WO2015099010A1 - サファイア単結晶育成用坩堝、サファイア単結晶育成方法およびサファイア単結晶育成用坩堝の製造方法 - Google Patents

サファイア単結晶育成用坩堝、サファイア単結晶育成方法およびサファイア単結晶育成用坩堝の製造方法 Download PDF

Info

Publication number
WO2015099010A1
WO2015099010A1 PCT/JP2014/084241 JP2014084241W WO2015099010A1 WO 2015099010 A1 WO2015099010 A1 WO 2015099010A1 JP 2014084241 W JP2014084241 W JP 2014084241W WO 2015099010 A1 WO2015099010 A1 WO 2015099010A1
Authority
WO
WIPO (PCT)
Prior art keywords
crucible
single crystal
sapphire single
sapphire
growing
Prior art date
Application number
PCT/JP2014/084241
Other languages
English (en)
French (fr)
Inventor
剛 板倉
誠治 中林
角倉 孝典
達矢 森川
瀧田 朋広
明彦 池ヶ谷
Original Assignee
株式会社アライドマテリアル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アライドマテリアル filed Critical 株式会社アライドマテリアル
Priority to CN201480070900.1A priority Critical patent/CN105849322B/zh
Priority to JP2015554984A priority patent/JP6134814B2/ja
Publication of WO2015099010A1 publication Critical patent/WO2015099010A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/66Electroplating: Baths therefor from melts
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/20Aluminium oxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B35/00Apparatus not otherwise provided for, specially adapted for the growth, production or after-treatment of single crystals or of a homogeneous polycrystalline material with defined structure
    • C30B35/002Crucibles or containers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D5/00Supports, screens, or the like for the charge within the furnace
    • F27D5/0068Containers
    • F27D2005/0075Pots, e.g. slag pots, ladles

