WO2015115082A1 - 車両用空調装置 - Google Patents

車両用空調装置 Download PDF

Info

Publication number
WO2015115082A1
WO2015115082A1 PCT/JP2015/000322 JP2015000322W WO2015115082A1 WO 2015115082 A1 WO2015115082 A1 WO 2015115082A1 JP 2015000322 W JP2015000322 W JP 2015000322W WO 2015115082 A1 WO2015115082 A1 WO 2015115082A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
temperature
cooling water
outside air
mode
Prior art date
Application number
PCT/JP2015/000322
Other languages
English (en)
French (fr)
Inventor
憲彦 榎本
梯 伸治
康光 大見
牧原 正径
木下 宏
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to DE112015000552.8T priority Critical patent/DE112015000552T5/de
Priority to CN201580006344.6A priority patent/CN105960345B/zh
Priority to US15/113,856 priority patent/US10479170B2/en
Publication of WO2015115082A1 publication Critical patent/WO2015115082A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3205Control means therefor
    • B60H1/3207Control means therefor for minimizing the humidity of the air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H1/00278HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit for the battery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00357Air-conditioning arrangements specially adapted for particular vehicles
    • B60H1/00385Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell
    • B60H1/004Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell for vehicles having a combustion engine and electric drive means, e.g. hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00421Driving arrangements for parts of a vehicle air-conditioning
    • B60H1/00428Driving arrangements for parts of a vehicle air-conditioning electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00735Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models
    • B60H1/00785Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models by the detection of humidity or frost
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00821Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being ventilating, air admitting or air distributing devices
    • B60H1/00864Ventilators and damper doors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00899Controlling the flow of liquid in a heat pump system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3228Cooling devices using compression characterised by refrigerant circuit configurations
    • B60H1/32281Cooling devices using compression characterised by refrigerant circuit configurations comprising a single secondary circuit, e.g. at evaporator or condenser side
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3228Cooling devices using compression characterised by refrigerant circuit configurations
    • B60H1/32284Cooling devices using compression characterised by refrigerant circuit configurations comprising two or more secondary circuits, e.g. at evaporator and condenser side
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • F25B29/003Combined heating and refrigeration systems, e.g. operating alternately or simultaneously of the compression type system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H2001/00307Component temperature regulation using a liquid flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H2001/00928Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices comprising a secondary circuit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3236Cooling devices information from a variable is obtained
    • B60H2001/3244Cooling devices information from a variable is obtained related to humidity
    • B60H2001/3245Cooling devices information from a variable is obtained related to humidity of air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3236Cooling devices information from a variable is obtained
    • B60H2001/3255Cooling devices information from a variable is obtained related to temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3236Cooling devices information from a variable is obtained
    • B60H2001/3266Cooling devices information from a variable is obtained related to the operation of the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3286Constructional features
    • B60H2001/3291Locations with heat exchange within the refrigerant circuit itself
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor

Definitions

  • the present disclosure relates to an air conditioner used for a vehicle.
  • Conventional vehicle air conditioners include an evaporator that cools and dehumidifies the air blown into the passenger compartment by exchanging heat between the low-pressure refrigerant in the refrigeration cycle and the air blown into the passenger compartment. And in the inside air circulation mode in which the inside air is circulated without introducing outside air into the vehicle interior, in order to suppress the fogging of the window glass, the compressor of the refrigeration cycle is operated and the air blown into the vehicle interior by the evaporator. Dehumidify.
  • the compressor when the fogging of the window glass is suppressed, power is consumed by the compressor. Specifically, when the compressor is an electric compressor, power is consumed by operating the compressor. When the compressor is an engine-driven compressor, operating the compressor causes deterioration of fuel consumption, engine output, and engine feeling.
  • Patent Document 1 describes a vehicle air conditioner that can ensure anti-fogging properties and fuel-saving properties by improving the determination accuracy when the window glass is actually fogged. According to this, since the frequency which operates a compressor in order to suppress fogging of a window glass can be reduced, the motive power consumed in order to suppress fogging of a window glass can be reduced.
  • Patent Document 1 can reduce the frequency of operation of the compressor for suppressing fogging of the window glass, but if the window glass is actually fogged, the compressor is not used. There is a limit to power saving because it must be operated.
  • This indication aims at reducing the power required in order to suppress fogging of a window glass in view of the above-mentioned point.
  • the vehicle air conditioner includes: A pump for circulating the heat medium by sucking and discharging the heat medium; An air-cooling heat exchanger that performs sensible heat exchange between the heat medium circulated by the pump and the air blown into the passenger compartment to cool and dehumidify the blown air; A heat medium outside air heat exchanger that exchanges sensible heat between the heat medium and outside air; A compressor that sucks and discharges refrigerant in the refrigeration cycle; A heat exchanger for cooling the heat medium that cools the heat medium by exchanging heat between the low-pressure side refrigerant of the refrigeration cycle and the heat medium; The first dehumidification mode in which the heat medium circulates between the air cooling heat exchanger and the heat medium cooling heat exchanger, and the heat medium circulates between the air cooling heat exchanger and the heat medium outside air heat exchanger. A dehumidification mode switching unit that switches between the second dehumidification mode.
  • the cooling water cooled by the outside air in the heat medium outside air heat exchanger can be circulated to the air cooling heat exchanger to dehumidify the air blown into the vehicle interior.
  • the cooling water cooled by the low-pressure side refrigerant of the refrigeration cycle in the heat exchanger for cooling the heat medium is circulated to the heat exchanger for cooling the air to dehumidify the air blown into the passenger compartment.
  • the power required to suppress the fogging of the window glass can be reduced.
  • a vehicle air conditioner includes a pump that sucks and discharges a heat medium; A heat medium outside air heat exchanger that exchanges sensible heat between the heat medium and outside air; An air cooling heat exchanger that exchanges sensible heat between the heat medium and the air blown into the passenger compartment, When the temperature related to the outside air temperature is estimated or determined to be less than the temperature related to the dew point temperature of the blown air flowing into the air cooling heat exchanger, the air cooling heat exchanger and the heat medium outside air heat exchange A heat medium circulation control unit that circulates the heat medium between the heat exchanger and the container.
  • the cooling water cooled by the outside air in the heat medium outside air heat exchanger can be circulated to the air cooling heat exchanger to dehumidify the blown air into the vehicle interior.
  • the power required to suppress fogging of the window glass can be reduced.
  • 1 is an overall configuration diagram of a vehicle thermal management system in a first embodiment. It is a block diagram which shows the electric control part in the thermal management system for vehicles of 1st Embodiment. It is a flowchart which shows the control processing which the control apparatus of 1st Embodiment performs. It is a graph explaining the threshold value of the window fogging index RHW in the flowchart of FIG. It is a flowchart which shows the control processing in the compressor on mode of 1st Embodiment. It is a flowchart which shows the control processing in the compressor off mode of 1st Embodiment. It is a flowchart which shows the control processing in the compressor off mode of 2nd Embodiment.
  • the vehicle thermal management system 10 shown in FIG. 1 is used to adjust various devices and the interior of a vehicle to an appropriate temperature.
  • the vehicle thermal management system 10 is applied to a hybrid vehicle that obtains a driving force for vehicle travel from an engine (internal combustion engine) and a travel electric motor (motor generator).
  • the hybrid vehicle according to the present embodiment is configured as a plug-in hybrid vehicle that can charge power supplied from an external power source (commercial power source) when the vehicle is stopped to a battery (vehicle battery) mounted on the vehicle.
  • a battery vehicle battery
  • the battery for example, a lithium ion battery can be used.
  • the driving force output from the engine is used not only for driving the vehicle, but also for operating the generator.
  • the electric power generated with the generator and the electric power supplied from the external power supply can be stored in the battery.
  • the battery can also store electric power (regenerative energy) regenerated by the traveling electric motor during deceleration or downhill.
  • the electric power stored in the battery is supplied not only to the electric motor for traveling but also to various in-vehicle devices such as electric components constituting the thermal management system 10 for vehicles.
  • the plug-in hybrid vehicle charges the battery from an external power source when the vehicle is stopped before the vehicle starts running, so that the remaining battery charge SOC of the battery becomes equal to or greater than a predetermined reference running balance as at the start of driving.
  • the EV travel mode is a travel mode in which the vehicle travels by the driving force output from the travel electric motor.
  • the HV travel mode is a travel mode in which the vehicle travels mainly by the driving force output by the engine 61.
  • the travel electric motor is operated to assist the engine 61. .
  • Switching between the EV traveling mode and the HV traveling mode is controlled by a driving force control device (not shown).
  • the vehicle thermal management system 10 includes a first pump 11, a second pump 12, a radiator 13, a cooling water cooler 14, a cooling water heater 15, a cooler core 16, a heater core 17, and cooling water cooling water.
  • a heat exchanger 18, an inverter 19, a battery temperature adjusting heat exchanger 20, a first switching valve 21 and a second switching valve 22 are provided.
  • the first pump 11 and the second pump 12 are electric pumps that suck and discharge cooling water (heat medium).
  • the cooling water is a fluid as a heat medium.
  • a liquid containing at least ethylene glycol, dimethylpolysiloxane or nanofluid, or an antifreeze liquid is used as the cooling water.
  • the first pump 11 and the second pump 12 are flow rate adjusting units that adjust the flow rate of the cooling water flowing through each cooling water circulation device.
  • the radiator 13, the cooling water cooler 14, the cooling water heater 15, the cooler core 16, the heater core 17, the cooling water cooling water heat exchanger 18, the inverter 19, and the battery temperature control heat exchanger 20 are distributed in the cooling water flow.
  • Equipment heat medium distribution equipment
  • the radiator 13 is a cooling water outside air heat exchanger (heat medium outside air heat exchanger) that performs heat exchange (sensible heat exchange) between cooling water and outside air (hereinafter referred to as outside air).
  • outside air cooling water outside air heat exchanger
  • heat exchange sensible heat exchange
  • the radiator 13 can exhibit a function as a radiator that radiates heat from the cooling water to the outside air and a function as a heat absorber that absorbs heat from the outside air to the cooling water.
  • the radiator 13 is a heat transfer device that has a flow path through which the cooling water flows and performs heat transfer with the cooling water whose temperature is adjusted by the cooling water cooler 14 or the cooling water heater 15.
  • the outdoor blower 30 is an electric blower (outside air blower) that blows outside air to the radiator 13.
  • the radiator 13 and the outdoor blower 30 are disposed in the foremost part of the vehicle. For this reason, the traveling wind can be applied to the radiator 13 when the vehicle is traveling.
  • the outdoor blower 30 is a flow rate adjusting unit that adjusts the flow rate of the outside air flowing through the radiator 13.
  • the cooling water cooler 14 (chiller) and the cooling water heater 15 (water cooling condenser) are heat exchangers for adjusting the temperature of the cooling water (heat exchange for adjusting the temperature of the heat medium) for adjusting the temperature of the cooling water by exchanging heat of the cooling water. ).
  • the cooling water cooler 14 is a cooling water cooling heat exchanger (heat medium cooling heat exchanger) that cools the cooling water.
  • the cooling water heater 15 is a cooling water heating heat exchanger (heat medium heating heat exchanger) for heating the cooling water.
  • the cooling water cooler 14 is a low pressure side heat exchanger (heat medium heat absorber) that absorbs heat from the cooling water to the low pressure side refrigerant by exchanging heat between the low pressure side refrigerant of the refrigeration cycle 31 and the cooling water.
  • the cooling water cooler 14 constitutes an evaporator of the refrigeration cycle 31.
  • the refrigeration cycle 31 is a vapor compression refrigerator that includes a compressor 32, a cooling water heater 15, an expansion valve 33, a cooling water cooler 14, and an internal heat exchanger 34.
  • a chlorofluorocarbon refrigerant is used as the refrigerant, and a subcritical refrigeration cycle in which the high-pressure side refrigerant pressure does not exceed the critical pressure of the refrigerant is configured.
  • the compressor 32 is an electric compressor driven by electric power supplied from a battery, and sucks, compresses and discharges the refrigerant of the refrigeration cycle 31.
  • the cooling water heater 15 is a condenser (high pressure side heat exchanger) that condenses (changes latent heat) the high pressure side refrigerant by exchanging heat between the high pressure side refrigerant discharged from the compressor 32 and the cooling water.
  • condenser high pressure side heat exchanger
  • the expansion valve 33 is a decompression device that decompresses and expands the liquid-phase refrigerant that has flowed out of the cooling water heater 15.
  • the expansion valve 33 includes a temperature sensing unit 33a that detects the degree of superheat of the coolant cooler 14 outlet side refrigerant based on the temperature and pressure of the coolant cooler 14 outlet side refrigerant, and the coolant cooler 14 outlet side refrigerant.
  • This is a temperature-type expansion valve that adjusts the throttle passage area by a mechanical mechanism so that the degree of superheat of the gas becomes a predetermined range.
  • the cooling water cooler 14 is an evaporator that evaporates (changes latent heat) the low-pressure refrigerant by exchanging heat between the low-pressure refrigerant decompressed and expanded by the expansion valve 33 and the cooling water.
  • the gas phase refrigerant evaporated in the cooling water cooler 14 is sucked into the compressor 32 and compressed.
  • the internal heat exchanger 34 is a heat exchanger that exchanges heat between the refrigerant flowing out of the cooling water heater 15 and the refrigerant flowing out of the cooling water cooler 14.
  • the refrigeration cycle 31 is a cooling water cooling / heating unit (heat medium cooling / heating unit) having a cooling water cooler 14 for cooling the cooling water and a cooling water heater 15 for heating the cooling water.
  • the refrigeration cycle 31 is a low-temperature cooling water generator (low-temperature heat medium generator) that generates low-temperature cooling water with the cooling water cooler 14 and high-temperature cooling water that generates high-temperature cooling water with the cooling water heater 15. This is a generator (high-temperature heat medium generator).
  • the cooling water In the radiator 13, the cooling water is cooled by outside air, whereas in the cooling water cooler 14, the cooling water is cooled by the low-pressure refrigerant of the refrigeration cycle 31. For this reason, the temperature of the cooling water cooled by the cooling water cooler 14 can be made lower than the temperature of the cooling water cooled by the radiator 13. Specifically, the radiator 13 cannot cool the cooling water to a temperature lower than the outside air temperature, whereas the cooling water cooler 14 can cool the cooling water to a temperature lower than the outside air temperature.
  • the cooler core 16 and the heater core 17 are heat medium air heat exchange that adjusts the temperature of the blown air by exchanging heat between the cooling water whose temperature is adjusted by the cooling water cooler 14 and the cooling water heater 15 and the blown air to the vehicle interior. It is a vessel.
  • the cooler core 16 is a heat exchanger for air cooling that performs heat exchange (sensible heat exchange) between cooling water and air blown into the vehicle interior to cool and dehumidify the air blown into the vehicle interior.
  • the heater core 17 is an air heating heat exchanger that heats the air blown into the vehicle interior by exchanging heat (sensible heat exchange) between the air blown into the vehicle cabin and the cooling water.
  • the cooling water cooling water heat exchanger 18, the inverter 19, and the battery temperature control heat exchanger 20 have a flow path through which the cooling water flows, and a heat transfer device (a temperature adjustment target) that transfers heat to and from the cooling water. Equipment).
  • the cooling water cooling water heat exchanger 18 includes cooling water (cooling water circulated by the first pump 11 or the second pump 12) of the vehicle heat management system 10 and cooling water (engine heat medium for the engine cooling circuit 60). ) And a heat exchanger (heat medium heat medium heat exchanger).
  • the cooling water cooling water heat exchanger 18 constitutes an engine heat transfer unit that transfers heat between the cooling water circulated by the first pump 11 or the second pump 12 and the engine 61.
  • the engine 61 is a heat generating device that generates heat as it operates.
  • the inverter 19 is a power converter that converts DC power supplied from the battery into AC voltage and outputs the AC voltage to the traveling electric motor.
  • the inverter 19 is a heat generating device that generates heat when activated. The amount of heat generated by the inverter 19 changes depending on the traveling state of the vehicle.
  • the cooling water flow path of the inverter 19 constitutes a device heat transfer unit that transfers heat between the heat generating device and the cooling water.
  • the battery temperature control heat exchanger 20 is a heat exchanger (heat medium air heat exchanger) that is arranged in the air blowing path to the battery and exchanges heat between the blown air and the cooling water.
  • the battery temperature control heat exchanger 20 constitutes a battery heat transfer unit that transfers heat between the battery and the cooling water.
  • a battery is a heat-generating device that generates heat when activated.
  • the first pump 11 is disposed in the first pump flow path 41.
  • a cooling water cooler 14 is disposed on the discharge side of the first pump 11 in the first pump flow path 41.
  • the second pump 12 is disposed in the second pump flow path 42.
  • a cooling water heater 15 is disposed on the discharge side of the second pump 12 in the second pump flow path 42.
  • the radiator 13 is disposed in the radiator flow path 43.
  • the cooler core 16 is disposed in the cooler core flow path 44.
  • the heater core 17 is disposed in the heater core flow path 45.
  • the cooling water cooling water heat exchanger 18 is disposed in the cooling water cooling water heat exchanger channel 46.
  • the inverter 19 is disposed in the inverter flow path 47.
  • the battery temperature adjustment heat exchanger 20 is disposed in the battery heat exchange channel 48.
  • a reserve tank 43 a is connected to the radiator flow path 43.
  • the reserve tank 43a is an open-air container (heat medium storage unit) that stores cooling water. Therefore, the pressure at the liquid level of the cooling water stored in the reserve tank 43a becomes atmospheric pressure.
  • the reserve tank 43a may be configured such that the pressure at the coolant level stored in the reserve tank 43a is a predetermined pressure (a pressure different from the atmospheric pressure).
  • Storing excess cooling water in the reserve tank 43a can suppress a decrease in the amount of cooling water circulating through each flow path.
  • the reserve tank 43a has a function of gas-liquid separation of bubbles mixed in the cooling water.
  • the battery heat exchange channel 48 is connected to the first switching valve 21 and the second switching valve 22.
  • the first switching valve 21 and the second switching valve 22 are circulation switching devices that switch the flow of cooling water (cooling water circulation state).
  • the first switching valve 21 and the second switching valve 22 are dehumidification mode switching devices that switch the dehumidification mode.
  • the first switching valve 21 has a first inlet 21a and a second inlet 21b as cooling water inlets, and a first outlet 21c, a second outlet 21d, a third outlet 21e, a fourth outlet 21f as cooling water outlets, It has a fifth outlet 21g, a sixth outlet 21h, and a seventh outlet 21i.
  • the second switching valve 22 has a first outlet 22a and a second outlet 22b as cooling water outlets, and a first inlet 22c, a second inlet 22d, a third inlet 22e, a fourth inlet 22f, as cooling water inlets, It has a fifth inlet 22g, a sixth inlet 22h, and a seventh inlet 22i.
  • One end of a first pump flow path 41 is connected to the first inlet 21 a of the first switching valve 21.
  • the cooling water outlet side of the cooling water cooler 14 is connected to the first inlet 21 a of the first switching valve 21.
  • One end of a second pump flow path 42 is connected to the second inlet 21b of the first switching valve 21.
  • the cooling water outlet side of the cooling water heater 15 is connected to the second inlet 21 b of the first switching valve 21.
  • One end of a radiator flow path 43 is connected to the first outlet 21c of the first switching valve 21.
  • the cooling water inlet side of the radiator 13 is connected to the first outlet 21 c of the first switching valve 21.
  • One end of the cooler core flow path 44 is connected to the second outlet 21d of the first switching valve 21.
  • the cooling water inlet side of the cooler core 16 is connected to the second outlet 21 d of the first switching valve 21.
  • One end of a heater core channel 45 is connected to the third outlet 21e of the first switching valve 21.
  • the cooling water inlet side of the heater core 17 is connected to the third outlet 21 e of the first switching valve 21.
  • One end of a cooling water / cooling water heat exchanger channel 46 is connected to the fourth outlet 21f of the first switching valve 21.
  • the cooling water inlet side of the cooling water cooling water heat exchanger 18 is connected to the fourth outlet 21 f of the first switching valve 21.
  • One end of an inverter flow path 47 is connected to the fifth outlet 21g of the first switching valve 21.
  • the cooling water inlet side of the inverter 19 is connected to the fifth outlet 21 g of the first switching valve 21.
  • One end of a battery heat exchange channel 48 is connected to the sixth outlet 21h of the first switching valve 21.
  • the sixth water outlet 21h of the first switching valve 21 is connected to the coolant inlet side of the battery temperature adjusting heat exchanger 20.
  • One end of a bypass channel 49 is connected to the seventh outlet 21 i of the first switching valve 21.
  • the other end of the first pump flow path 41 is connected to the first outlet 22a of the second switching valve 22.
  • the cooling water suction side of the first pump 11 is connected to the first outlet 22 a of the second switching valve 22.
  • the other end of the second pump flow path 42 is connected to the second outlet 22b of the second switching valve 22.
  • the cooling water suction side of the second pump 12 is connected to the second outlet 22 b of the second switching valve 22.
  • the other end of the radiator flow path 43 is connected to the first inlet 22c of the second switching valve 22.
  • the cooling water outlet side of the radiator 13 is connected to the first inlet 22 c of the second switching valve 22.
  • the other end of the cooler core flow path 44 is connected to the second inlet 22d of the second switching valve 22.
  • the cooling water outlet side of the cooler core 16 is connected to the second inlet 22 d of the second switching valve 22.
  • the other end of the heater core flow path 45 is connected to the third inlet 22e of the second switching valve 22.
  • the coolant outlet side of the heater core 17 is connected to the third inlet 22e of the second switching valve 22.
  • the other end of the cooling water / cooling water heat exchanger channel 46 is connected to the fourth inlet 22f of the second switching valve 22.
  • the cooling water outlet side of the cooling water cooling water heat exchanger 18 is connected to the fourth inlet 22 f of the second switching valve 22.
  • the other end of the inverter flow path 47 is connected to the fifth inlet 22g of the second switching valve 22.
  • the cooling water outlet side of the inverter 19 is connected to the fifth inlet 22 g of the second switching valve 22.
  • the other end of the battery heat exchange channel 48 is connected to the sixth inlet 22h of the second switching valve 22.
  • the cooling water outlet side of the battery temperature adjusting heat exchanger 20 is connected to the sixth inlet 22 h of the second switching valve 22.
  • the other end of the bypass channel 49 is connected to the seventh inlet 22 i of the second switching valve 22.
  • the first switching valve 21 and the second switching valve 22 have a structure that can arbitrarily or selectively switch the communication state between each inlet and each outlet.
  • the first switching valve 21 is provided for each of the radiator 13, the cooler core 16, the heater core 17, the cooling water cooling water heat exchanger 18, the inverter 19, the battery temperature adjustment heat exchanger 20, and the bypass channel 49.
  • the second switching valve 22 cools the radiator 13, the cooler core 16, the heater core 17, the cooling water cooling water heat exchanger 18, the inverter 19, the battery temperature control heat exchanger 20, and the bypass channel 49 to the first pump 11.
  • the state where water flows out, the state where cooling water flows out to the second pump 12, and the state where cooling water does not flow out to the first pump 11 and the second pump 12 are switched.
  • the valve opening degree of the first switching valve 21 and the second switching valve 22 can be adjusted. Thereby, the flow volume of the cooling water which flows through the radiator 13, the cooler core 16, the heater core 17, the cooling water cooling water heat exchanger 18, the inverter 19, the battery temperature control heat exchanger 20, and the bypass channel 49 can be adjusted.
  • the first switching valve 21 and the second switching valve 22 include the radiator 13, the cooler core 16, the heater core 17, the cooling water cooling water heat exchanger 18, the inverter 19, the battery temperature adjustment heat exchanger 20, and the bypass flow path 49, respectively.
  • it is a flow control part which adjusts the flow volume of a cooling water.
  • the first switching valve 21 mixes the cooling water discharged from the first pump 11 and the cooling water discharged from the second pump 12 at an arbitrary flow rate ratio, and the radiator 13, the cooler core 16, the heater core 17, and the cooling water.
  • the water cooling water heat exchanger 18, the inverter 19, the battery temperature adjusting heat exchanger 20, and the bypass channel 49 can be made to flow.
  • the first switching valve 21 and the second switching valve 22 include the radiator 13, the cooler core 16, the heater core 17, the cooling water cooling water heat exchanger 18, the inverter 19, the battery temperature adjustment heat exchanger 20, and the bypass flow path 49, respectively.
  • the flow rate ratio adjusting device adjusts the flow rate ratio between the cooling water cooled by the cooling water cooler 14 and the cooling water heated by the cooling water heater 15.
  • the first switching valve 21 and the second switching valve 22 may be integrally formed to share a valve drive source.
  • the 1st switching valve 21 and the 2nd switching valve 22 may be comprised by the combination of many valves.
  • the cooler core 16 and the heater core 17 are accommodated in a case 51 of the indoor air conditioning unit 50 of the vehicle air conditioner.
  • the case 51 forms an air passage for the blown air that is blown into the vehicle interior, and is formed of a resin (for example, polypropylene) having a certain degree of elasticity and excellent strength.
  • An inside / outside air switching box 52 is arranged on the most upstream side of the air flow in the case 51.
  • the inside / outside air switching box 52 is an inside / outside air introduction section that switches between and introduces inside air (vehicle compartment air) and outside air (vehicle compartment outside air).
  • the inside / outside air switching box 52 is formed with an inside air inlet 52a for introducing inside air into the case 51 and an outside air inlet 52b for introducing outside air.
  • An inside / outside air switching door 53 is arranged inside the inside / outside air switching box 52.
  • the inside / outside air switching door 53 is an inside / outside air switching unit that switches between an inside air introduction mode in which inside air is introduced into the case 51 and an outside air introduction mode in which outside air is introduced.
  • the inside / outside air switching door 53 is an air volume ratio changing unit that changes the air volume ratio between the air volume of the inside air introduced into the case 51 and the air volume of the outside air.
  • the inside / outside air switching door 53 is an inside / outside air ratio adjusting unit that adjusts the ratio between the inside air and the outside air introduced into the case 51.
  • the inside / outside air switching door 53 continuously adjusts the opening areas of the inside air suction port 52a and the outside air suction port 52b to change the air volume ratio between the air volume of the inside air and the air volume of the outside air.
  • the inside / outside air switching door 53 is driven by an electric actuator (not shown).
  • An indoor blower 54 (blower) is disposed on the downstream side of the air flow in the inside / outside air switching box 52.
  • the indoor blower 54 blows air (inside air and outside air) sucked through the inside / outside air switching box 52 toward the vehicle interior.
  • the indoor blower 54 is an electric blower that drives a centrifugal multiblade fan (sirocco fan) with an electric motor.
  • the cooler core 16, the heater core 17, and the auxiliary heater 56 are disposed on the downstream side of the air flow of the indoor blower 54.
  • the auxiliary heater 56 has a PTC element (positive characteristic thermistor) and is a PTC heater (electric heater) that generates heat and heats air when electric power is supplied to the PTC element.
  • a heater core bypass passage 51a is formed at the downstream side of the air flow of the cooler core 16.
  • the heater core bypass passage 51 a is an air passage through which air that has passed through the cooler core 16 flows without passing through the heater core 17 and the auxiliary heater 56.
  • An air mix door 55 is arranged between the cooler core 16 and the heater core 17 in the case 51.
  • the air mix door 55 is an air volume ratio adjusting unit that continuously changes the air volume ratio between the air flowing into the heater core 17 and the auxiliary heater 56 and the air flowing into the heater core bypass passage 51a.
  • the air mix door 55 is a rotatable plate-like door, a slidable door, or the like, and is driven by an electric actuator (not shown).
  • the air mix door 55 is a temperature adjusting unit that adjusts the temperature of the blown air blown into the vehicle interior.
  • the blower outlet 51b which blows off blowing air to the vehicle interior which is air-conditioning object space is arrange
  • a defroster outlet, a face outlet, and a foot outlet are provided as the outlet 51b.
  • the defroster outlet blows air conditioned air toward the inner surface of the front window glass of the vehicle.
  • the face air outlet blows conditioned air toward the upper body of the passenger.
  • the air outlet blows air-conditioned air toward the passenger's feet.
  • An air outlet mode door (not shown) is disposed on the air flow upstream side of the air outlet 51b.
  • a blower outlet mode door is a blower outlet mode switching part which switches blower outlet mode.
  • the air outlet mode door is driven by an electric actuator (not shown).
  • the outlet mode switched by the outlet mode door for example, there are a face mode, a bi-level mode, a foot mode, and a foot defroster mode.
  • the face mode is a blowout mode in which the face blowout is fully opened and air is blown out from the face blowout toward the upper body of the passenger in the passenger compartment.
  • the bi-level mode is an air outlet mode in which both the face air outlet and the foot air outlet are opened and air is blown toward the upper body and the feet of the passengers in the passenger compartment.
  • the foot mode is a blowout mode in which the foot blowout opening is fully opened and the defroster blowout opening is opened by a small opening so that air is mainly blown out from the foot blowout opening.
  • the foot defroster mode is an air outlet mode in which the foot air outlet and the defroster air outlet are opened to the same extent and air is blown out from both the foot air outlet and the defroster air outlet.
  • the engine cooling circuit 60 is a cooling water circulation circuit for cooling the engine 61.
  • the engine cooling circuit 60 has a circulation passage 62 through which cooling water circulates.
  • an engine 61 In the circulation flow path 62, an engine 61, an engine pump 63, an engine radiator 64, and a cooling water / cooling water heat exchanger 18 are arranged.
  • the engine pump 63 is an electric pump that sucks and discharges cooling water.
  • the engine pump 63 may be a mechanical pump driven by power output from the engine 61.
  • the engine radiator 64 is a heat dissipation heat exchanger (heat medium air heat exchanger) that radiates heat of the cooling water to the outside air by exchanging heat between the cooling water and the outside air.
  • heat dissipation heat exchanger heat medium air heat exchanger
  • a radiator bypass channel 65 is connected to the circulation channel 62.
  • the radiator bypass passage 65 is a passage through which cooling water flows bypassing the engine radiator 64.
  • a thermostat 66 is disposed at the connection between the radiator bypass channel 65 and the circulation channel 62.
  • the thermostat 66 is a cooling water temperature responsive valve configured by a mechanical mechanism that opens and closes the cooling water flow path by displacing the valve body by a thermo wax (temperature sensitive member) whose volume changes with temperature.
  • the thermostat 66 closes the radiator bypass channel 65 when the temperature of the cooling water is higher than a predetermined temperature (for example, 80 ° C. or more), and when the temperature of the cooling water is lower than the predetermined temperature (for example, (Less than 80 ° C.), the radiator bypass passage 65 is opened.
  • a predetermined temperature for example, 80 ° C. or more
  • the predetermined temperature for example, (Less than 80 ° C.
  • the circulation passage 62 is connected with an engine auxiliary passage 67.
  • the engine accessory flow path 67 is a flow path in which cooling water flows in parallel with the cooling water cooling water heat exchanger 18.
  • the engine accessory 68 is arranged in the engine accessory flow path 67.
  • the engine accessory 68 is an oil heat exchanger, an EGR cooler, a throttle cooler (warmer), a turbo cooler, an engine auxiliary motor, or the like.
  • the oil heat exchanger is a heat exchanger that adjusts the temperature of oil by exchanging heat between engine oil or transmission oil and cooling water.
  • the EGR cooler is a heat exchanger that constitutes an EGR (exhaust gas recirculation) device that recirculates a part of the exhaust gas of the engine to the intake side to reduce the pumping loss generated by the throttle valve. It is a heat exchanger that adjusts the temperature of the reflux gas by exchanging heat with water.
  • EGR exhaust gas recirculation
  • a throttle cooler protects the throttle valve components from heat damage when the throttle valve is hot (eg, 100 ° C. or higher), and the throttle valve component freezes when the throttle valve is cold (eg, below freezing point).
  • the temperature adjusting device adjusts the temperature of the throttle valve component by exchanging heat between the throttle valve component and the cooling water through a water jacket provided inside the throttle.
  • the turbo cooler is a cooler for cooling the turbocharger by exchanging heat between the heat generated in the turbocharger and the cooling water.
  • the engine auxiliary motor is a large motor that allows the engine belt to rotate even when the engine is stopped.
  • the compressor or water pump driven by the engine belt can be operated even when there is no engine driving force, or the engine can be started. Sometimes used.
  • An engine reserve tank 64a is connected to the engine radiator 64.
  • the structure and function of the engine reserve tank 64a are the same as those of the above-described reserve tank 43a.
  • the control device 70 is composed of a well-known microcomputer including a CPU, ROM, RAM, etc. and its peripheral circuits, and performs various calculations and processing based on an air conditioning control program stored in the ROM, and is connected to the output side. It is a control part which controls operation of various control object equipment.
  • Control target devices controlled by the control device 70 include the first pump 11, the second pump 12, the first switching valve 21, the second switching valve 22, the outdoor blower 30, the compressor 32, the indoor blower 54, and the inside of the case 51.
  • the electric actuator which drives the various doors (inside / outside air switching door 53, air mix door 55, blower outlet mode door, etc.) arranged in, and the inverter 19 and the like.
  • the configuration (hardware and software) for controlling the operation of various control target devices connected to the output side of the control device 70 constitutes a control unit (control means) for controlling the operation of each control target device. ing.
  • the structure (hardware and software) which controls operation of the 1st pump 11 and the 2nd pump 12 among control devices 70 is pump control part 70a.
  • the pump control unit 70a is a flow rate control unit that controls the flow rate of the cooling water flowing through each cooling water circulation device.
  • the configuration (hardware and software) for controlling the operation of the first switching valve 21 and the second switching valve 22 in the control device 70 is a switching valve control unit 70b.
  • the switching control unit 70b is also a circulation switching control unit that switches the cooling water circulation state.
  • the switching control unit 70b is also a flow rate control unit (flow rate control unit) that adjusts the flow rate of the cooling water flowing through each cooling water circulation device.
  • movement of the outdoor air blower 30 among the control apparatuses 70 is the outdoor air blower control part 70c (outside air blower control part).
  • the outdoor fan control unit 70c is a flow rate control unit (flow rate control unit) that controls the flow rate of the outside air flowing through the radiator 13.
  • the configuration (hardware and software) for controlling the operation of the compressor 32 in the control device 70 is a compressor control unit 70d (compressor control unit).
  • the compressor control unit 70d is a refrigerant flow rate control unit (flow rate control unit) that controls the flow rate of the refrigerant discharged from the compressor 32.
  • operation of the indoor air blower 54 among the control apparatuses 70 is the indoor air blower control part 70e.
  • the indoor blower control unit 70e is a blown air volume control unit that controls the volume of blown air blown into the vehicle interior.
  • the configuration (hardware and software) for controlling the operation of various doors (inside / outside air switching door 53, air mixing door 55, air outlet mode door, etc.) arranged inside case 51 in control device 70 is air conditioning switching control.
  • the air conditioning switching control unit 70 f is an inside / outside air switching control unit that controls the operation of the inside / outside air switching door 53.
  • the air conditioning switching control unit 70f is an inside / outside air ratio control unit that controls the air volume ratio between the air volume of the inside air introduced into the case 51 and the air volume of the outside air.
  • auxiliary heater control part 70g electric heater control part
  • the configuration (hardware and software) for controlling the operation of the inverter 19 in the control device 70 is an inverter control unit 70h (a heat generating device control unit).
  • Each control unit 70a, 70b, 70c, 70d, 70e, 70f, 70g, and 70h may be configured separately from the control device 70.
  • an inside air temperature sensor 71 On the input side of the control device 70, an inside air temperature sensor 71, an inside air humidity sensor 72, an outside air temperature sensor 73, a solar radiation sensor 74, a first water temperature sensor 75, a second water temperature sensor 76, a radiator water temperature sensor 77, a cooler core temperature sensor 78, Detection signals of sensor groups such as the heater core temperature sensor 79, the engine water temperature sensor 80, the inverter temperature sensor 81, the battery temperature sensor 82, the refrigerant temperature sensors 83 and 84, the refrigerant pressure sensors 85 and 86, the vehicle speed sensor 87, and the composite sensor 88 are input. Is done.
  • the inside air temperature sensor 71 is a detection device (inside air temperature detection device) for detecting the temperature of the inside air (vehicle compartment temperature).
  • the room air humidity sensor 72 is a detection device (room air humidity detection device) that detects the humidity of the room air.
  • the outside temperature sensor 73 is a detection device (outside temperature detection device) that detects the temperature of the outside air (the temperature outside the passenger compartment).
  • the solar radiation sensor 74 is a detection device (a solar radiation amount detection device) that detects the amount of solar radiation in the passenger compartment.
  • the first water temperature sensor 75 is a detection device (first heat medium temperature detection device) that detects the temperature of the cooling water flowing through the first pump flow path 41 (for example, the temperature of the cooling water sucked into the first pump 11). is there.
  • the second water temperature sensor 76 is a detection device (second heat medium temperature detection device) that detects the temperature of the cooling water flowing through the second pump flow path 42 (for example, the temperature of the cooling water sucked into the second pump 12). is there.
  • the radiator water temperature sensor 77 is a detection device (equipment-side heat medium temperature detection device) that detects the temperature of cooling water flowing through the radiator flow path 43 (for example, the temperature of cooling water that has flowed out of the radiator 13).
  • the cooler core temperature sensor 78 is a detection device (cooler core temperature detection device) that detects the surface temperature of the cooler core 16.
  • the cooler core temperature sensor 78 is, for example, a fin thermistor that detects the temperature of the heat exchange fins of the cooler core 16, a water temperature sensor that detects the temperature of the cooling water flowing through the cooler core 16, or the like.
  • the heater core temperature sensor 79 is a detection device (heater core temperature detection device) that detects the surface temperature of the heater core 17.
  • the heater core temperature sensor 79 is, for example, a fin thermistor that detects the temperature of the heat exchange fins of the heater core 17 or a water temperature sensor that detects the temperature of the cooling water flowing through the heater core 17.
  • the engine water temperature sensor 80 is a detection device (engine heat medium temperature detection device) that detects the temperature of cooling water circulating in the engine cooling circuit 60 (for example, the temperature of cooling water flowing inside the engine 61).
  • the inverter temperature sensor 81 is a detection device (equipment-side heat medium temperature detection device) that detects the temperature of cooling water flowing through the inverter flow path 47 (for example, the temperature of cooling water flowing out of the inverter 19).
  • the battery temperature sensor 82 detects a temperature of cooling water flowing through the battery heat exchange channel 48 (for example, a temperature of cooling water flowing into the battery temperature adjustment heat exchanger 20) (device-side heat medium temperature detection device). It is.
