WO2015085934A1 - 飞尾结构的刚挠结合线路板及其制作方法 - Google Patents

飞尾结构的刚挠结合线路板及其制作方法 Download PDF

Info

Publication number
WO2015085934A1
WO2015085934A1 PCT/CN2014/093545 CN2014093545W WO2015085934A1 WO 2015085934 A1 WO2015085934 A1 WO 2015085934A1 CN 2014093545 W CN2014093545 W CN 2014093545W WO 2015085934 A1 WO2015085934 A1 WO 2015085934A1
Authority
WO
WIPO (PCT)
Prior art keywords
rigid
sub
board
flexible
circuit board
Prior art date
Application number
PCT/CN2014/093545
Other languages
English (en)
French (fr)
Inventor
邱醒亚
林楚涛
Original Assignee
广州兴森快捷电路科技有限公司
深圳市兴森快捷电路科技股份有限公司
宜兴硅谷电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州兴森快捷电路科技有限公司, 深圳市兴森快捷电路科技股份有限公司, 宜兴硅谷电子科技有限公司 filed Critical 广州兴森快捷电路科技有限公司
Priority to EP14869201.5A priority Critical patent/EP3082385B1/en
Priority to US15/102,803 priority patent/US9706669B2/en
Publication of WO2015085934A1 publication Critical patent/WO2015085934A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4688Composite multilayer circuits, i.e. comprising insulating layers having different properties
    • H05K3/4691Rigid-flexible multilayer circuits comprising rigid and flexible layers, e.g. having in the bending regions only flexible layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0277Bendability or stretchability details
    • H05K1/028Bending or folding regions of flexible printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0296Conductive pattern lay-out details not covered by sub groups H05K1/02 - H05K1/0295
    • H05K1/0298Multilayer circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • H05K1/115Via connections; Lands around holes or via connections
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0044Mechanical working of the substrate, e.g. drilling or punching
    • H05K3/0047Drilling of holes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/42Plated through-holes or plated via connections
    • H05K3/423Plated through-holes or plated via connections characterised by electroplating method
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/42Plated through-holes or plated via connections
    • H05K3/429Plated through-holes specially for multilayer circuits, e.g. having connections to inner circuit layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/06Lamination
    • H05K2203/061Lamination of previously made multilayered subassemblies
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/06Lamination
    • H05K2203/068Features of the lamination press or of the lamination process, e.g. using special separator sheets
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/30Details of processes not otherwise provided for in H05K2203/01 - H05K2203/17
    • H05K2203/308Sacrificial means, e.g. for temporarily filling a space for making a via or a cavity or for making rigid-flexible PCBs