Definitions

  • the present invention relates to a crucible for growing a sapphire single crystal, a method for growing a sapphire single crystal, and a method for producing a crucible for growing a sapphire single crystal.
  • Sapphire single crystal is a material excellent in transmittance and mechanical properties, and is widely used, for example, as an optical material, and has been increasingly used as an epitaxial substrate for GaN growth.
  • this sapphire single crystal uses a pulling method (also called Czochralski method, CZ method, etc.), EFG (Edge-defined.definedFilm-fed Growth) method or Kyropoulos method using crucibles such as iridium, tungsten, and molybdenum. It was obtained by growing from a seed crystal.
  • the HEM (Heat-Exchange Method) method has come to be used as a growth method that can cope with an increase in the size of the sapphire single crystal (Non-patent Document 1).
  • a temperature of 2050 ° C. or higher that always melts alumina is required, and a crucible that can withstand the weight and pressure of alumina at that temperature is required.
  • An alloy having molybdenum as a main component can be cited as a material that can withstand such conditions.
  • molybdenum when molybdenum is used as a crucible material, it is desirable to provide a structure that suppresses mixing of the crucible material into the molten sapphire. .
  • Patent Document 1 describes that a tungsten film is formed on the outer periphery of a molybdenum crucible by a CVD method or a thermal spraying method (Patent Document 1).
  • Patent Document 2 describes that a tungsten film is formed by CVD or thermal spraying on molybdenum material doped with lanthanum element or lanthanum oxide as molybdenum as a base material (Patent Document 2).
  • Patent Document 3 discloses that a solid solution phase of tungsten and molybdenum is formed by coating tungsten with tungsten by CVD or spraying, followed by heat treatment (Patent Document 3).
  • Patent Document 4 describes a technique for forming a metal foil having a melting point of 1800 ° C. or higher in a molybdenum crucible (Patent Document 4).
  • Patent Document 5 Non-Patent Documents 2 to 4
  • Patent Documents 1 to 4 are optimized techniques for obtaining a sapphire single crystal. Therefore, particularly in the growth of a sapphire single crystal using the HEM method as described in Non-Patent Document 1. Had the problem that the crucible had to be disposable after a single use.
  • sapphire produced for improving the yield of sapphire has been increased in size, and accordingly, a molybdenum crucible for growing sapphire has also been increased in size.
  • a temperature of 2050 ° C. or higher that always melts alumina is required, and a crucible that can withstand the weight and pressure at that temperature is required.
  • the bottom of a crucible containing an alumina melt for sapphire having a depth of 300 mm is subjected to a pressure of 120 g / cm 2, that is, 11.7 MPa, from alumina having a density of 4 g / cm 3 .
  • a pressure of 120 g / cm 2 that is, 11.7 MPa
  • Patent Documents 1 to 4 are not techniques optimized for obtaining a large sapphire single crystal as described above, there is a problem that the techniques are not optimized for increasing the size of the crucible.
  • Patent Document 5 and Non-Patent Documents 2 to 4 are not applied to a molybdenum crucible, they are not techniques optimized for obtaining a large sapphire single crystal.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a crucible for growing a sapphire single crystal that is optimized to obtain a sapphire single crystal and can be reused.
  • the present inventor has optimized the conditions for the crucible to obtain a crucible for growing a sapphire single crystal that is optimized and can be reused.
  • the coating layer on the inner peripheral surface of the crucible was examined again.
  • the present inventors have found that the crucible can be optimized to obtain a sapphire single crystal by providing a plating layer having a predetermined structure on the inner peripheral surface of the crucible as a coating layer.
  • the first aspect of the present invention is a crucible-shaped base material mainly composed of molybdenum, provided at least on the inner periphery of the base material, and made of tungsten and inevitable impurities, and has an oxygen concentration of 0.1% by mass.
  • the second aspect of the present invention is a method for growing a sapphire single crystal, wherein the sapphire single crystal is grown using the crucible for growing a sapphire single crystal described in the first aspect.
  • At least the inner periphery of a crucible-shaped base material mainly composed of molybdenum is made of tungsten and inevitable impurities by electrolytic plating using a molten salt, and the oxygen concentration is 0.1% by mass. It is the manufacturing method of the crucible for sapphire single crystal growth which forms the plating layer of less than.
  • a crucible for growing a sapphire single crystal optimized for obtaining a sapphire single crystal can be provided.
  • FIG. 11 is a diagram simulating EPMA (Electron Probe Micro Micro Analyzer) mapping of W in the cross section of FIG. 10, showing that the white color region has a higher W density and the black color region has a lower W density.
  • FIG. 11 is a diagram simulating EPMA mapping of a cross section of La in the cross section of FIG. 10, in which a white color region has a higher La concentration and a black color region has a lower La concentration. It is the figure which imitated EPMA mapping of Mo in the cross section of FIG.
  • the crucible 1 for growing a sapphire single crystal a crucible for growing a sapphire single crystal using a CZ method, an EFG method, a HEM method or the like is illustrated.
  • a crucible 1 for sapphire single crystal growth has a crucible-shaped base material 3 and a tungsten coating layer 5 coated on at least the inner periphery 3a of the base material 3.
  • Base material 3 As a material constituting the base material 3, a material mainly composed of molybdenum is suitably used as a metal material that can withstand a sapphire (alumina) melting temperature and has a high high-temperature strength.
  • the main component means an element having the largest composition ratio.
  • base material 3 include the following.
  • the material of the base material 3 is a material in which the purity of the molybdenum constituting the base material 3 is 99.9% by mass or more and the balance is inevitable impurities.
  • tungsten-molybdenum alloy in which tungsten having a melting point higher than that of molybdenum is added to molybdenum so that the high-temperature strength is higher than that of molybdenum can be cited as a material for the base material 3.
  • lanthanum-doped molybdenum alloy doped with lanthanum or its oxide can be cited as a material for the base material 3.
  • the lanthanum-doped molybdenum alloy may be either a material that has been hot or cold plastically processed, such as rolling or forging, or a material in which the plastically processed material is heat-treated at a recrystallization temperature or higher. By setting it as such a structure, heat resistance can be improved more.
  • the molten salt used for forming the coating layer 5, that is, the formation of tungsten plating (details will be described later) has a property of dissolving the oxide, but the lanthanum oxide contained in the base material 3 is being formed during the formation of the coating layer 5. It does not begin to dissolve in the molten salt. This is because the time from the immersion of the base material 3 in the molten salt during coating to the start of tungsten deposition is as short as several seconds.
  • the deposited tungsten serves as a lanthanum oxide protective film and prevents leakage of the lanthanum oxide, so that the performance of the base material 3 is not impaired.
  • leakage of the oxide can also be prevented by providing an intermediate layer on the base material 3 by thermal spraying or the like before plating.
  • the crucible 1 for sapphire single crystal growth has the coating layer 5, as will be described later, tungsten of the coating layer 5 and molybdenum of the base material 3 are alloyed by mutual diffusion due to heat during sapphire growth. Even if it is changed, lanthanum does not precipitate on the surface of the coating layer 5, and lanthanum oxide does not appear on the surface of the coating layer 5 and does not deteriorate the quality of sapphire. That is, since the lanthanum oxide remains in the molybdenum alloy of the base material 3 due to the presence of the coating layer 5, there is no possibility of reacting with sapphire or adversely affecting crystallization of sapphire.
  • the crucible 1 for growing a sapphire single crystal also has an excellent feature that the reaction between the additive in the base material 3 and sapphire can be prevented by the presence of the coating layer 5. It is also possible to use TZM (Mo—Ti—Zr—C alloy) added with different materials or molybdenum in which HfC is dispersed in order to improve the high temperature strength of the material.
  • TZM Mo—Ti—Zr—C alloy
  • the amount of lanthanum added is desirably in the range of 0.1% by mass or more and 5.0% by mass in terms of oxide. This is because when lanthanum addition amount is less than 0.1% by mass, heat resistance at high temperature cannot be improved, and when lanthanum addition amount exceeds 5.0% by mass, the density required for plastic working is obtained. This is because it disappears.
  • a more desirable lanthanum addition amount is 0.5% by mass or more and 2.0% by mass or less.
  • the dimensions of the base material 3 are, for example, about 2.5 to 6 mm in thickness and about 300 to 500 mm in height and diameter, this hinders further crucible enlargement when the sapphire single crystal further increases in size in the future. is not.
  • the coating layer 5 is a material that prevents the reaction between the molten sapphire and the base material 3 and imparts heat resistance to the crucible.
  • the coating layer 5 is a tungsten plating layer (molten salt tungsten plating layer).
  • tungsten plating layer molten salt tungsten plating layer
  • thermal spraying and CVD are known as conventional methods for coating tungsten with molybdenum.
  • thermal spraying can be easily increased in thickness, and can cover a large area, so that it can cope with an increase in the size of the crucible and has a low cost.
  • the thermal spraying has disadvantages that the surface roughness increases and it is difficult to obtain a dense film.
  • CVD has the advantage that the surface roughness is small and a dense film can be obtained, but it has the disadvantage that it is difficult to increase the thickness and size, and the cost is high.
  • thermal spraying and CVD have mutually opposite advantages and disadvantages, and it was difficult to satisfy all the characteristics required for the coating layer 5.
  • the coating layer 5 having the advantages of thermal spraying and CVD can be formed by making the coating layer 5 a plating layer that satisfies the predetermined requirements. I decided to adopt it.
  • the coating layer 5 as the plating layer satisfies the following requirements.
  • the coating layer 5 is pure tungsten having the highest melting point in the metal element, that is, a layer composed of tungsten and inevitable impurities. Specifically, tungsten having a purity of 99.9% by mass or more (the balance) It is desirable to use inevitable impurities. This is because, when the purity is less than 99.9% by mass, the reaction of sapphire with impurities has an adverse effect on the quality of the obtained sapphire, the melting point decreases as the purity decreases, and the film density described later decreases. It is to do.
  • the purity of the coating layer 5 can be obtained by, for example, dissolving the coating and performing chemical analysis according to JIS H1403 using ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectroscopy).
  • ICP-AES Inductively Coupled Plasma-Atomic Emission Spectroscopy
  • unavoidable impurities are quantified by a plurality of other measuring methods such as EPMA (Electron Probe Micro Micro Analyzer) described later.
  • EPMA Electro Probe Micro Micro Micro Analyzer
  • the impurity concentration and the tungsten concentration mentioned here include a case where the total does not reach 100 mass%.
  • oxygen concentration as the impurity concentration in the coating layer 5 attention is particularly paid to the oxygen concentration as the impurity concentration in the coating layer 5. This is because, as described later, oxygen not only has an influence on the melting of alumina but also has a deep relationship with the quality of plating.
  • tungsten is present in the form of WO 4 2- in the molten salt, and during deposition by plating, oxygen is desorbed from WO 4 2- and the valence of tungsten is +6 to zero, that is, metallic tungsten W is considered to be the coating layer 5.
  • the coating layer was considered to contain a lot of oxygen, and attention was paid to the oxygen concentration.
  • the thickness of the coating layer 5 is desirably 5 ⁇ m or more and 100 ⁇ m or less. This is because when the film thickness is less than 5 ⁇ m, alumina is infiltrated into the coating layer 5 by heating at the time of forming the sapphire single crystal, or molybdenum of the base material 3 is diffused into the coating layer, thereby obtaining the coating layer 5. This is because the characteristics (heat resistance, etc.) obtained are lost.
  • the thickness of the coating layer 5 exceeds 100 ⁇ m, it takes a long time to produce the coating layer 5 by molten salt electroplating, which will be described later, making it difficult to manufacture industrially.
  • the film thickness of the coating layer 5 is preferably 10 ⁇ m or more and less than 100 ⁇ m, more preferably 10 ⁇ m or more and less than 50 ⁇ m.
  • the film thickness of the coating layer 5 is obtained, for example, by cutting the crucible 1 for sapphire single crystal growth, filling the resin, and observing with a microscope.
  • the coating layer 5 is preferably composed of tungsten having a purity of 99.9% by mass or more, but the oxygen concentration as an impurity contained in the coating layer 5 needs to be less than 0.1% by mass. . This is because when the oxygen concentration is 0.1% by mass or more, the oxide of oxygen and tungsten contained in the coating layer 5 sublimates in a high temperature environment (2050 ° C. or higher) when melting alumina, and the coating layer 5 This is to cause peeling.
  • the coating layer 5 preferably has a surface roughness Ra (arithmetic average roughness) of 0.03 ⁇ m or more and less than 20 ⁇ m. .
  • a Li 2 WO 4 —Na 2 WO 4 —K 2 WO 4 —LiCl—NaCl—KCl—KF molten salt is used to form a Ra 5.0 ⁇ m film at the stage of the plating treatment.
  • 2 O 3 —WO 3 molten salt it is possible to form a film of about Ra 8.0 ⁇ m to 10 ⁇ m.
  • the numerical value of Ra can be controlled, and a plating film of about Ra 3.0 ⁇ m to 10 ⁇ m can be made.
  • the surface roughness that can be plated at low cost is more preferably Ra 3.0 ⁇ m or more and less than 10 ⁇ m.
  • the surface roughness can be measured with a known surface roughness measuring instrument.
  • the porosity is 5% or less.
  • the porosity here means the area ratio of the voids in a cross section perpendicular to the film thickness direction of the coating layer 5, the coating layer 5 is polished, an SEM photograph is taken, and image analysis of the photograph is performed. This can be measured by specifying the size and area of the gap.
