WO2015098264A1 - 共役ジエン系重合体および共役ジエン系重合体の製造方法 - Google Patents

共役ジエン系重合体および共役ジエン系重合体の製造方法 Download PDF

Info

Publication number
WO2015098264A1
WO2015098264A1 PCT/JP2014/078315 JP2014078315W WO2015098264A1 WO 2015098264 A1 WO2015098264 A1 WO 2015098264A1 JP 2014078315 W JP2014078315 W JP 2014078315W WO 2015098264 A1 WO2015098264 A1 WO 2015098264A1
Authority
WO
WIPO (PCT)
Prior art keywords
conjugated diene
group
formula
diene polymer
polymer
Prior art date
Application number
PCT/JP2014/078315
Other languages
English (en)
French (fr)
Inventor
拓郎 櫻井
飯塚 崇
山岸 英哲
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to EP14873604.4A priority Critical patent/EP3088423B1/en
Priority to JP2015554634A priority patent/JP6512107B2/ja
Priority to CN201480069809.8A priority patent/CN105849134B/zh
Priority to US15/108,152 priority patent/US10266613B2/en
Priority to KR1020167016564A priority patent/KR20160103001A/ko
Publication of WO2015098264A1 publication Critical patent/WO2015098264A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/25Incorporating silicon atoms into the molecule
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/22Incorporating nitrogen atoms into the molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/30Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule
    • C08C19/42Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule reacting with metals or metal-containing groups
    • C08C19/44Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule reacting with metals or metal-containing groups of polymers containing metal atoms exclusively at one or both ends of the skeleton
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/10Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated with vinyl-aromatic monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/14Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated containing elements other than carbon and hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L19/00Compositions of rubbers not provided for in groups C08L7/00 - C08L17/00
    • C08L19/006Rubber characterised by functional groups, e.g. telechelic diene polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2800/00Copolymer characterised by the proportions of the comonomers expressed
    • C08F2800/20Copolymer characterised by the proportions of the comonomers expressed as weight or mass percentages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2810/00Chemical modification of a polymer
    • C08F2810/20Chemical modification of a polymer leading to a crosslinking, either explicitly or inherently
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2810/00Chemical modification of a polymer
    • C08F2810/40Chemical modification of a polymer taking place solely at one end or both ends of the polymer backbone, i.e. not in the side or lateral chains
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2312/00Crosslinking
    • C08L2312/02Crosslinking with dienes

