオンした場合の転流時の大きなdi/dtが発生する場合の電流経路上のdi/dtを示すものである。逆に、正アームの自己消弧型半導体素子6がオンした場合の転流時の電流経路は、正極側が自己消弧型半導体素子6、負極側が還流ダイオード7を通る経路となるところが、図7と図8とは異なる点であるが、絶縁基板2の配線パターンに流れる電流経路はほぼ同じである。
 図7において、図中で示すdi/dtの向きに対して、前述したソース配線パターン4の極太線矢印のdi/dtの向きは、正アームにおける隣接する絶縁基板2間では、隣接しない図6(c)で示した構成と同じである。ソース配線パターン4は、隣接する絶縁基板2と近接していないことや、同一絶縁基板2内の隣接する配線パターンに逆方向に流れる電流が小さく、電流の導通距離も短いため発生する磁束を互いに打ち消す効果は小さい。しかしながら、鏡面対称配置であることにより、左右の絶縁基板2に配置されたソース配線パターン4の受ける相互作用は同等となり、図6(c)の場合と同様に電流のアンバランス抑制効果が得られる。また、負アームは、図6(a)で示した構成と同じであり、ソース配線パターン4が隣接することで、di/dtの向きが同一となり、極太線矢印を示した電流経路の寄生インダクタンスが増加し、図6(a)に示した負極側の電流のアンバランス抑制効果と同様の効果が得ることができる。一方で、太線矢印を示した電流経路は、正アームと負アームとの隣接する絶縁基板で隣接(鏡面対称)し、流れる電流のdi/dtの向きが逆向きとなることから太線矢印を示した電流経路に発生する寄生インダクタンスが小さくなる。したがって、正アーム、負アームともに、太線矢印を示した電流経路の寄生インダクタンスを低減することにより、太線矢印を示した電流経路の寄生インダクタンスは、極太線矢印を示した電流経路の寄生インダクタンスと比べて相対的にインダクタンスが小さくなり、ソース電位のばらつきを低減できるので、自己消弧型半導体素子6を流れる電流のアンバランスを抑制することが可能である。
 図8において、正アームと負アームとの配線パターンは鏡面対称となるように配置されているので、正アーム、負アームともに図6(a)に示した負極側と同じ動作が可能である。そのため、自己消弧型半導体素子6や還流ダイオード7のソース配線4の極太線矢印を示した電流経路は、隣接する絶縁基板2間でdi/dtによって発生する磁束を打ち消す効果はなく、極太線矢印部の寄生インダクタンスは大きい。したがって、正アーム、負アームともに、極太線矢印を示した電流経路の寄生インダクタンスが増加することにより、太線矢印を示した電流経路の寄生インダクタンスは、相対的にインダクタンスが小さくなり、ソース電位のばらつきを低減できるので、自己消弧型半導体素子6を流れる電流のアンバランス抑制効果と同様の効果を正極側でも得ることができる。また、正アーム、負アームともに同じ配線パターン配置であることから、太線矢印の向きが同じとなり、この部分での寄生インダクタンスが増加する。しかしながら、太線部分の寄生インダクタンスの増加量は極太線矢印部分の寄生インダクタンスの増加量に比べ少なく、ソース電位のばらつきに対して影響を与えない。さらに、モジュール内の対向するすべての配線パターンが同一であるので、電力用半導体モジュール内部での動作バランスが均一となり、電力用半導体モジュールとして安定した動作が可能となる。このように、図7、図8のいずれの構成においても、電流のアンバランスに対する抑制効果を得ることができる。また、図7においては正アームと負アームで別の構成にしたが、負アームも正アームと同じ、すなわち図8の左右逆の(図7の負アームを用いた)構成であっても同様に電流のアンバランスに対する抑制効果を得ることができる。
 また、図1に示すように主電極の形状を正極電極10、負極電極11、及び交流電極12をそれぞれが積層する形で配置することで、電力用半導体モジュールの端子が各一つであったとしても絶縁基板から正極電極10と交流電極12もしくは交流電極12と負極電極11とが積層し、さらに電力用半導体モジュールの上部では正極電極10と負極電極111とが積層され、電力用半導体モジュールとしての寄生インダクタンスを低減することが可能である。
 以上のように構成された電力用半導体モジュールにおいては、異なる配線パターンを搭載する基板を鏡面対称となるように隣接して配置したので、隣接する配線パターン間での流れる電流が均一化することができる。その結果、基板間および電力用半導体素子間の電流アンバランスを抑制することができ、電力用半導体モジュールの信頼性を向上することが可能となる。
 また、異なる配線パターンが形成された2種類の基板を用いて鏡面対称配置としたので、電力用半導体モジュールを構成する基板数を削減することがき、基板間および電力用半導体素子間の電流アンバランスを抑制したまま、電力用半導体モジュールのコスト低減が可能となる。
 さらに、樹脂絶縁材を用いた金属基板の場合は、1枚の基板上に異なる配線パターンを鏡面対称となるように隣接して複数個配置したので、基板数を削減することがき、基板間および電力用半導体素子間の電流アンバランスを抑制したまま、電力用半導体モジュールのコスト低減が可能となる。
実施の形態2.
 本実施の形態2においては、実施の形態1で用いた1対の鏡面対称である正負アームを複数対配置した点が異なる。このように鏡面対称である正負アームを複数対配置することで、それぞれの鏡面対称部分において、自己消弧型半導体素子を流れる電流のアンバランスを抑制することができる。
 図9は、この発明の実施の形態2の電力用半導体モジュールの上面模式図である。図10は、この発明の実施の形態2の電力用半導体モジュールの概略側面図である。図11は、この発明の実施の形態2の電力用半導体モジュールの概略側面図である。図10には、図9におけるX側から見た場合の、図11には、図9におけるY側から見た場合の概略側面図を示す。図12は、この発明の実施の形態2の電力用半導体モジュールの主電極(正極電極、負極電極、および交流電極)を取り除いた上面模式図である。図12には、図9から主電極を取り除き、自己消弧型半導体素子6や還流ダイオード7などのチップレイアウトを示す。図13は、この発明の実施の形態1の電力用半導体モジュールの等価回路図である。ここで、X側から見た方向をX方向、Y側から見た方向をY方向とする。
 図9から図12において、本実施の形態2の電力用半導体モジュール200は、ベース板1、基板である絶縁基板2、ドレイン(コレクタ)配線パターン3、ソース(エミッタ)配線パターン4、セラミクス絶縁基板5、自己消弧型半導体素子6、還流ダイオード7、はんだ9、正極側電極である正極電極10、負極側電極である負極電極11、交流電極12、配線材であるボンディングワイヤ21、正極電極10の端子部である正極端子40、負極電極11の端子部である負極端子41、交流電極12の端子部である交流端子42、封止材50、ケース51、蓋52、ナット53を備える。
