WO2020135204A1 - 高频电路板及其制作方法 - Google Patents

高频电路板及其制作方法 Download PDF

Info

Publication number
WO2020135204A1
WO2020135204A1 PCT/CN2019/126512 CN2019126512W WO2020135204A1 WO 2020135204 A1 WO2020135204 A1 WO 2020135204A1 CN 2019126512 W CN2019126512 W CN 2019126512W WO 2020135204 A1 WO2020135204 A1 WO 2020135204A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
ptfe
cover film
circuit board
manufacturing
Prior art date
Application number
PCT/CN2019/126512
Other languages
English (en)
French (fr)
Inventor
王俊
张霞
陈晓青
Original Assignee
深圳市景旺电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市景旺电子股份有限公司 filed Critical 深圳市景旺电子股份有限公司
Publication of WO2020135204A1 publication Critical patent/WO2020135204A1/zh

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0058Laminating printed circuit boards onto other substrates, e.g. metallic substrates
    • H05K3/0064Laminating printed circuit boards onto other substrates, e.g. metallic substrates onto a polymeric substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • H05K1/024Dielectric details, e.g. changing the dielectric material around a transmission line
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0044Mechanical working of the substrate, e.g. drilling or punching
    • H05K3/0047Drilling of holes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/02Details related to mechanical or acoustic processing, e.g. drilling, punching, cutting, using ultrasound
    • H05K2203/0214Back-up or entry material, e.g. for mechanical drilling