Definitions

  • the present invention relates to a conjugated diene polymer and a method for producing a conjugated diene polymer. More specifically, the present invention relates to a rubber cross-linked product that is excellent in low heat buildup and wet grip properties and is suitably used for constituting a fuel-efficient tire. The present invention relates to a conjugated diene polymer and a method for producing the same.
  • a crosslinked product of a rubber composition blended with silica as a filler is superior in low heat build-up compared to a crosslinked composition of a rubber composition blended with carbon black, and therefore rolling resistance when a tire is configured is reduced. Therefore, a tire excellent in fuel efficiency can be obtained by constituting a tire using a crosslinked product of a rubber composition containing silica.
  • Patent Document 3 and Patent Document 4 when a rubber polymer is obtained by a solution polymerization method, a modifier is reacted with the active terminal of the polymer. Therefore, a technique for giving the rubber itself an affinity for silica has been studied. However, from the recent increase in demand for low fuel consumption and wet grip properties for automobile tires, a rubber capable of providing a rubber cross-linked product that is further excellent in low heat generation and excellent in wet grip properties is desired. ing.
  • an object of the present invention is to provide a conjugated diene polymer and a method for producing the same, which can give a rubber cross-linked product excellent in low heat build-up and wet grip.
  • a conjugated diene polymer chain having an active end is substituted with a tertiary amine structure-containing group at the 8-position as a modifier.
  • -A rubber having excellent low heat buildup and wet grip properties by reacting a compound having a dioxa-2-silacyclooctane structure and introducing a group having a specific structure at the end of the conjugated diene polymer. It has been found that a conjugated diene polymer capable of giving a crosslinked product is obtained. The present invention has been completed based on this finding.
  • a conjugated diene polymer represented by the following formula (1) or the following formula (2) is provided.
  • polymer represents a polymer chain containing a conjugated diene monomer unit
  • X 1 represents a functional group selected from a hydrocarbyloxy group, a halogen group and a hydroxyl group
  • R 1 represents a substituent
  • R 2 and R 3 each represents a hydrocarbon group that may have a substituent, and R 2 and R 3 are bonded to each other to form a ring structure.
  • n is an integer of 1 to 3
  • m is an integer of 0 to 2
  • p is an integer of 0 to 2
  • n + m + p 3.
  • polymer represents a polymer chain comprising a conjugated diene monomer unit
  • X 2 represents a functional group selected from a hydrocarbyloxy group, a halogen group and a hydroxyl group
  • R 4 represents a substituent.
  • R 5 and R 6 each represents a hydrocarbon group that may have a substituent, and R 5 and R 6 are bonded to each other to form a ring structure.
  • s is 1 or 2
  • t is 0 or 1
  • u 0 or 1
  • s + t + u 2.
  • the conjugated diene polymer of the present invention includes a conjugated diene polymer represented by the following formula (3) and / or Or it is preferable to comprise the conjugated diene polymer represented by following formula (4).
  • polymer represents a polymer chain containing a conjugated diene monomer unit, X 3 represents a halogen group or a hydroxyl group, M represents a silicon atom or a tin atom, and a represents 1 to 4)
  • polymer represents a polymer chain containing a conjugated diene monomer unit, X 3 represents a halogen group or a hydroxyl group, and R 7 is a hydrocarbon group which may have a substituent.
  • M represents a silicon atom or a tin atom
  • c is an integer of 0 to 3
  • d is an integer of 0 to 3
  • e is an integer of 0 to 3
  • a rubber composition comprising 100 parts by weight of a rubber component containing the conjugated diene polymer and 10 to 200 parts by weight of silica.
  • the rubber composition further contains a crosslinking agent.
  • a step of polymerizing a monomer containing a conjugated diene compound using an initiator in an inert solvent to obtain a conjugated diene polymer chain having an active end there is provided a method for producing a conjugated diene polymer comprising a step of reacting a compound represented by the following formula (5) with an active end of a conjugated diene polymer chain having the active end.
  • X 4 represents a functional group selected from a hydrocarbyloxy group, a halogen group and a hydroxyl group
  • R 8 represents a hydrocarbon group which may have a substituent
  • Each represents a hydrocarbon group which may have a substituent
  • R 9 and R 10 may be bonded to each other to form a ring structure
  • r is an integer of 0 to 2.
  • a part of the active end is tin halide, silicon halide, or the following formula ( It is preferable to further comprise a step of reacting with the compound represented by 6).
  • R 11 represents an alkyl chain which may have a substituent
  • X 5 represents a halogen group
  • M represents a silicon atom or a tin atom.
  • the conjugated diene polymer of the present invention is represented by the following formula (1) or the following formula (2).
  • the conjugated diene polymer of the present invention it may be composed only of those represented by the following formula (1), or may be composed only of those represented by the following formula (2), Or the mixture of what is represented by following formula (1) and what is represented by following formula (2) may be sufficient.
  • polymer represents a polymer chain comprising a conjugated diene monomer unit
  • X 1 represents a functional group selected from a hydrocarbyloxy group, a halogen group and a hydroxyl group
  • R 1 represents a substituent.
  • N is an integer of 1 to 3
  • m is an integer of 0 to 2
  • p is an integer of 0 to 2
  • n + m + p 3.
  • polymer represents a polymer chain comprising a conjugated diene monomer unit
  • X 2 represents a functional group selected from a hydrocarbyloxy group, a halogen group and a hydroxyl group
  • R 4 represents a substituent
  • R 5 and R 6 each represents a hydrocarbon group that may have a substituent, and R 5 and R 6 are bonded to each other to form a ring structure.
  • S is 1 or 2
  • t is 0 or 1
  • u 0 or 1
  • s + t + u 2.
  • the polymer chain represented by “polymer” is a polymer chain comprising a conjugated diene monomer unit.
  • the conjugated diene compound used as a monomer for constituting the conjugated diene monomer unit is not particularly limited, but 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 2-phenyl -1,3-butadiene, 1,3-pentadiene, 2-methyl-1,3-pentadiene, 1,3-hexadiene, 4,5-diethyl-1,3-octadiene, 3-butyl-1,3-octadiene And so on. Of these, 1,3-butadiene and / or isoprene are preferred. These conjugated diene compounds may be used alone or in combination of two or more.
  • the polymer chain represented by “polymer” in the formulas (1) and (2) may be composed only of a conjugated diene monomer unit, but can be copolymerized with a conjugated diene compound. It may further contain a unit comprising a compound.
  • Examples of the compound copolymerizable with the conjugated diene compound include styrene, methylstyrene, ethylstyrene, t-butylstyrene, ⁇ -methylstyrene, ⁇ -methyl-p-methylstyrene, chlorostyrene, bromostyrene, methoxystyrene, Aromatic vinyl compounds such as dimethylaminomethylstyrene, dimethylaminoethylstyrene, diethylaminomethylstyrene, diethylaminoethylstyrene, cyanoethylstyrene, vinylnaphthalene; chain olefin compounds such as ethylene, propylene, 1-butene; cyclopentene, 2-norbornene, etc.
  • a non-conjugated diene compound such as 1,5-hexadiene, 1,6-heptadiene, 1,7-octadiene, dicyclopentadiene, 5-ethylidene-2-norbornene; (Meth) acrylic acid esters such as methyl (meth) acrylate, ethyl (meth) acrylate and butyl (meth) acrylate; other (meth) acrylic acid derivatives such as (meth) acrylonitrile and (meth) acrylamide; Is mentioned.
  • aromatic vinyl compounds are preferable, and styrene is particularly preferable among them.
  • the compounds copolymerizable with these conjugated diene compounds may be used alone or in combination of two or more.
  • the ratio of the conjugated diene monomer unit to the total monomer units constituting the polymer chain is particularly Although not limited, it is usually 30% by weight or more, preferably 40% by weight or more, and more preferably 50% by weight or more. Further, the content of vinyl bonds (1,2-vinyl bonds and 3,4-vinyl bonds) in the conjugated diene monomer unit portion of the polymer chain is not particularly limited, but is usually 1 to 90 mol%. , Preferably 5 to 85 mol%, more preferably 10 to 80 mol%.
  • the ratio of the aromatic vinyl monomer unit to the total monomer units constituting the polymer chain is not particularly limited, but is usually 70% by weight or less, preferably It is 60% by weight or less, more preferably 50% by weight or less.
  • the ratio of the monomer units other than the conjugated diene monomer unit and the aromatic vinyl monomer unit to the total monomer units constituting the polymer chain is also particularly limited. However, it is usually 20% by weight or less, preferably 10% by weight or less, and more preferably 5% by weight or less.
  • the bonding mode is, for example, a block shape, a taper shape, Various binding modes such as random can be used, but a random binding mode is preferable. By making it random, the obtained rubber cross-linked product becomes superior due to its low heat build-up.
  • the polymer chain represented by “polymer” in the formulas (1) and (2) is bonded to the silicon atom represented by “Si” in the formulas (1) and (2).
  • the terminal may be comprised by the polymer block which consists only of an isoprene unit substantially.
  • the affinity between the resulting conjugated diene polymer and silica is improved, and the resulting rubber cross-linked product has low heat buildup and wear resistance. It becomes more excellent by the property.
  • N in Formula (1) (that is, the number of polymer chains bonded to the silicon atom represented by “Si” in Formula (1)) is an integer of 1 to 3.
  • the conjugated diene polymer of the present invention may be composed only of those in which n in formula (1) is a specific numerical value, or a mixture of different n in formula (1). Also good.
  • s in the formula (2) (that is, the number of polymer chains bonded to the silicon atom represented by “Si” in the formula (2)) is 1 or 2.
  • the conjugated diene polymer of the present invention may consist only of those in which s in the formula (2) is a specific numerical value, or a mixture of s in the formula (2) having different s. Also good.
  • X 1 and X 2 represent a functional group selected from a hydrocarbyloxy group, a halogen group, and a hydroxyl group.
  • Hydrocarbyloxy groups that can be functional groups represented by X 1 and X 2 are not particularly limited, but include methoxy groups, ethoxy groups, n-propoxy groups, isopropoxy groups, n-butoxy groups, isobutoxy groups, sec-butoxy groups. Groups, alkoxy groups such as tert-butoxy group; alkenyloxy groups such as vinyloxy group and allyloxy group; aryloxy groups such as phenoxy group and naphthoxy group; aralkyloxy groups such as benzyloxy group; and the like.
  • an alkoxy group or an aryloxy group is preferable, an alkoxy group is more preferable, and a methoxy group or an ethoxy group is particularly preferable.
  • the halogen group that can be X 1 and X 2 is not particularly limited, and examples thereof include a fluoro group, a chloro group, a bromo group, and an iodo group, and among these, a chloro group is preferable.
  • X 1 and X 2 may be a hydroxyl group, and the hydroxyl group may be a hydrocarbyloxy group or a halogen group that has been hydrolyzed to become a hydroxyl group.
  • M in the formula (1) (that is, the number of functional groups represented by X 1 in the formula (1)) is an integer of 0 to 2, preferably 1 or 2.
  • the conjugated diene polymer of the present invention may be composed only of m having a specific numerical value in the formula (1), or a mixture of different m in the formula (1). Also good. In the case where m is 2, the functional groups represented by X 1 in the formula (1) included in one molecule of the conjugated diene polymer may be the same or different from each other. It may be a thing.
  • t in Formula (2) (that is, the number of functional groups represented by X 2 in Formula (2)) is 0 or 1.
  • the conjugated diene polymer of the present invention may be composed only of those in which t in formula (2) is a specific numerical value, or a mixture of different t in formula (2). Also good.
  • R 1 and R 4 represent a hydrocarbon group which may have a substituent.
  • Hydrocarbon groups that can be R 1 and R 4 are not particularly limited, but include methyl groups, ethyl groups, n-propyl groups, isopropyl groups, n-butyl groups, isobutyl groups, sec-butyl groups, tert-butyl groups, and the like.
  • Alkyl groups such as vinyl group and allyl group; alkynyl groups such as ethynyl group and propynyl group; aryl groups such as phenyl group and naphthyl group; aralkyl groups such as benzyl group; Among these, an alkyl group or an aryl group is preferable, and an alkyl group is more preferable.
  • the hydrocarbon group represented by R 1 and R 4 may have a substituent other than the hydrocarbon group, and the substituent is not particularly limited, but may be a carboxyl group, an acid anhydride group, Examples thereof include carbonyl group-containing groups such as hydrocarbylcarbonyl group, alkoxycarbonyl group and acyloxy group, epoxy group, oxy group, cyano group, amino group and halogen group.
  • P in the formula (1) (that is, the number of groups represented by R 1 in the formula (1)) is an integer of 0 to 2, preferably 0 or 1.
  • the conjugated diene polymer of the present invention may be composed only of those in which p in formula (1) is a specific numerical value, or a mixture of different p in formula (1). Also good. In the case where p is 2, the groups represented by R 1 in the formula (1) included in one molecule of the conjugated diene polymer may be the same or different from each other. It may be.
  • u in Formula (2) (that is, the number of groups represented by R 4 in Formula (2)) is 0 or 1.
  • the conjugated diene polymer of the present invention may be composed only of those in which u in formula (2) is a specific numerical value, or a mixture of different u in formula (2). Also good.
  • R 2 and R 3 , R 5 and R 6 each represents a hydrocarbon group which may have a substituent, and R 2 and R 3 are bonded to each other.
  • a ring structure may be formed together with the nitrogen atom represented by “N”.
  • R 5 and R 6 may be bonded to each other to form a ring structure together with the nitrogen atom represented by “N” in formula (2).
  • the hydrocarbon group that can be R 2 and R 3 , R 5 and R 6 is not particularly limited, but a methyl group, an ethyl group, n- Alkyl groups such as propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group and tert-butyl group; alkenyl groups such as vinyl group and allyl group; alkynyl groups such as ethynyl group and propynyl group; phenyl group Aryl groups such as naphthyl group; aralkyl groups such as benzyl group; and the like.
  • an alkyl group or an aryl group is preferable, an alkyl group is more preferable, and a methyl group or an ethyl group is particularly preferable.
  • a divalent hydrocarbon group formed by combining R 2 and R 3 , or R 5 and The divalent hydrocarbon group formed by bonding R 6 is not particularly limited, but is an n-butylene group (1-pyrrolidine together with the nitrogen atom represented by “N” in formula (1) or formula (2)) Group), an n-pentylene group (when forming a 1-piperidine group), a butadienylene group (when forming a 1-pyrrole group), and the like.
  • the hydrocarbon group represented by R 2 and R 3 , R 5 and R 6 may have a substituent other than the hydrocarbon group regardless of the presence or absence of the ring structure. Is not particularly limited, but includes carbonyl group-containing groups such as carboxyl group, acid anhydride group, hydrocarbylcarbonyl group, alkoxycarbonyl group, acyloxy group, epoxy group, oxy group, cyano group, amino group, halogen group, etc. be able to.
  • the atoms forming the ring structure are the carbon atom and the formula (1) or the formula (2 ) May contain atoms other than the nitrogen atom represented by “N”, and examples of such atoms include nitrogen atoms and oxygen atoms.
  • the conjugated diene polymer of the present invention particularly preferred are hydrocarbon groups represented by R 2 and R 3 , R 5 and R 6 , which are bonded to each other in formulas (1) and (2). Examples include those forming a piperazine ring structure together with the nitrogen atom represented by “N”. More specifically, the conjugated diene polymer of the present invention is particularly preferably a conjugated diene polymer represented by the following formula (7) or the following formula (8). When the conjugated diene polymer of the present invention has such a structure, the resulting rubber cross-linked product can be made particularly excellent in low heat build-up.
  • R ⁇ 12 >, R ⁇ 13 > in Formula (7) and Formula (8) represents a hydrocarbon group.
  • Hydrocarbon groups that can be R 12 and R 13 are not particularly limited, but include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, and the like.
  • Alkyl groups such as vinyl group and allyl group; alkynyl groups such as ethynyl group and propynyl group; aryl groups such as phenyl group and naphthyl group; aralkyl groups such as benzyl group; Among these, an alkyl group or an aryl group is preferable, an alkyl group is more preferable, and a methyl group is particularly preferable.
  • the weight average molecular weight (Mw) of the conjugated diene polymer of the present invention is not particularly limited, but is usually 1,000 to 3,000,000, preferably 10 as a value measured by gel permeation chromatography in terms of polystyrene.
  • the range is from 1,000 to 2,000,000, more preferably from 100,000 to 1,500,000.
  • the molecular weight distribution represented by the ratio (Mw / Mn) of the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the conjugated diene polymer of the present invention is not particularly limited, but preferably 1.0 to 5.0, more preferably 1.0 to 3.0.
  • the conjugated diene polymer of the present invention can be suitably used for various applications after adding compounding agents such as a filler and a crosslinking agent.
  • compounding agents such as a filler and a crosslinking agent.
  • silica is blended as a filler
  • a rubber composition suitably used for obtaining a rubber cross-linked product capable of giving a rubber cross-linked product excellent in low heat buildup and wet grip properties is provided.
  • the method for producing the conjugated diene polymer of the present invention as described above is not particularly limited as long as the target structure is obtained, but the following method for producing the conjugated diene polymer of the present invention is preferable.
  • the method for producing a conjugated diene polymer of the present invention comprises polymerizing a monomer containing a conjugated diene compound in an inert solvent using a polymerization initiator, and conjugated diene polymer having an active end.
  • the method comprises a step of obtaining a combined chain and a step of reacting a compound represented by the following formula (5) with the active end of the conjugated diene polymer chain having the active end.
  • One of the two essential steps in the method for producing a conjugated diene polymer of the present invention is to polymerize a monomer comprising a conjugated diene compound using an initiator in an inert solvent. This is a step of obtaining a conjugated diene polymer chain having an active end.
  • the conjugated diene compound used as a monomer includes the conjugated diene monomer unit in the conjugated diene polymer of the present invention described above.
  • the same thing as illustrated as a conjugated diene compound used in order to comprise the polymer chain which consists of can be illustrated.
  • an aromatic vinyl compound may be used as a monomer together with a conjugated diene compound.
  • the aromatic vinyl compound used as a monomer the aromatic vinyl compound that can be used to constitute a polymer chain comprising a conjugated diene monomer unit in the conjugated diene polymer of the present invention described above. The same thing as illustrated can be illustrated.
  • a compound copolymerizable with the conjugated diene compound other than the aromatic vinyl compound may be used together with the conjugated diene compound.