 本実施の形態2の電力用半導体モジュール200は、電力用半導体モジュール200を構成する自己消弧型半導体素子6と還流ダイオード7との発熱を放熱する金属放熱体であるベース板1の一方の面に、金属箔がロウ付けなどで接合された絶縁材であるセラミクス絶縁基板5が、はんだ9により接合されている。一方、セラミクス絶縁基板5のベース板1と接合された面と対向する面には、金属箔により配線パターン3,4がロウ付けなどにより接合されている。金属箔が接合されたセラミクス絶縁基板5と配線パターン3,4とにより絶縁基板2が構成されている。ただし、絶縁基板の材料としては、セラミクスに限定されるものではなく、樹脂絶縁材を用いた金属基板であっても良い。樹脂絶縁材を用いた金属基板の場合は、正負アーム分の複数枚の絶縁基板を用いるのではなく、例えば1枚の金属基板を用い、この金属基板上に鏡面対称となるように配線パターンを複数個形成して用いることができる。このような樹脂絶縁材料を用いた金属基板であっても同様の効果を得ることができる。
 また、ドレイン(コレクタ)配線パターン3とソース(エミッタ)配線パターン4とのセラミクス絶縁基板5が接合された面と対向する面には、自己消弧型半導体素子6と還流ダイオード7がはんだ9により接合されている。さらに、ドレイン(コレクタ)配線パターン3、ソース(エミッタ)配線パターン4に正極電極10、負極電極11、および交流電極12が接合されている。ただし、はんだ9を接合材として用いているが、はんだに限定されるものではなく、その他の接合方法によるものでも良い。
 正極電極10、負極電極11、および交流電極12には、それぞれに大電流が流れるため、外部回路と接続するためにネジを使用するのが一般的である。しかし、ネジに限定されるものではなく、大電流を流すことが可能であればその他の接合方法であっても良い。本実施の形態1では、正極電極10、負極電極11、および交流電極12は、それぞれモジュール上面に外部回路と接続するための、正極電極10の端子部である正極端子40、負極電極11の端子部である負極端子41、および交流電極12の端子部である交流端子42を備えている。そして、これら正極端子40、負極端子41、および交流端子42にはネジ挿入用の穴があり、これらの端子の下にはナットの埋め込まれたケースが設置されている。また、電力用半導体モジュール200は、ケース51で周囲を囲われており、ケース51内部を絶縁するためにケース51内部に封止材50が注入される。その後、ケース51に蓋52を嵌合し、接着剤などで接着させる。
 自己消弧型半導体素子6と還流ダイオード7のソース(エミッタ)配線パターン4と、はんだ接合されていない面は、ボンディングワイヤ21により配線パターン等に接合される。ただし、配線材としては、ワイヤを用いているが、ワイヤに限定されるものではなく、その他の接合方法によるものでも良い。
 図9から図13において、電力用半導体モジュール200内部には、電力用半導体として自己消弧型半導体素子6と還流ダイオード7とが逆並列で接続されたアームと呼ばれる並列回路が2直列に接続され、正負アーム、つまり電力変換回路の1相分を構成している。
 本実施の形態の電力用半導体モジュール200は、正アームと負アームとを同一ケース(同一パッケージ)内に備えた「2in1」と一般的に呼ばれる電力用半導体モジュールである。ケースは電力用半導体モジュールの外形となるものである。なお、本実施の形態では、ケースと称しているが、電力用半導体モジュールを樹脂封止などで外形を形成するような場合には、樹脂の外周部がケースとなり、同等の機能を果たす。
 図13の等価回路図に示すように、電力用半導体モジュール200は、正アームと負アームとが構成され、点線で囲んだように正負の各アームの4つずつの計8ブロックに分けられる。さらに、正極側のブロック101と負極側のブロック111に示すように、1つのブロックは各々複数の並列接続された自己消弧型半導体素子6と複数個の並列接続された還流ダイオード7が逆並列に接続されたものである。図13中においては、正極側のブロック102~104と負極側のブロック112~114は簡略化して記載しているが、正極側のブロック101と負極側のブロック111と同様な構成である。
 ここで、図13の等価回路図中には、自己消弧型半導体素子6をMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)として表記したが、自己消弧型半導体素子6はMOSFETに限定するものではなくIGBT(Insulated Gate Bipolar Transistor)やバイポーラトランジスタなどのその他の自己消弧型半導体素子であれば、どのようなものであってもよい。さらに、本実施の形態では還流ダイオード7としてショットキーバリアダイオードなどのダイオード素子を自己消弧型半導体素子6に対して外付けに設けるものとしているが、還流ダイオード7が自己消弧型半導体素子6の寄生ダイオードであってもよい。また、図13の等価回路中には自己消弧型半導体素子6のゲート制御回路を記載し、端子として正極側ゲート13G、正極側制御ソース13E、負極側ゲート14G、負極側制御ソース14Eを示したが、モジュール内部構造に関する図9~12においては、主回路の回路に関する構造のみ図示し制御回路に関する構造は省略し簡素化して図示している。実際には絶縁基板2上に自己消弧型半導体素子6の制御用の配線パターンが構成され、自己消弧型半導体素子6のゲートまたは制御ソース電極と、外部との接続のためのゲートまたは制御ソース電極とが電気的に接続され、電力用半導体モジュールの上面などに露出し、外部導体と接続できるような機構を備える。これらは、その他の実施例においても同じであり、本発明の効果には影響を及ぼさない。ただし、制御回路の配線パターンは自己消弧型半導体素子6の主回路電流つまり配線パターン3,4に流れる電流による誘導を受けやすいので、電流のアンバランスを抑制するには、制御回路の配線パターンの形状はゲートと制御ソースとが平行であることが望ましい。さらに、半導体素子の材料として、Si(Silicon)だけでなく、SiC(Silicon Carbide)やGaN(Gallium Nitride)やダイヤモンドが原料となる半導体素子でも効果は得られる。特に、高速動作が可能なSiCやGaNなどを用いた場合は、より顕著な効果を得ることが可能である。
 図13の等価回路図に示すように、電力用半導体モジュール200は、正アームと負アームとが構成され、点線で囲んだように正負の各アームの4つずつの計8ブロックに分けられる。つまり実施の形態1とはブロックの数が異なる。
 図12に示すように、複数個の自己消弧型半導体素子6と複数個の還流ダイオード7が搭載された2種類の配線パターン3,4の配置の異なる絶縁基板2がブロック101~104を構成し、それらが正極電極10と交流電極12との主電極を介して並列接続されて正アームを構成する。負極側に関しても同様に、複数個の自己消弧型半導体素子6と複数個の還流ダイオード7が搭載された2種類の配線パターン3,4の配置の異なる絶縁基板2がブロック111~114を構成し、それらが交流電極12と負極電極11との主電極を介して並列接続されて負アームを構成する。絶縁基板2には、自己消弧型半導体素子6と還流ダイオード7が搭載される配線パターン3とボンディングワイヤ21とによって自己消弧型半導体素子6のソース(エミッタ)や還流ダイオード7のアノードに接続される配線パターン4の2種類がある。それら2つの絶縁基板2の配線パターン3、4が、各正負アームを構成する隣接する絶縁基板において、鏡面対称となるように構成したことが本発明の特徴である。