  • the battery temperature sensor 82 may be a detection device (battery representative temperature detection device) that detects the temperature (battery representative temperature) of a specific part in a battery pack having temperature variations.
  • the refrigerant temperature sensors 83 and 84 are a discharge side refrigerant temperature sensor 83 that detects the temperature of the refrigerant discharged from the compressor 32, and a suction side refrigerant temperature sensor 84 that detects the temperature of the refrigerant sucked into the compressor 32. .
  • the refrigerant pressure sensors 85 and 86 are a discharge side refrigerant pressure sensor 85 that detects the pressure of the refrigerant discharged from the compressor 32, and a suction side refrigerant temperature sensor 86 that detects the pressure of the refrigerant sucked into the compressor 32. .
  • the vehicle speed sensor 87 is a detection device (vehicle speed detection device) that detects the traveling speed of the vehicle.
  • the composite sensor 88 is a detection device that detects the surface temperature of the front window glass, the temperature of the inside air near the front window glass, and the humidity of the inside air near the front window glass.
  • the composite sensor 88 is attached to the rear side portion of the room mirror on the inner surface of the front window glass.
  • the control device 70 calculates a window fogging index RHW that is an index of the degree of fogging of the front window glass based on the detection signal of the composite sensor 88 and the like.
  • a window fogging index RHW is calculated based on the following formula F1.
  • RHW Pr / Pg + ⁇ F1
  • is a safety factor calculated from the outside air temperature, the amount of solar radiation, the vehicle speed, and the like.
  • the configuration (hardware and software) for calculating the window fogging index RHW in the control device 70 constitutes a window fogging index calculation unit 70i.
  • the window fogging index calculation unit 70 i may be configured separately from the control device 70.
  • the control device 70 detects the failure by determining whether each control target device (the first pump 11, the second pump 12, the compressor 32, etc.) or each sensor has a failure based on the detection signal of the sensor group.
  • the configuration (hardware and software) for detecting a failure of the first pump 11 in the control device 70 is a pump failure detection unit 70j.
  • a configuration (hardware and software) for detecting a failure of the compressor 32 in the control device 70 is a compressor failure detection unit 70k.
  • Each of the failure detection units 70j and 70k may be configured separately from the control device 70.
  • Operation signals from various air conditioning operation switches provided on the operation panel 89 are input to the input side of the control device 70.
  • the operation panel 89 is disposed near the instrument panel in the front part of the vehicle interior.
  • Various air conditioning operation switches provided on the operation panel 89 include a defroster switch 89a, an air conditioner switch 89b, an auto switch, an inside / outside air switching switch 89c, a vehicle interior temperature setting switch 89d, an air volume setting switch, an air conditioning stop switch, and a power saving cooling mode switch. Power saving dehumidifying switch.
  • Each switch may be a push switch in which electrical contacts are made conductive by being mechanically pressed, or may be a touch screen system that reacts by touching a predetermined area on the electrostatic panel.
  • the defroster switch 89a is a switch for setting or canceling the defroster mode. In the defroster mode, air-conditioning air is blown from the defroster outlet of the indoor air conditioning unit 50 toward the inner surface of the front window glass to prevent fogging of the front window glass, or to remove window fogging when the window is fogged. Mode.
  • the compressor on mode first dehumidification mode
  • the compressor off mode Mode the temperature of the cooling water flowing through the heater core 17 exceeds 60 ° C.
  • the operation of the first switching valve 21 and the second switching valve 22 is controlled so that the cooling water circulates between the cooling water cooler 14 and the cooler core 16, and the compressor 32 is operated (ON). )
  • the cooling water cooler 14 of the refrigeration cycle 31 Since the cooled cooling water can be passed through the cooler core 16 to dehumidify the air blown into the passenger compartment, fogging of the front window glass can be prevented.
  • the operation of the first switching valve 21 and the second switching valve 22 is controlled so that the cooling water circulates between the radiator 13 and the cooler core 16, and the compressor 32 is stopped (turned off).
  • the air conditioner switch 89b is a switch for switching on / off (ON / OFF) of cooling or dehumidification.
  • the air volume setting switch is a switch for setting the air volume blown from the indoor blower 54.
  • the auto switch is a switch for setting or canceling automatic control of air conditioning.
  • the inside / outside air switching switch 89c is a switch for switching between the inside air introduction mode and the outside air introduction mode.
  • the inside / outside air changeover switch 89c is an operation unit that outputs a command for setting the ratio of the inside air introduced into the case 51 to a predetermined ratio or more when operated by the occupant.
  • the vehicle interior temperature setting switch 89d is a target temperature setting unit that sets the vehicle interior target temperature by an occupant's operation.
  • the air conditioning stop switch is a switch that stops air conditioning.
  • the power-saving cooling mode switch and the power-saving dehumidifying mode switch are operation units that output a command for suppressing the power consumption of the compressor 32 during the cooling operation and the dehumidifying operation. For example, an occupant during the compressor on-mode operation Is operated, the command for switching to the compressor off mode operation is output.
  • the control device 70 determines the air conditioning mode based on the outside air temperature and the target air outlet temperature TAO of the vehicle interior air.
  • the target blowing temperature TAO is a value determined to quickly bring the inside air temperature Tr close to the occupant's desired target temperature Tset, and is calculated by the following formula F2.
  • TAO Kset ⁇ Tset ⁇ Kr ⁇ Tr ⁇ Kam ⁇ Tam ⁇ Ks ⁇ Ts + C... F2
  • Tset is the target temperature in the vehicle interior set by the vehicle interior temperature setting switch 89d
  • Tr is the internal air temperature detected by the internal air temperature sensor 71
  • Tam is the external air detected by the external air temperature sensor 73.
  • Temperature and Ts is the amount of solar radiation detected by the solar radiation sensor 74.
  • Kset, Kr, Kam, Ks are control gains
  • C is a correction constant.
  • the control device 70 determines the air conditioning mode as the cooling mode, and when the target blowing temperature TAO is higher than the outside air temperature, the control device 70 determines the air conditioning mode as the heating mode.
  • the configuration (hardware and software) for determining the air conditioning mode in the control device 70 is an air conditioning mode determining unit (air conditioning mode determining unit).
  • the air conditioning mode determination unit may be configured separately from the control device 70.
  • the control device 70 controls the operation of the first pump 11, the second pump 12, the compressor 32, the first switching valve 21, the second switching valve 22, and the like, thereby switching to various operation modes.
  • the cooling water sucked and discharged by the first pump 11 is the cooling water cooler 14, the radiator 13, the cooler core 16, the heater core 17, the cooling water cooling water heat exchanger 18, the inverter 19, and the battery temperature control heat exchange.
  • a low-temperature side cooling water circuit (low-temperature side heat medium circuit) that circulates between at least one of the devices 20 is formed, and the cooling water sucked and discharged by the second pump 12 is supplied to the cooling water heater 15.
  • a high temperature side cooling water circuit (high temperature side) that circulates between at least one of the radiator 13, the cooler core 16, the heater core 17, the cooling water cooling water heat exchanger 18, the inverter 19, and the battery temperature adjusting heat exchanger 20.
  • a heat medium circuit is formed.
  • Each of the radiator 13, the cooler core 16, the heater core 17, the cooling water cooling water heat exchanger 18, the inverter 19 and the battery temperature adjusting heat exchanger 20 is connected to the low temperature side cooling water circuit and the high temperature side cooling water circuit.
  • the radiator 13, the cooler core 16, the heater core 17, the cooling water cooling water heat exchanger 18, the inverter 19 and the battery temperature adjusting heat exchanger 20 are appropriately temperature-dependent. Can be adjusted.
  • the heat pump operation of the refrigeration cycle 31 can be performed. That is, in the low temperature side cooling water circuit, the cooling water cooled by the cooling water cooler 14 flows through the radiator 13, so that the cooling water absorbs heat from the outside air by the radiator 13.
  • the cooling water that has absorbed heat from the outside air by the radiator 13 exchanges heat with the refrigerant of the refrigeration cycle 31 by the cooling water cooler 14 to radiate heat. Therefore, in the cooling water cooler 14, the refrigerant of the refrigeration cycle 31 absorbs heat from the outside air through the cooling water.
  • the refrigerant that has absorbed heat from the outside air in the cooling water cooler 14 radiates heat by exchanging heat with the cooling water in the high-temperature side cooling water circuit in the cooling water heater 15. Therefore, it is possible to realize a heat pump operation that pumps up the heat of the outside air.
  • the radiator 13 When the radiator 13 is connected to the high temperature side cooling water circuit, the cooling water heated by the cooling water heater 15 flows through the radiator 13, so that the radiator 13 can dissipate the heat of the cooling water to the outside air.
  • the cooling water cooled by the cooling water cooler 14 flows through the cooler core 16, so that the air blown into the vehicle compartment can be cooled and dehumidified by the cooler core 16. That is, the passenger compartment can be cooled and dehumidified.
  • the cooling water heated by the cooling water heater 15 flows through the heater core 17, so that the air blown into the vehicle compartment can be heated by the heater core 17. That is, the passenger compartment can be heated.
  • the cooling water cooling water heat exchanger 18 When the cooling water cooling water heat exchanger 18 is connected to the low temperature side cooling water circuit, the cooling water cooled by the cooling water cooler 14 flows through the cooling water cooling water heat exchanger 18, so that the engine cooling water can be cooled. In other words, since the cooling water in the low-temperature side cooling water circuit can absorb heat from the engine cooling water in the cooling water cooling water heat exchanger 18, a heat pump operation for pumping up waste heat of the engine 61 can be realized.
  • the cooling water cooling water heat exchanger 18 When the cooling water cooling water heat exchanger 18 is connected to the high temperature side cooling water circuit, the cooling water heated by the cooling water heater 15 flows through the cooling water cooling water heat exchanger 18, so that the engine cooling water can be heated. Therefore, the engine 61 can be heated (warmed up).
  • the cooling water cooled by the cooling water cooler 14 flows through the inverter 19, so that the inverter 19 can be cooled.
  • a heat pump operation that pumps up the waste heat of the inverter 19 can be realized.
  • the cooling water heated by the cooling water heater 15 flows through the inverter 19, so that the inverter 19 can be heated (warmed up).
  • the cooling water cooled by the cooling water cooler 14 flows through the battery temperature adjustment heat exchanger 20, so that the battery can be cooled.
  • a heat pump operation that pumps up the waste heat of the battery can be realized.
  • the cooling water heated by the cooling water heater 15 flows through the battery temperature adjustment heat exchanger 20, so that the battery can be heated (warmed up).
  • control device 70 When the defroster mode is set by the defroster switch 89a, or when the automatic control of air conditioning is set by the auto switch, the control device 70 performs the control shown in the flowchart of FIG. 3 in order to prevent the window glass from fogging. Execute the process.
  • step S100 it is determined whether or not each control target device or each sensor is normal (whether or not it has failed). For example, it is determined whether the sensors necessary for calculating the window fogging index RHW, the components of the refrigeration cycle 31 (such as the compressor 32), the first pump 11 and the second pump 12 are normal.
  • step S110 the process proceeds to step S110, and the operation of the inside / outside air switching door 53 is controlled so as to switch to the outside air introduction mode.
  • outside air having a temperature equal to or lower than the temperature of the front window glass can be introduced into the vehicle interior. It is possible to suppress window fogging by setting the dew point temperature of the inside air near the glass below the temperature of the front window glass.
  • step S120 whether the temperature of the inside air near the windshield detected by the composite sensor 88 exceeds the operation guarantee lower limit value of the composite sensor 88. Determine whether or not.
  • step S110 If it is determined that the inside air temperature in the vicinity of the front window glass does not exceed the operation guarantee lower limit value (for example, ⁇ 30 ° C.) of the composite sensor 88, the process proceeds to step S110, and the inside / outside air switching box 52 is switched to the outside air introduction mode.
  • the inside air temperature in the vicinity of the front window glass does not exceed the operation guarantee lower limit value (for example, ⁇ 30 ° C.) of the composite sensor 88.
  • step S130 it is determined whether or not the window fogging index RHW is higher than the threshold value.
  • the threshold value in step S130 is set to a value (106% in the example of FIG. 4) at which it can be determined that there is a risk of window fogging.
  • step S100 If the window fogging index RHW does not exceed the threshold value, that is, if it can be determined that there is no danger of window fogging, the process returns to step S100 after waiting for a predetermined time in step S140.
  • step S150 if the window fogging index RHW exceeds the threshold, that is, if it can be determined that there is a risk of window fogging, the process proceeds to step S150.
  • step S150 it is determined whether or not the compressor 32 is operating. That is, it is determined whether or not the refrigeration cycle 32 is used for purposes other than anti-fogging.
  • step S160 the outside air temperature is lower than the predetermined outside air temperature, or the cooling water temperature (chiller water temperature) in the cooling water cooler 14 is below the predetermined water temperature. Determine whether or not.
  • the temperature of the cooling water in the cooling water cooler 14 is estimated from the temperature of the cooling water detected by the first water temperature sensor 75 (the temperature of the cooling water flowing through the first pump flow path 41).
  • the predetermined outside air temperature in step S160 is a value obtained by subtracting a value considering the safety factor from the dew point temperature of the inside air in the vicinity of the front window glass.
  • the value in consideration of the safety factor is the temperature rise value (estimated value) of the cooling water in the flow path (radiator flow path 43) where the radiator 13 is disposed, the value in consideration of the error of each sensor, and the temperature of the radiator 13. It is calculated by adding the temperature rise value due to the efficiency and the temperature rise value due to the temperature efficiency of the cooler core 16.
  • the predetermined outside air temperature in step S160 may be a set value (for example, 5 ° C.) stored in advance in the control device.
  • the predetermined outside air temperature in step S160 may be a temperature related to the dew point temperature of the blown air flowing into the cooler core 16.
  • the predetermined water temperature in step S160 is a value obtained by subtracting a value considering the safety factor from the dew point temperature of the inside air in the vicinity of the front window glass.
  • the value in consideration of the safety factor is a value that takes into account the temperature rise value (estimated value) of the cooling water in the flow path (first pump flow path 41) in which the cooling water cooler 14 is arranged, and the error of each sensor. It is calculated by adding the temperature rise value due to the temperature efficiency of the cooler core 16.
  • the predetermined water temperature in step S160 may be a set value (for example, 5 ° C.) stored in advance in the control device.
  • the cooling water cooled by the radiator 13 is caused to flow through the cooler core 16 and the vehicle. It can be determined that the indoor air can be dehumidified.
  • step S160 If it is determined in step S160 that the outside air temperature is not below the predetermined outside air temperature and the cooling water temperature (chiller water temperature) in the cooling water cooler 14 is not below the predetermined water temperature, the process proceeds to step S170 and the compressor is turned on. Select the mode (first dehumidification mode).
  • the operation of the first switching valve 21 and the second switching valve 22 is controlled so that the cooling water circulates between the cooling water cooler 14 and the cooler core 16, and the compressor 32 is operated (ON). )
  • the cooling water cooler 14 of the refrigeration cycle 31 Since the cooled cooling water can be passed through the cooler core 16 to dehumidify the air blown into the passenger compartment, fogging of the front window glass can be prevented.
  • step S160 When it is determined in step S160 that the outside air temperature is lower than the predetermined outside air temperature or the cooling water temperature (chiller water temperature) in the cooling water cooler 14 is lower than the predetermined water temperature, the process proceeds to step S180 and the compressor off mode is entered. (Second dehumidification mode) is selected.
  • the operation of the first switching valve 21 and the second switching valve 22 is controlled so that the cooling water circulates between the radiator 13 and the cooler core 16, and the compressor 32 is stopped (turned off).
  • step S150 When it is determined in step S150 that the compressor 32 is operating, the process proceeds to step S190, and it is determined whether or not the air conditioning mode is the heating mode.
  • step S200 it is determined whether or not the temperature of the cooling water (chiller water temperature) in the cooling water cooler 14 is below a predetermined water temperature.
  • the predetermined water temperature in step S200 is the same as the predetermined water temperature in step S160.
  • step S210 When it is determined that the temperature of the cooling water (chiller water temperature) in the cooling water cooler 14 is not lower than the predetermined water temperature, the rotational speed of the compressor 32 is increased in step S210, and then the process returns to step S100.
  • the cooling capacity of the cooling water cooler 14 can be increased.
  • step S220 when it is determined that the cooling water temperature (cooling water cooler water temperature) in the cooling water cooler 14 is lower than the predetermined cooling water temperature, the process proceeds to step S220.
  • step S220 the operation of the first switching valve 21 and the second switching valve 22 is controlled so that the cooling water cooled by the cooling water cooler 14 flows through the cooler core 16, and then the process returns to step S100.
  • step S190 When it is determined in step S190 that the air conditioning mode is the heating mode, the process proceeds to step S230, and it is determined whether or not the cooling water cooled by the cooling water cooler 14 is flowing through the cooler core 16.
  • the operations of the first switching valve 21 and the second switching valve 22 are controlled so that the cooling water cooled by the cooling water cooler 14 flows through the cooler core 16. It is like that.
  • the first switching valve 21 and the second switching valve 21 and the second switching valve 21 are configured so that the cooling water cooled by the cooling water cooler 14 flows through the cooler core 16.
  • the operation of the switching valve 22 is controlled.
  • the cooling water cooled by the cooling water cooler 14 of the refrigeration cycle 31 can be flowed to the cooler core 16 to dehumidify the air blown into the passenger compartment, thereby preventing fogging of the front window glass.
  • step S210 when it is determined that the cooling water cooled by the cooling water cooler 14 is flowing through the cooler core 16, the rotational speed of the compressor 32 is increased in step S210, and then the process returns to step S100.
  • the cooling capacity of the cooling water cooler 14 can be increased.
  • the air volume of the indoor blower 54 is decreased without increasing the rotational speed of the compressor 32. Even if the cooling capacity (dehumidification capacity) is insufficient, the temperature related to the surface temperature of the cooler core 16 is kept lower than the dew point temperature of the blown air, and the minimum dehumidification that can prevent window fogging can be performed even when the cooling capacity is insufficient. .
  • FIG. 5 is a flowchart showing a specific control process in the compressor on mode in step S170.
  • step S171 it is determined whether or not the window fogging index RHW has increased.
  • the process proceeds to step S172, the inside air rate is decreased, and the cooling water cooler target temperature TEO is decreased.
  • the inside air rate is the air volume ratio of the inside air and the outside air introduced into the case 51 through the inside / outside air switching box 52.
  • the cooling water cooler target temperature TEO is the target temperature of the cooling water cooled by the cooling water cooler 14.
  • control device 70 controls the refrigerant discharge capacity (rotation speed) of the compressor 32 so that the temperature of the cooling water cooled by the cooling water cooler 14 approaches the cooling water cooler target temperature TEO. .
  • the cooling water cooler target temperature TEO is lowered, the refrigerant discharge capacity (the number of revolutions) of the compressor 32 increases and the temperature of the cooling water cooled by the cooling water cooler 14 decreases.
  • the cooling and dehumidifying capacity of air increases and the window fogging index RHW decreases.
  • step S171 If it is determined in step S171 that the window fogging index RHW has not increased, the process proceeds to step S173 to increase the inside air rate, and the cooling water cooler target temperature TEO is increased, and the process proceeds to step S174.
  • the refrigerant discharge capacity (rotation speed) of the compressor 32 is lowered and the temperature of the cooling water cooled by the cooling water cooler 14 is raised.
  • the cooling and dehumidifying capacity decreases and the window fogging index RHW increases.
  • step S174 it is determined whether or not the rotational speed of the compressor 32 is equal to or lower than a predetermined rotational speed and the window fogging index RHW is equal to or lower than a predetermined value.
  • window fogging may be prevented even in the compressor off mode, and thus the process proceeds to step S175. Proceed and shift to compressor off mode.
  • FIG. 6 is a flowchart showing a specific control process in the compressor off mode.
  • step S181 it is determined whether or not the window fogging index RHW has increased.
  • the flow proceeds to step S182, the flow rate of the cooling water flowing through the radiator 13 and the flow rate of the cooling water flowing through the cooler core 16 are reduced, and the flow rate of the outside air flowing through the radiator 13 is reduced.
  • the cooling capacity of the cooling water in the radiator 13 is lowered, and the cooling / dehumidifying capacity of the blown air in the cooler core 16 is lowered, so that the window fogging index RHW is increased.
  • step S181 determines whether the window fogging index RHW has increased. If it is determined in step S181 that the window fogging index RHW has increased, the flow proceeds to step S183 to increase the flow rate of the cooling water flowing through the radiator 13 and the flow rate of the cooling water flowing through the cooler core 16, and the outside air flowing through the radiator 13 And the flow proceeds to step S184.
  • step S184 it is determined whether or not the window fogging index RHW exceeds a predetermined value. If the window fogging index RHW exceeds the predetermined value, it is determined that window fogging cannot be prevented in the compressor off mode, and the process proceeds to step S185 to shift to the compressor on mode.
  • the predetermined outside air temperature is a set value stored in the control device 70 in advance.
  • the predetermined outside air temperature is a temperature related to the dew point temperature of the blown air flowing into the cooler core 16.
  • the flow rate of the cooling water flowing through the radiator 13 is greater than or equal to a predetermined flow rate
  • the blowing capacity (rotational speed) of the outdoor fan 30 is greater than or equal to the predetermined capacity
  • the surface temperature TC of the cooler core 16 is the target temperature TCO of the cooler core 16 If it exceeds.
  • the flow rate of the cooling water flowing through the cooler core 16 is equal to or higher than a predetermined flow rate
  • the blowing capacity (rotational speed) of the outdoor fan 30 is equal to or higher than the predetermined capacity
  • the surface temperature TC of the cooler core 16 is the target temperature TCO of the cooler core 16. If it exceeds.
  • the control device 70 includes at least one of a flow rate of cooling water flowing through the radiator 13, a flow rate of outside air flowing through the radiator 13, and a flow rate of cooling water flowing through the cooler core 16 so that the surface temperature TC of the cooler core 16 approaches the target surface temperature TCO.
  • One flow rate is controlled.
  • the operation of the first switching valve 21 and the second switching valve 22 is performed so that the opening degree of the radiator flow path 43 is decreased by a predetermined amount.
  • the operations of the first switching valve 21 and the second switching valve 22 are controlled so that the opening degree of the radiator flow path 43 is increased by a predetermined amount.
  • the flow rate of the cooling water flowing through the radiator 13 is increased to increase the heat exchange capacity of the radiator 13 and the surface temperature TC of the cooler core 16 is increased.
  • the flow rate of the outside air flowing through the radiator 13 is decreased by decreasing the blowing capacity (number of rotations) of the outdoor blower 30 by a predetermined amount.
  • the heat exchanging capacity of the radiator 13 is lowered, and the surface temperature TC of the cooler core 16 is lowered.
  • the flow rate of the outside air flowing through the radiator 13 is increased by increasing the blowing capacity (the number of rotations) of the outdoor blower 30 by a predetermined amount.
  • the surface temperature TC of the cooler core 16 is increased.
  • the operation of the first switching valve 21 and the second switching valve 22 is performed so that the opening degree of the cooler core flow path 44 increases by a predetermined amount.
  • the operations of the first switching valve 21 and the second switching valve 22 are controlled so that the opening degree of the cooler core channel 44 is decreased by a predetermined amount. As a result, the flow rate of the cooling water flowing through the cooler core 16 is decreased to increase the surface temperature TC of the cooler core 16.
  • the surface temperature TC of the cooler core 16 is controlled so as to approach the target surface temperature TCO, the amount of dehumidification in the cooler core 16 is appropriately adjusted, and the condensed water adhering to the surface of the cooler core 16 is frozen and frosted ( The occurrence of (frosting) can be suppressed.
  • the controller 70 controls the flow rate of the cooling water flowing through the radiator 13 and the radiator so that various temperatures related to the surface temperature TC of the cooler core 16 (for example, the temperature of the blown air flowing out from the cooler core 16) approach the target surface temperature TCO. You may control at least 1 flow volume among the flow volume of the external air which flows through 13 and the flow volume of the cooling water which flows through the cooler core 16. FIG.
  • the control device 70 sets the target temperature TCO of the cooler core 16 so that the humidity of the blown air becomes a humidity at which window fogging does not occur and the surface temperature TC of the cooler core 16 exceeds the dew point temperature and no odor is generated. Set.
  • the target temperature TCO of the cooler core 16 may be set to a temperature at which a necessary dehumidification amount (for example, 100 g / h) is obtained.
  • the target temperature TCO of the cooler core 16 may be set with a set value (for example, a range of 1 ° C. to 10 ° C.) stored in advance in the control device.
  • the vehicle interior air target humidity RHO does not exceed the window fogging index RWH, the vehicle interior air target humidity RHO is not changed.
  • the refrigerant discharge capacity (the number of rotations) of the compressor 32 is controlled so that the vehicle interior air humidity RH approaches the vehicle interior air target humidity RHO.
  • the flow rate of the cooling water flowing through the radiator 13 and the flow rate of the cooling water flowing through the cooler core 16 are adjusted so that the vehicle interior air humidity RH approaches the vehicle interior air target humidity RHO.
  • the blowing capacity (rotation speed) of the outdoor blower 30 is adjusted.
  • the flow rate of the cooling water flowing through the cooling device is adjusted so that the vehicle interior air humidity RH approaches the vehicle interior air target humidity RHO. May be.
  • the blowing capacity (rotation speed) of the outdoor blower 30 may be adjusted.
  • the first switching valve 21 and the second switching valve 22 include a compressor on mode (first dehumidification mode) in which cooling water circulates between the cooler core 16 and the cooling water cooler 14, A compressor off mode (second dehumidification mode) in which the cooling water circulates with the radiator 13 is switched.
  • the cooling water cooled by the outside air by the radiator 13 can be circulated to the cooler core 16 to dehumidify the air blown into the vehicle interior. Therefore, compared with the compressor on mode in which the cooling water cooled by the low-pressure side refrigerant of the refrigeration cycle 31 in the cooling water cooler 14 is circulated to the cooler core 16 to dehumidify the air blown into the passenger compartment, the fogging of the window glass It is possible to reduce the power required to suppress the problem.
  • the switching control unit 70b of the control device 70 sets at least one of the inside air temperature, the inside air humidity, the outside air temperature, the cooling water temperature, and the window glass temperature, which are detection results of various sensors. Based on this, the operation of the first switching valve 21 and the second switching valve 22 is controlled to switch between the compressor on mode and the compressor off mode.
  • the switching control unit 70b of the control device 70 has a temperature related to the temperature of the outside air that is lower than a predetermined outside air temperature related to the dew point temperature of the blown air flowing into the cooler core 16. If so, the operation of the first switching valve 21 and the second switching valve 22 is controlled so as to switch to the compressor off mode.
  • the first pump 11, the first switching valve 21, the second switching valve 22, and the outdoor blower 30 are the flow rate of cooling water flowing through the radiator 13, the flow rate of outside air flowing through the radiator 13, and the cooling flowing through the cooler core 16. Adjust at least one of the water flow rates.
  • the flow rate control units 70a, 70b, and 70c of the control device 70 allow the temperature related to the temperature TC of the blown air blown out from the cooler core 16 to approach the target temperature TCO.
  • the operation of the first pump 11, the first switching valve 21, the second switching valve 22 and the outdoor blower 30 is controlled.
  • the window fogging index calculation unit 70i of the control device 70 is based on the surface temperature of the front window glass detected by the composite sensor 88, the temperature of the inside air near the front window glass, and the humidity of the inside air near the front window glass.
  • the window fogging index RHW is calculated.
  • the flow rate control units 70a, 70b, 70c of the control device are based on the window fogging index RHW calculated by the window fogging index calculation unit 70i, and the first pump 11, the first switching valve 21,
  • the operation of the second switching valve 22 and the outdoor blower 30 is controlled to adjust at least one flow rate among the flow rate of cooling water flowing through the radiator 13, the flow rate of outside air flowing through the radiator 13, and the flow rate of cooling water flowing through the cooler core 16.
  • the switching control unit 70b of the control device 70 reduces the cooling water flowing through the radiator 13 as the difference between the window glass temperature and the dew point temperature at the window glass decreases.
  • the first pump 11, the first switching valve 21, the second switching valve 22, and the outdoor blower so that at least one of the flow rate, the flow rate of outside air flowing through the radiator 13, and the flow rate of cooling water flowing through the cooler core 16 increases.
  • the operation of 30 may be controlled.
  • the dew point temperature on the window glass can be calculated by the control device 70. That is, the control device 70 may constitute a dew point temperature calculation unit that calculates the dew point temperature in the window glass based on the temperature of the inside air, the humidity of the inside air, and the temperature of the window glass.
  • the flow control units 70a, 70b, and 70c of the control device control the operation of the first switching valve 21 and the second switching valve 22 based on the window fogging index RHW calculated by the window fogging index calculation unit 70i. To switch between compressor on mode and compressor off mode.
  • the switching control unit 70b of the control device 70 When the compressor is in the off mode (second dehumidification mode), the switching control unit 70b of the control device 70 performs the first switching valve 21 and the second switching based on the difference obtained by subtracting the dew point temperature on the window glass from the temperature on the window glass.
  • the operation of the switching valve 22 may be controlled to switch between the compressor on mode and the compressor off mode.
  • the inside / outside air switching control unit 70f of the control device 70 switches the inside / outside air switching door 53 so as to switch to the outside air introduction mode.
  • the 1st switching valve 21 and the 2nd switching valve 22 are the cooling water discharged from the 1st pump 11, and the radiator 13, the cooling water cooling water heat exchanger 18 and the inverter 19 (heating device)
  • the first circulating state that circulates between the first and second heat exchange units) and the cooling water discharged from the second pump 12 are the heater core 17, the cooling water cooling water heat exchanger 18, and the inverter 19.
  • the switching control unit 70b of the control device 70 switches the first switching valve 21 and the second switching so as to switch to the second circulation state.
  • the operation of the valve 22 is controlled.
  • the cooling water heated by the cooling water cooling water heat exchanger 18 or the inverter 19 is circulated to the heater core 17.
  • the blown air can be heated. Therefore, blown air heated by the heater core 17 can be blown out to the window glass to heat the window glass, so that the dew point temperature of the air in the vicinity of the window glass can be raised to suppress fogging of the window glass.
  • the control device 70 When it is determined or detected that the refrigerant is leaking from the refrigeration cycle 31, or when the controller 70 determines or detects that the amount of the refrigerant in the refrigeration cycle 31 is less than a predetermined amount, the control device 70 performs the compressor on mode (first dehumidification).
  • the operation of the first switching valve 21 and the second switching valve 22 may be controlled so as to switch from the mode) to the compressor off mode (second dehumidification mode).
  • the cooling water cooled by the outside air by the radiator 13 is circulated to the cooler core 16 to blow into the vehicle interior.
  • the air can be cooled and dehumidified.
  • steps S181 and S184 in the flowchart of FIG. 6 of the first embodiment are changed to steps S181 ′ and S184 ′.
  • step S181 ′ it is determined whether or not the temperature of the outside air has increased. If it is determined that the temperature of the outside air has not increased, the process proceeds to step S182. If it is determined that the temperature of the outside air has increased, the process proceeds to step S183. move on.
  • step S184 ′ it is determined whether or not the surface temperature TC of the cooler core 16 is higher than the target temperature TCO. If it is determined that the surface temperature TC of the cooler core 16 is higher than the target temperature TCO, a window is displayed in the compressor off mode. It is determined that fogging cannot be prevented, and the process proceeds to step S185 to shift to the compressor on mode.
  • the flow rate control units 70a, 70b, and 70c of the control device 70 are cooled by flowing through the radiator 13 as the temperature of the outside air increases.
  • the first pump 11, the first switching valve 21, the second switching valve 22, and the outdoor so that at least one of the flow rate of water, the flow rate of outside air flowing through the radiator 13, and the flow rate of cooling water flowing through the cooler core 16 increases.
  • the operation of the blower 30 is controlled.
  • the switching control unit 70b of the control device 70 is configured so that the flow rate control units 70a, 70b, and 70c have a flow rate of cooling water that flows through the radiator 13, a flow rate of outside air that flows through the radiator 13, and
  • the first switching valve 21 and the second switching valve 22 are switched so as to switch to the compressor on mode (first dehumidification mode) after increasing at least one flow rate of the cooling water flowing through the cooler core 16 to a predetermined flow rate or higher. Control the operation.
  • the compressor is switched to the on mode, so the dehumidifying capacity can be secured in the compressor off mode as much as possible, and it is necessary to suppress the fogging of the window glass. Power can be reduced as much as possible.
  • the switching control unit 70b of the control device 70 is configured so that the flow rate control units 70a, 70b, and 70c have a flow rate of cooling water that flows through the radiator 13, a flow rate of outside air that flows through the radiator 13, and If the temperature related to the temperature TC of the blown air blown out from the cooler core 16 exceeds the target temperature TCO even if at least one of the flow rates of the cooling water flowing through the cooler core 16 is increased above a predetermined flow rate, the compressor on mode The operation of the first switching valve 21 and the second switching valve 22 is controlled so as to switch to
  • the dehumidifying capacity when the dehumidifying capacity is insufficient in the compressor off mode, the dehumidifying capacity can be secured by switching to the compressor on mode.
  • the refrigeration cycle 31 includes a condenser 15A that condenses the high-pressure side refrigerant by exchanging heat between the high-pressure side refrigerant discharged from the compressor 32 and the outside air.
  • the cooling water (engine cooling water) of the engine cooling circuit 60 circulates in the heater core 17.
  • Hot water (heat medium) heated by the high-pressure side refrigerant of the refrigeration cycle 31 may flow through the heater core 17.
  • An electric heater for example, a PTC heater
  • the second switching valve 22 switches between when the cooling water cooled by the radiator 13 flows and when it does not flow in the cooler core 16.
  • the control device 70 selects the compressor on mode (first dehumidification mode) or the compressor off mode (second dehumidification mode) by executing the control process shown in the flowchart of FIG.
  • the control apparatus 70 selects the compressor on mode (first dehumidification mode) or the compressor off mode (second dehumidification mode) by executing the control process shown in the flowchart of FIG.
  • step S300 it is determined whether or not the inside air rate exceeds a predetermined value (for example, 30%).
  • the inside air rate is a ratio of inside air in the air (inside air and outside air) introduced from the inside / outside air switching box 52 into the case 51.
  • the inside air rate is higher than a predetermined value (for example, 30%)
  • a predetermined value for example, 30%
  • the temperature difference between the air flowing into the cooler core 16 and the cooling water cooled by the outside air by the radiator 13 is large.
  • the air flowing into the cooler core 16 can be sufficiently cooled and dehumidified by the cooling water cooled by the radiator 13.
