WO2015102423A1 - 에틸렌과 알파-올레핀의 중합 장치 및 제조방법 - Google Patents

에틸렌과 알파-올레핀의 중합 장치 및 제조방법 Download PDF

Info

Publication number
WO2015102423A1
WO2015102423A1 PCT/KR2015/000009 KR2015000009W WO2015102423A1 WO 2015102423 A1 WO2015102423 A1 WO 2015102423A1 KR 2015000009 W KR2015000009 W KR 2015000009W WO 2015102423 A1 WO2015102423 A1 WO 2015102423A1
Authority
WO
WIPO (PCT)
Prior art keywords
alpha
olefin
ethylene
solvent
molecular weight
Prior art date
Application number
PCT/KR2015/000009
Other languages
English (en)
French (fr)
Inventor
엄재훈
주진훈
배희선
여주미
홍사문
Original Assignee
대림산업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대림산업 주식회사 filed Critical 대림산업 주식회사
Priority to US15/109,418 priority Critical patent/US10632446B2/en
Priority to EP15733221.4A priority patent/EP3093070B1/en
Priority to CN201580003800.1A priority patent/CN106132533B/zh
Priority to RU2016132466A priority patent/RU2646425C2/ru
Priority to JP2016544833A priority patent/JP6581990B2/ja
Priority to ES15733221T priority patent/ES2774020T3/es
Publication of WO2015102423A1 publication Critical patent/WO2015102423A1/ko
Priority to US16/674,303 priority patent/US11027255B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/06Flash distillation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/14Fractional distillation or use of a fractionation or rectification column
    • B01D3/143Fractional distillation or use of a fractionation or rectification column by two or more of a fractionation, separation or rectification step
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/02Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/02Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
    • C07C2/04Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/02Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
    • C07C2/04Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation
    • C07C2/06Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation of alkenes, i.e. acyclic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/02Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
    • C07C2/04Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation
    • C07C2/06Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation of alkenes, i.e. acyclic hydrocarbons having only one carbon-to-carbon double bond
    • C07C2/08Catalytic processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/04Monomers containing three or four carbon atoms
    • C08F10/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/14Monomers containing five or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/04Monomers containing three or four carbon atoms
    • C08F210/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • C08F210/18Copolymers of ethene with alpha-alkenes, e.g. EP rubbers with non-conjugated dienes, e.g. EPT rubbers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside

Definitions

  • the present invention relates to a polymerization apparatus and method of ethylene and an alpha-olefin, and more particularly, to a polymerization apparatus and a method capable of economically copolymerizing ethylene and an alpha-olefin by reusing a reaction raw material and a solvent.
  • a lubricant is composed of a base oil and additives for improving physical properties
  • a lubricant base oil is typically divided into a mineral oil and a synthetic oil.
  • mineral oil refers to naphthenic oil produced during separation and refining of crude oil
  • synthetic oil refers to poly-alpha-olefin produced by polymerizing alpha-olefin produced during petroleum refining.
  • olefin PAO
  • mineral oil has been mainly used as a lubricating base oil, but in recent years, there is an increasing demand for synthetic oil having characteristics such as low temperature fluidity, high viscosity index, low volatility at high temperature, high shear and thermal stability.
  • synthetic oil Compared with general mineral oil, synthetic oil has a small viscosity change according to temperature change and maintains excellent lubrication performance even with seasonal changes, which not only contributes to the quietness and fuel efficiency of the vehicle, but also has excellent durability and stability, long life, and sludge And the amount of waste oil generated has the advantage of being environmentally friendly.
  • the engine oil using the existing mineral oil is insufficient thermal, physical and mechanical properties when applied to the recent miniaturized and highly efficient engine, especially in the field of engine oil, gear oil, grease, etc. that require high quality
  • the use of synthetic oils is increasing.
  • Poly-alpha-olefins (PAO) used as synthetic oils are disclosed in US Pat. No. 3,780,128.
  • poly-alpha-olefins may be selected from higher linear alpha-olefins such as decene-1 (C10) and dodecene-1 (C12) in the presence of an acid catalyst. It can be obtained by oligomerization, but there are disadvantages in that the price of high-grade linear alpha olefin (LAO), which is a raw material, is expensive and supply and demand is unstable.
  • LAO high-grade linear alpha olefin
  • Patent 5,767,331 also discloses a method of copolymerizing ethylene and alpha-olefins, in particular ethylene and propylene, using a vanadium-based catalyst composition consisting of a vanadium compound and an organoaluminum compound.
  • the copolymer obtained using the vanadium-based catalyst composition also has a narrow molecular weight distribution and excellent uniformity, but generally has a very low polymerization activity and generates a large amount of catalyst sludge, and thus, additional decatalytic process is required. This is a common problem with first generation catalysts such as Ziegler-Natta catalysts.
  • Japanese Patent Application Laid-Open No. 61-221207 Japanese Patent Application Laid-Open No.
  • 7-121969, and the like use a catalyst system composed of a metallocene compound such as zirconocene and an organoaluminum oxy compound to give a high polymerization.
  • a method for producing a copolymer with an activity is disclosed, and Japanese Patent No. 2796376 also discloses a method for producing a synthetic lubricant by copolymerizing ethylene and alpha-olefin using a catalyst system composed of a specific metallocene catalyst and an organoaluminum oxy compound. A method is disclosed.
  • An object of the present invention is to provide a polymerization apparatus and method for ethylene and alpha-olefins which can efficiently copolymerize ethylene and alpha-olefins, particularly lower alpha-olefins such as propylene, which are smoothly supplied and inexpensive reaction raw materials. It is.
  • Another object of the present invention is to provide a polymerization apparatus and method which can economically copolymerize ethylene and alpha-olefin by reusing a reaction raw material and a solvent.
  • the present invention is a polymerization comprising a ethylene and an alpha-olefin and a solvent is supplied as a reaction raw material, the reaction raw material is copolymerized in a solution state, the ethylene and alpha-olefin copolymer dissolved in a solvent
  • a polymerization reactor for forming a product; Flash tower for distilling and separating unreacted ethylene and alpha-olefin contained in the polymerization product, and low molecular weight oligomer and solvent having a lower molecular weight than ethylene and alpha-olefin copolymer contained in the polymerization product are distilled off.
  • the present invention is a low-molecular weight compound containing unreacted ethylene and alpha-olefin, a solvent, an ethylene and alpha-olefin copolymer and ethylene by copolymerization of ethylene and alpha-olefin as a reaction raw material in the presence of a solvent.
  • Obtaining a polymerization product comprising an alpha-olefin oligomer; Distilling and separating unreacted ethylene and alpha-olefin contained in the polymerization product; Obtaining a pure polymerization product by distilling off a low molecular weight oligomer and a solvent contained in the polymerization product and having a lower molecular weight than the polymerization product of ethylene and an alpha-olefin copolymer; And separating the low molecular weight oligomer from the low molecular weight oligomer and solvent separated from the polymerization product by distillation, recovering the solvent, and then reusing the recovered solvent as the polymerization solvent.
  • a polymerization method is provided.
  • the polymerization apparatus and method of ethylene and alpha-olefin according to the present invention is a high quality and high performance by efficiently copolymerizing ethylene and alpha-olefins, especially lower alpha-olefins such as propylene, which are easily supplied and inexpensive reaction raw materials.
  • Synthetic oil of not only can be prepared, but also because the reaction materials and solvents are reused, it is economical.
  • FIG. 1 is a block diagram showing the overall configuration of an ethylene and alpha-olefin polymerization apparatus according to an embodiment of the present invention.
  • FIG. 2 is a flow chart showing a polymerization method of ethylene and an alpha-olefin according to an embodiment of the present invention.
  • Figure 1 is a block diagram showing the overall configuration of the ethylene and alpha-olefin polymerization apparatus according to an embodiment of the present invention.
  • the polymerization apparatus of ethylene and alpha-olefin according to the present invention includes a polymerization reactor 10, unreacted ethylene, alpha-olefin and low molecular weight oligomer and polymer separation unit 20, and a solvent recovery unit. 30, and, if necessary, may further include a solvent purifying unit (Solvent Purification, 40).
  • the polymerization reactor (10) is a polymerization comprising ethylene, an alpha-olefin, and a solvent supplied with a reaction raw material, the reaction raw material copolymerized in a solution state, and including ethylene and an alpha-olefin copolymer dissolved in a solvent. Reactor to form the product. Along with the reaction raw material and the solvent, an additive for controlling a conventional polymerization reaction such as a catalyst and a molecular weight regulator may be further supplied to the polymerization reactor 10.
  • the polymerization reaction may be carried out batchwise, semi-continuously or continuously, preferably, continuously using a continuous stirred tank reactor (CSTR).
  • the continuous stirred tank reactor may increase the mixing effect of the reactants and the catalyst during the residence time of the reactor, to make a uniform mixture, and to maintain a constant temperature of the reaction system through heat exchange.
  • the polymerization product (Effluent) produced in the polymerization reactor (10) is a low molecular weight compound including unreacted ethylene, alpha-olefin, etc., a solvent, an ethylene and an alpha-olefin copolymer (polymerization product), ethylene and an alpha-olefin Low molecular weight oligomers and the like.
  • the unreacted ethylene, alpha-olefin and low molecular weight oligomer and polymer separation unit 20 is for removing volatiles included in the polymerization product and separating the polymerization product ethylene and alpha-olefin copolymer.
  • the unreacted ethylene, alpha-olefin and low molecular weight oligomer and polymer separation unit 20 is a flash tower (22, Flash Tower), washing unit 24, the first stripper (26) And a second stripper portion 28 and the like.
  • the flash tower 22 is a first low molecular weight compound contained in the polymerization product (Effluent), specifically a compound having a molecular weight smaller than a solvent, for example, having 2 to 5 carbon atoms, preferably having 2 to 3 carbon atoms. It is an apparatus for separating unreacted ethylene, alpha-olefin and the like by flash distillation.
  • the polymerization product is supplied to the flash tower 22 maintained at atmospheric pressure or lower and a temperature of 50 to 150 ° C.
  • the solvent, oligomer, copolymer and the like remain in the liquid state, and the lightest
  • the first low molecular weight compound is flashed in a gaseous state, and the first low molecular weight compound is separated by simple distillation.
  • the temperature and pressure of the flash tower 22 are set to vaporize a material having a molecular weight smaller than that of the reaction raw material ethylene, alpha-olefin and solvent, and the material having a molecular weight higher than the solvent remains in a liquid state. do.
  • the first low molecular weight compound is obtained from the top of the flash tower 22 and the solvent and polymerization product are obtained from the bottom of the flash tower 22.
  • the first low molecular weight compound separated from the flash tower 22 may be reused as a reactant again through a condensation and purification process.
  • a washing unit for deactivating the catalyst contained in the polymerization product is completed ( 24, a washing unit may be further installed. Since the polymerization product contains a catalyst, it is necessary to add a catalyst kill to suppress the catalytic activity to the polymerization product to prevent the post reaction of the polymer.
  • the reaction terminator sodium hydroxide aqueous solution (Caustic aqueous solution, NaOH 20 wt% solution) may be used, for example.
  • the washing unit 24 may be a mixer such as a washing drum capable of contacting the polymerization product and the reaction terminator.
  • the polymerization product and Caustic aqueous solution may be added to a washing drum and mixed while stirring to deactivate the catalyst in the polymerization product.
  • a separation drum or the like separates the aqueous solution layer in which the catalyst is dissolved and the organic layer in which the polymerization product is dissolved by the specific gravity difference.
  • the catalyst component can then be removed from the polymerization product. That is, an organic layer containing a polymerization product and a solvent can be obtained from the top of the separation drum, and an aqueous layer containing a catalyst and Caustic deactivated from the bottom of the separation drum can be obtained.
  • the strippers 26 and 28 are distillation columns for distilling and separating second low molecular weight compounds such as solvents and low molecular weight oligomers (Oligomers, light polymers) contained in the polymerization products. Since the polymerization product contains an excess of solvent, it is preferable to use a vacuum distillation column (Vacuum Stripper) to reflux the upper solvent and the low molecular weight oligomer to minimize entrainment of the polymerization product (Reflux). The second low molecular weight compound is removed by distillation to the top of the distillation column.
  • Second low molecular weight compound is removed by distillation to the top of the distillation column.
  • the temperature and pressure of the stripper parts 26 and 28 are set so as to distill a low molecular weight oligomer (an oligomer of ethylene and alpha-olefin) having a lower molecular weight than an ethylene and alpha-olefin copolymer which is a polymerization product. do.
  • the weight average molecular weight of the said low molecular weight oligomer is 400 or less, Preferably it is 350 or less, More preferably, it is 300 or less, Most preferably, it is the range of the molecular weight of the solvent used-250.
  • the stripper portions 26, 28 are separated by distillation of a low molecular weight oligomer having a molecular weight of 400 or less, preferably 350 or less, more preferably 300 or less, most preferably 250 or less.
  • the stripper parts 26 and 28 are preferably configured in two stages: the first stripper part 26 and the first stripper part 26 and the second stripper part 28.
  • the first stripper part 26 is operated at a vacuum pressure of 20 to 30 Torr and a temperature of 80 to 100 ° C. to primarily separate the second low molecular weight compound such as a solvent and a low molecular weight oligomer.
  • the second stripper portion 28 is operated at a pressure of 1 to 10 Torr (High Vacuum) and at a temperature of 220 to 240 ° C. to secondary the second low molecular weight compound remaining in the polymerization product.
  • a pure copolymer polymerization product.
  • the flash point of the polymerization product is lowered, so that the low molecular weight oligomers are sequentially removed while increasing the temperature and vacuum degree of the strippers 26 and 28, thereby increasing the oligomer in the polymerization product. It is desirable to minimize the residual amount.
  • the partial pressure of the low molecular weight compound (Light Polymer) can be relatively lowered to further reduce the residual amount of the low molecular weight oligomer.
  • the stripper condenser located on the top of the distillation column of the stripper section 26, 28, extracting the necessary components from one side of the side-cut (distillation column). ), The water contained in the solvent can be separated and removed.
  • the solvent recovery part 30 is composed of a distillation column for separating low molecular weight oligomers and solvents from high molecular weight oligomers and solvents separated from the polymerization product and recovering solvents of high purity.
  • the number of stages of the distillation column which forms the solvent recovery part 30 is 20-50, for example, and a high purity solvent is obtained from the top of a distillation column.
  • the temperature and pressure of the distillation column must be set appropriately so that the solvent and the oligomer can be separated, and it is preferable to distill the solvent at a high Reflux Ratio.
  • the solvent thus recovered is reused as a polymerization solvent.
  • the solvent purifying unit 40 is a purification unit for further removing impurities from the solvent from which the polymerization product and the low molecular weight oligomer have been removed, and may be installed as necessary.
  • FIG. 2 is a flowchart illustrating a polymerization method of ethylene and an alpha-olefin according to an embodiment of the present invention.
  • the polymerization method of ethylene and alpha-olefin according to the present invention before performing the polymerization reaction, from the reaction raw materials, water, oxygen (O 2 ), CO 2 , sulfur (Sulfur), a catalyst It is preferable to perform a reaction raw material pretreatment process (Pretreatment, S 10) that preliminarily removes substances (Poison, Impurity) that may lower the activity.
  • a Scavenger eg Ridox TM Oxygen Scavenger, manufactured by Fisher Chemical
  • carbon monoxide CO
  • carbon dioxide CO 2
  • sulfur Sulfur Reaction material
  • a column consisting of alumina to remove the
  • a molecular sieve to remove moisture, and the like.
  • ethylene and alpha-olefin which are reaction raw materials are copolymerized (S20).
  • Polymerization products by the copolymerization include low molecular weight compounds including unreacted ethylene, alpha-olefins, and the like, solvents, ethylene and alpha-olefin copolymers, ethylene and alpha-olefin oligomers, and the like.
  • the first low molecular weight compound (unreacted ethylene, alpha-olefin, etc.) having a molecular weight smaller than that of the solvent is distilled off from the polymerization product (S 30), and subsequently contained in the polymerization product, and polymerized.
  • a pure polymerization product is obtained by distilling off a low molecular weight oligomer and a solvent (second low molecular weight compound) having a molecular weight smaller than that of the product ethylene and an alpha-olefin copolymer (S 40).
  • the first low molecular weight compound may be separated by distillation (S 30), and then, if necessary, a catalyst washing step (S 35) may be further performed to deactivate the catalyst included in the polymerization product.
  • the low molecular weight oligomer is separated by distillation to recover the high purity solvent, and then the recovered solvent is reused as the polymerization solvent (S 50).
  • Reaction raw materials used in the polymerization reaction according to the present invention are ethylene (Ethylene) and alpha-olefin having 3 to 20 carbon atoms.
  • alpha-olefin having 3 to 20 carbon atoms include linear alpha-olefins such as propylene, 1-butene, 1-pentene, and 1-hexene, isobutylene, 3-methyl-1butene, and 4-methyl Branched-chain alpha-olefins such as -1-pentene, mixtures thereof, and the like can be used alone or in combination, preferably lower linear alpha-olefins having 3 to 5 carbon atoms can be used, and particularly preferably propylene is used. do.
  • the polymerization reaction may be carried out using an inert solvent such as propane, butane, pentane, hexane as a medium, preferably a solvent having a higher molecular weight than the alpha-olefin used in the polymerization reaction.
  • an inert solvent such as propane, butane, pentane, hexane as a medium
  • saturated hydrocarbon compounds having 4 to 8 carbon atoms, particularly preferably hexane having 6 carbon atoms can be used.
  • the carbon number of the solvent is at least one larger than the carbon number of the alpha-olefin used in the polymerization reaction. Since the reaction raw material used for this invention has a comparatively large vapor pressure compared with a solvent, collection
  • reaction raw materials when they are ethylene and propylene, they can be recovered at atmospheric pressure and at a temperature of 0 to 100 ° C, preferably 0 to 50 ° C.
  • reaction raw material used for this invention has the advantage of being stable in supply and low price compared with higher alkenes, such as decene-1.
  • a metallocene catalyst as the catalyst, rather than to use a first generation catalyst such as Ziegler-Natta catalyst, and if necessary, the catalyst and the organoaluminum oxy compound.
  • Co-catalysts such as organoaluminum compounds, borates, and aluminoxanes may be mixed together to form a single site catalyst system.
  • the molecular weight modifier may be used hydrogen (H 2 , hydrogen) and the like.
  • the polymerization temperature may vary depending on the reaction materials, reaction conditions, etc., but is generally 80 to 150 ° C, preferably 90 to 120 ° C, and the polymerization pressure is 10 to 50 Bar, preferably 20 to 40 bar, more preferably 25 to 35 bar.
  • the polymerization temperature is too low, there is a fear that excessively high molecular weight copolymers are formed, and if too high, the catalytic activity may be reduced by thermal stability.
  • the copolymerization conditions of the ethylene and the alpha-olefin described above are disclosed in detail in the applicant's patent application No. 10-2012-0130792 (filed November 19, 2012), the entire contents of the application is incorporated herein by reference. Included.
  • the copolymer of ethylene and alpha-olefin polymerized according to the present invention is a random copolymer which is a liquid at room temperature formed by copolymerization of ethylene and an alpha-olefin having 3 to 20 carbon atoms. It has a uniformly distributed structure.
  • Copolymers according to the invention are generally from 40 to 60 mole%, preferably from 45 to 55 mole%, of ethylene units derived from ethylene, and from 3 to 20 carbon atoms derived from alpha-olefins containing 3 to 20 carbon atoms. -40 to 60 mol%, preferably 45 to 55 mol%, of olefin units.
  • the content of the ethylene unit when the content of the ethylene unit is less than 40 mol%, the content of propylene or the like is increased, so that a liquid copolymer may not be formed.
  • the copolymer content exceeds 60 mol%, The content is excessively increased, so that the formation of a liquid copolymer may be difficult or may be unsuitable as a synthetic lubricant.
  • the copolymer according to the present invention has a number average molecular weight (Mn) of 500 to 10,000, preferably 800 to 6,000, and a molecular weight distribution (Mw / Mn, Mw is a weight average molecular weight) of 3 or less, preferably 2 or less. .
  • the number average molecular weight (Mn) and molecular weight distribution (Mw / Mn) are measured by gel permeation chromatography (GPC).
  • the liquid ethylene and alpha-olefin copolymers prepared according to the present invention monomers are evenly distributed throughout the length of the copolymer molecule, the composition and molecular weight distribution is narrow, excellent uniformity, and the distribution of double bonds is not only small
  • it is particularly useful as a synthetic oil that requires high viscosity index, low temperature viscosity characteristics, shear and thermal stability, durability, etc. due to its high activity and low sludge generation.
  • Synthetic oils composed of ethylene and alpha-olefin copolymers according to the present invention can be used as lubricant base oils, viscosity modifiers, viscosity index improvers, lubricity additives, etc. in the fields of automotive lubricants, gear oils, industrial lubricants, greases and the like. Can be.