  • the conjugated diene polymer of the present invention As the compound copolymerizable with the conjugated diene compound other than the aromatic vinyl compound used as the monomer, in the conjugated diene polymer of the present invention described above, a polymer chain comprising a conjugated diene monomer unit. The same thing as what was illustrated as a compound copolymerizable with a conjugated diene compound other than an aromatic vinyl compound which can be used in order to comprise can be illustrated.
  • the inert solvent used in the soot polymerization is not particularly limited as long as it is one that is usually used in solution polymerization and does not inhibit the polymerization reaction.
  • Specific examples of the inert solvent include chain aliphatic hydrocarbons such as butane, pentane, hexane, and heptane; alicyclic hydrocarbons such as cyclopentane and cyclohexane; aromatic hydrocarbons such as benzene, toluene, and xylene; Is mentioned. These inert solvents may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the amount of the inert solvent to be used is not particularly limited, but the amount is such that the monomer concentration is, for example, 1 to 50% by weight, and preferably 10 to 40% by weight.
  • the polymerization initiator used for the soot polymerization is not particularly limited as long as it can polymerize a monomer containing a conjugated diene compound to give a conjugated diene polymer chain having an active end.
  • Specific examples thereof include a polymerization initiator having an organic alkali metal compound, an organic alkaline earth metal compound, a lanthanum series metal compound, or the like as a main catalyst.
  • organic alkali metal compound examples include organic monolithium compounds such as n-butyllithium, sec-butyllithium, t-butyllithium, hexyllithium, phenyllithium and stilbenelithium; dilithiomethane, 1,4-dilithiobutane, 1,4 -Organic polyvalent lithium compounds such as dilithio-2-ethylcyclohexane, 1,3,5-trilithiobenzene, 1,3,5-tris (lithiomethyl) benzene; organic sodium compounds such as sodium naphthalene; organic such as potassium naphthalene Potassium compounds; and the like.
  • organic monolithium compounds such as n-butyllithium, sec-butyllithium, t-butyllithium, hexyllithium, phenyllithium and stilbenelithium
  • dilithiomethane 1,4-dilithiobutane
  • organic alkaline earth metal compound examples include di-n-butylmagnesium, di-n-hexylmagnesium, diethoxycalcium, calcium distearate, di-t-butoxystrontium, diethoxybarium, and diisopropoxybarium. Diethyl mercaptobarium, di-t-butoxybarium, diphenoxybarium, diethylaminobarium, barium distearate, diketylbarium and the like.
  • a polymerization initiator having a lanthanum series metal compound as a main catalyst for example, a lanthanum series metal comprising a lanthanum series metal such as lanthanum, cerium, praseodymium, neodymium, samarium, gadolinium, a carboxylic acid, and a phosphorus-containing organic acid And a polymerization initiator composed of this salt and a cocatalyst such as an alkylaluminum compound, an organoaluminum hydride compound, and an organoaluminum halide compound.
  • a lanthanum series metal comprising a lanthanum series metal such as lanthanum, cerium, praseodymium, neodymium, samarium, gadolinium, a carboxylic acid, and a phosphorus-containing organic acid
  • a polymerization initiator composed of this salt and a cocatalyst such as an alkylalumin
  • organic monolithium compounds and organic polyvalent lithium compounds are preferably used, organic monolithium compounds are more preferably used, and n-butyllithium is particularly preferably used.
  • the organic alkali metal compound is used as an organic alkali metal amide compound by previously reacting with a secondary amine such as dibutylamine, dihexylamine, dibenzylamine, pyrrolidine, hexamethyleneimine, and heptamethyleneimine. Also good.
  • These polymerization initiators may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the amount of the polymerization initiator used may be determined according to the molecular weight of the target conjugated diene polymer chain, but is usually 1 to 50 mmol, preferably 1.5 to 20 mmol, per 1000 g of monomer. The range of 2 to 15 mmol is preferred.
  • the polymerization temperature is usually in the range of ⁇ 80 to + 150 ° C., preferably 0 to 100 ° C., more preferably 30 to 90 ° C.
  • any of batch type and continuous type can be adopted.
  • a conjugated diene monomer unit and an aromatic vinyl monomer are used.
  • the batch method is preferred because it is easy to control the randomness of the bond with the unit.
  • the polymer chain represented by “polymer” in the formulas (1) and (2) is bonded to the silicon atom represented by “Si” in the formulas (1) and (2).
  • the polymerization mode is batchwise and first a part other than the polymer block consisting only of isoprene units is formed. After the monomer for polymerization is polymerized, before adding the compound represented by the formula (5) to the polymerization reaction system, only isoprene may be added to the polymerization reaction system as a monomer for polymerization. .
  • the polar compound include ether compounds such as dibutyl ether and tetrahydrofuran; tertiary amines such as tetramethylethylenediamine; alkali metal alkoxides; phosphine compounds.
  • ether compounds and tertiary amines are preferable, tertiary amines are more preferable, and tetramethylethylenediamine is particularly preferable.
  • polar compounds may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the amount of the polar compound used may be determined according to the target vinyl bond content, and is preferably 0.001 to 100 mol, more preferably 0.01 to 10 mol, relative to 1 mol of the polymerization initiator. is there. When the amount of the polar compound used is within this range, it is easy to adjust the vinyl bond content in the conjugated diene monomer unit, and problems due to deactivation of the polymerization initiator hardly occur.
  • a conjugated diene polymer chain having an active end can be obtained in an inert solvent.
  • the remaining one of the two essential steps in the method for producing a conjugated diene polymer of the present invention is represented by the following formula (5) at the active end of the conjugated diene polymer chain having the active end. This is a step of reacting a compound to be reacted.
  • X 4 represents a functional group selected from a hydrocarbyloxy group, a halogen group and a hydroxyl group
  • R 8 represents a hydrocarbon group which may have a substituent
  • R 9 and R 10 represent Each represents an optionally substituted hydrocarbon group
  • R 9 and R 10 may be bonded to each other to form a ring structure
  • r is an integer of 0-2.
  • X 4 represents a functional group selected from a hydrocarbyloxy group, a halogen group and a hydroxyl group.
  • Specific examples of the functional group that can be the functional group represented by X 4 include the same functional groups as those exemplified as the functional groups that can be X 1 and X 2 in Formula (1) and Formula (2).
  • R in the formula (5) (that is, the number of groups represented by X 4 in the formula (5)) is an integer of 0 to 2.
  • r in the formula (5) is 2, the groups represented by X 4 in the formula (5) included in one molecule of the compound represented by the formula (5) are the same, Or they may be different from each other.
  • R 8 represents a hydrocarbon group which may have a substituent.
  • Specific examples of the hydrocarbon group and the substituent in the hydrocarbon group which may have a substituent represented by R 8 include substitutions that can be R 1 and R 4 in formula (1) and formula (2). The same thing as illustrated about the hydrocarbon group which may have a group can be mentioned.
  • r in Formula (5) is 0, two groups represented by R 8 in Formula (5) contained in one molecule of Compound represented by Formula (5) are the same. They may be different from each other.
  • R 9 and R 10 each represents a hydrocarbon group which may have a substituent, and R 9 and R 10 may be bonded to each other to form a ring structure.
  • Specific examples of the hydrocarbon group and the substituent in the hydrocarbon group which may have a substituent represented by R 9 and R 10 include R 2 and R 3 in formula (1) and formula (2).
  • R 5 and R 6 may be the same as those exemplified for the hydrocarbon group which may have a substituent.
  • a compound represented by the following formula (9) may be used as a compound represented by the following formula (9) in order to obtain a conjugated diene polymer represented by formula (7) or (8), which is particularly preferable as the conjugated diene polymer of the present invention.
  • a compound represented by the following formula (9) may be used as a compound represented by formula (9) in order to obtain a conjugated diene polymer represented by formula (7) or (8), which is particularly preferable as the conjugated diene polymer of the present invention.
  • R 14 in Formula (9) represents a hydrocarbon group.
  • the hydrocarbon group that can be R 14 is not particularly limited, but is an alkyl group such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, or a tert-butyl group.
  • Alkenyl groups such as vinyl group and allyl group; alkynyl groups such as ethynyl group and propynyl group; aryl groups such as phenyl group and naphthyl group; aralkyl groups such as benzyl group; Among these, an alkyl group or an aryl group is preferable, an alkyl group is more preferable, and a methyl group is particularly preferable.
  • Specific examples of the compound represented by the formula (5) include 2,2-dimethoxy-8- (4-methylpiperazinyl) methyl-1,6-dioxa-2-silacyclooctane, 2,2-diethoxy -8- (4-Methylpiperazinyl) methyl-1,6-dioxa-2-silacyclooctane, 2,2-dimethoxy-8- (N, N-diethyl) methyl-1,6-dioxa-2- Examples include silacyclooctane and 2-methoxy-2-methyl-8- (4-methylpiperazinyl) methyl-1,6-dioxa-2-silacyclooctane. These compounds represented by Formula (5) may be used alone or in combination of two or more.
  • the amount of the compound represented by the formula (5) is not particularly limited, but is 1 mol of the active terminal of the conjugated diene polymer chain having the active terminal to be reacted.
  • the amount of the compound represented by the formula (5) is preferably 0.5 to 10.0 mol, more preferably 0.7 to 5.0 mol, and 1.0 to 2.0 mol. It is particularly preferred that By using the compound represented by the formula (5) in such an amount, the resulting conjugated diene polymer gives a rubber cross-linked product particularly excellent in low heat build-up.
  • the reaction is considered to proceed as follows. That is, first, the first reaction mode is illustrated.
  • the oxygen-silicon bond in the 8-membered ring structure in the compound represented by the formula (5) is cleaved, and the silicon atom is conjugated.
  • a new bond is formed between the active end of the diene polymer chain, and the oxygen atom is derived from a counter ion at the active end and a salt structure (note that this salt structure is derived from a polymerization reaction terminator when the polymerization reaction is stopped). Which reacts with protons to form hydroxyl groups).
  • the compound represented by the formula (5) has a hydrocarbyloxysilyl group (when r in the formula (5) is 1 or 2), it is conjugated with the hydrocarbyloxy group in the hydrocarbyloxysilyl group.
  • the active end of the diene polymer chain reacts, and a bond is formed between the silicon atom and the active end of the conjugated diene polymer chain.
  • the oxygen-silicon bond in the 8-membered ring structure in the compound represented by the formula (5) is bonded to the silicon atom without cleavage.
  • the silicon atom forms a new bond with the active end of the conjugated diene polymer chain, and the oxygen atom has a salt structure (this salt structure).
  • this salt structure Form a hydroxyl group by reacting with a proton derived from a polymerization reaction terminator or the like when the polymerization reaction is stopped.
  • the compound represented by the formula (5) has a hydrocarbyloxysilyl group (when r in the formula (5) is 1 or 2), it is conjugated with the hydrocarbyloxy group in the hydrocarbyloxysilyl group.
  • the active end of the diene polymer chain reacts, and a bond is formed between the silicon atom and the active end of the conjugated diene polymer chain.
  • a conjugated diene polymer represented by the formula (1) can be obtained by the reaction proceeding according to the first reaction mode, while the reaction proceeds according to the second reaction mode.
  • a conjugated diene polymer represented by the formula (2) can be obtained.
  • the reaction according to the first reaction form and the reaction according to the second reaction form proceed simultaneously (for example, while the reaction proceeds mainly according to the first reaction form, 2), a mixture of a compound represented by the formula (1) and a compound represented by the following formula (2) can be obtained as the conjugated diene polymer. .
  • the method of reacting the compound represented by the formula (5) with the conjugated diene polymer chain having an active end is not particularly limited, and examples thereof include a method of mixing them in a solvent in which each of them can be dissolved. It is done.
  • the solvent used in this case those exemplified as the inert solvent used in the polymerization described above can be used.
  • a method of adding the compound represented by the formula (5) to the polymerization solution used for the polymerization for obtaining a conjugated diene polymer chain having an active end is simple and preferable.
  • the compound represented by the formula (5) is preferably dissolved in an inert solvent and added to the polymerization system, and the solution concentration is in the range of 1 to 50% by weight. Is preferred.
  • the reaction temperature is not particularly limited, but is usually 0 to 120 ° C.
  • the reaction time is not particularly limited, but is usually 1 minute to 1 hour.
  • the timing of adding the compound represented by the formula (5) to the solution containing the conjugated diene polymer chain having an active end is not particularly limited, but the polymerization reaction is not completed, and the conjugated diene having an active end is present.
  • the state in which the solution containing a polymer chain also contains a monomer, more specifically, the solution containing a conjugated diene polymer chain having an active end is 100 ppm or more, more preferably 300 to It is desirable to add the compound represented by the formula (5) to this solution in a state containing 50,000 ppm of monomer.
  • the conjugated diene polymer chain having the active terminal remains in the state before the compound represented by the formula (5) is reacted with the conjugated diene polymer chain having the active terminal or after the reaction.
  • a part of the active end of the conjugated diene polymer chain having the active end is removed with a coupling agent or a modifier that has been conventionally used. It may be added to the polymerization system for coupling or modification.
  • a part of the active end is tin halide, silicon halide or a compound represented by the following formula (6) as a coupling agent. It is preferable to make it react with.
  • R 11 represents an alkyl chain which may have a substituent
  • X 5 represents a halogen group
  • M represents a silicon atom or a tin atom.
  • tin halides include tin tetrachloride and triphenylmonochlorotin, with tin tetrachloride being preferred.
  • silicon halide examples include silicon tetrachloride, hexachlorodisilane, triphenoxychlorosilane, methyltriphenoxysilane, and diphenoxydichlorosilane, with silicon tetrachloride being preferred.
  • R 11 represents a hydrocarbon group which may have a substituent
  • the hydrocarbon group which can be R 11 is not particularly limited, but includes a methylene group, a 1,2-ethylene group. 1,3-propylene group, 1,4-butylene group, 1,5-pentylene group, 1,6-hexylene group, 4-methyl-2,2-pentylene group, 2,3-dimethyl-2,3- And a butylene group. Of these, 1,2-ethylene group and 1,6-hexylene group are preferable.
  • the halogen group that can be X 5 is not particularly limited, and examples thereof include a fluoro group, a chloro group, a bromo group, and an iodo group, and among these, a chloro group is preferable.
  • M is a silicon atom or a tin atom, it is preferably a silicon atom.
  • Specific examples of the compound represented by the formula (6) include bis (trichlorosilyl) methane, 1,2-bis (trichlorosilyl) ethane, 1,3-bis (trichlorosilyl) propane, 1,4- Examples thereof include bis (trichlorosilyl) butane, 1,5-bis (trichlorosilyl) pentane, and 1,6-bis (trichlorosilyl) hexane.
  • the amount of tin halide, silicon halide, or the compound represented by formula (6) is not particularly limited, but the conjugated diene polymer having an active end is used.
  • the amount relative to 1 mol of the active terminal of the chain is preferably 0.001 to 0.2 mol, more preferably 0.005 to 0.1 mol, and 0.01 to 0.05 mol. Is particularly preferred.
  • the conjugated diene polymer chain having an active terminal a part of the active terminal is represented by tin halide, silicon halide, or formula (6) as a coupling agent.
  • the conjugated diene polymer of the present invention is converted into a conjugated diene polymer represented by formula (1) or (2) and a conjugated diene polymer represented by formula (3). And / or a mixture (conjugated diene polymer composition) with the conjugated diene polymer represented by formula (4).
  • a branched structure (preferably a branched structure having three or more branches) can be introduced into the conjugated diene polymer, and as a result, the conjugated diene polymer is excellent in shape stability (that is, When a predetermined shape (for example, a bale) is processed, such a predetermined shape can be maintained satisfactorily.
  • a predetermined shape for example, a bale
  • polymer represents a polymer chain containing a conjugated diene monomer unit
  • X 3 represents a halogen group or a hydroxyl group
  • M represents a silicon atom or a tin atom
  • a represents 1 to 4 is an integer
  • b is an integer of 0 to 3
  • a + b 4.
  • the polymer chain represented by “polymer” in the formula (3) is a polymer chain including a conjugated diene monomer unit, and is the same as that in the formula (1) and the formula (2).
  • X 3 represents a halogen group or a hydroxyl group, and the halogen group that can be X 3 is not particularly limited, and examples thereof include a fluoro group, a chloro group, a bromo group, and an iodo group, and among these, a chloro group is preferable. .
  • polymer represents a polymer chain containing a conjugated diene monomer unit
  • X 3 represents a halogen group or a hydroxyl group
  • R 7 is a hydrocarbon which may have a substituent.
  • M represents a silicon atom or a tin atom
  • c is an integer of 0 to 3
  • d is an integer of 0 to 3
  • e is an integer of 0 to 3
  • f is an integer of 0 to 3 It is an integer
  • the polymer chain represented by “polymer” in the formula (4) is a polymer chain including a conjugated diene monomer unit, and is the same as that in the formula (1) and the formula (2).
  • X 3 represents a halogen group or a hydroxyl group, and the halogen group that can be X 3 is not particularly limited, and examples thereof include a fluoro group, a chloro group, a bromo group, and an iodo group, and among these, a chloro group is preferable.
  • R 7 represents a hydrocarbon group which may have a substituent, and the hydrocarbon group that can be R 7 is the same as that in formula (6).
  • the conjugated diene polymer of the present invention is represented by the conjugated diene polymer represented by the formula (1) or the formula (2), the conjugated diene polymer represented by the formula (3), and / or the formula ( In the case of a mixture with the conjugated diene polymer represented by 4), these ratios are (conjugate diene polymer represented by formula (1) or formula (2)): (formula (3) Of the conjugated diene polymer represented by formula (4) and / or the conjugated diene polymer represented by formula (4)), preferably 60:40 to 98: 2, more preferably 80:20 to 96: 4. By making these ratios in the above range, the effect of improving the shape stability can be obtained more appropriately.
  • the coupling rate of the conjugated diene polymer of the present invention is not particularly limited, but is preferably 10% by weight or more, more preferably 15% by weight or more, particularly preferably 20% by weight or more, and preferably 80% by weight. % Or less, more preferably 75% by weight or less, and particularly preferably 70% by weight or less. If this coupling rate is too low, the mechanical strength of the cross-linked product obtained from the conjugated diene polymer may be insufficient, and if the coupling rate is too high, it can be obtained from the conjugated diene polymer. There is a possibility that the abrasion resistance of the crosslinked product may be insufficient.