  • step S300 If it is determined in step S300 that the inside air rate exceeds a predetermined value (for example, 30%), the process proceeds to step S310, and it is determined whether or not the outside air temperature is lower than the predetermined temperature.
  • the predetermined temperature is a temperature value related to a temperature value lower than the dew point temperature of air near the window glass in the vehicle interior. That is, in step S310, when it is assumed that the compressor off mode is selected, it is determined whether or not the cooler core 16 can cool the air to a temperature lower than the dew point temperature of the air near the window glass in the vehicle interior.
  • step S310 When it is determined in step S310 that the outside air temperature is lower than the predetermined temperature, the process proceeds to step S315, and it is determined whether or not the outside air temperature is extremely low (for example, below 20 ° C below freezing point). If it is determined in step S315 that the outside air temperature is not extremely low, the process proceeds to step S320, and the compressor off mode is selected.
  • the outside air temperature is extremely low (for example, below 20 ° C below freezing point). If it is determined in step S315 that the outside air temperature is not extremely low, the process proceeds to step S320, and the compressor off mode is selected.
  • the cooling water cooled by the outside air by the radiator 13 can be flowed to the cooler core 16 so that the air can be cooled and dehumidified by the cooler core 16. That is, since air can be cooled and dehumidified by the cooler core 16 without operating (turning on) the compressor 32, power can be saved.
  • step S310 determines whether the outside air temperature is lower than the predetermined temperature. If it is determined in step S310 that the outside air temperature is not lower than the predetermined temperature, the process proceeds to step S330, and the compressor on mode is selected. Thus, the compressor 32 is operated to cool the cooling water in the cooling water cooler 14, and the cooling water circulates in the cooler core 16. Thus, the air can be reliably cooled and dehumidified in the cooler core 16.
  • step S300 when it is determined in step S300 that the inside air rate does not exceed a predetermined value (for example, 30%), the process proceeds to step S340, and it is determined whether or not the cooler core 16 needs to cool the air. Specifically, when the target temperature TCO of the cooler core 16 is lower than the temperature of the air flowing into the cooler core 16, it is determined that the air needs to be cooled by the cooler core 16.
  • a predetermined value for example, 30%
  • step S340 If it is determined in step S340 that the cooler core 16 needs to cool the air, the process proceeds to step S340, and the compressor on mode is selected.
  • the compressor 32 is operated to cool the cooling water in the cooling water cooler 14, and the cooling water circulates in the cooler core 16.
  • the air can be reliably cooled and dehumidified in the cooler core 16.
  • step S340 when it is determined in step S340 that it is not necessary to cool the air with the cooler core 16, the process proceeds to step S350, and the dehumidification stop mode is selected.
  • the dehumidification stop mode is an air conditioning mode in which air is blown into the vehicle interior without cooling the air by the cooler core 16. Therefore, in the dehumidification stop mode, the compressor 32 is stopped and the supply of cooling water to the cooler core 16 is shut off. In the dehumidification stop mode, the inside / outside air switching door 53 is switched to the outside air introduction mode.
  • step S315 When it is determined in step S315 that the outside air temperature is extremely low, the process proceeds to step S350 and the dehumidification stop mode is selected.
  • FIG. 10 is a flowchart showing a specific control process in the compressor off mode in step S320.
  • step S3201 it is determined whether or not there is a possibility that frost is generated in the cooler core 16. Specifically, it is determined whether or not the outside air temperature is lower than a predetermined temperature. This is because when the outside air temperature is lowered, the temperature of the air flowing into the cooler core 16 is lowered, and the possibility that the condensed water on the surface of the cooler core 16 is frozen increases.
  • step S3201 If it is determined in step S3201 that frost may occur in the cooler core 16, the process proceeds to step S3202, and the inside air rate is decreased by a predetermined amount. When the inside air rate is already 0%, the inside air rate is maintained at 0%.
  • step S3202 the lower the internal air rate, the lower the flow rate of the cooler core 16, thereby suppressing the surface temperature of the cooler core 16 from being lower than the freezing temperature.
  • the flow rate of the cooler core 16 can be kept low.
  • the flow rate of the cooler core 16 can be kept low.
  • the flow rate of the cooler core 16 may be kept low, or the flow of cooling water to the cooler core 16 may be intermittently blocked to limit the flow rate on a time average basis.
  • step S3202 By increasing the ratio of the outside air in step S3202, the absolute humidity of the air flowing into the cooler core 16 can be kept low, so the humidity of the air blown out toward the window glass can also be kept low. The occurrence of cloudiness can be suppressed.
  • step S3201 determines whether or not the vehicle speed exceeds a predetermined speed.
  • the predetermined speed is a speed value related to a temperature value lower than the dew point temperature of the air near the window glass. That is, as the vehicle speed increases, the temperature of the window glass decreases and the possibility of fogging of the window glass increases.
  • step S3202 If it is determined that the vehicle speed exceeds the predetermined speed, the process proceeds to step S3202, and the inside air rate is decreased by a predetermined amount. When the inside air rate is already 0%, the inside air rate is maintained at 0%.
  • the humidity of the air flowing into the cooler core 16 can be kept low, the humidity of the air blown out toward the window glass can also be kept low, and as a result, the occurrence of fogging on the window glass can be suppressed.
  • step S340 determines whether or not the vehicle speed does not exceed the predetermined speed.
  • the predetermined temperature is, for example, the target temperature TCO of the cooler core 16.
  • the cooling water cannot be sufficiently cooled by the radiator 13, and it can be determined that the air cannot be sufficiently dehumidified by the cooler core 16 in the compressor off mode. Go to and select the compressor on mode.
  • the compressor 32 is operated, the cooling water is cooled by the cooling water cooler 14, and the cooling water circulates through the cooler core 16. Therefore, the air can be cooled and dehumidified by the cooler core 16.
  • step S3204 if it is determined in step S3204 that the outside air temperature does not exceed the predetermined temperature, the process proceeds to step S3206, and the inside air rate is increased by a predetermined amount. When the inside air rate is already 100%, the inside air rate is maintained at 100%.
  • the temperature of the air flowing into the cooler core 16 can be made as high as possible, the temperature of the air blown out into the passenger compartment can be made as high as possible, and the passenger's feeling of heating can be enhanced.
  • the dirty air outside the vehicle is, for example, air containing a large amount of particulate matter (PM2.5) or pollen, or air having a high exhaust gas concentration, such as air in a tunnel.
  • PM2.5 particulate matter
  • pollen air having a high exhaust gas concentration
  • FIG. 11 is a flowchart showing a specific control process in the dehumidification stop mode in step S350.
  • step S351 it is determined whether the temperature of the air introduced into the case 51 through the inside / outside air switching box 52 has risen to a temperature higher than the outside temperature by a predetermined temperature or more.
  • the temperature of the air introduced into the case 51 becomes higher than the outside air temperature, for example, when the engine is in an idling state, the air introduced into the case 51 due to an increase in the temperature of the engine room. The case where it is heated is raised.
  • step S351 When it is determined in step S351 that the temperature of the air introduced into the case 51 has risen to a temperature higher than the outside air temperature by a predetermined temperature (for example, 5 ° C.) or more, the process proceeds to step S352 and the compressor off mode is selected. Thereby, since the cooling water cooled by the outside air by the radiator 13 circulates through the cooler core 16, the cooler core 16 can cool and dehumidify the air.
  • a predetermined temperature for example, 5 ° C.
  • the air can be cooled and dehumidified by the cooler core 16 without operating the compressor 32 when the temperature of the air introduced into the case 51 becomes higher than the outside air temperature, power can be saved.
  • step S351 when it is determined in step S351 that the temperature of the air introduced into the case 51 has not risen by a predetermined temperature or more than the outside air temperature, the dehumidification stop mode is maintained.
  • the inside / outside air switching door 53, the first switching valve 21, and the second switching valve 22 can be switched to the dehumidification stop mode.
  • the dehumidification stop mode is an operation mode in which the ratio of the outside air in the air blown into the passenger compartment becomes a predetermined ratio or more and the cooling water does not circulate through the cooler core 16.
  • the switching control unit 70b of the control device 70 switches to the compressor off mode (second dehumidification mode) when the temperature of the outside air is lower than the predetermined temperature.
  • the operation of the first switching valve 21 and the second switching valve 22 is controlled. Thereby, when the temperature of external air is low, it can switch to a compressor off mode and can save power.
  • the switching control unit 70b of the control device 70 is a case where the pressure of the refrigeration cycle 31 (for example, the pressure at the suction portion of the compressor 32) is less than a predetermined pressure,
  • the operation of the first switching valve 21 and the second switching valve 22 may be controlled so as to cool and dehumidify the blown air into the vehicle interior in the second dehumidifying mode.
  • the cooling water cooled by the outside air by the radiator 13 is circulated through the cooler core 16 to the vehicle interior.
  • the blown air can be cooled and dehumidified.
  • the switching control unit 70b of the control device 70 switches the first switching valve 21 and the first switching so as to switch to the dehumidification stop mode when the outside air temperature is lower than the predetermined temperature. 2
  • the operation of the switching valve 22 is controlled.
  • the switching control unit 70b of the control device 70 when the ratio of the inside air in the air blown into the vehicle interior is equal to or greater than a predetermined ratio, The operation of the first switching valve 21 and the second switching valve 22 is controlled so as to switch to (2 dehumidification mode).
  • the mode is switched to the second dehumidifying mode, so that the air flowing into the cooler core 16 can be reliably cooled and dehumidified by the cooling water cooled by the radiator 13.
  • the switching control unit 70b of the control device 70 is the case where the inside / outside air changeover switch 89c is operated by the occupant (for example, when the inside air introduction mode is set), and the temperature of the outside air
  • the operations of the first switching valve 21 and the second switching valve 22 may be controlled so as to switch to the compressor off mode (second dehumidification mode).
  • the compressor is switched to the off mode (second dehumidifying mode), and therefore the radiator 13 cools down.
  • the air flowing into the cooler core 16 can be reliably cooled and dehumidified by the cooled water.
  • the switching control unit 70b of the control device 70 determines that the temperature of the blown air sucked into the cooler core 16 is higher than the temperature related to the outside air temperature in the dehumidification stop mode.
  • the operation of the first switching valve 21 and the second switching valve 22 is controlled so as to switch to the compressor off mode (second dehumidification mode).
  • the compressor off mode when the temperature of the engine room rises because the vehicle is in an idling state, when the air introduced into the case 51 is heated and becomes higher than the outside air temperature, the compressor off mode ( Therefore, the air flowing into the cooler core 16 can be reliably cooled and dehumidified by the cooling water cooled by the radiator 13 without operating the compressor 32, and power saving can be achieved.
  • the switching control unit 70b of the control device 70 performs air blowing when the vehicle speed is higher than a predetermined speed in the compressor off mode (second dehumidification mode).
  • the operation of the inside / outside air switching door 53 is controlled so that the proportion of outside air in the air increases.
  • the humidity of the air flowing into the cooler core 16 can be kept low when the temperature of the window glass is lowered and the window glass is likely to be fogged, so that the air is blown out toward the window glass.
  • the humidity of the air can also be kept low, and as a result, fogging of the window glass can be suppressed.
  • the switching control unit 70b of the control device 70 operates the inside / outside air switching door 53 so that the ratio of the outside air in the blown air increases as the temperature of the outside air decreases. May be controlled.
  • the condensed water freezes so as to block the air path of the cooler core 16, so that the air volume blown into the passenger compartment is reduced or no air volume is generated.
  • the passenger is uncomfortable due to insufficient heating capacity, and the fogging of the window glass cannot be sufficiently suppressed.
  • frosting of the cooler core 16 is suppressed by reducing the cooling water flow rate of the cooler core 16.
  • the cooling water flow rate of the cooler core 16 may be continuously reduced, or the cooling water flow rate of the cooler core 16 may be reduced on a time average basis by intermittently interrupting the flow of the cooling water to the cooler core 16.
  • the amount of cold heat received by the radiator 13 may be reduced to prevent frosting of the cooler core 16.
  • the cooling water flow rate of the cooler core 16 or the cooling water flow rate of the radiator 13 is reduced. Therefore, the operation of the inside / outside air switching door 53 is controlled so that the ratio of the outside air in the blown air increases as the cooling water flow rate of the cooler core 16 or the cooling water flow rate of the radiator 13 decreases.
  • the switching control unit 70b of the control device 70 causes the blown air to decrease as the cooling water flow rate of the cooler core 16 decreases in the compressor off mode (second dehumidification mode).
  • the operation of the inside / outside air switching door 53 is controlled so that the ratio of outside air in the chamber increases.
  • the switching control unit 70b of the control device 70 switches to the dehumidification stop mode and determines the ratio of outside air in the blown air when it is determined or estimated that frost formation has occurred in the cooler core 16. If it is set to 100%, the amount of condensed water generated in the cooler core 16 can be further reduced, so that generation of frost in the cooler core 16 can be further suppressed.
  • the switching control unit 70b of the control device 70 is configured to increase the ratio of the outside air in the blown air when the temperature related to the temperature of the outside air is lower than the predetermined temperature.
  • the operation of the inside / outside air switching door 53 may be controlled.
  • the temperature related to the temperature of the outside air is, for example, the temperature of the cooling water.
  • the predetermined temperature is a temperature (for example, ⁇ 10 ° C.) at which frost formation is likely to occur in the cooler core 16.
  • the humidity of the air flowing into the cooler core 16 can be reduced.
  • the amount of generation can be reduced, and as a result, frost formation on the cooler core 16 can be suppressed.
  • the switching control unit 70 b of the control device 70 bypasses the cooling water cooler 14.
  • the operation of the first switching valve 21 and the second switching valve 22 is controlled so that the cooling water flows.
  • control device 70 executes the control process shown in the flowchart of FIG. 12 in the compressor off mode (second dehumidification mode).
  • step S3211 it is determined whether or not the surface temperature TC of the cooler core 16 exceeds the target temperature TCO of the cooler core 16.
  • step S3211 If it is determined in step S3211 that the surface temperature TC of the cooler core 16 does not exceed the target temperature TCO of the cooler core 16, the process proceeds to step S3212 to wait for a predetermined time or reduce the flow rate of the cooling water flowing through the radiator 13 by a predetermined amount. The process returns to S3211.
  • step S3211 when it determines with the surface temperature TC of the cooler core 16 exceeding the target temperature TCO of the cooler core 16 in step S3211, it progresses to step S3213 and it is determined whether the flow volume of the cooling water which flows through the radiator 13 is the maximum. judge.
  • step S3213 If it is determined in step S3213 that the flow rate of the cooling water flowing through the radiator 13 is not maximized, the flow proceeds to step S3214, and the flow rate of the cooling water flowing through the radiator 13 is increased by a predetermined amount.
  • step S3215 selects assist cooling mode (3rd dehumidification mode).
  • the assist cooling mode is an air conditioning mode in which the refrigeration cycle 31 compensates for the shortage of the air cooling capacity when the air cooling capacity is insufficient with the cooling by the outside air. Therefore, in the assist cooling mode, the compressor 32 is operated (turned on), and the cooling water is circulated among the cooler core 16, the cooling water cooler 14, and the radiator 13.
  • step S3215 the flow rate of the cooling water flowing through the radiator 13 is returned to the flow rate before being changed in steps S3212 and S3214.
  • FIG. 13 is a flowchart showing a specific control process in the assist cooling mode in step S3215.
  • step S3221 it is determined whether or not the surface temperature TC of the cooler core 16 exceeds the target temperature TCO of the cooler core 16.
  • step S3221 When it is determined in step S3221 that the surface temperature TC of the cooler core 16 does not exceed the target temperature TCO of the cooler core 16, the process proceeds to step S3222, and the rotation speed (refrigerant discharge capacity) of the compressor 32 is decreased by a predetermined amount. Thereby, the power consumption of the compressor 32 can be reduced while maintaining the surface temperature TC of the cooler core 16 below the target temperature TCO of the cooler core 16.
  • step S3221 if it is determined in step S3221 that the surface temperature TC of the cooler core 16 exceeds the target temperature TCO of the cooler core 16, the process proceeds to step S3223, and the rotational speed (refrigerant discharge capacity) of the compressor 32 is increased by a predetermined amount. The process proceeds to step S3224. Thereby, the surface temperature TC of the cooler core 16 can be lowered to the target temperature TCO of the cooler core 16.
  • step S3224 it is determined whether or not the cooling water temperature at the cooling water inlet of the radiator 13 exceeds the cooling water temperature at the cooling water outlet of the radiator 13 by a predetermined temperature ⁇ (0 ° C. in this example) or more. In other words, it is determined whether or not the temperature of the cooling water heat exchanged by the cooler core 16 exceeds the outside air temperature by a predetermined temperature ⁇ or more.
  • the cooling water temperature at the cooling water inlet of the radiator 13 can be calculated based on the outside air temperature, the vehicle speed, the surface temperature TC of the cooler core 16, the flow rate of the cooling water, and the like.
  • the flow rate of the cooling water can be estimated from the driving force of the pump, the switching state of the switching valve, and the like.
  • the coolant temperature at the coolant inlet of the radiator 13 may be directly detected.
  • step S3224 If it is determined in step S3224 that the cooling water temperature at the cooling water inlet of the radiator 13 does not exceed the cooling water temperature at the cooling water outlet of the radiator 13 by a predetermined temperature ⁇ or more, the cooling capacity of the cooler core 16 is insufficient in the assist cooling mode. Determination is made, and the process proceeds to step S3225 to select the compressor on mode.
  • the compressor 32 is activated (turned on), and the cooling water is circulated between the cooler core 16 and the cooling water cooler 14 so that the cooling water is not circulated between the cooler core 16 and the radiator 13.
  • the cooling capacity of the cooler core 16 can be increased.
  • step S3224 when it determines with the cooling water temperature in the cooling water inlet of the radiator 13 having exceeded the cooling water temperature in the cooling water outlet of the radiator 13 more than predetermined temperature (alpha) in step S3224, it progresses to step S3226 and the surface temperature of the cooler core 16 It is determined whether or not TC exceeds the target temperature TCO of the cooler core 16.
  • step S3226 If it is determined in step S3226 that the surface temperature TC of the cooler core 16 exceeds the target temperature TCO of the cooler core 16, the process returns to step S3223. Thereby, the rotation speed (refrigerant discharge capability) of the compressor 32 can be increased by a predetermined amount, and the surface temperature TC of the cooler core 16 can be lowered to the target temperature TCO of the cooler core 16.
  • step S3226 when it determines with the surface temperature TC of the cooler core 16 not exceeding target temperature TCO of the cooler core 16 in step S3226, it progresses to step S3227 and reduces the rotation speed (refrigerant discharge capability) of the compressor 32 by predetermined amount. Thereby, the power consumption of the compressor 32 can be reduced while maintaining the surface temperature TC of the cooler core 16 below the target temperature TCO of the cooler core 16.
  • the first switching valve 21 and the second switching valve 22 can be switched to the assist cooling mode (third dehumidification mode).
  • the assist cooling mode (third dehumidification mode) is an operation mode in which cooling water circulates among the cooler core 16, the cooling water cooler 14, and the radiator 13.
  • air can be cooled and dehumidified by the cooler core 16 by using both the cold heat generated in the refrigeration cycle 31 and the cold heat of the outside air, so that power saving can be achieved while ensuring the cooling capacity of the cooler core 16.
  • the switching control unit 70b of the control device 70 is configured such that the compressor on mode (first dehumidification mode), the assist cooling mode (third dehumidification mode), and the compressor off mode (first) as the temperature of the outside air decreases. 2) Dehumidification mode) whereby, since the utilization degree of the cold of external air can be raised as the temperature of external air falls, further power saving can be achieved.
  • the switching control unit 70b of the control device 70 determines that the temperature of the cooling water heat-exchanged by the cooler core 16 is outside air in the assist cooling mode (third dehumidification mode).
  • the flow rate of the refrigerant flowing through the cooling water cooler 14 is controlled so as to be higher than the temperature by a predetermined temperature.
  • the cooling capacity of the cooling water cooler 14 can be adjusted appropriately to effectively save power.
  • the switching control unit 70b of the control device 70 is a cooling water cooler so that the temperature of the cooling water exchanged by the cooler core 16 is higher than the temperature of the outside air by a predetermined temperature or more.
  • the flow rate of the refrigerant flowing through 14 or the flow rate of the cooling water or the blown air flowing through the cooler core 16 may be controlled.
  • the cooling capacity of the cooling water cooler 14 can be adjusted appropriately to effectively save power.
  • the indoor air conditioning unit 50 constitutes an inside / outside air two-layer unit that blows out the inside air and the outside air separately into the vehicle interior.
  • the air passage in the case 51 is partitioned into an outside air passage 51c and an inside air passage 51d.
  • the outside air passage 51c is a passage through which the outside air introduced from the inside / outside air switching box 52 flows.
  • the inside air passage 51d is a passage through which the inside air introduced from the inside / outside air switching box 52 flows.
  • the indoor blower 54 is an electric blower that drives the first fan and the second fan with a common electric motor.
  • the first fan blows the inside air introduced from the inside / outside air switching box 52 to the inside air passage 51d.
  • the second fan blows outside air introduced from the inside / outside air switching box 52 to the outside air passage 51c.
  • the outside air passage 51c communicates with the defroster outlet 51e.
  • the inside air passage 51d communicates with the foot outlet 51f.
  • the cooler core 16 is disposed over the entire area of the outside air passage 51c and the inside air passage 51d. A portion of the cooler core 16 on the upstream side of the cooling water flow is disposed in the outside air passage 51c. A portion of the cooler core 16 on the downstream side of the cooling water flow is disposed in the inside air passage 51d.
  • the cooling water flows from the outside air passage 51c side toward the inside air passage 51d. Therefore, in the cooler core 16, the temperature of the cooling water rises from the outside air passage 51c side toward the inside air passage 51d.
  • the heater core bypass passage is formed on the downstream side of the air flow of the cooler core 16 in each of the outside air passage 51c and the inside air passage 51d.
  • the heater core bypass passage is an air passage through which air that has passed through the cooler core 16 flows without passing through the heater core 17.
  • the air mix door 55 is independently arranged in each of the outside air passage 51c and the inside air passage 51d. Therefore, the temperature of the air can be adjusted independently of each other between the outside air passage 51c and the inside air passage 51d.
  • the portion of the cooler core 16 on the upstream side of the cooling water flow is disposed in the outside air passage 51c, the outside air in the outside air passage 51c can be cooled to a lower temperature to increase the dehumidifying capacity. Therefore, window fogging can be prevented without operating the compressor 11.
  • the inside / outside air switching door 53 adjusts the ratio of the introduced inside air to the outside air with respect to each of the outside air passage 51c and the inside air passage 51d, thereby changing the suction port mode to the inside / outside air two-layer mode, all inside air mode, all Switch to outside air mode and inside / outside air mixing mode.
  • the inside / outside air two-layer mode is a suction port mode in which outside air is introduced into the outside air passage 51c and inside air is introduced into the inside air passage 51d.
  • the all inside air mode is a suction port mode in which inside air is introduced into both the outside air passage 51c and the inside air passage 51d.
  • the all outside air mode is a suction port mode in which outside air is introduced into both the outside air passage 51c and the inside air passage 51d.
  • the inside / outside air mixing mode is a suction port mode in which inside air and outside air are introduced into each of the outside air passage 51c and the inside air passage 51d at a predetermined ratio.
  • the portion of the cooler core 16 on the upstream side of the cooling water flow is arranged in the outside air passage 51c, even in the case of the all inside air mode, the inside air flowing through the outside air passage 51c is cooled to a lower temperature so as to have a dehumidifying ability. Can be increased. Therefore, window fogging can be prevented without operating the compressor 11.
  • the cooler core 16 is disposed inside the case 51 so that both the outside air in the outside air passage 51c and the inside air in the inside air passage 51d pass through.
  • a portion of the cooler core 16 located on the upstream side of the cooling water flow is disposed in the outside air passage 51c.
  • the cooling water as low as possible can be allowed to flow through the portion of the cooler core 16 disposed in the outside air passage 51c, the humidity of the air blown toward the inner surface of the vehicle window glass can be reduced as much as possible. . Therefore, it can suppress as much as possible that fogging generate
  • the cooling water having the highest temperature can flow through the portion of the cooler core 16 disposed in the inside air passage 51d, the temperature of the air blown toward the feet of the occupant can be increased as much as possible. Therefore, a passenger's feeling of heating can be enhanced as much as possible.
  • the pump control unit 70a of the control device 70 has a flow rate of cooling water flowing through the cooler core 16. May be reduced.
  • the temperature of the cooling water flowing through the portion of the cooler core 16 disposed in the inside air passage 51d can be increased, the temperature of the air blown toward the feet of the occupant can be increased. Therefore, a passenger's feeling of heating can be enhanced.
  • the radiator 13 is arranged in parallel with the chiller 14 in the cooling water flow. However, in the present embodiment, the radiator 13 is in series with the chiller 14 in the cooling water flow, as shown in FIG. Are arranged.
  • bypass flow path 25 is arranged in the low temperature side cooling water circuit.
  • the bypass channel 25 is a channel through which cooling water flows bypassing the radiator 13.
  • the radiator 13 is arrange
  • the radiator 13 is arrange
  • the radiator 13 is switched in series or in parallel with the chiller 14 in the cooling water flow.
  • three-way valves 26 ⁇ / b> A and 26 ⁇ / b> B are disposed on the cooling water outlet side of the chiller 14 and the cooling water inlet side of the radiator 13.
  • connection flow path 27 is connected to the two three-way valves 26A and 26B.
  • the connection flow path 27 is connected to the two three-way valves 26A and 26B.
  • the cooling water flows in parallel through the chiller 14 and the radiator 13.
  • the cooling water flows through the chiller 14 and the radiator 13 in series.
  • the devices to be cooled 28A and 28B are arranged in the cooling water circuit.
  • the devices to be cooled 28A and 28B are devices that generate heat during operation, such as an inverter, a battery temperature control heat exchanger, a water-cooled intercooler, and a water-cooled turbocharger.
  • the first device to be cooled 28 ⁇ / b> A is connected to the cooling water inlet side of the radiator 13.
  • the second cooled device 28B is arranged in parallel with the chiller 14 in the cooling water flow.
  • the radiator pump 29 is arranged in series with the second cooled device 28B in the cooling water flow.
  • the radiator pump 29 is an electric pump that sucks and discharges cooling water (heat medium).
  • the second switching valve 22 has a device cooperation mode in which cooling water flows as shown by solid line arrows and broken line arrows in FIG. 17 and a device independent mode in which cooling water flows as shown by solid line arrows and one-dot chain line arrows in FIG. Switch.
  • the cooling water discharged from the first pump 11 circulates in all of the cooler core 16, the chiller 14, the radiator 13, and the cooled devices 28A and 28B.
  • the cooling water discharged from the first pump 11 circulates in the cooler core 16 and the chiller 14, and the cooling water discharged from the radiator pump 29 circulates in the radiator 13 and the devices to be cooled 28A and 28B. .
  • the second switching valve 22 switches to the device cooperation mode, and the control device 70 executes the control process shown in the flowchart of FIG.
  • step S3230 it is determined whether or not the differential value of the exhaust heat amount of the cooled devices 28A and 28B is below a predetermined value. In other words, it is determined whether or not the amount of exhaust heat of the devices to be cooled 28A and 28B has increased rapidly. For example, when the temperature rise rate of the cooling water exceeds a predetermined value, it can be determined that the amount of exhaust heat of the cooled devices 28A and 28B has increased rapidly.
  • step S3231 it is determined whether or not the exhaust heat amount of the cooled devices 28A and 28B is lower than the predetermined value. If it is determined that the amount of exhaust heat from the cooled devices 28A and 28B is below a predetermined value, the process proceeds to step S3232, waits for a predetermined time, and then returns to step S3230.
  • step S3230 determines whether the differential value of the exhaust heat amount of the cooled devices 28A and 28B is not lower than the predetermined value, and the exhaust heat amount of the cooled devices 28A and 28B is lower than the predetermined value in step S3231. If it is determined that there is not, the process proceeds to step S3233, the compressor on mode is selected, the device independent mode is selected, and the cooled devices 28A and 28B are cooled by the radiator 13.
  • the temperature of the cooling water may be used instead of the amount of exhaust heat of the devices to be cooled 28A and 28B.
  • the switching control unit 70b of the control device 70 is discharged from the cooled devices 28A and 28B to the cooling water in the compressor off mode (second dehumidification mode).
  • the operation of the first switching valve 21 and the second switching valve 22 is switched to the compressor on mode (first dehumidification mode) when the amount of heat exceeds a predetermined amount of heat or when the temperature of the cooling water exceeds a predetermined temperature.
  • the compressor 32 is operated to use the cold heat generated in the refrigeration cycle 31, so that the cooled devices 28A and 28B It can be suppressed that the cooling capacity and the cooling and dehumidifying capacity of the air blown into the passenger compartment are insufficient.
  • the switching control unit 70b of the control device 70 performs the cooling water temperature increase rate (in other words, the target temperature) in the compressor off mode (second dehumidification mode).
  • the first dehumidifying mode is switched. The operation of the first switching valve 21 and the second switching valve 22 is controlled.
  • the compressor 32 is operated to use the cold generated in the refrigeration cycle 31, so the cooled devices 28A, It can be suppressed that the cooling capacity of 28B and the cooling and dehumidifying capacity of the air blown into the passenger compartment are insufficient.
  • the flow rate of the outside air flowing through the radiator 13 is adjusted by controlling the operation of the outdoor blower 30, but the flow of the radiator 13 is controlled by controlling the operation of a radiator shutter (not shown).
  • the flow rate of outside air may be adjusted.
  • the radiator shutter is an outside air passage opening / closing section that opens and closes a passage through which outside air flows. Moreover, you may restrict
  • the cooling water is used as the heat medium for adjusting the temperature of the temperature adjustment target device, but various media such as oil may be used as the heat medium.
  • Nanofluid may be used as the heat medium.
  • a nanofluid is a fluid in which nanoparticles having a particle size of the order of nanometers are mixed.
  • antifreeze liquid ethylene glycol
  • the effect of improving the thermal conductivity in a specific temperature range the effect of increasing the heat capacity of the heat medium, the effect of preventing the corrosion of metal pipes and the deterioration of rubber pipes, and the heat medium at an extremely low temperature
  • liquidity of can be acquired.
  • Such an effect varies depending on the particle configuration, particle shape, blending ratio, and additional substance of the nanoparticles.
  • the thermal conductivity can be improved, it is possible to obtain the same cooling efficiency even with a small amount of heat medium as compared with the cooling water using ethylene glycol.
  • the amount of heat stored in the heat medium itself can be increased.
  • the aspect ratio of the nanoparticles is preferably 50 or more. This is because sufficient thermal conductivity can be obtained.
  • the aspect ratio is a shape index that represents the ratio of the vertical and horizontal dimensions of the nanoparticles.
  • Nanoparticles containing any of Au, Ag, Cu and C can be used. Specifically, Au nanoparticle, Ag nanowire, CNT (carbon nanotube), graphene, graphite core-shell nanoparticle (a structure such as a carbon nanotube surrounding the above atom is included as a constituent atom of the nanoparticle. Particles), Au nanoparticle-containing CNTs, and the like can be used.
  • a chlorofluorocarbon refrigerant is used as the refrigerant.
  • the type of the refrigerant is not limited to this, and natural refrigerant such as carbon dioxide, hydrocarbon refrigerant, or the like is used. It may be used.
  • the refrigeration cycle 31 of each of the above embodiments constitutes a subcritical refrigeration cycle in which the high-pressure side refrigerant pressure does not exceed the critical pressure of the refrigerant, but the supercritical refrigeration cycle in which the high-pressure side refrigerant pressure exceeds the critical pressure of the refrigerant. May be configured.
  • the cooling water discharged from the first pump 11 or the second pump 12 exchanges heat with the engine cooling water of the engine cooling circuit 60 via the cooling water cooling water heat exchanger 18.
  • the cooling water discharged from the first pump 11 or the second pump 12 may circulate through the engine cooling circuit 60 via the flow path switching valve.
  • the cooling water flow path of the engine 61 constitutes an engine heat transfer unit that transfers heat between the engine 61 and the cooling water.
  • the flow path switching valve is a switching device that switches between when the cooling water discharged from the first pump 11 or the second pump 12 circulates through the engine cooling circuit 60 and when it does not circulate.
  • the inverter 19 is provided as the heat generating device, but various heat generating devices may be provided in addition to the inverter 19.
  • Other examples of the heat generating device include a traveling electric motor and various engine devices.
  • Various engine devices include turbochargers, intercoolers, EGR coolers, CVT warmers, CVT coolers, exhaust heat recovery devices, and the like.
  • the turbocharger is a supercharger that supercharges engine intake air (intake).
  • the intercooler is an intake air cooler (intake heat medium heat exchanger) that cools the supercharged intake air by exchanging heat between the supercharged intake air that has been compressed by the turbocharger and becomes high temperature and the cooling water.
  • the EGR cooler is an exhaust cooling water heat exchanger (exhaust heat medium heat exchanger) that cools exhaust gas by exchanging heat between engine exhaust gas (exhaust gas) returned to the intake side of the engine and cooling water.
  • CVT warmer is a lubricating oil cooling water heat exchanger (lubricating oil heat medium heat exchanger) that heats CVT oil by exchanging heat between lubricating oil (CVT oil) that lubricates CVT (continuously variable transmission) and cooling water. It is.
  • the CVT cooler is a lubricating oil cooling water heat exchanger (lubricating oil heat medium heat exchanger) that cools the CVT oil by exchanging heat between the CVT oil and the cooling water.
  • lubricating oil cooling water heat exchanger lubricating oil heat medium heat exchanger
  • the exhaust heat recovery unit is an exhaust cooling water heat exchanger (exhaust heat medium heat exchanger) that exchanges heat between the exhaust and the cooling water to absorb the heat of the exhaust into the cooling water.
  • exhaust cooling water heat exchanger exhaust heat medium heat exchanger
  • control device 70 calculates the window fogging index RHW based on the detection signal of the composite sensor 88 or the like, but even if it calculates the window fogging index RHW based on the detection signal of another sensor. Good.
  • the surface temperature of the front window glass may be estimated and calculated from the temperature of the outside air, the amount of solar radiation, the indoor air temperature, the glass thermal conductivity and reflectance (setting value), and the vehicle speed.
  • the temperature of the inside air in the vicinity of the front window glass may be estimated and calculated from the temperature of the inside air, the outlet mode of the indoor air conditioning unit 50, and the outlet air temperature (estimated value).
  • the humidity of the inside air near the front window glass may always be regarded as 100%.
  • the cooling water side capacity of the cooler core 16 is calculated from the temperature difference between the cooling water inlet and the cooling water outlet of the cooler core 16, and the cooler core 16 is calculated from the intake air temperature of the cooler core 16, the air volume of the indoor blower 54, and the surface temperature of the cooler core 16.
  • the air side capacity of the cooler core 16 is calculated, the condensation latent heat of air moisture is calculated from the difference between the cooling water side capacity and the air side capacity of the cooler core 16, and the relative humidity of the cooler core outlet is assumed to be 100%.
  • the humidity of the inside air may be estimated and calculated.
  • the air volume of the indoor blower 54 can be estimated from the driving state of the indoor blower 54. Instead of the surface temperature of the cooler core 16, the air temperature of the cooler core 16 may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