  • the coating layer 5 needs to be provided at least in a portion in contact with alumina when the alumina is melted. Specifically, the coating layer 5 is coated on at least the inner periphery 3a of the base material 3 (FIG. 1, 2, the coating layer 5 is provided only on the inner periphery 3 a of the base material 3).
  • the coating layer 5 is provided on the portion in contact with the alumina, it is not always necessary to completely coat the inner periphery 3a. Therefore, for example, as shown in FIG. 2, the state in which the open end portion (upper end portion 3c) of the base material is exposed, specifically, the height H1 from the bottom surface 3b of the base material 3 to the upper end portion 3c is from the bottom surface 3b.
  • the height to the upper end of the coating layer 5 may be larger.
  • the upper end portion 3c when plating is performed on the upper end portion 3c, as will be described later, the upper end portion 3c may be subjected to electrolytic plating faster than other portions, and the surface roughness of the entire film may increase. Plating is preferably performed with the upper end portion 3c exposed (that is, the upper end portion 3c is not plated).
  • the method for manufacturing the sapphire single crystal growth crucible 1 in the present embodiment is not particularly limited as long as the sapphire single crystal growth crucible 1 having the above-described shape and composition can be manufactured. Can be exemplified.
  • the base material 3 is pure Mo, it is desirable to use molybdenum powder having an Fsss (Fisher Sub-Sieve Sizer) particle size of 4 to 5 ⁇ m and a purity of 99.9% by mass or more.
  • Fsss Fisher Sub-Sieve Sizer
  • tungsten powder is required as a raw material in addition to the molybdenum powder.
  • lanthanum-doped molybdenum alloy a powder such as lanthanum oxide is required as a raw material in addition to the molybdenum powder.
  • the molding method examples include the following methods. Specifically, the raw material powder is filled into a rubber having a shape of a desired molded body, the opening is sealed with a stopper, and then the rubber is evacuated. After evacuation, the rubber is loaded into a CIP (Cold Isostatic Pressing) device and molded by applying water pressure according to a predetermined procedure. Sintering is performed in a continuous hydrogen sintering furnace. Thereafter, plastic processing is performed as necessary to finish the crucible.
  • CIP Cold Isostatic Pressing
  • tungsten is plated.
  • electrolytic plating with an aqueous solution cannot be performed. Therefore, it is necessary to use a molten salt bath.
  • the composition of the molten salt bath is desirably a composition capable of depositing tungsten by electrolysis and dissolving and removing the oxide layer formed on the crucible surface.
  • Such a molten salt includes a mixed salt of a fluoride, an acidic oxide and a tungsten compound.
  • a mixed salt of a fluoride, an acidic oxide and a tungsten compound includes a mixed salt of a fluoride, an acidic oxide and a tungsten compound.
  • the tungsten compound is a substance that becomes a tungsten source and is essential. Specifically, WO 3 and Na 2 WO 4 which are hexavalent oxides are preferable for ease of management, but oxides such as WO 2 and W 3 O can also be used as raw materials. As the tungsten compound, although production is very difficult, fluoride such as K 3 WF 6 and K 3 WCl 6 as well oxide, also chlorides are applicable.
  • Fluoride is an oxide deposited on the surface of the crucible and a substance that plays a role of dissolving WO 3 and can form a metal bond between molybdenum and tungsten, so it is desirable to add fluoride. This is because molybdenum constituting the base material 3 easily forms an oxide on the surface thereof, and when an oxide is present on the surface of the base material 3, oxygen is mixed into the film and adhesion is reduced. .
  • KF is desirable. This is because KF dissolves in water, so that the crucible after plating can be removed simply by washing with water, and is easily available.
  • the fluoride is not limited to KF, and alkali or alkaline earth metal fluorides such as NaF, LiF, and CaF 2 can also be used.
  • B 2 O 3 is preferable in terms of cost and chemical management, but KPO 3 can also be used.
  • the mixing ratio of each substance in the mixed salt is a mixture of three kinds of compounds in an arbitrary ratio including fluoride of 40 mol% or more, acidic oxide of 10 mol% or more, and tungsten oxide of 5 mol% or more. preferable.
  • molten salt composition examples include KF—B 2 O 3 —WO 3 and KF—KPO 3 —WO 3 .
  • the base material 3 may be immersed in a bath of the molten salt 11 as shown in FIG. 4, but as shown in FIG. And the base material 3 may be plated so that the molten salt 11 can be held as well as the working electrode.
  • plating By performing plating in this manner, plating can be performed with the upper end portion 3c exposed as shown in FIG. Even in the method shown in FIG. 4, it is possible to plate the upper end portion 3 c in an exposed state by masking a portion of the base material 3 that is not desired to be plated.
  • the plating conditions are preferably the following conditions.
  • the current density is 0.1 A / dm 2 or more, 10A / dm 2 or less (10A / m 2 or more, 1000A / m 2 or less) is It is desirable. This is because, when the current density exceeds 10 A / dm 2 , the film formation rate is increased, but the reaction is less likely to occur uniformly, resulting in a decrease in adhesion and non-uniform particle diameter.
  • the current density is less than 0.1 A / dm 2 , the surface is finished smoothly, but it takes time to obtain a predetermined film thickness because the film formation rate is too slow.
  • the optimum condition is about 3 A / dm 2 (300 A / m 2 ).
  • the plating time is preferably 10 minutes or more and 500 minutes or less although it depends on the current density. This is because when the plating time exceeds 500 minutes, the current efficiency decreases and the surface roughness tends to increase. In addition, if the plating time is less than 10 minutes, the plating time is too short and a sufficient film thickness may not be formed.
  • the heating temperature of the molten salt during electrolysis is about 800 ° C. to 900 ° C. when the molten salt is a KF—B 2 O 3 salt, and the molten salt is a Li 2 WO 4 salt.
  • the temperature is about 500 ° C. to 600 ° C., but the desired range varies depending on the composition of the molten salt, so that the temperature range is not necessarily limited.
  • the above is the details of electrolytic plating.
  • the number of times of electrolytic plating is not limited to one, and it is possible to perform plating again after using the crucible, that is, after growing the sapphire single crystal (after melting the alumina).
  • the coating layer 5 may be polished after washing.
  • the above is the description of the method for manufacturing the crucible 1 for growing a sapphire single crystal.
  • the crucible 1 for growing sapphire single crystal is provided on the crucible-shaped base material 3 mainly composed of molybdenum and at least the inner periphery of the base material 3, and is made of tungsten and inevitable impurities.
  • the coating layer 5 (plating layer) having an oxygen concentration of less than 0.1% by mass is included.
  • the crucible 1 for growing a sapphire single crystal has a structure optimized for obtaining a sapphire single crystal.
  • Example 1 A crucible 1 for growing a sapphire single crystal on which a coating layer 5 was formed by electrolytic plating was produced, and alumina was melted. After cooling, sapphire was taken out.
  • the specific procedure is as follows.
  • a molybdenum crucible having a diameter of 80 mm, a thickness of 2 mm, a depth of 80 mm, and a purity of 99.9% by mass was prepared as the base material 3.
  • the prepared mixed salt was dissolved in an Ar atmosphere so that the molten salt liquid surface height before plating (corresponding to H2 in FIG. 2) was 60 mm, and then the current density of 3 A / dm 2 with a tungsten electrode as a counter electrode. (Constant current control)
  • the temperature of the molten salt was set to 550 ° C. to perform tungsten plating.
  • the molten salt and the crucible were separated, and the mixed salt adhering to the crucible was removed by washing with water to obtain a crucible 1 for sapphire single crystal growth.
  • the coating layer 5 was polished so that Ra was set to 0.03 ⁇ m to 8.5 ⁇ m.
  • the obtained sapphire single crystal growth crucible 1 was used to melt alumina for 10 hours, and the ease of peeling of sapphire after cooling was confirmed.
  • Alumina was added so that the molten alumina had a liquid level height of 40 mm.
  • the L ⁇ ray of molybdenum was also measured, and it was confirmed that there was no diffusion of Mo into the coating layer (less than 5 ⁇ m).
  • the oxygen quantitative value was determined by the ZAF (atomic number / absorption / fluorescence correction) method from the measured value of oxygen K ⁇ ray.
  • the surface roughness of the coating layer 5 did not change in the sapphire peelability between Ra 0.03 ⁇ m and 16.2 ⁇ m. However, when Ra is 20 ⁇ m or more, the sapphire bites into the unevenness of the plating film, and peeling becomes difficult. It was.
  • the oxygen content of the coating layer 5 is preferably less than 0.1%.
  • the surface roughness is preferably Ra 0.03 ⁇ m to 16.2 ⁇ m.
  • Ra is preferably 3 ⁇ m or more and 16.2 ⁇ m or less. I understood that.
  • Example 2 Li 2 WO 4 -Na 2 WO 4 -K 2 WO 4 -LiCl-NaCl-KCl-KF molten salt (molar ratio 3: 18: 3: 13: 52: 6) was used as the molten salt, and other conditions were carried out.
  • the difference in oxygen concentration in the plated film was measured when the base material 3 was shaken at a period of 60 Hz and an amplitude of 2 mm during electrolysis and when it was not shaken.
  • the oxygen concentration when the base material 3 was shaken during electrolysis was less than 0.1% by mass, but the oxygen concentration when not shaken was 2.8% by mass, and 0.1% by mass. % Has been exceeded.
  • the oxygen concentration can be controlled to less than 0.1% by mass by shaking the base material 3 during electrolysis.
  • Example 3 A crucible 1 for growing a sapphire single crystal on which a coating layer 5 having a different porosity was formed, and alumina was melted. After cooling, sapphire was taken out.
  • the specific procedure is as follows.
  • a molybdenum crucible having a diameter of 80 mm, a thickness of 2 mm, a depth of 80 mm, and a purity of 99.9% by mass is prepared as the base material 3, and a molten KF—B 2 O 3 —WO 3 similar to that in Example 1 is used as a molten salt.
  • a salt mixture was prepared.
  • the mixed salt is heated and dissolved in an Ar atmosphere to set the molten salt liquid surface height before plating to 60 mm, and then the temperature of the molten salt is set to 550 at a current density of 3 A / dm 2 with the tungsten electrode as a counter electrode. Tungsten plating was performed at a temperature of ° C.
  • the pre-electrolysis time was set to 0.5 to 2 hours under the same conditions as the current electrolysis, and the density of the plating film was controlled ( (The longer the pre-electrolysis time, the higher the film density).
  • a molybdenum crucible with a 50 ⁇ m coating was prepared by thermal spraying.
  • the density of the sprayed film is generally 60 to 70%.
  • the plating film was formed with a very dense tungsten layer, and the porosity of the cross section of the plating layer was 5% or less.
  • the alumina was added so that the liquid level of the molten alumina was 40 mm.
  • a sample in which a tungsten film (coating layer 5) was produced by plating had a dense film formed as shown in FIGS. 6 and 7, and showed good sapphire peelability as shown in Table 3.
  • the molybdenum crucible attached with the tungsten film by thermal spraying has a lower film density than the plating film, so that the molten Al 2 O 3 bites into the film without destroying the crucible. The sapphire after cooling could not be peeled off.
  • Example 4 A crucible 1 for growing a sapphire single crystal in which a coating layer 5 having a different plating height on the inner surface of the crucible was formed by electrolytic plating, and alumina was melted. After cooling, sapphire was taken out.
  • the specific procedure is as follows.
  • a molybdenum crucible having a diameter of 80 mm, a thickness of 2 mm, a depth of 80 mm, and a purity of 99.9% by mass is prepared as the base material 3, and a molten KF—B 2 O 3 —WO 3 similar to that of Example 1 is prepared as a molten salt.
  • a salt mixture was prepared.
  • tungsten plating was performed at a current density of 3 A / dm 2 and a molten salt temperature of 550 ° C. using a tungsten electrode as a counter electrode.
  • the presence or absence of the coating on the upper end portion 3c on the inner surface of the crucible was controlled by the contact form of the crucible and the salt.
  • the molten salt liquid surface height before plating (corresponding to H2 in FIG. 3) is 50, 60, 70 mm (only the inner surface of the crucible is in contact with the salt) and 80 mm (the entire crucible is immersed in the salt).
  • the molten alumina was charged so that the liquid level was 40 mm. The results are shown in Table 4.
  • the coating layer 5 was coated not only on the inner surface but also on the outer surface and the upper end portion 3c of the inner surface.
  • test No. The upper end portion 3c of 16 was thicker than the inner and outer surfaces. However, the inner surface in contact with sapphire has a smaller film thickness and a larger surface roughness. Further, the inner surface roughness Ra of 16.2 ⁇ m or less was not obtained.
  • Test No. No. 16 also had poor sapphire peelability.
  • Other crucibles (Test Nos. 13 to 15 in Table 4) had good plating adhesion and good sapphire peelability.
  • Example 5 In Example 2, a base material 3 was prepared which was made of Mo, 1.0% by mass of lanthanum in terms of oxide, and inevitable impurities, and the oxide was intermittently dispersed along the processed structure by rolling. This plate material was formed into a crucible shape to form a coating layer 5.
  • the processing conditions such as the composition of the molten salt, temperature, current density, plating time, etc. are the same as in Example 2.
  • FIG. 9 is a diagram simulating a cross-sectional SEM photograph of the obtained crucible in the vicinity of the coating layer 5.
  • the obtained crucible can be plated with high-purity W on the surface while the lanthanum oxide in the base material 3 is retained (the coating layer 5 is formed).
  • a crucible composed only of the base material 3 to which lanthanum oxide is added (that is, a crucible without the coating layer 5) is also produced under the same conditions except for the coating layer 5, and an attempt is made to grow a sapphire single crystal. It was.
  • Oxide Dispersion Strengthened (ODS) alloy with oxide added to molybdenum in the conventional technology has deteriorated quality such as crystal integrity of sapphire because sapphire and oxide added to molybdenum react.
  • the molybdenum crucible was broken by the reaction.
  • the coating layer 5 of the present invention suppresses the interaction between alumina and molybdenum in the base material 3 and also suppresses the reaction between the alumina and the added oxide in the base material 3. It was found that the crucible can be applied to a crucible for growing a sapphire single crystal by forming the coating layer 5 on a molybdenum crucible using an ODS alloy.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