 図14は、この発明の実施の形態2の電力用半導体モジュールの負極側の絶縁基板の配線パターン等に流れる転流時の電流経路図である。図14(a)には、配線パターンが鏡面対称配置である絶縁基板2(鏡面対称絶縁基板)を横に並べた場合の負アームの部分を、図14(b)には、配線パターンが同一配置である絶縁基板2(同一絶縁基板)を横に並べた場合の負アームの部分を示した。実施の形態1と同様に、本発明の効果について図14を用いて説明する。ここで、自己消弧型半導体素子6がオンしたときの電流経路上のdi/dtの向きを矢印で示した。特に、極太線矢印で示したdi/dtによって、隣接する絶縁基板2の配線パターン間の相互作用が発生する。
 図14(b)に示すように、配線パターンが同一配置である絶縁基板2を横に並べた場合では、隣接する配線パターン間に流れる電流のdi/dtを示す極太線矢印の向きは反対向きであり、自己消弧型半導体素子6のオンオフ時のようなdi/dtが大きいときには、この逆方向に流れる電流により発生する磁束を互いに打ち消す効果がある。また、左端の絶縁基板2の自己消弧型半導体素子6の細線矢印を示したソース配線パターン4については、このソース配線パターン4が隣接する絶縁基板2のソース配線パターン4と近接していないことや、同一絶縁基板2内の隣接する配線パターンに逆方向に流れる電流が小さく、電流の導通距離も短いため発生する磁束を互いに打ち消す効果は小さい。つまり、絶縁基板2間で比較すると左端の絶縁基板2の自己消弧型半導体素子6のソース配線パターン4のほうが、その他の右側の絶縁基板2のソース配線パターン4に比べて寄生インダクタンスが大きくなるため、同一ベース板1に配置された絶縁基板2間において電流のアンバランスが発生する。
 一方、図14(a)の本実施の形態のように配線パターンが鏡面対称配置である基板を横に並べた場合では、隣接する配線パターン間に流れる電流のdi/dtを示す極太線矢印の向きは同じ向きであり、di/dtが大きいときに発生する磁束を打ち消す効果は得られない。したがって、極太線矢印を示した電流経路に発生する寄生インダクタンスは、配線パターンが鏡面対称配置である絶縁基板2を横に並べた場合のほうが、配線パターンが同一配置である絶縁基板2を横に並べた場合よりも大きくなることがわかる。また、隣接する2枚の絶縁基板2を1対として、左右の絶縁基板2の対間で比較した場合、配線パターンが鏡面対称の配置をしていることで、絶縁基板2の自己消弧型半導体素子6のソース配線パターン4が受ける相互作用は左右の絶縁基板2の対間で同じとなり、寄生インダクタンスは同じとなる。その結果、左右の絶縁基板2の対間で電流のアンバランスは発生しにくい。さらに、図14(a)において、ソース配線パターン4が隣接する箇所は1箇所であるが、ソース配線パターン4が隣接する箇所を2箇所となるような絶縁基板2の配置としても、同様な電流のアンバランス抑制効果が得られる。
 上述したように、図14(a)と図14(b)において、隣接する絶縁基板2間の自己消弧型半導体素子6のソース配線パターン4の寄生インダクタンスのアンバランスの程度が異なる。ベース板1上に配置された絶縁基板2間に搭載される自己消弧型半導体素子6のゲート電圧すなわち電流に関して、図14(b)では配線パターンが鏡面対称に配置されていないため電流のアンバランスが発生するが、図14(a)では配線パターンが鏡面対称に配置されていることで、電流のアンバランスは発生しにくい。つまり、鏡面対称の配線パターンによって、隣接する絶縁基板2間の自己消弧型半導体素子6に流れる電流のアンバランスを抑制する効果が得られる。
 一方で、実施の形態1で述べたように、自己消弧型半導体素子6の電流はゲート電圧によって決まるため、自己消弧型半導体素子を多並列で配置するような電力用半導体モジュールにおいては、自己消弧型半導体素子6のゲート電圧のばらつき、つまり自己消弧型半導体素子6を流れる電流のアンバランスが問題となる。この電流アンバランスは、パワーサイクルなどにおける電力用半導体モジュールの寿命に影響を及ぼすため低減することが必要である。そして、この電流アンバランスの原因であるゲート電圧ばらつきは、自己消弧型半導体素子6のソース(エミッタ)電位ばらつきに起因することが多い。
 これまで、複数の絶縁基板2間で発生する電流のアンバランスの抑制効果について説明してきたが、本発明においては、同一絶縁基板2内における複数の自己消弧型半導体素子6間の電流のアンバランスを抑制する効果も得られるので、それについて以下で説明する。本実施の形態における同一絶縁基板2内における4つのそして、この自己消弧型半導体素子6のソース電位(エミッタ)ばらつきは、図14に示した太線矢印を示した電流経路による寄生インダクタンスLと電流変化率di/dtによって発生する。したがって、このばらつきの原因となる寄生インダクタンスに直列接続で構成されるソース配線パターン4や主電極の寄生インダクタンスが大きければ、相対的に寄生インダクタンスLが小さくなり、ソース電位のばらつきも小さくなる。その結果、自己消弧型半導体素子6を流れる電流のアンバランスを抑制することができる。ここで、図14で先に説明したように、本発明の鏡面対称絶縁基板を並べた場合のほうが同一絶縁基板を横に並べた場合よりも、隣接する配線パターンに流れる電流の向きが統一されていることで、直列接続される極太線矢印を示した電流経路の寄生インダクタンスが大きくなるので、相対的に寄生インダクタンスLが小さくなり、ソース電位のばらつきを小さくできる。その結果、自己消弧型半導体素子6のゲート電圧のばらつきが抑制され、自己消弧型半導体素子6の電流アンバランスを抑制する効果が得られる。
 また、本実施の形態においても実施の形態1と同様に、図14(a)において、図9で示したY方向に同アームの絶縁基板2は並列に並んでおり、自己消弧型半導体素子6や還流ダイオード7も絶縁基板2上にY方向に整列しているため、先に述べた太線矢印を示した電流経路はY方向に、極太線矢印を示した電流経路はX方向に向いている。したがって、太線矢印を示した電流経路のインダクタンスは鏡面対称の配置による相互作用抑制の影響は受けない。つまり、本構造のように、自己消弧型半導体素子6の整列方向と同方向に流れる電流経路と、その先の電流経路が直角に交差していることにより、X方向の寄生インダクタンスを大きくし、相対的にY方向の寄生インダクタンスを小さくできるので、電流アンバランスを抑制する効果が得られる。
 さらに、本実施の形態では、正アームと負アームとを構成する絶縁基板2がX方向に対向して配置される。各アームを構成する絶縁基板2は同じ鏡面対称の2種類で構成できる。ここで、鏡面対称の2種類を用いた場合、正アームと負アームとの構成方法は2通りできる。そのうち、本実施に形態では、図12に示すように、正アームと負アームとを構成する隣接する絶縁基板(例えば101と111)は同じ絶縁基板2を使用して180°回転させてX方向に対向するように配置している。