 熱媒体を吸入して吐出することによって熱媒体を循環させるポンプ(11)と、ポンプ(11)によって循環されている熱媒体と車室内への送風空気とを顕熱交換させて送風空気を冷却除湿するクーラコア(16)と、熱媒体と外気とを顕熱交換させる熱媒体外気熱交換器(13)と、冷凍サイクル(31)の冷媒を吸入して吐出する圧縮機(32)と、冷凍サイクル(31)の低圧側冷媒と熱媒体とを熱交換させて熱媒体を冷却する熱媒体冷却用熱交換器(14)と、クーラコア(16)と熱媒体冷却用熱交換器(14)との間で熱媒体が循環する第1除湿モードと、クーラコア(16)と熱媒体外気熱交換器(13)との間で熱媒体が循環する第2除湿モードとを切り替える第1切替弁(21)および第2切替弁(22)とを備える。そのため、窓ガラスの曇りを抑制するために必要な動力を低減する。

Description

車両用空調装置 関連出願の相互参照
 本出願は、当該開示内容が参照によって本出願に組み込まれた、2014年1月29日に出願された日本特許出願2014-014099及び2014年12月25日に出願された日本特許出願2014-262643を基にしている。
 本開示は、車両に用いられる空調装置に関する。
 従来の車両用空調装置は、冷凍サイクルの低圧側冷媒と車室内への送風空気とを熱交換させて車室内への送風空気を冷却・除湿する蒸発器を備えている。そして、外気を車室内に導入せずに内気を循環させて空調を行う内気循環モードにおいて窓ガラスの曇りを抑制する場合、冷凍サイクルの圧縮機を作動させて蒸発器にて車室内送風空気を除湿する。
 したがって、窓ガラスの曇りを抑制する場合、圧縮機で動力が消費されることとなる。具体的には、圧縮機が電動圧縮機である場合、圧縮機を作動させることによって電力が消費される。圧縮機がエンジン駆動式圧縮機である場合、圧縮機を作動させることによって燃費の悪化やエンジン出力の低下、エンジンフィーリングの悪化が生じる。
 従来、特許文献1には、実際に窓ガラスが曇った場合の判定精度の向上により、防曇性と省燃費性とを確保可能にする車両用空調装置が記載されている。これによると、窓ガラスの曇りを抑制するために圧縮機を作動させる頻度を低減できるので、窓ガラスの曇りを抑制するために消費される動力を低減できる。
特開2013-60190号公報
 しかしながら、本願の発明者の検討によると、特許文献1の従来技術では、窓ガラスの曇りを抑制するための圧縮機作動頻度を低減できるものの、実際に窓ガラスが曇った場合には圧縮機を作動させる必要があるので省動力化に限界がある。
 本開示は上記点に鑑みて、窓ガラスの曇りを抑制するために必要な動力を低減することを目的とする。
 本開示の第1態様による車両用空調装置は、
 熱媒体を吸入して吐出することによって熱媒体を循環させるポンプと、
 ポンプによって循環されている熱媒体と車室内への送風空気とを顕熱交換させて送風空気を冷却除湿する空気冷却用熱交換器と、
 熱媒体と外気とを顕熱交換させる熱媒体外気熱交換器と、
 冷凍サイクルの冷媒を吸入して吐出する圧縮機と、
 冷凍サイクルの低圧側冷媒と熱媒体とを熱交換させて熱媒体を冷却する熱媒体冷却用熱交換器と、
 空気冷却用熱交換器と熱媒体冷却用熱交換器との間で熱媒体が循環する第1除湿モードと、空気冷却用熱交換器と熱媒体外気熱交換器との間で熱媒体が循環する第2除湿モードとを切り替える除湿モード切替部とを備える。
 これによると、第2除湿モードでは、熱媒体外気熱交換器で外気によって冷却された冷却水を空気冷却用熱交換器に循環させて車室内への送風空気を除湿することができる。
 そのため、熱媒体冷却用熱交換器で冷凍サイクルの低圧側冷媒によって冷却された冷却水を空気冷却用熱交換器に循環させて車室内への送風空気を除湿する第1除湿モードと比較して、窓ガラスの曇りを抑制するために必要な動力を低減できる。
 本開示の第2態様による車両用空調装置は、 熱媒体を吸入して吐出するポンプと、
 熱媒体と外気とを顕熱交換させる熱媒体外気熱交換器と、
 熱媒体と車室内への送風空気とを顕熱交換させる空気冷却用熱交換器と、
 外気の温度に関連する温度が、空気冷却用熱交換器に流入する送風空気の露点温度に関連する温度未満であると推定または判断される場合、空気冷却用熱交換器と熱媒体外気熱交換器との間で熱媒体を循環させる熱媒体循環制御部とを備える。
 これによると、外気の温度が低い場合、熱媒体外気熱交換器で外気によって冷却された冷却水を空気冷却用熱交換器に循環させて車室内への送風空気を除湿することができるので、窓ガラスの曇りを抑制するために必要な動力を低減できる。
第1実施形態における車両用熱管理システムの全体構成図である。 第1実施形態の車両用熱管理システムにおける電気制御部を示すブロック図である。 第1実施形態の制御装置が実行する制御処理を示すフローチャートである。 図3のフローチャートにおける窓曇り指標RHWの閾値を説明するグラフである。 第1実施形態の圧縮機オンモードにおける制御処理を示すフローチャートである。 第1実施形態の圧縮機オフモードにおける制御処理を示すフローチャートである。 第2実施形態の圧縮機オフモードにおける制御処理を示すフローチャートである。 第3実施形態における車両用熱管理システムの全体構成図である。 第4実施形態の制御装置が実行する制御処理を示すフローチャートである。 第4実施形態の圧縮機オフモードにおける制御処理を示すフローチャートである。 第4実施形態の除湿停止モードにおける制御処理を示すフローチャートである。 第5実施形態の圧縮機オフモードにおける制御処理を示すフローチャートである。 第5実施形態のアシスト冷却モードにおける制御処理を示すフローチャートである。 第6実施形態における車両用熱管理システムの全体構成図である。 第7実施形態における車両用熱管理システムの全体構成図である。 第8実施形態における車両用熱管理システムの全体構成図である。 第9実施形態における車両用熱管理システムの全体構成図である。 第9実施形態の圧縮機オフモードにおける制御処理を示すフローチャートである。
 以下、実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、図中、同一符号を付してある。
 (第1実施形態)
 図1に示す車両用熱管理システム10は、車両が備える各種機器や車室内を適切な温度に調節するために用いられる。本実施形態では、車両用熱管理システム10を、エンジン(内燃機関)および走行用電動モータ(モータージェネレータ)から車両走行用駆動力を得るハイブリッド自動車に適用している。
 本実施形態のハイブリッド自動車は、車両停車時に外部電源(商用電源)から供給された電力を、車両に搭載された電池(車載バッテリ)に充電可能なプラグインハイブリッド自動車として構成されている。電池としては、例えばリチウムイオン電池を用いることができる。
 エンジンから出力される駆動力は、車両走行用駆動力として用いられるのみならず、発電機を作動させるためにも用いられる。そして、発電機にて発電された電力および外部電源から供給された電力を電池に蓄わえることができる。電池は、減速時や降坂時に走行用電動モータにて回生された電力(回生エネルギ)を蓄えることもできる。
 電池に蓄えられた電力は、走行用電動モータのみならず、車両用熱管理システム10を構成する電動式構成機器をはじめとする各種車載機器に供給される。
 プラグインハイブリッド自動車は、車両走行開始前の車両停車時に外部電源から電池に充電しておくことによって、走行開始時のように電池の蓄電残量SOCが予め定めた走行用基準残量以上になっているときにはEV走行モードとなる。EV走行モードは、走行用電動モータが出力する駆動力によって車両を走行させる走行モードである。
 一方、車両走行中に電池の蓄電残量SOCが走行用基準残量よりも低くなっているときにはHV走行モードとなる。HV走行モードは、主にエンジン61が出力する駆動力によって車両を走行させる走行モードであるが、車両走行負荷が高負荷となった際には走行用電動モータを作動させてエンジン61を補助する。
 本実施形態のプラグインハイブリッド自動車では、このようにEV走行モードとHV走行モードとを切り替えることによって、車両走行用の駆動力をエンジン61のみから得る通常の車両に対してエンジン61の燃料消費量を抑制して、車両燃費を向上させている。EV走行モードとHV走行モードとの切り替えは、駆動力制御装置(図示せず)によって制御される。
 図1に示すように、車両用熱管理システム10は、第1ポンプ11、第2ポンプ12、ラジエータ13、冷却水冷却器14、冷却水加熱器15、クーラコア16、ヒータコア17、冷却水冷却水熱交換器18、インバータ19、電池温調用熱交換器20、第1切替弁21および第2切替弁22を備えている。
 第1ポンプ11および第2ポンプ12は、冷却水(熱媒体)を吸入して吐出する電動ポンプである。冷却水は、熱媒体としての流体である。本実施形態では、冷却水として、少なくともエチレングリコール、ジメチルポリシロキサンもしくはナノ流体を含む液体、または不凍液体が用いられている。
 第1ポンプ11および第2ポンプ12は、各冷却水流通機器を流れる冷却水の流量を調節する流量調節部である。
 ラジエータ13、冷却水冷却器14、冷却水加熱器15、クーラコア16、ヒータコア17、冷却水冷却水熱交換器18、インバータ19および電池温調用熱交換器20は、冷却水が流通する冷却水流通機器(熱媒体流通機器)である。
 ラジエータ13は、冷却水と車室外空気(以下、外気と言う。)とを熱交換(顕熱交換)させる冷却水外気熱交換器(熱媒体外気熱交換器)である。ラジエータ13に外気温以上の温度の冷却水を流すことにより、冷却水から外気に放熱させることが可能である。ラジエータ13に外気温以下の冷却水を流すことにより、外気から冷却水に吸熱させることが可能である。換言すれば、ラジエータ13は、冷却水から外気に放熱させる放熱器としての機能、および外気から冷却水に吸熱させる吸熱器としての機能を発揮できる。
 ラジエータ13は、冷却水が流通する流路を有し、冷却水冷却器14や冷却水加熱器15で温度調節された冷却水との間で熱授受が行われる熱授受機器である。
 室外送風機30は、ラジエータ13へ外気を送風する電動送風機(外気送風機)である。ラジエータ13および室外送風機30は車両の最前部に配置されている。このため、車両の走行時にはラジエータ13に走行風を当てることができる。室外送風機30は、ラジエータ13を流れる外気の流量を調節する流量調節部である。
 冷却水冷却器14(チラー)および冷却水加熱器15(水冷コンデンサ)は、冷却水を熱交換させて冷却水の温度を調節する冷却水温度調節用熱交換器(熱媒体温度調節用熱交換器)である。冷却水冷却器14は、冷却水を冷却する冷却水冷却用熱交換器(熱媒体冷却用熱交換器)である。冷却水加熱器15は、冷却水を加熱する冷却水加熱用熱交換器(熱媒体加熱用熱交換器)である。
 冷却水冷却器14は、冷凍サイクル31の低圧側冷媒と冷却水とを熱交換させることによって冷却水から低圧側冷媒に吸熱させる低圧側熱交換器(熱媒体用吸熱器)である。冷却水冷却器14は、冷凍サイクル31の蒸発器を構成している。
 冷凍サイクル31は、圧縮機32、冷却水加熱器15、膨張弁33、冷却水冷却器14および内部熱交換器34を備える蒸気圧縮式冷凍機である。本実施形態の冷凍サイクル31では、冷媒としてフロン系冷媒を用いており、高圧側冷媒圧力が冷媒の臨界圧力を超えない亜臨界冷凍サイクルを構成している。
 圧縮機32は、電池から供給される電力によって駆動される電動圧縮機であり、冷凍サイクル31の冷媒を吸入して圧縮して吐出する。
 冷却水加熱器15は、圧縮機32から吐出された高圧側冷媒と冷却水とを熱交換させることによって高圧側冷媒を凝縮(潜熱変化)させる凝縮器(高圧側熱交換器)である。
 膨張弁33は、冷却水加熱器15から流出した液相冷媒を減圧膨張させる減圧装置である。膨張弁33は、冷却水冷却器14出口側冷媒の温度および圧力に基づいて冷却水冷却器14出口側冷媒の過熱度を検出する感温部33aを有し、冷却水冷却器14出口側冷媒の過熱度が予め定めた所定範囲となるように機械的機構によって絞り通路面積を調節する温度式膨張弁である。
 冷却水冷却器14は、膨張弁33で減圧膨張された低圧冷媒と冷却水とを熱交換させることによって低圧冷媒を蒸発(潜熱変化)させる蒸発器である。冷却水冷却器14で蒸発した気相冷媒は圧縮機32に吸入されて圧縮される。
 内部熱交換器34は、冷却水加熱器15から流出した冷媒と、冷却水冷却器14から流出した冷媒とを熱交換させる熱交換器である。
 冷凍サイクル31は、冷却水を冷却する冷却水冷却器14と、冷却水を加熱する冷却水加熱器15とを有する冷却水冷却加熱部(熱媒体冷却加熱部)である。換言すれば、冷凍サイクル31は、冷却水冷却器14で低温冷却水を作り出す低温冷却水発生装置(低温熱媒体発生装置)であるとともに、冷却水加熱器15で高温冷却水を作り出す高温冷却水発生装置(高温熱媒体発生装置)である。
 ラジエータ13では外気によって冷却水を冷却するのに対し、冷却水冷却器14では冷凍サイクル31の低圧冷媒によって冷却水を冷却する。このため、冷却水冷却器14で冷却された冷却水の温度を、ラジエータ13で冷却された冷却水の温度に比べて低くできる。具体的には、ラジエータ13では冷却水を外気の温度よりも低い温度まで冷却できないのに対し、冷却水冷却器14では冷却水を外気の温度よりも低い温度まで冷却できる。
 クーラコア16およびヒータコア17は、冷却水冷却器14および冷却水加熱器15で温度調節された冷却水と車室内への送風空気とを熱交換させて送風空気の温度を調節する熱媒体空気熱交換器である。
 クーラコア16は、冷却水と車室内への送風空気とを熱交換(顕熱交換)させて車室内への送風空気を冷却除湿する空気冷却用熱交換器である。ヒータコア17は、車室内への送風空気と冷却水とを熱交換(顕熱交換)させて車室内への送風空気を加熱する空気加熱用熱交換器である。
 冷却水冷却水熱交換器18、インバータ19および電池温調用熱交換器20は、冷却水が流通する流路を有し、冷却水との間で熱授受が行われる熱授受機器(温度調節対象機器)である。
 冷却水冷却水熱交換器18は、車両用熱管理システム10の冷却水(第1ポンプ11または第2ポンプ12によって循環される冷却水)と、エンジン冷却回路60の冷却水(エンジン用熱媒体)とを熱交換する熱交換器(熱媒体熱媒体熱交換器)である。
 冷却水冷却水熱交換器18は、第1ポンプ11または第2ポンプ12によって循環される冷却水とエンジン61との間で熱授受が行われるエンジン用熱授受部を構成している。エンジン61は、作動に伴って発熱する発熱機器である。
 インバータ19は、電池から供給された直流電力を交流電圧に変換して走行用電動モータに出力する電力変換装置である。インバータ19は、作動に伴って発熱する発熱機器である。インバータ19の発熱量は、車両の走行状況によって変化するようになっている。インバータ19の冷却水流路は、発熱機器と冷却水との間で熱授受が行われる機器用熱授受部を構成している。
 電池温調用熱交換器20は、電池への送風経路に配置され、送風空気と冷却水とを熱交換する熱交換器(熱媒体空気熱交換器)である。電池温調用熱交換器20は、電池と冷却水との間で熱授受が行われる電池用熱授受部を構成している。電池は、作動に伴って発熱する発熱機器である。
 第1ポンプ11は、第1ポンプ用流路41に配置されている。第1ポンプ用流路41において第1ポンプ11の吐出側には、冷却水冷却器14が配置されている。
 第2ポンプ12は、第2ポンプ用流路42に配置されている。第2ポンプ用流路42において第2ポンプ12の吐出側には、冷却水加熱器15が配置されている。
 ラジエータ13は、ラジエータ用流路43に配置されている。クーラコア16は、クーラコア用流路44に配置されている。ヒータコア17は、ヒータコア用流路45に配置されている。
 冷却水冷却水熱交換器18は、冷却水冷却水熱交換器用流路46に配置されている。インバータ19は、インバータ用流路47に配置されている。電池温調用熱交換器20は、電池熱交換用流路48に配置されている。
 ラジエータ用流路43には、リザーブタンク43aが接続されている。リザーブタンク43aは、冷却水を貯留する大気開放式の容器(熱媒体貯留部)である。したがって、リザーブタンク43aに蓄えている冷却水の液面における圧力は大気圧になる。
 リザーブタンク43aに蓄えている冷却水の液面における圧力が所定圧力(大気圧とは異なる圧力)になるようにリザーブタンク43aが構成されていてもよい。
 リザーブタンク43aに余剰冷却水を貯留しておくことによって、各流路を循環する冷却水の液量の低下を抑制することができる。リザーブタンク43aは、冷却水中に混入した気泡を気液分離する機能を有している。
 第1ポンプ用流路41、第2ポンプ用流路42、ラジエータ用流路43、クーラコア用流路44、ヒータコア用流路45、冷却水冷却水熱交換器用流路46、インバータ用流路47および電池熱交換用流路48は、第1切替弁21および第2切替弁22に接続されている。
 第1切替弁21および第2切替弁22は、冷却水の流れ(冷却水循環状態)を切り替える循環切替装置である。第1切替弁21および第2切替弁22は、除湿モードを切り替える除湿モード切替装置である。
 第1切替弁21は、冷却水の入口として第1入口21aおよび第2入口21bを有し、冷却水の出口として第1出口21c、第2出口21d、第3出口21e、第4出口21f、第5出口21g、第6出口21hおよび第7出口21iを有している。
 第2切替弁22は、冷却水の出口として第1出口22aおよび第2出口22bを有し、冷却水の入口として第1入口22c、第2入口22d、第3入口22e、第4入口22f、第5入口22g、第6入口22hおよび第7入口22iを有している。
 第1切替弁21の第1入口21aには、第1ポンプ用流路41の一端が接続されている。換言すれば、第1切替弁21の第1入口21aには、冷却水冷却器14の冷却水出口側が接続されている。
 第1切替弁21の第2入口21bには、第2ポンプ用流路42の一端が接続されている。換言すれば、第1切替弁21の第2入口21bには、冷却水加熱器15の冷却水出口側が接続されている。
 第1切替弁21の第1出口21cには、ラジエータ用流路43の一端が接続されている。換言すれば、第1切替弁21の第1出口21cにはラジエータ13の冷却水入口側が接続されている。
 第1切替弁21の第2出口21dには、クーラコア用流路44の一端が接続されている。換言すれば、第1切替弁21の第2出口21dにはクーラコア16の冷却水入口側が接続されている。
 第1切替弁21の第3出口21eには、ヒータコア用流路45の一端が接続されている。換言すれば、第1切替弁21の第3出口21eにはヒータコア17の冷却水入口側が接続されている。
 第1切替弁21の第4出口21fには、冷却水冷却水熱交換器用流路46の一端が接続されている。換言すれば、第1切替弁21の第4出口21fには冷却水冷却水熱交換器18の冷却水入口側が接続されている。
 第1切替弁21の第5出口21gには、インバータ用流路47の一端が接続されている。換言すれば、第1切替弁21の第5出口21gにはインバータ19の冷却水入口側が接続されている。
 第1切替弁21の第6出口21hには、電池熱交換用流路48の一端が接続されている。換言すれば、第1切替弁21の第6出口21hには電池温調用熱交換器20の冷却水入口側が接続されている。第1切替弁21の第7出口21iには、バイパス流路49の一端が接続されている。
 第2切替弁22の第1出口22aには、第1ポンプ用流路41の他端が接続されている。換言すれば、第2切替弁22の第1出口22aには、第1ポンプ11の冷却水吸入側が接続されている。
 第2切替弁22の第2出口22bには、第2ポンプ用流路42の他端が接続されている。換言すれば、第2切替弁22の第2出口22bには、第2ポンプ12の冷却水吸入側が接続されている。
 第2切替弁22の第1入口22cには、ラジエータ用流路43の他端が接続されている。換言すれば、第2切替弁22の第1入口22cにはラジエータ13の冷却水出口側が接続されている。
 第2切替弁22の第2入口22dには、クーラコア用流路44の他端が接続されている。換言すれば、第2切替弁22の第2入口22dにはクーラコア16の冷却水出口側が接続されている。
 第2切替弁22の第3入口22eには、ヒータコア用流路45の他端が接続されている。換言すれば、第2切替弁22の第3入口22eにはヒータコア17の冷却水出口側が接続されている。
 第2切替弁22の第4入口22fには、冷却水冷却水熱交換器用流路46の他端が接続されている。換言すれば、第2切替弁22の第4入口22fには冷却水冷却水熱交換器18の冷却水出口側が接続されている。
 第2切替弁22の第5入口22gには、インバータ用流路47の他端が接続されている。換言すれば、第2切替弁22の第5入口22gにはインバータ19の冷却水出口側が接続されている。
 第2切替弁22の第6入口22hには、電池熱交換用流路48の他端が接続されている。換言すれば、第2切替弁22の第6入口22hには電池温調用熱交換器20の冷却水出口側が接続されている。第2切替弁22の第7入口22iには、バイパス流路49の他端が接続されている。
 第1切替弁21および第2切替弁22は、各入口と各出口との連通状態を任意または選択的に切り替え可能な構造になっている。
 具体的には、第1切替弁21は、ラジエータ13、クーラコア16、ヒータコア17、冷却水冷却水熱交換器18、インバータ19、電池温調用熱交換器20およびバイパス流路49のそれぞれについて、第1ポンプ11から吐出された冷却水が流入する状態と、第2ポンプ12から吐出された冷却水が流入する状態と、第1ポンプ11から吐出された冷却水および第2ポンプ12から吐出された冷却水が流入しない状態とを切り替える。
 第2切替弁22は、ラジエータ13、クーラコア16、ヒータコア17、冷却水冷却水熱交換器18、インバータ19、電池温調用熱交換器20およびバイパス流路49のそれぞれについて、第1ポンプ11へ冷却水が流出する状態と、第2ポンプ12へ冷却水が流出する状態と、第1ポンプ11および第2ポンプ12へ冷却水が流出しない状態とを切り替える。
 第1切替弁21および第2切替弁22は、弁開度を調節可能になっている。これにより、ラジエータ13、クーラコア16、ヒータコア17、冷却水冷却水熱交換器18、インバータ19、電池温調用熱交換器20およびバイパス流路49を流れる冷却水の流量を調節できる。
 すなわち、第1切替弁21および第2切替弁22は、ラジエータ13、クーラコア16、ヒータコア17、冷却水冷却水熱交換器18、インバータ19、電池温調用熱交換器20およびバイパス流路49のそれぞれに対して、冷却水の流量を調節する流量調節部である。
 第1切替弁21は、第1ポンプ11から吐出された冷却水と、第2ポンプ12から吐出された冷却水とを任意の流量割合で混合して、ラジエータ13、クーラコア16、ヒータコア17、冷却水冷却水熱交換器18、インバータ19、電池温調用熱交換器20およびバイパス流路49に流入させることが可能になっている。
 すなわち、第1切替弁21および第2切替弁22は、ラジエータ13、クーラコア16、ヒータコア17、冷却水冷却水熱交換器18、インバータ19、電池温調用熱交換器20およびバイパス流路49のそれぞれに対して、冷却水冷却器14で冷却された冷却水と、冷却水加熱器15で加熱された冷却水との流量割合を調節する流量割合調節装置である。
 第1切替弁21および第2切替弁22は、一体的に形成されて弁駆動源が共用化されていてもよい。第1切替弁21および第2切替弁22は、多数の弁の組み合わせで構成されていてもよい。
 クーラコア16およびヒータコア17は、車両用空調装置の室内空調ユニット50のケース51に収容されている。
 ケース51は、車室内に送風される送風空気の空気通路を形成しており、ある程度の弾性を有し、強度的にも優れた樹脂(例えば、ポリプロピレン)にて成形されている。ケース51内の空気流れ最上流側には、内外気切替箱52が配置されている。内外気切替箱52は、内気(車室内空気)と外気(車室外空気)とを切替導入する内外気導入部である。
 内外気切替箱52には、ケース51内に内気を導入させる内気吸込口52aおよび外気を導入させる外気吸込口52bが形成されている。内外気切替箱52の内部には、内外気切替ドア53が配置されている。
 内外気切替ドア53は、ケース51内に内気が導入される内気導入モードと、外気が導入される外気導入モードとを切り替える内外気切替部である。換言すれば、内外気切替ドア53は、ケース51内に導入される内気の風量と外気の風量との風量割合を変化させる風量割合変更部である。内外気切替ドア53は、ケース51内に導入される内気と外気との割合を調整する内外気割合調整部である。
 具体的には、内外気切替ドア53は、内気吸込口52aおよび外気吸込口52bの開口面積を連続的に調節して、内気の風量と外気の風量との風量割合を変化させる。内外気切替ドア53は、電動アクチュエータ(図示せず)によって駆動される。
 内外気切替箱52の空気流れ下流側には、室内送風機54(ブロワ)が配置されている。室内送風機54は、内外気切替箱52を介して吸入した空気(内気および外気)を車室内へ向けて送風する。室内送風機54は、遠心多翼ファン(シロッコファン)を電動モータにて駆動する電動送風機である。
 ケース51内において室内送風機54の空気流れ下流側には、クーラコア16、ヒータコア17および補助ヒータ56が配置されている。補助ヒータ56は、PTC素子(正特性サーミスタ)を有し、このPTC素子に電力が供給されることによって発熱して空気を加熱するPTCヒータ(電気ヒータ)である。
 ケース51の内部においてクーラコア16の空気流れ下流側部位には、ヒータコアバイパス通路51aが形成されている。ヒータコアバイパス通路51aは、クーラコア16を通過した空気を、ヒータコア17および補助ヒータ56を通過させずに流す空気通路である。
 ケース51の内部においてクーラコア16とヒータコア17との間には、エアミックスドア55が配置されている。
 エアミックスドア55は、ヒータコア17および補助ヒータ56へ流入させる空気と、ヒータコアバイパス通路51aへ流入させる空気との風量割合を連続的に変化させる風量割合調節部である。エアミックスドア55は、回動可能な板状ドアや、スライド可能なドア等であり、電動アクチュエータ(図示せず)によって駆動される。
 ヒータコア17および補助ヒータ56を通過する空気とヒータコアバイパス通路51aを通過する空気との風量割合によって、車室内へ吹き出される吹出空気の温度が変化する。したがって、エアミックスドア55は、車室内へ吹き出される吹出空気の温度を調節する温度調節部である。
 ケース51の空気流れ最下流部には、空調対象空間である車室内へ送風空気を吹き出す吹出口51bが配置されている。この吹出口51bとしては、具体的には、デフロスタ吹出口、フェイス吹出口およびフット吹出口が設けられている。
 デフロスタ吹出口は、車両前面窓ガラスの内側の面に向けて空調風を吹き出す。フェイス吹出口は、乗員の上半身に向けて空調風を吹き出す。フット吹出口は、乗員の足元に向けて空調風を吹き出す。
 吹出口51bの空気流れ上流側には、吹出口モードドア(図示せず)が配置されている。吹出口モードドアは、吹出口モードを切り替える吹出口モード切替部である。吹出口モードドアは、電動アクチュエータ(図示せず)によって駆動される。
 吹出口モードドアによって切り替えられる吹出口モードとしては、例えば、フェイスモード、バイレベルモード、フットモードおよびフットデフロスタモードがある。
 フェイスモードは、フェイス吹出口を全開してフェイス吹出口から車室内乗員の上半身に向けて空気を吹き出す吹出口モードである。バイレベルモードは、フェイス吹出口とフット吹出口の両方を開口して車室内乗員の上半身と足元に向けて空気を吹き出す吹出口モードである。
 フットモードは、フット吹出口を全開するとともにデフロスタ吹出口を小開度だけ開口して、フット吹出口から主に空気を吹き出す吹出口モードである。フットデフロスタモードは、フット吹出口およびデフロスタ吹出口を同程度開口して、フット吹出口およびデフロスタ吹出口の双方から空気を吹き出す吹出口モードである。
 エンジン冷却回路60は、エンジン61を冷却するための冷却水循環回路である。エンジン冷却回路60は、冷却水が循環する循環流路62を有している。循環流路62には、エンジン61、エンジン用ポンプ63、エンジン用ラジエータ64および冷却水冷却水熱交換器18が配置されている。
 エンジン用ポンプ63は、冷却水を吸入して吐出する電動ポンプである。エンジン用ポンプ63は、エンジン61から出力される動力によって駆動される機械式ポンプであってもよい。
 エンジン用ラジエータ64は、冷却水と外気とを熱交換することによって冷却水の熱を外気に放熱させる放熱用熱交換器(熱媒体空気熱交換器)である。
 循環流路62には、ラジエータバイパス流路65が接続されている。ラジエータバイパス流路65は、冷却水がエンジン用ラジエータ64をバイパスして流れる流路である。
 ラジエータバイパス流路65と循環流路62との接続部にはサーモスタット66が配置されている。サーモスタット66は、温度によって体積変化するサーモワックス(感温部材)によって弁体を変位させて冷却水流路を開閉する機械的機構で構成される冷却水温度応動弁である。
 具体的には、サーモスタット66は、冷却水の温度が所定温度を上回っている場合(例えば80℃以上)、ラジエータバイパス流路65を閉じ、冷却水の温度が所定温度を下回っている場合(例えば80℃未満)、ラジエータバイパス流路65を開ける。
 循環流路62には、エンジン補機用流路67が接続されている。エンジン補機用流路67は、冷却水が冷却水冷却水熱交換器18と並列に流れる流路である。
 エンジン補機用流路67にはエンジン補機68が配置されている。エンジン補機68は、オイル熱交換器、EGRクーラ、スロットルクーラ(ウォーマ)、ターボクーラ、エンジン補助モータ等である。オイル熱交換器は、エンジンオイルまたはトランスミッションオイルと冷却水とを熱交換してオイルの温度を調節する熱交換器である。
 EGRクーラは、エンジンの排気ガスの一部を吸気側に還流させてスロットルバルブで発生するポンピングロスを低減させるEGR(排気ガス再循環)装置を構成する熱交換器であって、還流ガスと冷却水とを熱交換させて還流ガスの温度を調節する熱交換器である。
 スロットルクーラ(ウォーマ)は、スロットルバルブが高温時(例えば100℃以上)にスロットルバルブ構成部品を熱害から守り、かつスロットルバルブが低温時(たとえば氷点下未満時)にスロットルバルブ構成部品が凍結して作動不良となること防止するために、スロットル内部に設けたウォータジャケットを介してスロットルバルブ構成部品と冷却水とを熱交換させてスロットルバルブ構成部品を温度調整する温調機器である。
 ターボクーラはターボチャージャで発生する熱と冷却水とを熱交換させてターボチャージャを冷却するための冷却器である。
 エンジン補助モータは、エンジン停止中でもエンジンベルトを回せるようにするための大型モータであり、エンジンベルトで駆動される圧縮機やウォータポンプなどをエンジンの駆動力が無い状態でも作動させたり、エンジンの始動時に利用される。
 エンジン用ラジエータ64にはエンジン用リザーブタンク64aが接続されている。エンジン用リザーブタンク64aの構造および機能は、上述のリザーブタンク43aと同様である。
 次に、車両用熱管理システム10の電気制御部を図2に基づいて説明する。制御装置70は、CPU、ROMおよびRAM等を含む周知のマイクロコンピュータとその周辺回路から構成され、そのROM内に記憶された空調制御プログラムに基づいて各種演算、処理を行い、出力側に接続された各種制御対象機器の作動を制御する制御部である。
 制御装置70によって制御される制御対象機器は、第1ポンプ11、第2ポンプ12、第1切替弁21、第2切替弁22、室外送風機30、圧縮機32、室内送風機54、ケース51の内部に配置された各種ドア(内外気切替ドア53、エアミックスドア55、吹出口モードドア等)を駆動する電動アクチュエータ、およびインバータ19等である。
 制御装置70のうち、その出力側に接続された各種制御対象機器の作動を制御する構成(ハードウェアおよびソフトウェア)は、それぞれの制御対象機器の作動を制御する制御部(制御手段)を構成している。
 制御装置70のうち第1ポンプ11および第2ポンプ12の作動を制御する構成(ハードウェアおよびソフトウェア)は、ポンプ制御部70aである。ポンプ制御部70aは、各冷却水流通機器を流れる冷却水の流量を制御する流量制御部である。
 制御装置70のうち第1切替弁21および第2切替弁22の作動を制御する構成(ハードウェアおよびソフトウェア)は、切替弁制御部70bである。切替制御部70bは、冷却水の循環状態を切り替える循環切替制御部でもある。切替制御部70bは、各冷却水流通機器を流れる冷却水の流量を調節する流量制御部(流量制御部)でもある。
 制御装置70のうち室外送風機30の作動を制御する構成(ハードウェアおよびソフトウェア)は、室外送風機制御部70c(外気送風機制御部)である。室外送風機制御部70cは、ラジエータ13を流れる外気の流量を制御する流量制御部(流量制御部)である。
 制御装置70のうち圧縮機32の作動を制御する構成(ハードウェアおよびソフトウェア)は、圧縮機制御部70d(圧縮機制御部)である。圧縮機制御部70dは、圧縮機32から吐出される冷媒の流量を制御する冷媒流量制御部(流量制御部)である。
 制御装置70のうち室内送風機54の作動を制御する構成(ハードウェアおよびソフトウェア)は、室内送風機制御部70eである。室内送風機制御部70eは、車室内へ吹き出される送風空気の風量を制御する吹出風量制御部である。
 制御装置70のうちケース51の内部に配置された各種ドア(内外気切替ドア53、エアミックスドア55、吹出口モードドア等)の作動を制御する構成(ハードウェアおよびソフトウェア)は、空調切替制御部70fである。空調切替制御部70fは、内外気切替ドア53の作動を制御する内外気切替制御部である。空調切替制御部70fは、ケース51内に導入される内気の風量と外気の風量との風量割合を制御する内外気割合制御部である。
 制御装置70のうち補助ヒータ56の作動を制御する構成(ハードウェアおよびソフトウェア)は、補助ヒータ制御部70g(電気ヒータ制御部)である。
 制御装置70のうちインバータ19の作動を制御する構成(ハードウェアおよびソフトウェア)は、インバータ制御部70h(発熱機器制御部)である。
 各制御部70a、70b、70c、70d、70e、70f、70g、70hは、制御装置70に対して別体で構成されていてもよい。
 制御装置70の入力側には、内気温度センサ71、内気湿度センサ72、外気温度センサ73、日射センサ74、第1水温センサ75、第2水温センサ76、ラジエータ水温センサ77、クーラコア温度センサ78、ヒータコア温度センサ79、エンジン水温センサ80、インバータ温度センサ81、電池温度センサ82、冷媒温度センサ83、84、冷媒圧力センサ85、86、車速センサ87および複合センサ88等のセンサ群の検出信号が入力される。
 内気温度センサ71は、内気の温度(車室内温度)を検出する検出装置(内気温度検出装置)である。内気湿度センサ72は、内気の湿度を検出する検出装置(内気湿度検出装置)である。
 外気温度センサ73は、外気の温度(車室外温度)を検出する検出装置(外気温度検出装置)である。日射センサ74は、車室内の日射量を検出する検出装置(日射量検出装置)である。
 第1水温センサ75は、第1ポンプ用流路41を流れる冷却水の温度(例えば第1ポンプ11に吸入される冷却水の温度)を検出する検出装置(第1熱媒体温度検出装置)である。
 第2水温センサ76は、第2ポンプ用流路42を流れる冷却水の温度(例えば第2ポンプ12に吸入される冷却水の温度)を検出する検出装置(第2熱媒体温度検出装置)である。
 ラジエータ水温センサ77は、ラジエータ用流路43を流れる冷却水の温度(例えばラジエータ13から流出した冷却水の温度)を検出する検出装置(機器側熱媒体温度検出装置)である。
 クーラコア温度センサ78は、クーラコア16の表面温度を検出する検出装置(クーラコア温度検出装置)である。クーラコア温度センサ78は、例えば、クーラコア16の熱交換フィンの温度を検出するフィンサーミスタや、クーラコア16を流れる冷却水の温度を検出する水温センサ等である。
 ヒータコア温度センサ79は、ヒータコア17の表面温度を検出する検出装置(ヒータコア温度検出装置)である。ヒータコア温度センサ79は、例えば、ヒータコア17の熱交換フィンの温度を検出するフィンサーミスタや、ヒータコア17を流れる冷却水の温度を検出する水温センサ等である。
 エンジン水温センサ80は、エンジン冷却回路60を循環する冷却水の温度(例えばエンジン61の内部を流れる冷却水の温度)を検出する検出装置(エンジン熱媒体温度検出装置)である。
 インバータ温度センサ81は、インバータ用流路47を流れる冷却水の温度(例えばインバータ19から流出した冷却水の温度)を検出する検出装置(機器側熱媒体温度検出装置)である。
 電池温度センサ82は、電池熱交換用流路48を流れる冷却水の温度(例えば電池温調用熱交換器20に流入する冷却水の温度)を検出する検出装置(機器側熱媒体温度検出装置)である。電池温度センサ82は、温度バラツキのある電池パック内において特定の部位の温度(電池代表温度)を検出する検出装置(電池代表温度検出装置)であってもよい。
 冷媒温度センサ83、84は、圧縮機32から吐出された冷媒の温度を検出する吐出側冷媒温度センサ83、および圧縮機32に吸入される冷媒の温度を検出する吸入側冷媒温度センサ84である。
 冷媒圧力センサ85、86は、圧縮機32から吐出された冷媒の圧力を検出する吐出側冷媒圧力センサ85、および圧縮機32に吸入される冷媒の圧力を検出する吸入側冷媒温度センサ86である。
 車速センサ87は、車両の走行速度を検出する検出装置(車速検出装置)である。複合センサ88は、フロント窓ガラスの表面温度、フロント窓ガラス近傍の内気の温度、およびフロント窓ガラス近傍の内気の湿度を検出する検出装置である。例えば、複合センサ88は、フロント窓ガラスの内面のうちルームミラーの裏側部位に取り付けられている。
 制御装置70は、複合センサ88の検出信号等に基づいて、フロント窓ガラスの曇り危険度の指標である窓曇り指標RHWを算出する。
 具体的には、フロント窓ガラスの表面温度、フロント窓ガラス近傍の内気の温度、およびフロント窓ガラス近傍の内気の湿度に基づいて、フロント窓ガラス近傍の内気の飽和水蒸気圧Pr、およびフロント窓ガラスの表面温度の飽和水蒸気圧Pgを算出する。そして、次の数式F1に基づいて窓曇り指標RHWを算出する。
 RHW=Pr/Pg+α …F1
 数式F1において、αは、外気の温度、日射量、および車速等から算出した安全率である。
 制御装置70のうち窓曇り指標RHWを算出する構成(ハードウェアおよびソフトウェア)は、窓曇り指標算出部70iを構成している。窓曇り指標算出部70iは、制御装置70に対して別体で構成されていてもよい。
 制御装置70は、センサ群の検出信号に基づいて、各制御対象機器(第1ポンプ11、第2ポンプ12および圧縮機32等)や各センサの故障の有無を判定して故障を検知する。
 制御装置70のうち第1ポンプ11の故障を検知する構成(ハードウェアおよびソフトウェア)は、ポンプ故障検知部70jである。制御装置70のうち圧縮機32の故障を検知する構成(ハードウェアおよびソフトウェア)は、圧縮機故障検知部70kである。各故障検知部70j、70kは、制御装置70に対して別体で構成されていてもよい。
 制御装置70の入力側には、操作パネル89に設けられた各種空調操作スイッチからの操作信号が入力される。例えば、操作パネル89は、車室内前部の計器盤付近に配置されている。
 操作パネル89に設けられた各種空調操作スイッチは、デフロスタスイッチ89a、エアコンスイッチ89b、オートスイッチ、内外気切替スイッチ89c、車室内温度設定スイッチ89d、風量設定スイッチおよび空調停止スイッチ、省電力冷房モードスイッチ、省電力除湿スイッチ等である。