Definitions

  • the invention relates to a printed circuit board manufacturing technology, in particular to a rigid-flexed circuit board of a flying tail structure and a manufacturing method thereof.
  • Rigid-flexed circuit board is developed on the basis of rigid circuit board and flexible circuit board. It inherits the characteristics of rigid circuit board and flexible circuit board. It has small size, light weight, flexible structure and three-dimensional The advantages of assembly and so on have attracted more and more attention. Rigid-flexible circuit boards are in line with the trend of miniaturization and portability of today's electronic products, and their market demand is growing.
  • the flexibility of the rigid-flex circuit board also determines the diversity of its structure.
  • the diversity of its structure brings certain difficulties to the production and production, especially the rigid-flexed circuit board with a flying tail structure.
  • the first rigid zone is connected to more than two second rigid zones through the flexible zone, and the second rigid zone is like a tail that flies out of the first rigid zone.
  • a rigid-flex circuit board is usually one-time pressed after laminating a core board, but for a flying-tail structure rigid-flex circuit board, if a conventional rigid-flex circuit board is used, the The solder resist layer on the two rigid regions is easily crushed, resulting in unqualified circuit board quality.
  • the present invention overcomes the defects of the prior art, and provides a rigid-flex circuit board of a flying tail structure, which aims to avoid damage of the solder resist layer and improve the yield of the rigid-flex bonded circuit board of the flying tail structure.
  • a rigid-flexed circuit board of a flying tail structure comprising: a first rigid zone, at least two flexible zones, and a second rigid zone equal in number to the flexible zone, one end of the first rigid zone and the flexible One end of the flexible region is connected, and the other end of the flexible region is respectively connected to one of the second rigid regions, and a polyether imide cover film is adhered to the solder mask of the adjacent end faces of each of the second rigid regions.
  • the invention also provides a method for manufacturing a rigid-flexed circuit board of a flying tail structure, aiming at avoiding prevention The solder layer is damaged, and the yield of the rigid-flexed circuit board of the flying tail structure is improved.
  • a method for manufacturing a rigid-flexed circuit board of a flying tail structure comprises the following steps:
  • Step 1 Prepare the core plates required for each sub-board, and the core plates required for each sub-board include at least one flexible core plate and at least one rigid core plate, and the core plates are laminated and pressed to produce and a second rigid region having an equal number of sub-boards, the sub-board comprising a portion of the first rigid region, a flexible region, and a second rigid region;
  • Step 2 laminating the sub-boards obtained in step 1 and laminating a polyetherimide coating film on the solder mask of the adjacent end faces of the second rigid regions;
  • Step 3 lining the PTFE gasket between the adjacent flexible regions and between the adjacent second rigid regions, and pressing the sub-boards processed in the step 2 to press the first rigid region of each of the sub-plates. Together, a first rigid zone is formed.
  • the polyetherimide cover film described in the step 2 is adhered to the solder mask of the adjacent end faces of the respective second rigid regions by an electric iron, and is pressed by a press.
  • the core board manufacturing steps required for each sub-board in step 1 are as follows:
  • the non-outermost lines of the core sheets required for the sub-boards are prepared;
  • the window is milled at the non-outermost rigid core board corresponding to the flexible area.
  • the method further comprises the following steps:
  • the non-outermost line of the rigid-flex circuit board of the flying tail structure is made.
  • the following steps are further included:
  • a polyimide tape was attached to the surface pad of each sub-board, and each sub-board was browned, and the polyimide tape was peeled off after being browned.
  • a portion of the first rigid region of each of the daughter boards described in step 3 is pressed to form a first rigidity.
  • the district it also includes the following steps:
  • the outermost rigid core plates corresponding to the flexible regions are subjected to controlled deep milling to expose the corresponding flexible regions.
  • the core sheets of the sub-boards are pressed in step 1 .
  • the core sheets are bonded and riveted by a flow-free prepreg of 30 mil to 120 mil.
  • a portion of the first rigid regions of each sub-plate are bonded and riveted by a flow-free prepreg of 30 mil to 120 mil.
  • a polyether imide cover film is adhered to the solder mask of the adjacent end faces of the second rigid region as a solder resist layer, so that the withstand voltage of the solder resist layer is further improved, and the effective avoidance is effectively avoided.
  • the solder resist layer of each of the second rigid regions is damaged, and the yield of the rigid-flexed circuit board of the flying tail structure is improved.
  • the method for manufacturing the rigid-flex circuit board of the above-mentioned flying tail structure is to first produce a daughter board having the same number as the second rigid area, and then attaching the polyether imide cover film to the solder resist area of the adjacent end surface of each second rigid area.
  • the solder resist layer As the solder resist layer, the pressure resistance of the solder resist layer is further improved, and the sub-plates are pressed by inserting a PTFE gasket between adjacent flexible regions and between adjacent second rigid regions.
  • the flexible regions and the second rigid regions are supported to effectively avoid the wrinkles of the flexible regions, the pads and the solder resist layer on the second rigid regions are damaged, and the rigid-flexed circuit board of the flying tail structure is improved. Pass rate.
  • FIG. 1 is a cross-sectional view of a rigid-flex circuit board of a flying tail structure according to an embodiment of the present invention
  • FIG. 2 is a cross-sectional view of a core board required for pressing each of the daughter boards according to an embodiment of the present invention
  • FIG. 3 is a cross-sectional view of each of the daughter boards before being pressed according to an embodiment of the present invention
  • first rigid region, 110 a portion of the first rigid region, 200, a flexible region, 300, a second rigid region, 310, a via, 400, a polyether imide cover film, 500, a daughter board, 510, Flexible core board, 520, Rigid core plate, 600, PTFE gasket, 700, cover film, 800, line.