Abstract

반응원료 및 용매를 재사용하여, 경제적으로 에틸렌과 알파-올레핀을 공중합시킬 수 있는 중합 장치 및 방법이 개시된다. 상기 에틸렌과 알파-올레핀의 중합 장치는, 반응원료로서 에틸렌과 알파-올레핀 및 용매가 공급되고, 상기 반응원료가 용액 상태에서 공중합되어, 용매에 용해된 에틸렌과 알파-올레핀 공중합체를 포함하는 중합 생성물을 형성하는 중합 반응기; 상기 중합 생성물 중에 포함된 미반응 에틸렌 및 알파-올레핀을 증류하여 분리하기 위한 플래시 타워, 및 상기 중합 생성물 중에 포함된 에틸렌과 알파-올레핀 공중합체보다 분자량이 작은 저분자량 올리고머 및 용매를 증류시켜 분리하는 스트리퍼부를 포함하는, 미반응 에틸렌, 알파-올레핀과 저분자량 올리고머 및 중합체 분리부; 및 상기 분리된 저분자량 올리고머 및 용매로부터, 저분자량 올리고머를 분리하고, 용매를 회수하는 용매 회수부를 포함한다.

Description

에틸렌과 알파-올레핀의 중합 장치 및 제조방법
본 발명은 에틸렌과 알파-올레핀의 중합 장치 및 방법에 관한 것으로서, 더욱 상세하게는, 반응원료 및 용매를 재사용하여, 경제적으로 에틸렌과 알파-올레핀을 공중합시킬 수 있는 중합 장치 및 방법에 관한 것이다.
일반적으로, 윤활유(lubricant)는 윤활기유(base oil)와 물성 향상을 위한 첨가제(additive)로 이루어지며, 윤활기유는 대표적으로 광유(mineral oil)와 합성유로 구분된다. 일반적으로 광유는 원유를 분리 및 정제하는 과정에서 생성되는 나프텐계 오일(naphthenic oil)을 말하며, 합성유는 석유 정제 과정에서 생성되는 알파-올레핀을 중합하여 제조되는 폴리-알파-올레핀(poly-α-olefin: PAO)을 말한다. 종래에는, 윤활기유로서 광유가 주로 사용되었으나, 최근에는, 저온 유동성, 높은 점도지수, 고온에서의 낮은 휘발성, 높은 전단 및 열 안정성 등의 특성을 가지는 합성유에 대한 수요가 증가하고 있다. 일반 광유와 비교하여, 합성유는 온도 변화에 따른 점도 변화폭이 작아, 계절 변화에도 뛰어난 윤활 성능을 유지하므로, 자동차의 정숙성 및 연비 향상에 기여할 뿐만 아니라, 내구성 및 안정성이 우수하고, 수명이 길며, 슬러지 및 폐유 발생량이 적어 친환경적이라는 장점이 있다. 또한, 기존의 광유를 사용하는 엔진오일은, 소형화 및 고효율화된 최근의 엔진에 적용 시, 열적, 물리적 및 기계적 특성이 불충분하므로, 특히 고품질을 필요로 하는 엔진오일, 기어오일, 그리스 등의 분야에서, 합성유의 사용이 증가하고 있다.
합성유로 사용되는 폴리-알파-올레핀(PAO)은 미국특허 3780128호 등에 개시되어 있다. 상기 문헌에 개시된 바와 같이, 폴리-알파-올레핀은, 산 촉매의 존재 하에서, 데센-1(Decene-1, C10), 도데센-1(Dodecene-1, C12) 등의 고급 선형 알파-올레핀을 올리고머화(oligomerization)하여 얻을 수 있으나, 원재료인 고급 선형 알파 올레핀(Linear Alpha Olefin: LAO)의 가격이 비싸고 수급이 불안정하다는 단점이 있다. 일본 특허공개 1982-117595호에는, 에틸렌과 알파-올레핀을 공중합하여, 점도지수, 산화 안정성, 전단 안정성, 내열성 등의 특성이 우수한 합성 윤활유를 제조하는 방법이 개시되어 있다. 상기 에틸렌과 알파-올레핀의 공중합에 있어서는, 일반적으로 티타늄(Titanium) 화합물과 유기 알루미늄 화합물로 구성된 촉매 조성물이 사용되었다. 상기 티타늄 화합물 촉매는 촉매 활성이 크지만, 얻어진 공중합체의 분자량 분포가 넓고, 규칙성이 낮은 특징을 가진다. 따라서, 윤활유, 윤활유 첨가제, 연료유 첨가제 등으로 유용한 고인화점의 제품을 얻기 어렵고, 고점도 제품의 경우, 가격이 비싸, 실용적이지 못한 단점이 있다. 또한, 미국 특허 5,767,331호에는 바나듐(vanadium) 화합물과 유기 알루미늄 화합물로 이루어진 바나듐계 촉매 조성물을 이용하여 에틸렌과 알파-올레핀, 특히, 에틸렌과 프로필렌을 공중합하는 방법이 개시되어 있다. 상기 바나듐계 촉매 조성물을 사용하여 얻은 공중합체 역시 분자량 분포가 좁고, 균일성이 우수하지만, 일반적으로 중합 활성이 매우 낮고, 다량의 촉매 슬러지가 생성되므로, 추가적인 탈촉매 공정이 필요한 단점이 있다. 이는 지글러-나타 촉매와 같은 1세대 촉매들의 공통된 문제점이다. 또한, 일본 특개소 61-221207호, 특공평 7-121969호 등에는, 지르코노센 등의 메탈로센(metallocene) 화합물과 유기 알루미늄 옥시(aluminum oxy) 화합물로 구성된 촉매 시스템을 이용하여, 높은 중합 활성으로 공중합체를 제조하는 방법이 개시되어 있고, 일본 특허 2796376호에도 특정 메탈로센 촉매와 유기 알루미늄 옥시 화합물로 이루어진 촉매 시스템을 이용하여, 에틸렌과 알파-올레핀을 공중합하여, 합성 윤활유를 제조하는 방법이 개시되어 있다.
본 발명의 목적은, 공급이 원활하고, 가격이 저렴한 반응원료인 에틸렌과 알파-올레핀, 특히, 프로필렌 등 저급 알파-올레핀을 효율적으로 공중합시킬 수 있는 에틸렌과 알파-올레핀의 중합 장치 및 방법을 제공하는 것이다.
본 발명의 다른 목적은, 반응원료 및 용매를 재사용하여, 경제적으로 에틸렌과 알파-올레핀을 공중합시킬 수 있는 중합 장치 및 방법을 제공하는 것이다.
본 발명의 또 다른 목적은, 고품질 및 고성능의 합성유로 사용될 수 있는 에틸렌과 알파-올레핀 공중합체의 중합 장치 및 방법을 제공하는 것이다.
상기 목적을 달성하기 위하여, 본 발명은, 반응원료로서 에틸렌과 알파-올레핀 및 용매가 공급되고, 상기 반응원료가 용액 상태에서 공중합되어, 용매에 용해된 에틸렌과 알파-올레핀 공중합체를 포함하는 중합 생성물을 형성하는 중합 반응기; 상기 중합 생성물 중에 포함된 미반응 에틸렌 및 알파-올레핀을 증류하여 분리하기 위한 플래시 타워, 및 상기 중합 생성물 중에 포함된 에틸렌과 알파-올레핀 공중합체보다 분자량이 작은 저분자량 올리고머 및 용매를 증류시켜 분리하는 스트리퍼부를 포함하는, 미반응 에틸렌, 알파-올레핀과 저분자량 올리고머 및 중합체 분리부; 및 상기 분리된 저분자량 올리고머 및 용매로부터, 저분자량 올리고머를 분리하고, 용매를 회수하는 용매 회수부를 포함하는 에틸렌과 알파-올레핀의 중합 장치를 제공한다.
또한, 본 발명은, 용매의 존재 하에서, 반응원료인 에틸렌과 알파-올레핀을 공중합 반응시켜, 미반응 에틸렌 및 알파-올레핀을 포함하는 저분자량 화합물, 용매, 에틸렌과 알파-올레핀 공중합체 및 에틸렌과 알파-올레핀 올리고머를 포함하는 중합 생성물을 얻는 단계; 상기 중합 생성물 중에 포함되어 있는 미반응 에틸렌과 알파-올레핀을 증류하여 분리하는 단계; 상기 중합 생성물에 포함되어 있으며, 중합 생성물인 에틸렌과 알파-올레핀 공중합체 보다 분자량이 작은 저분자량 올리고머 및 용매를 증류하여 분리함으로써, 순수한 중합 생성물을 얻는 단계; 및 상기 중합 생성물로부터 분리된 저분자량 올리고머 및 용매로부터, 증류에 의하여 저분자량 올리고머를 분리하여, 용매를 회수한 다음, 회수된 용매를 다시 중합 용매로 재사용하는 단계를 포함하는 에틸렌과 알파-올레핀의 중합 방법을 제공한다.
본 발명에 따른 에틸렌과 알파-올레핀의 중합 장치 및 방법은, 공급이 원활하고, 가격이 저렴한 반응원료인 에틸렌과 알파-올레핀, 특히, 프로필렌 등 저급 알파-올레핀을 효율적으로 공중합시켜, 고품질 및 고성능의 합성유를 제조할 수 있을 뿐만 아니라, 반응원료 및 용매를 재사용하므로, 경제적이다.
도 1은 본 발명의 일 실시예에 따른 에틸렌과 알파-올레핀 중합 장치의 전체 구성을 보여주는 블록도.
도 2는 본 발명의 일 실시예에 따른 에틸렌과 알파-올레핀의 중합 방법을 보여주는 흐름도.
이하, 첨부된 도면을 참조하여, 본 발명을 상세히 설명한다.