  • a coupling rate is a compound represented by Formula (5) and a coupling agent (specifically, tin halide, silicon halide, or a compound represented by Formula (6)) and other modifiers.
  • the measurement of the molecular weight at this time is obtained as a polystyrene-equivalent molecular weight by gel permeation chromatography.
  • a coupling agent specifically, a tin halide, a silicon halide, or a formula (6) Compound
  • an anti-aging agent such as a phenol-based stabilizer, a phosphorus-based stabilizer, or a sulfur-based stabilizer may be added to the solution of the conjugated diene polymer obtained as described above. What is necessary is just to determine suitably the addition amount of an anti-aging agent according to the kind etc.
  • an extension oil may be blended to form an oil-extended rubber. Examples of extender oils include paraffinic, aromatic and naphthenic petroleum softeners, plant softeners, and fatty acids. When using a petroleum softener, it is preferable that the content of polycyclic aromatics extracted by the method of IP346 (the inspection method of THE INSTITUTE PETROLEUM in the UK) is less than 3%. When the extending oil is used, the amount used is usually 5 to 100 parts by weight with respect to 100 parts by weight of the conjugated diene polymer.
  • the conjugated diene polymer thus obtained can be obtained as a solid conjugated diene polymer by separating it from the reaction mixture, for example, by removing the solvent by steam stripping. it can.
  • the conjugated diene polymer obtained by the polymerization reaction has a hydrocarbyloxy group or a halogen group as the group represented by X 1 or X 2 in the formulas (1) and (2), this conjugate When steam stripping the diene polymer, at least a part of these groups may be hydrolyzed to form a hydroxyl group.
  • a hydroxyl group sianol group
  • a conjugated diene polymer having) can also be used as the conjugated diene polymer of the present invention.
  • the rubber composition of the present invention is, for example, a rubber composition comprising 100 parts by weight of a rubber component containing the conjugated diene polymer of the present invention obtained as described above and 10 to 200 parts by weight of silica. .
  • silica used in the present invention examples include dry method white carbon, wet method white carbon, colloidal silica, and precipitated silica.
  • wet method white carbon mainly containing hydrous silicic acid is preferable.
  • a carbon-silica dual phase filler in which silica is supported on the carbon black surface may be used.
  • These silicas can be used alone or in combination of two or more.
  • the nitrogen adsorption specific surface area (measured by the BET method in accordance with ASTM D3037-81) of the silica used is preferably 50 to 300 m 2 / g, more preferably 80 to 220 m 2 / g, and particularly preferably 100 ⁇ 170 m 2 / g.
  • the pH of silica is preferably 5-10.
  • the amount of silica in the rubber composition of the present invention is 10 to 200 parts by weight, preferably 30 to 150 parts by weight, and more preferably 50 to 50 parts by weight with respect to 100 parts by weight of the rubber component in the rubber composition. 100 parts by weight.
  • a silane coupling agent may be further blended from the viewpoint of further improving the low exothermic property.
  • the silane coupling agent include vinyltriethoxysilane, ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane, N- ( ⁇ -aminoethyl) - ⁇ -aminopropyltrimethoxysilane, 3-octathio- 1-propyl-triethoxysilane, bis (3- (triethoxysilyl) propyl) disulfide, bis (3- (triethoxysilyl) propyl) tetrasulfide, ⁇ -trimethoxysilylpropyldimethylthiocarbamyl tetrasulfide, and ⁇ -Trimethoxysilylpropylbenzothiazyl tetrasulfide and the like.
  • These silane coupling agents can be
  • the rubber composition of the present invention may further contain carbon black such as furnace black, acetylene black, thermal black, channel black, and graphite. Among these, furnace black is preferable. These carbon blacks can be used alone or in combination of two or more.
  • the compounding amount of carbon black is usually 120 parts by weight or less with respect to 100 parts by weight of the rubber component in the rubber composition.
  • the method of adding silica to the rubber component containing the conjugated diene polymer of the present invention is not particularly limited.
  • the method of adding and kneading the solid rubber component dry kneading method) or the solution of the rubber component
  • a method of adding, solidifying and drying (wet kneading method) or the like can be applied.
  • the rubber composition of the present invention further contains a cross-linking agent.
  • the crosslinking agent include sulfur-containing compounds such as sulfur and sulfur halides, organic peroxides, quinonedioximes, organic polyvalent amine compounds, and alkylphenol resins having a methylol group. Among these, sulfur is preferably used.
  • the amount of the crosslinking agent is preferably 0.1 to 15 parts by weight, more preferably 0.5 to 5 parts by weight, and particularly preferably 1 to 100 parts by weight of the rubber component in the rubber composition. ⁇ 4 parts by weight.
  • the rubber composition of the present invention includes a crosslinking accelerator, a crosslinking activator, an anti-aging agent, a filler (excluding silica and carbon black), an activator, and a process oil in accordance with conventional methods.
  • a crosslinking accelerator excluding silica and carbon black
  • a filler excluding silica and carbon black
  • an activator excluding silica and carbon black
  • a process oil in accordance with conventional methods.
  • Plasticizers, lubricants, tackifiers and the like can be blended in the required amounts.
  • crosslinking accelerator When sulfur or a sulfur-containing compound is used as a crosslinking agent, it is preferable to use a crosslinking accelerator and a crosslinking activator in combination.
  • the crosslinking accelerator include sulfenamide-based crosslinking accelerators; guanidine-based crosslinking accelerators; thiourea-based crosslinking accelerators; thiazole-based crosslinking accelerators; thiuram-based crosslinking accelerators; dithiocarbamic acid-based crosslinking accelerators; A crosslinking accelerator; and the like. Among these, those containing a sulfenamide-based crosslinking accelerator are preferable. These crosslinking accelerators are used alone or in combination of two or more.
  • the amount of the crosslinking accelerator is preferably 0.1 to 15 parts by weight, more preferably 0.5 to 5 parts by weight, particularly preferably 100 parts by weight of the rubber component in the rubber composition. 1 to 4 parts by weight.
  • cocoon crosslinking activator examples include higher fatty acids such as stearic acid; zinc oxide. These crosslinking activators are used alone or in combination of two or more.
  • the amount of the crosslinking activator is preferably 0.05 to 20 parts by weight, particularly preferably 0.5 to 15 parts by weight with respect to 100 parts by weight of the rubber component in the rubber composition.
  • other rubber other than the conjugated diene polymer of the present invention may be blended with the rubber composition of the present invention.
  • examples of other rubbers include natural rubber, polyisoprene rubber, emulsion polymerization styrene-butadiene copolymer rubber, solution polymerization styrene-butadiene copolymer rubber, and polybutadiene rubber (high cis-BR and low cis BR).
  • polybutadiene rubber containing crystal fibers made of 1,2-polybutadiene polymer.
  • Styrene-isoprene copolymer rubber butadiene-isoprene copolymer rubber, styrene-isoprene-butadiene copolymer rubber, acrylonitrile- Of butadiene copolymer rubber, acrylonitrile-styrene-butadiene copolymer rubber, etc., those other than the above-mentioned modified conjugated diene rubber.
  • natural rubber, polyisoprene rubber, polybutadiene rubber, and solution-polymerized styrene-butadiene copolymer rubber are preferable. These rubbers can be used alone or in combination of two or more.
  • the conjugated diene polymer of the present invention preferably accounts for 10 to 100% by weight, particularly preferably 50 to 100% by weight, of the rubber component in the rubber composition.
  • the conjugated diene polymer of the present invention is contained in the rubber component at such a ratio, a rubber cross-linked product having lower heat generation and wear resistance can be obtained.
  • each component may be kneaded according to a conventional method. For example, after kneading a rubber component and a component excluding a thermally unstable component such as a crosslinking agent and a crosslinking accelerator.
  • the desired rubber composition can be obtained by mixing the kneaded product with a thermally unstable component such as a crosslinking agent or a crosslinking accelerator.
  • the kneading temperature of the rubber component and the component excluding the thermally unstable component is preferably 80 to 00 ° C., more preferably 120 to 180 ° C., and the kneading time is preferably 30 seconds to 30 minutes. is there.
  • the kneaded product and the thermally unstable component are usually mixed after cooling to 100 ° C. or lower, preferably 80 ° C. or lower.
  • the rubber cross-linked product of the present invention is obtained by cross-linking the rubber composition of the present invention as described above.
  • the rubber cross-linked product of the present invention uses the rubber composition of the present invention, for example, is molded by a molding machine corresponding to a desired shape, for example, an extruder, an injection molding machine, a compressor, a roll, and heated. Can be produced by carrying out a crosslinking reaction and fixing the shape as a crosslinked product.
  • crosslinking may be performed after molding in advance, or crosslinking may be performed simultaneously with molding.
  • the molding temperature is usually 10 to 200 ° C, preferably 25 to 120 ° C.
  • the crosslinking temperature is usually 100 to 200 ° C., preferably 130 to 190 ° C.
  • the crosslinking time is usually 1 minute to 24 hours, preferably 2 minutes to 12 hours, particularly preferably 3 minutes to 6 hours.
  • a heating method for cross-linking the rubber composition a general method used for cross-linking rubber such as press heating, steam heating, oven heating, hot air heating and the like may be appropriately selected.
  • the rubber cross-linked product of the present invention obtained as described above is obtained by using the conjugated diene polymer of the present invention, and thus has excellent low heat buildup and wet grip properties.
  • the rubber cross-linked product of the present invention makes use of such characteristics, and for example, in tires, materials for various parts of the tire such as cap treads, base treads, carcass, sidewalls and bead parts; hoses, belts, mats, vibration-proof rubbers Other various industrial materials; resin impact resistance improvers; resin film buffers; shoe soles; rubber shoes; golf balls; toys;
  • the rubber cross-linked product of the present invention is excellent in low heat build-up and wet grip properties, it can be suitably used as a tire material, particularly a low fuel consumption tire material, and is optimal for tread applications. That is, the tire of the present invention is a tire comprising the rubber cross-linked product of the present invention.
  • the molecular weight of the polymer was determined as a polystyrene-equivalent molecular weight by gel permeation chromatography. Specific measurement conditions were as follows. Measuring instrument: High-performance liquid chromatograph (trade name “HLC-8220” manufactured by Tosoh Corporation) Column: manufactured by Tosoh Corporation, two product names “GMH-HR-H” were connected in series. Detector: Differential refractometer Eluent: Tetrahydrofuran Column temperature: 40 ° C
  • the conjugated diene polymer was formed into a sheet having a thickness of 2 mm, and then punched out into a dumbbell shape No. 8 defined in JIS K6251. Two marked lines were drawn at the center of the dumbbell-shaped specimen so that the distance between the marked lines was 10 mm. Next, one side of the gripping part of the test piece is fixed and suspended from above, left at a temperature of 23 ° C. and a humidity of 50% for 96 hours, and the distance between marked lines after standing is determined, and this is a value of shape stability. It was.
  • the shape stability value is indicated by an index with the measured value of Comparative Example 1 being 100. The smaller this index, the better the shape stability.
  • tan ⁇ at 60 ° C. is measured under the conditions of dynamic strain 2.5% and 10 Hz, using ARES manufactured by Rheometrics Co., Ltd., with a test piece having a length of 50 mm, a width of 12.7 mm, and a thickness of 2 mm. It was evaluated by.
  • the value of tan ⁇ is indicated by an index with the measured value of Comparative Example 1 being 100. The smaller this index, the better the low heat buildup.
  • Example 1 In a nitrogen atmosphere, charge 800 parts of cyclohexane, 94.8 parts of 1,3-butadiene, 25.2 parts of styrene, and 0.164 part of tetramethylethylenediamine in an autoclave, and then add 0.045 part of n-butyllithium. Then, polymerization was started at 60 ° C.
  • the polymerization reaction was continued for 60 minutes, and after confirming that the polymerization conversion was in the range of 95% to 100%, 2,2-dimethoxy-8- (4-methylpiperazinyl) methyl-1,6
  • 0.064 parts of methanol was added as a polymerization terminator to obtain a solution containing a conjugated diene polymer.
  • 100 parts of the obtained polymer component was treated with 2,4-bis [(octylthio) methyl] -o-cresol (trade name “Irganox 1520” manufactured by Ciba Specialty Chemicals) as an anti-aging agent.
  • the obtained conjugated diene polymer of Example 1 had a weight average molecular weight (Mw) of 370,000, a molecular weight distribution (Mw / Mn) of 1.29, and a coupling rate of 32.8%. Further, when the obtained conjugated diene polymer of Example 1 was evaluated for shape stability according to the above method, the shape stability index value (value when the result of Comparative Example 1 was set to 100) was obtained. The same applies to each of the examples and comparative examples hereinafter).
  • Example 2 In a nitrogen atmosphere, charge 800 parts of cyclohexane, 94.8 parts of 1,3-butadiene, 25.2 parts of styrene, and 0.164 part of tetramethylethylenediamine in an autoclave, and then add 0.045 part of n-butyllithium. Then, polymerization was started at 60 ° C. The polymerization reaction was continued for 60 minutes, and after confirming that the polymerization conversion was in the range of 95% to 100%, 0.0055 part of tin tetrachloride was added and allowed to react for 10 minutes.
  • the obtained conjugated diene polymer of Example 2 had a weight average molecular weight (Mw) of 328,000, a molecular weight distribution (Mw / Mn) of 1.43, and a coupling rate of 40.0%. Further, when the obtained conjugated diene polymer of Example 2 was evaluated for shape stability according to the above method, the shape stability index value was 15.
  • Example 3 A solid conjugated diene polymer was obtained in the same manner as in Example 2 except that 0.0036 part of silicon tetrachloride was used instead of 0.0055 part of tin tetrachloride.
  • the obtained conjugated diene polymer of Example 3 had a weight average molecular weight (Mw) of 340,000, a molecular weight distribution (Mw / Mn) of 1.41, and a coupling rate of 43.9%. Further, when the obtained conjugated diene polymer of Example 3 was evaluated for shape stability according to the above method, the shape stability index value was 9.
  • Example 4 A solid conjugated diene polymer was prepared in the same manner as in Example 2 except that 0.0075 part of 1,6-bis (trichlorosilyl) hexane was used instead of 0.0055 part of tin tetrachloride. Got.
  • the obtained conjugated diene polymer of Example 4 had a weight average molecular weight (Mw) of 333,000, a molecular weight distribution (Mw / Mn) of 1.44, and a coupling rate of 42.1%.
  • the shape stability index value was 12.
  • Example 5 A solid conjugated diene polymer was prepared in the same manner as in Example 2 except that 0.0063 part of 1,2-bis (trichlorosilyl) ethane was used instead of 0.0055 part of tin tetrachloride. Got.
  • the resulting conjugated diene polymer of Example 5 had a weight average molecular weight (Mw) of 338,000, a molecular weight distribution (Mw / Mn) of 1.46, and a coupling rate of 41.3%.
  • the shape stability index value was 12.
  • Example 6 instead of 0.322 parts of 2,2-dimethoxy-8- (4-methylpiperazinyl) methyl-1,6-dioxa-2-silacyclooctane, 2,2-diethoxy-8- (4-methylpipe A solid conjugated diene polymer was obtained in the same manner as in Example 1 except that 0.352 part of (razinyl) methyl-1,6-dioxa-2-silacyclooctane was used.
  • the obtained conjugated diene polymer of Example 6 had a weight average molecular weight (Mw) of 285,000, a molecular weight distribution (Mw / Mn) of 1.20, and a coupling rate of 19.1%.
  • the index value of shape stability was 71.
  • Example 7 Instead of 0.263 parts of 2-dimethoxy-8- (4-methylpiperazinyl) methyl-1,6-dioxa-2-silacyclooctane, 2-diethoxy-8- (4-methylpiperazinyl) methyl A solid conjugated diene polymer was obtained in the same manner as in Example 2 except that 0.310 part of -1,6-dioxa-2-silacyclooctane was used.
  • the obtained conjugated diene polymer of Example 7 had a weight average molecular weight (Mw) of 298,000, a molecular weight distribution (Mw / Mn) of 1.30, and a coupling rate of 24.0%.
  • the shape stability index value was 52.
  • Example 8 Instead of 0.322 parts of 2,2-dimethoxy-8- (4-methylpiperazinyl) methyl-1,6-dioxa-2-silacyclooctane, 2,2-dimethoxy-8- (N, N- A solid conjugated diene polymer was obtained in the same manner as in Example 1 except that 0.294 part of diethyl) methyl-1,6-dioxa-2-silacyclooctane was used.
  • the conjugated diene polymer obtained in Example 8 had a weight average molecular weight (Mw) of 292,000, a molecular weight distribution (Mw / Mn) of 1.51, and a coupling rate of 43.0%.
  • the shape stability index value was 13.
  • Example 9 instead of 0.263 parts of 2-dimethoxy-8- (4-methylpiperazinyl) methyl-1,6-dioxa-2-silacyclooctane, 2,2-dimethoxy-8- (N, N-diethyl) A solid conjugated diene polymer was obtained in the same manner as in Example 2 except that 0.165 part of methyl-1,6-dioxa-2-silacyclooctane was used.
  • the obtained conjugated diene polymer of Example 9 had a weight average molecular weight (Mw) of 345,000, a molecular weight distribution (Mw / Mn) of 1.45, and a coupling rate of 45.5%. Further, when the obtained conjugated diene polymer of Example 9 was evaluated for shape stability in accordance with the above method, the shape stability index value was 5.
  • the kneaded product was cooled to room temperature, it was kneaded again in a Brabender type mixer at 110 ° C. for 2 minutes, and then the kneaded product was discharged from the mixer. Next, with an open roll at 50 ° C., the obtained kneaded product was mixed with 1.40 parts of sulfur, a crosslinking accelerator: N-tert-butyl-2-benzothiazolylsulfenamide (trade name “Noxeller NS-P”, After adding 1.2 parts of Ouchi Shinsei Chemical Co., Ltd.) and 1.2 parts of diphenylguanidine (trade name “Noxeller D”, Ouchi Shinsei Chemical Co., Ltd.) and kneading them, a sheet-like rubber composition The thing was taken out.
  • a crosslinking accelerator N-tert-butyl-2-benzothiazolylsulfenamide
  • diphenylguanidine trade name “Noxeller D”, Ouchi Shinsei
  • This rubber composition was press-crosslinked at 160 ° C. for 20 minutes to produce a rubber cross-linked test piece.
  • the test piece was evaluated for low heat build-up and wet grip.
  • the rubber cross-linked products obtained by using the conjugated diene polymers of the present invention (Examples 1 to 9) obtained by the method for producing a conjugated diene polymer of the present invention are the conventional ones.
  • a crosslinked rubber obtained by using a conjugated diene polymer (Comparative Example 1 and Comparative Example 2) terminal-modified by a technique, it is excellent in low exothermic property and wet grip.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 下記の式(1)または下記の式(2)で表される共役ジエン系重合体。(式(1)、式(2)中、polymerは共役ジエン単量体単位を含んでなる重合体鎖を表し、X,Xはヒドロカルビルオキシ基、ハロゲン基および水酸基から選択される官能基を表し、R,Rは置換基を有していてもよい炭化水素基を表し、RおよびR、RおよびRは、それぞれ、置換基を有していてもよい炭化水素基を表し、RおよびRまたはRおよびRは互いに結合して環構造を形成していてもよい。式(1)中、nは1~3の整数であり、mは0~2の整数であり、pは0~2の整数であり、n+m+p=3である。また、式(2)中、sは1または2であり、tは0または1であり、uは0または1であり、s+t+u=2である。)