Definitions

  • the present application relates to the technical field of circuit boards, in particular to a high-frequency circuit board and a manufacturing method thereof.
  • PCB high-frequency board refers to a special circuit board with high electromagnetic frequency, which is used for PCBs in the field of high frequency (frequency greater than 300MHZ or wavelength less than 1 meter) and microwave (frequency greater than 3GHZ or wavelength less than 0.1 meter).
  • high frequency A frequency board can be defined as a circuit board with a frequency above 1 GHz.
  • the microwave frequency band >1GHZ
  • the millimeter wave field (30GHZ)
  • the cover film material needs to have excellent electrical properties, good chemical stability, and the requirement for the loss of the substrate with the increase of the frequency of the power signal is very small.
  • ink or PI film polyimide film
  • the ink has a high DK (dielectric constant), poor electrical performance, and a rough surface.
  • the DK of the PI film is relatively Because the ink is low, but with the continuous increase of transmission rate and transmission rate, the ink or PI film used to protect the outer line of the high-frequency board cannot meet the requirements well. Therefore, a new material PTFE cover film is used to process the high-frequency board, which can well meet the loss requirements of the high-frequency board material.
  • the conventional manufacturing method of the PCB high-frequency board is used.
  • One of the purposes of the embodiments of the present application is to provide a high-frequency circuit board and a manufacturing method thereof, aiming to solve the problems of low material loss and low manufacturing yield in high-frequency signal transmission.
  • a method for manufacturing a high-frequency circuit board including the following steps:
  • Performing the first drilling includes drilling metallized holes in the core plate, and drilling exhaust holes and alignment holes in the corresponding positions of the core plate and the PTFE high-frequency cover film;
  • the outer shape of the substrate after the second drilling is processed to produce a high-frequency circuit board.
  • the PTFE high-frequency cover film includes a PTFE cover film and a thermosetting resin compounded on one side of the PTFE cover film.
  • the thickness of the PTFE cover film is 25-40 ⁇ m, and the thickness of the thermosetting resin is 10-20 ⁇ m.
  • the thickness of the PTFE cover film is 30 to 35 ⁇ m, and the thickness of the thermosetting resin is 12 to 18 ⁇ m.
  • the PTFE high-frequency cover film further includes a release film attached to the side of the PTFE cover film away from the thermosetting resin; before the film is attached, the PTFE high-frequency cover film is baked , Cool and solidify to avoid shrinkage of the PTFE cover film due to excessive stress after tearing off the release film.
  • the steps of baking, cooling and solidifying the PTFE high-frequency cover film include: placing the PTFE high-frequency cover film in an oven at 160°C and baking for 10-15 min at high temperature cool down.
  • the step of blackening the core plate before electroplating includes: forming a graphite carbon black conductive layer on the surface of the hole wall of the metalized holes on the core plate by adsorption.
  • the step of laminating the core plate with the PTFE high-frequency coating film on both sides includes: stacking a buffer layer on both sides of the core plate with the PTFE high-frequency coating film on both sides, on both sides A steel plate is stacked on the outside of the buffer layer, and then pressed to obtain a substrate, wherein the buffer layer is a silicone buffer layer, and the surface hardness is 70 ⁇ 5HA.
  • the pressure is set to 450 psi
  • the temperature is set to 180° C.
  • the pressing time is 3-6 min.
  • the thickness of the silicone buffer layer is 2 mm.
  • the exhaust hole is drilled in the waste area of the PTFE high-frequency cover film.
  • the window of the PTFE high-frequency cover film is 6-12 mil larger than the pore diameter of the metallized hole.
  • the window of the PTFE high-frequency cover film is 8-10 mil larger than the pore diameter of the metallized hole.
  • the metallized hole wall is electroplated to a copper thickness of 20 ⁇ m or more, and the copper thickness of the plate surface is electroplated to 35 ⁇ m or more.
  • a high-frequency circuit board is provided, which is manufactured using the above-mentioned method for manufacturing a high-frequency circuit board.
  • the second drilling is to drill the remaining The metallized holes can reduce the drilling tool, so as to reduce the internal stress.
  • FIG. 1 is a flowchart of a method for manufacturing a high-frequency circuit board provided by an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of the high-frequency circuit board shown in FIG. 1 when pressed;
  • FIG. 3 is a schematic view of the structure of the PTFE high-frequency cover film in the manufacturing method of the high-frequency circuit board shown in FIG.
  • FIG. 4 is a schematic structural view of a PTFE high-frequency cover film in the method of manufacturing the high-frequency circuit board shown in FIG. 1.
  • PTFE cover film 220 thermosetting resin 230-release film
  • first and second are used for description purposes only, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features.
  • the features defined as “first” and “second” may explicitly or implicitly include one or more of the features.
  • the meaning of “plurality” is two or more, unless otherwise specifically limited.
  • the terms “installation”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection , Or integrated; it can be mechanical connection or electrical connection; it can be directly connected or indirectly connected through an intermediary, it can be the connection between two components or the interaction between two components.
  • installation can be a fixed connection or a detachable connection , Or integrated; it can be mechanical connection or electrical connection; it can be directly connected or indirectly connected through an intermediary, it can be the connection between two components or the interaction between two components.
  • the manufacturing method of the high-frequency circuit board includes the following steps:
  • Step S100 providing the core board 100 and the PTFE high-frequency cover film 200.
  • Step S200 Perform the first drilling, and drill the metalized hole 101, the exhaust hole and the alignment hole in the core plate 100, and the PTFE high-frequency cover film 200 corresponds to the exhaust hole and the alignment hole of the core plate 100
  • the exhaust hole 202 and the alignment hole 203 are drilled in position.
  • Step S400 performing electroplating, outer layer pattern making and outer layer etching on the core board 100 to form an outer layer circuit pattern. Before electroplating, it also includes step S300: black holes, forming a carbon layer conductive layer on the hole wall of the metallized hole 101.
  • Step S600 PTFE high-frequency cover film 200 is applied on both sides of the core board 100.
  • Step S700 The core board 100 on both sides of which is coated with the PTFE high-frequency coating film 200 is pressed to obtain a substrate.
  • Step S800 Drill the substrate for the second time, drill the remaining non-metallic holes (not shown) and drill the windows 201 on both sides of the substrate to correspond to the positions of the metallized holes 101 .
  • Step S900 shape processing is performed on the substrate after the second drilling to obtain a high-frequency circuit board.
  • the second drilling is to drill the remaining part of the core board 100 with the PTFE high-frequency cover film 200 pressed on both sides.
  • the non-metallized holes can reduce the drilling tool, so as to reduce the internal stress.
  • the PTFE high-frequency cover film 200 uses a PTFE cover film with low friction resistance and excellent electrical properties, which has a low dielectric constant and a small loss factor.
  • the PTFE high-frequency cover film 200 includes a PTFE cover film 210 and a thermosetting resin 220 compounded on one side of the PTFE cover film 210. As shown in FIG. 4, the PTFE cover film 210 is applied on the side away from the thermosetting resin 220 There is a release film 230, which plays a protective role on PTFE and tears off after the film is attached.
  • the thickness of the PTFE cover film is 25-40 ⁇ m
  • the specific thickness may be 25 ⁇ m, 28 ⁇ m, 31 ⁇ m, 34 ⁇ m, 37 ⁇ m, 40 ⁇ m
  • the thickness of the thermosetting resin is 10-20 ⁇ m
  • the specific thickness may be 10 ⁇ m, 12 ⁇ m, 14 ⁇ m, 16 ⁇ m , 18 ⁇ m, 20 ⁇ m.
  • the thickness of the PTFE cover film is 30-35 ⁇ m
  • the thickness may be 30 ⁇ m, 31 ⁇ m, 32 ⁇ m, 33 ⁇ m, 34 ⁇ m, 35 ⁇ m
  • the thickness of the thermosetting resin is 12-18 ⁇ m
  • the thickness may be 12 ⁇ m, 13 ⁇ m , 14 ⁇ m, 15 ⁇ m, 16 ⁇ m, 17 ⁇ m, 18 ⁇ m.
  • the core plate 100 and the PTFE high-frequency cover film 200 can be cut according to a preset size, and the core plate 100 and the PTFE high-frequency cover in accordance with the preset shape and size can be processed ⁇ 200 ⁇ The film 200.
  • the exhaust holes 202 and the alignment holes 203 drilled in the PTFE high-frequency cover film 200 correspond to the exhaust holes and the alignment holes on the core plate 100, respectively.