 各スイッチは機械的に押し込むことによって電気接点を導通させる方式のプッシュスイッチでもよいし、静電パネル上の所定の領域に触れることによって反応するタッチスクリーン方式でもよい。
 デフロスタスイッチ89aは、デフロスタモードを設定または解除するスイッチである。デフロスタモードは、室内空調ユニット50のデフロスタ吹出口からフロント窓ガラスの内面に向けて空調風を吹き出してフロント窓ガラスの曇りを防止したり、窓曇りした場合に窓曇りを除去したりする吹出口モードである。
 ユーザー操作によってデフロスタモードが選択された時に、外気温が例えば10℃以上である場合、圧縮機オンモード(第1除湿モード)運転を行う。ユーザー操作によってデフロスタモードが選択された時に、外気温が例えば10℃未満、氷点下5℃以上であり、ヒータコア17を流れる冷却水の水温がたとえば60℃を超える場合、圧縮機オフモード(第2除湿モード)運転を行う。
 圧縮機オンモードでは、冷却水冷却器14とクーラコア16との間で冷却水が循環するように第1切替弁21および第2切替弁22の作動を制御するとともに、圧縮機32を作動(オン)させる。
 これにより、外気温度が高い環境化であるためにラジエータ13で冷却された冷却水をクーラコア16に流しても車室内送風空気を除湿できないと判断できる場合、冷凍サイクル31の冷却水冷却器14で冷却された冷却水をクーラコア16に流して車室内送風空気を除湿できるので、フロント窓ガラスの曇りを防止できる。
 圧縮機オフモードでは、ラジエータ13とクーラコア16との間で冷却水が循環するように第1切替弁21および第2切替弁22の作動を制御するとともに、圧縮機32を停止(オフ)させる。
 これにより、外気温度が低い環境化においてラジエータ13で冷却された冷却水をクーラコア16に流して車室内送風空気を除湿できるので、フロント窓ガラスの曇りを防止できる。圧縮機オフモードでは圧縮機32を停止させるので、圧縮機オンモードと比較して、フロント窓ガラスの曇りを防止するために必要な動力を大幅に低減できる。
 エアコンスイッチ89bは、冷房または除湿の作動・停止(オン・オフ)を切り替えるスイッチである。風量設定スイッチは、室内送風機54から送風される風量を設定するスイッチである。オートスイッチは、空調の自動制御を設定または解除するスイッチである。
 内外気切替スイッチ89cは、内気導入モードと外気導入モードとを切り替えるスイッチである。内外気切替スイッチ89cは、乗員によって操作されると、ケース51内に導入される内気の割合を所定割合以上にするための指令を出力する操作部である。
 車室内温度設定スイッチ89dは、乗員の操作によって車室内目標温度を設定する目標温度設定部である。空調停止スイッチは、空調を停止させるスイッチである。
 省電力冷房モードスイッチおよび省電力除湿モードスイッチは、冷房運転時および除湿運転時における圧縮機32の消費電力量を抑えるための指令を出力する操作部であり、例えば圧縮機オンモード運転中に乗員によって操作されると、圧縮機オフモード運転へと切り替えるための指令を出力する。
 制御装置70は、外気温度と車室内吹出空気の目標吹出温度TAOとに基づいて空調モードを決定する。目標吹出温度TAOは、内気温Trを速やかに乗員の所望の目標温度Tsetに近づけるために決定される値であって、下記数式F2により算出される。
 TAO=Kset×Tset-Kr×Tr-Kam×Tam-Ks×Ts+C …F2
 この数式において、Tsetは車室内温度設定スイッチ89dによって設定された車室内の目標温度であり、Trは内気温度センサ71によって検出された内気温度であり、Tamは外気温度センサ73によって検出された外気温度であり、Tsは日射センサ74によって検出された日射量である。Kset、Kr、Kam、Ksは制御ゲインであり、Cは補正用の定数である。
 例えば、制御装置70は、外気温度よりも目標吹出温度TAOが低い場合、空調モードを冷房モードに決定し、外気温度よりも目標吹出温度TAOが高い場合、空調モードを暖房モードに決定する。
 制御装置70のうち空調モードを決定する構成(ハードウェアおよびソフトウェア)は、空調モード決定部(空調モード決定部)である。空調モード決定部は、制御装置70に対して別体で構成されていてもよい。
 次に、上記構成における作動を説明する。制御装置70が第1ポンプ11、第2ポンプ12、圧縮機32、第1切替弁21および第2切替弁22等の作動を制御することによって、種々の作動モードに切り替えられる。
 例えば、第1ポンプ11によって吸入されて吐出された冷却水が、冷却水冷却器14と、ラジエータ13、クーラコア16、ヒータコア17、冷却水冷却水熱交換器18、インバータ19および電池温調用熱交換器20のうち少なくとも1つの機器との間で循環する低温側冷却水回路(低温側熱媒体回路)が形成され、第2ポンプ12によって吸入されて吐出された冷却水が、冷却水加熱器15と、ラジエータ13、クーラコア16、ヒータコア17、冷却水冷却水熱交換器18、インバータ19および電池温調用熱交換器20のうち少なくとも1つの機器との間で循環する高温側冷却水回路(高温側熱媒体回路)が形成される。
 ラジエータ13、クーラコア16、ヒータコア17、冷却水冷却水熱交換器18、インバータ19および電池温調用熱交換器20のそれぞれについて、低温側冷却水回路に接続される場合と、高温側冷却水回路に接続される場合とを状況に応じて切り替えることによって、ラジエータ13、クーラコア16、ヒータコア17、冷却水冷却水熱交換器18、インバータ19および電池温調用熱交換器20を状況に応じて適切な温度に調整できる。
 ラジエータ13が低温側冷却水回路に接続された場合、冷凍サイクル31のヒートポンプ運転を行うことができる。すなわち、低温側冷却水回路では、冷却水冷却器14で冷却された冷却水がラジエータ13を流れるので、ラジエータ13で冷却水が外気から吸熱する。
 そして、ラジエータ13にて外気から吸熱した冷却水は、冷却水冷却器14で冷凍サイクル31の冷媒と熱交換して放熱する。したがって、冷却水冷却器14では、冷凍サイクル31の冷媒が冷却水を介して外気から吸熱する。
 冷却水冷却器14にて外気から吸熱した冷媒は、冷却水加熱器15にて高温側冷却水回路の冷却水と熱交換して放熱する。したがって、外気の熱を汲み上げるヒートポンプ運転を実現できる。
 ラジエータ13が高温側冷却水回路に接続された場合、冷却水加熱器15で加熱された冷却水がラジエータ13を流れるので、ラジエータ13で冷却水の熱を外気に放熱できる。
 クーラコア16が低温側冷却水回路に接続された場合、冷却水冷却器14で冷却された冷却水がクーラコア16を流れるので、クーラコア16で車室内への送風空気を冷却・除湿できる。すなわち車室内を冷房・除湿できる。
 ヒータコア17が高温側冷却水回路に接続された場合、冷却水加熱器15で加熱された冷却水がヒータコア17を流れるので、ヒータコア17で車室内への送風空気を加熱できる。すなわち車室内を暖房できる。
 冷却水冷却水熱交換器18が低温側冷却水回路に接続された場合、冷却水冷却器14で冷却された冷却水が冷却水冷却水熱交換器18を流れるのでエンジン冷却水を冷却できる。換言すれば、冷却水冷却水熱交換器18で低温側冷却水回路の冷却水がエンジン冷却水から吸熱できるので、エンジン61の廃熱を汲み上げるヒートポンプ運転を実現できる。
 冷却水冷却水熱交換器18が高温側冷却水回路に接続された場合、冷却水加熱器15で加熱された冷却水が冷却水冷却水熱交換器18を流れるのでエンジン冷却水を加熱できる。したがって、エンジン61を加熱(暖機)できる。
 インバータ19が低温側冷却水回路に接続された場合、冷却水冷却器14で冷却された冷却水がインバータ19を流れるのでインバータ19を冷却できる。換言すれば、インバータ19の廃熱を汲み上げるヒートポンプ運転を実現できる。
 インバータ19が高温側冷却水回路に接続された場合、冷却水加熱器15で加熱された冷却水がインバータ19を流れるのでインバータ19を加熱(暖機)できる。
 電池温調用熱交換器20が低温側冷却水回路に接続された場合、冷却水冷却器14で冷却された冷却水が電池温調用熱交換器20を流れるので電池を冷却できる。換言すれば、電池の廃熱を汲み上げるヒートポンプ運転を実現できる。
 電池温調用熱交換器20が高温側冷却水回路に接続された場合、冷却水加熱器15で加熱された冷却水が電池温調用熱交換器20を流れるので電池を加熱(暖機)できる。
 デフロスタスイッチ89aによってデフロスタモードが設定されている場合、またはオートスイッチによって空調の自動制御が設定されている場合、制御装置70は、窓ガラスの曇りを防止するために、図3のフローチャートに示す制御処理を実行する。
 ステップS100では、各制御対象機器や各センサが正常であるか否か(故障しているか否か)を判定する。例えば、窓曇り指標RHWを算出するために必要なセンサ、冷凍サイクル31の構成機器(圧縮機32等)、第1ポンプ11および第2ポンプ12が正常であるか否かを判定する。
 各制御対象機器や各センサが正常でないと判定した場合、ステップS110へ進み、外気導入モードに切り替わるように内外気切替ドア53の作動を制御する。これにより、各制御対象機器や各センサの故障によって除湿による窓曇り防止が不可能になった場合に、フロント窓ガラスの温度と同等以下の温度である外気を車室内に導入できるので、フロント窓ガラス近傍の内気の露点温度をフロント窓ガラスの温度以下にして窓曇りを抑制できる。
 一方、各制御対象機器や各センサが正常であると判定した場合、ステップS120へ進み、複合センサ88で検出したフロント窓ガラス近傍の内気の温度が複合センサ88の作動保証下限値を上回っているか否かを判定する。
 フロント窓ガラス近傍内気温度が複合センサ88の作動保証下限値(例えば-30℃)を上回っていないと判定した場合、ステップS110へ進み、内外気切替箱52を外気導入モードに切り替える。これにより、複合センサ88に異常がある可能性が高い場合に、フロント窓ガラスの温度と同等以下の温度である外気を車室内に導入して窓曇りを抑制できる。
 一方、フロント窓ガラス近傍内気温度が複合センサ88の作動保証下限値を上回っていると判定した場合、ステップS130へ進み、窓曇り指標RHWが閾値を上回っているか否かを判定する。
 図4に示すように、ステップS130の閾値は、窓曇りの危険があると判断できる値(図4の例では106%)に設定されている。
 窓曇り指標RHWが閾値を上回っていない場合、すなわち窓曇りの危険がないと判断できる場合、ステップS140で所定時間待機した後、ステップS100へ戻る。
 一方、窓曇り指標RHWが閾値を上回っている場合、すなわち窓曇りの危険があると判断できる場合、ステップS150へ進む。
 ステップS150では、圧縮機32が作動中であるか否かを判定する。すなわち、防曇以外の目的で冷凍サイクル32が使用されているか否かを判定する。
 圧縮機32が作動中でないと判定した場合、ステップS160へ進み、外気温が所定外気温を下回っている、または冷却水冷却器14における冷却水の温度(チラー水温)が所定水温を下回っているか否かを判定する。例えば、冷却水冷却器14における冷却水の温度は、第1水温センサ75が検出した冷却水の温度(第1ポンプ用流路41を流れる冷却水の温度)から推定される。
 ステップS160の所定外気温は、フロント窓ガラス近傍における内気の露点温度に対して、安全率を考慮した値を減じた値である。安全率を考慮した値は、ラジエータ13が配置された流路(ラジエータ用流路43)における冷却水の温度上昇値(推定値)と、各センサの誤差を考慮した値と、ラジエータ13の温度効率による温度上昇値と、クーラコア16の温度効率による温度上昇値とを足し合わせることによって算出される。
 ステップS160の所定外気温は、制御装置に予め記憶された設定値(例えば5℃)であってもよい。ステップS160の所定外気温は、クーラコア16に流入する送風空気の露点温度に関連する温度であればよい。
 ステップS160の所定水温は、フロント窓ガラス近傍における内気の露点温度に対して、安全率を考慮した値を減じた値である。安全率を考慮した値は、冷却水冷却器14が配置された流路(第1ポンプ用流路41)における冷却水の温度上昇値(推定値)と、各センサの誤差を考慮した値と、クーラコア16の温度効率による温度上昇値とを足し合わせることによって算出される。
 ステップS160の所定水温は、制御装置に予め記憶された設定値(例えば5℃)であってもよい。
 外気温が所定外気温を下回っている、または冷却水冷却器14における冷却水の温度(チラー水温)が所定水温を下回っている場合、ラジエータ13で冷却された冷却水をクーラコア16に流して車室内送風空気を除湿できると判断できる。
 ステップS160において外気温が所定外気温を下回っておらず、且つ冷却水冷却器14における冷却水の温度(チラー水温)が所定水温を下回っていないと判定した場合、ステップS170へ進んで圧縮機オンモード(第1除湿モード)を選択する。
 圧縮機オンモードでは、冷却水冷却器14とクーラコア16との間で冷却水が循環するように第1切替弁21および第2切替弁22の作動を制御するとともに、圧縮機32を作動(オン)させる。
 これにより、外気温度が高い環境化であるためにラジエータ13で冷却された冷却水をクーラコア16に流しても車室内送風空気を除湿できないと判断できる場合、冷凍サイクル31の冷却水冷却器14で冷却された冷却水をクーラコア16に流して車室内送風空気を除湿できるので、フロント窓ガラスの曇りを防止できる。
 ステップS160において外気温が所定外気温を下回っている、または冷却水冷却器14における冷却水の温度(チラー水温)が所定水温を下回っていると判定した場合、ステップS180へ進んで圧縮機オフモード(第2除湿モード)を選択する。
 圧縮機オフモードでは、ラジエータ13とクーラコア16との間で冷却水が循環するように第1切替弁21および第2切替弁22の作動を制御するとともに、圧縮機32を停止(オフ)させる。
 これにより、外気温度が低い環境化においてラジエータ13で冷却された冷却水をクーラコア16に流して車室内送風空気を除湿できるので、フロント窓ガラスの曇りを防止できる。圧縮機オフモードでは圧縮機32を停止させるので、圧縮機オンモードと比較して、フロント窓ガラスの曇りを防止するために必要な動力を大幅に低減できる。
 ステップS150において圧縮機32が作動中であると判定した場合、ステップS190へ進み、空調モードが暖房モードであるか否かを判定する。
 空調モードが暖房モードでないと判定された場合、ステップS200へ進み、冷却水冷却器14における冷却水の温度(チラー水温)が所定水温を下回っているか否かを判定する。ステップS200の所定水温は、ステップS160の所定水温と同じである。
 冷却水冷却器14における冷却水の温度(チラー水温)が所定水温を下回っていないと判定した場合、ステップS210で圧縮機32の回転数を増加させた後、ステップS100へ戻る。
 これにより、防曇以外の目的で冷凍サイクル32が使用されているために冷却水冷却器14の冷却能力(除湿能力)が不足していると判断される場合、冷却水冷却器14の冷却能力(除湿能力)を増加させることができる。
 一方、冷却水冷却器14における冷却水の温度(冷却水冷却器水温)が所定冷却水温度を下回っていると判定した場合、ステップS220へ進む。
 ステップS220では、冷却水冷却器14で冷却された冷却水がクーラコア16を流れるように第1切替弁21および第2切替弁22の作動を制御した後、ステップS100へ戻る。
 これにより、冷凍サイクル31の冷却水冷却器14で冷却された冷却水をクーラコア16に流して車室内送風空気を除湿できるので、フロント窓ガラスの曇りを防止できる。
 ステップS190において空調モードが暖房モードであると判定された場合、ステップS230へ進み、冷却水冷却器14で冷却された冷却水がクーラコア16を流れているか否かを判定する。
 本実施形態では、エアコンスイッチ89bがオンされている場合、冷却水冷却器14で冷却された冷却水がクーラコア16を流れるように第1切替弁21および第2切替弁22の作動が制御されるようになっている。
 冷却水冷却器14で冷却された冷却水がクーラコア16を流れていないと判定された場合、冷却水冷却器14で冷却された冷却水がクーラコア16を流れるように第1切替弁21および第2切替弁22の作動を制御する。これにより、冷凍サイクル31の冷却水冷却器14で冷却された冷却水をクーラコア16に流して車室内送風空気を除湿できるので、フロント窓ガラスの曇りを防止できる。
 一方、冷却水冷却器14で冷却された冷却水がクーラコア16を流れていると判定された場合、ステップS210で圧縮機32の回転数を増加させた後、ステップS100へ戻る。
 これにより、防曇以外の目的で冷凍サイクル32が使用されているために冷却水冷却器14の冷却能力(除湿能力)が不足していると判断される場合、冷却水冷却器14の冷却能力(除湿能力)を増加させることができる。
 圧縮機32の回転数が所定量を上回っている場合や、許容最高回転数で作動しているなどの場合には、圧縮機32の回転数を上げずに室内送風機54の風量を下げることによって、冷却能力(除湿能力)が不足していても、クーラコア16の表面温度に関連する温度を送風空気の露点温度よりも低く保ち、冷却能力不足時でも窓曇りを防止できる最低限の除湿ができる。
 図5は、ステップS170の圧縮機オンモードにおける具体的な制御処理を示すフローチャートである。ステップS171では、窓曇り指標RHWが増加したか否かを判定する。窓曇り指標RHWが増加したと判定した場合、ステップS172へ進んで内気率を低下させるとともに、冷却水冷却器目標温度TEOを下げる。
 内気率は、内外気切替箱52を通じてケース51内に導入される内気および外気のうち内気の風量割合である。冷却水冷却器目標温度TEOは、冷却水冷却器14で冷却された冷却水の目標温度である。
 内気率を低下させると、車室内に導入される外気の割合が増加するので窓曇り指標RHWが低下する。
 圧縮機オンモードでは、制御装置70は、冷却水冷却器14で冷却された冷却水の温度が冷却水冷却器目標温度TEOに近づくように圧縮機32の冷媒吐出能力(回転数)を制御する。
 したがって、冷却水冷却器目標温度TEOを下げると、圧縮機32の冷媒吐出能力(回転数)が増加して冷却水冷却器14で冷却された冷却水の温度が低下するので、クーラコア16における送風空気の冷却除湿能力が増加して窓曇り指標RHWが低下する。
 ステップS171において窓曇り指標RHWが増加していないと判定した場合、ステップS173へ進んで内気率を増加させるとともに、冷却水冷却器目標温度TEOを上げてステップS174へ進む。
 内気率を増加させると、車室内に導入される外気の割合が低下するので窓曇り指標RHWが増加する。
 冷却水冷却器目標温度TEOを下げると、圧縮機32の冷媒吐出能力(回転数)が低下して冷却水冷却器14で冷却された冷却水の温度が上昇するので、クーラコア16における送風空気の冷却除湿能力が低下して窓曇り指標RHWが増加する。
 ステップS174では、圧縮機32の回転数が所定回転数以下であり、且つ窓曇り指標RHWが所定値以下であるか否かを判定する。
 圧縮機32の回転数が所定回転数以下であり、且つ窓曇り指標RHWが所定値以下であると判定された場合、圧縮機オフモードでも窓曇りを防止できる可能性があるため、ステップS175へ進んで圧縮機オフモードに移行する。
 図6は、圧縮機オフモードにおける具体的な制御処理を示すフローチャートである。ステップS181では、窓曇り指標RHWが増加したか否かを判定する。窓曇り指標RHWが増加していないと判定した場合、ステップS182へ進んでラジエータ13を流れる冷却水の流量、およびクーラコア16を流れる冷却水の流量を減らすとともに、ラジエータ13を流れる外気の流量を減らす。
 これにより、ラジエータ13における冷却水の冷却能力が低下し、クーラコア16における送風空気の冷却除湿能力が低下するので、窓曇り指標RHWが上昇する。
 一方、ステップS181において窓曇り指標RHWが増加したと判定した場合、ステップS183へ進んでラジエータ13を流れる冷却水の流量、およびクーラコア16を流れる冷却水の流量を増加させるとともに、ラジエータ13を流れる外気の流量を増やしてステップS184へ進む。
 これにより、ラジエータ13における冷却水の冷却能力が上昇し、クーラコア16における送風空気の冷却除湿能力が上昇するので、窓曇り指標RHWが低下する。
 ステップS184では、窓曇り指標RHWが所定値を超えているか否かを判定する。窓曇り指標RHWが所定値を超えている場合、圧縮機オフモードでは窓曇りを防止できないと判断して、ステップS185へ進んで圧縮機オンモードに移行する。
 圧縮機オフモードから圧縮機オンモードへ切り替える条件として、例えば次の(1)~(11)を用いてもよい。
 (1)外気温度が所定外気温度(例えば5℃)以上の場合。所定外気温度は、予め制御装置70に記憶された設定値である。所定外気温度は、クーラコア16に流入する送風空気の露点温度に関連する温度である。
 (2)外気温度Tamがクーラコア16の目標温度TCOから安全率βを減じた値を超えている場合(Tam>TCO-β)。
 (3)クーラコア16の表面温度TCがクーラコア16の目標温度TCOを超えている場合。
 (4)ラジエータ13を流れる冷却水の流量が所定流量以上であり、かつ室外送風機30の送風能力(回転数)が所定能力以上であり、且つクーラコア16の表面温度TCがクーラコア16の目標温度TCOを超えている場合。
 (5)クーラコア16を流れる冷却水の流量が所定流量以上であり、かつ室外送風機30の送風能力(回転数)が所定能力以上であり、且つクーラコア16の表面温度TCがクーラコア16の目標温度TCOを超えている場合。
 (6)クーラコア16を流れる冷却水の温度が、クーラコア16の表面温度TCに関連する温度を超えている場合。
 (7)窓曇り指標RHWが所定値を超えている場合。
 (8)窓曇り指標RHWを算出するために用いられる機器(複合センサ88等の機器)が故障したと判定または推定される場合。
 (9)クーラコア16以外の温度調節対象機器(インバータ19や電池温調用熱交換器20等)を冷却するために圧縮機32が作動している場合。
 (10)冷凍サイクル31をヒートポンプ運転させるために圧縮機32が作動している場合。
 (11)暖房要求(暖房負荷)が所定値を超える場合(例えば目標吹出温度TAOが10℃を上回っている場合)で、暖房熱源を圧縮機32で作り出す必要がある場合。
 圧縮機オンモードから圧縮機オフモードへ切り替える条件として、例えば上記(1)~(11)の逆の条件を用いてもよい。
 ここで、クーラコア16の表面温度TCの制御例を説明する。制御装置70は、クーラコア16の表面温度TCが目標表面温度TCOに近づくように、ラジエータ13を流れる冷却水の流量、ラジエータ13を流れる外気の流量、およびクーラコア16を流れる冷却水の流量のうち少なくとも1つの流量を制御する。
 具体的には、クーラコア16の表面温度TCが目標表面温度TCOを上回っている場合、ラジエータ用流路43の開度が所定量減少するように第1切替弁21および第2切替弁22の作動を制御することによって、ラジエータ13を流れる冷却水の流量を減少させてラジエータ13の熱交換能力を低下させてクーラコア16の表面温度TCを低下させる。
 一方、クーラコア16の表面温度TCが目標表面温度TCOを下回っている場合、ラジエータ用流路43の開度が所定量増加するように第1切替弁21および第2切替弁22の作動を制御することによって、ラジエータ13を流れる冷却水の流量を増加させてラジエータ13の熱交換能力を増加させてクーラコア16の表面温度TCを上昇させる。
 具体的には、クーラコア16の表面温度TCが目標表面温度TCOを上回っている場合、室外送風機30の送風能力(回転数)を所定量減少させることによって、ラジエータ13を流れる外気の流量を減少させてラジエータ13の熱交換能力を低下させてクーラコア16の表面温度TCを低下させる。
 一方、クーラコア16の表面温度TCが目標表面温度TCOを下回っている場合、室外送風機30の送風能力(回転数)を所定量増加させることによって、ラジエータ13を流れる外気の流量を増加させてラジエータ13の熱交換能力を増加させてクーラコア16の表面温度TCを上昇させる。
 具体的には、クーラコア16の表面温度TCが目標表面温度TCOを上回っている場合、クーラコア用流路44の開度が所定量増加するように第1切替弁21および第2切替弁22の作動を制御することによって、クーラコア16を流れる冷却水の流量を増加させてクーラコア16の表面温度TCを低下させる。
 一方、クーラコア16の表面温度TCが目標表面温度TCOを下回っている場合、クーラコア用流路44の開度が所定量減少するように第1切替弁21および第2切替弁22の作動を制御することによって、クーラコア16を流れる冷却水の流量を減少させてクーラコア16の表面温度TCを上昇させる。
 これにより、クーラコア16の表面温度TCが目標表面温度TCOに近づくように制御されて、クーラコア16における除湿量が適切に調節されるとともに、クーラコア16の表面に付着した凝縮水が凍結してフロスト(着霜)が発生することを抑制できる。
 制御装置70は、クーラコア16の表面温度TCに関連する種々の温度(例えば、クーラコア16から流出した送風空気の温度)が目標表面温度TCOに近づくように、ラジエータ13を流れる冷却水の流量、ラジエータ13を流れる外気の流量、およびクーラコア16を流れる冷却水の流量のうち少なくとも1つの流量を制御してもよい。
 圧縮機オンモードおよび圧縮機オフモードにおけるクーラコア16の目標温度TCOの設定の例を説明する。例えば、制御装置70は、吹出空気の湿度が、窓曇りが発生しないような湿度となり、且つクーラコア16の表面温度TCが露点温度を超えて臭いが発生しないように、クーラコア16の目標温度TCOを設定する。
 クーラコア16の目標温度TCOは、必要な除湿量(例えば100g/h)が得られる温度に設定されていてもよい。クーラコア16の目標温度TCOは、制御装置に予め記憶された設定値(例えば1℃~10℃の範囲)で設定されていてもよい。
 圧縮機オンモードおよび圧縮機オフモードにおける除湿量制御の例を説明する。車室内空気湿度RHが窓曇り指標RHWを下回っている状態(RH<RHW)において、車室内空気目標湿度RHOが窓曇り指標RHWを上回っている場合(RHO>RHW)、車室内空気目標湿度RHOを、窓曇り指標RHWから安全率γを減じた値に変更する(RHO=RHW-γ)。
 一方、車室内空気目標湿度RHOが窓曇り指標RHWを上回っていない場合、車室内空気目標湿度RHOを変更しない。
 圧縮機オンモードでは、車室内空気湿度RHが車室内空気目標湿度RHOに近づくように圧縮機32の冷媒吐出能力(回転数)を制御する。
 圧縮機オフモードでは、車室内空気湿度RHが車室内空気目標湿度RHOに近づくように、ラジエータ13を流れる冷却水の流量、クーラコア16を流れる冷却水の流量を調節する。ラジエータ13を流れる冷却水の流量、クーラコア16を流れる冷却水の流量が所定流量以上である場合は、室外送風機30の送風能力(回転数)を調節する。
 低温側冷却水回路に冷熱機器(蓄冷体)が接続されている場合、車室内空気湿度RHが車室内空気目標湿度RHOに近づくように、冷熱機器(蓄冷体)を流れる冷却水の流量を調節してもよい。冷熱機器(蓄冷体)を流れる冷却水の流量が所定流量以上である場合は、室外送風機30の送風能力(回転数)を調節すればよい。
 本実施形態では、第1切替弁21および第2切替弁22は、クーラコア16と冷却水冷却器14との間で冷却水が循環する圧縮機オンモード(第1除湿モード)と、クーラコア16とラジエータ13との間で冷却水が循環する圧縮機オフモード(第2除湿モード)とを切り替える。
 これによると、圧縮機オフモードでは、ラジエータ13で外気によって冷却された冷却水をクーラコア16に循環させて車室内への送風空気を除湿することができる。そのため、冷却水冷却器14で冷凍サイクル31の低圧側冷媒によって冷却された冷却水をクーラコア16に循環させて車室内への送風空気を除湿する圧縮機オンモードと比較して、窓ガラスの曇りを抑制するために必要な動力を低減できる。
 具体的には、制御装置70の切替制御部70bは、各種センサの検出結果である内気の温度、内気の湿度、外気の温度、冷却水の温度、および窓ガラスの温度のうち少なくとも1つに基づいて第1切替弁21および第2切替弁22の作動を制御して圧縮機オンモードと圧縮機オフモードとを切り替える。
 より具体的には、ステップS160で説明したように、制御装置70の切替制御部70bは、外気の温度に関連する温度が、クーラコア16に流入する送風空気の露点温度に関連する所定外気温度未満である場合、圧縮機オフモードに切り替わるように第1切替弁21および第2切替弁22の作動を制御する。
 これにより、外気の温度が低い場合、圧縮機オフモードに切り替えて、窓ガラスの曇りを抑制するために必要な動力を低減できる。
 本実施形態では、第1ポンプ11、第1切替弁21、第2切替弁22および室外送風機30は、ラジエータ13を流れる冷却水の流量、ラジエータ13を流れる外気の流量、およびクーラコア16を流れる冷却水の流量のうち少なくとも1つの流量を調節する。
 具体的には、圧縮機オフモードである場合、制御装置70の流量制御部70a、70b、70cは、クーラコア16から吹き出される送風空気の温度TCに関連する温度が目標温度TCOに近づくように、第1ポンプ11、第1切替弁21、第2切替弁22および室外送風機30の作動を制御する。
 これにより、圧縮機オフモードにおいて、クーラコア16の除湿能力を適切に調整できるので窓ガラスの曇りを適切に抑制できる。また、クーラコア16のフロストを抑制できる。
 本実施形態では、制御装置70の窓曇り指標算出部70iは、複合センサ88が検出したフロント窓ガラスの表面温度、フロント窓ガラス近傍の内気の温度、およびフロント窓ガラス近傍の内気の湿度に基づいて、窓曇り指標RHWを算出する。
 そして、圧縮機オフモードである場合、制御装置の流量制御部70a、70b、70cは、窓曇り指標算出部70iが算出した窓曇り指標RHWに基づいて第1ポンプ11、第1切替弁21、第2切替弁22および室外送風機30の作動を制御して、ラジエータ13を流れる冷却水の流量、ラジエータ13を流れる外気の流量、およびクーラコア16を流れる冷却水の流量のうち少なくとも1つの流量を調節する。
 これにより、圧縮機オフモードにおいて、クーラコア16の除湿能力を適切に調整できるので窓ガラスの曇りを適切に抑制できる。
 圧縮機オフモード(第2除湿モード)である場合、制御装置70の切替制御部70bは、窓ガラスの温度から窓ガラスでの露点温度を減じた差が小さくなるほど、ラジエータ13を流れる冷却水の流量、ラジエータ13を流れる外気の流量、およびクーラコア16を流れる冷却水の流量のうち少なくとも1つの流量が増加するように、第1ポンプ11、第1切替弁21、第2切替弁22および室外送風機30の作動を制御するようにしてもよい。
 例えば、窓ガラスでの露点温度は、制御装置70によって算出することができる。すなわち、制御装置70は、内気の温度、内気の湿度および窓ガラスの温度に基づいて窓ガラスでの露点温度を算出する露点温度算出部を構成していてもよい。
 本実施形態では、制御装置の流量制御部70a、70b、70cは、窓曇り指標算出部70iが算出した窓曇り指標RHWに基づいて第1切替弁21および第2切替弁22の作動を制御して圧縮機オンモードと圧縮機オフモードとを切り替える。
 これにより、窓曇りの程度に応じて圧縮機オンモードと圧縮機オフモードとを適切に切り替えることができる。
 圧縮機オフモード(第2除湿モード)である場合、制御装置70の切替制御部70bは、窓ガラスの温度から窓ガラスでの露点温度を減じた差に基づいて第1切替弁21および第2切替弁22の作動を制御して圧縮機オンモードと圧縮機オフモードとを切り替えるようにしてもよい。
 本実施形態では、制御装置70のポンプ故障検知部70jが第1ポンプ11の故障を検知した場合、制御装置70の内外気切替制御部70fは、外気導入モードに切り替わるように内外気切替ドア53の作動を制御する。
 これにより、第1ポンプ11が故障してクーラコア16で送風空気を除湿できなくなった場合、フロント窓ガラスの温度と同等以下の温度である外気を車室内に導入して窓曇りを抑制できる。
 本実施形態では、第1切替弁21および第2切替弁22は、第1ポンプ11から吐出された冷却水が、ラジエータ13と、冷却水冷却水熱交換器18やインバータ19(発熱機器との間で熱授受が行われる熱授受部)との間で循環する第1循環状態と、第2ポンプ12から吐出された冷却水が、ヒータコア17と、冷却水冷却水熱交換器18やインバータ19との間で循環する第2循環状態とを切り替え可能になっている。
 そして、制御装置70の圧縮機故障検知部70kが圧縮機32の故障を検知した場合、制御装置70の切替制御部70bは、第2循環状態に切り替わるように第1切替弁21および第2切替弁22の作動を制御する。
 これによると、圧縮機32が故障して冷却水冷却器14で冷却水を冷却できなくなった場合、冷却水冷却水熱交換器18やインバータ19で加熱された冷却水をヒータコア17に循環させて送風空気を加熱できる。そのため、ヒータコア17で加熱された送風空気を窓ガラスに吹き出して窓ガラスを加熱することができるので、窓ガラス近傍空気の露点温度を上昇させて窓ガラスの曇りを抑制できる。
 制御装置70は、冷凍サイクル31から冷媒が洩れていると判断または検知した場合、または冷凍サイクル31における冷媒の量が所定量未満であると判断または検知した場合、圧縮機オンモード(第1除湿モード)から圧縮機オフモード(第2除湿モード)に切り替わるように第1切替弁21および第2切替弁22の作動を制御してもよい。
 これによると、冷凍サイクル31の冷媒が不足しているために冷凍サイクル31を運転できない場合であっても、ラジエータ13で外気によって冷却された冷却水をクーラコア16に循環させて車室内への送風空気を冷却除湿することができる。
 (第2実施形態)
 本実施形態では、図7に示すように、上記第1実施形態の図6のフローチャートにおけるステップS181、S184をステップS181’、S184’に変更している。
 ステップS181’では、外気の温度が上昇したか否かを判定し、外気の温度が上昇していないと判定した場合、ステップS182へ進み、外気の温度が上昇したと判定した場合、ステップS183へ進む。
 ステップS184’では、クーラコア16の表面温度TCが目標温度TCOを上回っているか否かを判定し、クーラコア16の表面温度TCが目標温度TCOを上回っていると判定した場合、圧縮機オフモードでは窓曇りを防止できないと判断して、ステップS185へ進んで圧縮機オンモードに移行する。
 このように、本実施形態では、圧縮機オフモード(第2除湿モード)である場合、制御装置70の流量制御部70a、70b、70cは、外気の温度が上昇するほど、ラジエータ13を流れる冷却水の流量、ラジエータ13を流れる外気の流量、およびクーラコア16を流れる冷却水の流量のうち少なくとも1つの流量が増加するように第1ポンプ11、第1切替弁21、第2切替弁22および室外送風機30の作動を制御する。
 これにより、外気の温度が上昇することに伴うクーラコア16の除湿能力の低下を抑制できる。
 制御装置70の切替制御部70bは、圧縮機オフモード(第2除湿モード)において、流量制御部70a、70b、70cが、ラジエータ13を流れる冷却水の流量、ラジエータ13を流れる外気の流量、およびクーラコア16を流れる冷却水の流量のうち少なくとも1つの流量を所定流量以上に増加させた後に、圧縮機オンモード(第1除湿モード)に切り替えるように第1切替弁21および第2切替弁22の作動を制御する。
 これにより、圧縮機オフモードで除湿能力を増加させた後に、圧縮機オンモードに切り替えるので、極力圧縮機オフモードで除湿能力を確保することができ、ひいては窓ガラスの曇りを抑制するために必要な動力を極力低減できる。
 制御装置70の切替制御部70bは、圧縮機オフモード(第2除湿モード)において、流量制御部70a、70b、70cが、ラジエータ13を流れる冷却水の流量、ラジエータ13を流れる外気の流量、およびクーラコア16を流れる冷却水の流量のうち少なくとも1つの流量を所定流量以上に増加させてもクーラコア16から吹き出される送風空気の温度TCに関連する温度が目標温度TCOを上回る場合、圧縮機オンモードに切り替わるように第1切替弁21および第2切替弁22の作動を制御する。
 これにより、圧縮機オフモードで除湿能力が不足する場合、圧縮機オンモードに切り替えて除湿能力を確保できる。
 (第3実施形態)
 上記第1実施形態では、ラジエータ13が低温側冷却水回路に接続される状態と、高温側冷却水回路に接続される状態とを切り替え可能になっているが、本実施形態では、図8に示すように、ラジエータ13が常時、低温側冷却水回路に接続されるようになっている。
 冷凍サイクル31は、圧縮機32から吐出された高圧側冷媒と外気とを熱交換させて高圧側冷媒を凝縮させる凝縮器15Aを備えている。
 図示を省略しているが、ヒータコア17には、エンジン冷却回路60の冷却水(エンジン冷却水)が循環するようになっている。ヒータコア17には、冷凍サイクル31の高圧側冷媒で加熱された温水(熱媒体)が流れるようになっていてもよい。ヒータコア17の代わりに電気ヒータ(例えばPTCヒータ)が配置されていてもよい。
 第2切替弁22は、クーラコア16に、ラジエータ13で冷却された冷却水が流れる場合と、流れない場合とを切り替える。
 本実施形態においても、上記実施形態と同様に圧縮オンモードと圧縮機オフモードとを切り替えることができるので、上記実施形態と同様の作用効果を奏することができる。
 (第4実施形態)
 上記実施形態では、制御装置70は、図3のフローチャートに示す制御処理を実行することによって、圧縮機オンモード(第1除湿モード)または圧縮機オフモード(第2除湿モード)を選択するが、本実施形態では、制御装置70は、図9のフローチャートに示す制御処理を実行することによって、圧縮機オンモード(第1除湿モード)または圧縮機オフモード(第2除湿モード)を選択する。
 ステップS300では、内気率が所定値(例えば30%)を上回っているか否かを判定する。内気率は、内外気切替箱52からケース51内に導入される空気(内気および外気)における内気の比率である。
 内気率が所定値(例えば30%)を上回っている場合、クーラコア16に流入する空気と、ラジエータ13で外気によって冷却された冷却水との温度差が大きいと推定できる。換言すれば、ラジエータ13で冷却された冷却水によって、クーラコア16に流入する空気を十分に冷却除湿できると推定できる。
 ステップS300にて内気率が所定値(例えば30%)を上回っていると判定した場合、ステップS310へ進み、外気温が所定温度未満であるか否かを判定する。所定温度は、車室内における窓ガラス近傍の空気の露点温度よりも低い温度値に関連する温度値である。すなわち、ステップS310では、圧縮機オフモードを選択したと仮定した場合、クーラコア16において、車室内における窓ガラス近傍の空気の露点温度よりも低い温度まで空気を冷却できるか否かを判定する。
 ステップS310にて外気温が所定温度未満であると判定した場合、ステップS315へ進み、外気温が著しく低い(例えば氷点下20℃未満)か否かを判定する。ステップS315にて外気温が著しく低くないと判定した場合、ステップS320へ進み、圧縮機オフモードを選択する。
 これにより、ラジエータ13で外気によって冷却された冷却水をクーラコア16に流して、クーラコア16で空気を冷却除湿できる。すなわち、圧縮機32を作動(オン)させることなくクーラコア16で空気を冷却除湿できるので、省動力化できる。
 一方、ステップS310にて外気温が所定温度未満でないと判定した場合、ステップS330へ進み、圧縮機オンモードを選択する。これにより、圧縮機32が作動して冷却水冷却器14で冷却水が冷却され、その冷却水がクーラコア16を循環するので、クーラコア16で空気を確実に冷却除湿できる。