도 1은 본 발명의 일 실시예에 따른 에틸렌과 알파-올레핀 중합 장치의 전체 구성을 보여주는 블록도이다. 도 1에 도시된 바와 같이, 본 발명에 따른 에틸렌과 알파-올레핀의 중합 장치는, 중합 반응기(10), 미반응 에틸렌, 알파-올레핀과 저분자량 올리고머 및 중합체 분리부(20) 및 용매 회수부(30)를 포함하고, 필요에 따라, 용매 정제부(Solvent Purification, 40)를 더욱 포함할 수 있다.
상기 중합 반응기(10, Polymerization reactor)는, 반응원료인 에틸렌과 알파-올레핀 및 용매가 공급되고, 상기 반응원료가 용액 상태에서 공중합되어, 용매에 용해된 에틸렌과 알파-올레핀 공중합체를 포함하는 중합 생성물을 형성하는 반응기이다. 상기 반응원료 및 용매와 함께, 촉매, 분자량 조절제 등의 통상의 중합 반응 제어용 첨가제가 상기 중합 반응기(10)로 더욱 공급될 수 있다. 상기 중합 반응은 배치식, 반연속식 또는 연속식으로 수행될 수 있으며, 바람직하게는 연속 교반 탱크 반응기(Continuous Stirred Tank Reactor, CSTR)를 이용하여 연속식으로 수행될 수 있다. 상기 연속 교반 탱크 반응기는, 반응기 체류 시간 동안 반응물과 촉매의 혼합 효과를 높여, 균일한 혼합물로 만들고, 열교환을 통해 반응계의 온도를 일정하게 유지시킬 수 있다. 상기 중합 반응기(10)에서 생성되는 중합 생성물(Effluent)은 미반응 에틸렌, 알파-올레핀 등을 포함하는 저분자량 화합물, 용매, 에틸렌과 알파-올레핀 공중합체(중합 생성물), 에틸렌과 알파-올레핀의 저분자량 올리고머 등을 포함한다.
미반응 에틸렌, 알파-올레핀과 저분자량 올리고머 및 중합체 분리부(20)는 상기 중합 생성물에 포함된 휘발성 물질을 제거하고(devolatilization), 중합 생성물인 에틸렌과 알파-올레핀 공중합체를 분리하기 위한 것이다. 본 발명에 있어서, 상기 미반응 에틸렌, 알파-올레핀과 저분자량 올리고머 및 중합체 분리부(20)는, 플래시 타워(22, Flash Tower), 세척부(24), 제1 스트리퍼부(26, Stripper), 제2 스트리퍼부(28) 등을 포함한다. 상기 플래시 타워(22)는, 상기 중합 생성물(Effluent) 중에 포함된 제1 저분자량 화합물, 구체적으로는 용매 보다 분자량이 작은 화합물, 예를 들면 탄소수 2 내지 5의, 바람직하게는 탄소수 2 내지 3의 미반응 에틸렌, 알파-올레핀 등을 플래쉬 증류(flash distillation)에 의해 분리하기 위한 장치이다. 예를 들면, 상압 또는 그 이하의 압력 및 50 ~ 150 ℃의 온도로 유지되는 상기 플래시 타워(22)로, 중합 생성물이 공급되면, 용매, 올리고머, 공중합체 등은 액체 상태로 잔류하고, 가장 가벼운 제1 저분자량 화합물은 기체 상태로 플래싱(Flashing)되어, 단증류(Simple Distillation)에 의해, 제1 저분자량 화합물이 분리된다. 따라서, 상기 플래시 타워(22)의 온도 및 압력은, 반응 원료인 에틸렌과 알파-올레핀 및 용매보다 작은 분자량을 가지는 물질을 기화(vaporization)시키고, 용매 이상의 분자량을 가지는 물질은 액체 상태로 잔류되도록 설정된다. 상기 제1 저분자량 화합물은 상기 플래시 타워(22)의 상부(Top)로부터 수득되고, 상기 용매 및 중합 생성물은 상기 플래시 타워(22)의 하부(Bottom)로부터 수득된다. 상기 플래시 타워(22)에서 분리된 제1 저분자량 화합물은, 응축(Condensation) 및 정제 공정을 거쳐, 다시 반응원료로 재사용될 수 있다.
필요에 따라, 상기 플래시 타워(22)의 후단, 구체적으로 상기 플래시 타워(22)와 스트리퍼부(26, 28) 사이에는, 중합 반응이 완료된 중합 생성물에 포함되어 있는 촉매를 비활성화시키기 위한 세척부(24, washing unit)가 더욱 설치될 수 있다. 상기 중합 생성물에는, 촉매가 포함되어 있으므로, 촉매 활성을 억제하기 위한 반응 중지제(catalyst kill)를 중합 생성물에 첨가하여, 중합체의 후 반응을 방지할 필요가 있다. 상기 반응 중지제로는, 예를 들면, 수산화나트륨 수용액(Caustic 수용액, NaOH 20 중량% 용액)을 사용할 수 있다. 상기 세척부(24)는 상기 중합 생성물과 반응 중지제를 접촉시킬 수 있는 세척 드럼(Washing Drum) 등의 혼합기(Mixer)일 수 있다. 예를 들면, 상기 중합 생성물과 Caustic 수용액을 세척 드럼에 투입하고, 교반시키면서 혼합하여, 중합 생성물 중의 촉매를 비활성화시킬 수 있다. 여기서, Caustic 수용액에 의해 비활성화된 촉매는 수용액층에 용해된 상태로 존재하므로, 분리 드럼(Separation Drum) 등을 이용하여, 비중차에 의해 촉매가 용해된 수용액층과 중합 생성물이 용해된 유기층을 분리하면, 중합 생성물로부터 촉매 성분을 제거할 수 있다. 즉, 상기 분리 드럼의 상부로부터 중합 생성물 및 용매를 포함하는 유기층을 얻고, 분리 드럼의 하부로부터 비활성화된 촉매와 Caustic을 포함하는 수용액층을 얻을 수 있다.
상기 스트리퍼부(26, 28)는, 중합 생성물 중에 포함된 용매, 저분자량 올리고머(Oligomer, Light Polymer) 등의 제2 저분자량 화합물을 증류하여 분리하는 증류 칼럼(Distillation Column)이다. 상기 중합 생성물에는 과량의 용매가 포함되어 있으므로, 바람직하게는 진공 상태의 증류 칼럼(Vacuum Stripper)을 이용하여, 중합 생성물의 비말동반(Entrainment)을 최소화하도록 상부의 용매 및 저분자량 올리고머를 환류(Reflux)시키면서, 제2 저분자량 화합물을 증류 칼럼의 상부(Top)로 증류하여 제거한다. 따라서, 상기 스트리퍼부(26, 28)의 온도 및 압력은, 중합 생성물인 에틸렌과 알파-올레핀 공중합체보다 분자량이 작은 저분자량 올리고머(에틸렌과 알파-올레핀의 올리고머) 및 용매를 증류시킬 수 있도록 설정된다. 상기 저분자량 올리고머의 중량평균 분자량은, 400 이하, 바람직하게는 350 이하, 더욱 바람직하게는 300 이하, 가장 바람직하게는 사용되는 용매의 분자량 ~ 250의 범위이다. 따라서, 스트리퍼부(26, 28)는 분자량 400 이하, 바람직하게는 350 이하, 더욱 바람직하게는 300 이하, 가장 바람직하게는 250 이하의 저분자량 올리고머를 증류시켜 분리한다. 상기 스트리퍼부(26, 28)는 제1 스트리퍼부(26, 1st Stripper)와 제2 스트리퍼부(28)의 2단계로 구성되는 것이 바람직하다. 상기 제1 스트리퍼부(26)는 20 ~ 30 토르(Torr)의 진공 압력 및 80 ~ 100 ℃의 온도에서 운전되어, 용매, 저분자량 올리고머 등의 제2 저분자량 화합물을 1차적으로 분리하기 위한 것이고, 상기 제2 스트리퍼부(28)는 1 ~ 10 토르(Torr)의 압력(고진공(High Vacuum)) 및 220 ~ 240 ℃의 온도에서 운전되어, 중합 생성물에 잔류한 제2 저분자량 화합물을 2차적으로 더욱 분리하여, 최종적으로 순수한 공중합체(중합 생성물)를 얻기 위한 것이다. 중합 생성물 중의 저분자량 올리고머 함량이 증가할수록, 중합 생성물의 인화점(Flash Point)이 낮아지므로, 스트리퍼(26, 28)의 온도 및 진공도를 증가시키면서, 저분자량 올리고머를 순차적으로 제거하여, 중합 생성물 중의 올리고머 잔류량을 최소화시키는 것이 바람직하다. 이때, 필요에 따라, 중합 생성물에 질소(N2)를 주입하여(N2 Stripping), 저분자량 화합물(Light Polymer)의 분압을 상대적으로 낮추어, 저분자량 올리고머의 잔류량을 더욱 감소시킬 수도 있다. 또한, 필요에 따라, 상기 스트리퍼부(26, 28)의 증류 칼럼 상단에 위치한 스트리퍼 콘덴서(Stripper Condenser)에서, 사이드-컷(Side-cut: 증류 칼럼의 어느 한 단에서, 필요한 성분을 뽑아내는 것)에 의해, 용매에 포함된 수분을 분리하여 제거할 수 있다.