 図15は、この発明の実施の形態2の電力用半導体モジュールの絶縁基板の配線パターン等に流れる転流時の電流経路図である。図15には、本実施の形態2の電力用半導体モジュール200の正アーム、負アームの電流経路(主電極を除く)を矢印で示した。図16は、この発明の実施の形態2の他の電力用半導体モジュールの絶縁基板の配線パターン等に流れる転流時の電流経路図である。図16には、本実施の形態2の電力用半導体モジュール210の正アーム、負アームの電流経路(主電極を除く)を矢印で示した。図16は、図15に示した構成例に対して負アームの並びの異なる別の構成例を示す。図16において、正極ブロック101,103と負極ブロック112,114と、正極ブロック102,104と負極ブロック111,113とが、それぞれ同じ配線パターンで構成された絶縁基板2を用いた構成である。つまり、図16の構成では、正アームと負アームとの隣接する絶縁基板2も鏡面対称である。図15や図16で示す電流経路は負アームの自己消弧型半導体素子6がオンした場合の転流時の大きなdi/dtが発生する場合の電流経路を示すものである。逆に、正アームの自己消弧型半導体素子6がオンした場合の転流時の電流経路は、正極側が自己消弧型半導体素子6、負極側が還流ダイオード7を通る経路となるところが、図15と図16とは異なる点であるが、絶縁基板2の配線パターンに流れる電流経路はほぼ同じである。
 図15において、図中で示すdi/dtの向きに対して、前述したソース配線パターン4の極太線矢印のdi/dtの向きは、正アームおよび負アームにおいては、ソース配線パターン4が隣接する箇所が存在する。この部分における電流の流れる向きが同一となり、極太線矢印を示した電流経路の寄生インダクタンスが増加し、図14(a)に示した負極側の電流のアンバランス抑制効果と同様の効果が得ることができる。一方で、太線矢印を示した電流経路は、正アームと負アームとの隣接する絶縁基板2で隣接(鏡面対称)し、流れる電流の向きが逆向きとなることから太線矢印を示した電流経路に発生する寄生インダクタンスが小さくなる。したがって、正アーム、負アームともに、太線矢印を示した電流経路の寄生インダクタンスを低減することにより、太線矢印を示した電流経路の寄生インダクタンスは、極太線矢印を示した電流経路の寄生インダクタンスと比べて相対的にインダクタンスが小さくなり、ソース電位のばらつきを低減できるので、自己消弧型半導体素子6を流れる電流のアンバランスを抑制することが可能である。
 図16において、正アームと負アームとの配線パターンは鏡面対称となるように配置されているので、図14(a)に示した負極側と同じ動作が可能である。そのため、自己消弧型半導体素子6や還流ダイオード7のソース配線4の極太線矢印を示した電流経路は、隣接する絶縁基板2間でdi/dtによって発生する磁束を打ち消す効果はなく、極太線矢印部の寄生インダクタンスは大きい。したがって、正アーム、負アームともに、極太線矢印を示した電流経路の寄生インダクタンスが増加することにより、太線矢印を示した電流経路の寄生インダクタンスは、相対的にインダクタンスが小さくなり、ソース電位のばらつきを低減できるので、自己消弧型半導体素子6を流れる電流のアンバランス抑制効果と同様の効果を正極側でも得ることができる。また、正アーム、負アームともに同じ配線パターン配置であることから、太線矢印の向きが同じとなり、この部分での寄生インダクタンスが増加する。しかしながら、太線矢印部分の寄生インダクタンスの増加量は極太線矢印部分の寄生インダクタンスの増加量に比べ少なく、ソース電位のばらつきに対して影響を与えない。さらに、モジュール内の対向するすべての配線パターンが同一であるので、電力用半導体モジュール内部での動作バランスが均一となり、電力用半導体モジュールとして安定した動作が可能となる。このように、図15、図16のいずれの構成においても、電流アンバランスに対する抑制効果を得ることができる。また、図16においては、正アームに対して負アームの絶縁基板2の組み合わせを変更したが、このように、鏡面対称となる絶縁基板の配置であれば、正アーム、負アームいずれを入れ替えた組み合わせでも同様の効果を得ることができる。
 ここで、本実施の形態においては、絶縁基板2に搭載された自己消弧型半導体素子6を4並列として図示したが、並列素子数は2個以上であれば、本発明の効果は得られるものであり、4並列に限定するものではない。また、絶縁基板2の枚数も4並列として図示したが、並列する絶縁基板2の枚数は2枚以上であれば、本発明の効果は得られるものであり、4並列に限定するものではない。
 また、図9に示すように主電極の形状を正極電極、負極電極、および交流電極をそれぞれが積層する形で配置することで、モジュールの端子が各一つであったとしても絶縁基板から正極電極と交流電極もしくは交流電極と負極電極が積層し、さらにモジュールの上部では正極電極と負極電極が積層され、インダクタンスを低減することが可能である。
 以上のように構成された電力用半導体モジュールにおいては、異なる配線パターンを搭載する絶縁基板2を鏡面対称となるように隣接して配置したので、隣接する配線パターン間での流れる電流が均一化することができる。その結果、絶縁基板2間および自己消弧型半導体素子6間の電流アンバランスを抑制することができ、電力用半導体モジュールの信頼性を向上することが可能となる。
 また、絶縁基板2の枚数は、配線パターン4が隣接するように鏡面対称に配置されれば良く、配置する枚数によらず、隣接する配線パターン間での流れる電流が均一化することができる。その結果、絶縁基板2間および自己消弧型半導体素子6間の電流アンバランスを抑制することができ、電力用半導体モジュールの信頼性を向上することが可能となる。 さらに、異なる配線パターンが形成された2種類の基板を用いて鏡面対称配置としたので、電力用半導体モジュールを構成する基板数を削減することがき、基板間および電力用半導体素子間の電流アンバランスを抑制したまま、電力用半導体モジュールのコスト低減が可能となる。
 また、樹脂絶縁材を用いた金属基板の場合は、1枚の基板上に異なる配線パターンを鏡面対称となるように隣接して複数個配置したので、基板数を削減することがき、基板間および電力用半導体素子間の電流アンバランスを抑制したまま、電力用半導体モジュールのコスト低減が可能となる。
実施の形態3.
 本実施の形態3においては、実施の形態1,2で用いた隣接する絶縁基板の鏡面対称である部分を含むソース配線パターンをボンディングワイヤで接続した点が異なる。このように隣接する絶縁基板の鏡面対称である部分を含むソース配線パターンをボンディングワイヤで接続し導通させることで、それぞれの鏡面対称部分において、自己消弧型半導体素子を流れる電流のアンバランスを抑制したまま、導通箇所を増加させることでインダクタンスを低減することができる。
 図17は、この発明の実施の形態3の電力用半導体モジュールの主電極(正極電極、負極電極、および交流電極)を取り除いた上面模式図である。図17には、主電極を取り除き、自己消弧型半導体素子6や還流ダイオード7などのチップレイアウトを示す。図示していない主電極は実施の形態2と同様の形状をしているため省略した。図18は、従来例における電力用半導体モジュールの主電極を取り除いた上面模式図である。図18には、主電極を取り除き、自己消弧型半導体素子6や還流ダイオード7などのチップレイアウトを示す。図18においては、絶縁基板は鏡面対称に配置されていない。図19は、この発明の実施の形態3の他の電力用半導体モジュールの主電極(正極電極、負極電極、および交流電極)を取り除いた上面模式図である。図19には、主電極を取り除き、自己消弧型半導体素子6や還流ダイオード7などのチップレイアウトを示す。図示していない主電極は実施の形態2と同様の形状をしているため省略した。