 本発明の課題は、サファイア単結晶を得るために最適化されたサファイア単結晶育成用坩堝を提供することにある。本発明のサファイア単結晶育成用坩堝1は、モリブデンを主成分とする坩堝形状の母材3と、母材3の少なくとも内周3aに設けられ、タングステンと不可避不純物からなり、酸素濃度が0.1質量%未満のめっき層であるコーティング層5を有する。

Description

サファイア単結晶育成用坩堝、サファイア単結晶育成方法およびサファイア単結晶育成用坩堝の製造方法
 本発明は、サファイア単結晶育成用坩堝、サファイア単結晶育成方法およびサファイア単結晶育成用坩堝の製造方法に関する。
 サファイア単結晶は透過率と機械的特性に優れた材料であり、例えば光学材料として広く用いられたり、GaN育成用のエピタキシャル基板として更に多くの使用がなされたりするようになってきている。
 このサファイア単結晶は、従来、イリジウム、タングステン、モリブデン等の坩堝を用いて、引きあげ法(Czochralski法、CZ法などとも言う)、EFG(Edge-defined. Film-fed Growth)法やKyropoulos法を用いて種結晶から成長させることにより、得られていた。
 一方で、近年はサファイアの歩留向上のために、サファイア単結晶が大型化しており、上述した引き上げ法においても坩堝をはじめ装置の大型化が図られている。
 そこで、このようなサファイア単結晶の大型化に対応可能な成長方法として、HEM(Heat Exchange Method)法も用いられるようになって来ている(非特許文献1)。
 ここで、サファイアの育成の際には、必ずアルミナを溶融する2050℃以上の温度が必要になり、さらにその温度でアルミナの重量や圧力に耐える坩堝が必要になる。
 このような条件に耐える材料としてはモリブデンを主成分とする合金が挙げられるが、坩堝材料としてモリブデンを用いた場合、溶融したサファイア中に坩堝材料が混入するのを抑制する構造を設けることが望ましい。
 このような構造としては、坩堝のうち、サファイアと接触する面をコーティングして被覆層を形成した構造が知られている。
 具体的には、特許文献1には、モリブデン坩堝の外周にCVD法又は溶射法によってタングステン膜を形成することが記載されている(特許文献1)。
 また、特許文献2には母材としてモリブデンにランタン元素やランタン酸化物をドープしたモリブデン材にCVD法又は溶射法によってタングステン膜を形成することが記載されている(特許文献2)。
 さらに、特許文献3にはモリブデンにCVD法又は溶射法によってタングステンを被覆した後に加熱処理することにより、タングステンとモリブデンの固溶相を形成することが記載されている(特許文献3)。
 また、特許文献4には、モリブデン坩堝に、1800℃以上の融点を持つ金属箔を形成する技術が記載されている(特許文献4)。
 なお、モリブデン坩堝へのコーティングではないが、タングステンのコーティング法としてはめっき法も知られている(特許文献5、非特許文献2~4)
特開平6-25855号公報 特開平7-62538号公報 特開平7-102376号公報 特開2010-132544号公報 特開2009―235462号公報
Frederick Schmid, Chandra P. Khattak, and D. Mark Felt, "Producing Large Sapphire for Optical Applications", American Ceramic Society Bulletin, February 1994 Volume 73, No.2, p39-44. Hironori Nakajima et. al.,"Electrodeposition of metallic tungsten films in ZnCl2-NaCl-KCl-KF-WO3 melt at 250℃", Electrochimica Acta, Volume 53, Issue 1, 20 November 2007, Pages 24-27 香山滉一郎, 「バナジウム、モリブデンおよびタングステンの溶融塩電解」, 溶融および高温化学, Vol.43, No.1, 2000, pp.38-63 Koji Nitta et. al.,"Electrodeposition of Tungsten from Li2WO4-Na2WO4-K2WO4 Based Melts", Electrochemistry, 77, No,8 (2009)
 しかしながら、特許文献1~4記載の技術はいずれもサファイア単結晶を得るために最適化された技術ではないため、特に非特許文献1記載のような、HEM法を用いたサファイア単結晶の成長においては、坩堝を1回の使用で使い捨てにしなければならないという問題があった。
 また、前述のように、近年ではサファイアの歩留向上のために作製するサファイアが大型化しており、それに伴い、サファイア育成用のモリブデン坩堝も大型化してきている。サファイア育成条件では、必ずアルミナを溶融する2050℃以上の温度が必要になり、さらにその温度で重量、圧力に耐える坩堝が必要になる。
 例えば300mmの深さを持つサファイア用のアルミナ溶融液を入れた坩堝の底面には4g/cmの密度のアルミナから120g/cmつまり、11.7MPaの圧力を受ける。そのため、従来までの技術レベルである深さ100mm程度の溶融液から受ける40g/cmの圧力では生じなかった問題について、アルミナの密着力や圧力を考慮して坩堝の設計を行う必要がある。
 しかしながら、特許文献1~4記載の技術は上記のように、大型のサファイア単結晶を得るために最適化された技術ではないため、坩堝の大型化に最適化されていないという問題があった。
 また、特許文献5および非特許文献2~4の技術はモリブデン坩堝に適用されるものではないため、大型のサファイア単結晶を得るために最適化された技術ではない。
 本発明は上記課題に鑑みてなされたものであり、その目的は、サファイア単結晶を得るために最適化され、再利用が可能なサファイア単結晶育成用坩堝を提供することにある。
 上記した課題を解決するため、本発明者は、サファイア単結晶を得るために最適化され、再利用が可能なサファイア単結晶育成用坩堝を得るために坩堝に必要な条件について、特にサファイアと接触する坩堝内周面のコーティング層について再度検討した。
 具体的には、これまで坩堝のコーティング層に用いられていなかっためっき層について、サファイア単結晶育成用坩堝に適用可能か否かを検討した。
 その結果、坩堝内周面に所定の構造を有するめっき層をコーティング層として設けることにより、サファイア単結晶を得るために坩堝を最適化可能であることを見出し、本発明をするに至った。
 即ち、本発明の第1の態様は、モリブデンを主成分とする坩堝形状の母材と、前記母材の少なくとも内周に設けられ、タングステンと不可避不純物からなり、酸素濃度が0.1質量%未満のめっき層を有する、サファイア単結晶育成用坩堝である。
 本発明の第2の態様は、第1の態様に記載のサファイア単結晶育成用坩堝を用いてサファイア単結晶の育成を行う、サファイア単結晶の育成方法である。
 本発明の第3の態様は、モリブデンを主成分とする坩堝形状の母材の少なくとも内周に、溶融塩を用いた電解めっきにより、タングステンと不可避不純物からなり、酸素濃度が0.1質量%未満のめっき層を形成する、サファイア単結晶育成用坩堝の製造方法である。
 本発明によれば、サファイア単結晶を得るために最適化されたサファイア単結晶育成用坩堝を提供することができる。
サファイア単結晶育成用坩堝1を示す断面図である。 サファイア単結晶育成用坩堝1の変形例を示す断面図である。 サファイア単結晶育成用坩堝1の製造方法の一例を示すフロー図である。 図3のS3の概要を示す模式図である。 図3のS3の概要を示す模式図である。 試験No.8のコーティング層5付近の断面のSEM(Scanning Electron Microscope)写真を模した図である。 試験No.10のコーティング層5付近の断面のSEM写真を模した図である。 試験No.12のコーティング層5付近の断面のSEM写真を模した図である。 実施例5の坩堝のうち、コーティング層5を形成したものについてのコーティング層5付近の断面のSEM写真を模した図である。 実施例5の坩堝のうち、コーティング層5を形成したものについてのコーティング層5付近の断面の反射電子(Backscattered Electron, BSE)像を模した図である。 図10の断面のWのEPMA(Electron Probe Micro Analyzer)マッピングを模した図であって、色が白い領域ほどW濃度が高く、色が黒い領域ほどW濃度が低いことを示す。 図10の断面のLaの断面のEPMAマッピングを模した図であって、色が白い領域ほどLa濃度が高く、色が黒い領域ほどLa濃度が低いことを示す。 図10の断面のMoのEPMAマッピングを模した図であって、色が白い領域ほどMo濃度が高く、色が黒い領域ほどMo濃度が低いことを示す。
 以下、図面を参照して本発明に好適な実施形態を詳細に説明する。
 まず、図1を参照して本発明の実施形態に係るサファイア単結晶育成用坩堝1の形状について、説明する。
 ここではサファイア単結晶育成用坩堝1として、CZ法、EFG法、HEM法等を用いたサファイア単結晶育成用の坩堝が例示されている。
 図1に示すように、サファイア単結晶育成用坩堝1は、坩堝形状の母材3と、母材3の少なくとも内周3aにコーティングされたタングステンのコーティング層5を有している。
 以下、サファイア単結晶育成用坩堝1を構成する部材の形状、組成、およびサファイア単結晶育成用坩堝1の製造方法について説明する。
<母材3>
 母材3を構成する材料としては、サファイア(アルミナ)溶融温度に耐え高温強度が高い金属材料として、モリブデンを主成分とする材料が好適に用いられる。なお、ここでいう主成分とは組成比率が最も大きい元素を意味する。
 母材3の具体的な材料は以下のものを例示できる。
 まず、母材3を構成するモリブデンの純度が99.9質量%以上で、残部は不可避不純物である材料が母材3の材料として挙げられる。母材3をこのような材料にすることにより、仮に溶融アルミナの坩堝内周面における浸食が生じた場合でも、このレベルの高純度材であればごくわずかの不純物汚染で済み、着色などの不具合を回避できるという効果を有する。
 次に、モリブデンより高融点であるタングステンをモリブデンに添加し、モリブデンより高温強度を高くしたタングステンモリブデン合金も母材3の材料として挙げられる。
 さらにランタンやその酸化物をドープしたランタンドープモリブデン合金も母材3の材料として挙げられる。ランタンドープモリブデン合金は圧延や鍛造など熱間あるいは冷間にて塑性加工を施した材料、あるいはその塑性加工した材料を再結晶温度以上で熱処理した材料のどちらでも良い。このような構造とすることにより、耐熱性をより向上できる。
 なお、コーティング層5の形成、即ちタングステンめっきの形成に用いられる溶融塩(詳細は後述)は酸化物を溶解する特性があるが、母材3に含まれるランタン酸化物はコーティング層5の形成中に溶融塩に溶けだすことはない。これは、コーティングの際に母材3を溶融塩に浸してから、タングステンの析出が開始するまでの時間が数秒と、非常に短いためである。一度めっきを開始した後は、析出したタングステンがランタン酸化物の保護膜となり、ランタン酸化物の漏出を防ぐので、母材3の性能を損なうことはない。また、めっき前に母材3に溶射等によって中間層を設けることによっても、酸化物の漏出を防ぐことができる。
 このように、サファイア単結晶育成用坩堝1はコーティング層5を有しているため、後述するように、サファイア育成時の熱による相互拡散で、コーティング層5のタングステンと母材3のモリブデンが合金化しても、コーティング層5の表面にランタンが析出することがなく、ランタン酸化物がコーティング層5の表面に出てきて、サファイアの品質を劣化させることはない。即ち、ランタン酸化物はコーティング層5の存在によって、母材3のモリブデン合金中に残るため、サファイアと反応したり、サファイアの結晶化へ悪影響を及ぼしたりする恐れはない。
 このように、サファイア単結晶育成用坩堝1は、コーティング層5の存在により母材3中の添加物とサファイアとの反応を防止できるという優れた特徴もあるため、母材3の材料として、モリブデン材に高温強度を改善するために異種材質を添加したTZM(Mo-Ti-Zr-C合金)やHfCが分散したモリブデンを用いることも可能である。
 なお、母材3にランタンを添加する場合のランタン添加量は酸化物換算で0.1質量%以上、5.0質量%の範囲内であることが望ましい。これは、ランタン添加量が0.1質量%未満であると高温での耐熱性の向上は得られず、ランタン添加量が5.0質量%を超えると、塑性加工に必要な密度が得られなくなるためである。より望ましいランタン添加量は0.5質量%以上、2.0質量%以下である。
 さらに、母材3の寸法は例えば厚みが2.5~6mm、高さおよび直径が300~500mm程度であるが、将来サファイア単結晶がさらに大型化した場合に伴う坩堝のさらなる大型化を妨げるものではない。
<コーティング層5>
 コーティング層5は溶融したサファイアと母材3の反応を防ぎ、坩堝に耐熱性を付与する材料である。
 前記の通り、コーティング層5はタングステンのめっき層(溶融塩タングステンめっき層)である。ここで、本実施形態でタングステンのめっき層を採用した理由について、以下に説明する。