상기 용매 회수부(30)는, 상기 중합 생성물로부터 분리된 저분자량 올리고머및 용매로부터, 저분자량 올리고머를 분리하고, 고순도의 용매를 회수(solvent recovery)하기 위한 증류 칼럼(Distillation Column)으로 이루어진다. 상기 용매 회수부(30)를 형성하는 증류 칼럼의 단수는 예를 들면, 20 내지 50이고, 증류 칼럼의 상부로부터 고순도의 용매가 얻어진다. 용매 내의 올리고머 성분 함량을 최소화시키기 위해, 용매 및 올리고머를 분리할 수 있도록, 증류 칼럼의 온도 및 압력이 적절히 설정되어야 하고, 높은 환류 비율(Reflux Ratio)로 용매를 증류시키는 것이 바람직하다. 이와 같이 회수된 용매는 다시 중합 용매로 재사용된다. 상기 용매 정제부(40, Solvent Purification)는, 상기 중합 생성물 및 저분자량 올리고머가 제거된 용매로부터 불순물을 더욱 제거하기 위한 정제부로서, 필요에 따라 설치될 수 있다.
도 2는 본 발명의 일 실시예에 따른 에틸렌과 알파-올레핀의 중합 방법을 보여주는 흐름도이다. 도 2에 도시된 바와 같이, 본 발명에 따른 에틸렌과 알파-올레핀의 중합 방법은, 중합 반응의 수행 전에, 반응원료로부터, 수분, 산소(O2), CO2, 황(Sulfur) 등, 촉매 활성을 저하시킬 수 있는 물질(Poison, Impurity)을 사전 제거하는 반응원료 전처리 공정(Pretreatment, S 10)을 수행하는 것이 바람직하다. 예를 들면, 산소(O2)와 황(Sulfur)을 제거하기 위한 스케벤져(Scavenger, 예를 들면, Ridox™ Oxygen Scavenger, 제조사: Fisher Chemical), 일산화 탄소(CO) 및 이산화 탄소(CO2)를 제거하기 위한 알루미나(Alumina), 수분을 제거하기 위한 분자체(Molecular Sieve) 등으로 구성된 칼럼(Column)에 반응원료를 통과시켜, 상기 반응원료로부터 촉매 활성을 저하시킬 수 있는 물질을 제거할 수 있다. 다음으로, 용매의 존재 하에서, 반응원료인 에틸렌과 알파-올레핀을 공중합 반응시킨다(S 20). 상기 공중합에 의한 중합 생성물은 미반응 에틸렌, 알파-올레핀 등을 포함하는 저분자량 화합물, 용매, 에틸렌과 알파-올레핀 공중합체, 에틸렌과 알파-올레핀 올리고머 등을 포함한다. 다음으로, 상기 중합 생성물로부터, 용매보다 분자량이 작은 제1 저분자량 화합물(미반응 에틸렌, 알파-올레핀 등)을 증류하여 분리하고(S 30), 계속하여, 상기 중합 생성물에 포함되어 있으며, 중합 생성물인 에틸렌과 알파-올레핀 공중합체 보다 분자량이 작은 저분자량 올리고머 및 용매(제2 저분자량 화합물)를 증류하여 분리함으로써, 순수한 중합 생성물을 얻는다(S 40). 이때, 상기 제1 저분자량 화합물을 증류하여 분리한(S 30) 다음, 필요에 따라, 중합 생성물에 포함되어 있는 촉매를 비활성화시키기 위한 촉매 세척 공정(S 35)을 더욱 수행할 수도 있다. 끝으로, 상기 중합 생성물로부터 분리된 저분자량 올리고머 및 용매로부터, 증류에 의하여 저분자량 올리고머를 분리하여, 고순도의 용매를 회수한 다음, 회수된 용매를 다시 중합 용매로 재사용한다(S 50).
본 발명에 따른 중합 반응에 사용되는 반응원료는 에틸렌(Ethylene)과 탄소수 3 내지 20의 알파-올레핀이다. 상기 탄소수 3 내지 20의 알파-올레핀으로는, 프로필렌(Propylene), 1-부텐, 1-펜텐, 1-헥센 등의 직쇄상 알파-올레핀, 이소부틸렌, 3-메틸-1부텐, 4-메틸-1-펜텐 등의 분기쇄상 알파-올레핀, 이들의 혼합물 등을 단독 또는 혼합하여 사용할 수 있고, 바람직하게는 탄소수 3 내지 5의 저급 선형 알파-올레핀을 사용할 수 있으며, 특히 바람직하게는 프로필렌을 사용한다. 상기 중합 반응은, 프로판, 부탄, 펜탄, 헥산 등의 비활성 용매를 매질로 사용하여 수행될 수 있으며, 바람직하게는 상기 중합 반응에 사용되는 알파-올레핀 보다 분자량이 큰 용매를 사용할 수 있으며, 예를 들면, 탄소수 4 내지 8의 포화 탄화수소 화합물, 특히, 바람직하게는 탄소수 6의 헥산을 사용할 수 있다. 예를 들면, 상기 용매의 탄소수는 상기 중합 반응에 사용되는 알파-올레핀의 탄소수 보다 1 이상 크다. 본 발명에 사용되는 반응원료는, 용매와 비교하여, 상대적으로 증기압이 크므로, 미반응 원료의 회수가 용이하다. 예를 들면, 반응원료가 에틸렌 및 프로필렌인 경우, 상압 및 0 내지 100 ℃, 바람직하게는 0 내지 50 ℃의 온도에서 회수될 수 있다. 또한, 본 발명에 사용되는 반응 원료는, 데센-1 등의 고급 알켄과 비교하여, 수급이 안정적이고 가격이 저렴한 장점이 있다.
본 발명에 따른 중합 반응에 있어서, 촉매로는, 지글러-나타 촉매 등의 1세대 촉매를 사용하는 것 보다는, 메탈로센 촉매를 사용하는 것이 바람직하고, 필요에 따라, 상기 촉매와 유기 알루미늄 옥시 화합물, 유기 알루미늄 화합물, 보레이트(Borate), 알루미녹산 등의 조촉매를 함께 혼합하여, 싱글 사이트(single site) 촉매 시스템을 형성하여 사용할 수 있다. 한편, 상기 분자량 조절제로는 수소(H2, hydrogen) 등이 사용될 수 있다. 본 발명에 따른 에틸렌과 알파-올레핀의 공중합에 있어서, 중합 온도는 반응 물질, 반응 조건 등에 따라 달라질 수 있으나, 일반적으로 80 내지 150 ℃, 바람직하게는 90 내지 120 ℃ 이고, 중합 압력은 10 내지 50 바아(bar), 바람직하게는 20 내지 40 바아(bar), 더욱 바람직하게는 25 내지 35 바아(bar)이다. 여기서, 상기 중합 온도가 너무 낮으면 과도하게 고분자량의 공중합체가 형성될 우려가 있고, 너무 높으면 열안정성에 의해 촉매 활성이 감소될 우려가 있다. 상술한 에틸렌과 알파-올레핀의 공중합 조건에 대하여는, 본 출원인의 특허출원 10-2012-0130792호(출원일: 2012. 11. 19)에 상세히 개시되어 있으며, 상기 출원의 모든 내용은 참조로서 본 명세서에 포함된다.
본 발명에 따라 중합된 에틸렌과 알파-올레핀의 공중합체는, 에틸렌과 탄소수 3 내지 20의 알파-올레핀이 공중합되어 형성된, 상온에서 액상인 랜덤 공중합체로서, 공중합체 사슬 중에, 알파-올레핀 단위가 균일하게 분포되는 구조를 가진다. 본 발명에 따른 공중합체는, 일반적으로, 에틸렌으로부터 유도된 에틸렌 단위 40 내지 60 몰%, 바람직하게는 45 내지 55 몰%, 및 탄소수 3 내지 20의 알파-올레핀으로부터 유도된 탄소수 3 내지 20의 알파-올레핀 단위 40 내지 60 몰%, 바람직하게는 45 내지 55 몰%로 이루어진다. 본 발명에 따른 공중합체에 있어서, 상기 에틸렌 단위의 함량이 40 몰% 미만인 경우, 프로필렌 등의 함량이 증가하여, 액상 공중합체가 형성되지 않을 우려가 있고, 60 몰%를 초과하는 경우, 에틸렌의 함량이 과도하게 증가하여, 액상 공중합체의 형성이 어렵거나, 합성 윤활유로서 부적합하게 될 우려가 있다. 본 발명에 따른 공중합체는, 수평균 분자량(Mn)이 500 내지 10,000, 바람직하게는 800 내지 6,000 이고, 분자량 분포(Mw/Mn, Mw는 중량평균 분자량)가 3 이하, 바람직하게는 2 이하이다. 상기 수평균 분자량(Mn) 및 분자량 분포(Mw/Mn)는 겔투과크로마토그래피(GPC, Gel permeation chromatography)에 의해 측정된다. 본 발명에 따라 제조된 액상 에틸렌 및 알파-올레핀 공중합체는, 단량체들이 공중합체 분자의 길이 전체에 고르게 분포되어 있고, 조성 및 분자량 분포가 좁고, 균일성이 우수하며, 이중결합의 분포가 적을 뿐만 아니라, 활성이 높고 슬러지 생성이 적어, 높은 점도지수, 저온 점도특성, 전단 및 열 안정성, 내구성 등을 필요로 하는 합성유로서 특히 유용하다.
본 발명에 따른 에틸렌 및 알파-올레핀 공중합체로 이루어진 합성유는, 자동차 윤활유, 기어 오일, 산업 윤활유, 그리스 등의 분야에서, 윤활기유, 점도 조절제(Viscosity modifier), 점도지수 향상제, 윤활성 첨가제 등으로 사용될 수 있다.