 図17において、本実施の形態3の電力用半導体モジュール300は、ベース板1、基板である絶縁基板2、ドレイン(コレクタ)配線パターン3、ソース(エミッタ)配線パターン4、セラミクス絶縁基板5、自己消弧型半導体素子6、還流ダイオード7、ボンディングワイヤ22、ケース51を備える。
 本実施の形態3の電力用半導体モジュール300は、電力用半導体モジュール300を構成する自己消弧型半導体素子6と還流ダイオード7との発熱を放熱する金属放熱体であるベース板1の一方の面に、金属箔がロウ付けなどで接合された絶縁材であるセラミクス絶縁基板5が、はんだ9により接合されている。一方、セラミクス絶縁基板5のベース板1と接合された面と対向する面には、金属箔により配線パターン3,4がロウ付けなどにより接合されている。金属箔が接合されたセラミクス絶縁基板5と配線パターン3,4とにより絶縁基板2が構成されている。ただし、絶縁基板の材料としては、セラミクスに限定されるものではなく、樹脂絶縁材を用いた金属基板であっても良い。樹脂絶縁材を用いた金属基板の場合は、正負アーム分の複数枚の絶縁基板を用いるのではなく、例えば1枚の金属基板を用い、この金属基板上に鏡面対称となるように配線パターンを複数個形成して用いることができる。このような樹脂絶縁材料を用いた金属基板であっても同様の効果を得ることができる。
 また、ドレイン(コレクタ)配線パターン3とソース(エミッタ)配線パターン4とのセラミクス絶縁基板5が接合された面と対向する面には、自己消弧型半導体素子6と還流ダイオード7がはんだ9により接合されている。さらに、隣接する絶縁基板2のソース(エミッタ)配線パターン4間は、ボンディングワイヤ22で接続し導通させている。ただし、配線材としては、ワイヤを用いているが、ワイヤに限定されるものではなく、その他の接合方法によるものでも良い。
 図18において、従来例における電力用半導体モジュール310は、ベース板1、基板である絶縁基板2、ドレイン(コレクタ)配線パターン3、ソース(エミッタ)配線パターン4、セラミクス絶縁基板5、自己消弧型半導体素子6、還流ダイオード7、配線材であるボンディングワイヤ22、ケース51を備える。本実施の形態3の電力用半導体モジュール300とは、配線パターンが鏡面対称配置となっていない点が異なる。
 実施の形態2での電力用半導体モジュール200では、絶縁基板2の主回路を構成する配線パターンは主電極のみで接続され、並列接続されていたが、配線インダクタンスを低減するには、電流経路を増やすことが効果的である。そのため、本実施の形態3においては、電流経路を増やすために並列のソース(エミッタ)パターン4間をボンディングワイヤ22で接続している。このような場合において、本実施の形態3では、隣接する絶縁基板2の配線パターンが鏡面対称であることにより、絶縁基板2間のボンディングワイヤ22の両端の電位が一致し、ボンディングワイヤ22への大きな電流が通流すること防ぐことが可能である。仮に、図18のように絶縁基板2を1種類として隣接する絶縁基板2が同じものであった場合、ボンディングワイヤ22の両端の電位はばらつき、ボンディングワイヤ22へ大きな電流が通流する。その結果、このボンディングワイヤ22の発熱およびパワーサイクル寿命が短くなるなどの問題が発生する。したがって、本実施の形態3においては、ボンディングワイヤ22の両端が同電位となることで、ボンディングワイヤ22にはDC(Direct Current)通流時に電流がほとんど流れることがない。その結果、ボンディングワイヤ22のパワーサイクル寿命が低下することなく、配線インダクタンスに影響するようなスイッチング時のdi/dtの大きな時間範囲においては、ボンディングワイヤ22によって導通箇所ができることによってインダクタンス低減が可能となる。
 さらに、このボンディングワイヤ22は複数本であっても良く、ソース配線パターン4間を複数のボンディングワイヤ22を用いて接続することで、よりパターン間のインピーダンスを低減することができる。図19にその例を示す。
 図19において、本実施の形態3の電力用半導体モジュール300は、ベース板1、基板である絶縁基板2、ドレイン(コレクタ)配線パターン3、ソース(エミッタ)配線パターン4、セラミクス絶縁基板5、自己消弧型半導体素子6、還流ダイオード7、ボンディングワイヤ22、ケース51を備える。
 各絶縁基板のソース配線パターン4に電流が流れることによって生じる電位差は、隣り合う絶縁基板のソース配線パターン4間を低インピーダンスで接続することにより発生しにくくなり、絶縁基板間での電流アンバランスの抑制が可能となる。図19では、絶縁基板が正極側・負極側に各4枚搭載される場合を図示したが、2枚や3枚などでも、5枚以上の場合でも、同様の効果は得られる。また、正極側・負極側の絶縁基板のパターンの組み合わせも図示したもの以外の組み合わせであっても鏡面対称の配線パターンであれば、同様の効果は得られる。
 以上のように構成された電力用半導体モジュールにおいては、異なる配線パターンを搭載する絶縁基板2を鏡面対称となるように隣接して配置したので、隣接する配線パターン間での流れる電流が均一化することができる。その結果、絶縁基板2間および自己消弧型半導体素子6間の電流アンバランスを抑制することができ、電力用半導体モジュールの信頼性を向上することが可能となる。
 また、隣接するソース配線パターン4間をボンディングワイヤ22によって接続し導通させることで、電力用半導体モジュール300内の電流経路を増加させることができ、インダクタンスの低減することが可能となる。
 さらに、異なる配線パターンが形成された2種類の基板を用いて鏡面対称配置としたので、電力用半導体モジュールを構成する基板数を削減することがき、基板間および電力用半導体素子間の電流アンバランスを抑制したまま、電力用半導体モジュールのコスト低減が可能となる。
 また、樹脂絶縁材を用いた金属基板の場合は、1枚の基板上に異なる配線パターンを鏡面対称となるように隣接して複数個配置したので、基板数を削減することがき、基板間および電力用半導体素子間の電流アンバランスを抑制したまま、電力用半導体モジュールのコスト低減が可能となる。
 1 ベース板、2 絶縁基板、3 ドレイン(コレクタ)配線パターン、4 ソース(エミッタ)配線パターン、5 セラミクス絶縁基板、6 自己消弧型半導体素子、7 還流ダイオード、8 ゲート抵抗、9 接合材、10 正極電極、11 負極電極、12 交流電極、13G 正極側ゲート、13E 正極側制御ソース、14G 負極側ゲート、14E 負極側制御ソース、21,22 ボンディングワイヤ、40 正極端子、41 負極端子、42 交流端子、50 封止材、51 ケース、52 蓋、53 ナット、100,110,200,210,300,310,320 電力用半導体モジュール、101,102,103,104 正極ブロック、111,112,113,114 負極ブロック。