 前述のように、従来のタングステンをモリブデンにコーティングする方法としては溶射とCVDが知られている。このうち、溶射は厚膜化が容易であること、大面積に被覆できるため、坩堝の大型化に対応可能であること、コストが低いことが利点として挙げられる。しかしながら、溶射は表面粗さが大きくなること、および緻密な膜が得難いことが欠点として挙げられる。
 一方で、CVDは表面粗さが小さく、緻密な膜を得られるという利点があるが、厚膜化、大型化が困難でコストが高いという欠点があった。
 このように、溶射とCVDは互いに相反する利点・欠点を有し、コーティング層5に要求される全ての特性を充足するのは困難であった。
 そこで、本出願人は鋭意検討した結果、コーティング層5を所定の要件を満たすめっき層とすることにより、溶射とCVDの利点を兼ね備えたコーティング層5を形成可能であることを見出したため、めっきを採用することにした。
 溶射、CVD、めっきにおける利点、欠点をまとめると、以下のようになる。なお、表中の「A」は他の方法と比較して特に優れていることを意味し、「B」は他の方法と比較して優れていることを意味し、「C」は他の方法と比較して劣っていることを意味する。
Figure JPOXMLDOC01-appb-T000001
 一方で、めっき層としてのコーティング層5は以下の要件を満たすのが望ましい。
(組成)
 本実施形態ではコーティング層5は金属元素中で最も融点の高い純タングステン、即ち、タングステンと不可避不純物で構成された層であり、具体的には、99.9質量%以上の純度のタングステン(残部は不可避不純物)を使用することが望ましい。これは、純度が99.9質量%未満の場合、サファイアと不純物の反応で、得られるサファイアの品質への悪影響があることと、純度が低くなるほど融点が下がること、および後述する膜密度が低下するためである。
 なお、コーティング層5の純度は、例えばコーティングを溶解し、ICP-AES(Inductively Coupled Plasma - Atomic Emission Spectroscopy)を用いてJIS H1403に準じて化学分析を行うことにより求められるが、酸素のように、ICP-AESで測定できない元素については、後述するEPMA(Electron Probe Micro Analyzer)等の他の複数の測定方法により不可避不純物を定量する。そのため、ここでいう不純物濃度とタングステン濃度は、合算で100質量%にならない場合を含む。
 なお、本実施形態においては、コーティング層5中の不純物濃度として、特に酸素濃度に着目している。これは後述のように酸素がアルミナ溶融の際に影響を及ぼすためだけではなく、めっきの品質に関連が深いと考えているためである。
 即ち、溶融塩中ではタングステンはWO 2-の形態で存在すると考えられ、めっきによる析出の際には、WO 2-から酸素が脱離してタングステンの価数が+6からゼロ、すなわち金属タングステンWとなり、それがコーティング層5となると考えられている。
 そのため、何らかの要因で酸素の脱離が不完全のまま析出すると、コーティング層に酸素が多く含まれると考え、酸素濃度に着目した。
(膜厚)
 コーティング層5の膜厚は5μm以上、100μm以下であるのが望ましい。これは、膜厚が5μm未満の場合、サファイア単結晶生成時の加熱によってアルミナがコーティング層5に浸透したり、母材3のモリブデンがコーティング層に拡散したりすることにより、コーティング層5に求められる特性(耐熱性等)が失われるためである。
 また、コーティング層5の膜厚が100μmを超えると、後述する溶融塩電解めっきでコーティング層5を作製するのに多大な時間がかかり、工業的に製造するのが困難となるためである。
 なお、コーティング層5の膜厚は好ましくは10μm以上、100μm未満であり、より好ましくは10μm以上、50μm未満である。
 コーティング層5の膜厚は、例えばサファイア単結晶育成用坩堝1を切断して樹脂埋めを行い、顕微鏡で観察することにより、求められる。
(酸素濃度)
 上記の通り、コーティング層5は99.9質量%以上の純度のタングステンで構成されるのが望ましいが、コーティング層5に含まれる不純物としての酸素濃度は0.1質量%未満である必要がある。これは、酸素濃度が0.1質量%以上になるとコーティング層5に含まれる酸素とタングステンの酸化物が、アルミナを溶融する際の高温環境下(2050℃以上)で昇華し、コーティング層5の剥離を引き起こすためである。
(表面粗さ)
 生成されたサファイア単結晶を、坩堝を破壊せずに取り出し可能にするためには、コーティング層5は、表面粗さがRa(算術平均粗さ)0.03μm以上、20μm未満であるのが望ましい。
 これは、算術平均粗さが0.03μm未満のコーティング層を得るためには機械研磨が必要となり、コスト上昇につながるためである。また、Ra20μmを超えるコーティング層5の形成は工業的に困難であり、形成したとしてもコーティング層5の品質が安定しなくなり、コーティング層5が剥離する恐れがあるためである。
 後述する溶融塩によるタングステンめっきでは、めっき処理を行う段階でLiWO-NaWO-KWO-LiCl-NaCl-KCl-KF溶融塩ではRa5.0μmの膜を、KF-B-WO溶融塩によるめっきではRa8.0μm~10μm程度の膜を付けることが可能である。めっき時に逆電解を繰り返すことでRaの数値を制御することができ、Ra3.0μm~10μm程度のめっき膜を作ることができる。さらに、逆電解と機械研磨を組み合わせることで、Raを0.03μmにまで下げることができるが、コスト上昇につながる。以上より、低コストでめっきできる表面粗さはRa3.0μm以上、10μm未満がより望ましい。 
 なお、表面粗さは公知の表面粗さ測定器で測定可能である。
(膜密度)
 コーティング層5の膜密度は、空隙率が5%以下であることが望ましい。
 これは、空隙率が5%を超えると、サファイア溶解時にコーティング層5へのアルミナの浸透が生じ、単結晶育成後にサファイアをコーティング層5から剥離するのが困難となるためである。
 なお、ここでいう空隙率とは、コーティング層5の膜厚方向に対して垂直な断面における空隙の面積率を意味し、コーティング層5を研磨し、SEM写真を撮影し、写真の画像解析を行い、空隙のサイズ、面積を特定することにより測定可能である。
(被覆部分)
 上記の通り、コーティング層5は、アルミナ溶融の際に少なくともアルミナと接触する部分に設けられている必要があり、具体的には母材3の少なくとも内周3aにコーティングされている(図1、2では母材3の内周3aにのみコーティング層5が設けられている)。
 ただし、アルミナと接触する部分にコーティング層5が設けられていれば、必ずしも内周3aを完全にコーティングする必要はない。そのため、例えば図2に示すように、母材の開放端部(上端部3c)が露出した状態、具体的には母材3の底面3bから上端部3cまでの高さH1が、底面3bからコーティング層5の上端までの高さ(めっき高さH2)よりも大きくてもよい。
 特に、上端部3cにめっきを行うと、後述するように、上端部3cは、電解めっきが他の部分よりも早く進行し、膜全体の表面粗さが大きくなる場合があるため、この場合は上端部3cが露出した状態でめっきする(即ち上端部3cをめっきしない)のが好ましい。
<製造方法>
 本実施形態におけるサファイア単結晶育成用坩堝1の製造方法は、上記の形状、組成を有するサファイア単結晶育成用坩堝1が製造できるものであれば、特に限定されるものではないが、以下のようなものを例示することができる。
 以下、図3を参照して製造方法の一例を説明する。
(S1:母材3の成形)
 まず、母材3の原料を用意し、坩堝形状に成形する(図3のS1)。
 原料は、母材3を純Moとする場合はFsss(Fisher Sub-Sieve Sizer)粒度で4~5μm、純度99.9質量%以上のモリブデン粉末を用いるのが望ましい。なお、母材3をタングステンモリブデン合金とする場合はモリブデン粉末に加えてタングステン粉末が原料として必要になる。さらに母材3をランタンドープモリブデン合金とする場合はモリブデン粉末に加えてランタン酸化物等の粉末が原料として必要になる。
 成形方法としては、以下の方法が例示される。 
 具体的には、原料粉末を所望する成形体の形状のラバー内に充填し、開放口を止め具でシールした後ラバー内を真空引きする。真空引きを終えた後、ラバーをCIP(Cold Isostatic Pressing、冷間等方圧加圧)装置内に装填し、所定の手順で水圧を掛けて成形を行い、その後に粉末成形体をバッチ式或いは連続式水素焼結炉で、焼結を行う。その後、必要に応じて塑性加工を行い、坩堝形状に仕上げる。
(S2:溶融塩浴の作製)
 次に、めっきを行うための溶融塩浴を作製する(図3のS2)。
 前記の通り、本実施形態ではタングステンのめっきを行うが、タングステンは水よりもイオン化傾向が大きいため、水溶液による電解めっきはできない。 
 そのため、溶融塩浴を用いる必要がある。
 溶融塩浴の組成としては、電解によりタングステンを析出可能で、かつ坩堝表面に生成した酸化物層を溶解除去可能な組成であることが望ましい。
 このような溶融塩としてはフッ化物と酸性酸化物、タングステン化合物の混合塩が挙げられる。以下、混合塩を構成する各物質について具体的に説明する。
 タングステン化合物はタングステン源となる物質であり、必須である。具体的には管理のしやすさから6価の酸化物であるWOやNaWOが好ましいが、WOやWO等の酸化物も原料として用いることは可能である。また、タングステン化合物としては、製造が極めて困難であるものの、酸化物だけでなくKWFやKWCl等のフルオライド、クロライドも適用可能である。
 フッ化物は坩堝表面に析出した酸化物や、WOを溶解する役割を担う物質であり、モリブデンとタングステンの間で金属結合を形成することが可能であるため、添加するのが望ましい。これは、母材3を構成するモリブデンはその表面に酸化物を形成しやすく、母材3の表面に酸化物が存在すると、皮膜中への酸素の混入と密着性の低下を招くためである。
 具体的なフッ化物としては、KFが望ましい。これは、KFは水に溶解するため、めっき後の坩堝を水洗するだけで取り除くことができ、かつ入手しやすいという利点があるためである。ただし、フッ化物はKFに限定されるものではなく、NaFやLiF、CaFなどのアルカリまたはアルカリ土類金属のフッ化物を用いることも可能である。
 酸性酸化物は溶融塩中のタングステンをオキシフルオライドへと変換し易くし、還元反応を進みやすくする役割を担うため、添加するのが望ましい。
 具体的な酸性酸化物としては、コストおよび薬品管理上はBが好ましいが、KPOを用いることもできる。
 また、混合塩中の各物質の混合比は、フッ化物を40mol%以上、酸性酸化物を10mol%以上、タングステン酸化物を5mol%以上含む、任意の比率で3種類の化合物を混合したものが好ましい。
 なお、具体的な溶融塩の組成としては、KF-B-WOやKF-KPO-WOなどが挙げられる。
(S3:電解めっき)
 次に、図4に示すように、作製した溶融塩11を母材3と接触させ、母材3を作用極とし、銅やタングステンなどの導体を対極13として電源15を用いて電位を印加し、溶融塩電解めっきを行う(図3のS3)。
 なお、電解の際には、図4に示すように、溶融塩11の浴中に母材3を浸漬して行ってもよいが、図5に示すように、母材3内を溶融塩11で満たし、母材3が溶融塩11の保持と作用極を兼ねるようにめっきを行なってもよい。このようにめっきを行うことにより、図2に示すように、上端部3cが露出した状態でめっきすることができる。なお、図4に示す方法であっても、母材3のめっきしたくない部分をマスクする等すれば、上端部3cが露出した状態にめっきすることは可能である。
 また、めっき条件は以下の条件とするのが望ましい。 
 まず、電流密度は0.1A/dm 以上、10A/dm 以下(10A/m 以上、1000A/m 以下)であるのが望ましい。これは、電流密度が10A/dm を超えると、成膜速度は速くなるが、反応が均一に起こりにくくなるため、密着性の低下や、粒子径の不均一が生じるためである。一方で、電流密度が0.1A/dm 未満の場合、表面は滑らかに仕上がるが、成膜速度が遅すぎて所定の膜厚を得るまでに時間がかかるためである。なお、最適条件は3A/dm(300A/m)程度である。
 次に、めっき時間は電流密度にもよるが、10分以上、500分以下とするのが望ましい。これはめっき時間が500分を超えると電流効率が落ちてくることと、表面粗さが増大する傾向にあるためである。また、めっき時間が10分未満ではめっき時間が短すぎ、十分な膜厚を形成できない場合があるためである。
 まためっきの際は、図4、5のいずれの場合も、処理室17全体をN、Arなどの不活性ガスで置換した雰囲気下でめっきを行うのが望ましい。これは、大気雰囲気等の環境下でめっきを行うと、めっきの際に雰囲気ガス中の酸素がモリブデンと反応してモリブデンが酸化してしまい、その反応によって生成するMoOは簡単に昇華してしまうためである(MoOの昇華はコーティング層5の剥離を引き起こす恐れがある)。
 また、電解の際の溶融塩の加熱温度は、溶融塩がKF-B系の塩である場合は800℃~900℃程度であり、溶融塩がLiWO系の塩である場合は500℃~600℃程度であるが、溶融塩の組成によって望ましい範囲が異なるため、必ずしも上記温度範囲に限定されない。 