Claims (8)

  1. 반응원료로서 에틸렌과 알파-올레핀 및 용매가 공급되고, 상기 반응원료가 용액 상태에서 공중합되어, 용매에 용해된 에틸렌과 알파-올레핀 공중합체를 포함하는 중합 생성물을 형성하는 중합 반응기;
    상기 중합 생성물 중에 포함된 미반응 에틸렌 및 알파-올레핀을 증류하여 분리하기 위한 플래시 타워, 및 상기 중합 생성물 중에 포함된 에틸렌과 알파-올레핀 공중합체보다 분자량이 작은 저분자량 올리고머 및 용매를 증류시켜 분리하는 스트리퍼부를 포함하는, 미반응 에틸렌, 알파-올레핀과 저분자량 올리고머 및 중합체 분리부; 및
    상기 분리된 저분자량 올리고머 및 용매로부터, 저분자량 올리고머를 분리하고, 용매를 회수하는 용매 회수부를 포함하는 에틸렌과 알파-올레핀의 중합 장치.
  2. 청구항 1에 있어서, 상기 플래시 타워는, 상기 중합 생성물을 플래쉬 증류(flash distillation)시켜, 중합 생성물 중에 포함된 미반응 에틸렌 및 알파-올레핀을 분리하는 것인, 에틸렌과 알파-올레핀의 중합 장치.
  3. 청구항 1에 있어서, 상기 플래시 타워와 스트리퍼부 사이에는, 중합 반응이 완료된 중합 생성물에 포함되어 있는 촉매를 비활성화시키기 위한 세척부가 더욱 설치되어 있는 것인, 에틸렌과 알파-올레핀의 중합 장치.
  4. 청구항 1에 있어서, 상기 스트리퍼부는 제1 스트리퍼부와 제2 스트리퍼부의 2단계로 구성되고, 상기 제1 스트리퍼부는 20 ~ 30 토르(Torr)의 압력 및 80 ~ 100 ℃의 온도에서 운전되어, 용매 및 저분자량 올리고머를 1차적으로 분리하기 위한 것이고, 상기 제2 스트리퍼부는 1 ~ 10 토르(Torr)의 압력 및 220 ~ 240 ℃의 온도에서 운전되어, 중합 생성물에 잔류한 용매 및 저분자량 올리고머를 2차적으로 더욱 분리하는 것인, 에틸렌과 알파-올레핀의 중합 장치.
  5. 청구항 1에 있어서, 상기 플래시 타워의 온도 및 압력은, 반응 원료인 에틸렌과 알파-올레핀 및 그 이하의 분자량을 가지는 물질을 증류시키고, 용매는 잔류시키도록 설정되는 것인, 에틸렌과 알파-올레핀의 중합 장치.
  6. 청구항 1에 있어서, 상기 알파-올레핀은 탄소수 3 내지 5의 선형 알파-올레핀이고, 상기 용매는 탄소수 4 내지 8의 포화 탄화수소 화합물인 것인, 에틸렌과 알파-올레핀의 중합 장치.
  7. 청구항 1에 있어서, 상기 알파-올레핀은 프로필렌인 것인, 에틸렌과 알파-올레핀의 중합 장치.
  8. 용매의 존재 하에서, 반응원료인 에틸렌과 알파-올레핀을 공중합 반응시켜, 미반응 에틸렌 및 알파-올레핀을 포함하는 저분자량 화합물, 용매, 에틸렌과 알파-올레핀 공중합체 및 에틸렌과 알파-올레핀 올리고머를 포함하는 중합 생성물을 얻는 단계;
    상기 중합 생성물 중에 포함되어 있는 미반응 에틸렌과 알파-올레핀을 증류하여 분리하는 단계;
    상기 중합 생성물에 포함되어 있으며, 중합 생성물인 에틸렌과 알파-올레핀 공중합체 보다 분자량이 작은 저분자량 올리고머 및 용매를 증류하여 분리함으로써, 순수한 중합 생성물을 얻는 단계; 및
    상기 중합 생성물로부터 분리된 저분자량 올리고머 및 용매로부터, 증류에 의하여 저분자량 올리고머를 분리하여, 용매를 회수한 다음, 회수된 용매를 다시 중합 용매로 재사용하는 단계를 포함하는 에틸렌과 알파-올레핀의 중합 방법.
PCT/KR2015/000009 2014-01-06 2015-01-02 에틸렌과 알파-올레핀의 중합 장치 및 제조방법 WO2015102423A1 (ko)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US15/109,418 US10632446B2 (en) 2014-01-06 2015-01-02 Ethylene and alpha-olefin polymerization apparatus and preparation method
EP15733221.4A EP3093070B1 (en) 2014-01-06 2015-01-02 Ethylene and alpha-olefin polymerization apparatus and preparation method
CN201580003800.1A CN106132533B (zh) 2014-01-06 2015-01-02 乙烯和α-烯烃聚合装置及制备方法
RU2016132466A RU2646425C2 (ru) 2014-01-06 2015-01-02 Установка для полимеризации этилена и альфа-олефина и способ получения
JP2016544833A JP6581990B2 (ja) 2014-01-06 2015-01-02 エチレンとアルファーオレフィンとの重合装置および製造方法
ES15733221T ES2774020T3 (es) 2014-01-06 2015-01-02 Aparato de polimerización de etileno y alfa-olefinas y método de preparación
US16/674,303 US11027255B2 (en) 2014-01-06 2019-11-05 Ethylene and alpha-olefin polymerization method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140001201A KR101568186B1 (ko) 2014-01-06 2014-01-06 에틸렌과 알파-올레핀의 중합 장치 및 제조방법
KR10-2014-0001201 2014-01-06

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/109,418 A-371-Of-International US10632446B2 (en) 2014-01-06 2015-01-02 Ethylene and alpha-olefin polymerization apparatus and preparation method
US16/674,303 Division US11027255B2 (en) 2014-01-06 2019-11-05 Ethylene and alpha-olefin polymerization method