  • a rigid-flex circuit board of a flying tail structure includes a first rigid region 100 , at least two flexible regions 200 , and a second rigid region 300 equal in number to the flexible region 200 .
  • One end of a rigid region 100 is respectively connected to one end of the flexible region 200, and the other end of the flexible region 200 is respectively connected to one of the second rigid regions 300, and the adjacent end faces of the second rigid regions 300 are respectively
  • a polyetherimide cover film 400 is adhered to the weld zone.
  • the rigid-flex circuit board of the flying tail structure of the embodiment is a rigid-flex circuit board having sixteen-layer lines 800, which includes two second rigid regions 300 and two flexible regions 200, through the second rigid
  • the polyether imide cover film 400 is adhered to the solder mask of the adjacent end face of the region 300 as a solder resist layer.
  • the adhesive polyether imide cover film 400 is more convenient to operate as a solder resist layer.
  • the polyetherimide cover film 400 has the property of being easily broken under high temperature and high pressure, further improving the withstand voltage of the solder resist layer, effectively preventing the solder resist layer of each second rigid region 300 from being damaged, and improving the shape of the tail tail structure.
  • the rate of compliance with the flex circuit board is a rigid-flex circuit board having sixteen-layer lines 800, which includes two second rigid regions 300 and two flexible regions 200, through the second rigid
  • the polyether imide cover film 400 is adhered to the solder mask of the adjacent end face of the region 300 as a solder resist layer.
  • a method for manufacturing a rigid-flex circuit board of a flying tail structure includes the following steps:
  • Step 1 The core board required for each sub-board 500 is prepared.
  • the core board required for each sub-board 500 includes at least one flexible core board 510 and at least one rigid core board 520.
  • the core boards are laminated and pressed.
  • a sub-board equal in number to the second rigid region 300, the sub-board comprising a portion of the first rigid region 110, a flexible region 200, and a second rigid region 300;
  • Step 2 The respective sub-boards 500 obtained in the step 1 are laminated, and the polyether imide cover film 400 is pasted on the solder mask of the adjacent end faces of the second rigid regions;
  • Step 3 PTFE gasket 600 is interposed between adjacent flexible regions 200 and adjacent second rigid regions 300, and each sub-board processed in step 2 is pressed, and the portions of each sub-board are first.
  • the rigid regions are pressed together to form a first rigid region 100.
  • the method for manufacturing the rigid-flex circuit board of the flying tail structure is first produced and
  • the second rigid plate 300 has an equal number of sub-boards 500, so as to avoid the problem of misalignment and delamination of the multi-layer core plate at one time, so as to reduce the scrap rate of the rigid-flexed circuit board of the flying tail structure during the pressing process.
  • the polyetherimide cover film 400 as a solder resist layer on the solder mask of the adjacent end faces of the second rigid regions 300, further improving the withstand voltage of the solder resist layer, and passing through the adjacent flexible region 200
  • the sub-plates 500 are pressed together to support the flexible regions 200 and the second rigid regions 300, thereby effectively avoiding the flexible regions.
  • the 200 pleats, the pads on the second rigid regions 300 and the solder resist layer are damaged, and the yield of the rigid-flex bonded circuit board of the flying tail structure is improved.
  • the polyetherimide cover film 400 described in the second step of the embodiment is adhered to the solder mask of the adjacent end faces of the second rigid regions by an electric iron, and is pressed by a press to make the polyether imide cover film. 400 is firmly adhered to the solder mask of the second rigid region 300, so that the polyetherimide cover film 400 as a solder resist layer can withstand the high temperature and high pressure pressing operation of the subsequent steps.
  • the core board manufacturing steps required for each sub-board in step 1 of this embodiment are as follows:
  • the non-outermost lines of the core sheets required for the sub-boards are prepared;
  • the window is milled at the non-outermost rigid core plate 520 corresponding to the flexible region 200 in accordance with the stacking requirements of the rigid plate of the flying tail structure.
  • the cover film 700 By attaching the cover film 700 to the flexible region of each flexible core plate 510, the line of the flexible region is prevented from being oxidized; in the core plate manufacturing process required for each sub-board, the non-outer part of the flexible region is pre-milled.
  • the through window at the layer rigid core plate 520 avoids the problem of subsequent milling through the window, the size of the through window being larger than the flexible region 200 or slightly larger than the flexible region 200.
  • Vacuuming resin plug holes and ceramic grinding are performed on each of the via holes 310;
  • the non-outermost line of the rigid-flex circuit board of the flying tail structure is made.
  • the second rigid region 300 is drilled, copper-plated, and electroplated to avoid difficulty in drilling after the sub-plates are pressed, and the second rigid region 300 of each sub-board is separately drilled.
  • the via holes of the second rigid regions 300 are asymmetrically disposed according to actual needs, and the via holes of the two second rigid regions 300 in FIG. 3 are symmetrically disposed.
  • the core sheets are bonded and riveted by a flow-free prepreg of 30 mil to 120 mil.
  • a polyimide tape was attached to the surface pad of each sub-board, and each sub-board was browned, and the polyimide tape was peeled off after being browned.
  • the pads are oxidized by attaching polyimide tape to the surface pads of the respective sub-boards.
  • portions of the first rigid regions 110 of each sub-plate are bonded and riveted by a flow-free prepreg of 30 mil to 120 mil.
  • step 3 After the first rigid region of each of the sub-boards in step 3 is pressed to form the first rigid region 100, the following steps are further included:
  • the outermost rigid core plates corresponding to the flexible regions are subjected to controlled deep milling to expose the corresponding flexible regions 200.
  • the flexible region 200 can be bent, the first rigid region 100 and the second rigid region 300 pass through the flexible region 200, so that the positional relationship between the first rigid region 100 and the second rigid region 300 can be flexibly adjusted, and the tail is convenient.
  • the rigid-flex construction of the structure is combined with the installation of the circuit board.