 以上が電解めっきの詳細である。
 なお、電解めっきの回数は1回には限られず、坩堝の使用後、即ちサファイア単結晶育成後(アルミナ溶融後)に再度めっきを行うことも可能である。
 具体的には、サファイア単結晶の育成時の加熱によりコーティング層5と母材3の間で相互拡散が生じてコーティング層5中のタングステン量が減少した場合に、再度めっき処理を施すことによって、コーティング層5の剥離性を回復させることができる。
 また、電解めっき後に逆電解を行うことにより、コーティング層5の表面粗さを調整することも可能である。
(S4:溶融塩の排出)
 めっきが終了すると、母材3を溶融塩11から分離し、内部の溶融塩11を排出する(図3のS4)。この際、溶融塩11を冷却すると固化してしまうので、めっき時の温度から温度を下げずにそのまま排出するのが望ましい。
(S5:洗浄)
 最後に、サファイア単結晶育成用坩堝1を洗浄し、表面に付着した溶融塩11を除去する(図3のS5)。洗浄は例えば水で行うが、水温が低くなるほど付着した溶融塩11を除去しにくくなるため、50℃以上の温水で洗浄するのが望ましい。
 なお、コーティング層5の表面粗さを調整したい場合は、洗浄後にコーティング層5を研磨してもよい。 
 以上がサファイア単結晶育成用坩堝1の製造方法の説明である。
 このように、本実施形態によれば、サファイア単結晶育成用坩堝1はモリブデンを主成分とする坩堝形状の母材3と、母材3の少なくとも内周に設けられ、タングステンと不可避不純物からなり、酸素濃度が0.1質量%未満のコーティング層5(めっき層)を有する。
 そのため、サファイア単結晶育成用坩堝1はサファイア単結晶を得るために最適化された構造である。
 以下、実施例に基づき、本発明をより具体的に説明する。
(実施例1)
 電解めっきによってコーティング層5を形成したサファイア単結晶育成用坩堝1を作製してアルミナを溶融させ、冷却後サファイアの取り出しを試みた。具体的な手順は以下の通りである。
 まず、母材3として直径80mm、厚さ2mm、深さ80mm、純度99.9質量%のモリブデン坩堝を用意した。
 次に、溶融塩として、KF - B - WO(モル比67:26:7)の混合塩を作製した。
 次に、作製した混合塩をAr雰囲気下で溶解してめっき前の溶融塩液面高さ(図2のH2に相当)は60mmとしたのち、タングステン電極を対極として3A/dmの電流密度 (定電流制御)で溶融塩の温度を550℃としてタングステンめっきを施した。
 電解終了後に溶融塩と坩堝を分離し、坩堝に付着した混合塩を水洗により除去し、サファイア単結晶育成用坩堝1を得た。
 次に、表面粗さによるサファイアの剥離性を調査するため、コーティング層5の研磨を行い、Raを0.03μm~8.5μmとした。
 次に、得られたサファイア単結晶育成用坩堝1を用いてアルミナを10時間溶融し、冷却後のサファイアの剥離の容易さを確認した。溶融したアルミナの液面高さは全て40mmとなるようにアルミナを投入した。
 結果を表2に示す。 
 なお、表2における酸素量、表面粗さ、空隙率は以下の条件で測定した。
(酸素量)
 装置名:島津製作所製 EPMA-1720H
 試験条件:加速電圧:15kV ビーム電流:20nA ビーム径:Φ10μm
 試験方法:まず、試料の準備として,コーティング層5と垂直な断面をダイヤモンドパウダー3μmで研磨した。次に、断面をEPMAで観察してタングステン層の位置を特定した上で,その層の酸素量を定量した。具体的には,分光結晶LSAで酸素のKα線を測定し,分光結晶PETでタングステンのMα線を測定した。また、モリブデンのLα線も測定してコーティング層へのMoの拡散がないこと(5μm未満)も確認した。最後に酸素のKα線の測定値からZAF(原子番号・吸収・螢光補正)法で酸素定量値を求めた。
(表面粗さ)
 装置名:小坂研究所製 Surf corder SE2300
 測定区間:4mm
(空隙率)
 視野100μm×100μmの組織写真を光学顕微鏡で観察・撮影し、写真中の空隙部を画像解析で数値化することにより測定した。
Figure JPOXMLDOC01-appb-T000002
 表2から明らかなように、コーティング層5の酸素量が0.1質量%以上になると、アルミナの溶融の際にWO等の酸化物成分の揮発が活発化し、コーティング層5が揮発した。
 また、コーティング層5の表面粗さはRa0.03μm~16.2μmの間でサファイアの剥離性に変化は見られなかったが、Ra20μm以上ではサファイアがめっき膜の凹凸に食い込み、剥離が困難となった。
 以上の結果から、コーティング層5の酸素含有量は0.1%未満とするのが望ましいことが分かった。
 また、表面粗さはRa0.03μm~16.2μmとするのが望ましいことが分かった。
 ただし、めっきによるコーティング層5の表面粗さをRa3μm未満にするためには、物理研磨が必要であったため、研磨に要するコストを考慮すると、Raは3μm以上、16.2μm以下であるのが望ましいことが分かった。
(実施例2)
 溶融塩としてLiWO - NaWO - KWO - LiCl - NaCl - KCl - KF溶融塩(モル比3:18:3:13:52:6)を用い、他の条件は実施例1と同様とし、電解の際に母材3を周期60Hz、振幅2mmで振盪させた場合とさせなかった場合とで、めっき膜中の酸素濃度の違いを測定した。
 その結果、電解の際に母材3を振盪させた場合の酸素濃度は0.1質量%未満であったが、振盪させなかった場合の酸素濃度は2.8質量%となり、0.1質量%を超えてしまった。
 この結果から、電解の際に母材3を振盪させることにより、酸素濃度を0.1質量%未満に制御可能であることが分かった。
(実施例3)
 空隙率が異なるコーティング層5を形成したサファイア単結晶育成用坩堝1を作製してアルミナを溶融させ、冷却後サファイアの取り出しを試みた。具体的な手順は以下の通りである。
 まず、母材3として直径80mm、厚さ2mm、深さ80mm、純度99.9質量%のモリブデン坩堝を用意し、溶融塩として、実施例1と同様のKF - B - WO溶融塩の混合塩を用意した。
 次に、混合塩をAr雰囲気下で加熱して溶解させ、めっき前の溶融塩液面高さを60mmとしたのち、タングステン電極を対極として3A/dmの電流密度で溶融塩の温度を550℃としてタングステンめっきを施した。
 ここでは、膜密度の違いによるサファイア剥離性を調査するため、電流密度を本電解と同じ条件とした予備電解の時間を0.5時間~2時間に設定し、めっき膜の密度を制御した(予備電解の時間が長いほど、膜密度が大きくなるため)。
 さらに、低膜密度の比較用として、溶射で50μmの皮膜をつけたモリブデン坩堝を作製した。溶射膜の密度は一般的に60~70%である。これに対しめっき膜は非常に緻密なタングステン層が形成されており、めっき層断面の空隙率は5%以下であった。
 なお、溶融したアルミナの液面高さは全て40mmとなるようアルミナを投入した。
 結果を表3に示す。なお、溶射膜には、ブラストのためのAlが混入することとなるため、溶射膜の酸素量は表3には示していない。また、表面粗さ、膜厚、酸素量等の測定条件は実施例1と同様である。
Figure JPOXMLDOC01-appb-T000003
 また、表3のNo8、10、12の試料については、坩堝を、中心軸を通り、かつ軸方向に平行な面で切断して樹脂埋めおよび研磨を行い、SEMを用いて表面形状を観察した。結果を図6~図8に示す。なお、図6がNo.8に、図7がNo.10に、図12がNo.12にそれぞれ対応している。
 めっきでタングステン膜(コーティング層5)を作製した試料は、図6および図7に示すように、密な膜が形成されており、表3に示すように、良好なサファイア剥離性を示した。一方で、溶射でタングステン膜を付けたモリブデン坩堝は、図8に示すように、被膜の膜密度がめっき膜よりも低いため、溶融したAlが皮膜に食い込み、坩堝を破壊せずに冷却後のサファイアを剥離することができなかった。
(実施例4)
 電解めっきによって坩堝内面のめっき高さが異なるコーティング層5を形成したサファイア単結晶育成用坩堝1を作製してアルミナを溶融させ、冷却後サファイアの取り出しを試みた。具体的な手順は以下の通りである。
 まず、母材3として、直径80mm、厚さ2mm、深さ80mm、純度99.9質量%のモリブデン坩堝を用意し、溶融塩として実施例1と同様のKF - B - WO溶融塩の混合塩を用意した。
 次に、混合塩をAr雰囲気下で加熱して溶解したのちに、タングステン電極を対極として3A/dmの電流密度で溶融塩の温度を550℃としてタングステンめっきを施した。
 この際、坩堝内面の上端部3cへの被覆有無によるサファイア剥離性を調査するため、坩堝と塩の接触形態によって坩堝内面の上端部3cへの被覆有無を制御した。具体的には,めっき前の溶融塩液面高さ(図3のH2に対応)を50、60、70mm(坩堝内面のみ塩と接触)と80mm(坩堝全体を塩に浸漬)して,めっきを行なった。溶融したアルミナの液面高さは全て40mmとなるよう投入した。 
 結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 なお、溶融塩液面高さ80mm(表4の試験No.16)の場合,内面だけでなく外面や内面の上端部3cにもコーティング層5が被覆された。
 これは、坩堝全体を塩に浸漬することなく上端部3cにめっきを施すべく溶融塩液面の調整を種々繰り返したが,液面調整だけでは上端部3cへのめっきは困難であり、坩堝全体を浸漬したときのみ上端部3cにめっきができたためである。
 この際、試験No.16の上端部3cは内外面に比べて,めっき膜厚が大きくなった。しかしながら、サファイアと接する内面は,膜厚が小さくなり、さらに表面粗さが大きくなった。また、内面の表面粗さRa16.2μm以下が得られなかった。
 これは、上端部3cは内外面と比べて電界強度が高くなり局所的に電流密度も高くなったため、上端部3cにめっきが集中して厚くなり、本来めっきをしたい内面のめっきに悪影響を及ぼして、薄く表面が粗い膜が形成されためと考えられる。また、試験No.16はサファイア剥離性も不良であった。そのほかの坩堝(表4の試験No.13~15)はめっきの密着性が良好でサファイア剥離性も良好であった。
(実施例5)
 実施例2において、母材3としてMoと酸化物換算で1.0質量%のランタンと不可避不純物からなり、圧延によって断続的に酸化物を加工組織に沿って分散させた板材を準備した。この板材を坩堝形状に成形してコーティング層5を形成した。溶融塩の組成、温度、電流密度、めっき時間等の処理条件は、実施例2と同様である。
 得られた坩堝のコーティング層5付近の断面のSEM写真を模した図を図9に示す。
 図9に示すように、母材3がランタンを含む場合であっても緻密で良好なW層を、母材3にめっきできた。
 次に、得られた坩堝のコーティング層5および母材3をEPMAにより分析した。 
 結果を図10~図13に示す。
 図10~図13から明らかなように、得られた坩堝は、母材3中のランタン酸化物を保持したまま、表面に高純度のWをめっきできている(コーティング層5が形成されている)ことが分かった。
 次に、コーティング層5を形成した坩堝を用いてサファイア単結晶の成長を試みた。また比較のため、ランタン酸化物を添加した母材3のみで構成された坩堝(すなわちコーティング層5を有さない坩堝)もコーティング層5以外は同じ条件で作製し、サファイア単結晶の成長を試みた。
 その結果、ランタン酸化物を添加した母材3のみで構成された坩堝では、ドープしたLaがサファイアと反応してランタン、アルミの複合酸化物を形成したため、サファイアが坩堝との接触部分で単結晶化しない(変色を生じる)という問題があった。
 一方で、コーティング層5を形成した坩堝にはこのような問題が生じず、サファイアの品質に問題のない育成を行うことができた。すなわちコーティング層5を形成した坩堝ではモリブデンに添加したランタン酸化物とサファイアとが反応することなく、サファイアを溶融することができ、また、坩堝とサファイアの密着が起こらず、坩堝の再利用が可能であった。 
 この結果から以下の点がわかった。
 従来の技術ではモリブデンに酸化物を添加した酸化物分散型(Oxide Dispersion Strengthened:ODS)合金は、サファイアとモリブデンに添加した酸化物が反応するためにサファイアの結晶完全性などの品質を低下させたり、反応によってモリブデン坩堝が壊れたりといった不具合があった。しかしながら、本発明のコーティング層5は上述してきたように、アルミナと母材3中のモリブデンとの相互作用を抑制すると同時に、アルミナと母材3中の添加酸化物との反応をも抑制するため、ODS合金を用いたモリブデン坩堝にコーティング層5を形成することにより、当該坩堝をサファイア単結晶育成用の坩堝に適用できることが分かった。
 以上、本発明を実施形態および実施例に基づき説明したが、本発明は上記した実施形態および実施例に限定されることはない。
 当業者であれば、本発明の範囲内で各種変形例や改良例に想到するのは当然のことであり、これらも本発明の範囲に属するものと了解される。
1    :サファイア単結晶育成用坩堝
3    :母材
3a   :内周
3b   :底面
3c   :上端部
5    :コーティング層
11   :溶融塩
13   :対極
15   :電源
17   :処理室
H1   :高さ
H2   :めっき高さ