Description

共役ジエン系重合体および共役ジエン系重合体の製造方法
  本発明は、共役ジエン系重合体および共役ジエン系重合体の製造方法に関し、さらに詳しくは、低発熱性およびウエットグリップ性に優れ、低燃費タイヤを構成するために好適に用いられるゴム架橋物を与えることができる、共役ジエン系重合体とその製造方法に関する。
  近年、自動車用のタイヤには、環境問題および資源問題から低燃費性が強く求められる一方で、安全性の面から優れたウエットグリップ性が求められている。充填剤としてシリカを配合したゴム組成物の架橋物は、カーボンブラックを配合したゴム組成物の架橋物に比べて、低発熱性に優れるため、タイヤを構成した場合の転がり抵抗が小さくなる。そのため、シリカを配合したゴム組成物の架橋物を用いてタイヤを構成することにより、低燃費性に優れたタイヤを得ることができる。
  しかし、従来のゴムにシリカを配合しても、ゴムとシリカとの親和性が不十分でこれらが分離しやすいことに起因して、架橋前のゴム組成物の加工性が悪く、また、これを架橋して得られるゴム架橋物の低発熱性が不十分となる。
  そこで、ゴムとシリカとの親和性を改良すべく、例えば、特許文献1や特許文献2などに開示されるような種々のシランカップリング剤を、ゴム組成物に添加することが提案されている。しかし、シランカップリング剤を扱うには高度な加工技術が必要であり、また、シランカップリング剤が高価なことから配合量が多くなると、タイヤの製造コストが高くなるという問題がある。
  このような問題を解決するために、例えば、特許文献3や特許文献4などに開示されるように、溶液重合法によりゴム重合体を得る際に、重合体の活性末端に変性剤を反応させることにより、ゴム自体にシリカとの親和性を持たせる技術が検討されている。しかしながら、近年の自動車用のタイヤへの低燃費性およびウエットグリップ性への要求の高まりから、さらに低発熱性に優れ、しかもウエットグリップ性にも優れるゴム架橋物を与えることができるゴムが望まれている。
特開2011-46640号公報 特開2012-17291号公報 特開平1-249812号公報 特開2003-171418号公報
  そこで、本発明は、低発熱性およびウエットグリップ性に優れたゴム架橋物を与えることができる、共役ジエン系重合体とその製造方法を提供することを目的とする。
  本発明者らは、上記目的を達成するために鋭意研究した結果、活性末端を有する共役ジエン系重合体鎖に、変性剤として、8位が3級アミン構造含有基で置換された1,6-ジオキサ-2-シラシクロオクタン構造を有する化合物を反応させることによって、共役ジエン系重合体の末端に、特定の構造を有する基を導入することにより、低発熱性およびウエットグリップ性に優れたゴム架橋物を与えることができる共役ジエン系重合体が得られることを見出した。本発明は、この知見に基づいて完成するに至ったものである。
  かくして、本発明によれば、下記の式(1)または下記の式(2)で表される共役ジエン系重合体が提供される。
Figure JPOXMLDOC01-appb-C000007
(式(1)中、polymerは共役ジエン単量体単位を含んでなる重合体鎖を表し、Xはヒドロカルビルオキシ基、ハロゲン基および水酸基から選択される官能基を表し、Rは置換基を有していてもよい炭化水素基を表し、RおよびRは、それぞれ、置換基を有していてもよい炭化水素基を表し、RおよびRは互いに結合して環構造を形成していてもよく、nは1~3の整数であり、mは0~2の整数であり、pは0~2の整数であり、n+m+p=3である。)
Figure JPOXMLDOC01-appb-C000008
(式(2)中、polymerは共役ジエン単量体単位を含んでなる重合体鎖を表し、Xはヒドロカルビルオキシ基、ハロゲン基および水酸基から選択される官能基を表し、Rは置換基を有していてもよい炭化水素基を表し、RおよびRは、それぞれ、置換基を有していてもよい炭化水素基を表し、RおよびRは互いに結合して環構造を形成していてもよく、sは1または2であり、tは0または1であり、uは0または1であり、s+t+u=2である。)
  本発明の共役ジエン系重合体は、前記式(1)または前記式(2)で表される共役ジエン系重合体に加えて、下記式(3)で表される共役ジエン系重合体および/または下記式(4)で表される共役ジエン系重合体を含んでなることが好ましい。
Figure JPOXMLDOC01-appb-C000009
(式(3)中、polymerは共役ジエン単量体単位を含んでなる重合体鎖を表し、Xはハロゲン基または水酸基を表し、Mは珪素原子または錫原子を表し、aは1~4の整数であり、bは0~3の整数であり、a+b=4である。)
Figure JPOXMLDOC01-appb-C000010
(式(4)中、polymerは共役ジエン単量体単位を含んでなる重合体鎖を表し、Xはハロゲン基または水酸基を表し、Rは置換基を有していてもよい炭化水素基を表し、Mは珪素原子または錫原子を表し、cは0~3の整数であり、dは0~3の整数であり、eは0~3の整数であり、fは0~3の整数であり、c+d=3であり、e+f=3であり、d+fは1~6の整数である。)
  また、本発明によれば、上記の共役ジエン系重合体を含有するゴム成分100重量部とシリカ10~200重量部とを含有してなるゴム組成物が提供される。
  上記のゴム組成物は、架橋剤をさらに含有してなることが好ましい。
  また、本発明によれば、上記のゴム組成物を架橋してなるゴム架橋物が提供される。
  また、本発明によれば、上記のゴム架橋物を含んでなるタイヤが提供される。
  また、本発明によれば、不活性溶媒中で、重合開始剤を用いて、共役ジエン化合物を含んでなる単量体を重合し、活性末端を有する共役ジエン系重合体鎖を得る工程と、当該活性末端を有する共役ジエン系重合体鎖の活性末端に、下記の式(5)で表される化合物を反応させる工程とを含んでなる共役ジエン系重合体の製造方法が提供される。
Figure JPOXMLDOC01-appb-C000011
(式(5)中、Xはヒドロカルビルオキシ基、ハロゲン基および水酸基から選択される官能基を表し、Rは置換基を有していてもよい炭化水素基を表し、RおよびR10は、それぞれ、置換基を有していてもよい炭化水素基を表し、RおよびR10は互いに結合して環構造を形成していてもよく、rは0~2の整数である。)
  本発明の共役ジエン系重合体の製造方法においては、前記活性末端を有する共役ジエン系重合体鎖を得る工程の後に、当該活性末端の一部をハロゲン化錫、ハロゲン化珪素、または下記式(6)で表される化合物と反応させる工程をさらに備えることが好ましい。
Figure JPOXMLDOC01-appb-C000012
(式(6)中、R11は置換基を有していてもよいアルキル鎖を表し、Xはハロゲン基を表し、Mは珪素原子または錫原子を表す。)
  本発明によれば、低発熱性およびウエットグリップ性に優れたゴム架橋物を与えることができる、共役ジエン系重合体とその製造方法を提供することができる。
  本発明の共役ジエン系重合体は、下記の式(1)または下記の式(2)で表されるものである。本発明の共役ジエン系重合体としては、下記の式(1)で表されるもののみからなるもの、または下記の式(2)で表されるもののみからなるものであってもよいし、あるいは、下記の式(1)で表されるものと、下記の式(2)で表されるものとの混合物であってもよい。
Figure JPOXMLDOC01-appb-C000013
  式(1)中、polymerは共役ジエン単量体単位を含んでなる重合体鎖を表し、Xはヒドロカルビルオキシ基、ハロゲン基および水酸基から選択される官能基を表し、Rは置換基を有していてもよい炭化水素基を表し、RおよびRは、それぞれ、置換基を有していてもよい炭化水素基を表し、RおよびRは互いに結合して環構造を形成していてもよく、nは1~3の整数であり、mは0~2の整数であり、pは0~2の整数であり、n+m+p=3である。
Figure JPOXMLDOC01-appb-C000014
 式(2)中、polymerは共役ジエン単量体単位を含んでなる重合体鎖を表し、Xはヒドロカルビルオキシ基、ハロゲン基および水酸基から選択される官能基を表し、Rは置換基を有していてもよい炭化水素基を表し、RおよびRは、それぞれ、置換基を有していてもよい炭化水素基を表し、RおよびRは互いに結合して環構造を形成していてもよく、sは1または2であり、tは0または1であり、uは0または1であり、s+t+u=2である。
  式(1)、式(2)において「polymer」で表される重合体鎖は、共役ジエン単量体単位を含んでなる重合体鎖である。共役ジエン単量体単位を構成するために単量体として用いられる共役ジエン化合物は、特に限定されないが、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、2-フェニル-1,3-ブタジエン、1,3-ペンタジエン、2-メチル-1,3-ペンタジエン、1,3-ヘキサジエン、4,5-ジエチル-1,3-オクタジエン、3-ブチル-1,3-オクタジエンなどを挙げることができる。これらのなかでも、1,3-ブタジエンおよび/またはイソプレンが好ましい。これらの共役ジエン化合物は、1種類を単独で使用しても2種類以上を組合せて用いてもよい。
  式(1)、式(2)において「polymer」で表される重合体鎖は、共役ジエン単量体単位のみからなるものであるものであってもよいが、共役ジエン化合物と共重合可能な化合物からなる単位をさらに含むものであってもよい。共役ジエン化合物と共重合可能な化合物としては、例えば、スチレン、メチルスチレン、エチルスチレン、t-ブチルスチレン、α-メチルスチレン、α-メチル-p-メチルスチレン、クロルスチレン、ブロモスチレン、メトキシスチレン、ジメチルアミノメチルスチレン、ジメチルアミノエチルスチレン、ジエチルアミノメチルスチレン、ジエチルアミノエチルスチレン、シアノエチルスチレン、ビニルナフタレンなどの芳香族ビニル化合物;エチレン、プロピレン、1-ブテンなどの鎖状オレフィン化合物;シクロペンテン、2-ノルボルネンなどの環状オレフィン化合物;1,5-ヘキサジエン、1,6-ヘプタジエン、1,7-オクタジエン、ジシクロペンタジエン、5-エチリデン-2-ノルボルネンなどの非共役ジエン化合物;(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチルなどの(メタ)アクリル酸エステル;(メタ)アクリロニトリル、(メタ)アクリルアミドなどのその他の(メタ)アクリル酸誘導体;などが挙げられる。これらのなかでも、芳香族ビニル化合物が好ましく、そのなかでも特にスチレンが好ましい。これらの共役ジエン化合物と共重合可能な化合物は、1種類を単独で使用しても2種類以上を組合せて用いてもよい。
  式(1)、式(2)において「polymer」で表される重合体鎖において、その重合体鎖を構成する全単量体単位に対して、共役ジエン単量体単位が占める割合は、特に限定されないが、通常30重量%以上であり、好ましくは40重量%以上であり、より好ましくは50重量%以上である。また、この重合体鎖の共役ジエン単量体単位部分におけるビニル結合(1,2-ビニル結合および3,4-ビニル結合)の含有量も、特に限定されないが、通常1~90モル%であり、好ましくは5~85モル%であり、より好ましくは10~80モル%である。また、この重合体鎖において、重合体鎖を構成する全単量体単位に対して、芳香族ビニル単量体単位が占める割合も、特に限定されないが、通常70重量%以下であり、好ましくは60重量%以下であり、より好ましくは50重量%以下である。また、この重合体鎖において、重合体鎖を構成する全単量体単位に対して、共役ジエン単量体単位および芳香族ビニル単量体単位以外の単量体単位が占める割合も、特に限定されないが、通常20重量%以下であり、好ましくは10重量%以下であり、より好ましくは5重量%以下である。
  式(1)、式(2)において「polymer」で表される重合体鎖が、2種以上の単量体単位から構成されている場合、その結合様式は、たとえば、ブロック状、テーパー状、ランダム状など種々の結合様式とすることができるが、ランダム状の結合様式であることが好ましい。ランダム状にすることにより、得られるゴム架橋物が低発熱性により優れたものとなる。また、式(1)、式(2)において「polymer」で表される重合体鎖は、式(1)、式(2)において「Si」で表されるケイ素原子と結合している側の末端が、実質的にイソプレン単位のみからなる重合体ブロックによって構成されていてもよい。この末端が実質的にイソプレン単位のみからなる重合体ブロックにより構成されることにより、得られる共役ジエン系重合体とシリカとの親和性が良好となり、得られるゴム架橋物を低発熱性および耐摩耗性により優れたものとなる。
  式(1)におけるn(すなわち、式(1)において「Si」で表されるケイ素原子と結合している重合体鎖の数)は、1~3の整数である。本発明の共役ジエン系重合体は、式(1)におけるnが特定の数値であるもののみからなるものであってもよいし、式(1)におけるnが異なるものが混在したものであってもよい。
 また、式(2)におけるs(すなわち、式(2)において「Si」で表されるケイ素原子と結合している重合体鎖の数)は、1または2である。本発明の共役ジエン系重合体は、式(2)におけるsが特定の数値であるもののみからなるものであってもよいし、式(2)におけるsが異なるものが混在したものであってもよい。
  式(1)、式(2)において、X,Xはヒドロカルビルオキシ基、ハロゲン基および水酸基から選択される官能基を表す。X,Xで表される官能基となりうるヒドロカルビルオキシ基としては、特に限定されないが、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基などのアルコキシ基;ビニルオキシ基、アリルオキシ基などのアルケニルオキシ基;フェノキシ基、ナフトキシ基などのアリーロキシ基;ベンジルオキシ基などのアラルキルオキシ基;などが挙げられる。これらのなかでも、アルコキシ基またはアリーロキシ基が好ましく、アルコキシ基がより好ましく、メトキシ基またはエトキシ基が特に好ましい。また、X,Xとなりうるハロゲン基としては、特に限定されないが、フルオロ基、クロロ基、ブロモ基、ヨード基が挙げられ、これらのなかでも、クロロ基が好ましい。また、X,Xは水酸基であってもよく、この水酸基は、ヒドロカルビルオキシ基やハロゲン基であったものが加水分解されて水酸基となったものであってもよい。
 なお、式(1)、式(2)において、X,Xとして、アルコキシ基を含有する場合(すなわち、アルコキシシリル基を含有する場合)には、該アルコキシ基は、各種反応により加水分解することによって、ヒドロキシル基に変換し得る(すなわち、シラノール基に変換し得る)。
  式(1)におけるm(すなわち、式(1)においてXで表される官能基の数)は、0~2の整数であり、好ましくは1または2である。本発明の共役ジエン系重合体は、式(1)におけるmが特定の数値であるもののみでなるものであってもよいし、式(1)におけるmが異なるものが混在したものであってもよい。また、mが2である場合において、共役ジエン系重合体1分子中に2個含まれる式(1)においてXで表される官能基は、同一のものであってもよいし、互いに異なるものであってもよい。
  また、式(2)におけるt(すなわち、式(2)においてXで表される官能基の数)は、0または1である。本発明の共役ジエン系重合体は、式(2)におけるtが特定の数値であるもののみでなるものであってもよいし、式(2)におけるtが異なるものが混在したものであってもよい。
  式(1)、式(2)においてR,Rは、置換基を有していてもよい炭化水素基を表す。R,Rとなりうる炭化水素基としては、特に限定されないが、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基などのアルキル基;ビニル基、アリル基などのアルケニル基;エチニル基、プロピニル基などのアルキニル基;フェニル基、ナフチル基などのアリール基;ベンジル基などのアラルキル基;などが挙げられる。これらのなかでも、アルキル基またはアリール基が好ましく、アルキル基がより好ましい。また、R,Rで表される炭化水素基は、炭化水素基以外の置換基を有していてもよく、その置換基としては、特に限定されないが、カルボキシル基、酸無水物基、ヒドロカルビルカルボニル基、アルコキシカルボニル基、アシルオキシ基などのカルボニル基含有基や、エポキシ基、オキシ基、シアノ基、アミノ基、ハロゲン基などを挙げることができる。
  式(1)におけるp(すなわち、式(1)においてRで表される基の数)は、0~2の整数であり、好ましくは0または1である。本発明の共役ジエン系重合体は、式(1)におけるpが特定の数値であるもののみでなるものであってもよいし、式(1)におけるpが異なるものが混在したものであってもよい。また、pが2である場合において、共役ジエン系重合体1分子中に2個含まれる式(1)においてRで表される基は、同一のものであってもよいし、互いに異なるものであってもよい。
  また、式(2)におけるu(すなわち、式(2)においてRで表される基の数)は、0または1である。本発明の共役ジエン系重合体は、式(2)におけるuが特定の数値であるもののみでなるものであってもよいし、式(2)におけるuが異なるものが混在したものであってもよい。
  式(1)、式(2)においてRおよびR、RおよびRは、それぞれ、置換基を有していてもよい炭化水素基を表し、RおよびRは互いに結合して、式(1)において「N」で表される窒素原子とともに環構造を形成していてもよい。同様に、RおよびRは互いに結合して、式(2)において「N」で表される窒素原子とともに環構造を形成していてもよい。RおよびR、RおよびRが互いに結合しない場合に、RおよびR、RおよびRとなりうる炭化水素基としては、特に限定されないが、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基などのアルキル基;ビニル基、アリル基などのアルケニル基;エチニル基、プロピニル基などのアルキニル基;フェニル基、ナフチル基などのアリール基;ベンジル基などのアラルキル基;などが挙げられる。これらのなかでも、アルキル基またはアリール基が好ましく、アルキル基がより好ましく、メチル基またはエチル基が特に好ましい。また、RおよびR、または、RおよびRが互いに結合して環構造を形成する場合に、RおよびRが結合してなる2価の炭化水素基、または、RおよびRが結合してなる2価の炭化水素基としては、特に限定されないが、n-ブチレン基(式(1)、または式(2)において「N」で表される窒素原子とともに1-ピロリジン基を形成する場合)、n-ペンチレン基(1-ピペリジン基を形成する場合)、ブタジエニレン基(1-ピロール基を形成する場合)などが挙げられる。
  また、RおよびR、RおよびRで表される炭化水素基は、環構造形成の有無に関わらず、炭化水素基以外の置換基を有していてもよく、その置換基としては、特に限定されないが、カルボキシル基、酸無水物基、ヒドロカルビルカルボニル基、アルコキシカルボニル基、アシルオキシ基などのカルボニル基含有基や、エポキシ基、オキシ基、シアノ基、アミノ基、ハロゲン基などを挙げることができる。さらに、RおよびR、または、RおよびRが互いに結合して環構造を形成する場合には、その環構造を形成する原子として、炭素原子および式(1)、または式(2)において「N」で表される窒素原子以外の原子が含まれていてもよく、そのような原子の例として、窒素原子や酸素原子を挙げることができる。
  式(1)において、n+m+p=3である。すなわち、式(1)におけるnとmとpとの和は3である。
  また、式(2)において、s+t+u=2である。すなわち、式(2)におけるsとtとuとの和は2である。
  本発明の共役ジエン系重合体として、特に好ましいものとして、RおよびR、RおよびRで表される炭化水素基が、互いに結合して、式(1)、式(2)において「N」で表される窒素原子とともに、ピペラジン環構造を形成しているものが挙げられる。より具体的には、本発明の共役ジエン系重合体は、下記の式(7)または下記の式(8)で表される共役ジエン系重合体であることが特に好ましい。本発明の共役ジエン系重合体が、このような構造を有することによって、得られるゴム架橋物を特に低発熱性に優れたものとすることができる。
Figure JPOXMLDOC01-appb-C000015
  式(7)中、polymer、X、R、n、m、およびpは、いずれも、式(1)におけるものと同じものを表し、R12は炭化水素基を表し、n+m+p=3である。
Figure JPOXMLDOC01-appb-C000016
  式(8)中、polymer、X、R、s、t、およびuは、いずれも、式(2)におけるものと同じものを表し、R13は炭化水素基を表し、s+t+u=2である。
  式(7)、式(8)におけるR12、R13は、炭化水素基を表す。R12、R13となりうる炭化水素基としては、特に限定されないが、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基などのアルキル基;ビニル基、アリル基などのアルケニル基;エチニル基、プロピニル基などのアルキニル基;フェニル基、ナフチル基などのアリール基;ベンジル基などのアラルキル基;などが挙げられる。これらのなかでも、アルキル基またはアリール基が好ましく、アルキル基がより好ましく、メチル基が特に好ましい。
  本発明の共役ジエン系重合体の重量平均分子量(Mw)は、特に限定されないが、ポリスチレン換算のゲルパーミエーションクロマトグラフィで測定される値として、通常1,000~3,000,000、好ましくは10,000~2,000,000、より好ましくは100,000~1,500,000の範囲である。共役ジエン系重合体の重量平均分子量を上記範囲とすることにより、共役ジエン系重合体の加工性と機械的強度のバランスが良好なものとなる。
  また、本発明の共役ジエン系重合体の重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)で表わされる分子量分布も、特に限定されないが、好ましくは1.0~5.0であり、より好ましくは1.0~3.0である。共役ジエン系重合体の分子量分布を上記範囲とすることにより、得られるゴム架橋物がより低発熱性に優れたものとなる。
  本発明の共役ジエン系重合体は、充填剤および架橋剤などの配合剤を添加した上で、種々の用途に好適に用いることができる。特に、充填剤としてシリカを配合した場合に、低発熱性およびウエットグリップ性に優れたゴム架橋物を与えることができるゴム架橋物を得るために好適に用いられるゴム組成物を与える。
  以上のような本発明の共役ジエン系重合体を製造する方法は、目的の構造が得られる限りにおいて特に限定されないが、次に述べる、本発明の共役ジエン系重合体の製造方法が好適である。すなわち、本発明の共役ジエン系重合体の製造方法は、不活性溶媒中で、重合開始剤を用いて、共役ジエン化合物を含んでなる単量体を重合し、活性末端を有する共役ジエン系重合体鎖を得る工程と、当該活性末端を有する共役ジエン系重合体鎖の活性末端に、下記の式(5)で表される化合物を反応させる工程とを含んでなるものである。