Abstract

提供了一种飞尾结构的刚挠结合线路板的制作方法,包括如下步骤:步骤1:制作各子板(500)所需的芯板,各子板所需的芯板包括至少一层挠性芯板(510)、至少一层刚性芯板(520),将各芯板进行层叠、压合,制作出与第二刚性区(300)数量相等的子板,所述子板包括部分第一刚性区(110)、一个挠性区(200)、一个第二刚性区(300);步骤2:将步骤1得到的各子板进行层叠,在各第二刚性区相邻端面的防焊区上粘贴聚醚亚胺覆盖膜(400);步骤3:在相邻挠性区之间、相邻第二刚性区之间垫入PTFE垫片(600),将经步骤2处理后的各子板压合,各子板的部分第一刚性区压合在一起,形成第一刚性区(100)。还提供了一种飞尾结构的刚挠结合线路板。飞尾结构的刚挠结合线路板的制作方法,能有效避免防焊层被损坏。

Description

飞尾结构的刚挠结合线路板及其制作方法 技术领域
本发明涉及印制线路板制造技术,特别涉及一种飞尾结构的刚挠结合线路板及其制作方法。
背景技术
刚挠结合线路板是在刚性线路板和挠性线路板的基础上发展而来的,它继承了刚性线路板和挠性线路板的特点,具有体积小、重量轻、结构灵活、可三维立体组装等等优点,越来越受到人们的关注。刚挠结合线路板符合当今电子产品小型化、便携化发展的趋势,其市场的需求日益增长。
刚挠结合线路板的灵活性也决定着其结构的多样性,其结构的多样性给生产制作带来了一定的难度,特别是具有飞尾结构的刚挠结合线路板,所谓飞尾结构指的是第一刚性区通过挠性区连接出两个以上的第二刚性区,第二刚性区如同从第一刚性区飞出的尾巴。传统的,刚挠结合线路板通常都是将芯板层叠后一次性压制出来的,但是对于飞尾结构刚挠结合线路板来说,若采用传统的刚挠结合线路板的制作方法,其第二刚性区上的防焊层容易被压坏,造成线路板质量不合格。
发明内容
基于此,本发明在于克服现有技术的缺陷,提供一种飞尾结构的刚挠结合线路板,旨在避免防焊层被损坏,提高飞尾结构的刚挠结合线路板的合格率。
其技术方案如下:
一种飞尾结构的刚挠结合线路板,包括第一刚性区、至少两个挠性区、与挠性区数量相等的第二刚性区,所述第一刚性区的一端分别与所述挠性区的一端连接,所述挠性区的另一端分别与一个所述第二刚性区连接,各第二刚性区相邻端面的防焊区上粘贴有聚醚亚胺覆盖膜。
本发明还提供了一种飞尾结构的刚挠结合线路板的制作方法,旨在避免防 焊层被损坏,提高飞尾结构的刚挠结合线路板的合格率。
一种飞尾结构的刚挠结合线路板的制作方法,包括如下步骤:
步骤1:制作各子板所需的芯板,各子板所需的芯板包括至少一层挠性芯板、至少一层刚性芯板,将各芯板进行层叠、压合,制作出与第二刚性区数量相等的子板,所述子板包括部分第一刚性区、一个挠性区、一个第二刚性区;
步骤2:将步骤1得到的各子板进行层叠,在各第二刚性区相邻端面的防焊区上粘贴聚醚亚胺覆盖膜;
步骤3:在相邻挠性区之间、相邻第二刚性区之间垫入PTFE垫片,将经步骤2处理后的各子板进行压合,各子板的部分第一刚性区压合在一起,形成第一刚性区。
优选的,步骤2中所述的聚醚亚胺覆盖膜通过电熨斗粘贴在各第二刚性区相邻端面的防焊区上,并且通过压机进行压合。
优选的,步骤1中各子板所需的芯板制作步骤如下:
按各子板所需芯板的层叠要求,制作子板所需芯板的非最外层线路;
在各挠性芯板的挠性区粘贴覆盖膜;
按飞尾结构的刚挠结合线路板所需子板的层叠要求,在挠性区对应的非最外层刚性芯板处铣通窗。
优选的,在进行步骤2所述的对各第二刚性区相邻端面的防焊区上粘贴聚醚亚胺覆盖膜前,还包括如下步骤:
对各子板的第二刚性区进行钻孔、沉铜、电镀;
对各导通孔进行真空树脂塞孔和陶瓷打磨;
制作飞尾结构的刚挠结合线路板的非最外层线路。
优选的,在进行步骤2所述的对各第二刚性区相邻端面的防焊区上粘贴聚醚亚胺覆盖膜后,还包括如下步骤:
对各子板的表面焊盘进行表面处理;
在各子板的表面焊盘处粘贴聚酰亚胺胶带,将各子板进行棕化,棕化后将聚酰亚胺胶带撕掉。
优选的,在进行步骤3所述的各子板的部分第一刚性区压合形成第一刚性 区后,还包括如下步骤:
对第一刚性区进行钻孔、沉铜、电镀;
制作飞尾结构的刚挠结合线路板的最外层线路,以及对最外层端面的阻焊、表面处理;
按飞尾结构的刚挠结合线路板所需子板的层叠要求,对挠性区对应的最外层刚性芯板处进行控深铣,使对应的挠性区露出。
优选的,在进行步骤1中所述的对各子板的芯板进行压合前,各芯板之间通过流胶量30mil~120mil的不流动半固化片粘结铆合。
优选的,在进行步骤3中所述的对各子板进行压合前,各子板的部分第一刚性区之间通过流胶量30mil~120mil的不流动半固化片粘结铆合。
上述飞尾结构的刚挠结合线路板,各第二刚性区相邻端面的防焊区上粘贴有聚醚亚胺覆盖膜作为防焊层,使防焊层的耐压强度进一步提高,有效避免各第二刚性区的防焊层被损坏,提高飞尾结构的刚挠结合线路板的合格率。
上述飞尾结构的刚挠结合线路板的制作方法,通过先制作出与第二刚性区数量相等的子板,再在各第二刚性区相邻端面的防焊区上粘贴聚醚亚胺覆盖膜作为防焊层,使防焊层的耐压强度进一步提高,而且通过在在相邻挠性区之间、相邻第二刚性区之间垫入PTFE垫片后再对各子板进行压合,使各挠性区、各第二刚性区得到支撑,有效避免各挠性区褶皱、各第二刚性区上的焊盘及防焊层被损坏,提高飞尾结构的刚挠结合线路板的合格率。
附图说明
图1为本发明实施例所述飞尾结构的刚挠结合线路板的横截面视图;
图2为本发明实施例所述各子板所需的芯板压合前的横截面视图;
图3为本发明实施例所述各子板压合前的横截面视图;