 一方、ステップS300にて内気率が所定値(例えば30%)を上回っていないと判定した場合、ステップS340へ進み、クーラコア16で空気を冷却する必要があるか否かを判定する。具体的には、クーラコア16の目標温度TCOが、クーラコア16に流入する空気の温度を下回っている場合、クーラコア16で空気を冷却する必要があると判定する。
 ステップS340にてクーラコア16で空気を冷却する必要があると判定した場合、ステップS340へ進み、圧縮機オンモードを選択する。これにより、圧縮機32が作動して冷却水冷却器14で冷却水が冷却され、その冷却水がクーラコア16を循環するので、クーラコア16で空気を確実に冷却除湿できる。
 一方、ステップS340にてクーラコア16で空気を冷却する必要がないと判定した場合、ステップS350へ進み、除湿停止モードを選択する。除湿停止モードは、クーラコア16で空気を冷却することなく、車室内へ送風する空調モードである。したがって、除湿停止モードでは、圧縮機32が停止されるとともに、クーラコア16への冷却水の供給が遮断される。また、除湿停止モードでは、内外気切替ドア53が外気導入モードに切り替えられる。
 ステップS315にて外気温が著しく低いと判定した場合も、ステップS350へ進み、除湿停止モードを選択する。
 これにより、外気温度が著しく低いために圧縮機オンモードおよび圧縮機オフモードのいずれであっても運転できない場合に外気の割合が高い空気を吹き出して窓曇りを抑制できる。
 すなわち、外気温度が著しく低い場合(例えば氷点下20℃未満の場合)では、クーラコア16の流量を絞っても着霜を防ぐことが困難であることから圧縮機オフモードでの運転はできないとともに、圧縮機32を作動させる圧縮機オンモードでの運転もできない。この場合は、除湿停止モードに切り替えて内気率を0%にして外気を導入することにより、送風空気の絶対湿度を低くして窓曇りを抑制する。
 図10は、ステップS320の圧縮機オフモードにおける具体的な制御処理を示すフローチャートである。ステップS3201では、クーラコア16にフロストが発生する可能性があるか否かを判定する。具体的には、外気温度が所定温度未満であるか否かを判定する。外気温度が低くなると、クーラコア16に流入する空気の温度が低下してクーラコア16表面の凝縮水が凍結する可能性が高くなるからである。
 ステップS3201にてクーラコア16にフロストが発生する可能性があると判定した場合、ステップS3202へ進み、内気率を所定量低下させる。内気率が既に0%である場合、内気率を0%に維持する。
 これにより、クーラコア16における凝縮水の発生量を減少させることができるので、クーラコア16にフロストが発生することを抑制できる。
 また、ステップS3202では、内気率が低くなるほど、クーラコア16の流量を低く抑えることによって、クーラコア16の表面温度が凍結温度よりも下回ることを抑制する。
 例えば、第1ポンプ11または第2ポンプ12の出力を制限することによって、クーラコア16の流量を低く抑えることができる。
 例えば、第1切替弁21および第2切替弁22のうち少なくとも一方の弁開度を調整することによって、クーラコア16の流量を低く抑えることができる。弁開度を連続的に絞ることによって、クーラコア16の流量を低く抑えてもよいし、クーラコア16への冷却水の流通を断続的に遮断して時間平均的に流量を制限してもよい。
 ステップS3202において外気の割合を増やすことによって、クーラコア16に流入する空気の絶対湿度を低く抑えることができるので、窓ガラスに向けて吹き出される空気の湿度も低く抑えることができ、ひいては窓ガラスに曇りが発生することを抑制できる。
 一方、ステップS3201にてクーラコア16にフロストが発生する可能性がないと判定した場合、ステップS3203へ進み、車速が所定速度を上回っているか否かを判定する。所定速度は、窓ガラス近傍の空気の露点温度よりも低い温度値に関連する速度値である。すなわち、車速が高くなると、窓ガラスの温度が低下して窓ガラスに曇りが発生する可能性が高くなるからである。
 車速が所定速度を上回っていると判定した場合、ステップS3202へ進み、内気率を所定量低下させる。内気率が既に0%である場合、内気率を0%に維持する。
 これにより、クーラコア16に流入する空気の湿度を低く抑えることができるので、窓ガラスに向けて吹き出される空気の湿度も低く抑えることができ、ひいては窓ガラスに曇りが発生することを抑制できる。
 一方、ステップS340にて車速が所定速度を上回っていないと判定した場合、ステップS3204へ進み、外気温が所定温度を上回っているか否かを判定する。所定温度は、例えばクーラコア16の目標温度TCOである。
 外気温が所定温度を上回っていると判定した場合、ラジエータ13で冷却水を十分に冷却することができず、圧縮機オフモードではクーラコア16で空気を十分に除湿できないと判断できるので、ステップS3205へ進み、圧縮機オンモードを選択する。
 これにより、圧縮機32が作動して冷却水冷却器14で冷却水が冷却され、その冷却水がクーラコア16を循環するので、クーラコア16で空気を冷却除湿できる。
 一方、ステップS3204にて外気温が所定温度を上回っていないと判定した場合、ステップS3206へ進み、内気率を所定量上昇させる。内気率が既に100%である場合、内気率を100%に維持する。
 これにより、クーラコア16に流入する空気の温度を極力高くすることができるので、車室内に向けて吹き出される空気の温度も極力高くすることができ、ひいては乗員の暖房感を高めることができる。
 また、車外の空気が汚れている場合に内気モードが選択された場合でも、圧縮機32の作動を極力抑えることができるので、空調のために消費される動力を減らすことができる。車外の汚れている空気とは、例えば微粒子状物質(PM2.5)や花粉を多く含んでいる空気や、トンネル内の空気のように排ガス濃度の高い空気などのことである。
 図11は、ステップS350の除湿停止モードにおける具体的な制御処理を示すフローチャートである。ステップS351では、内外気切替箱52を通じてケース51内に導入される空気の温度が外気温よりも所定温度以上高い温度まで上昇したか否かを判定する。
 ケース51内に導入される空気の温度が外気温よりも高くなる場合としては、例えば、エンジンがアイドリング状態であるとき等、エンジンルームの温度が上昇することによってケース51内に導入される空気が加熱される場合が上げられる。
 ステップS351にてケース51内に導入される空気の温度が外気温よりも所定温度(例えば5℃)以上高い温度まで上昇したと判定した場合、ステップS352へ進み、圧縮機オフモードを選択する。これにより、ラジエータ13で外気によって冷却された冷却水がクーラコア16を循環するので、クーラコア16で空気を冷却除湿できる。
 したがって、ケース51内に導入される空気の温度が外気温よりも高くなったときに圧縮機32を作動させることなくクーラコア16で空気を冷却除湿できるので、省動力化できる。
 一方、ステップS351にてケース51内に導入される空気の温度が外気温よりも所定温度以上、上昇していないと判定した場合、除湿停止モードを維持する。
 本実施形態では、ステップS350で説明したように、内外気切替ドア53、第1切替弁21および第2切替弁22は、除湿停止モードに切り替え可能になっている。除湿停止モードは、車室内へ送風される空気における外気の割合が所定割合以上になり且つクーラコア16に冷却水が循環しない運転モードである。
 これによると、除湿停止モードでは、クーラコア16に冷却水が循環しないので、圧縮機32およびポンプ11の消費動力を低減できる。
 本実施形態では、ステップS310、S320で説明したように、制御装置70の切替制御部70bは、外気の温度が所定温度未満である場合、圧縮機オフモード(第2除湿モード)に切り替わるように第1切替弁21および第2切替弁22の作動を制御する。これにより、外気の温度が低い場合に圧縮機オフモードに切り替えて省動力化できる。
 図9のフローチャートに示す制御処理において、制御装置70の切替制御部70bは、冷凍サイクル31の圧力(例えば圧縮機32の吸入部位における圧力)が所定圧力未満である場合であって、車室内への送風空気を冷却除湿する場合、、第2除湿モードで車室内への送風空気を冷却除湿するように第1切替弁21および第2切替弁22の作動を制御してもよい。
 これによると、外気温度が低かったり冷凍サイクル31の冷媒が漏れたりして冷凍サイクル31を運転できない場合であっても、ラジエータ13で外気によって冷却された冷却水をクーラコア16に循環させて車室内への送風空気を冷却除湿することができる。
 本実施形態では、ステップS315、S350で説明したように、制御装置70の切替制御部70bは、外気の温度が所定温度未満である場合、除湿停止モードに切り替わるように第1切替弁21および第2切替弁22の作動を制御する。
 これによると、外気温度が著しく低いために圧縮機オンモードおよび圧縮機オフモードのいずれであっても運転できない場合に外気の割合が高い空気を吹き出して窓曇りを抑制できる。
 すなわち、外気温度が著しく低い場合(例えば氷点下20℃未満の場合)では、クーラコア16の流量を絞っても着霜を防ぐことが困難であることから圧縮機オフモードでの運転はできないとともに、圧縮機32を作動させる圧縮機オンモードでの運転もできない。この場合は、除湿停止モードに切り替えて内気率を0%にして外気を導入することにより、送風空気の絶対湿度を低くして窓曇りを抑制する。
 本実施形態では、ステップS300、S320で説明したように、制御装置70の切替制御部70bは、車室内へ送風される空気における内気の割合が所定割合以上である場合、圧縮機オフモード(第2除湿モード)に切り替わるように第1切替弁21および第2切替弁22の作動を制御する。
 これによると、クーラコア16に流入する空気の温度が高くなる場合に第2除湿モードに切り替わるので、ラジエータ13で冷却された冷却水によって、クーラコア16に流入する空気を確実に冷却除湿できる。
 図9のフローチャートに示す制御処理において、制御装置70の切替制御部70bは、内外気切替スイッチ89cが乗員によって操作された場合(例えば内気導入モードが設定された場合)であって、外気の温度が所定温度未満である場合、圧縮機オフモード(第2除湿モード)に切り替わるように第1切替弁21および第2切替弁22の作動を制御してもよい。
 これによると、車室内へ送風される空気における内気の割合が増加してクーラコア16に流入する空気の温度が高くなる場合に圧縮機オフモード(第2除湿モード)に切り替わるので、ラジエータ13で冷却された冷却水によって、クーラコア16に流入する空気を確実に冷却除湿できる。
 本実施形態では、ステップS351、S352で説明したように、制御装置70の切替制御部70bは、除湿停止モード時において、クーラコア16に吸い込まれる送風空気の温度が、外気の温度に関連する温度よりも所定温度以上高くなった場合、圧縮機オフモード(第2除湿モード)に切り替わるように第1切替弁21および第2切替弁22の作動を制御する。
 これによると、例えば、車両がアイドリング状態であるためにエンジンルームの温度が上昇した場合等、ケース51内に導入される空気が加熱されて外気温度よりも高くなった場合に圧縮機オフモード(第2除湿モード)に切り替わるので、圧縮機32を作動させることなく、ラジエータ13で冷却された冷却水によって、クーラコア16に流入する空気を確実に冷却除湿でき、ひいては省動力化できる。
 本実施形態では、ステップS3203、S3202で説明したように、制御装置70の切替制御部70bは、圧縮機オフモード(第2除湿モード)時において、車速が所定速度よりも高くなった場合、送風空気における外気の割合が大きくなるように内外気切替ドア53の作動を制御する。
 これによると、窓ガラスの温度が低下して窓ガラスに曇りが発生する可能性が高くなる場合にクーラコア16に流入する空気の湿度を低く抑えることができるので、窓ガラスに向けて吹き出される空気の湿度も低く抑えることができ、ひいては窓ガラスに曇りが発生することを抑制できる。
 制御装置70の切替制御部70bは、圧縮機オフモード(第2除湿モード)時において、外気の温度の低下に応じて、送風空気における外気の割合が大きくなるように内外気切替ドア53の作動を制御してもよい。
 これによると、クーラコア16に流入する冷却水の温度が低下してクーラコア16に着霜が生じやすくなる場合にクーラコア16に流入する空気の絶対湿度を低下させることができるので、クーラコア16における凝縮水の発生量を減少させることができ、ひいてはクーラコア16に着霜が生じることを抑制できる。
 また、クーラコア16に着霜が生じるとクーラコア16の風路を塞ぐように凝縮水が氷結するため、車室内に吹き出される空気の風量が低下または風量が出なくなる。その結果、暖房能力不足によって乗員に不快感を与えたり、窓ガラスの曇りを十分に抑制できなくなる。
 そこで、クーラコア16の冷却水流量を絞ることによって、クーラコア16の着霜を抑止する。クーラコア16の冷却水流量を連続的に絞ってもよいし、クーラコア16への冷却水の流通を断続的に遮断することによって、クーラコア16の冷却水流量を時間平均的に絞ってもよい。
 また、ラジエータ13の冷却水流量を絞りラジエータ13をバイパスする冷却水流量を増やすことによって、ラジエータ13での冷熱の受熱量を減らしてクーラコア16の着霜を抑止しても良い。
 換言すると、着霜が生じたと判断または推定される場合は、クーラコア16の冷却水流量またはラジエータ13の冷却水流量が減ることになる。よって、クーラコア16の冷却水流量またはラジエータ13の冷却水流量が減るほど、送風空気における外気の割合が大きくなるように内外気切替ドア53の作動を制御する。
 本実施形態では、ステップS3201、S3202で説明したように、制御装置70の切替制御部70bは、圧縮機オフモード(第2除湿モード)時において、クーラコア16の冷却水流量が少なくなるほど、送風空気における外気の割合が大きくなるように内外気切替ドア53の作動を制御する。
 これによると、クーラコア16に着霜が生じる可能性がある場合にクーラコア16における凝縮水の発生量を減少させることができるので、クーラコア16に着霜が生じることを抑制できる。
 制御装置70の切替制御部70bは、圧縮機オフモード(第2除湿モード)時において、クーラコア16に着霜が生じたと判定または推定した場合、除湿停止モードに切り替えるとともに送風空気における外気の割合を100%にすれば、クーラコア16における凝縮水の発生量を一層減少させることができるので、クーラコア16にフロストが発生することを一層抑制できる。
 制御装置70の切替制御部70bは、圧縮機オフモード(第2除湿モード)時において、外気の温度に関連する温度が所定温度未満になった場合、送風空気における外気の割合が大きくなるように内外気切替ドア53の作動を制御してもよい。外気の温度に関連する温度は、例えば冷却水の温度である。所定温度は、クーラコア16に着霜が生じやすくなる温度(例えば-10℃)である。
 これによると、クーラコア16に流入する冷却水の温度が低下してクーラコア16に着霜が生じやすくなる場合にクーラコア16に流入する空気の湿度を低下させることができるので、クーラコア16における凝縮水の発生量を減少させることができ、ひいてはクーラコア16に着霜が生じることを抑制できる。
 制御装置70の切替制御部70bは、冷却水冷却器14における冷媒の温度に関連する温度がクーラコア16を流れる冷却水の温度に関連する温度よりも高い場合、冷却水冷却器14をバイパスして冷却水が流れるように第1切替弁21および第2切替弁22の作動を制御する。
 これによると、冷却水冷却器14において冷媒の温度よりも冷却水の温度の方が低い場合に冷媒が冷却水冷却器14で凝縮してしまい圧縮機32の起動時に液圧縮破損やロックなどの支障が生じることを抑制できる。
 (第5実施形態)
 本実施形態では、制御装置70は、圧縮機オフモード(第2除湿モード)時に図12のフローチャートに示す制御処理を実行する。
 ステップS3211では、クーラコア16の表面温度TCがクーラコア16の目標温度TCOを超えているか否かを判定する。
 ステップS3211にてクーラコア16の表面温度TCがクーラコア16の目標温度TCOを超えていないと判定した場合、ステップS3212へ進み、所定時間待機、またはラジエータ13を流れる冷却水の流量を所定量減らしてステップS3211へ戻る。
 一方、ステップS3211にてクーラコア16の表面温度TCがクーラコア16の目標温度TCOを超えていると判定した場合、ステップS3213へ進み、ラジエータ13を流れる冷却水の流量が最大になっているか否かを判定する。
 ステップS3213にてラジエータ13を流れる冷却水の流量が最大になっていないと判定した場合、ステップS3214へ進み、ラジエータ13を流れる冷却水の流量を所定量増やす。
 一方、ステップS3213にてラジエータ13を流れる冷却水の流量が最大になっていると判定した場合、ステップS3215へ進み、アシスト冷却モード(第3除湿モード)を選択する。アシスト冷却モードは、外気による冷却では空気冷却能力が不足する場合、空気冷却能力の不足分を冷凍サイクル31で補う空調モードである。したがって、アシスト冷却モードでは、圧縮機32を作動(オン)させるとともに、クーラコア16と冷却水冷却器14とラジエータ13との間で冷却水を循環させる。
 また、ステップS3215では、ラジエータ13を流れる冷却水の流量を、ステップS3212、S3214で変更する前の流量に戻す。
 図13は、ステップS3215のアシスト冷却モードにおける具体的な制御処理を示すフローチャートである。ステップS3221では、クーラコア16の表面温度TCがクーラコア16の目標温度TCOを超えているか否かを判定する。
 ステップS3221にてクーラコア16の表面温度TCがクーラコア16の目標温度TCOを超えていないと判定した場合、ステップS3222へ進み、圧縮機32の回転数(冷媒吐出能力)を所定量減少させる。これにより、クーラコア16の表面温度TCをクーラコア16の目標温度TCO以下に維持しつつ圧縮機32の消費動力を低減できる。
 一方、ステップS3221にてクーラコア16の表面温度TCがクーラコア16の目標温度TCOを超えていると判定した場合、ステップS3223へ進み、圧縮機32の回転数(冷媒吐出能力)を所定量増加させてステップS3224へ進む。これにより、クーラコア16の表面温度TCをクーラコア16の目標温度TCOまで低下させることができる。
 ステップS3224では、ラジエータ13の冷却水入口における冷却水温度がラジエータ13の冷却水出口における冷却水温度を所定温度α(本例では0℃)以上上回っているか否かを判定する。換言すれば、クーラコア16で熱交換された冷却水の温度が外気温度を所定温度α以上上回っているか否かを判定する。
 ラジエータ13の冷却水入口における冷却水温度は、外気温や車速、クーラコア16の表面温度TCや冷却水の流量等に基づいて算出することができる。冷却水の流量は、ポンプの駆動力や切替弁の切替状態等から推定することができる。ラジエータ13の冷却水入口における冷却水温度を直接検知してもよい。
 ステップS3224にてラジエータ13の冷却水入口における冷却水温度がラジエータ13の冷却水出口における冷却水温度を所定温度α以上上回っていないと判定した場合、アシスト冷却モードではクーラコア16の冷却能力が不足すると判断して、ステップS3225へ進み、圧縮機オンモードを選択する。
 これにより、圧縮機32を作動(オン)させるとともに、クーラコア16と冷却水冷却器14との間で冷却水を循環させて、クーラコア16とラジエータ13との間で冷却水を循環させないようにして、クーラコア16の冷却能力を高めることができる。
 一方、ステップS3224にてラジエータ13の冷却水入口における冷却水温度がラジエータ13の冷却水出口における冷却水温度を所定温度α以上上回っていると判定した場合、ステップS3226へ進み、クーラコア16の表面温度TCがクーラコア16の目標温度TCOを超えているか否かを判定する。
 ステップS3226にてクーラコア16の表面温度TCがクーラコア16の目標温度TCOを超えていると判定した場合、ステップS3223へ戻る。これにより、圧縮機32の回転数(冷媒吐出能力)を所定量増加させて、クーラコア16の表面温度TCをクーラコア16の目標温度TCOまで低下させることができる。
 一方、ステップS3226にてクーラコア16の表面温度TCがクーラコア16の目標温度TCOを超えていないと判定した場合、ステップS3227へ進み、圧縮機32の回転数(冷媒吐出能力)を所定量減少させる。これにより、クーラコア16の表面温度TCをクーラコア16の目標温度TCO以下に維持しつつ圧縮機32の消費動力を低減できる。
 本実施形態では、第1切替弁21および第2切替弁22は、アシスト冷却モード(第3除湿モード)に切り替え可能になっている。アシスト冷却モード(第3除湿モード)は、クーラコア16と冷却水冷却器14とラジエータ13との間で冷却水が循環する運転モードである。
 これによると、冷凍サイクル31で生成する冷熱および外気の冷熱の両方を利用して、クーラコア16で空気を冷却除湿できるので、クーラコア16の冷却能力を確保しつつ省動力化を図ることができる。
 本実施形態によると、制御装置70の切替制御部70bは、外気の温度が低下するにつれて圧縮機オンモード(第1除湿モード)、アシスト冷却モード(第3除湿モード)、圧縮機オフモード(第2除湿モード)の順番に切り替える。これにより、外気の温度が低下するにつれて外気の冷熱の利用度合いを高めることができるので、一層の省動力化を図ることができる。
 本実施形態では、ステップS3221~S3227で説明したように、制御装置70の切替制御部70bは、アシスト冷却モード(第3除湿モード)時において、クーラコア16で熱交換された冷却水の温度が外気の温度よりも所定温度以上高くなるように冷却水冷却器14を流れる冷媒の流量を制御する。
 これにより、アシスト冷却モード(第3除湿モード)時において、冷却水冷却器14の冷却能力を適切に調整して、効果的に省動力化を図ることができる。
 制御装置70の切替制御部70bは、アシスト冷却モード(第3除湿モード)時において、クーラコア16で熱交換された冷却水の温度が外気の温度よりも所定温度以上高くなるように冷却水冷却器14を流れる冷媒の流量、またはクーラコア16を流れる冷却水もしくは送風空気の流量を制御してもよい。
 これにより、アシスト冷却モード(第3除湿モード)時において、冷却水冷却器14の冷却能力を適切に調整して、効果的に省動力化を図ることができる。
 (第6実施形態)
 本実施形態では、図14に示すように、室内空調ユニット50は、内気と外気とを別々に車室内に吹き出す内外気2層ユニットを構成している。具体的には、ケース51内の空気通路が外気通路51cと内気通路51dとに仕切られている。
 外気通路51cは、内外気切替箱52から導入された外気が流れる通路である。内気通路51dは、内外気切替箱52から導入された内気が流れる通路である。
 室内送風機54は、第1ファンおよび第2ファンを共通の電動モータにて駆動する電動送風機である。第1ファンは、内外気切替箱52から導入された内気を内気通路51dに送風する。第2ファンは、内外気切替箱52から導入された外気を外気通路51cに送風する。
 外気通路51cはデフロスタ吹出口51eと連通している。内気通路51dはフット吹出口51fと連通している。
 クーラコア16は、外気通路51cおよび内気通路51dの全域に亘って配置されている。外気通路51cには、クーラコア16のうち冷却水流れ上流側の部位が配置されている。内気通路51dには、クーラコア16のうち冷却水流れ下流側の部位が配置されている。
 換言すれば、クーラコア16において、冷却水は外気通路51c側から内気通路51dに向かって流れる。したがって、クーラコア16において、冷却水は外気通路51c側から内気通路51dに向かうにつれて温度上昇する。
 ヒータコアバイパス通路は、外気通路51cおよび内気通路51dのそれぞれにおいて、クーラコア16の空気流れ下流側に形成されている。ヒータコアバイパス通路は、クーラコア16を通過した空気をヒータコア17を通過させずに流す空気通路である。
 エアミックスドア55は、外気通路51cおよび内気通路51dのそれぞれに独立して配置されている。したがって、外気通路51cと内気通路51dとで空気の温度を互いに独立して調整できる。
 デフロスタ吹出口51eから外気通路51cの外気が吹き出されるので、圧縮機オフモードでも比較的乾いた外気を窓ガラスに吹き出すことができ、ひいては窓曇りを防止できる。
 外気通路51cには、クーラコア16のうち冷却水流れ上流側の部位が配置されているので、外気通路51cの外気をより低温に冷却して除湿能力を高めることができる。そのため、圧縮機11を作動させることなく窓曇りを防止できる。
 内外気切替ドア53は、外気通路51cおよび内気通路51dのそれぞれに対して、導入される内気と外気との割合を調整することによって、吸込口モードを内外気2層モード、全内気モード、全外気モードおよび内外気混入モードに切り替える。
 内外気2層モードは、外気通路51cに外気が導入され、内気通路51dに内気が導入される吸込口モードである。全内気モードは、外気通路51cおよび内気通路51dの両方に内気が導入される吸込口モードである。全外気モードは、外気通路51cおよび内気通路51dの両方に外気が導入される吸込口モードである。内外気混入モードは、外気通路51cおよび内気通路51dのそれぞれに、内気および外気が所定の割合で導入される吸込口モードである。
 外気通路51cには、クーラコア16のうち冷却水流れ上流側の部位が配置されているので、全内気モードの場合であっても、外気通路51cを流れる内気をより低温に冷却して除湿能力を高めることができる。そのため、圧縮機11を作動させることなく窓曇りを防止できる。
 全内気モードの場合、クーラコア16を流れる冷却水の流量を減らすようにすれば、外気通路51cにおけるクーラコア16の冷却水温度と、内気通路51dにおけるクーラコア16の冷却水温度との温度差を拡大できる。その結果、外気通路51cにおけるクーラコア16の吹出温度と、内気通路51dにおけるクーラコア16の吹出温度との温度差も拡大できるので、防曇性および乗員の暖房感の両方を高めることができる。
 本実施形態では、クーラコア16は、外気通路51cの外気および内気通路51dの内気の両方が通過するようにケース51の内部に配置されている。
 これによると、圧縮機オフモード(第2除湿モード)において車両窓ガラス内面へ向かって吹き出される空気の湿度を低下させることができるので、一層の省動力化を図ることができる。
 本実施形態では、クーラコア16のうち冷却水流れ上流側に位置する部位は外気通路51cに配置されている。
 これによると、クーラコア16のうち外気通路51cに配置されている部位に極力低温の冷却水を流すことができるので、車両窓ガラス内面へ向かって吹き出される空気の湿度を極力低下させることができる。そのため、窓ガラスに曇りが発生することを極力抑制できる。
 また、クーラコア16のうち内気通路51dに配置されている部位に極力高温の冷却水を流すことができるので、乗員の足元へ向かって吹き出される空気の温度を極力高めることができる。そのため、乗員の暖房感を極力高めることができる。
 制御装置70のポンプ制御部70aは、内外気切替ドア53が外気通路51cに導入される内気の割合を増加させた場合(例えば全内気モードに切り替えた場合)、クーラコア16を流れる冷却水の流量を減少させてもよい。
 これによると、クーラコア16のうち内気通路51dに配置されている部位に流れる冷却水の温度を高めることができるので、乗員の足元へ向かって吹き出される空気の温度を高めることができる。そのため、乗員の暖房感を高めることができる。
 (第7実施形態)
 上記第6実施形態では、ラジエータ13は、冷却水流れにおいてチラー14と並列に配置されているが、本実施形態では、図15に示すように、ラジエータ13は、冷却水流れにおいてチラー14と直列に配置されている。
 図15の例では、低温側冷却水回路にバイパス流路25が配置されている。バイパス流路25は、冷却水がラジエータ13をバイパスして流れる流路である。
 (第8実施形態)
 上記第6実施形態では、ラジエータ13は、冷却水流れにおいてチラー14と並列に配置されており、上記第7実施形態では、ラジエータ13は、冷却水流れにおいてチラー14と直列に配置されているが、本実施形態では、図16に示すように、ラジエータ13は、冷却水流れにおいてチラー14と直列または並列に切り替えられるようになっている。
 具体的には、チラー14の冷却水出口側およびラジエータ13の冷却水入口側に三方弁26A、26Bが配置されている。
 2つの三方弁26A、26Bには接続流路27が接続されている。2つの三方弁26A、26Bが接続流路27を閉じた場合、冷却水がチラー14およびラジエータ13を並列に流れる。2つの三方弁26A、26Bが接続流路27を開けた場合、冷却水がチラー14およびラジエータ13を直列に流れる。
 (第9実施形態)
 本実施形態では、図17に示すように、冷却水回路に被冷却機器28A、28Bが配置されている。被冷却機器28A、28Bは、インバータや電池温調用熱交換器、水冷式インタークーラー、水冷式ターボチャージャーのような、作動に伴って発熱する機器である。
 第1の被冷却機器28Aは、ラジエータ13の冷却水入口側に接続されている。第2の被冷却機器28Bは、冷却水流れにおいてチラー14と並列に配置されている。ラジエータ用ポンプ29は、冷却水流れにおいて第2の被冷却機器28Bと直列に配置されている。ラジエータ用ポンプ29は、冷却水(熱媒体)を吸入して吐出する電動ポンプである。
 第2切替弁22は、図17の実線矢印および破線矢印に示すように冷却水が流れる機器連携モードと、図17の実線矢印および一点鎖線矢印に示すように冷却水が流れる機器独立モードとを切り替える。
 機器連携モードでは、クーラコア16、チラー14、ラジエータ13および被冷却機器28A、28Bのすべてに、第1ポンプ11から吐出された冷却水が循環する。
 機器独立モードでは、クーラコア16およびチラー14には第1ポンプ11から吐出された冷却水が循環し、ラジエータ13および被冷却機器28A、28Bにはラジエータ用ポンプ29から吐出された冷却水が循環する。
 本実施形態では、圧縮機オフモード(第2除湿モード)時に、第2切替弁22が機器連携モードに切り替えるとともに、制御装置70が図18のフローチャートに示す制御処理を実行する。
 ステップS3230では、被冷却機器28A、28Bの排熱量の微分値が所定値を下回っているか否かを判定する。換言すれば、被冷却機器28A、28Bの排熱量が急激に増加したか否かを判定する。例えば、冷却水の温度上昇速度が所定値を超えた場合、被冷却機器28A、28Bの排熱量が急激に増加したと判断できる。
 被冷却機器28A、28Bの排熱量の微分値が所定値を下回っていると判定した場合、ステップS3231へ進み、被冷却機器28A、28Bの排熱量が所定値を下回っているか否かを判定する。被冷却機器28A、28Bの排熱量が所定値を下回っていると判定した場合、ステップS3232へ進み、所定時間待機した後、ステップS3230へ戻る。
 一方、ステップS3230にて被冷却機器28A、28Bの排熱量の微分値が所定値を下回っていないと判定した場合、およびステップS3231にて被冷却機器28A、28Bの排熱量が所定値を下回っていないと判定した場合、ステップS3233へ進み、圧縮機オンモードを選択するとともに、機器独立モードを選択して被冷却機器28A、28Bはラジエータ13で冷却する。
 これにより、被冷却機器28A、28Bを冷却するために必要な冷却能力が増加した場合であっても、被冷却機器28A、28Bの冷却能力を確保しつつ、車室内へ送風される空気の冷却除湿能力を確保できる。
 ステップS3230、S3231において、被冷却機器28A、28Bの排熱量の代わりに冷却水の温度を用いてもよい。
 本実施形態では、ステップS3231、S3233で説明したように、制御装置70の切替制御部70bは、圧縮機オフモード(第2除湿モード)時において、被冷却機器28A、28Bから冷却水に排出される熱量が所定熱量を超えた場合、または冷却水の温度が所定温度を超えた場合、圧縮機オンモード(第1除湿モード)に切り替わるように第1切替弁21および第2切替弁22の作動を制御する。
 これによると、被冷却機器28A、28Bを冷却するために必要な冷却能力が増加した場合、圧縮機32を作動させて冷凍サイクル31で生成した冷熱を利用するので、被冷却機器28A、28Bの冷却能力および車室内へ送風される空気の冷却除湿能力が不足することを抑制できる。
 本実施形態では、ステップS3230、S3233で説明したように、制御装置70の切替制御部70bは、圧縮機オフモード(第2除湿モード)時において、冷却水の温度上昇速度(換言すれば、被冷却機器28A、28Bから冷却水に排出される熱量の微分値)が所定値を超えた場合、または冷却水の温度の微分値が所定値を超えた場合、第1除湿モードに切り替わるように第1切替弁21および第2切替弁22の作動を制御する。
 これによると、被冷却機器28A、28Bを冷却するために必要な冷却能力が急激に増加した場合、圧縮機32を作動させて冷凍サイクル31で生成した冷熱を利用するので、被冷却機器28A、28Bの冷却能力および車室内へ送風される空気の冷却除湿能力が不足することを抑制できる。
 (他の実施形態)
 上記実施形態を適宜組み合わせ可能である。上記実施形態を例えば以下のように種々変形可能である。
 (1)上記実施形態では、室外送風機30の作動を制御することによって、ラジエータ13を流れる外気の流量を調節するが、ラジエータシャッター(図示せず)の作動を制御することによって、ラジエータ13を流れる外気の流量を調節するようにしてもよい。ラジエータシャッターは、外気が流れる通路を開閉する外気通路開閉部である。また、室外送風機30のファンを逆回転させることによって、外気の流量を制限してもよい。
 (2)上記各実施形態では、温度調節対象機器を温度調節するための熱媒体として冷却水を用いているが、油などの各種媒体を熱媒体として用いてもよい。
 熱媒体として、ナノ流体を用いてもよい。ナノ流体とは、粒子径がナノメートルオーダーのナノ粒子が混入された流体のことである。ナノ粒子を熱媒体に混入させることで、エチレングリコールを用いた冷却水(いわゆる不凍液)のように凝固点を低下させる作用効果に加えて、次のような作用効果を得ることができる。
 すなわち、特定の温度帯での熱伝導率を向上させる作用効果、熱媒体の熱容量を増加させる作用効果、金属配管の防食効果やゴム配管の劣化を防止する作用効果、および極低温での熱媒体の流動性を高める作用効果を得ることができる。
 このような作用効果は、ナノ粒子の粒子構成、粒子形状、配合比率、付加物質によって様々に変化する。
 これによると、熱伝導率を向上させることができるので、エチレングリコールを用いた冷却水と比較して少ない量の熱媒体であっても同等の冷却効率を得ることが可能になる。
 また、熱媒体の熱容量を増加させることができるので、熱媒体自体の蓄冷熱量(顕熱による蓄冷熱)を増加させることができる。
 蓄冷熱量を増加させることにより、圧縮機32を作動させない状態であっても、ある程度の時間は蓄冷熱を利用した機器の冷却、加熱の温調が実施できるため、車両用熱管理システム10の省動力化が可能になる。
 ナノ粒子のアスペクト比は50以上であるのが好ましい。十分な熱伝導率を得ることができるからである。なお、アスペクト比は、ナノ粒子の縦×横の比率を表す形状指標である。
 ナノ粒子としては、Au、Ag、CuおよびCのいずれかを含むものを用いることができる。具体的には、ナノ粒子の構成原子として、Auナノ粒子、Agナノワイヤー、CNT(カーボンナノチューブ)、グラフェン、グラファイトコアシェル型ナノ粒子(上記原子を囲むようにカーボンナノチューブ等の構造体があるような粒子体)、およびAuナノ粒子含有CNTなどを用いることができる。
 (3)上記各実施形態の冷凍サイクル31では、冷媒としてフロン系冷媒を用いているが、冷媒の種類はこれに限定されるものではなく、二酸化炭素等の自然冷媒や炭化水素系冷媒等を用いてもよい。
 また、上記各実施形態の冷凍サイクル31は、高圧側冷媒圧力が冷媒の臨界圧力を超えない亜臨界冷凍サイクルを構成しているが、高圧側冷媒圧力が冷媒の臨界圧力を超える超臨界冷凍サイクルを構成していてもよい。
 (4)上記第1実施形態では、第1ポンプ11または第2ポンプ12から吐出された冷却水が、冷却水冷却水熱交換器18を介してエンジン冷却回路60のエンジン冷却水と熱交換するようになっているが、第1ポンプ11または第2ポンプ12から吐出された冷却水が流路切替弁を介してエンジン冷却回路60を循環するようになっていてもよい。
 この実施形態では、エンジン61の冷却水流路は、エンジン61と冷却水との間で熱授受が行われるエンジン用熱授受部を構成している。
 流路切替弁は、第1ポンプ11または第2ポンプ12から吐出された冷却水がエンジン冷却回路60を循環する場合と循環しない場合とを切り替える切替装置である。
 (5)上記実施形態では、発熱機器としてインバータ19を備えているが、インバータ19の他に種々の発熱機器を備えていてもよい。発熱機器の他の例としては、走行用電動モータや各種エンジン機器などが挙げられる。
 各種エンジン機器としては、ターボチャージャ、インタークーラ、EGRクーラ、CVTウォーマ、CVTクーラ、排気熱回収器などが挙げられる。
 ターボチャージャは、エンジンの吸入空気(吸気)を過給する過給機である。インタークーラは、ターボチャージャで圧縮されて高温になった過給吸気と冷却水とを熱交換して過給吸気を冷却する吸気冷却器(吸気熱媒体熱交換器)である。
 EGRクーラは、エンジンの吸気側に戻されるエンジン排気ガス(排気)と冷却水とを熱交換して排気を冷却する排気冷却水熱交換器(排気熱媒体熱交換器)である。
 CVTウォーマは、CVT(無段変速機)を潤滑する潤滑油(CVTオイル)と冷却水とを熱交換してCVTオイルを加熱する潤滑油冷却水熱交換器(潤滑油熱媒体熱交換器)である。
 CVTクーラは、CVTオイルと冷却水とを熱交換してCVTオイルを冷却する潤滑油冷却水熱交換器(潤滑油熱媒体熱交換器)である。
 排気熱回収器は、排気と冷却水とを熱交換して冷却水に排気の熱を吸熱させる排気冷却水熱交換器(排気熱媒体熱交換器)である。
 (6)上記第1実施形態の圧縮機オフモードでは、窓曇り指標RHWが増加した場合、ラジエータ13を流れる冷却水の流量、およびクーラコア16を流れる冷却水の流量を増やし、窓曇り指標RHWが低下した場合、ラジエータ13を流れる冷却水の流量、およびクーラコア16を流れる冷却水の流量を減らすが、窓曇り指標RHWが増加した場合、デフロスタ吹出口からの吹出風量を増やし、窓曇り指標RHWが低下した場合、デフロスタ吹出口からの吹出風量を減らすようにしてもよい。
 (7)上記実施形態では、制御装置70は、複合センサ88の検出信号等に基づいて窓曇り指標RHWを算出するが、他のセンサの検出信号に基づいて窓曇り指標RHWを算出してもよい。
 例えば、フロント窓ガラスの表面温度を、外気の温度、日射量、室内空気温度、ガラス熱伝導率や反射率(設定値)、および車速から推定演算してもよい。
 例えば、フロント窓ガラス近傍の内気の温度を、内気の温度、室内空調ユニット50の吹出口モード、および吹出空気温度(推定値)から推定演算してもよい。例えば、フロント窓ガラス近傍の内気の湿度を常に100%と見てもよい。
 例えば、クーラコア16の冷却水入口と冷却水出口との温度差からクーラコア16の冷却水側能力を計算し、クーラコア16の吸込空気温度と室内送風機54の風量とクーラコア16の表面温度とからクーラコア16の空気側能力を計算し、クーラコア16の冷却水側能力と空気側能力との差から空気中水分の凝縮潜熱熱量を計算し、クーラコア出口相対湿度を100%と仮定してフロント窓ガラス近傍の内気の湿度を推定演算してもよい。
 室内送風機54の風量は、室内送風機54の駆動状態から推定可能である。クーラコア16の表面温度の代わりに、クーラコア16の吹出空気温度を用いてもよい。