  本発明の共役ジエン系重合体の製造方法における2つの必須の工程のうちの1つは、不活性溶媒中で、重合開始剤を用いて、共役ジエン化合物を含んでなる単量体を重合し、活性末端を有する共役ジエン系重合体鎖を得る工程である。
  この工程において、活性末端を有する共役ジエン系重合体を得るために、単量体として用いる共役ジエン化合物としては、前述した、本発明の共役ジエン系重合体において、共役ジエン単量体単位を含んでなる重合体鎖を構成するために用いる共役ジエン化合物として例示したものと同じものを例示できる。
  また、単量体として、共役ジエン化合物とともに芳香族ビニル化合物を用いてもよい。単量体として用いる芳香族ビニル化合物としては、前述した、本発明の共役ジエン系重合体において、共役ジエン単量体単位を含んでなる重合体鎖を構成するために用いうる芳香族ビニル化合物として例示したものと同じものを例示できる。さらに、単量体として、共役ジエン化合物とともに、芳香族ビニル化合物以外の、共役ジエン化合物と共重合可能な化合物を用いてもよい。単量体として用いる芳香族ビニル化合物以外の、共役ジエン化合物と共重合可能な化合物としては、前述した、本発明の共役ジエン系重合体において、共役ジエン単量体単位を含んでなる重合体鎖を構成するために用いうる、芳香族ビニル化合物以外の、共役ジエン化合物と共重合可能な化合物として例示したものと同じものを例示できる。
  重合に用いる不活性溶媒としては、溶液重合において通常使用されるものであり、重合反応を阻害しないものであれば特に限定されない。不活性溶媒の具体例としては、ブタン、ペンタン、ヘキサン、ヘプタンなどの鎖状脂肪族炭化水素;シクロペンタン、シクロヘキサンなどの脂環式炭化水素;ベンゼン、トルエン、キシレンなどの芳香族炭化水素;などが挙げられる。これらの不活性溶媒は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。不活性溶媒の使用量は、特に限定されないが、単量体濃度が、たとえば1~50重量%となる量であり、好ましくは10~40重量%となる量である。
  重合に用いる重合開始剤としては、共役ジエン化合物を含んでなる単量体を重合させて、活性末端を有する共役ジエン系重合体鎖を与えることができるものであれば、特に限定されない。その具体例としては、有機アルカリ金属化合物、有機アルカリ土類金属化合物、およびランタン系列金属化合物などを主触媒とする重合開始剤を挙げることができる。有機アルカリ金属化合物としては、例えば、n-ブチルリチウム、sec-ブチルリチウム、t-ブチルリチウム、ヘキシルリチウム、フェニルリチウム、スチルベンリチウムなどの有機モノリチウム化合物;ジリチオメタン、1,4-ジリチオブタン、1,4-ジリチオ-2-エチルシクロヘキサン、1,3,5-トリリチオベンゼン、1,3,5-トリス(リチオメチル)ベンゼンなどの有機多価リチウム化合物;ナトリウムナフタレンなどの有機ナトリウム化合物;カリウムナフタレンなどの有機カリウム化合物;などが挙げられる。また、有機アルカリ土類金属化合物としては、例えば、ジ-n-ブチルマグネシウム、ジ-n-ヘキシルマグネシウム、ジエトキシカルシウム、ジステアリン酸カルシウム、ジ-t-ブトキシストロンチウム、ジエトキシバリウム、ジイソプロポキシバリウム、ジエチルメルカプトバリウム、ジ-t-ブトキシバリウム、ジフェノキシバリウム、ジエチルアミノバリウム、ジステアリン酸バリウム、ジケチルバリウムなどが挙げられる。ランタン系列金属化合物を主触媒とする重合開始剤としては、例えば、ランタン、セリウム、プラセオジム、ネオジム、サマリウム、ガドリニウムなどのランタン系列金属と、カルボン酸、およびリン含有有機酸などとからなるランタン系列金属の塩を主触媒とし、これと、アルキルアルミニウム化合物、有機アルミニウムハイドライド化合物、有機アルミニウムハライド化合物などの助触媒とからなる重合開始剤などが挙げられる。これらの重合開始剤の中でも、有機モノリチウム化合物、および有機多価リチウム化合物が好ましく用いられ、有機モノリチウム化合物がより好ましく用いられ、n-ブチルリチウムが特に好ましく用いられる。なお、有機アルカリ金属化合物は、予め、ジブチルアミン、ジヘキシルアミン、ジベンジルアミン、ピロリジン、ヘキサメチレンイミン、およびヘプタメチレンイミンなどの第2級アミンと反応させて、有機アルカリ金属アミド化合物として使用してもよい。これらの重合開始剤は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
  重合開始剤の使用量は、目的とする共役ジエン系重合体鎖の分子量に応じて決定すればよいが、単量体1000g当り、通常1~50ミリモル、好ましくは1.5~20ミリモル、より好ましくは2~15ミリモルの範囲である。
  重合温度は、通常-80~+150℃、好ましくは0~100℃、より好ましくは30~90℃の範囲である。重合様式としては、回分式、連続式などのいずれの様式をも採用できるが、共役ジエン化合物と芳香族ビニル化合物とを共重合させる場合は、共役ジエン単量体単位と芳香族ビニル単量体単位との結合のランダム性を制御しやすい点で、回分式が好ましい。なお、前述したように、式(1)、式(2)において「polymer」で表される重合体鎖を、式(1)、式(2)において「Si」で表されるケイ素原子と結合している側の末端を、実質的にイソプレン単位のみからなる重合体ブロックによって構成するためには、重合様式を回分式にして、まず、イソプレン単位のみからなる重合体ブロック以外の部分を形成するための単量体を重合させたのち、式(5)で表される化合物を重合反応系に添加する前に、重合反応系に単量体としてイソプレンのみを添加して、重合させればよい。
  また、共役ジエン化合物を含んでなる単量体を重合するにあたり、得られる共役ジエン系重合体鎖における共役ジエン単量体単位中のビニル結合含有量を調節するために、不活性有機溶媒に極性化合物を添加することが好ましい。極性化合物としては、例えば、ジブチルエーテル、テトラヒドロフランなどのエーテル化合物;テトラメチルエチレンジアミンなどの第三級アミン;アルカリ金属アルコキシド;ホスフィン化合物;などが挙げられる。これらのなかでも、エーテル化合物、および第三級アミンが好ましく、第三級アミンがより好ましく、テトラメチルエチレンジアミンが特に好ましい。これらの極性化合物は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。極性化合物の使用量は、目的とするビニル結合含有量に応じて決定すればよく、重合開始剤1モルに対して、好ましくは0.001~100モル、より好ましくは0.01~10モルである。極性化合物の使用量がこの範囲にあると、共役ジエン単量体単位中のビニル結合含有量の調節が容易であり、かつ重合開始剤の失活による不具合も発生し難い。
  以上のような工程によれば、不活性溶媒中に、活性末端を有する共役ジエン系重合体鎖を得ることができる。本発明の共役ジエン系重合体の製造方法における2つの必須の工程のうちの残りの1つは、この活性末端を有する共役ジエン系重合体鎖の活性末端に、下記の式(5)で表される化合物を反応させる工程である。
Figure JPOXMLDOC01-appb-C000017
  式(5)中、Xはヒドロカルビルオキシ基、ハロゲン基および水酸基から選択される官能基を表し、Rは置換基を有していてもよい炭化水素基を表し、RおよびR10は、それぞれ、置換基を有していてもよい炭化水素基を表し、RおよびR10は互いに結合して環構造を形成していてもよく、rは0~2の整数である。
  式(5)においてXはヒドロカルビルオキシ基、ハロゲン基および水酸基から選択される官能基を表す。Xで表される官能基となりうる官能基の具体例としては、式(1)、式(2)におけるX,Xとなりうる官能基として例示したものと同じものを挙げることができる。
  式(5)におけるr(すなわち、式(5)においてXで表される基の数)は、0~2の整数である。式(5)におけるrが2である場合において、式(5)で表される化合物1分子中に2個含まれる式(5)においてXで表される基は、同一のものであってもよいし、互いに異なるものであってもよい。
  式(5)において、Rは置換基を有していてもよい炭化水素基を表す。Rで表される置換基を有していてもよい炭化水素基における炭化水素基とその置換基の具体例としては、式(1)、式(2)におけるR,Rとなりうる置換基を有していてもよい炭化水素基について例示したものと同じものを挙げることができる。式(5)におけるrが0である場合において、式(5)で表される化合物1分子中に2個含まれる、式(5)においてRで表される基は、同一のものであってもよいし、互いに異なるものであってもよい。
  式(5)においてRおよびR10は、それぞれ、置換基を有していてもよい炭化水素基を表し、RおよびR10は互いに結合して環構造を形成していてもよい。RおよびR10で表される置換基を有していてもよい炭化水素基における炭化水素基とその置換基の具体例としては、式(1)、式(2)におけるRおよびR、RおよびRとなりうる置換基を有していてもよい炭化水素基について例示したものと同じものを挙げることができる。
  本発明の共役ジエン系重合体として特に好ましいものである、式(7)、式(8)で表される共役ジエン系重合体を得るためには、式(5)で表される化合物として、下記の式(9)で表される化合物を用いればよい。
Figure JPOXMLDOC01-appb-C000018
  式(9)中、X、R、およびrは、いずれも、式(5)におけるものと同じものを表し、R14は炭化水素基を表す。
  式(9)におけるR14は、炭化水素基を表す。R14となりうる炭化水素基としては、特に限定されないが、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基などのアルキル基;ビニル基、アリル基などのアルケニル基;エチニル基、プロピニル基などのアルキニル基;フェニル基、ナフチル基などのアリール基;ベンジル基などのアラルキル基;などが挙げられる。これらのなかでも、アルキル基またはアリール基が好ましく、アルキル基がより好ましく、メチル基が特に好ましい。
  式(5)で表される化合物の具体例としては、2,2-ジメトキシ-8-(4-メチルピペラジニル)メチル-1,6-ジオキサ-2-シラシクロオクタン、2,2-ジエトキシ-8-(4-メチルピペラジニル)メチル-1,6-ジオキサ-2-シラシクロオクタン、2,2-ジメトキシ-8-(N,N-ジエチル)メチル-1,6-ジオキサ-2-シラシクロオクタン、2-メトキシ-2-メチル-8-(4-メチルピペラジニル)メチル-1,6-ジオキサ-2-シラシクロオクタンなどが挙げられる。これらの式(5)で表される化合物は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
  本発明の共役ジエン系重合体の製造方法において、式(5)で表される化合物の使用量は、特に限定されないが、反応させる活性末端を有する共役ジエン系重合体鎖の活性末端1モルに対する式(5)で表される化合物の量として、0.5~10.0モルであることが好ましく、0.7~5.0モルであることがより好ましく、1.0~2.0モルであることが特に好ましい。このような量で、式(5)で表される化合物を用いることにより、得られる共役ジエン系重合体が特に低発熱性に優れたゴム架橋物を与えるものとなる。
  なお、通常、式(5)で表される化合物は、活性末端を有する共役ジエン系重合体鎖の活性末端と反応する場合には、次のようにして反応が進行すると考えられる。すなわち、まず、第1の反応形態を例示すると、1段階目の反応として、式(5)で表される化合物中の8員環構造における酸素-ケイ素結合が開裂して、そのケイ素原子は共役ジエン系重合体鎖の活性末端との間に新たに結合を形成し、酸素原子は活性末端の対イオンと塩構造(なお、この塩構造は、重合反応停止時に重合反応停止剤などに由来するプロトンと反応して水酸基を生じるものである)を形成する。さらに、式(5)で表される化合物が、ヒドロカルビルオキシシリル基を有する場合(式(5)におけるrが1または2である場合)には、そのヒドロカルビルオキシシリル基中のヒドロカルビルオキシ基と共役ジエン系重合体鎖の活性末端が反応して、さらに、ケイ素原子と共役ジエン系重合体鎖の活性末端との間に結合が生じる。
 あるいは、第2の反応形態として、1段階目の反応において、式(5)で表される化合物中の8員環構造における酸素-ケイ素結合が開裂することなく、ケイ素原子に結合している、Xが脱離することで、そのケイ素原子が共役ジエン系重合体鎖の活性末端との間に新たに結合を形成し、酸素原子は活性末端の対イオンと塩構造(なお、この塩構造は、重合反応停止時に重合反応停止剤などに由来するプロトンと反応して水酸基を生じるものである)を形成する。さらに、式(5)で表される化合物が、ヒドロカルビルオキシシリル基を有する場合(式(5)におけるrが1または2である場合)には、そのヒドロカルビルオキシシリル基中のヒドロカルビルオキシ基と共役ジエン系重合体鎖の活性末端が反応して、さらに、ケイ素原子と共役ジエン系重合体鎖の活性末端との間に結合が生じる。
 本発明において、上記第1の反応形態により反応が進行することにより、式(1)で表される共役ジエン系重合体を得ることができ、一方、上記第2の反応形態により反応が進行することにより、式(2)で表される共役ジエン系重合体を得ることができる。また、上記第1の反応形態による反応と、第2の反応形態による反応とが同時に進行することで(たとえば、主として、第1の反応形態により反応が進行する一方で、副次的に、第2の反応形態による反応が進行する場合等)、共役ジエン系重合体として、式(1)で表されるものと、下記の式(2)で表されるものとの混合物を得ることができる。
  式(5)で表される化合物と活性末端を有する共役ジエン系重合体鎖とを反応させる方法は、特に限定されないが、これらを、それぞれが溶解可能な溶媒中で、混合する方法などが挙げられる。この際に用いる溶媒としては、上述した重合に用いる不活性溶媒として例示したものなどを用いることができる。また、この際においては、活性末端を有する共役ジエン系重合体鎖を得るための重合に用いた重合溶液に、式(5)で表される化合物を添加する方法が簡便であり好ましい。また、この際においては、式(5)で表される化合物は、不活性溶媒に溶解して重合系内に添加することが好ましく、その溶液濃度は、1~50重量%の範囲とすることが好ましい。反応温度は、特に限定されないが、通常0~120℃であり、反応時間も特に限定されないが、通常1分~1時間である。
  活性末端を有する共役ジエン系重合体鎖を含有する溶液に、式(5)で表される化合物を添加する時期は特に限定されないが、重合反応が完結しておらず、活性末端を有する共役ジエン系重合体鎖を含有する溶液が単量体をも含有している状態、より具体的には、活性末端を有する共役ジエン系重合体鎖を含有する溶液が、100ppm以上、より好ましくは300~50,000ppmの単量体を含有している状態で、この溶液に式(5)で表される化合物を添加することが望ましい。上記式(5)で表される化合物の添加をこのように行なうことにより、活性末端を有する共役ジエン系重合体鎖と重合系中に含まれる不純物などとの副反応を抑制して、反応を良好に制御することが可能となる。
  なお、活性末端を有する共役ジエン系重合体鎖に、式(5)で表される化合物を反応させる前の状態のとき、または反応させた後に活性末端を有する共役ジエン系重合体鎖が残存している状態のときに、本発明の効果を阻害しない範囲で、活性末端を有する共役ジエン系重合体鎖の活性末端の一部を、従来から通常使用されているカップリング剤や変性剤などを重合系内に添加して、カップリングや変性を行ってもよい。
  特に、本発明においては、活性末端を有する共役ジエン系重合体鎖について、活性末端の一部を、カップリング剤としてのハロゲン化錫、ハロゲン化珪素、または下記式(6)で表される化合物と反応させることが好ましい。
Figure JPOXMLDOC01-appb-C000019
  式(6)中、R11は置換基を有していてもよいアルキル鎖を表し、Xはハロゲン基を表し、Mは珪素原子または錫原子を表す。
  ハロゲン化錫としては、四塩化錫、トリフェニルモノクロル錫などが挙げられ、四塩化錫が好ましい。また、ハロゲン化珪素としては、四塩化ケイ素、ヘキサクロロジシラン、トリフェノキシクロロシラン、メチルトリフェノキシシラン、ジフェノキシジクロロシランなどが挙げられ、四塩化ケイ素が好ましい。
  また、式(6)中、R11は置換基を有していてもよい炭化水素基を表し、R11となりうる炭化水素基としては、特に限定されないが、メチレン基、1,2-エチレン基、1,3-プロピレン基、1,4-ブチレン基、1,5-ペンチレン基、1,6-ヘキシレン基、4-メチル-2,2-ペンチレン基、2,3-ジメチル-2,3-ブチレン基などが挙げられる。これらのなかでも、1,2-エチレン基および1,6-ヘキシレン基が好ましい。また、Xとなりうるハロゲン基としては、特に限定されないが、フルオロ基、クロロ基、ブロモ基、ヨード基が挙げられ、これらのなかでも、クロロ基が好ましい。さらに、Mは珪素原子または錫原子であるが、珪素原子であることが好ましい。
  また、式(6)で表される化合物の具体例としては、ビス(トリクロロシリル)メタン、1,2-ビス(トリクロロシリル)エタン、1,3-ビス(トリクロロシリル)プロパン、1,4-ビス(トリクロロシリル)ブタン、1,5-ビス(トリクロロシリル)ペンタン、および1,6-ビス(トリクロロシリル)ヘキサンなどが挙げられる。
  本発明の共役ジエン系重合体の製造方法において、ハロゲン化錫、ハロゲン化珪素、または式(6)で表される化合物の使用量は、特に限定されないが、活性末端を有する共役ジエン系重合体鎖の活性末端1モルに対する量として、0.001~0.2モルであることが好ましく、0.005~0.1モルであることがより好ましく、0.01~0.05モルであることが特に好ましい。このような量で、ハロゲン化錫、ハロゲン化珪素、または式(6)で表される化合物を用いることで、得られる共役ジエン系重合体の形状安定性をより高めることができる。
  本発明においては、このように、活性末端を有する共役ジエン系重合体鎖について、活性末端の一部を、カップリング剤としてのハロゲン化錫、ハロゲン化珪素、または式(6)で表される化合物と反応させることにより、本発明の共役ジエン系重合体を、式(1)または式(2)で表される共役ジエン系重合体と、式(3)で表される共役ジエン系重合体および/または式(4)で表される共役ジエン系重合体との混合物(共役ジエン系重合体組成物)とすることができる。そして、これにより、共役ジエン系重合体に分岐構造(好ましくは、3分岐以上の分岐構造)を導入することができ、結果として、共役ジエン系重合体を、形状安定性に優れたもの(すなわち、所定の形状(たとえば、ベール状)に加工した際に、このような所定の形状を良好に維持できるもの)とすることができる。
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
  なお、式(3)中、polymerは共役ジエン単量体単位を含んでなる重合体鎖を表し、Xはハロゲン基または水酸基を表し、Mは珪素原子または錫原子を表し、aは1~4の整数であり、bは0~3の整数であり、a+b=4である。
  式(3)において「polymer」で表される重合体鎖は、共役ジエン単量体単位を含んでなる重合体鎖であり、式(1)、式(2)におけるものと同様である。また、Xはハロゲン基または水酸基を表し、Xとなりうるハロゲン基としては、特に限定されないが、フルオロ基、クロロ基、ブロモ基、ヨード基が挙げられ、これらのなかでも、クロロ基が好ましい。
  また、式(4)中、polymerは共役ジエン単量体単位を含んでなる重合体鎖を表し、Xはハロゲン基または水酸基を表し、Rは置換基を有していてもよい炭化水素基を表し、Mは珪素原子または錫原子を表し、cは0~3の整数であり、dは0~3の整数であり、eは0~3の整数であり、fは0~3の整数であり、c+d=3であり、e+f=3であり、d+fは1~6の整数である。
  式(4)において「polymer」で表される重合体鎖は、共役ジエン単量体単位を含んでなる重合体鎖であり、式(1)、式(2)におけるものと同様である。また、Xはハロゲン基または水酸基を表し、Xとなりうるハロゲン基としては、特に限定されないが、フルオロ基、クロロ基、ブロモ基、ヨード基が挙げられ、これらのなかでも、クロロ基が好ましい。さらに、Rは置換基を有していてもよい炭化水素基を表し、Rとなりうる炭化水素基としては、式(6)におけるものと同様である。
  なお、本発明の共役ジエン系重合体を、式(1)または式(2)で表される共役ジエン系重合体と、式(3)で表される共役ジエン系重合体および/または式(4)で表される共役ジエン系重合体との混合物とする場合における、これらの割合は、(式(1)または式(2)で表される共役ジエン系重合体):(式(3)で表される共役ジエン系重合体および/または式(4)で表される共役ジエン系重合体)の重量比率で、好ましくは60:40~98:2、より好ましくは80:20~96:4である。これらの割合を上記範囲とすることにより、形状安定性の向上効果をより適切に得ることができる。
  本発明の共役ジエン系重合体のカップリング率は、特に限定されないが、好ましくは10重量%以上、より好ましくは15重量%以上、特に好ましくは20重量%以上であり、また、好ましくは80重量%以下、より好ましくは75重量%以下、特に好ましくは70重量%以下である。このカップリング率が低すぎると、共役ジエン系重合体から得られる架橋物の機械的強度が不十分となるおそれがあり、また、カップリング率が高すぎると、共役ジエン系重合体から得られる架橋物の耐摩耗性が不十分となるおそれがある。なお、カップリング率は、式(5)で表される化合物およびカップリング剤(具体的には、ハロゲン化錫、ハロゲン化珪素、または式(6)で表される化合物)やその他の変性剤と反応させる前の活性末端を有する共役ジエン系重合体鎖のピークトップ分子量の1.8倍以上の分子量を有する重合体分子の、最終的に得られた共役ジエン系重合体の全量に対する重量分率であり、このときの分子量の測定は、ゲルパーミエーションクロマトグラフィによりポリスチレン換算分子量として求めるものとする。
  活性末端を有する共役ジエン系重合体鎖に、式(5)で表される化合物、および所望により、カップリング剤(具体的には、ハロゲン化錫、ハロゲン化珪素、または式(6)で表される化合物)やその他の変性剤を反応させた後に、未反応の活性末端が残存している場合、メタノール、エタノール、イソプロパノールなどのアルコールまたは水などの、重合停止剤を重合溶液に添加して、未反応の活性末端を失活させることが好ましい。
  以上のようにして得られる共役ジエン系重合体の溶液には、所望により、フェノール系安定剤、リン系安定剤、イオウ系安定剤などの老化防止剤を添加してもよい。老化防止剤の添加量は、その種類などに応じて適宜決定すればよい。さらに、所望により、伸展油を配合して、油展ゴムとしてもよい。伸展油としては、たとえば、パラフィン系、芳香族系およびナフテン系の石油系軟化剤、植物系軟化剤、ならびに脂肪酸等が挙げられる。石油系軟化剤を用いる場合には、IP346の方法(英国のTHE  INSTITUTE  PETROLEUMの検査方法)により抽出される多環芳香族の含有量が3%未満であることが好ましい。伸展油を使用する場合、その使用量は、共役ジエン系重合体100重量部に対して、通常5~100重量部である。