图4为本发明实施例所述各子板压合时的横截面视图;
标记说明:
100、第一刚性区,110、部分第一刚性区,200、挠性区,300、第二刚性区,310、导通孔,400、聚醚亚胺覆盖膜,500、子板,510、挠性芯板,520、 刚性芯板,600、PTFE垫片,700、覆盖膜,800、线路。
具体实施方式
下面结合附图对本发明的实施例进行详细说明:
如图1所示,一种飞尾结构的刚挠结合线路板,包括第一刚性区100、至少两个挠性区200、与挠性区200数量相等的第二刚性区300,所述第一刚性区100的一端分别与所述挠性区200的一端连接,所述挠性区200的另一端分别与一个所述第二刚性区300连接,各第二刚性区300相邻端面的防焊区上粘贴有聚醚亚胺覆盖膜400。
本实施例所述飞尾结构的刚挠结合线路板为具有十六层线路800的刚挠结合线路板,其包括两个第二刚性区300、两个挠性区200,通过在第二刚性区300相邻端面的防焊区上粘贴聚醚亚胺覆盖膜400作为防焊层,相比传统的喷射油墨作为防焊层,粘贴聚醚亚胺覆盖膜400作为防焊层操作更方便,而且聚醚亚胺覆盖膜400具有在高温高压下不易破损的性能,使防焊层的耐压强度进一步提高,有效避免各第二刚性区300的防焊层被损坏,提高飞尾结构的刚挠结合线路板的合格率。
参照图1、图2、图3、图4,一种飞尾结构的刚挠结合线路板的制作方法,包括如下步骤:
步骤1:制作各子板500所需的芯板,各子板500所需的芯板包括至少一层挠性芯板510、至少一层刚性芯板520,将各芯板进行层叠、压合,制作出与第二刚性区300数量相等的子板,所述子板包括部分第一刚性区110、一个挠性区200、一个第二刚性区300;
步骤2:将步骤1得到的各子板500进行层叠,在各第二刚性区相邻端面的防焊区上粘贴聚醚亚胺覆盖膜400;
步骤3:在相邻挠性区200之间、相邻第二刚性区300之间垫入PTFE垫片600,将经步骤2处理后的各子板进行压合,各子板的部分第一刚性区压合在一起,形成第一刚性区100。
本实施例所述飞尾结构的刚挠结合线路板的制作方法,通过先制作出与第 二刚性区300数量相等的子板500,避免多层芯板一次性压合而出现对位不正、分层等问题,以降低飞尾结构的刚挠结合线路板在压合过程中的废品率,在各第二刚性区300相邻端面的防焊区上粘贴聚醚亚胺覆盖膜400作为防焊层,使防焊层的耐压强度进一步提高,而且通过在相邻挠性区200之间、相邻第二刚性区300之间垫入PTFE垫片600后再对各子板500进行压合,使各挠性区200、各第二刚性区300得到支撑,有效避免各挠性区200褶皱、各第二刚性区300上的焊盘及防焊层被损坏,提高飞尾结构的刚挠结合线路板的合格率。
本实施例步骤2中所述的聚醚亚胺覆盖膜400通过电熨斗粘贴在各第二刚性区相邻端面的防焊区上,并且通过压机进行压合,使聚醚亚胺覆盖膜400稳固地贴合在第二刚性区300的防焊区,使作为防焊层的聚醚亚胺覆盖膜400能承受后续步骤的高温高压压合操作。
参照图2,本实施例步骤1中各子板所需的芯板制作步骤如下:
按各子板500所需芯板的层叠要求,制作子板所需芯板的非最外层线路;
在各挠性芯板510的挠性区粘贴覆盖膜700;
按飞尾结构的刚挠结合线路板所需子板的层叠要求,在挠性区200对应的非最外层刚性芯板520处铣通窗。通过在各挠性芯板510的挠性区粘贴覆盖膜700,避免挠性区的线路被氧化;在各子板所需的芯板制作过程中,提前铣出挠性区对应的非最外层刚性芯板520处的通窗,避免后续铣通窗难的问题,通窗的尺寸与挠性区200等大,或略大于挠性区200。
参照图3,在进行步骤2所述的对各第二刚性区相邻端面的防焊区上粘贴聚醚亚胺覆盖膜400前,还包括如下步骤:
对各子板的第二刚性区300进行钻孔、沉铜、电镀;
对各导通孔310进行真空树脂塞孔和陶瓷打磨;
制作飞尾结构的刚挠结合线路板的非最外层线路。
在各子板压合前,对第二刚性区300进行钻孔、沉铜、电镀处理,避免子板压合后钻孔困难,而且对各个子板的第二刚性区300单独钻孔,可根据实际需求,实现各第二刚性区300的导通孔不对称设置,图3中的两个第二刚性区300的导通孔是对称设置的。
参照图3,在进行步骤1中所述的对各子板的芯板进行压合前,各芯板之间通过流胶量30mil~120mil的不流动半固化片粘结铆合。
在进行步骤2所述的对各第二刚性区相邻端面的防焊区上粘贴聚醚亚胺覆盖膜后,还包括如下步骤:
对各子板的表面焊盘进行表面处理;
在各子板的表面焊盘处粘贴聚酰亚胺胶带,将各子板进行棕化,棕化后将聚酰亚胺胶带撕掉。
在各子板棕化前,通过在各子板的表面焊盘处粘贴聚酰亚胺胶带,避免焊盘被氧化。
参照图4,在进行步骤3中所述的对各子板进行压合前,各子板的部分第一刚性区110之间通过流胶量30mil~120mil的不流动半固化片粘结铆合。
参照图1、图4,在进行步骤3所述的各子板的部分第一刚性区压合形成第一刚性区100后,还包括如下步骤:
对第一刚性区100进行钻孔、沉铜、电镀;
制作飞尾结构的刚挠结合线路板的最外层线路,以及对最外层端面的阻焊、表面处理;
按飞尾结构的刚挠结合线路板所需子板的层叠要求,对挠性区对应的最外层刚性芯板处进行控深铣,使对应的挠性区200露出。
由于挠性区200可弯折,所述第一刚性区100与第二刚性区300通过挠性区200,使第一刚性区100与第二刚性区300的位置关系可灵活调整,方便飞尾结构的刚挠结合线路板的安装。
以上所述实施例仅表达了本发明的具体实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。