Claims (12)

  1. 自己消弧型半導体素子を直列接続して構成され、前記自己消弧型半導体素子の直列接続点を有する正負アームと、
    前記正負アームに接続される正極側電極、負極側電極、および交流電極と、
    前記正負アームの前記自己消弧型半導体素子と前記正極側電極、前記負極側電極、および前記交流電極とを接続する複数の配線パターンが形成された基板とを備え、
    隣接する前記配線パターンに流れる電流の方向が同じで、一方の前記配線パターンが他方の前記配線パターンに対して鏡面対称に配置されたことを特徴とする電力用半導体モジュール。
  2. 前記配線パターンは、前記自己消弧型半導体素子を介した電流が流れ、前記鏡面対称の基準線に対して隣接して平行に配置された平行部を有することを特徴とする請求項1に記載の電力用半導体モジュール。
  3. 前記配線パターンは、前記配線パターン上に前記鏡面対称の基準線に対して垂直方向に一列に配置された前記自己消弧型半導体素子と配線材を介して接続され、前記鏡面対称の基準線に対して垂直方向に配置された垂直部を有し、前記垂直部を流れる電流の方向が逆方向となるように前記正負アームの前記垂直部を隣接して対向して配置されたことを特徴とする請求項1または請求項2に記載の電力用半導体モジュール。
  4. 前記配線パターンは、前記配線パターン上に前記鏡面対称の基準線に対して垂直方向に一列に配置された前記自己消弧型半導体素子と配線材を介して接続され、前記鏡面対称の基準線に対して垂直方向に配置された垂直部を有し、前記垂直部を流れる電流の方向が同方向となるように前記正負アームの前記垂直部を隣接して対向して配置されたことを特徴とする請求項1または請求項2に記載の電力用半導体モジュール。
  5. 前記正負アームいずれかの前記配線パターンのうち、隣接する前記垂直部同士が前記配線材で電気的に接続されたことを特徴とする請求項1~請求項4のいずれか1項に記載の電力用半導体モジュール。
  6. 前記配線パターンを電気的に接続する前記配線材は、複数本のボンディングワイヤを用いたことを特徴とする請求項5に記載の電力用半導体モジュール。
  7. 前記基板は、2種類あり、それぞれの前記基板に形成された前記配線パターンが鏡面対称になるように前記2種類の基板が配置されたことを特徴とする請求項1~請求項6のいずれか1項に記載の電力用半導体モジュール。
  8. 前記自己消弧型半導体素子に対して逆並列に接続され、前記配線パターンに接合されるダイオードを有し、前記正負アームは、前記自己消弧型半導体素子と前記ダイオードとの並列回路を直列接続して構成されることを特徴とする請求項1~請求項7のいずれか1項に記載の電力用半導体モジュール。
  9. 前記基板は、複数枚あり、隣接する前記基板上に形成された前記配線パターンが鏡面対称になるように前記複数の基板が配置されたことを特徴とする請求項1~請求項8のいずれか1項に記載の電力用半導体モジュール。
  10. 前記ダイオードが珪素よりバンドギャップが広いワイドギャップ半導体で形成されることを特徴とする請求項8に記載の電力用半導体モジュール。
  11. 前記自己消弧型半導体素子が珪素よりバンドギャップの広いワイドギャップ半導体で形成されることを特徴とする請求項1~10のいずれか1項に記載の電力用半導体モジュール。
  12. 前記ワイドギャップ半導体は、炭化珪素、窒化ガリウム材料、およびダイヤモンドのうちのいずれか1つであることを特徴とする請求項10または11に記載の電力用半導体モジュール。
PCT/JP2014/003464 2014-02-11 2014-06-30 電力用半導体モジュール WO2015121899A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480075304.2A CN105981274B (zh) 2014-02-11 2014-06-30 电力用半导体模块
DE112014006352.5T DE112014006352T5 (de) 2014-02-11 2014-06-30 Leistungshalbleitermodul
US15/117,327 US9899328B2 (en) 2014-02-11 2014-06-30 Power semiconductor module
JP2015562568A JP6366612B2 (ja) 2014-02-11 2014-06-30 電力用半導体モジュール