Claims (34)

  1.  熱媒体を吸入して吐出することによって前記熱媒体を循環させるポンプ(11)と、
     前記ポンプ(11)によって循環されている前記熱媒体と車室内への送風空気とを顕熱交換させて前記送風空気を冷却除湿する空気冷却用熱交換器(16)と、
     前記熱媒体と外気とを顕熱交換させる熱媒体外気熱交換器(13)と、
     冷凍サイクル(31)の冷媒を吸入して吐出する圧縮機(32)と、
     前記冷凍サイクル(31)の低圧側冷媒と前記熱媒体とを熱交換させて前記熱媒体を冷却する熱媒体冷却用熱交換器(14)と、
     前記空気冷却用熱交換器(16)と前記熱媒体冷却用熱交換器(14)との間で前記熱媒体が循環する第1除湿モードと、前記空気冷却用熱交換器(16)と前記熱媒体外気熱交換器(13)との間で前記熱媒体が循環する第2除湿モードとを切り替える除湿モード切替部(21、22)とを備える車両用空調装置。
  2.  内気の温度、内気の湿度、外気の温度、前記熱媒体の温度、および窓ガラスの温度のうち少なくとも1つを検出する検出装置(71、72、73、75、77、78、88)と、
     前記検出装置(71、72、73、75、77、78、88)の検出結果に基づいて前記除湿モード切替部(21、22)の作動を制御する切替制御部(70b)とを備える請求項1に記載の車両用空調装置。
  3.  前記切替制御部(70b)は、外気の温度に関連する温度が、前記空気冷却用熱交換器(16)に流入する前記送風空気の露点温度に関連する温度未満である場合、前記第2除湿モードに切り替わるように前記除湿モード切替部(21、22)の作動を制御する請求項2に記載の車両用空調装置。
  4.  熱媒体を吸入して吐出するポンプ(11)と、
     前記熱媒体と外気とを顕熱交換させる熱媒体外気熱交換器(13)と、
     前記熱媒体と車室内への送風空気とを顕熱交換させる空気冷却用熱交換器(16)と、
     外気の温度に関連する温度が、前記空気冷却用熱交換器(16)に流入する前記送風空気の露点温度に関連する温度未満であると推定または判断される場合、前記空気冷却用熱交換器(16)と前記熱媒体外気熱交換器(13)との間で前記熱媒体を循環させる制御装置(70)とを備える車両用空調装置。
  5.  前記熱媒体外気熱交換器(13)を流れる前記熱媒体の流量、前記熱媒体外気熱交換器(13)を流れる外気の流量、および前記空気冷却用熱交換器(16)を流れる前記熱媒体の流量のうち少なくとも1つの流量を調節する流量調節部(11、21、22、30)を備える請求項1ないし4のいずれか1つに記載の車両用空調装置。
  6.  前記熱媒体外気熱交換器(13)を流れる前記熱媒体の流量、前記熱媒体外気熱交換器(13)を流れる外気の流量、および前記空気冷却用熱交換器(16)を流れる前記熱媒体の流量のうち少なくとも1つの流量を調節する流量調節部(11、21、22、30)と、
     前記第2除湿モードである場合、前記空気冷却用熱交換器(16)から吹き出される前記送風空気の温度(TC)に関連する温度が目標温度(TCO)に近づくように、前記流量調節部(11、21、22、30)の作動を制御する流量制御部(70a、70b、70c)とを備える請求項2または3に記載の車両用空調装置。
  7.  前記第2除湿モードである場合、前記流量制御部(70a、70b、70c)は、外気の温度が上昇するほど前記少なくとも1つの流量が増加するように前記流量調節部(11、21、22、30)の作動を制御する請求項6に記載の車両用空調装置。
  8.  前記切替制御部(70b)は、前記第2除湿モードにおいて、前記流量制御部(70a、70b、70c)が前記少なくとも1つの流量を所定流量以上に増加させた後に、前記第1除湿モードに切り替えるように前記除湿モード切替部(21、22)の作動を制御する請求項7に記載の車両用空調装置。
  9.  前記切替制御部(70b)は、前記第2除湿モードにおいて、前記流量制御部(70a、70b、70c)が前記少なくとも1つの流量を所定流量以上に増加させても前記空気冷却用熱交換器(16)から吹き出される前記送風空気の温度(TC)に関連する温度が前記目標温度(TCO)を上回る場合、前記第1除湿モードに切り替わるように前記除湿モード切替部(21、22)の作動を制御する請求項7または8に記載の車両用空調装置。
  10.  窓ガラスの曇り危険度の指標である窓曇り指標(RHW)を、内気の温度、内気の湿度および前記窓ガラスの温度に基づいて算出する窓曇り指標算出部(70i)を備え、
     前記第2除湿モードである場合、前記流量制御部(70a、70b、70c)は、前記窓曇り指標算出部(70i)が算出した前記窓曇り指標(RHW)に基づいて前記流量調節部(11、21、22、30)の作動を制御する請求項6ないし9のいずれか1つに記載の車両用空調装置。
  11.  前記窓ガラスでの露点温度を、内気の温度、内気の湿度および窓ガラスの温度に基づいて算出する露点温度算出部(70)を備え、
     前記第2除湿モードである場合、前記流量制御部(70a、70b、70c)は、前記窓ガラスの温度から前記露点温度を減じた差が小さくなるほど前記少なくとも1つの流量が増加するように前記流量調節部(11、21、22、30)の作動を制御する請求項6ないし9のいずれか1つに記載の車両用空調装置。
  12.  窓ガラスの曇り危険度の指標である窓曇り指標(RHW)を、内気の温度、内気の湿度および前記窓ガラスの温度に基づいて算出する窓曇り指標算出部(70i)を備え、
     前記切替制御部(70b)は、窓曇り指標算出部(70i)が算出した前記窓曇り指標(RHW)に基づいて前記除湿モード切替部(21、22)の作動を制御する請求項1ないし3、6ないし11のいずれか1つに記載の車両用空調装置。
  13.  前記窓ガラスでの露点温度を、内気の温度、内気の湿度および窓ガラスの温度に基づいて算出する露点温度算出部(70)を備え、
     前記第2除湿モードである場合、前記切替制御部(70b)は、前記窓ガラスの温度から前記露点温度を減じた差に基づいて前記除湿モード切替部(21、22)の作動を制御する請求項1ないし3、6ないし11のいずれか1つに記載の車両用空調装置。
  14.  前記空気冷却用熱交換器(16)に内気が導入される内気導入モードと、前記空気冷却用熱交換器(16)に外気が導入される外気導入モードとを切り替える内外気切替部(53)と、
     前記ポンプ(11)の故障を検知するポンプ故障検知部(70j)と、
     前記ポンプ故障検知部(70j)が前記ポンプ(11)の故障を検知した場合、前記外気導入モードに切り替わるように前記内外気切替部(53)の作動を制御する内外気切替制御部(70f)とを備える請求項1ないし13のいずれか1つに記載の車両用空調装置。
  15.  作動に伴って発熱する発熱機器と前記熱媒体との間で熱授受が行われる熱授受部(18、19)と、
     前記熱媒体を吸入して吐出する第2ポンプ(12)と、
     前記第2ポンプ(12)から吐出された前記熱媒体と前記送風空気とを顕熱交換させて前記送風空気を加熱する空気加熱用熱交換器(17)と、
     前記圧縮機(32)の故障を検知する圧縮機故障検知部(70k)と、
     前記ポンプ(11)から吐出された前記熱媒体が前記熱媒体外気熱交換器(13)と前記熱授受部(18、19)との間で循環する第1循環状態と、前記第2ポンプ(12)から吐出された前記熱媒体が前記空気加熱用熱交換器(17)と前記熱授受部(18、19)との間で循環する第2循環状態とを切り替える循環切替部(21、22)と、
     前記第1除湿モードであり且つ前記圧縮機故障検知部(70k)が前記圧縮機(32)の故障を検知した場合、前記第2循環状態に切り替わるように前記循環切替部(21、22)の作動を制御する循環切替制御部(70b)とを備える請求項1ないし14のいずれか1つに記載の車両用空調装置。
  16.  前記送風空気における内気と外気との割合を調整する内外気割合調整部(53)を備え、
     前記内外気割合調整部(53)および前記除湿モード切替部(21、22)は、前記送風空気における前記外気の割合が所定割合以上になり且つ前記空気冷却用熱交換器(16)に前記熱媒体が循環しない除湿停止モードに切り替え可能になっている請求項1に記載の車両用空調装置。
  17.  前記外気の温度が所定温度未満である場合、前記除湿停止モードに切り替わるように前記除湿モード切替部(21、22)の作動を制御する切替制御部(70b)を備える請求項16に記載の車両用空調装置。
  18.  前記外気の温度が所定温度未満である場合、前記第2除湿モードに切り替わるように前記除湿モード切替部(21、22)の作動を制御する切替制御部(70b)を備える請求項1または16に記載の車両用空調装置。
  19.  前記冷凍サイクル(31)の圧力が所定値未満であると推定、判断または検知される場合であって、前記送風空気を冷却除湿する場合、前記第2除湿モードで前記送風空気を冷却除湿するように前記除湿モード切替部(21、22)の作動を制御する切替制御部(70b)を備える請求項1または16に記載の車両用空調装置。
  20.  前記送風空気における内気と外気との割合を調整する内外気割合調整部(53)と、
     前記送風空気における前記内気の割合が所定割合以上である場合、前記第2除湿モードに切り替わるように前記除湿モード切替部(21、22)の作動を制御する切替制御部(70b)とを備える請求項1または16に記載の車両用空調装置。
  21.  前記送風空気における内気と外気との割合を調整する内外気割合調整部(53)と、
     乗員によって操作されると、前記送風空気における前記内気の割合を所定割合以上にするための指令を出力する操作部(89c)と、
     前記操作部(89c)が前記乗員によって操作された場合であって、前記外気の温度が所定温度未満である場合、前記第2除湿モードに切り替わるように前記除湿モード切替部(21、22)の作動を制御する切替制御部(70b)とを備える請求項1または16に記載の車両用空調装置。
  22.  乗員によって操作されると、前記第1除湿モードから前記第2除湿モードに切り替えるための指令を出力する操作部(89)を備える請求項1または16に記載の車両用空調装置。
  23.  前記除湿停止モード時において、前記空気冷却用熱交換器(16)に吸い込まれる前記送風空気の温度が、前記外気の温度に関連する温度よりも所定温度以上高くなった場合、前記第2除湿モードに切り替わるように前記除湿モード切替部(21、22)の作動を制御する切替制御部(70b)を備える請求項16に記載の車両用空調装置。
  24.  前記熱媒体冷却用熱交換器(14)における冷媒の温度に関連する温度が前記空気冷却用熱交換器(16)を流れる前記熱媒体の温度に関連する温度よりも高い場合、前記熱媒体冷却用熱交換器(14)をバイパスして前記熱媒体が流れるように前記除湿モード切替部(21、22)の作動を制御する切替制御部(70b)を備える請求項1または16に記載の車両用空調装置。
  25.  前記送風空気における内気と外気との割合を調整する内外気割合調整部(53)と、
     前記第2除湿モード時において、車速が所定速度よりも高くなった場合、前記送風空気における前記外気の割合が大きくなるように前記内外気割合調整部(53)の作動を制御する制御部(70f)とを備える請求項1または16に記載の車両用空調装置。
  26.  前記送風空気における内気と外気との割合を調整する内外気割合調整部(53)と、
     前記第2除湿モード時において、前記空気冷却用熱交換器(16)における前記熱媒体の流量が少なくなるほど、または前記熱媒体外気熱交換器(13)における前記熱媒体の流量が少なくなるほど、前記送風空気における前記外気の割合が大きくなるように前記内外気割合調整部(53)の作動を制御する制御部(70f)とを備える請求項1または16に記載の車両用空調装置。
  27.  前記送風空気における内気と外気との割合を調整する内外気割合調整部(53)と、
     前記第2除湿モード時において、前記外気の温度の低下に応じて、前記送風空気における前記外気の割合が大きくなるように前記内外気割合調整部(53)の作動を制御する制御部(70f)とを備える請求項1または16に記載の車両用空調装置。
  28.  前記熱媒体に熱を排出することによって冷却される被冷却機器(28A、28B)と、
     前記第2除湿モード時において、前記被冷却機器(28A、28B)から前記熱媒体に排出される熱量が所定熱量を超えた場合、前記熱媒体の温度が所定温度を超えた場合、または前記熱媒体の温度上昇速度が所定値を超えた場合、前記第1除湿モードに切り替わるように前記除湿モード切替部(21、22)の作動を制御する切替制御部(70b)とを備える請求項1または16に記載の車両用空調装置。
  29.  前記除湿モード切替部(21、22)は、前記空気冷却用熱交換器(16)と前記熱媒体冷却用熱交換器(14)と前記熱媒体外気熱交換器(13)との間で前記熱媒体が循環する第3除湿モードに切り替え可能になっている請求項1ないし28のいずれか1つに記載の車両用空調装置。
  30.  前記外気の温度が低下するにつれて前記第1除湿モード、前記第3除湿モード、前記第2除湿モードの順番に切り替わるように前記除湿モード切替部(21、22)の作動を制御する切替制御部(70b)を備える請求項29に記載の車両用空調装置。
  31.  前記第3除湿モード時において、前記空気冷却用熱交換器(16)で熱交換された前記熱媒体の温度が前記外気の温度よりも所定温度以上高くなるように前記熱媒体冷却用熱交換器(14)を流れる前記冷媒の流量、または前記空気冷却用熱交換器(16)を流れる前記熱媒体もしくは前記送風空気の流量を制御する流量制御
    (70a、70c、70d)を備える請求項29または30に記載の車両用空調装置。
  32.  外気が車両窓ガラス内面へ向かって流れる外気通路(51c)、および内気が乗員の足元へ向かって流れる内気通路(51d)を形成するケース(51)を備え、
     前記空気冷却用熱交換器(16)は、前記外気通路(51c)の前記外気および前記内気通路(51d)の前記内気の両方が通過するように前記ケース(51)の内部に配置されている請求項1に記載の車両用空調装置。
  33.  前記空気冷却用熱交換器(16)のうち熱媒体流れ上流側に位置する部位は前記外気通路(51c)に配置されている請求項32に記載の車両用空調装置。
  34.  前記冷凍サイクル(31)から前記冷媒が洩れていると判断または検知した場合、または前記冷凍サイクル(31)における前記冷媒の量が所定量未満であると判断または検知した場合、前記第1除湿モードから前記第2除湿モードに切り替わるように前記除湿モード切替部(21、22)の作動を制御する制御部(70)を備える請求項1ないし33のいずれか1つに記載の車両用空調装置。
PCT/JP2015/000322 2014-01-29 2015-01-26 車両用空調装置 WO2015115082A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112015000552.8T DE112015000552T5 (de) 2014-01-29 2015-01-26 Klimaanlage für ein Fahrzeug
CN201580006344.6A CN105960345B (zh) 2014-01-29 2015-01-26 车辆用空调装置
US15/113,856 US10479170B2 (en) 2014-01-29 2015-01-26 Air conditioner for vehicle

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014014099 2014-01-29
JP2014-014099 2014-01-29
JP2014-262643 2014-12-25
JP2014262643A JP6314821B2 (ja) 2014-01-29 2014-12-25 車両用空調装置

Publications (1)

Publication Number Publication Date
WO2015115082A1 true WO2015115082A1 (ja) 2015-08-06

Family

ID=53756663

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/000322 WO2015115082A1 (ja) 2014-01-29 2015-01-26 車両用空調装置

Country Status (5)

Country Link
US (1) US10479170B2 (ja)
JP (1) JP6314821B2 (ja)
CN (1) CN105960345B (ja)
DE (1) DE112015000552T5 (ja)
WO (1) WO2015115082A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017052505A (ja) * 2015-09-10 2017-03-16 株式会社デンソー 車両用熱管理装置
JP2017194180A (ja) * 2016-04-18 2017-10-26 株式会社デンソー 冷凍サイクル装置
EP3412482A4 (en) * 2016-02-05 2019-10-02 Valeo Japan Co., Ltd. Vehicle air conditioning system, vehicle therefor and method for controlling a vehicle grill device

Families Citing this family (85)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2790732C (en) * 2011-09-26 2020-03-10 Lennox Industries Inc. Multi-staged water manifold system for a water source heat pump
CA2790907C (en) 2011-09-26 2018-11-27 Lennox Industries Inc. A controller, method of operating a water source heat pump and a water source heat pump
JP6064753B2 (ja) * 2013-04-05 2017-01-25 株式会社デンソー 車両用熱管理システム
US10573940B2 (en) * 2015-02-25 2020-02-25 Ford Global Technologies, Llc Battery thermal management system
US9783024B2 (en) 2015-03-09 2017-10-10 Bergstrom Inc. System and method for remotely managing climate control systems of a fleet of vehicles
JP2016211430A (ja) * 2015-05-08 2016-12-15 本田技研工業株式会社 内燃機関の冷却制御装置
JP6361703B2 (ja) * 2015-09-04 2018-07-25 株式会社デンソー 車両用熱管理装置
WO2017047302A1 (ja) * 2015-09-15 2017-03-23 株式会社デンソー エンジン制御装置、空調システム、および、空調制御装置に用いるプログラム
JP6390601B2 (ja) * 2015-12-09 2018-09-19 株式会社デンソー 車両用冷却システム
JP6555112B2 (ja) * 2015-12-11 2019-08-07 株式会社デンソー 冷凍サイクル装置
US9874384B2 (en) 2016-01-13 2018-01-23 Bergstrom, Inc. Refrigeration system with superheating, sub-cooling and refrigerant charge level control
JP6481633B2 (ja) * 2016-02-02 2019-03-13 株式会社デンソー 車両の空調装置
JP6365564B2 (ja) * 2016-02-15 2018-08-01 マツダ株式会社 車両の温度表示装置
JP2017144937A (ja) * 2016-02-19 2017-08-24 トヨタ自動車株式会社 撮像システム
US10589598B2 (en) 2016-03-09 2020-03-17 Bergstrom, Inc. Integrated condenser and compressor system
JP6590321B2 (ja) * 2016-03-25 2019-10-16 パナソニックIpマネジメント株式会社 車両用空調装置
US10655504B2 (en) * 2016-05-27 2020-05-19 Denso International America, Inc. Heat pump for warming engine coolant
JP6723077B2 (ja) * 2016-06-02 2020-07-15 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
JP6680626B2 (ja) * 2016-06-14 2020-04-15 本田技研工業株式会社 車両用空調装置
US10081226B2 (en) 2016-08-22 2018-09-25 Bergstrom Inc. Parallel compressors climate system
CN114407614A (zh) * 2016-09-02 2022-04-29 苹果公司 热管理系统和方法
US10562372B2 (en) 2016-09-02 2020-02-18 Bergstrom, Inc. Systems and methods for starting-up a vehicular air-conditioning system
US10675948B2 (en) 2016-09-29 2020-06-09 Bergstrom, Inc. Systems and methods for controlling a vehicle HVAC system
US10369863B2 (en) 2016-09-30 2019-08-06 Bergstrom, Inc. Refrigerant liquid-gas separator with electronics cooling
US10724772B2 (en) 2016-09-30 2020-07-28 Bergstrom, Inc. Refrigerant liquid-gas separator having an integrated check valve
KR101846924B1 (ko) * 2016-11-01 2018-05-24 현대자동차 주식회사 차량용 히트 펌프 시스템
JP6711249B2 (ja) * 2016-11-25 2020-06-17 株式会社デンソー 車両用空調装置
US20180222286A1 (en) * 2017-02-09 2018-08-09 Ford Global Technologies, Llc Method to heat the cabin while cooling the battery during fast charge
KR102510377B1 (ko) * 2017-04-05 2023-03-16 한온시스템 주식회사 차량용 열관리 시스템의 수가열식 ptc 히터 제어 방법
DE102017108832A1 (de) 2017-04-25 2018-10-25 Eberspächer Climate Control Systems GmbH & Co. KG Fahrzeugtemperiersystem
US10464393B2 (en) * 2017-06-23 2019-11-05 GM Global Technology Operations LLC System and method for managing operational states of a variable displacement compressor based upon climate conditions
CN109140816B (zh) 2017-06-27 2020-07-17 杭州三花研究院有限公司 一种热管理系统
US11448441B2 (en) * 2017-07-27 2022-09-20 Bergstrom, Inc. Refrigerant system for cooling electronics
KR102429009B1 (ko) 2017-08-09 2022-08-03 현대자동차 주식회사 차량용 히트 펌프 시스템
US10668783B2 (en) 2017-09-26 2020-06-02 Emerson Climate Technologies, Inc. Vehicle air conditioning control systems
KR102474356B1 (ko) * 2017-11-10 2022-12-05 현대자동차 주식회사 차량용 히트 펌프 시스템
DE102017126775A1 (de) * 2017-11-14 2019-05-16 Konvekta Aktiengesellschaft Heizsystem mit Wärmespeicheranordnung für Hybrid- oder Elektrofahrzeuge und Verfahren dazu
KR102518177B1 (ko) * 2017-12-08 2023-04-07 현대자동차주식회사 차량의 공조시스템
CN108382360B (zh) * 2018-02-26 2021-02-02 宁波市晶杰国际物流有限公司 挡风玻璃气流对吹装置
CN108297836B (zh) * 2018-02-26 2021-02-02 宁波市晶杰国际物流有限公司 冷却初步气流的挡风玻璃吹风装置
CN108313016B (zh) * 2018-02-26 2021-02-02 宁波市晶杰国际物流有限公司 汽车挡风玻璃吹气装置
CN108189805B (zh) * 2018-02-26 2021-02-02 宁波市晶杰国际物流有限公司 防雾汽车玻璃挡风装置
CN108297837B (zh) * 2018-02-26 2021-02-02 宁波市晶杰国际物流有限公司 防止雾化加重的汽车玻璃挡风装置
US11420496B2 (en) 2018-04-02 2022-08-23 Bergstrom, Inc. Integrated vehicular system for conditioning air and heating water
KR102575170B1 (ko) * 2018-06-15 2023-09-05 현대자동차 주식회사 차량용 히트펌프 시스템
JP7056819B2 (ja) * 2018-06-27 2022-04-19 サンデン・オートモーティブクライメイトシステム株式会社 車両用空気調和装置
US11065936B2 (en) * 2018-08-10 2021-07-20 GM Global Technology Operations LLC Vehicle thermal system architecture
CN108725138B (zh) * 2018-08-14 2023-09-22 协众国际热管理系统(江苏)股份有限公司 一种新能源汽车用二氧化碳热泵热管理系统及其工作方法
JP7016601B2 (ja) * 2018-08-15 2022-02-07 三菱電機株式会社 空調装置、制御装置、空調方法及びプログラム
JP7164994B2 (ja) 2018-08-27 2022-11-02 サンデン株式会社 車両用空気調和装置
DE102018121390A1 (de) * 2018-09-03 2020-03-05 Hanon Systems Thermomanagementanordnung für Fahrzeuge sowie Verfahren zum Betreiben einer Thermomanagementanordnung
JP7119875B2 (ja) * 2018-10-10 2022-08-17 トヨタ自動車株式会社 内燃機関の排気浄化装置
KR20200040996A (ko) * 2018-10-11 2020-04-21 현대자동차주식회사 차량의 공조 시스템
KR102633864B1 (ko) * 2018-12-06 2024-02-05 현대자동차 주식회사 차량용 배터리 냉각 시스템
KR102633867B1 (ko) * 2018-12-10 2024-02-05 현대자동차 주식회사 차량용 히트펌프 시스템
JP2020100294A (ja) * 2018-12-21 2020-07-02 本田技研工業株式会社 移動体
DE102019107192B4 (de) * 2019-03-20 2021-02-04 Bayerische Motoren Werke Aktiengesellschaft Steuerungssystem für ein Wärmesystem sowie Verfahren zum Betrieb eines Wärmesystems
JP7172815B2 (ja) * 2019-04-10 2022-11-16 トヨタ自動車株式会社 車載温調装置
KR20200125792A (ko) 2019-04-25 2020-11-05 현대자동차주식회사 차량의 공조장치
KR20200127068A (ko) 2019-04-30 2020-11-10 현대자동차주식회사 차량용 열관리시스템
KR102663607B1 (ko) 2019-05-09 2024-05-08 현대자동차주식회사 차량용 열관리시스템
KR20200133962A (ko) * 2019-05-21 2020-12-01 현대자동차주식회사 차량용 히트펌프 시스템
FR3097623A1 (fr) * 2019-06-19 2020-12-25 Valeo Systemes Thermiques Procédé de contrôle d’un circuit de conditionnement thermique d’un flux d’air
KR20210013858A (ko) * 2019-07-29 2021-02-08 현대자동차주식회사 차량용 히트펌프 시스템 제어방법
KR20210022220A (ko) 2019-08-19 2021-03-03 현대자동차주식회사 차량의 통합 열관리 모듈
JP7360278B2 (ja) * 2019-09-04 2023-10-12 株式会社デンソー 車両用空調装置
US11231198B2 (en) 2019-09-05 2022-01-25 Trane International Inc. Systems and methods for refrigerant leak detection in a climate control system
JP7287204B2 (ja) * 2019-09-10 2023-06-06 株式会社デンソー 車両の熱交換システム
US11052725B2 (en) * 2019-09-26 2021-07-06 Ford Global Technologies, Llc Automatic windshield defrosting system
JP7354856B2 (ja) * 2020-01-30 2023-10-03 トヨタ自動車株式会社 車両用空調装置
KR20210104354A (ko) * 2020-02-17 2021-08-25 현대자동차주식회사 차량용 히트펌프 시스템
CN113306358A (zh) * 2020-02-26 2021-08-27 本田技研工业株式会社 车辆用空气净化装置
US11597255B2 (en) * 2020-03-25 2023-03-07 Pony Al Inc. Systems and methods for cooling vehicle components
JP7112453B2 (ja) * 2020-07-15 2022-08-03 本田技研工業株式会社 車両
JP7359105B2 (ja) * 2020-08-12 2023-10-11 トヨタ自動車株式会社 送風システムの異常診断装置
KR20220048170A (ko) * 2020-10-12 2022-04-19 현대자동차주식회사 차량용 열 관리 시스템
US20220134839A1 (en) * 2020-10-29 2022-05-05 Rivian Ip Holdings, Llc Integrated thermal management system for a vehicle
KR20220080556A (ko) * 2020-12-07 2022-06-14 현대자동차주식회사 차량의 통합열관리 시스템
CN112848838B (zh) * 2021-01-18 2022-10-28 中国第一汽车股份有限公司 一种车用低温高速工况防起雾控制方法
JP7329557B2 (ja) * 2021-03-30 2023-08-18 本田技研工業株式会社 車両
JP7380650B2 (ja) * 2021-05-19 2023-11-15 トヨタ自動車株式会社 車載温調システム
JP2022190760A (ja) * 2021-06-15 2022-12-27 トヨタ自動車株式会社 熱管理システム
US11541719B1 (en) 2021-07-14 2023-01-03 GM Global Technology Operations LLC Active thermal management systems and control logic for heat exchanger storage of refrigerant
DE102021123256A1 (de) 2021-09-08 2023-03-09 Denso Automotive Deutschland Gmbh Fahrzeugwärme-Verwaltungssystem und Verfahren zum Betreiben desselben
US11635226B1 (en) 2022-05-26 2023-04-25 Gustavo Puga HVAC air flow mixing system and method of use

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11129730A (ja) * 1997-08-25 1999-05-18 Denso Corp 車両用空調装置
JP2001206039A (ja) * 2000-01-28 2001-07-31 Mitsubishi Heavy Ind Ltd 車両用オートエアコン装置
JP2008094340A (ja) * 2006-10-16 2008-04-24 Nissan Motor Co Ltd 車両用空調装置
JP2010111343A (ja) * 2008-11-10 2010-05-20 Nissan Motor Co Ltd 車両用空調装置の故障診断装置
JP2012176658A (ja) * 2011-02-25 2012-09-13 Sanden Corp 車両用空気調和装置
JP2013001205A (ja) * 2011-06-15 2013-01-07 Suzuki Motor Corp 車両用空調システム
JP2013500903A (ja) * 2009-08-07 2013-01-10 ルノー・エス・アー・エス 電動自動車の熱の全体制御のためのシステム

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3196449B2 (ja) 1993-09-21 2001-08-06 株式会社デンソー 車両用空気調和装置
FR2812243B1 (fr) * 2000-07-28 2003-05-09 Valeo Climatisation Dispositif de chauffage-climatisation de l'habitacle d'un vehicule automobile
JP3832351B2 (ja) 2002-01-30 2006-10-11 株式会社デンソー 車両用空調防曇制御装置
DE102004035879A1 (de) * 2004-07-23 2006-02-16 Daimlerchrysler Ag Kühlsystem, insbesondere für ein Kraftfahrzeug, und Verfahren zum Kühlen einer Wärmequelle
JP5468982B2 (ja) * 2010-05-14 2014-04-09 カルソニックカンセイ株式会社 車両用空気調和装置
JP2012116276A (ja) * 2010-11-30 2012-06-21 Suzuki Motor Corp 車両用空調装置
JP5589967B2 (ja) * 2011-06-13 2014-09-17 株式会社デンソー 車両用温度調節装置
DE102011082584A1 (de) 2011-09-13 2013-03-14 Behr Gmbh & Co. Kg Vorrichtung zur Temperierung einer Mehrzahl von Komponenten eines Fahrzeugs und Fahrzeugsystem
JP6167892B2 (ja) 2013-06-06 2017-07-26 株式会社デンソー 車両用空調装置
KR101534724B1 (ko) * 2013-12-18 2015-07-08 현대자동차 주식회사 차량용 에어컨 시스템 제어방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11129730A (ja) * 1997-08-25 1999-05-18 Denso Corp 車両用空調装置
JP2001206039A (ja) * 2000-01-28 2001-07-31 Mitsubishi Heavy Ind Ltd 車両用オートエアコン装置
JP2008094340A (ja) * 2006-10-16 2008-04-24 Nissan Motor Co Ltd 車両用空調装置
JP2010111343A (ja) * 2008-11-10 2010-05-20 Nissan Motor Co Ltd 車両用空調装置の故障診断装置
JP2013500903A (ja) * 2009-08-07 2013-01-10 ルノー・エス・アー・エス 電動自動車の熱の全体制御のためのシステム
JP2012176658A (ja) * 2011-02-25 2012-09-13 Sanden Corp 車両用空気調和装置
JP2013001205A (ja) * 2011-06-15 2013-01-07 Suzuki Motor Corp 車両用空調システム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017052505A (ja) * 2015-09-10 2017-03-16 株式会社デンソー 車両用熱管理装置
EP3412482A4 (en) * 2016-02-05 2019-10-02 Valeo Japan Co., Ltd. Vehicle air conditioning system, vehicle therefor and method for controlling a vehicle grill device
JP2017194180A (ja) * 2016-04-18 2017-10-26 株式会社デンソー 冷凍サイクル装置

Also Published As

Publication number Publication date
JP2015163503A (ja) 2015-09-10
JP6314821B2 (ja) 2018-04-25
CN105960345B (zh) 2017-08-15
CN105960345A (zh) 2016-09-21
DE112015000552T5 (de) 2016-11-24
US20160339767A1 (en) 2016-11-24
US10479170B2 (en) 2019-11-19

Similar Documents

Publication Publication Date Title
JP6314821B2 (ja) 車両用空調装置
JP6197657B2 (ja) 車両用熱管理システム
JP6233009B2 (ja) 車両用空調装置
JP6197671B2 (ja) 空調装置
JP6398764B2 (ja) 車両用熱管理システム
JP6167892B2 (ja) 車両用空調装置
JP6252186B2 (ja) 車両用熱管理システム
JP6197745B2 (ja) 車両用冷凍サイクル装置
JP6555112B2 (ja) 冷凍サイクル装置
JP6206231B2 (ja) 車両用熱管理システム
JP6540180B2 (ja) 車両用熱管理システム
WO2015115050A1 (ja) 車両用熱管理システム
JP6197642B2 (ja) 車両用空調装置
JP6390223B2 (ja) 車両用温度調整装置
WO2015004904A1 (ja) 車両用空調装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15742697

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15113856

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112015000552

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15742697

Country of ref document: EP

Kind code of ref document: A1