Claims (9)

  1. 一种飞尾结构的刚挠结合线路板,其特征在于,包括第一刚性区、至少两个挠性区、与挠性区数量相等的第二刚性区,所述第一刚性区的一端分别与所述挠性区的一端连接,所述挠性区的另一端分别与一个所述第二刚性区连接,各第二刚性区相邻端面的防焊区上粘贴有聚醚亚胺覆盖膜。
  2. 一种飞尾结构的刚挠结合线路板的制作方法,其特征在于,包括如下步骤:
    步骤1:制作各子板所需的芯板,各子板所需的芯板包括至少一层挠性芯板、至少一层刚性芯板,将各芯板进行层叠、压合,制作出与第二刚性区数量相等的子板,所述子板包括部分第一刚性区、一个挠性区、一个第二刚性区;
    步骤2:将步骤1得到的各子板进行层叠,在各第二刚性区相邻端面的防焊区上粘贴聚醚亚胺覆盖膜;
    步骤3:在相邻挠性区之间、相邻第二刚性区之间垫入PTFE垫片,将经步骤2处理后的各子板进行压合,各子板的部分第一刚性区压合在一起,形成第一刚性区。
  3. 根据权利要求2所述的飞尾结构的刚挠结合线路板的制作方法,其特征在于,步骤2中所述的聚醚亚胺覆盖膜通过电熨斗粘贴在各第二刚性区相邻端面的防焊区上,并且通过压机进行压合。
  4. 根据权利要求3所述的飞尾结构的刚挠结合线路板的制作方法,其特征在于,步骤1中各子板所需的芯板制作步骤如下:
    按各子板所需芯板的层叠要求,制作子板所需芯板的非最外层线路;
    在各挠性芯板对应的挠性区粘贴覆盖膜;
    按飞尾结构的刚挠结合线路板所需子板的层叠要求,在挠性区对应的非最外层刚性芯板处铣通窗。
  5. 根据权利要求4所述的飞尾结构的刚挠结合线路板的制作方法,其特征在于,在进行步骤2所述的对各第二刚性区相邻端面的防焊区上粘贴聚醚亚胺覆盖膜前,还包括如下步骤:
    对各子板的第二刚性区进行钻孔、沉铜、电镀;
    对各导通孔进行真空树脂塞孔和陶瓷打磨;
    制作飞尾结构的刚挠结合线路板的非最外层线路。
  6. 根据权利要求5所述的飞尾结构的刚挠结合线路板的制作方法,其特征在于,在进行步骤2所述的对各第二刚性区相邻端面的防焊区上粘贴聚醚亚胺覆盖膜后,还包括如下步骤:
    对各子板的表面焊盘进行表面处理;
    在各子板的表面焊盘处粘贴聚酰亚胺胶带,将各子板进行棕化,棕化后将聚酰亚胺胶带撕掉。
  7. 根据权利要求6所述的飞尾结构的刚挠结合线路板的制作方法,其特征在于,在进行步骤3所述的各子板的部分第一刚性区压合形成第一刚性区后,还包括如下步骤:
    对第一刚性区进行钻孔、沉铜、电镀;
    制作飞尾结构的刚挠结合线路板的最外层线路,以及对最外层端面的阻焊、表面处理;
    按飞尾结构的刚挠结合线路板所需子板的层叠要求,对挠性区对应的最外层刚性芯板处进行控深铣,使对应的挠性区露出。
  8. 根据权利要求2~7任一项所述的飞尾结构的刚挠结合线路板的制作方法,其特征在于,在进行步骤1中所述的对各子板的芯板进行压合前,各芯板之间通过流胶量30mil~120mil的不流动半固化片粘结铆合。
  9. 根据权利要求8所述的飞尾结构的刚挠结合线路板的制作方法,其特征在于,在进行步骤3中所述的对各子板进行压合前,各子板的部分第一刚性区之间通过流胶量30mil~120mil的不流动半固化片粘结铆合。
PCT/CN2014/093545 2013-12-11 2014-12-11 飞尾结构的刚挠结合线路板及其制作方法 WO2015085934A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP14869201.5A EP3082385B1 (en) 2013-12-11 2014-12-11 Rigid-flexible circuit board having flying-tail structure and method for manufacturing same
US15/102,803 US9706669B2 (en) 2013-12-11 2014-12-11 Rigid-flexible circuit board having flying-tail structure and method for manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310676254.0A CN103687284B (zh) 2013-12-11 2013-12-11 飞尾结构的刚挠结合线路板及其制作方法
CN201310676254.0 2013-12-11