Publications (1)

Publication Number Publication Date
WO2015102423A1 true WO2015102423A1 (ko) 2015-07-09

Family

ID=53493691

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/000009 WO2015102423A1 (ko) 2014-01-06 2015-01-02 에틸렌과 알파-올레핀의 중합 장치 및 제조방법

Country Status (8)

Country Link
US (2) US10632446B2 (ko)
EP (1) EP3093070B1 (ko)
JP (1) JP6581990B2 (ko)
KR (1) KR101568186B1 (ko)
CN (1) CN106132533B (ko)
ES (1) ES2774020T3 (ko)
RU (1) RU2646425C2 (ko)
WO (1) WO2015102423A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI609898B (zh) * 2015-12-22 2018-01-01 薩比克全球科技公司 從線型α烯烴製造中回收甲苯的方法
JP2019526686A (ja) * 2016-09-12 2019-09-19 タイ ポリエチレン カンパニー リミテッド 多峰性ポリエチレンパイプ
JP2019526688A (ja) * 2016-09-12 2019-09-19 タイ ポリエチレン カンパニー リミテッド 高性能マルチモーダル超高分子量ポリエチレン
JP2019526684A (ja) * 2016-09-12 2019-09-19 タイ ポリエチレン カンパニー リミテッド 多峰性ポリエチレンパイプ

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI557140B (zh) * 2014-08-19 2016-11-11 努發化工(國際)公司 使用單活性中心催化劑產生之乙烯共聚物
KR102007502B1 (ko) 2016-09-19 2019-08-05 주식회사 엘지화학 에틸렌 및 비닐계 공단량체의 회수 방법
KR102206478B1 (ko) * 2016-11-21 2021-01-21 주식회사 엘지화학 용매의 정제 방법
EP3555028B1 (en) 2016-12-19 2023-01-04 SABIC Global Technologies B.V. Method of separating linear alpha olefins
EP3807234B1 (en) 2018-06-15 2024-02-14 Dow Global Technologies LLC Separations system for recovering hydrocarbons from synthesis of polyethylene polymers
BR112020021759A2 (pt) 2018-11-01 2021-06-15 Lg Chem, Ltd método para separar solvente orgânico a partir de solução mista contendo o solvente orgânico
KR102520447B1 (ko) * 2018-11-22 2023-04-10 주식회사 엘지화학 용매 회수 방법 및 용매 회수 장치
KR102377009B1 (ko) * 2018-12-20 2022-03-18 주식회사 엘지화학 용매의 정제 방법
KR20210012217A (ko) 2019-07-24 2021-02-03 에스케이이노베이션 주식회사 에틸렌 올리고머화 공정의 미반응 에틸렌 회수 방법
KR102585400B1 (ko) * 2019-08-21 2023-10-05 주식회사 엘지화학 올리고머 제조 방법 및 올리고머 제조 장치
KR20210038350A (ko) 2019-09-30 2021-04-07 주식회사 엘지화학 올레핀계 중합체의 잔류 휘발성 유기 화합물 저감 시스템 및 올레핀계 중합체의 잔류 휘발성 유기 화합물 저감 방법
KR20220026805A (ko) 2020-08-26 2022-03-07 주식회사 엘지화학 올레핀계 중합체의 잔류 휘발성 유기 화합물 저감 방법 및 올레핀계 중합체의 잔류 휘발성 유기 화합물 저감 시스템
KR102458149B1 (ko) * 2020-10-13 2022-10-24 한화토탈에너지스 주식회사 폴리올레핀 엘라스토머 제조 설비
KR20220076190A (ko) 2020-11-30 2022-06-08 롯데케미칼 주식회사 폴리카보네이트 결정화 장치
CN114957530B (zh) * 2022-06-28 2023-09-29 杭州双安科技有限公司 一种乙烯和α-烯烃的溶液聚合方法
US11878952B1 (en) 2022-11-14 2024-01-23 Chevron Phillips Chemical Company Lp Oligomerization catalyst system deactivation and related ethylene oligomerization processes

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3780128A (en) 1971-11-03 1973-12-18 Ethyl Corp Synthetic lubricants by oligomerization and hydrogenation
JPS57117595A (en) 1981-01-13 1982-07-22 Mitsui Petrochem Ind Ltd Synthetic lubricating oil
JPS61221207A (ja) 1985-03-26 1986-10-01 Mitsui Petrochem Ind Ltd 液状α−オレフイン共重合体の製法
KR890002562B1 (ko) * 1984-12-12 1989-07-18 미쓰이 도오아쓰 가가꾸 가부시끼가이샤 프로필렌의 공중합 방법
JPH07121969A (ja) 1993-10-22 1995-05-12 Funai Techno Syst Kk ディスク再生装置
KR950008541B1 (ko) * 1990-03-22 1995-07-31 가부시키가이샤 도시바 반도체 기억장치의 용장회로
US5767331A (en) 1981-01-13 1998-06-16 Mitsui Petrochemical Industries, Ltd. Ethylene/alpha-olefin copolymer
JP2796376B2 (ja) 1989-10-18 1998-09-10 出光興産株式会社 合成潤滑油の製造法
KR20090017610A (ko) * 2006-05-19 2009-02-18 엑손모빌 케미칼 패턴츠 인코포레이티드 폴리에틸렌 및 에틸렌 공중합체의 제조 장치
KR20090068215A (ko) * 2006-09-20 2009-06-25 도레이 카부시키가이샤 열가소성 공중합체의 제조방법
KR20100086504A (ko) * 2008-01-18 2010-07-30 토탈 페트로케미칼스 리서치 펠루이 중합 공정으로부터 모노머를 회수하기 위한 공정
KR20120130792A (ko) 2010-04-12 2012-12-03 바르실라 핀랜드 오이 연료 전지 시스템에서 연료 공급을 제어하는 방법 및 배열물

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3326781A (en) * 1963-07-15 1967-06-20 Phillips Petroleum Co Recovery of organic polar compounds from polymerization processes
US3462347A (en) * 1966-12-16 1969-08-19 Phillips Petroleum Co Solvent purification and recovery by stripping and distillation
BE759962A (fr) 1969-12-08 1971-06-07 Exxon Research Engineering Co Procede de polymerisation
US4020121A (en) * 1975-12-15 1977-04-26 Shell Oil Company Oligomerization reaction system
US4152276A (en) * 1977-11-14 1979-05-01 Ethyl Corporation Process of making olefin copolymer lubricant additives by permanganate oxidation of olefin terpolymers
US4271060A (en) * 1979-09-17 1981-06-02 Phillips Petroleum Company Solution polymerization process
US4668834B1 (en) 1985-10-16 1996-05-07 Uniroyal Chem Co Inc Low molecular weight ethylene-alphaolefin copolymer intermediates
DE8709177U1 (ko) 1987-07-03 1987-09-24 Festo Kg, 7300 Esslingen, De
US5200103A (en) * 1988-08-01 1993-04-06 Exxon Chemical Patents Inc. Ethylene alpha-olefin copolymer substituted Mannich base lubricant dispsersant additives
US5759967A (en) * 1988-08-01 1998-06-02 Exxon Chemical Patents Inc Ethylene α-olefin/diene interpolymer-substituted carboxylic acid dispersant additives
US5017299A (en) * 1988-08-01 1991-05-21 Exxon Chemical Patents, Inc. Novel ethylene alpha-olefin copolymer substituted Mannich base lubricant dispersant additives
US5345002A (en) * 1988-08-01 1994-09-06 Exxon Chemical Patents Inc. Ethylene alpha-olefin copolymer substituted hydroxy aromatic compounds
US5225091A (en) * 1988-08-01 1993-07-06 Exxon Chemical Patents Inc. Ethylene alpha-olefin polymer substituted thiocarboxylic acid lubricant dispersant additives
US5266223A (en) * 1988-08-01 1993-11-30 Exxon Chemical Patents Inc. Ethylene alpha-olefin polymer substituted mono-and dicarboxylic acid dispersant additives
US5277833A (en) * 1988-08-01 1994-01-11 Exxon Chemical Patents Inc. Ethylene alpha-olefin polymer substituted mono-and dicarboxylic acid lubricant dispersant additives
US5350532A (en) * 1988-08-01 1994-09-27 Exxon Chemical Patents Inc. Borated ethylene alpha-olefin polymer substituted mono- and dicarboxylic acid dispersant additives
US5229022A (en) * 1988-08-01 1993-07-20 Exxon Chemical Patents Inc. Ethylene alpha-olefin polymer substituted mono- and dicarboxylic acid dispersant additives (PT-920)
CA2034759C (en) * 1988-08-01 2003-06-03 Won R. Song Novel ethylene alpha-olefin polymer substituted mono- and dicarboxylic acid dispersant additives
US5186851A (en) * 1988-08-01 1993-02-16 Exxon Chemical Patents Inc. Ethylene alpha-olefin copolymer substituted mannich base lubricant dispersant additives
US4990709A (en) * 1989-04-28 1991-02-05 Mobil Oil Corporation C2-C5 olefin oligomerization by reduced chromium catalysis
KR100414008B1 (ko) 1995-03-02 2004-04-29 미쓰비시 가가꾸 가부시키가이샤 α-올레핀올리고머의제조방법
DE19645430A1 (de) * 1996-11-04 1998-05-07 Basf Ag Polyolefine und deren funktionalisierte Derivate
US6160060A (en) * 1998-08-04 2000-12-12 Eastman Chemical Company Process for the synthesis of high molecular weight predominantly amorphous polymers with improved color and adhesive properties
JP2001226427A (ja) * 1999-11-05 2001-08-21 Ube Ind Ltd エラストマー中の揮発性物質の除去方法
JP4916049B2 (ja) * 2001-02-23 2012-04-11 出光興産株式会社 エチレン低重合体の製造方法
TWI239941B (en) * 2000-12-26 2005-09-21 Idemitsu Petrochemical Co Process for producing ethylenic oligomer technical field
US8202936B2 (en) * 2004-07-07 2012-06-19 Dow Global Technologies Llc Multistage process for producing ethylene polymer compositions
US7799882B2 (en) * 2005-06-20 2010-09-21 Exxonmobil Chemical Patents Inc. Polymerization process
WO2007011462A1 (en) * 2005-07-19 2007-01-25 Exxonmobil Chemical Patents Inc. Lubricants from mixed alpha-olefin feeds
EP1777210B1 (en) 2005-10-19 2009-05-27 Saudi Basic Industries Corporation Method for oligomerization and/or polymerization of ethylene with flushing of equipment and piping
ATE509041T1 (de) 2006-05-22 2011-05-15 Borealis Tech Oy Verfahren zur herstellung von polyolefinen mit extra niedrigem gehalt an verunreinigungen
WO2008010862A1 (en) 2006-07-19 2008-01-24 Exxonmobil Chemical Patents Inc. Process to produce polyolefins using metallocene catalysts
US8080610B2 (en) * 2007-03-06 2011-12-20 Exxonmobil Research And Engineering Company Monomer recycle process for fluid phase in-line blending of polymers
EP2231779B1 (en) * 2007-12-20 2012-06-06 ExxonMobil Research and Engineering Company In-line process to produce pellet-stable polyolefins
WO2009082468A1 (en) * 2007-12-20 2009-07-02 Exxonmobil Research And Engineering Company Polypropylene ethylene-propylene copolymer blends and in-line process to produce them
US8227392B2 (en) * 2008-01-25 2012-07-24 Exxonmobil Research And Engineering Company Base stocks and lubricant blends containing poly-alpha olefins
US9512240B2 (en) * 2008-09-19 2016-12-06 Lanxess International Sa Process for the production of water and solvent-free polymers
AU2009308801B2 (en) * 2008-10-31 2015-05-07 Chevron Phillips Chemical Company Lp Oligomerization catalyst system and process for oligomerizing olefins
CN102666806B (zh) * 2009-12-24 2015-09-16 埃克森美孚化学专利公司 用于生产新型合成基础油料的方法
EP2601225B1 (en) * 2010-08-04 2015-11-04 ExxonMobil Chemical Patents Inc. Shear-stable high viscosity polyalphaolefins
CN103044598B (zh) * 2011-10-17 2014-12-24 中国石油天然气股份有限公司 一种闪蒸提浓乙丙橡胶胶液的方法
CN103304717A (zh) * 2012-03-15 2013-09-18 西安艾姆高分子材料有限公司 一种乙烯和α-烯烃共聚制备高粘度指数合成润滑油的方法和用途