  そして、このようにして得られた共役ジエン系重合体は、例えば、スチームストリッピングにより、溶媒を除去することにより、反応混合物から分離することで、固形状の共役ジエン系重合体として得ることができる。なお、重合反応により得られる共役ジエン系重合体が、式(1)、式(2)においてX,Xで表される基として、ヒドロカルビルオキシ基またはハロゲン基を有する場合には、この共役ジエン系重合体をスチームストリッピングする際に、これらの基の少なくとも一部が加水分解して水酸基を生じ得るが、そのように生じたX,Xで表される基として水酸基(シラノール基)を有する共役ジエン系重合体も、本発明の共役ジエン系重合体として用いることができる。
  本発明のゴム組成物は、例えば以上のようにして得られる本発明の共役ジエン系重合体を含有するゴム成分100重量部とシリカ10~200重量部とを含有してなるゴム組成物である。
  本発明で用いるシリカとしては、たとえば、乾式法ホワイトカーボン、湿式法ホワイトカーボン、コロイダルシリカ、沈降シリカなどが挙げられる。これらのなかでも、含水ケイ酸を主成分とする湿式法ホワイトカーボンが好ましい。また、カーボンブラック表面にシリカを担持させたカーボン-シリカデュアル・フェイズ・フィラーを用いてもよい。これらのシリカは、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。用いるシリカの窒素吸着比表面積(ASTM  D3037-81に準じBET法で測定される)は、好ましくは50~300m/gであり、より好ましくは80~220m/gであり、特に好ましくは100~170m/gである。また、シリカのpHは、5~10であることが好ましい。
  本発明のゴム組成物におけるシリカの配合量は、ゴム組成物中のゴム成分100重量部に対して、10~200重量部であり、好ましくは30~150重量部であり、より好ましくは50~100重量部である。シリカの配合量をこの範囲とすることにより、ゴム組成物の加工性が優れたものとなり、得られるゴム架橋物の耐摩耗性および低発熱性がより優れたものとなる。
  本発明のゴム組成物には、低発熱性をさらに改良するという観点より、さらにシランカップリング剤を配合してもよい。シランカップリング剤としては、たとえば、ビニルトリエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルトリメトキシシラン、3-オクタチオ-1-プロピル-トリエトキシシラン、ビス(3-(トリエトキシシリル)プロピル)ジスルフィド、ビス(3-(トリエトキシシリル)プロピル)テトラスルフィド、γ-トリメトキシシリルプロピルジメチルチオカルバミルテトラスルフィド、およびγ-トリメトキシシリルプロピルベンゾチアジルテトラスルフィドなどを挙げることができる。これらのシランカップリング剤は、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。シランカップリング剤の配合量は、ゴム組成物中のシリカ100重量部に対して、好ましくは0.1~30重量部であり、より好ましくは1~15重量部である。
  また、本発明のゴム組成物には、さらに、ファーネスブラック、アセチレンブラック、サーマルブラック、チャンネルブラック、およびグラファイトなどのカーボンブラックを配合してもよい。これらのなかでも、ファーネスブラックが好ましい。これらのカーボンブラックは、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。カーボンブラックの配合量は、ゴム組成物中のゴム成分100重量部に対して、通常、120重量部以下である。
  本発明の共役ジエン系重合体を含むゴム成分に、シリカを添加する方法は特に限定されず、固形のゴム成分に対して添加して混練する方法(乾式混練法)やゴム成分の溶液に対して添加して凝固・乾燥させる方法(湿式混練法)などを適用することができる。
  また、本発明のゴム組成物は、架橋剤をさらに含有していることが好ましい。架橋剤としては、たとえば、硫黄、ハロゲン化硫黄などの含硫黄化合物、有機過酸化物、キノンジオキシム類、有機多価アミン化合物、メチロール基を有するアルキルフェノール樹脂などが挙げられる。これらの中でも、硫黄が好ましく使用される。架橋剤の配合量は、ゴム組成物中のゴム成分100重量部に対して、好ましくは0.1~15重量部であり、より好ましくは0.5~5重量部であり、特に好ましくは1~4重量部である。
  さらに、本発明のゴム組成物には、上記成分以外に、常法に従って、架橋促進剤、架橋活性化剤、老化防止剤、充填剤(上記シリカおよびカーボンブラックを除く)、活性剤、プロセス油、可塑剤、滑剤、粘着付与剤などの配合剤をそれぞれ必要量配合できる。
  架橋剤として、硫黄または含硫黄化合物を用いる場合には、架橋促進剤および架橋活性化剤を併用することが好ましい。架橋促進剤としては、たとえば、スルフェンアミド系架橋促進剤;グアニジン系架橋促進剤;チオウレア系架橋促進剤;チアゾール系架橋促進剤;チウラム系架橋促進剤;ジチオカルバミン酸系架橋促進剤;キサントゲン酸系架橋促進剤;などが挙げられる。これらのなかでも、スルフェンアミド系架橋促進剤を含むものが好ましい。これらの架橋促進剤は、それぞれ単独で、あるいは2種以上を組み合わせて用いられる。架橋促進剤の配合量は、ゴム組成物中のゴム成分100重量部に対して、好ましくは0.1~15重量部であり、より好ましくは0.5~5重量部であり、特に好ましくは1~4重量部である。
  架橋活性化剤としては、たとえば、ステアリン酸などの高級脂肪酸;酸化亜鉛;などを挙げることができる。これらの架橋活性化剤は、それぞれ単独で、あるいは2種以上を組み合わせて用いられる。架橋活性化剤の配合量は、ゴム組成物中のゴム成分100重量部に対して、好ましくは0.05~20重量部であり、特に好ましくは0.5~15重量部である。
  また、本発明のゴム組成物には、本発明の共役ジエン系重合体以外のその他のゴムを配合してもよい。その他のゴムとしては、たとえば、天然ゴム、ポリイソプレンゴム、乳化重合スチレン-ブタジエン共重合ゴム、溶液重合スチレン-ブタジエン共重合ゴム、ポリブタジエンゴム(高シス-BR、低シスBRであってもよい。また、1,2-ポリブタジエン重合体からなる結晶繊維を含むポリブタジエンゴムであってもよい。)、スチレン-イソプレン共重合ゴム、ブタジエン-イソプレン共重合ゴム、スチレン-イソプレン-ブタジエン共重合ゴム、アクリロニトリル-ブタジエン共重合ゴム、およびアクリロニトリル-スチレン-ブタジエン共重合ゴムなどのうち、上述した変性共役ジエン系ゴム以外のものをいう。これらのなかでも、天然ゴム、ポリイソプレンゴム、ポリブタジエンゴム、および溶液重合スチレン-ブタジエン共重合ゴムが好ましい。これらのゴムは、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。
  本発明のゴム組成物において、本発明の共役ジエン系重合体は、ゴム組成物中のゴム成分の10~100重量%を占めることが好ましく、50~100重量%を占めることが特に好ましい。このような割合で、本発明の共役ジエン系重合体がゴム成分中に含まれることにより、より低発熱性および耐摩耗性に優れたゴム架橋物を得ることができる。
  本発明のゴム組成物を得るためには、常法に従って各成分を混練すればよく、たとえば、架橋剤や架橋促進剤などの熱に不安定な成分を除く成分とゴム成分とを混練した後、その混練物に架橋剤や架橋促進剤などの熱に不安定な成分を混合して目的のゴム組成物を得ることができる。熱に不安定な成分を除く成分とゴム成分との混練温度は、好ましくは80~00℃であり、より好ましくは120~180℃であり、その混練時間は、好ましくは30秒~30分である。また、その混練物と熱に不安定な成分との混合は、通常100℃以下、好ましくは80℃以下まで冷却した後に行われる。
  本発明のゴム架橋物は、以上述べたような本発明のゴム組成物を架橋してなるものである。本発明のゴム架橋物は、本発明のゴム組成物を用い、たとえば、所望の形状に対応した成形機、たとえば、押出機、射出成形機、圧縮機、ロールなどにより成形を行い、加熱することにより架橋反応を行い、架橋物として形状を固定化することにより製造することができる。この場合においては、予め成形した後に架橋しても、成形と同時に架橋を行ってもよい。成形温度は、通常10~200℃であり、好ましくは25~120℃である。架橋温度は、通常100~200℃であり、好ましくは130~190℃であり、架橋時間は、通常1分~24時間であり、好ましくは2分~12時間であり、特に好ましくは3分~6時間である。
  また、ゴム架橋物の形状、大きさなどによっては、表面が架橋していても内部まで十分に架橋していない場合があるので、さらに加熱して二次架橋を行ってもよい。
  ゴム組成物を架橋するための加熱方法としては、プレス加熱、スチーム加熱、オーブン加熱、熱風加熱などのゴムの架橋に用いられる一般的な方法を適宜選択すればよい。
  例えば以上のようにして得られる本発明のゴム架橋物は、本発明の共役ジエン系重合体を用いて得られるものであるため、低発熱性およびウエットグリップ性に優れたものである。本発明のゴム架橋物は、このような特性を活かし、たとえば、タイヤにおいて、キャップトレッド、ベーストレッド、カーカス、サイドウォール、ビード部などのタイヤ各部位の材料;ホース、ベルト、マット、防振ゴム、その他の各種工業用品の材料;樹脂の耐衝撃性改良剤;樹脂フィルム緩衝剤;靴底;ゴム靴;ゴルフボール;玩具;などの各種用途に用いることができる。とりわけ、本発明のゴム架橋物は、低発熱性およびウエットグリップ性に優れることから、タイヤの材料、特に低燃費タイヤの材料として好適に用いることができ、トレッド用途に最適である。すなわち、本発明のタイヤは、本発明のゴム架橋物を含んでなるタイヤ。
  以下に、実施例および比較例を挙げて、本発明についてより具体的に説明する。なお、各例中の「部」および「%」は、特に断りのない限り、重量基準である。
  各種の測定および評価については、以下の方法に従って行った。
〔共役ジエン系重合体の分子量〕
  重合体の分子量は、ゲルパーミエーションクロマトグラフィによりポリスチレン換算分子量として求めた。具体的な測定条件は、以下のとおりとした。
  測定器:高速液体クロマトグラフ(東ソー社製、商品名「HLC-8220」)
  カラム:東ソー社製、商品名「GMH-HR-H」を二本直列に連結した。
  検出器:示差屈折計
  溶離液:テトラヒドロフラン
  カラム温度:40℃
〔共役ジエン系重合体のカップリング率〕
  上記の条件のゲルパーミエーションクロマトグラフィにより得られた溶出曲線において、全溶出面積に対する、分子量の最も小さいピークが示すピークトップ分子量の1.8倍以上のピークトップ分子量を有するピーク部分の面積比を、共役ジエン系重合体のカップリング率の値とした。
〔共役ジエン系重合体の形状安定性〕
  共役ジエン系重合体を厚さ2mmのシート状にした後に、JIS  K6251に定めるダンベル状8号形に打ち抜いた。このダンベル状試験片の中央部に標線間距離が10mmになるように2本の標線をひいた。次に、試験片のつかみ部の片方を上方より固定し吊り下げ、温度23℃、湿度50%、96時間静置し、静置後の標線間距離を求め、これを形状安定性の値とした。この形状安定性の値については、比較例1の測定値を100とする指数で示した。この指数が小さいものほど、形状安定性に優れる。
〔ゴム架橋物の低発熱性〕
  低発熱性については、長さ50mm、幅12.7mm、厚さ2mmの試験片を、レオメトリックス社製ARESを用い、動的歪み2.5%、10Hzの条件で60℃におけるtanδを測定することにより評価した。このtanδの値については、比較例1の測定値を100とする指数で示した。この指数が小さいものほど、低発熱性に優れる。
〔ゴム架橋物のウエットグリップ性〕
  ウエットグリップ性については、長さ50mm、幅12.7mm、厚さ2mmの試験片を、レオメトリックス社製ARESを用い、動的歪み0.5%、10Hzの条件で0℃におけるtanδの値を測定することにより評価した。このtanδの値については、比較例1の測定値を100とする指数で示した。この指数が大きいものほど、ウエットグリップ性に優れる。
〔実施例1〕
  窒素雰囲気下、オートクレーブに、シクロヘキサン800部、1,3-ブタジエン94.8部、スチレン25.2部、およびテトラメチルエチレンジアミン0.164部を仕込んだ後、n-ブチルリチウム0.045部を添加し、60℃で重合を開始した。60分間重合反応を継続し、重合転化率が95%から100%の範囲になったことを確認してから、2,2-ジメトキシ-8-(4-メチルピペラジニル)メチル-1,6-ジオキサ-2-シラシクロオクタン0.322部を添加し、30分間反応させた後、重合停止剤としてメタノール0.064部を添加して、共役ジエン系重合体を含有する溶液を得た。そして、得られた重合体成分100部に対して、老化防止剤として2,4-ビス[(オクチルチオ)メチル]-o-クレゾール(チバスペシャルティケミカルズ社製、商品名「イルガノックス1520」)0.15部を溶液に添加した後、スチームストリッピングにより、溶媒を除去し、60℃で24時間真空乾燥して、固形状の共役ジエン系重合体を得た。得られた実施例1の共役ジエン系重合体の重量平均分子量(Mw)は370,000、分子量分布(Mw/Mn)は1.29、カップリング率は32.8%であった。また、得られた実施例1の共役ジエン系重合体について、上記方法にしたがって、形状安定性の評価を行ったところ、形状安定性のインデックス値(比較例1の結果を100とした場合の値。以下、各実施例および比較例において同様。)は、26であった。
〔実施例2〕
  窒素雰囲気下、オートクレーブに、シクロヘキサン800部、1,3-ブタジエン94.8部、スチレン25.2部、およびテトラメチルエチレンジアミン0.164部を仕込んだ後、n-ブチルリチウム0.045部を添加し、60℃で重合を開始した。60分間重合反応を継続し、重合転化率が95%から100%の範囲になったことを確認してから、四塩化スズ0.0055部を添加し、10分間反応させた。次に、2,2-ジメトキシ-8-(4-メチルピペラジニル)メチル-1,6-ジオキサ-2-シラシクロオクタン0.263部を添加し、30分間反応させた後、重合停止剤としてメタノール0.064部を添加して、共役ジエン系重合体を含有する溶液を得た。そして、得られた重合体成分100部に対して、老化防止剤として2,4-ビス[(オクチルチオ)メチル]-o-クレゾール(チバスペシャルティケミカルズ社製、商品名「イルガノックス1520」)0.15部を溶液に添加した後、スチームストリッピングにより、溶媒を除去し、60℃で24時間真空乾燥して、固形状の共役ジエン系重合体を得た。得られた実施例2の共役ジエン系重合体の重量平均分子量(Mw)は328,000、分子量分布(Mw/Mn)は1.43、カップリング率は40.0%であった。また、得られた実施例2の共役ジエン系重合体について、上記方法にしたがって、形状安定性の評価を行ったところ、形状安定性のインデックス値は、15であった。
〔実施例3〕
  四塩化スズ0.0055部に代えて、四塩化ケイ素0.0036部を用いたこと以外は、実施例2と同様に操作して、固形状の共役ジエン系重合体を得た。得られた実施例3の共役ジエン系重合体の重量平均分子量(Mw)は340,000、分子量分布(Mw/Mn)は1.41、カップリング率は43.9%であった。また、得られた実施例3の共役ジエン系重合体について、上記方法にしたがって、形状安定性の評価を行ったところ、形状安定性のインデックス値は、9であった。
〔実施例4〕
  四塩化スズ0.0055部に代えて、1,6-ビス(トリクロロシリル)ヘキサン0.0075部を用いたこと以外は、実施例2と同様に操作して、固形状の共役ジエン系重合体を得た。得られた実施例4の共役ジエン系重合体の重量平均分子量(Mw)は333,000、分子量分布(Mw/Mn)は1.44、カップリング率は42.1%であった。また、得られた実施例4の共役ジエン系重合体について、上記方法にしたがって、形状安定性の評価を行ったところ、形状安定性のインデックス値は、12であった。
〔実施例5〕
  四塩化スズ0.0055部に代えて、1,2-ビス(トリクロロシリル)エタン0.0063部を用いたこと以外は、実施例2と同様に操作して、固形状の共役ジエン系重合体を得た。得られた実施例5の共役ジエン系重合体の重量平均分子量(Mw)は338,000、分子量分布(Mw/Mn)は1.46、カップリング率は41.3%であった。また、得られた実施例5の共役ジエン系重合体について、上記方法にしたがって、形状安定性の評価を行ったところ、形状安定性のインデックス値は、12であった。
〔実施例6〕
  2,2-ジメトキシ-8-(4-メチルピペラジニル)メチル-1,6-ジオキサ-2-シラシクロオクタン0.322部に代えて、2,2-ジエトキシ-8-(4-メチルピペラジニル)メチル-1,6-ジオキサ-2-シラシクロオクタン0.352部を用いたこと以外は、実施例1と同様に操作して、固形状の共役ジエン系重合体を得た。得られた実施例6の共役ジエン系重合体の重量平均分子量(Mw)は285,000、分子量分布(Mw/Mn)は1.20、カップリング率は19.1%であった。また、得られた実施例6の共役ジエン系重合体について、上記方法にしたがって、形状安定性の評価を行ったところ、形状安定性のインデックス値は、71であった。
〔実施例7〕
  2-ジメトキシ-8-(4-メチルピペラジニル)メチル-1,6-ジオキサ-2-シラシクロオクタン0.263部に代えて、2-ジエトキシ-8-(4-メチルピペラジニル)メチル-1,6-ジオキサ-2-シラシクロオクタン0.310部を用いたこと以外は、実施例2と同様に操作して、固形状の共役ジエン系重合体を得た。得られた実施例7の共役ジエン系重合体の重量平均分子量(Mw)は298,000、分子量分布(Mw/Mn)は1.30、カップリング率は24.0%であった。また、得られた実施例7の共役ジエン系重合体について、上記方法にしたがって、形状安定性の評価を行ったところ、形状安定性のインデックス値は、52であった。
〔実施例8〕
  2,2-ジメトキシ-8-(4-メチルピペラジニル)メチル-1,6-ジオキサ-2-シラシクロオクタン0.322部に代えて、2,2-ジメトキシ-8-(N,N-ジエチル)メチル-1,6-ジオキサ-2-シラシクロオクタン0.294部を用いたこと以外は、実施例1と同様に操作して、固形状の共役ジエン系重合体を得た。得られた実施例8の共役ジエン系重合体の重量平均分子量(Mw)は292,000、分子量分布(Mw/Mn)は1.51、カップリング率は43.0%であった。また、得られた実施例8の共役ジエン系重合体について、上記方法にしたがって、形状安定性の評価を行ったところ、形状安定性のインデックス値は、13であった。
〔実施例9〕
  2-ジメトキシ-8-(4-メチルピペラジニル)メチル-1,6-ジオキサ-2-シラシクロオクタン0.263部に代えて、2,2-ジメトキシ-8-(N,N-ジエチル)メチル-1,6-ジオキサ-2-シラシクロオクタン0.165部を用いたこと以外は、実施例2と同様に操作して、固形状の共役ジエン系重合体を得た。得られた実施例9の共役ジエン系重合体の重量平均分子量(Mw)は345,000、分子量分布(Mw/Mn)は1.45、カップリング率は45.5%であった。また、得られた実施例9の共役ジエン系重合体について、上記方法にしたがって、形状安定性の評価を行ったところ、形状安定性のインデックス値は、5であった。
〔比較例1〕
  2,2-ジメトキシ-8-(4-メチルピペラジニル)メチル-1,6-ジオキサ-2-シラシクロオクタン0.322部に代えて、2,2-ジメトキシ-1-フェニル-1-アザ-2-シラシクロペンタン0.236部を用いたこと以外は、実施例1と同様に操作して、固形状の共役ジエン系重合体を得た。得られた比較例1の共役ジエン系重合体の重量平均分子量(Mw)は258,000、分子量分布(Mw/Mn)は1.12、カップリング率は4.5%であった。また、得られた比較例1の共役ジエン系重合体について、上記方法にしたがって、形状安定性の評価を行ったところ、形状安定性のインデックス値は、100であった。
〔比較例2〕
  2,2-ジメトキシ-8-(4-メチルピペラジニル)メチル-1,6-ジオキサ-2-シラシクロオクタン0.322部に代えて、N-フェニル-2-ピロリドン0.188部を用いたこと以外は、実施例1と同様に操作して、固形状の共役ジエン系重合体を得た。得られた比較例2の共役ジエン系重合体の重量平均分子量(Mw)は255,000、分子量分布(Mw/Mn)は1.08、カップリング率は2.2%であった。また、得られた比較例2の共役ジエン系重合体について、上記方法にしたがって、形状安定性の評価を行ったところ、形状安定性のインデックス値は、100であった。
〔ゴム架橋物の製造と評価〕
  容量250mlのブラベンダータイプミキサー中で、実施例1の共役ジエン系重合体100部を30秒素練りし、次いでシリカ(ローディア社製、商品名「Zeosil1115MP」)50部、プロセスオイル(新日本石油社製、商品名「アロマックス  T-DAE」)20部、およびシランカップリング剤:ビス(3-(トリエトキシシリル)プロピル)テトラスルフィド(デグッサ社製、商品名「Si69」)6.0部を添加して、110℃を開始温度として1.5分間混練後、シリカ(ローディア社製、商品名「Zeosil1115MP」)25部、酸化亜鉛3部、ステアリン酸2部および老化防止剤:N-フェニル-N’-(1,3-ジメチルブチル)-p-フェニレンジアミン(大内新興社製、商品名「ノクラック6C」)2部を添加し、更に2.5分間混練し、ミキサーから混練物を排出させた。混錬終了時の混練物の温度は150℃であった。混練物を、室温まで冷却した後、再度ブラベンダータイプミキサー中で、110℃を開始温度として2分間混練した後、ミキサーから混練物を排出させた。次いで、50℃のオープンロールで、得られた混練物に、硫黄1.40部、架橋促進剤:N-tert-ブチル-2-ベンゾチアゾリルスルフェンアミド(商品名「ノクセラーNS-P」、大内新興化学工業社製)1.2部、およびジフェニルグアニジン(商品名「ノクセラーD」、大内新興化学工業社製)1.2部を加えてこれらを混練した後、シート状のゴム組成物を取り出した。このゴム組成物を、160℃で20分間プレス架橋して、ゴム架橋物の試験片を作製し、この試験片について、低発熱性およびウエットグリップ性の評価を行なった。実施例2~9、比較例1および比較例2の共役ジエン系重合体についても、それぞれ、同様にして、ゴム架橋物の試験片を作製し、これらの試験片について、低発熱性およびウエットグリップ性の評価を行なった。表1にこれらの結果をまとめて示す。
Figure JPOXMLDOC01-appb-T000022
  表1から判るように、本発明の共役ジエン系重合体の製造方法によって得られる、本発明の共役ジエン系重合体(実施例1~9)を用いて得られたゴム架橋物は、従来の手法により末端変性した共役ジエン系重合体(比較例1および比較例2)を用いて得られたゴム架橋物に比して、低発熱性およびウエットグリップ性に優れる。