Claims (21)

  1.  モリブデンを主成分とする坩堝形状の母材と、
     前記母材の少なくとも内周に設けられ、タングステンと不可避不純物からなり、酸素濃度が0.1質量%未満のめっき層を有する、サファイア単結晶育成用坩堝。
  2.  前記めっき層は、溶融塩タングステンめっき層である、請求項1に記載のサファイア単結晶育成用坩堝。
  3.  前記めっき層は、空隙率が5%以下である、請求項1または2に記載のサファイア単結晶育成用坩堝。
  4.  前記めっき層は、純度99.9質量%以上のタングステンと不可避不純物からなる、請求項1~3のいずれか一項に記載のサファイア単結晶育成用坩堝。
  5.  前記めっき層は、膜厚が5μm以上、100μm未満である、請求項1~4のいずれか一項に記載のサファイア単結晶育成用坩堝。
  6.  前記めっき層は、膜厚が10μm以上、100μm未満である、請求項1~5のいずれか一項に記載のサファイア単結晶育成用坩堝。
  7.  前記めっき層は、膜厚が10μm以上、50μm未満である、請求項1~6のいずれか一項に記載のサファイア単結晶育成用坩堝。
  8.  前記めっき層は、表面粗さがRa0.03μm以上、20μm未満である請求項1~7のいずれか一項に記載のサファイア単結晶育成用坩堝。
  9.  前記めっき層は、表面粗さがRa3.0μm以上、10μm未満である請求項1~8のいずれか一項に記載のサファイア単結晶育成用坩堝。
  10.  前記めっき層は、前記母材の内周にのみ形成されている、請求項1~9のいずれか一項に記載のサファイア単結晶育成用坩堝。
  11.  前記母材は純度99.9質量%以上のモリブデンと不可避不純物からなる、請求項1~10のいずれか一項に記載のサファイア単結晶育成用坩堝。
  12.  前記母材は、酸化物換算で0.1質量%以上、5.0質量%以下のランタンを含むモリブデンと不可避不純物で構成される、請求項1~11のいずれか一項に記載のサファイア単結晶育成用坩堝。
  13.  前記母材は、酸化物換算で0.5質量%以上、2.0質量%以下のランタンを含むモリブデンと不可避不純物で構成される、請求項1~12のいずれか一項に記載のサファイア単結晶育成用坩堝。
  14.  HEM法によるサファイア単結晶育成に用いられる、請求項1~13のいずれか一項に記載のサファイア単結晶育成用坩堝。
  15.  請求項1~14のいずれか一項に記載のサファイア単結晶育成用坩堝を用いてサファイア単結晶の育成を行う、サファイア単結晶の育成方法。
  16.  サファイア単結晶の育成時の加熱により前記めっき層と前記母材の間で相互拡散が生じて前記めっき層中のタングステン量が減少した場合に、再度めっき処理を施すことによって剥離性を回復させる、請求項15に記載のサファイア単結晶の育成方法。
  17.  モリブデンを主成分とする坩堝形状の母材の少なくとも内周に、溶融塩を用いた電解めっきにより、タングステンと不可避不純物からなり、酸素濃度が0.1質量%以下のめっき層を形成する、サファイア単結晶育成用坩堝の製造方法。
  18.  前記めっき層を、前記内周の開放端部が露出するように形成する、請求項17に記載のサファイア単結晶育成用坩堝の製造方法。
  19.  前記溶融塩は、40mol%以上のアルカリ金属またはアルカリ土類金属のフッ化物、10mol%以上の酸性酸化物、5mol%以上のタングステン化合物を含む溶融塩である、請求項17または18に記載のサファイア単結晶育成用坩堝の製造方法。
  20.  前記アルカリ金属またはアルカリ土類金属のフッ化物は、KF、NaF、LiF、CaFの少なくとも1つを含み、前記酸性酸化物はBまたはKPOを含み、前記タングステン化合物はWO、NaWO、WO、WO、KWF、KWClのいずれかを含む、請求項19に記載のサファイア単結晶育成用坩堝の製造方法。
  21.  前記溶融塩は、LiWO―NaWO―KWO―LiCl―NaCl-KCl―KF溶融塩またはKF―B―WOである、請求項17~19のいずれか一項に記載のサファイア単結晶育成用坩堝の製造方法。
PCT/JP2014/084241 2013-12-26 2014-12-25 サファイア単結晶育成用坩堝、サファイア単結晶育成方法およびサファイア単結晶育成用坩堝の製造方法 WO2015099010A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480070900.1A CN105849322B (zh) 2013-12-26 2014-12-25 蓝宝石单晶培养用坩锅、蓝宝石单晶培养方法和蓝宝石单晶培养用坩锅的制造方法
JP2015554984A JP6134814B2 (ja) 2013-12-26 2014-12-25 サファイア単結晶育成用坩堝、サファイア単結晶育成方法およびサファイア単結晶育成用坩堝の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-269029 2013-12-26
JP2013269029 2013-12-26