Publications (1)

Publication Number Publication Date
WO2015085934A1 true WO2015085934A1 (zh) 2015-06-18

Family

ID=50323173

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/093545 WO2015085934A1 (zh) 2013-12-11 2014-12-11 飞尾结构的刚挠结合线路板及其制作方法

Country Status (4)

Country Link
US (1) US9706669B2 (zh)
EP (1) EP3082385B1 (zh)
CN (1) CN103687284B (zh)
WO (1) WO2015085934A1 (zh)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103687284B (zh) * 2013-12-11 2017-02-15 广州兴森快捷电路科技有限公司 飞尾结构的刚挠结合线路板及其制作方法
CN104640375A (zh) * 2015-01-28 2015-05-20 深圳崇达多层线路板有限公司 一种软硬结合板的制作方法
US10321560B2 (en) 2015-11-12 2019-06-11 Multek Technologies Limited Dummy core plus plating resist restrict resin process and structure
US20170238416A1 (en) * 2016-02-17 2017-08-17 Multek Technologies Limited Dummy core restrict resin process and structure
US9999134B2 (en) 2016-03-14 2018-06-12 Multek Technologies Limited Self-decap cavity fabrication process and structure
US10064292B2 (en) * 2016-03-21 2018-08-28 Multek Technologies Limited Recessed cavity in printed circuit board protected by LPI
US10499500B2 (en) * 2016-11-04 2019-12-03 Flex Ltd. Circuit board with embedded metal pallet and a method of fabricating the circuit board
CN106455305A (zh) * 2016-11-22 2017-02-22 珠海杰赛科技有限公司 一种挠性区带补强的刚挠结合板及其制备方法
CN106793582A (zh) * 2016-11-25 2017-05-31 深圳崇达多层线路板有限公司 一种刚挠结合板的制作方法
CN107770963A (zh) * 2017-10-11 2018-03-06 广州兴森快捷电路科技有限公司 刚挠结合线路板的制作方法
CN107949152B (zh) * 2017-11-30 2024-04-09 广州兴森快捷电路科技有限公司 刚挠结合线路板的制作方法
CN108419381B (zh) * 2018-01-23 2020-04-14 广州兴森快捷电路科技有限公司 刚挠结合板及其制作方法
US11224117B1 (en) 2018-07-05 2022-01-11 Flex Ltd. Heat transfer in the printed circuit board of an SMPS by an integrated heat exchanger
CN110012600B (zh) * 2019-03-29 2024-05-07 博敏电子股份有限公司 一种不对称高多层刚挠结合电路板及制备方法
CN110324988B (zh) * 2019-07-12 2020-08-18 广州兴森快捷电路科技有限公司 飞尾刚挠结合板及其制作方法
CN110536563B (zh) * 2019-09-20 2021-07-20 广州兴森快捷电路科技有限公司 飞尾阶梯结构刚挠结合板及制作方法
CN110831352A (zh) * 2019-10-10 2020-02-21 惠州市金百泽电路科技有限公司 一种厚板压合台阶制作方法
CN112291951A (zh) * 2020-11-10 2021-01-29 深圳市昶东鑫线路板有限公司 盲埋孔线路板加工工艺
CN112638043B (zh) * 2021-01-27 2022-04-01 东莞市若美电子科技有限公司 飞尾式结构的刚挠结合板制作方法
CN113438829B (zh) * 2021-06-27 2024-04-19 深圳市实锐泰科技有限公司 一种刚挠结合板的制作方法及刚挠结合板
CN116567926B (zh) * 2023-07-12 2023-11-24 信丰迅捷兴电路科技有限公司 一种刚挠结合电路板及其制作方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100674303B1 (ko) * 2005-10-07 2007-01-24 삼성전기주식회사 플라잉 테일 형태의 경연성 인쇄회로기판의 커버레이 성형방법
KR20100028214A (ko) * 2008-09-04 2010-03-12 삼성전기주식회사 플라잉 테일 형태의 경연성 인쇄회로기판 제조방법
CN102045949A (zh) * 2011-01-14 2011-05-04 深圳市兴森快捷电路科技股份有限公司 刚挠结合印制电路板的制作方法
CN102843860A (zh) * 2011-06-23 2012-12-26 揖斐电株式会社 刚挠性电路板及其制造方法
CN103687284A (zh) * 2013-12-11 2014-03-26 广州兴森快捷电路科技有限公司 飞尾结构的刚挠结合线路板及其制作方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5499444A (en) * 1994-08-02 1996-03-19 Coesen, Inc. Method of manufacturing a rigid flex printed circuit board
US6449836B1 (en) * 1999-07-30 2002-09-17 Denso Corporation Method for interconnecting printed circuit boards and interconnection structure
JP4465888B2 (ja) * 2001-02-01 2010-05-26 株式会社デンソー 基板の接続方法
WO2008035416A1 (fr) * 2006-09-21 2008-03-27 Daisho Denshi Co., Ltd. Plaquette de circuit imprimé flexorigide et procédé de fabrication de la plaquette de circuit imprimé flexorigide
JP5097827B2 (ja) * 2008-08-29 2012-12-12 イビデン株式会社 フレックスリジッド配線板及び電子デバイス
US8400782B2 (en) * 2009-07-24 2013-03-19 Ibiden Co., Ltd. Wiring board and method for manufacturing the same
US8383948B2 (en) * 2009-09-18 2013-02-26 Ibiden Co., Ltd. Flex-rigid wiring board and method for manufacturing the same
US8493747B2 (en) * 2010-02-05 2013-07-23 Ibiden Co., Ltd. Flex-rigid wiring board and method for manufacturing the same
US8759687B2 (en) * 2010-02-12 2014-06-24 Ibiden Co., Ltd. Flex-rigid wiring board and method for manufacturing the same
US8404978B2 (en) * 2010-02-12 2013-03-26 Ibiden Co., Ltd. Flex-rigid wiring board and method for manufacturing the same
KR20130037209A (ko) * 2010-06-04 2013-04-15 이비덴 가부시키가이샤 배선판의 제조 방법
CN201957328U (zh) * 2011-01-12 2011-08-31 广州兴森快捷电路科技有限公司 一种刚挠结合的多层印刷电路板
US8735739B2 (en) * 2011-01-13 2014-05-27 Ibiden Co., Ltd. Wiring board and method for manufacturing the same
CN201976338U (zh) * 2011-01-14 2011-09-14 深圳市兴森快捷电路科技股份有限公司 用于测试半固化片溢胶情况的刚挠结合板
CN202059671U (zh) * 2011-04-07 2011-11-30 吴祖 一种新型led线路板