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-023922 2014-02-11
JP2014023922 2014-02-11

Publications (1)

Publication Number Publication Date
WO2015121899A1 true WO2015121899A1 (ja) 2015-08-20

Family

ID=53799671

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/003464 WO2015121899A1 (ja) 2014-02-11 2014-06-30 電力用半導体モジュール

Country Status (5)

Country Link
US (1) US9899328B2 (ja)
JP (1) JP6366612B2 (ja)
CN (1) CN105981274B (ja)
DE (1) DE112014006352T5 (ja)
WO (1) WO2015121899A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016162773A (ja) * 2015-02-26 2016-09-05 ローム株式会社 半導体装置
US10250115B2 (en) 2016-11-02 2019-04-02 Ford Global Technologies, Llc Inverter switching devices with common source inductance layout to avoid shoot-through
JP2019220719A (ja) * 2019-09-24 2019-12-26 ローム株式会社 半導体装置
WO2020054806A1 (ja) * 2018-09-14 2020-03-19 富士電機株式会社 半導体装置
WO2020071102A1 (ja) * 2018-10-05 2020-04-09 富士電機株式会社 半導体装置、半導体モジュールおよび車両
JP2021089991A (ja) * 2019-12-05 2021-06-10 三菱電機株式会社 半導体モジュールおよび電力変換装置
JP2022091899A (ja) * 2019-09-24 2022-06-21 ローム株式会社 半導体装置

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6245365B2 (ja) 2014-07-03 2017-12-13 日産自動車株式会社 ハーフブリッジパワー半導体モジュール及びその製造方法
JP6288301B2 (ja) * 2014-11-28 2018-03-14 日産自動車株式会社 ハーフブリッジパワー半導体モジュール及びその製造方法
EP3555914B1 (en) * 2016-12-16 2021-02-03 ABB Schweiz AG Power semiconductor module with low gate path inductance
JP7008912B2 (ja) * 2017-02-01 2022-01-25 ヒタチ・エナジー・スウィツァーランド・アクチェンゲゼルシャフト 能動的な短絡故障モードを有するパワー半導体装置
JP6786416B2 (ja) 2017-02-20 2020-11-18 株式会社東芝 半導体装置
EP3396839B1 (en) * 2017-04-28 2021-12-15 Infineon Technologies AG Semiconductor arrangement with controllable semiconductor elements
JP2018200953A (ja) * 2017-05-26 2018-12-20 ルネサスエレクトロニクス株式会社 電子装置
CN111386604B (zh) * 2018-06-01 2023-12-19 富士电机株式会社 半导体装置
JPWO2019234912A1 (ja) * 2018-06-08 2020-08-27 新電元工業株式会社 半導体モジュール
DE102018217763A1 (de) * 2018-10-17 2020-04-23 Mahle International Gmbh Wechselrichtereinrichtung mit Halbbrückenmodul
CN113316846A (zh) * 2019-02-01 2021-08-27 三菱电机株式会社 半导体装置以及电力变换装置
JP7170272B2 (ja) * 2019-03-27 2022-11-14 ネクスファイ・テクノロジー株式会社 パワー基板とそれを備えた高電圧モジュール
CN113366634A (zh) * 2019-08-13 2021-09-07 富士电机株式会社 半导体装置
US11923716B2 (en) 2019-09-13 2024-03-05 Milwaukee Electric Tool Corporation Power converters with wide bandgap semiconductors
JP7380062B2 (ja) * 2019-10-18 2023-11-15 富士電機株式会社 半導体モジュール
JP6906583B2 (ja) * 2019-10-29 2021-07-21 三菱電機株式会社 半導体パワーモジュール
CN111106098B (zh) * 2019-12-13 2021-10-22 扬州国扬电子有限公司 一种低寄生电感布局的功率模块
EP3876409A1 (en) * 2020-03-05 2021-09-08 ABB Schweiz AG Flying capacitor switching cell-system
DE102021117924A1 (de) * 2021-07-12 2023-01-12 Danfoss Silicon Power Gmbh Leistungsmodul