  • the diameter of the vent hole 202 drilled in the PTFE high-frequency cover film 200 can be set to be larger than the vent hole of the core plate 100, such as 4-6 mil, the difference between the two can be set to 4 mil, 4.4 mil, 4.8 mil, 5.2 mil, 5.6 mil, 6 mil; the alignment holes on the core plate 100 are provided in the peripheral area, such as the areas at both ends along the length direction, the alignment holes 203 drilled in the PTFE high-frequency cover film 200
  • the diameter of the hole can be set to be larger than the hole of the alignment hole on the core board 100, such as 3-6mil, the difference between the two can be set to 3 mil, 3.5 mil, 4 mil, 4.5 mil, 5 mil, 5.5 mil, 6 mil.
  • step S300 a graphite carbon black conductive layer is adsorbed and formed on the surface of the hole wall of the metallized hole 101 of the core plate 100 to prepare for the subsequent electroplating process.
  • step S500 baking the PTFE high-frequency cover film 200, cooling and solidifying, so as to avoid shrinkage of the PTFE cover film 210 due to excessive stress after tearing off the release film.
  • a buffer layer 300 is added between the steel plate 400 and the PTFE high-frequency cover film 200, and the surface hardness of the buffer layer 300 is 70 ⁇ 5HA.
  • the circuit on the core board 100 closely adheres to the connection points of the core board 100.
  • the steel plate 400, the buffer layer 300, the PTFE high-frequency coating 200, the core plate 100, the buffer layer 300, and the steel plate 400 are stacked in this order from top to bottom.
  • step S700 at the time of lamination, the pressure F can be set to 450 psi, the temperature is 180° C., and the lamination time is 3 to 6 min. In this way, the fluidity of the resin is provided by increasing the lamination pressure, thereby solving the core board 100 After pressing with the PTFE high-frequency cover film 200, a resin void phenomenon occurs.
  • the buffer layer 300 is a silicone buffer layer, and the thickness of the silicone buffer layer is set to 2 mm.
  • the aperture diameter of the window 201 of the PTFE high-frequency cover film 200 can be set to be 6-12 mil larger than the aperture diameter of the metalized hole 101, and the difference between the two aperture diameters can be specifically set to 6 mil, 7 mil, 9 mil, 10 mil, 11 mil.
  • the aperture of the window 201 of the PTFE high-frequency cover film 200 can be set to be 8-10 mil larger than the aperture of the metalized hole 101, and the difference between the two apertures can be specifically set to 8 mil, 8.5 mil, 9 mil, 9.5 mil, 10 mil.
  • the following uses the PTFE high-frequency cover film 200 as an example including the PTFE cover film 210, and in conjunction with FIGS. 2 and 3, a method for manufacturing a high-frequency circuit board is specifically described.
  • the method for manufacturing includes the following steps:
  • Step 1 Select a PTFE high-frequency cover film 200 with low friction resistance and excellent electrical properties.
  • the PTFE high-frequency cover film 200 is composed of a PTFE cover film 210 and a single-sided thermosetting resin 220.
  • the thickness of the PTFE cover film 10 is 25-40 ⁇ m
  • the thickness of the single-sided thermosetting resin 220 is 10-20 ⁇ m.
  • the specific thickness of the PTFE cover film 210 may be 25 ⁇ m, 28 ⁇ m, 31 ⁇ m, 34 ⁇ m, 37 ⁇ m, 40 ⁇ m
  • the thickness of the single-sided thermosetting resin 220 may specifically be 10 ⁇ m, 12 ⁇ m, 14 ⁇ m, 16 ⁇ m, 18 ⁇ m, 20 ⁇ m.
  • Step 2 Engineering design of PTFE cover film 210 and PCB board, including panel design, circuit compensation, gerber output, etc. During engineering design, remove the original shape window pattern and non-metallized hole window opening on the PTFE high-frequency cover film 200, leaving only a small number of exhaust holes 202 and metalized holes 101 and the alignment of the four corners of the PTFE high-frequency cover film 200
  • the holes 203 are, for example, two rows of spaced exhaust holes 202.
  • Step 3 Open the material and cut the PCB board and PTFE cover film 210 according to the preset size of the puzzle.
  • Step 4 For the first time drilling, only the metalized holes 101 on the high frequency PCB board are drilled in the core board 100.
  • the non-metallized holes are drilled during the second drilling, to avoid drilling them both at a time.
  • a window treatment is required, and the PTFE high-frequency cover film 200 is too open to stick. It is easy to generate internal stress at the time, so the two are drilled separately before and after.
  • Step 5 Blackening, through physical adsorption, a uniform layer of graphite carbon black conductive layer is adsorbed on the surface of the hole wall on the core board 100 that has been drilled, to prepare for the subsequent electroplating process.
  • Step 6 Electroplating, after the black hole of the core plate 100, the metallization hole 101 is electroplated to a copper thickness of 20 ⁇ m or more, the copper thickness may be 21 ⁇ m, 22 ⁇ m, 23 ⁇ m, 25 ⁇ m, the surface copper is 35 ⁇ m or more, and the surface copper thickness may be It is 36 ⁇ m, 37 ⁇ m, 38 ⁇ m, 40 ⁇ m.
  • Step 7 Make the outer layer pattern and etch the outer layer of the PCB board to make the outer layer circuit pattern of the PCB core board 100.
  • Step 8 Browning, the PCB core board 100 with the outer circuit pattern is browned to prepare for the bonding of the PTFE cover film 210.
  • the browning process is to roughen the surface of the PCB core board 100 to form a rough surface on the surface of the core board 100.
  • Step 9 Laser milling the PTFE high-frequency cover film 200, and milling the PTFE high-frequency cover film 200 by milling only the metalized hole window (ie, the window 201), the exhaust hole 202, and the alignment hole 203 to obtain a pre-stick ⁇ PTFE high frequency cover film 200. Only the metalized hole window, the exhaust hole 202 and the alignment hole 203 are milled, and the other shape positions are not milled to reduce the stress shrinkage that may occur when the PTFE high-frequency cover film 200 is fitted. Therefore, only the metalized hole 101, the exhaust hole 202, and the alignment hole 203 are drilled, so it is not necessary to open the window on the coating film at the position of the non-metalized hole.
  • the exhaust hole 202 is provided in the waste area of the PTFE cover film 210, which is used for exhausting when the PTFE high-frequency cover film 200 is attached.
  • the exhaust hole window is a window that is larger than the exhaust hole diameter of the core plate 100 , The window is 3-6mil larger than the vent.
  • the alignment hole 203 is used for the subsequent alignment operation when the PTFE high-frequency cover film 200 is attached.
  • the alignment hole is only distributed around the board surface.
  • the alignment hole window is a window that is larger than the alignment hole on the core board 100 , The window is 4-6mil larger than the alignment hole.
  • the metalized hole window is a larger window than the metalized hole 101, and the window opening is 6-12 mil larger than the metalized hole 101.
  • Step 10 Laminate the PCB board and the PTFE cover film 210, before putting the film, put the PTFE cover film 210 in the oven, bake at 160°C for 10-15 min, take out and cool it, make the PTFE cover film 210
  • the resin is further cured to achieve the purpose of reducing the viscosity of the resin, thereby reducing the internal stress of the product when tearing off the release paper, to avoid excessive stress after tearing off the release paper and causing the cover film to shrink, affecting the PTFE cover film 210 and the PCB
  • the alignment of the core board 100 The alignment of the core board 100.
  • Step 11 The PCB board and the PTFE cover film 210 are firmly bonded together by pressing.
  • the press-fitting is to cover the circuit positions on both the front and back sides of the PCB board with the PTFE high-frequency cover film 200 to realize the protection of the outer circuit.
  • the pressure is set to 450psi
  • the temperature is set to 180 °C
  • the pressing time is 3-6min
  • the laminated structure is in accordance with the steel plate 400, 2.0mm thick silicone buffer material, PTFE cover film 210, PCB board, PTFE cover Membrane 210, 2.0mm thick silicone buffer material, steel plate 400.
  • This pressing method can solve the problem that the cover film presses the resin cavity.
  • the cushion material uses a cushion with a silicone layer, and the surface hardness is 70 ⁇ 5HA.
  • Step 12 Drilling for the second time, after the PTFE high frequency cover film 200 is pressed, the PCB board is drilled for the second time, and the remaining non-metallized holes are drilled.
  • Step 13 Shape and milling grooves, designed according to the shape information of the PCB board, milling and removing the excess waste area in the PCB board, and finally achieving the production of the finished PCB board.
  • Step 14 Electrical testing, finished product inspection and shipment, that is, electrical performance testing in accordance with the normal process, and visual inspection, until the product is qualified for shipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)
  • Structure Of Printed Boards (AREA)
  • Laminated Bodies (AREA)

Abstract

本申请公开一种高频电路板及其制作方法,该制作方法包括以下步骤:提供芯板(100)和PTFE高频覆盖膜(200);进行第一次钻孔,在芯板(100)上钻出金属化孔(101),在芯板(100)和PTFE高频覆盖膜(200)对应位置钻出排气孔(202)和对位孔(203);对芯板(100)进行黑孔、电镀、外层图形制作和外层蚀刻;在芯板(100)的两面贴覆PTFE高频覆盖膜(200);对两面贴覆有PTFE高频覆盖膜(200)的芯板(100)进行压合,制得基板;对基板进行第二次钻孔,钻出非金属孔以及钻出基板两面的PTFE高频覆盖膜(200)对应金属化孔的位置的窗口(201);对第二次钻孔后的基板进行外形加工,制得高频电路板。

Description

高频电路板及其制作方法
本申请要求于2018年12月28日在中国专利局提交的、申请号为201811625569.1、发明名称为“高频电路板及其制作方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电路板技术领域,具体涉及一种高频电路板及其制作方法。
背景技术
这里的陈述仅提供与本申请有关的背景信息,而不必然构成现有技术。
PCB高频板是指电磁频率较高的特种线路板,用于高频率(频率大于300MHZ或者波长小于1米)与微波(频率大于3GHZ或者波长小于0.1米)领域的PCB,一般来说,高频板可定义为频率在1GHz以上线路板。
随着科学技术的快速发展,越来越多的设备设计是在微波频段(>1GHZ)甚至与毫米波领域(30GHZ)以上的应用,这也意味着频率越来越高,对线路板的材料的要求也越来越高,比如说覆盖膜材料需要具有优良的电性能,良好的化学稳定性,随电源信号频率的增加在基材的损失方面要求非常小。
目前电路板行业在制作高频板时,普遍使用油墨或PI膜(聚酰亚胺薄膜)来覆盖,油墨的DK(介电常数)高、电性能稳定差,表面粗糙,PI膜的DK相对于油墨低,但随着传输速率及传输速率的不断提升,用于保护高频板外层线路的油墨或PI膜不能很好的满足要求。因此,采用一种新材料PTFE覆盖膜来对高频板进行加工,可以很好的满足高频板材料的损耗要求,但由于PTFE覆盖膜加工工艺复杂,按照PCB高频板常规的制作方法来做,给实际生产带来很大的问题:PTFE覆盖膜内应力完全释放后,覆盖膜收缩非常严重,导致刚挠无法对位,贴覆盖膜图形复杂导致操作难度大且十分耗时,同时在压合过程中线条与压合的拐角处不能紧密贴合,胶流动不到拐角处导致树脂空洞,缺陷多,良率低,无法实现大批量生产。
技术问题
本申请实施例的目的之一在于:提供一种高频电路板及其制作方法,旨在解决高频信号传输中材料损耗低以及制作良率较低的问题。
技术解决方案
为解决上述技术问题,本申请实施例采用的技术方案是:
第一方面,提供了一种高频电路板的制作方法,包括以下步骤:
提供芯板和PTFE高频覆盖膜;
进行第一次钻孔,包括在所述芯板上钻出金属化孔,以及在所述芯板和所述PTFE高频覆盖膜对应位置钻出排气孔和对位孔;
对芯板进行黑孔、电镀、外层图形制作和外层蚀刻,以形成外层线路图形;
在芯板的两面贴覆PTFE高频覆盖膜;
对两面贴覆有PTFE高频覆盖膜的芯板进行压合,制得基板;
对基板进行第二次钻孔,钻出剩余的非金属孔以及钻出所述基板两面的PTFE高频覆盖膜对应所述金属化孔的位置的窗口;
对第二次钻孔后的基板进行外形加工,制得高频电路板。
在一个实施例中,所述PTFE高频覆盖膜包括PTFE覆盖膜和复合于所述PTFE覆盖膜一侧面的热固性树脂。
在一个实施例中,压合前,所述PTFE覆盖膜的厚度为25~40μm,所述热固性树脂的厚度为10~20μm。
在一个实施例中,压合前,所述PTFE覆盖膜的厚度为30~35μm,所述热固性树脂的厚度为12~18μm。
在一个实施例中,所述PTFE高频覆盖膜还包括贴覆在所述PTFE覆盖膜远离所述热固性树脂一侧的离型膜;在贴膜前,对所述PTFE高频覆盖膜进行烘烤,冷却固化,以避免撕除离型膜后因应力过大而导致PTFE覆盖膜内缩。
在一个实施例中,在贴膜前,对所述PTFE高频覆盖膜进行烘烤、冷却固化的步骤包括:将所述PTFE高频覆盖膜放入烤箱160℃高温烘烤10-15 min后取出冷却。
在一个实施例中,在电镀前对所述芯板进行黑化的步骤包括:在所述芯板上金属化孔的孔壁的表面吸附形成一层石墨炭黑导电层。
在一个实施例中,对两面贴覆有PTFE高频覆盖膜的芯板进行压合的步骤包括:在两面贴覆有PTFE高频覆盖膜的芯板的两面分别叠放缓冲层,在两侧的缓冲层外叠放钢板,然后进行压合,获得基板,其中,所述缓冲层为硅胶缓冲层,表面硬度为70±5HA。
在一个实施例中,对两面贴覆有PTFE高频覆盖膜的芯板进行压合时,压力设置为450psi,温度设置为180℃,压合时间为3-6min。
在一个实施例中,所述硅胶缓冲层的厚度为2mm。
在一个实施例中,所述第一次钻孔时,在所述PTFE高频覆盖膜的废料区钻出所述排气孔。
在一个实施例中,所述PTFE高频覆盖膜的窗口比所述金属化孔的孔径大6~12mil。
在一个实施例中,所述PTFE高频覆盖膜的窗口比所述金属化孔的孔径大8~10mil。
在一个实施例中,对所述芯板进行电镀时,对所述金属化孔孔壁电镀至铜厚20μm以上,板面面铜厚度电镀至35μm以上。
第二方面,提供一种高频电路板,利用上述高频电路板的制作方法制得。
有益效果
本申请实施例提供的高频电路板的制作方法,由于第一次钻孔只钻金属化孔,第二次钻孔是在两面压合有PTFE高频覆盖膜的芯板钻出剩余的非金属化孔,可以减少钻孔的走刀,从而达到降低内应力的目的,在芯板上贴膜时只需要将PTFE高频覆盖膜与芯板上的各对位点对准即可,大大地减少了贴膜的操作时间,同时也保证了PTFE高频覆盖膜与芯板的对准度及产品的品质,适于大批量生产。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或示范性技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1为本申请实施例提供的高频电路板的制作方法的流程框图;
图2为图1所示高频电路板的制作方法中压合时的结构示意图;
图3为图1所示高频电路板的制作方法中的PTFE高频覆盖膜外形经过两次钻孔后的结构示意图;
图4为图1所示高频电路板的制作方法中PTFE高频覆盖膜的结构示意图。
其中,图中各附图标记:
100—芯板             101—金属化孔       200—PTFE高频覆盖膜
210—PTFE覆盖膜      220—热固性树脂     230-离型膜
201—窗口             202—排气孔         203—对位孔
300—缓冲层           400—钢板。
本发明的实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。
在本申请的描述中,需要理解的是,术语“长度”、“宽度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
为了说明本申请所述的技术方案,以下结合具体附图及实施例进行详细说明。
如图1~3所示,本申请实施例提供的高频电路板的制作方法,包括以下步骤:
步骤S100:提供芯板100和PTFE高频覆盖膜200。
步骤S200:进行第一次钻孔,在芯板100上钻出金属化孔101、排气孔和对位孔,在PTFE高频覆盖膜200对应芯板100的排气孔、对位孔的位置上钻出排气孔202和对位孔203。
步骤S400:对芯板100进行电镀、外层图形制作和外层蚀刻,以形成外层线路图形。电镀前还包括步骤S300:黑孔,在金属化孔101的孔壁上形成碳层导电层。
步骤S600:在芯板100的两面贴覆PTFE高频覆盖膜200。
步骤S700:对两面贴覆有PTFE高频覆盖膜200的芯板100进行压合,制得基板。
步骤S800:对基板进行第二次钻孔,钻出剩余的非金属孔(图未示)以及钻出所述基板两面的PTFE高频覆盖膜200对应所述金属化孔101的位置的窗口201。
步骤S900:对第二次钻孔后的基板进行外形加工,制得高频电路板。
本实施例提供的高频电路板的制作方法,由于第一次钻孔只钻金属化孔101,第二次钻孔是在两面压合有PTFE高频覆盖膜200的芯板100钻出剩余的非金属化孔,可以减少钻孔的走刀,从而达到降低内应力的目的,在芯板100上贴膜时只需要将PTFE高频覆盖膜200与芯板100上的各对位点对准即可,大大地减少了贴膜的操作时间,同时也保证了PTFE高频覆盖膜200与芯板100的对准度及产品的品质,适于大批量生产。
在步骤S100中,PTFE高频覆盖膜200采用摩擦阻力小且具有优良电性能的PTFE覆盖膜,其介电常数低,损耗因子小。在一实施方式中,PTFE高频覆盖膜200包括PTFE覆盖膜210和复合于PTFE覆盖膜210一侧面的热固性树脂220,如图4所示,PTFE覆盖膜210远离热固性树脂220的一侧贴覆有离型膜230,离型膜230对PTFE起到保护作用,在贴膜后撕掉。压合前, PTFE覆盖膜的厚度为25~40μm,厚度具体可以是25μm、28μm、31μm、34μm、37μm、40μm,热固性树脂的厚度为10~20μm,厚度具体可以是10μm、12μm、14μm、16μm、18μm、20μm。在一实施方式中,压合前,PTFE覆盖膜的厚度为30~35μm,厚度可以是30μm、31μm、32μm、33μm、34μm、35μm,热固性树脂的厚度为12~18μm,厚度可以是12μm、13μm、14μm、15μm、16μm、17μm、18μm。
可以理解的是,在第一次钻孔前,可先对芯板100和PTFE高频覆盖膜200按预设尺寸进行切割,加工出符合预设形状和尺寸的芯板100和PTFE高频覆盖膜200。
在步骤S200中,PTFE高频覆盖膜200上钻出的排气孔202、对位孔203分别与芯板100上的排气孔、对位孔一一对应。PTFE高频覆盖膜200上钻出的排气孔202的孔径可设置为大于芯板100上的排气孔的孔径,如大4-6mil,两者孔径之差具体可以设置为4 mil、4.4 mil、4.8 mil、5.2 mil、5.6 mil、6 mil;芯板100上的对位孔设置在周边区域,如沿长度方向的两端的区域,PTFE高频覆盖膜200上钻出的对位孔203的孔径可设置为大于芯板100上的对位孔的孔径,如大3-6mil,两者孔径之差具体可以设置为3 mil、3.5 mil、4 mil、4.5 mil、5 mil、5.5 mil、6 mil。
在步骤S300中:在芯板100的金属化孔101的孔壁的表面吸附形成一层石墨炭黑导电层,以为后面的电镀制程做准备。
在步骤S400和步骤S600之间还包括步骤S500:对PTFE高频覆盖膜200进行烘烤,冷却固化,如此,可避免撕除离型膜后因应力过大而导致PTFE覆盖膜210内缩。
在步骤S700之前,即在压合叠板前,在钢板400和PTFE高频覆盖膜200之间增加一层缓冲层300,缓冲层300的表面硬度为70±5HA,通过增设缓冲层300可使压合后芯板100上的线路与芯板100的各连接处紧密贴合。在压合时,从上至下依次叠放钢板400、缓冲层300、PTFE高频覆盖膜200、芯板100、缓冲层300、钢板400。
在步骤S700中,在压合时,其压力F可设置为450psi,温度为180℃,压合时间为3~6min,如此,通过增加压合压力来提供树脂的流动性,从而解决芯板100与PTFE高频覆盖膜200压合后出现树脂空洞的现象。
在步骤S700中,缓冲层300为硅胶缓冲层,硅胶缓冲层的厚度设置为2mm。
在步骤S900中,PTFE高频覆盖膜200的窗口201的孔径可设置为比金属化孔101的孔径大6~12mil,两者孔径之差具体可以设置为6 mil、7 mil、9 mil、10 mil、11 mil。在一实施方式中,PTFE高频覆盖膜200的窗口201的孔径可设置为比金属化孔101的孔径大8~10mil,两者孔径之差具体可以设置为8 mil、8.5 mil、9 mil、9.5 mil、10 mil。
以下以PTFE高频覆盖膜200采用包含有PTFE覆盖膜210为例,结合图2、图3所示,对高频电路板的制作方法具体说明,其制作方法具体包括以下步骤:
步骤1:选用摩擦阻力小且拥有优良电性能的PTFE高频覆盖膜200,该PTFE高频覆盖膜200由PTFE覆盖膜210和单面热固性树脂220组成,PTFE覆盖膜10的厚度为25-40μm、单面热固性树脂220的厚度为10-20μm。PTFE覆盖膜210的具体厚度可以是25μm、28μm、31μm、34μm、37μm、40μm,单面热固性树脂220的厚度具体可以是10μm、12μm、14μm、16μm、18μm、20μm。
步骤2:对PTFE覆盖膜210及PCB板进行工程设计,包括拼板设计、线路补偿、gerber输出等。在工程设计时,去掉PTFE高频覆盖膜200上原有的外形开窗图形及非金属化孔开窗,只留少量排气孔202和金属化孔101及PTFE高频覆盖膜200四角的对位孔203,例如开设两排间隔的排气孔202。
步骤3:开料,对PCB板及PTFE覆盖膜210按照拼板预设尺寸进行切割。
步骤4:第一次钻孔,在芯板100上只钻出高频PCB板上的金属化孔101。非金属化孔在第二次钻孔时钻出,避免两者一次钻出,在后续PTFE高频覆盖膜200贴合时需要开窗处理,而PTFE高频覆盖膜200开窗过多在贴合时容易产生内应力,因此两者前后分别钻出。
步骤5:黑化,通过物理吸附作用,在已钻好孔的芯板100上的孔壁表面吸附一层均匀的石墨碳黑导电层,为后续电镀制程做准备。
步骤6:电镀,在芯板100黑孔后,将金属化孔101孔壁电镀至铜厚20μm以上,铜厚具体可以是21μm、22μm、23μm、25μm,面铜35μm以上,面铜厚度具体可以是36μm、37μm、38μm、40μm。
步骤7:对PCB板进行外层图形制作和外层蚀刻,做出PCB芯板100的外层线路图形。
步骤8:棕化,将做出外层线路图形的PCB芯板100进行棕化处理,为PTFE覆盖膜210贴合做准备。棕化处理是对PCB芯板100的表面进行粗糙化处理以使芯板100表面形成粗糙表面。
步骤9:激光铣PTFE高频覆盖膜200,通过只铣金属化孔窗(即窗口201)、排气孔202和对位孔203的方式,将PTFE高频覆盖膜200铣出,得到预贴合的PTFE高频覆盖膜200。只铣金属化孔窗、排气孔202和对位孔203,其它外形位置不铣的方式,减少PTFE高频覆盖膜200贴合可能会出现的应力内缩。因此只钻金属化孔101、排气孔202和对位孔203,所以不需要对非金属化孔位置的覆盖膜开窗。
其中的排气孔202设置在PTFE覆盖膜210的废料区,作用是PTFE高频覆盖膜200贴合时的排气,排气孔窗是比芯板100上的排气孔孔径大的开窗,开窗比排气孔大3-6mil。
对位孔203用于后续PTFE高频覆盖膜200贴合时的对位操作,对位孔只分布在板面的四周,对位孔窗是比芯板100上的对位孔大的开窗,开窗比对位孔大4-6mil。
其中金属化孔窗,是比金属化孔101大的开窗,开窗比金属化孔101大6-12mil。
步骤10:对PCB板和PTFE覆盖膜210进行贴合,在贴膜前,先将PTFE覆盖膜210放入烤箱中,160℃高温烘烤10-15 min后取出冷却,使PTFE覆盖膜210上的树脂得到进一步的固化,以达到降低树脂粘度的目的,从而降低撕离型纸时产品的内应力,避免撕除离型纸后应力过大而导致覆盖膜内缩,影响PTFE覆盖膜210与PCB芯板100的对位。
步骤11:对PCB板及PTFE覆盖膜210通过压合方式,将两者牢固黏合在一起。
其中的压合是在PCB板正反两面线路位置都用PTFE高频覆盖膜200进行覆盖,实现对外层线路的保护。压合时压力设置为450psi,温度设置为180℃,压合时间为3-6min,压合叠层结构依次按照钢板400、2.0mm厚度的硅胶缓冲材料、PTFE覆盖膜210、PCB板、PTFE覆盖膜210、2.0mm厚度的硅胶缓冲材料、钢板400。该压合方法可以解决覆盖膜压合树脂空洞的问题。其中,缓冲材料采用带有硅胶层的缓冲垫,表面硬度为70±5HA。
步骤12:第二次钻孔,在PTFE高频覆盖膜200压合后,将PCB板进行第二次钻孔,钻出剩余的非金属化孔。
步骤13:外形及铣槽,按照PCB板的外形资料设计,将PCB板中多余的废料区域铣去除,最终实现PCB板的成品制作。
步骤14:电测、成品检查及出货,即按照正常流程进行电性能测试,并进行外观检查,直至产品合格出货。
以上仅为本申请的可选实施例而已,并不用于限制本申请。对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (15)

  1. 高频电路板的制作方法,其特征在于:包括以下步骤:
    提供芯板和PTFE高频覆盖膜;
    进行第一次钻孔,包括在所述芯板上钻出金属化孔,以及在所述芯板和所述PTFE高频覆盖膜对应位置钻出排气孔和对位孔;
    对芯板进行黑孔、电镀、外层图形制作和外层蚀刻,以形成外层线路图形;
    在芯板的两面贴覆PTFE高频覆盖膜;
    对两面贴覆有PTFE高频覆盖膜的芯板进行压合,制得基板;
    对基板进行第二次钻孔,钻出剩余的非金属孔以及钻出所述基板两面的PTFE高频覆盖膜对应所述金属化孔的位置的窗口;
    对第二次钻孔后的基板进行外形加工,制得高频电路板。
  2. 根据权利要求1所述的高频电路板的制作方法,其特征在于:所述PTFE高频覆盖膜包括PTFE覆盖膜和复合于所述PTFE覆盖膜一侧面的热固性树脂。
  3. 根据权利要求2所述的高频电路板的制作方法,其特征在于:压合前,所述PTFE覆盖膜的厚度为25~40μm,所述热固性树脂的厚度为10~20μm。
  4. 根据权利要求3所述的高频电路板的制作方法,其特征在于:压合前,所述PTFE覆盖膜的厚度为30~35μm,所述热固性树脂的厚度为12~18μm。
  5. 根据权利要求2所述的高频电路板的制作方法,其特征在于:所述PTFE高频覆盖膜还包括贴覆在所述PTFE覆盖膜远离所述热固性树脂一侧的离型膜;在贴膜前,对所述PTFE高频覆盖膜进行烘烤,冷却固化,以避免撕除离型膜后因应力过大而导致PTFE覆盖膜内缩。
  6. 根据权利要求5所述的高频电路板的制作方法,其特征在于:在贴膜前,对所述PTFE高频覆盖膜进行烘烤、冷却固化的步骤包括:将所述PTFE高频覆盖膜放入烤箱160℃高温烘烤10-15 min后取出冷却。
  7. 根据权利要求1所述的高频电路板的制作方法,其特征在于:在电镀前对所述芯板进行黑化的步骤包括:在所述芯板上金属化孔的孔壁的表面吸附形成一层石墨炭黑导电层。
  8. 根据权利要求1所述的高频电路板的制作方法,其特征在于:对两面贴覆有PTFE高频覆盖膜的芯板进行压合的步骤包括:在两面贴覆有PTFE高频覆盖膜的芯板的两面分别叠放缓冲层,在两侧的缓冲层外叠放钢板,然后进行压合,获得基板,其中,所述缓冲层为硅胶缓冲层,表面硬度为70±5HA。
  9. 根据权利要求8所述的高频电路板的制作方法,其特征在于:对两面贴覆有PTFE高频覆盖膜的芯板进行压合时,压力设置为450psi,温度设置为180℃,压合时间为3-6min。
  10. 根据权利要求8所述的高频电路板的制作方法,其特征在于:所述硅胶缓冲层的厚度为2mm。
  11. 根据权利要求1所述的高频电路板的制作方法,其特征在于:所述第一次钻孔时,在所述PTFE高频覆盖膜的废料区钻出所述排气孔。
  12. 根据权利要求1所述的高频电路板的制作方法,其特征在于:所述PTFE高频覆盖膜的窗口比所述金属化孔的孔径大6~12mil。
  13. 根据权利要求12所述的高频电路板的制作方法,其特征在于:所述PTFE高频覆盖膜的窗口比所述金属化孔的孔径大8~10mil。
  14. 根据权利要求1所述的高频电路板的制作方法,其特征在于:对所述芯板进行电镀时,对所述金属化孔孔壁电镀至铜厚20μm以上,板面面铜厚度电镀至35μm以上。
  15. 一种高频电路板,其特征在于:利用权利要求1所述的高频电路板的制作方法制得。
PCT/CN2019/126512 2018-12-28 2019-12-19 高频电路板及其制作方法 WO2020135204A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811625569.1A CN109561594B (zh) 2018-12-28 2018-12-28 高频电路板及其制作方法
CN201811625569.1 2018-12-28

Publications (1)

Publication Number Publication Date
WO2020135204A1 true WO2020135204A1 (zh) 2020-07-02

Family

ID=65871796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/126512 WO2020135204A1 (zh) 2018-12-28 2019-12-19 高频电路板及其制作方法

Country Status (2)

Country Link
CN (1) CN109561594B (zh)
WO (1) WO2020135204A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109561594B (zh) * 2018-12-28 2020-01-17 深圳市景旺电子股份有限公司 高频电路板及其制作方法
CN114007331A (zh) * 2021-10-15 2022-02-01 珠海杰赛科技有限公司 一种线圈板的加工方法及线圈板
CN114554698A (zh) * 2022-03-31 2022-05-27 深圳市大族数控科技股份有限公司 Pcb板加工方法、pcb板以及pcb板钻孔方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102781173A (zh) * 2012-07-24 2012-11-14 景旺电子(深圳)有限公司 一种ptfe材质pcb板的加工成型方法
CN103096645A (zh) * 2011-10-27 2013-05-08 深南电路有限公司 多层电路板压合定位方法
CN204994073U (zh) * 2015-09-30 2016-01-20 深圳市昶东鑫线路板有限公司 一种ptfe高频混压pcb线路板
CN105491809A (zh) * 2015-12-22 2016-04-13 广东生益科技股份有限公司 Pcb生产工艺及pcb
CN105530768A (zh) * 2014-09-28 2016-04-27 深南电路有限公司 一种电路板的制作方法及电路板
CN109561594A (zh) * 2018-12-28 2019-04-02 深圳市景旺电子股份有限公司 高频电路板及其制作方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60214941A (ja) * 1984-04-10 1985-10-28 株式会社 潤工社 プリント基板
CN102065651A (zh) * 2011-01-12 2011-05-18 广州兴森快捷电路科技有限公司 高频材料的高密度积层印制电路板的生产方法
CN203243600U (zh) * 2013-05-24 2013-10-16 浙江万正电子科技有限公司 孔金属化聚四氟乙烯多层线路板
CN106132081B (zh) * 2016-06-30 2019-10-15 广州兴森快捷电路科技有限公司 一种高频高速pcb及其制作方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103096645A (zh) * 2011-10-27 2013-05-08 深南电路有限公司 多层电路板压合定位方法
CN102781173A (zh) * 2012-07-24 2012-11-14 景旺电子(深圳)有限公司 一种ptfe材质pcb板的加工成型方法
CN105530768A (zh) * 2014-09-28 2016-04-27 深南电路有限公司 一种电路板的制作方法及电路板
CN204994073U (zh) * 2015-09-30 2016-01-20 深圳市昶东鑫线路板有限公司 一种ptfe高频混压pcb线路板
CN105491809A (zh) * 2015-12-22 2016-04-13 广东生益科技股份有限公司 Pcb生产工艺及pcb
CN109561594A (zh) * 2018-12-28 2019-04-02 深圳市景旺电子股份有限公司 高频电路板及其制作方法

Also Published As

Publication number Publication date
CN109561594A (zh) 2019-04-02
CN109561594B (zh) 2020-01-17

Similar Documents

Publication Publication Date Title
WO2020135204A1 (zh) 高频电路板及其制作方法
WO2015085934A1 (zh) 飞尾结构的刚挠结合线路板及其制作方法
CN102946687B (zh) 一种局部贴合避孔刚挠结合板及制作方法
WO2013097549A1 (zh) 一种高频-低频混合板材结构印制电路板制作工艺
WO2021052061A1 (zh) 一种导热pcb的制作方法及pcb
CN104244597A (zh) 一种对称结构的无芯基板的制备方法
US20140123487A1 (en) Printed circuit board manufacturing method
CN112384009A (zh) 一种内埋空腔的制作方法及pcb
JP4829028B2 (ja) 回路基板及び回路基板の製造方法
TWI695656B (zh) 一種多層軟性印刷線路板及其製法
WO2022152183A1 (zh) 印刷电路板及其制作方法,以及一种电子通讯设备
CN112105150B (zh) 一种内埋空腔的制作方法及pcb
KR20190124616A (ko) 인쇄회로기판 제조방법
CN114286516A (zh) 一种分尾阶梯电厚金手指软硬结合板制作方法
JP2019518330A (ja) 回路基板の製造方法
CN112689383A (zh) 一种高频低损耗多层fpc及其生产工艺
JP2013131727A (ja) 配線板及びその製造方法
JPH0897564A (ja) 多層配線板及びその製造方法
CN219938592U (zh) 一种高多层机械盲埋孔电路板
CN113840480B (zh) 一种非对称性刚挠结合板的制作方法
CN113597112B (zh) 一种基于大尺寸电容式触摸屏用fpc设计方法
CN114390780B (zh) 一种高散热多层高频铜基微波信号板及其制备工艺
CN216134640U (zh) 一种高密度互联高层印制板产品结构
CN219107758U (zh) 一种低厚度铝基覆铜箔层压板
CN213880404U (zh) 一种高频低损耗多层fpc

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19906275

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16.11.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19906275

Country of ref document: EP

Kind code of ref document: A1