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100674303B1 (ko) * 2005-10-07 2007-01-24 삼성전기주식회사 플라잉 테일 형태의 경연성 인쇄회로기판의 커버레이 성형방법
KR20100028214A (ko) * 2008-09-04 2010-03-12 삼성전기주식회사 플라잉 테일 형태의 경연성 인쇄회로기판 제조방법
CN102045949A (zh) * 2011-01-14 2011-05-04 深圳市兴森快捷电路科技股份有限公司 刚挠结合印制电路板的制作方法
CN102843860A (zh) * 2011-06-23 2012-12-26 揖斐电株式会社 刚挠性电路板及其制造方法
CN103687284A (zh) * 2013-12-11 2014-03-26 广州兴森快捷电路科技有限公司 飞尾结构的刚挠结合线路板及其制作方法

Also Published As

Publication number Publication date
CN103687284A (zh) 2014-03-26
EP3082385A1 (en) 2016-10-19
US20160324012A1 (en) 2016-11-03
US9706669B2 (en) 2017-07-11
EP3082385B1 (en) 2021-10-06
EP3082385A4 (en) 2017-09-27
CN103687284B (zh) 2017-02-15

Similar Documents

Publication Publication Date Title
WO2015085934A1 (zh) 飞尾结构的刚挠结合线路板及其制作方法
TWI681475B (zh) 軟硬結合板及其製作方法
US9860978B1 (en) Rigid-flex board structure
WO2017107535A1 (zh) 刚挠结合板及其制备方法
TW201618609A (zh) 剛撓結合板及其製作方法
TWI606769B (zh) 剛撓結合板之製作方法
JP4246615B2 (ja) フレックスリジッドプリント配線板及びその製造方法
TW201417638A (zh) 軟硬結合電路板及其製作方法
TWI615076B (zh) 軟硬結合電路板及其製作方法
KR20090038635A (ko) 다층 회로기판의 제조 방법
WO2020135204A1 (zh) 高频电路板及其制作方法
TW201410093A (zh) 軟硬結合電路基板、軟硬結合電路板及製作方法
US20140182899A1 (en) Rigid-flexible printed circuit board and method for manufacturing same
KR101099454B1 (ko) 다층 연성회로기판 제조방법
TW201633864A (zh) 剛撓結合板及其製作方法
JP2002158445A (ja) リジッドフレックスプリント配線板及びその製造方法
JP2006059962A (ja) リジッドフレックス回路基板およびその製造方法
CN113163605B (zh) 一种高散热铝基电路板的制作方法及高散热铝基电路板
JP2015038908A (ja) フレックスリジッド配線板
TWI653920B (zh) 印刷配線板的製造方法以及保護膜
JP2012009485A (ja) プリント配線基板
TW201503769A (zh) 軟硬結合電路板及其製作方法
JP5293672B2 (ja) リジッド−フレキシブル基板及びその製造方法
TW201349956A (zh) 軟硬複合線路板及其製作方法
JP5559266B2 (ja) 多層プリント配線板及び多層プリント配線板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14869201

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014869201

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014869201

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15102803

Country of ref document: US