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3780128A (en) 1971-11-03 1973-12-18 Ethyl Corp Synthetic lubricants by oligomerization and hydrogenation
JPS57117595A (en) 1981-01-13 1982-07-22 Mitsui Petrochem Ind Ltd Synthetic lubricating oil
US5767331A (en) 1981-01-13 1998-06-16 Mitsui Petrochemical Industries, Ltd. Ethylene/alpha-olefin copolymer
KR890002562B1 (ko) * 1984-12-12 1989-07-18 미쓰이 도오아쓰 가가꾸 가부시끼가이샤 프로필렌의 공중합 방법
JPS61221207A (ja) 1985-03-26 1986-10-01 Mitsui Petrochem Ind Ltd 液状α−オレフイン共重合体の製法
JP2796376B2 (ja) 1989-10-18 1998-09-10 出光興産株式会社 合成潤滑油の製造法
KR950008541B1 (ko) * 1990-03-22 1995-07-31 가부시키가이샤 도시바 반도체 기억장치의 용장회로
JPH07121969A (ja) 1993-10-22 1995-05-12 Funai Techno Syst Kk ディスク再生装置
KR20090017610A (ko) * 2006-05-19 2009-02-18 엑손모빌 케미칼 패턴츠 인코포레이티드 폴리에틸렌 및 에틸렌 공중합체의 제조 장치
KR20090068215A (ko) * 2006-09-20 2009-06-25 도레이 카부시키가이샤 열가소성 공중합체의 제조방법
KR20100086504A (ko) * 2008-01-18 2010-07-30 토탈 페트로케미칼스 리서치 펠루이 중합 공정으로부터 모노머를 회수하기 위한 공정
KR20120130792A (ko) 2010-04-12 2012-12-03 바르실라 핀랜드 오이 연료 전지 시스템에서 연료 공급을 제어하는 방법 및 배열물

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3093070A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI609898B (zh) * 2015-12-22 2018-01-01 薩比克全球科技公司 從線型α烯烴製造中回收甲苯的方法
JP2019526686A (ja) * 2016-09-12 2019-09-19 タイ ポリエチレン カンパニー リミテッド 多峰性ポリエチレンパイプ
JP2019526688A (ja) * 2016-09-12 2019-09-19 タイ ポリエチレン カンパニー リミテッド 高性能マルチモーダル超高分子量ポリエチレン
JP2019526684A (ja) * 2016-09-12 2019-09-19 タイ ポリエチレン カンパニー リミテッド 多峰性ポリエチレンパイプ
JP7071966B2 (ja) 2016-09-12 2022-05-19 タイ ポリエチレン カンパニー リミテッド 高性能マルチモーダル超高分子量ポリエチレン
JP7181183B2 (ja) 2016-09-12 2022-11-30 タイ ポリエチレン カンパニー リミテッド 多峰性ポリエチレンパイプ
JP7181858B2 (ja) 2016-09-12 2022-12-01 タイ ポリエチレン カンパニー リミテッド 多峰性ポリエチレンパイプ

Also Published As

Publication number Publication date
RU2646425C2 (ru) 2018-03-05
RU2016132466A (ru) 2018-02-16
EP3093070A1 (en) 2016-11-16
US11027255B2 (en) 2021-06-08
US20200070121A1 (en) 2020-03-05
EP3093070A4 (en) 2017-09-13
US10632446B2 (en) 2020-04-28
CN106132533B (zh) 2019-05-17
JP2017503891A (ja) 2017-02-02
JP6581990B2 (ja) 2019-09-25
KR101568186B1 (ko) 2015-11-11
ES2774020T3 (es) 2020-07-16
KR20150081565A (ko) 2015-07-15
EP3093070B1 (en) 2019-11-13
US20160325263A1 (en) 2016-11-10
CN106132533A (zh) 2016-11-16

Similar Documents

Publication Publication Date Title
WO2015102423A1 (ko) 에틸렌과 알파-올레핀의 중합 장치 및 제조방법
KR101569228B1 (ko) 폴리알파올레핀 및 폴리알파올레핀의 제조방법
EP3140266B1 (en) Use of a metallocene catalyst to produce a polyalpha-olefin
RU2012111831A (ru) ДВУХСТАДИЙНЫЙ СПОСОБ И УСТРОЙСТВО ДЛЯ ПРОИЗВОДСТВА ВЫСОКОВЯЗКИХ ПОЛИ-α-ОЛЕФИНОВ
US9200096B2 (en) Polyvinyl ether based high performance synthetic fluids prepared using cationic polymerization
RU2415154C1 (ru) Способ получения бутилкаучука
JP6454327B2 (ja) 反応性ポリブテンおよび非反応性ポリブテンを選択的に製造するための装置および方法
KR101871071B1 (ko) 폴리부텐의 제조방법, 이에 의해 제조된 폴리부텐, 및 이에 의해 제조된 폴리부텐의 제조장치
RU2130948C1 (ru) Способ получения полиизобутилена
CN1316443A (zh) 具有高双键含量的不含凝胶的高分子量异丁烯共聚物
RU2160285C1 (ru) Способ получения низкомолекулярного полибутена
US3325406A (en) Copolymers of isobutene and acrolein ethylene dithioacetal
CN107057823B (zh) 一种pao40基础油高效制备的方法
KR0152136B1 (ko) 폴리부텐류의 제조방법
KR20220058063A (ko) 폴리이소부텐의 제조방법
JPH01226837A (ja) 工業用メタノール‐メチルメタクリレート混合物の分離法
KR101628897B1 (ko) 노르말 프로판올을 포함한 촉매를 이용한 폴리부텐의 제조방법
SU682529A1 (ru) Способ получени полиолефинов
RU2109754C1 (ru) Способ получения низкомолекулярного полиизобутилена
Song et al. New high performance synthetic hydrocarbon base stocks
KR100827273B1 (ko) 삼불화붕소 착물 촉매의 제조방법 및 이를 이용한 고반응성폴리부텐의 제조방법
Rogov et al. Method for production of low-molecular-weight polybutenes for various purposes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15733221

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15109418

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015733221

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015733221

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016544833

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016132466

Country of ref document: RU

Kind code of ref document: A