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58131759A (ja) * 1982-01-30 1983-08-05 Matsushita Electric Works Ltd 電力用トランジスタの並列接続構造
JP2001102519A (ja) * 1999-09-30 2001-04-13 Mitsubishi Electric Corp パワー半導体モジュール
WO2013128787A1 (ja) * 2012-03-01 2013-09-06 三菱電機株式会社 電力用半導体モジュール及び電力変換装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3268690B2 (ja) 1993-07-01 2002-03-25 株式会社日立製作所 半導体集積回路装置
JP3519227B2 (ja) 1996-04-08 2004-04-12 富士電機デバイステクノロジー株式会社 半導体装置
JP3521651B2 (ja) 1996-10-18 2004-04-19 株式会社日立製作所 パワー半導体装置
JP4567570B2 (ja) * 2005-10-17 2010-10-20 三菱電機株式会社 電力変換装置
JP4771972B2 (ja) * 2007-02-13 2011-09-14 トヨタ自動車株式会社 電力変換装置
JP5235331B2 (ja) 2007-05-18 2013-07-10 三菱電機株式会社 半導体集積回路
JP5080321B2 (ja) * 2008-03-11 2012-11-21 日本インター株式会社 パワーモジュール
JP2010016122A (ja) 2008-07-02 2010-01-21 Mitsubishi Electric Corp 半導体集積回路
KR101194609B1 (ko) * 2008-07-10 2012-10-25 미쓰비시덴키 가부시키가이샤 전력용 반도체 모듈
JP5171520B2 (ja) 2008-09-30 2013-03-27 日立オートモティブシステムズ株式会社 電力変換装置
US9129885B2 (en) * 2010-01-15 2015-09-08 Mitsubishi Electric Corporation Power semiconductor module
WO2011086705A1 (ja) * 2010-01-18 2011-07-21 三菱電機株式会社 パワー半導体モジュール、電力変換装置および鉄道車両
CN103222178A (zh) * 2010-10-29 2013-07-24 松下电器产业株式会社 逆变器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58131759A (ja) * 1982-01-30 1983-08-05 Matsushita Electric Works Ltd 電力用トランジスタの並列接続構造
JP2001102519A (ja) * 1999-09-30 2001-04-13 Mitsubishi Electric Corp パワー半導体モジュール
WO2013128787A1 (ja) * 2012-03-01 2013-09-06 三菱電機株式会社 電力用半導体モジュール及び電力変換装置

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10892218B2 (en) 2015-02-26 2021-01-12 Rohm Co., Ltd. Semiconductor device
US10192820B2 (en) 2015-02-26 2019-01-29 Rohm Co., Ltd. Semiconductor device
US10490494B2 (en) 2015-02-26 2019-11-26 Rohm Co., Ltd. Semiconductor device
JP2016162773A (ja) * 2015-02-26 2016-09-05 ローム株式会社 半導体装置
US10250115B2 (en) 2016-11-02 2019-04-02 Ford Global Technologies, Llc Inverter switching devices with common source inductance layout to avoid shoot-through
JP7036221B2 (ja) 2018-09-14 2022-03-15 富士電機株式会社 半導体装置
WO2020054806A1 (ja) * 2018-09-14 2020-03-19 富士電機株式会社 半導体装置
JPWO2020054806A1 (ja) * 2018-09-14 2021-03-11 富士電機株式会社 半導体装置
US11171122B2 (en) 2018-09-14 2021-11-09 Fuji Electric Co., Ltd. Semiconductor device
WO2020071102A1 (ja) * 2018-10-05 2020-04-09 富士電機株式会社 半導体装置、半導体モジュールおよび車両
JPWO2020071102A1 (ja) * 2018-10-05 2021-03-25 富士電機株式会社 半導体装置、半導体モジュールおよび車両
JP7147859B2 (ja) 2018-10-05 2022-10-05 富士電機株式会社 半導体装置、半導体モジュールおよび車両
US11631641B2 (en) 2018-10-05 2023-04-18 Fuji Electric Co., Ltd. Semiconductor device, semiconductor module, and vehicle
JP2019220719A (ja) * 2019-09-24 2019-12-26 ローム株式会社 半導体装置
JP7050732B2 (ja) 2019-09-24 2022-04-08 ローム株式会社 半導体装置
JP2022091899A (ja) * 2019-09-24 2022-06-21 ローム株式会社 半導体装置
JP7240541B2 (ja) 2019-09-24 2023-03-15 ローム株式会社 半導体装置
JP2021089991A (ja) * 2019-12-05 2021-06-10 三菱電機株式会社 半導体モジュールおよび電力変換装置

Also Published As

Publication number Publication date
CN105981274A (zh) 2016-09-28
US9899328B2 (en) 2018-02-20
DE112014006352T5 (de) 2016-10-27
JPWO2015121899A1 (ja) 2017-03-30
JP6366612B2 (ja) 2018-08-01
US20160351505A1 (en) 2016-12-01
CN105981274B (zh) 2018-11-06

Similar Documents

Publication Publication Date Title
JP6366612B2 (ja) 電力用半導体モジュール
JP6188902B2 (ja) 電力用半導体モジュール及び電力変換装置
US11600602B2 (en) Semiconductor power module
JP5841500B2 (ja) スタック型ハーフブリッジ電力モジュール
JP6320433B2 (ja) 電力用半導体モジュール
JP6202195B2 (ja) 半導体装置
JP5867472B2 (ja) 電力変換装置
JP6096614B2 (ja) パワー半導体モジュールおよびそれを用いた電力変換装置
JP2021177519A (ja) 半導体装置
JP2012235128A (ja) 少なくとも一つの電子部品を、第1および第2端子の間のループインダクタンスを低減する手段を含む電力供給装置に電気的に相互接続するための装置
JP2022050887A (ja) 半導体装置
JP6468984B2 (ja) 半導体装置
JP2008054495A (ja) 電流印加されたパワー回路のための低インダクタンスのパワー半導体モジュール
JP2020038885A (ja) 半導体装置
JP7159609B2 (ja) 半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14882355

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015562568

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15117327

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112014006352

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14882355

Country of ref document: EP

Kind code of ref document: A1