Publications (1)

Publication Number Publication Date
WO2015099010A1 true WO2015099010A1 (ja) 2015-07-02

Family

ID=53478857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/084241 WO2015099010A1 (ja) 2013-12-26 2014-12-25 サファイア単結晶育成用坩堝、サファイア単結晶育成方法およびサファイア単結晶育成用坩堝の製造方法

Country Status (3)

Country Link
JP (1) JP6134814B2 (ja)
CN (1) CN105849322B (ja)
WO (1) WO2015099010A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114346245A (zh) * 2020-09-27 2022-04-15 安泰天龙钨钼科技有限公司 一种长寿命稀土钼坩埚及其制备方法
CN114804868A (zh) * 2022-04-29 2022-07-29 吉林电力股份有限公司长春热电分公司 一种三氧化钨陶瓷骨架坩埚的制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113832537B (zh) * 2021-09-30 2022-08-26 西安奕斯伟材料科技有限公司 石英坩埚及拉晶炉
CN118621429A (zh) * 2024-08-09 2024-09-10 天通控股股份有限公司 一种蓝宝石晶体生长杂质控制方法及晶体生长用坩埚

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0625855A (ja) * 1992-07-13 1994-02-01 Tokyo Tungsten Co Ltd ルツボ及びその製造方法
JPH0762538A (ja) * 1993-08-26 1995-03-07 Tokyo Tungsten Co Ltd 高融点金属被覆部材及びその製造装置
JPH07102376A (ja) * 1993-10-05 1995-04-18 Tokyo Tungsten Co Ltd 被覆部材及びその製造方法
JP2013155050A (ja) * 2012-01-26 2013-08-15 Takayuki Shimamune 被覆金属加工体及びその製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3433976B2 (ja) * 1993-06-25 2003-08-04 オリンパス光学工業株式会社 ガラス溶融ルツボ
JP2007091492A (ja) * 2005-09-27 2007-04-12 Kyocera Corp 二ホウ化物単結晶の育成方法
JP4883534B2 (ja) * 2008-03-26 2012-02-22 住友電気工業株式会社 溶融塩浴、溶融塩浴の製造方法およびタングステン析出物
JP5568883B2 (ja) * 2009-03-27 2014-08-13 住友電気工業株式会社 溶融塩浴および溶融塩浴の製造方法
AT12783U1 (de) * 2011-08-05 2012-11-15 Plansee Se Tiegel zur kristallzucht
CN102990054B (zh) * 2012-04-01 2016-05-25 鹤山市沃得钨钼实业有限公司 稀土钼坩埚坯料及利用该坯料制造稀土钼坩埚的方法
CN104487618B (zh) * 2012-04-17 2017-08-25 普兰西欧洲股份公司 用于生产氧化陶瓷单晶的坩埚

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0625855A (ja) * 1992-07-13 1994-02-01 Tokyo Tungsten Co Ltd ルツボ及びその製造方法
JPH0762538A (ja) * 1993-08-26 1995-03-07 Tokyo Tungsten Co Ltd 高融点金属被覆部材及びその製造装置
JPH07102376A (ja) * 1993-10-05 1995-04-18 Tokyo Tungsten Co Ltd 被覆部材及びその製造方法
JP2013155050A (ja) * 2012-01-26 2013-08-15 Takayuki Shimamune 被覆金属加工体及びその製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114346245A (zh) * 2020-09-27 2022-04-15 安泰天龙钨钼科技有限公司 一种长寿命稀土钼坩埚及其制备方法
CN114346245B (zh) * 2020-09-27 2023-06-20 安泰天龙钨钼科技有限公司 一种长寿命稀土钼坩埚及其制备方法
CN114804868A (zh) * 2022-04-29 2022-07-29 吉林电力股份有限公司长春热电分公司 一种三氧化钨陶瓷骨架坩埚的制备方法

Also Published As

Publication number Publication date
CN105849322B (zh) 2018-09-28
JPWO2015099010A1 (ja) 2017-03-23
CN105849322A (zh) 2016-08-10
JP6134814B2 (ja) 2017-05-24

Similar Documents

Publication Publication Date Title
JP6134814B2 (ja) サファイア単結晶育成用坩堝、サファイア単結晶育成方法およびサファイア単結晶育成用坩堝の製造方法
TWI479051B (zh) 元素之初級生產
JP5947389B2 (ja) サファイア単結晶育成用坩堝およびサファイア単結晶育成用坩堝の製造方法
US20100139550A1 (en) Crucible for processing a high-melting material and method of processing said material in said crucible
JP6405199B2 (ja) 電析用電解質および金属膜の製造方法
JP4558736B2 (ja) 複合部材の製造方法
EP3421646A1 (en) Colouring method of aluminium alloy member
WO2004067813A1 (ja) 磁性ガーネット単結晶膜形成用基板、光学素子およびその製造方法
JPH0633161A (ja) 均質で純粋なインゴットに加工することのできる耐熱金属合金及び該合金の製造方法
Zhuk et al. Silicon electrodeposition from chloride–fluoride melts containing K2SiF6 and SiO2
CN104704139B (zh) Cu‑Ga合金溅射靶及其制造方法
JP6802255B2 (ja) 導電性材料及びその製造方法
ZHANG et al. Preparation of Mg–Li—La alloys by electrolysis in molten salt
TWI471460B (zh) 熔融鹽浴、其製法及鎢膜
JPH03173798A (ja) 高温耐蝕性層の製造方法
JP6357146B2 (ja) 酸化物セラミック単結晶製造のための坩堝
JP6614660B2 (ja) 多孔質ニッケルの製造方法
CN105829584B (zh) 制造涂覆有保护涂层的部件的方法
Vishnu et al. Direct electrochemical preparation of nanostructured silicon carbide and its nitridation behavior
EP3199662A1 (en) Sputtering target and method for manufacturing same
Moteki et al. Electrodeposition of Crystalline Si Using a Liquid Zn Electrode in Molten KF–KCl–K2SiF6
JP6060755B2 (ja) サファイア単結晶育成用坩堝およびその製造方法
CN105568324A (zh) 一种高性能的表面合金化铜材料的制备方法
WO2014148157A1 (ja) サファイア単結晶育成用坩堝およびサファイア単結晶育成方法
US10106902B1 (en) Zirconium coating of a substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14874742

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015554984

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14874742

Country of ref document: EP

Kind code of ref document: A1