Claims (8)

  1.   下記の式(1)または下記の式(2)で表される共役ジエン系重合体。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、polymerは共役ジエン単量体単位を含んでなる重合体鎖を表し、Xはヒドロカルビルオキシ基、ハロゲン基および水酸基から選択される官能基を表し、Rは置換基を有していてもよい炭化水素基を表し、RおよびRは、それぞれ、置換基を有していてもよい炭化水素基を表し、RおよびRは互いに結合して環構造を形成していてもよく、nは1~3の整数であり、mは0~2の整数であり、pは0~2の整数であり、n+m+p=3である。)
    Figure JPOXMLDOC01-appb-C000002
    (式(2)中、polymerは共役ジエン単量体単位を含んでなる重合体鎖を表し、Xはヒドロカルビルオキシ基、ハロゲン基および水酸基から選択される官能基を表し、Rは置換基を有していてもよい炭化水素基を表し、RおよびRは、それぞれ、置換基を有していてもよい炭化水素基を表し、RおよびRは互いに結合して環構造を形成していてもよく、sは1または2であり、tは0または1であり、uは0または1であり、s+t+u=2である。)
  2.   請求項1に記載の共役ジエン系重合体に、さらに下記式(3)で表される共役ジエン系重合体および/または下記式(4)で表される共役ジエン系重合体を含むことを特徴とする共役ジエン系重合体。
    Figure JPOXMLDOC01-appb-C000003
    (式(3)中、polymerは共役ジエン単量体単位を含んでなる重合体鎖を表し、Xはハロゲン基または水酸基を表し、Mは珪素原子または錫原子を表し、aは1~4の整数であり、bは0~3の整数であり、a+b=4である。)
    Figure JPOXMLDOC01-appb-C000004
    (式(4)中、polymerは共役ジエン単量体単位を含んでなる重合体鎖を表し、Xはハロゲン基または水酸基を表し、Rは置換基を有していてもよい炭化水素基を表し、Mは珪素原子または錫原子を表し、cは0~3の整数であり、dは0~3の整数であり、eは0~3の整数であり、fは0~3の整数であり、c+d=3であり、e+f=3であり、d+fは1~6の整数である。)
  3.   請求項1または2に記載の共役ジエン系重合体を含有するゴム成分100重量部とシリカ10~200重量部とを含有してなるゴム組成物。
  4.   架橋剤をさらに含有してなる請求項3に記載のゴム組成物。
  5.   請求項4に記載のゴム組成物を架橋してなるゴム架橋物。
  6.   請求項5に記載のゴム架橋物を含んでなるタイヤ。
  7.   不活性溶媒中で、重合開始剤を用いて、共役ジエン化合物を含んでなる単量体を重合し、活性末端を有する共役ジエン系重合体鎖を得る工程と、当該活性末端を有する共役ジエン系重合体鎖の活性末端に、下記の式(5)で表される化合物を反応させる工程とを含んでなる共役ジエン系重合体の製造方法。
    Figure JPOXMLDOC01-appb-C000005
    (式(5)中、Xはヒドロカルビルオキシ基、ハロゲン基および水酸基から選択される官能基を表し、Rは置換基を有していてもよい炭化水素基を表し、RおよびR10は、それぞれ、置換基を有していてもよい炭化水素基を表し、RおよびR10は互いに結合して環構造を形成していてもよく、rは0~2の整数である。)
  8.   前記活性末端を有する共役ジエン系重合体鎖を得る工程の後に、当該活性末端の一部をハロゲン化錫、ハロゲン化珪素、または下記式(6)で表される化合物と反応させる工程をさらに備える請求項7に記載の共役ジエン系重合体の製造方法。
    Figure JPOXMLDOC01-appb-C000006
    (式(6)中、R11は置換基を有していてもよいアルキル鎖を表し、Xはハロゲン基を表し、Mは珪素原子または錫原子を表す。)
PCT/JP2014/078315 2013-12-27 2014-10-24 共役ジエン系重合体および共役ジエン系重合体の製造方法 WO2015098264A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP14873604.4A EP3088423B1 (en) 2013-12-27 2014-10-24 Conjugated diene based polymer and process for manufacturing conjugated diene based polymer
JP2015554634A JP6512107B2 (ja) 2013-12-27 2014-10-24 共役ジエン系重合体および共役ジエン系重合体の製造方法
CN201480069809.8A CN105849134B (zh) 2013-12-27 2014-10-24 共轭二烯系聚合物及共轭二烯系聚合物的制造方法
US15/108,152 US10266613B2 (en) 2013-12-27 2014-10-24 Conjugated diene polymer and method of production of conjugated diene polymer
KR1020167016564A KR20160103001A (ko) 2013-12-27 2014-10-24 공액 디엔계 중합체 및 공액 디엔계 중합체의 제조 방법

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013270889 2013-12-27
JP2013-270889 2013-12-27
JP2014-125019 2014-06-18
JP2014125019 2014-06-18

Publications (1)

Publication Number Publication Date
WO2015098264A1 true WO2015098264A1 (ja) 2015-07-02

Family

ID=53478143

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/078315 WO2015098264A1 (ja) 2013-12-27 2014-10-24 共役ジエン系重合体および共役ジエン系重合体の製造方法

Country Status (6)

Country Link
US (1) US10266613B2 (ja)
EP (1) EP3088423B1 (ja)
JP (1) JP6512107B2 (ja)
KR (1) KR20160103001A (ja)
CN (1) CN105849134B (ja)
WO (1) WO2015098264A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015199226A1 (ja) * 2014-06-27 2015-12-30 日本ゼオン株式会社 共役ジエン系ゴムの製造方法
WO2016199842A1 (ja) * 2015-06-11 2016-12-15 日本ゼオン株式会社 共役ジエン系重合体および共役ジエン系重合体の製造方法
WO2016208739A1 (ja) * 2015-06-26 2016-12-29 日本ゼオン株式会社 共役ジエン系ゴムの製造方法
JP2017008241A (ja) * 2015-06-24 2017-01-12 日本ゼオン株式会社 ゴム組成物
JP2017014168A (ja) * 2015-07-03 2017-01-19 信越化学工業株式会社 アミノ基を有する有機ケイ素化合物及びその製造方法
KR20190042573A (ko) * 2016-08-23 2019-04-24 니폰 제온 가부시키가이샤 고무 가교물
WO2019163772A1 (ja) * 2018-02-21 2019-08-29 日本ゼオン株式会社 ゴム架橋物

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01249812A (ja) 1988-03-31 1989-10-05 Nippon Zeon Co Ltd ジエン系重合体ゴムの製造方法及びゴム組成物
JP2003171418A (ja) 2001-09-27 2003-06-20 Jsr Corp 共役ジオレフィン(共)重合ゴム、該(共)重合ゴムの製造方法、ゴム組成物およびタイヤ
JP2011046640A (ja) 2009-08-26 2011-03-10 Bridgestone Corp シランカップリング剤の製造方法
JP2012017291A (ja) 2010-07-08 2012-01-26 Shin-Etsu Chemical Co Ltd ピペラジニル基含有シラノール化合物水溶液及びその製造方法
JP2012025788A (ja) * 2010-06-24 2012-02-09 Shin-Etsu Chemical Co Ltd ピペラジニル基を有する有機ケイ素化合物を含有する接着性組成物
JP2013082843A (ja) * 2011-10-12 2013-05-09 Asahi Kasei Chemicals Corp 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、及び変性共役ジエン系重合体組成物、及びタイヤ
JP2013173893A (ja) * 2012-02-27 2013-09-05 Sumitomo Rubber Ind Ltd タイヤ用ゴム組成物及び空気入りタイヤ
JP2014208805A (ja) * 2013-03-27 2014-11-06 日本ゼオン株式会社 変性共役ジエン系ゴムの製造方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5787407A (en) * 1980-11-21 1982-05-31 Japan Synthetic Rubber Co Ltd Preparation of styrene-butadiene copolymer
CA2461259C (en) 2001-09-27 2011-01-04 Jsr Corporation Conjugated diolefin (co)polymer rubber, process for producing (co)polymer rubber, rubber composition, composite and tire
WO2003091334A1 (fr) * 2002-04-24 2003-11-06 Asahi Kasei Kabushiki Kaisha Composition de copolymere bloc modifie
JP4628009B2 (ja) * 2004-04-09 2011-02-09 株式会社ブリヂストン ゴム組成物及びそれを用いたタイヤ
JP2006282964A (ja) * 2005-04-05 2006-10-19 Asahi Kasei Chemicals Corp ゴム組成物
WO2007029497A1 (ja) * 2005-09-07 2007-03-15 Kraton Jsr Elastomers K.K. 熱可塑性樹脂組成物、導電性フィルムおよび導電性シート
EP2003146B1 (en) * 2006-03-31 2012-12-26 Zeon Corporation Use of a conjugated diene rubber for a tire
ZA200711159B (en) * 2006-12-28 2009-03-25 Bridgestone Corp Amine-containing alkoxysilyl-functionalized polymers
JP5245346B2 (ja) 2007-10-10 2013-07-24 日本ゼオン株式会社 共役ジエン重合体組成物の製造方法
JP5235094B2 (ja) * 2008-04-15 2013-07-10 旭化成ケミカルズ株式会社 変性ブロック共重合体及びその組成物
JPWO2009133888A1 (ja) * 2008-04-30 2011-09-01 株式会社ブリヂストン 変性共役ジエン系共重合体の製造方法、その方法により得られた変性共役ジエン系共重合体、ゴム組成物及びタイヤ
JP5359585B2 (ja) 2008-10-22 2013-12-04 信越化学工業株式会社 アミノ基を有する有機ケイ素化合物及びその製造方法
JP5287235B2 (ja) * 2008-12-26 2013-09-11 日本ゼオン株式会社 変性芳香族ビニル−共役ジエン共重合体ゴムおよびゴム組成物
JP2010215715A (ja) * 2009-03-13 2010-09-30 Shin-Etsu Chemical Co Ltd 接着促進剤及び硬化性樹脂組成物
JP5348763B2 (ja) 2009-06-24 2013-11-20 旭化成ケミカルズ株式会社 変性共役ジエン−芳香族ビニル共重合体、その製造方法、及びその共重合体組成物
JP5294417B2 (ja) * 2009-10-07 2013-09-18 旭化成ケミカルズ株式会社 熱収縮性積層フィルム
JP5545943B2 (ja) * 2009-10-22 2014-07-09 旭化成ケミカルズ株式会社 変性ブロック共重合体、その組成物及びその製造方法
JP5460240B2 (ja) * 2009-10-30 2014-04-02 旭化成ケミカルズ株式会社 変性ブロック共重合体及びその組成物
KR101702697B1 (ko) * 2010-02-26 2017-02-06 제온 코포레이션 공액 디엔계 고무, 고무 조성물, 고무 가교물, 및 타이어, 그리고 공액 디엔계 고무의 제조 방법
JP5691456B2 (ja) * 2010-12-03 2015-04-01 横浜ゴム株式会社 タイヤトレッド用ゴム組成物

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01249812A (ja) 1988-03-31 1989-10-05 Nippon Zeon Co Ltd ジエン系重合体ゴムの製造方法及びゴム組成物
JP2003171418A (ja) 2001-09-27 2003-06-20 Jsr Corp 共役ジオレフィン(共)重合ゴム、該(共)重合ゴムの製造方法、ゴム組成物およびタイヤ
JP2011046640A (ja) 2009-08-26 2011-03-10 Bridgestone Corp シランカップリング剤の製造方法
JP2012025788A (ja) * 2010-06-24 2012-02-09 Shin-Etsu Chemical Co Ltd ピペラジニル基を有する有機ケイ素化合物を含有する接着性組成物
JP2012017291A (ja) 2010-07-08 2012-01-26 Shin-Etsu Chemical Co Ltd ピペラジニル基含有シラノール化合物水溶液及びその製造方法
JP2013082843A (ja) * 2011-10-12 2013-05-09 Asahi Kasei Chemicals Corp 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、及び変性共役ジエン系重合体組成物、及びタイヤ
JP2013173893A (ja) * 2012-02-27 2013-09-05 Sumitomo Rubber Ind Ltd タイヤ用ゴム組成物及び空気入りタイヤ
JP2014208805A (ja) * 2013-03-27 2014-11-06 日本ゼオン株式会社 変性共役ジエン系ゴムの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3088423A4 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015199226A1 (ja) * 2014-06-27 2015-12-30 日本ゼオン株式会社 共役ジエン系ゴムの製造方法
JPWO2015199226A1 (ja) * 2014-06-27 2017-04-27 日本ゼオン株式会社 共役ジエン系ゴムの製造方法
WO2016199842A1 (ja) * 2015-06-11 2016-12-15 日本ゼオン株式会社 共役ジエン系重合体および共役ジエン系重合体の製造方法
EP3309181A4 (en) * 2015-06-11 2019-01-02 Zeon Corporation Conjugated diene polymer and method for production conjugated diene polymer
JP2017008241A (ja) * 2015-06-24 2017-01-12 日本ゼオン株式会社 ゴム組成物
WO2016208739A1 (ja) * 2015-06-26 2016-12-29 日本ゼオン株式会社 共役ジエン系ゴムの製造方法
JPWO2016208739A1 (ja) * 2015-06-26 2018-04-19 日本ゼオン株式会社 共役ジエン系ゴムの製造方法
US20180170103A1 (en) * 2015-06-26 2018-06-21 Zeon Corporation Method of production of conjugated diene rubber
US10065975B2 (en) 2015-07-03 2018-09-04 Shin-Etsu Chemical Co., Ltd. Amino-containing organosilicon compound and making method
JP2017014168A (ja) * 2015-07-03 2017-01-19 信越化学工業株式会社 アミノ基を有する有機ケイ素化合物及びその製造方法
KR20190042573A (ko) * 2016-08-23 2019-04-24 니폰 제온 가부시키가이샤 고무 가교물
JPWO2018038054A1 (ja) * 2016-08-23 2019-06-20 日本ゼオン株式会社 ゴム架橋物
EP3505557A4 (en) * 2016-08-23 2020-04-08 Zeon Corporation CROSSLINKED RUBBER PRODUCT
US10968335B2 (en) 2016-08-23 2021-04-06 Zeon Corporation Rubber crosslinked product
KR102365012B1 (ko) * 2016-08-23 2022-02-17 니폰 제온 가부시키가이샤 고무 가교물
JP7024716B2 (ja) 2016-08-23 2022-02-24 日本ゼオン株式会社 ゴム架橋物
WO2019163772A1 (ja) * 2018-02-21 2019-08-29 日本ゼオン株式会社 ゴム架橋物
JPWO2019163772A1 (ja) * 2018-02-21 2021-02-18 日本ゼオン株式会社 ゴム架橋物
JP7244484B2 (ja) 2018-02-21 2023-03-22 日本ゼオン株式会社 ゴム架橋物

Also Published As

Publication number Publication date
US20160326274A1 (en) 2016-11-10
US10266613B2 (en) 2019-04-23
JP6512107B2 (ja) 2019-05-15
CN105849134A (zh) 2016-08-10
JPWO2015098264A1 (ja) 2017-03-23
KR20160103001A (ko) 2016-08-31
EP3088423B1 (en) 2019-01-16
CN105849134B (zh) 2017-09-22
EP3088423A1 (en) 2016-11-02
EP3088423A4 (en) 2017-08-30

Similar Documents

Publication Publication Date Title
KR102602901B1 (ko) 공액 디엔계 고무의 제조 방법
JP5716736B2 (ja) 共役ジエン系ゴム、ゴム組成物、ゴム架橋物、およびタイヤ、ならびに共役ジエン系ゴムの製造方法
EP3315535B1 (en) Method of production of conjugated diene rubber
JP5845883B2 (ja) 変性共役ジエン系ゴム組成物の製造方法、ゴム組成物の製造方法、ゴム架橋物の製造方法及びタイヤの製造方法
JP6468283B2 (ja) 変性共役ジエン系ゴムの製造方法
JP5831461B2 (ja) 共役ジエン系ゴム、ゴム組成物、ゴム架橋物、およびタイヤ
EP2799454B1 (en) Method for producing modified conjugated diene rubber
JP6512107B2 (ja) 共役ジエン系重合体および共役ジエン系重合体の製造方法
JP2017082235A (ja) 共役ジエン系ゴムの製造方法
JP6504166B2 (ja) 共役ジエン系ゴムの製造方法
JP2016037543A (ja) 共役ジエン系ゴムの製造方法
JP2017082236A (ja) ポリブタジエンゴムの製造方法
JP6421521B2 (ja) 共役ジエン系重合体およびゴム組成物
JP2016011334A (ja) 変性共役ジエン系ゴムの組成物
WO2015152039A1 (ja) 共役ジエン系ゴムの製造方法
JP5861459B2 (ja) タイヤトレッド用共役ジエン系ゴム組成物の製造方法
WO2016199842A1 (ja) 共役ジエン系重合体および共役ジエン系重合体の製造方法
JP6311514B2 (ja) 共役ジエン系ゴムの製造方法
JP7370734B2 (ja) ポリブタジエンゴムの製造方法
WO2018088483A1 (ja) 変性共役ジエン系ゴムの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14873604

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015554634

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167016564

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014873604

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014873604

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15108152

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE