WO2015080285A1 - 電池モジュールおよび組電池 - Google Patents

電池モジュールおよび組電池 Download PDF

Info

Publication number
WO2015080285A1
WO2015080285A1 PCT/JP2014/081732 JP2014081732W WO2015080285A1 WO 2015080285 A1 WO2015080285 A1 WO 2015080285A1 JP 2014081732 W JP2014081732 W JP 2014081732W WO 2015080285 A1 WO2015080285 A1 WO 2015080285A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
capacity
voltage
discharge
negative electrode
Prior art date
Application number
PCT/JP2014/081732
Other languages
English (en)
French (fr)
Inventor
明秀 田中
八木 陽心
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to CN201480062576.9A priority Critical patent/CN105723559B/zh
Priority to JP2015551034A priority patent/JP6192738B2/ja
Priority to US15/032,883 priority patent/US10063072B2/en
Priority to EP14865072.4A priority patent/EP3076478B1/en
Publication of WO2015080285A1 publication Critical patent/WO2015080285A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/21Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/46Accumulators structurally combined with charging apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • H02J7/1415Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle with a generator driven by a prime mover other than the motor of a vehicle
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • H02J7/1469Regulation of the charging current or voltage otherwise than by variation of field
    • H02J7/1492Regulation of the charging current or voltage otherwise than by variation of field by means of controlling devices between the generator output and the battery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00302Overcharge protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00306Overdischarge protection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a battery module and an assembled battery, and more particularly to a battery module and an assembled battery provided with a lithium ion secondary battery.
  • Lithium ion secondary batteries have a high energy density, and are used, for example, for use in vehicles such as railroads and automobiles, or for storing electric power generated by solar power generation or wind power generation and supplying it to an electric power system. It is attracting attention as.
  • Examples of vehicles equipped with lithium ion secondary batteries include zero-emission electric vehicles that are not equipped with an engine, hybrid electric vehicles that are equipped with both an engine and a secondary battery, and There are plug-in hybrid electric vehicles that are directly charged from the system power supply.
  • the lithium ion secondary battery is expected to be used as a stationary power storage system that supplies power in an emergency when the power system is cut off.
  • High capacity and long life batteries are required for such various applications. For example, even when the environmental temperature becomes high or the charge / discharge cycle is repeated, the capacity of the rechargeable battery, that is, the battery capacity decrease rate is low, and the battery capacity maintenance rate is required to be high over a long period of time. Further, due to radiant heat from the road surface or heat conduction from the inside of the vehicle, for example, storage characteristics and cycle life in a high temperature environment of 60 ° C. or higher are important required performances.
  • Patent Document 1 in the negative electrode mixture layer, when the total amount of SiOx and graphite is 100% by mass, the ratio of SiOx is 2 to 30% by mass.
  • a non-aqueous secondary battery characterized in that the initial charge / discharge efficiency is higher than the initial charge / discharge efficiency of the positive electrode is disclosed.
  • Patent Document 2 discloses a lithium secondary battery that detects at least twice the voltage at the time of open circuit after discharging of a lithium ion secondary battery when charging and discharging are performed for different numbers of cycles as the charging / discharging cycle progresses. A life estimation method and a degradation control method are disclosed. In Patent Document 2, at least two of the detected voltage values are plotted against the number of cycles, and an arc passing through each plotted point is drawn. Based on the size of the arc, the life of the lithium secondary battery is determined. presume. In patent document 2, it is supposed that progress of deterioration can be suppressed by controlling charge and discharge of a lithium secondary battery based on this estimated lifetime.
  • Patent Document 3 discloses a method of discharging a nonaqueous electrolyte secondary battery using a silicon oxide containing lithium as a negative electrode active material, and the negative electrode voltage with respect to a lithium reference electrode does not exceed 0.6V.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a battery module and an assembled battery that can improve the cycle characteristics of a lithium ion secondary battery.
  • a battery module of the present invention includes a lithium ion secondary battery having a negative electrode mixture layer containing a silicon-based active material and graphite on the surface of a negative electrode, and charging and discharging of the lithium ion secondary battery.
  • a battery module including a control circuit for controlling, the control circuit based on the voltage, current, and time, a measurement unit that measures the voltage, current, and time of charge and discharge of the lithium ion secondary battery.
  • Calculating a capacity Q of the lithium ion secondary battery calculating a differential value dQ / dV obtained by differentiating the capacity Q with the voltage V, and the differential value dQ / generated based on the stage structure of the graphite a threshold voltage setting unit that specifies a peak on the low capacity side of dV and sets a voltage at the peak as a threshold voltage; and a discharge end voltage of the lithium ion secondary battery based on the threshold voltage And having a final voltage setting unit for the constant, and a discharge control unit for controlling the charging and discharging of the lithium ion secondary battery based on the final discharge voltage.
  • the peak on the low capacity side generated in the differential value dQ / dV is specified, the voltage at the peak is set as the threshold voltage, and the lithium ion secondary is based on the threshold voltage.
  • the circuit diagram which shows schematic structure of the battery module which concerns on Embodiment 1 of this invention. It is a graph based on the calculation result of the calculating part of the battery module shown in FIG. 1, (a) is a graph with the horizontal axis indicating the capacity Q, and the vertical axis indicating the differential value dQ / dV, (b) is the horizontal axis indicating the capacity Q, A graph in which the vertical axis represents voltage V. Sectional drawing which showed typically the internal structure of the battery with which the battery module shown in FIG. 1 is provided.
  • FIG. 3 is a graph corresponding to FIG. 2 showing the deterioration of the battery shown in FIG.
  • FIG. 8 The figure which shows an example of the power supply device to which the battery module shown in FIG. 1 is applied.
  • the figure which shows schematic structure of the motor vehicle which applied the battery module shown in FIG. The figure which shows the change of the charge condition of the battery module with which the motor vehicle shown in FIG. 8 is provided.
  • FIG. 1 is a circuit diagram showing a schematic configuration of a battery module 100 according to the present embodiment.
  • the battery module 100 includes a battery 200 that is a lithium ion secondary battery, and a control circuit 300 that controls charging / discharging of the battery 200.
  • the positive terminal and the negative terminal of the battery 200 are connected to the charging power source 400 and the external load 500 via the control circuit 300 and the switches S1 and S2, respectively.
  • the control circuit 300 includes a measurement unit 310, a calculation unit 320, a threshold voltage setting unit 330, an end voltage setting unit 340, a storage unit 350, and a charge / discharge control unit 360.
  • Each of these units includes a single or a plurality of computer units, and is configured to be able to exchange data via an input / output unit 370 configured by, for example, a communication bus.
  • the computer unit that constitutes each part of the control circuit 300 is, for example, a controller, a computer system, or a microcomputer that includes a storage device or a CPU. Any means other than a computer unit may be used as long as it is a means capable of inputting information to perform an operation and outputting the operation result.
  • Each part of the control circuit 300 may be realized by an independent substrate, or may be realized on the same device as a microcomputer. Further, the functions of the respective units of the control circuit 300 may be realized by the same computer unit.
  • the measuring unit 310 includes a voltage measuring element 311 and a current measuring element 312 connected to the positive external terminal and the negative external terminal of the battery 200.
  • Measurement unit 310 measures the voltage and current for discharging / charging battery 200 based on signals input from voltage measurement element 311 and current measurement element 312 via input / output unit 370.
  • the measurement unit 310 measures the charging time, discharging time, rest time (standby time), non-use time, and the like of the battery 200.
  • the voltage, current, and various types of time information of the battery 200 measured by the measurement unit 310 are input to and stored in the storage unit 350 via the input / output unit 370, for example.
  • the calculation unit 320 performs calculation processing such as integration by referring to the voltage, current, and various time information of the battery 200 held in the storage unit 350 via the input / output unit 370, for example.
  • the calculation result is held in the storage unit 350.
  • the calculation unit 320 determines charge / discharge control parameters of the battery 200 such as, for example, discharge or charge time, discharge or charge voltage, discharge or charge current of the battery 200, and the input / output unit 370, for example. These charge / discharge control parameters are held in the storage unit 350 via
  • the calculation unit 320 refers to the charging / discharging voltage V, current I, time t, and the like of the battery 200 held in the storage unit 350 via the input / output unit 370, for example, and the voltage V, current I, time t
  • the capacity Q of the battery 200 is calculated based on the above. Specifically, the calculation unit 320 calculates the charge capacity as the capacity Q by the product of the current I and the time t. In the present embodiment, a charge capacity is used as the capacity Q, but a discharge capacity can also be used.
  • the calculation unit 320 further calculates a differential value dQ / dV obtained by differentiating the calculated capacity Q with the voltage V.
  • the capacity Q and the differential value dQ / dV calculated by the calculation unit 320 are input and held in the storage unit 350 via the input / output unit 370, for example.
  • FIG. 2 shows a graph based on the calculation result of the calculation unit 320, where (a) is a graph in which the horizontal axis is the charge capacity Q, and the vertical axis is the differential value dQ / dV, and (b) is the charge capacity in the horizontal axis.
  • Q is a graph with the vertical axis representing voltage V.
  • the threshold voltage setting unit 330 refers to the capacitance Q and the differential value dQ / dV held in the storage unit 350 via, for example, the input / output unit 370, for example, based on the graph shown in FIG.
  • An inflection point on the low-capacity side, that is, a peak P1 is specified on the discharge side at the value dQ / dV.
  • This low-capacity peak P1 is based on the stage structure of graphite contained in the negative electrode mixture layer provided in the negative electrode of the battery 200.
  • the graphite moves from the 3rd stage to the 2nd stage in the vicinity of the peak P1, that is, in the vicinity of the high capacity side boundary B1 indicated by a two-dot chain line in the hatched low capacity region R1 in the graph. .
  • the capacitance Q with respect to a relatively small change in the voltage V in the vicinity of the boundary B1 of the hatched low-capacity discharge side region R1. It changes relatively.
  • a low-capacitance peak P1 is generated in the differential value dQ / dV at the boundary B1 of the hatched low-capacity region R1.
  • the threshold voltage setting unit 330 specifies the peak P1, and sets the voltage V1 at the peak P1 as a threshold voltage.
  • the threshold voltage V1 set by the threshold voltage setting unit 330 is input to and stored in the storage unit 350 via the input / output unit 370, for example.
  • the differential value dQ / dV is a high capacity based on the transition from the 2nd stage to the 1st stage of graphite on the high capacity side, which is the charging side, from the peak P1 on the low capacity side.
  • a side peak P2 occurs.
  • the peak of the peak P2 on the high capacity side is different from the peak of the peak P1 on the low capacity side, and a relatively flat portion is seen. That is, the differential value dQ / dV has a relatively sharp peak P1 on the low capacity side and a relatively gentle peak P2 on the high capacity side.
  • the end voltage setting unit 340 sets the discharge end voltage of the battery 200 to a predetermined voltage in the initial state.
  • the end voltage setting unit 340 refers to, for example, the threshold voltage V1 held in the storage unit 350 via the input / output unit 370 when controlling the battery 200 based on a differential value dQ / dV described later, and sets the threshold voltage V1 to the threshold voltage V1. Based on this, the discharge end voltage of the battery 200 is set.
  • the end voltage setting unit 340 sets the discharge end voltage of the battery 200 to the threshold voltage V1.
  • the discharge end voltage V1 set by the end voltage setting unit 340 is input and held in the storage unit 350 via the input / output unit 370, for example.
  • the charge / discharge control unit 360 is disposed between the battery 200, the external load 500, and the charging power source 400. For example, the charge / discharge control unit 360 closes the switch S1 of the external load 500 via the input / output unit 370, electrically connects the battery 200 and the external load 500, discharges the battery 200, and supplies power to the external load 500. I do.
  • the charge / discharge control unit 360 stops the supply of electric power to the external load 500 by opening the switch S1 of the external load 500 through the input / output unit 370, for example.
  • the charge / discharge control unit 360 refers to, for example, the discharge end voltage V1 held in the storage unit 350 via the input / output unit 370 when the battery 200 is controlled based on a differential value dQ / dV, which will be described later, and the discharge end voltage V1.
  • the charging / discharging of the battery 200 is controlled based on the above.
  • the charge / discharge control unit 360 refers to the measurement result of the measurement unit 310 via the input / output unit 370, for example, and when the voltage of the battery 200 decreases to the discharge end voltage V1, the charge / discharge control unit 360 Stop supplying power.
  • the charge / discharge control unit 360 closes the switch S2 of the charging power source 400 via, for example, the input / output unit 370, for example, when the voltage of the battery 200 decreases to the discharge end voltage V1, and the battery 200 and the charging power source 400 are connected. Are electrically connected to charge the battery 200.
  • the charge / discharge control unit 360 refers to the measurement result of the measurement unit, for example, via the input / output unit 370 when charging the battery 200, and, for example, when the voltage of the battery 200 reaches a predetermined end-of-charge voltage, for example, the input / output unit 370. Then, the switch S2 of the charging power source 400 is opened to complete the charging of the battery 200.
  • the charge / discharge control unit 360 refers to the charge / discharge control parameters held in the storage unit 350 via the input / output unit 370 so that the voltage and current of the battery 200 during charge / discharge are in a desired state. In addition, the charging / discharging of the battery 200 is controlled.
  • the storage unit 350 is configured to be able to hold data passed between the measurement unit 310, the calculation unit 320, the threshold voltage setting unit 330, the end voltage setting unit 340, and the charge / discharge control unit 360 via the input / output unit 370, for example.
  • the specific configuration of the storage unit 350 is not particularly limited, and for example, a magnetic recording medium such as a floppy disk (FD) (registered trademark) or a hard disk drive (HDD) can be used. Further, a semiconductor medium such as a random access memory (RAM) or a flash memory (USB memory or the like) may be used as the storage unit 350.
  • FD floppy disk
  • HDD hard disk drive
  • a semiconductor medium such as a random access memory (RAM) or a flash memory (USB memory or the like
  • optical recording media such as compact discs (CD-R, CD-RW, etc.), digital versatile discs (DVD-R, DVD + R, DVD + RW, DVD-RW, DVD-RAM, etc.), HD-DVD, Blu-ray disc, etc. are stored.
  • the unit 350 may be used.
  • the storage unit 350 is not provided in the control circuit 300, and the measurement unit 310, the calculation unit 320, the threshold voltage setting unit 330, the end voltage setting unit 340, and the charge / discharge control unit 360 are mutually connected without using the storage unit 350. You may make it deliver data directly.
  • temperature measuring means such as a thermocouple or a thermistor may be provided in order to measure the temperature of the battery 200.
  • the temperature measured by the temperature measuring unit is held in the storage unit 350 via, for example, the input / output unit 370, and the temperature of the battery 200 held in the storage unit 350 by the calculation unit 310 is referred to in various calculations. It is preferable to perform correction. Thereby, charging / discharging of the battery 200 can be optimally controlled according to temperature, and more accurate charging / discharging control is attained.
  • FIG. 3 is a cross-sectional view schematically showing the internal structure of the battery 200.
  • the battery 200 is a lithium ion secondary battery, and includes a positive electrode 201, a separator 202, a negative electrode 203, a battery container or battery can 204, a positive electrode current collection tab 205, a negative electrode current collection tab 206, an inner lid 207, an internal pressure release valve 208, and a gasket 209. , A positive temperature coefficient (PTC) resistance element 210, a battery lid 211, and an axis 212.
  • the battery lid 211 is an integrated part including an inner lid 207, an internal pressure release valve 208, a gasket 209, and a PTC resistance element 210.
  • a positive electrode 201, a separator 202, and a negative electrode 203 are wound around the axis 212.
  • the positive electrode 201 is composed of a positive electrode active material, a conductive agent, a binder, and a current collector, and includes a positive electrode mixture layer composed of the positive electrode active material, the conductive agent, and the binder on the surface of the current collector.
  • Illustrative examples of the positive electrode active material include LiCoO 2 , LiNiO 2 , and LiMn 2 O 4 .
  • the positive electrode active material preferably contains a lithium composite oxide represented by the following formula (1) from the viewpoint of facilitating measurement of the potential, and in particular, LiNi 1/3 Mn 1/3 Co 1/3 O 2 is preferably included.
  • overlapping characters are described in each of the examples such as “M” and “x”, but these letters are assumed to be independent in each of the examples. The same applies to the following description unless otherwise specified.
  • the particle diameter of the positive electrode active material is usually defined to be equal to or less than the thickness of the mixture layer formed from the positive electrode active material, the conductive agent, and the binder.
  • the coarse particles can be removed in advance by sieving classification or wind classification to produce particles having a thickness of the mixture layer thickness or less.
  • a conductive agent made of carbon powder for supplementing electrical conductivity is used. Since both the positive electrode active material and the conductive agent are usually powders, a binder can be mixed with the powders, and the powders can be bonded together and simultaneously bonded to the current collector.
  • an aluminum foil having a thickness of 10 to 100 ⁇ m, an aluminum perforated foil having a thickness of 10 to 100 ⁇ m and a pore diameter of 0.1 to 10 mm, an expanded metal, a foam metal plate, or the like is used.
  • materials such as stainless steel and titanium are also applicable.
  • any current collector can be used without being limited by the material, shape, manufacturing method, and the like.
  • a positive electrode slurry in which a positive electrode active material, a conductive agent, a binder, and an organic solvent are mixed is attached to a current collector by a doctor blade method, a dipping method, or a spray method, and then the organic solvent is dried and applied by a roll press. By pressure forming, the positive electrode 201 having the positive electrode mixture layer on the surface of the current collector can be produced. Moreover, it is also possible to laminate
  • the negative electrode 203 includes a negative electrode active material, a binder, and a current collector, and includes a negative electrode mixture layer including a negative electrode active material, a conductive agent, and a binder on the surface of the current collector.
  • a conductive agent may be further added to the negative electrode mixture layer.
  • the negative electrode active material is, as a silicon-based active material, a silicon metal and an alloy thereof, a material that forms an alloy with lithium of a lower oxide of silicon Li X SiO Y (0 ⁇ x, 0 ⁇ y ⁇ 2), or a metal Includes materials that form intermetallic compounds.
  • the negative electrode active material contains 2 wt% or more and 65 wt% or less of the silicon active material, 35 wt% or more of graphite and It is included at a ratio of 98 wt% or less.
  • the ratio of the silicon-based active material is less than 2 wt%, the benefit of increasing the capacity of the battery 200 due to the capacity of the silicon-based active material is small, and the deterioration of the battery 200 due to the silicon active material is also small. The effect of a significant decrease in capacity tends to become obvious.
  • the ratio of the silicon-based active material is more than 65 wt%, the peak P1 shown in FIG. 2A is unclear and the battery module 100 is likely to malfunction.
  • the ratio of the silicon-based active material contained in the negative electrode active material is preferably 30 wt% or less, and more preferably 10 wt% or less.
  • SiOx silicon oxide
  • the atomic ratio x of O to Si is 0.5 ⁇ x ⁇ 1.5.
  • SiOx has less cycle deterioration than a silicon-based alloy, and it is possible to make the best use of good cycle characteristics in the battery 200.
  • the SiOx preferably contains Si crystal and an amorphous phase.
  • the amorphous SiO 2 matrix includes a structure in which Si, for example, microcrystalline Si is dispersed. The amorphous SiO 2 and Si dispersed in the amorphous SiO 2 matrix are combined, It is sufficient that the atomic ratio x satisfies 0.5 ⁇ x ⁇ 1.5.
  • the graphite contained in the negative electrode active material preferably has a graphite interlayer distance (d 002 ) of 0.335 nm to 0.338 nm. Since the potential curve of graphite has a stage structure, when the negative electrode mixture layer included in the negative electrode 203 contains such graphite, the cycle characteristics of the lithium ion secondary battery can be greatly improved.
  • the graphite used for the negative electrode active material is natural graphite, artificial graphite, mesophase carbon, expanded graphite, carbon fiber, vapor grown carbon fiber, pitch-based carbonaceous material, needle that can occlude and release lithium ions chemically Manufactured from coke, petroleum coke, polyacrylonitrile-based carbon fiber and the like.
  • the graphite interlayer distance (d 002 ) can be measured using XRD (X-Ray Diffraction Method) or the like.
  • the silicon-based active material and the carbon particles of the graphite raw material are preferably coated particles having a so-called core-shell structure in which a conductive coating layer is provided on the particle surface.
  • the coating layer include amorphous carbon coating.
  • the raw material of the amorphous carbon coating layer is not particularly limited.
  • the amorphous carbonaceous material is a polycyclic aromatic hydrocarbon such as phenol resin (for example, novolac type phenol resin), naphthalene, anthracene, creosote oil, etc. Can be used.
  • an amorphous carbon material is diluted in an organic solvent, carbon particles are dispersed therein, and the amorphous carbon material is attached to the surface of the carbon particles.
  • the carbon particle material to which the amorphous carbon material is adhered is filtered and dried to remove the organic solvent, and further heat-treated to form a coating layer of the amorphous carbon material on the carbon particle surface.
  • Coated carbon particles are used.
  • the heat treatment temperature is preferably in the range of 200 ° C. or more and 1000 ° C. or less, for example, and more preferably in the range of 500 ° C. or more and 800 ° C. or less.
  • the heat treatment time is preferably in the range of, for example, 1 hour or more and 50 hours or less.
  • the negative electrode active material may appropriately include a third active material.
  • a third active material alloys with metals such as non-graphitic carbon, aluminum, tin and alloys thereof, lithium-containing transition metal nitrides Li (3-X) M X N, and lower oxides of tin Li X SnO Y
  • the material to be formed or the material to form the intermetallic compound can be selected.
  • the third negative electrode active material is not particularly limited and can be used other than the above materials, but it is preferable that the characteristic potential does not change near the peak P1 shown in FIG. When another peak exists in the vicinity of the peak P1, malfunction may easily occur in the battery module 100.
  • Non-graphite carbon is a carbon material excluding the above-mentioned graphite, and can absorb or release lithium ions. This includes a carbon material whose interval between graphite layers is 0.34 nm or more and changes to graphite by high-temperature heat treatment at 2000 ° C. or more, a 5-membered or 6-membered cyclic hydrocarbon, a cyclic oxygen-containing material Amorphous carbon materials synthesized by pyrolysis of organic compounds are included.
  • the negative electrode active material is a powder
  • the negative electrode active material is mixed with a binder to bond the powders together, and at the same time, the negative electrode active material is applied and adhered to a current collector.
  • the particle size of the negative electrode active material be equal to or less than the thickness of the negative electrode mixture layer made of the negative electrode active material and the binder. If the negative electrode active material powder contains coarse particles having a particle size equal to or larger than the thickness of the negative electrode mixture layer, the coarse particles are removed in advance by sieving or airflow classification, and the particles are equal to or smaller than the thickness of the negative electrode mixture layer. Is preferably used.
  • the negative electrode mixture layer is preferably in close contact with the surface of the negative electrode current collector.
  • the thickness of the negative electrode mixture layer is not particularly limited, but is preferably in the range of 1 to 200 ⁇ m.
  • the material of the binder is not particularly limited, and for example, styrene-butadiene rubber (SBR), carboxymethyl cellulose, polyvinylidene fluoride (PVDF), and a mixed material or composite material thereof can be used.
  • SBR styrene-butadiene rubber
  • PVDF polyvinylidene fluoride
  • a mixture of styrene-butadiene rubber and carboxymethylcellulose is preferred.
  • a copper foil having a thickness of 10 to 100 ⁇ m, a copper perforated foil having a thickness of 10 to 100 ⁇ m and a pore diameter of 0.1 to 10 mm, an expanded metal, or a foam metal plate can be used.
  • materials such as stainless steel, titanium, or nickel are also applicable.
  • any current collector can be used without being limited by the material, shape, manufacturing method, and the like.
  • the negative electrode slurry in which the negative electrode active material, the binder, and the organic solvent are mixed is attached to the current collector by a doctor blade method, a dipping method, or a spray method, and then the organic solvent is dried and pressed by a roll press.
  • the negative electrode 203 having a negative electrode mixture layer on the surface of the current collector can be produced.
  • the multilayer mixture layer can be formed on the surface of the current collector of the negative electrode 203 by performing the process from application to drying a plurality of times.
  • the separator 202 is disposed between the positive electrode 201 and the negative electrode 203 produced by the above method, and a short circuit between the positive electrode 201 and the negative electrode 203 is prevented.
  • Separator 202 can use a polyolefin polymer sheet made of polyethylene, polypropylene, or the like, or a two-layer structure in which a polyolefin polymer and a fluorine polymer sheet typified by tetrafluoropolyethylene are welded. It is.
  • a mixture of ceramics and a binder may be formed in a thin layer on the surface of the separator 202 so that the separator 202 does not shrink when the battery temperature rises.
  • the pore diameter is 0.01 ⁇ m or more and 10 ⁇ m or less, and the porosity is 20% or more and 90% or less, for example.
  • the pore diameter is 0.01 ⁇ m or more and 10 ⁇ m or less, and the porosity is 20% or more and 90% or less, for example.
  • it can be used for a lithium ion secondary battery.
  • Such a separator 202 is disposed between the positive electrode 201 and the negative electrode 203, and an electrode group wound around an axis 212 is produced.
  • the axis 212 any known one can be used as long as it can support the positive electrode 201, the separator 202, and the negative electrode 203.
  • the electrode group has various shapes such as a stack of strip electrodes, or a positive electrode 201 and a negative electrode 203 wound in an arbitrary shape such as a flat shape. Can do.
  • the shape of the battery container 204 may be selected from shapes such as a cylindrical shape, a flat oval shape, a flat oval shape, and a square shape according to the shape of the electrode group.
  • the material of the battery container 204 is selected from materials that are corrosion-resistant to the nonaqueous electrolyte, such as aluminum, stainless steel, and nickel-plated steel.
  • the battery container 204 is not affected by corrosion or alloying with lithium ions in the portion in contact with the nonaqueous electrolyte. As described above, the material of the battery container 204 is selected.
  • the electrode group is housed in the battery container 204, the negative electrode current collecting tab 206 is connected to the inner wall of the battery container 204, and the positive electrode current collecting tab 205 is connected to the bottom surface of the battery lid 211.
  • the electrolyte is injected into the battery container 204 before the battery 200 is sealed.
  • a known technique such as welding or caulking is used.
  • electrolyte solution As a typical example of the electrolyte solution that can be used in the present embodiment, a solvent in which dimethyl carbonate, diethyl carbonate, or ethyl methyl carbonate is mixed with ethylene carbonate, lithium hexafluorophosphate (LiPF 6 ), or borofluoride as an electrolyte is used. There is a solution in which lithium (LiBF 4 ) is dissolved. In this embodiment, other electrolyte solutions can be used without being limited by the type of solvent, electrolyte, and mixing ratio of solvents.
  • non-aqueous solvents examples include propylene carbonate, ethylene carbonate, butylene carbonate, vinylene carbonate, ⁇ -butyrolactone, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, 1,2-dimethoxyethane, 2-methyl Tetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolane, formamide, dimethylformamide, methyl propionate, ethyl propionate, phosphate triester, trimethoxymethane, dioxolane, diethyl ether, sulfolane, 3-methyl-2-oxazolidinone, There are nonaqueous solvents such as tetrahydrofuran, 1,2-diethoxyethane, chloroethylene carbonate, or chloropropylene carbonate. Other solvents may be used as long as they do not decompose on the positive electrode 201 or the negative electrode 203 built in the battery
  • Examples of the electrolyte LiPF 6, LiBF 4, LiClO 4, LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6 or imide salts such as lithium represented by lithium trifluoromethane sulfonimide, many types of There is a lithium salt.
  • a nonaqueous electrolytic solution obtained by dissolving these salts in the above-mentioned solvent can be used as a battery electrolytic solution.
  • An electrolyte other than this may be used as long as it does not decompose on the positive electrode 201 or the negative electrode 203 built in the battery 200 of the present embodiment.
  • an ion conductive polymer such as polyethylene oxide, polyacrylonitrile, polyvinylidene fluoride, polymethyl methacrylate, polyhexafluoropropylene, and polyethylene oxide is used as the electrolyte.
  • an ionic liquid can be used as the electrolyte.
  • EMI-BF 4 1-ethyl-3-methylimidazolium tetrafluoroborate
  • LiN SO 2 CF 3
  • LiTFSI lithium salt LiN (SO 2 CF 3 ) 2
  • LiTFSI lithium salt LiN (SO 2 CF 3 ) 2
  • a mixed complex of triglyme and tetraglyme a cyclic quaternary ammonium cation (N- methyl-N-propylpyrrolidinium is exemplified) and an imide anion (bis (fluorosulfonyl) imide is exemplified)
  • EMI-BF 4 lithium salt LiN (SO 2 CF 3 ) 2
  • LiTFSI lithium salt LiN (SO 2 CF 3 ) 2
  • LiTFSI lithium salt LiN (SO 2 CF 3 ) 2
  • LiTFSI lithium salt LiN (SO 2 CF 3 ) 2
  • LiTFSI lithium salt LiN (SO 2 CF 3 ) 2
  • the improvement in cycle characteristics of the battery 200 including the negative electrode 203 having the negative electrode mixture layer made of a negative electrode active material in which a silicon-based active material and graphite are mixed can It turns out that control is important. That is, it was found that the battery 200 using the negative electrode 203 containing a silicon-based active material and graphite in the negative electrode mixture layer is greatly deteriorated when a discharge range of a certain capacity or less is used. Furthermore, as a result of intensive studies by the inventors, it was found that the driving range of the negative electrode 203 provided with a negative electrode mixture layer containing a silicon-based active material and graphite is important as a reason for the deterioration of the battery 200. That is, when the battery 200 is used in a cycle on the discharge side of the negative electrode 203, that is, in the region R1 shown in FIGS. 2A and 2B, the deterioration of the battery 200 increases.
  • the driving range of the negative electrode 203 moves to the discharge side as Li occluded in the negative electrode 203 is deactivated and the battery 200 deteriorates.
  • the area on the discharge side of the negative electrode shifts to the charge side of the battery. That is, as the battery 200 deteriorates, the position of the peak P1 shown in FIGS. 2 (a) and 2 (b) becomes higher as shown in FIGS. 4 (a) and 4 (b).
  • the boundary B1 of the region R1 having a large deterioration shifts to the high capacity side.
  • the driving range of the battery 200 is set to use the high capacity side region R2 that is less deteriorated than the low capacity side region R1 using the discharge end voltage V1 and the charge capacity Q. Even so, as shown in FIG. 4B, the driving range of the negative electrode shifts to the high capacity side of the battery, and the region R3 where the deterioration is large starts to be used. Therefore, when the discharge start voltage V1 used for charging / discharging the battery 200 and the range of the charge capacity Q are fixed, the cycle deterioration increases at an accelerated rate as the battery 200 is used.
  • the inventors have determined that the capacitance Q and the inflection point on the low capacitance side of the differential value dQ / dV obtained by differentiating the capacitance Q with the voltage V, that is, FIG.
  • the battery module 100 that can improve the cycle characteristics of the battery 200 by appropriately changing the charge / discharge conditions of the battery 200 when a predetermined condition is satisfied based on the peak P1 shown in FIG. Found that can be provided.
  • dQ / dV is used as the differential value, but dV / dQ can also be used as the differential value.
  • dV / dQ tends to have a slightly unclear peak P1 than dQ / dV, the battery module 100 tends to malfunction.
  • FIG. 5 is a flowchart for explaining the operation of the battery module 100 of the present embodiment shown in FIG.
  • the battery module 100 determines whether or not to start control based on the differential value dQ / dV in Step S101 shown in FIG.
  • the calculation unit 320 refers to the measurement result of the measurement unit 310 held in the storage unit 350 via the input / output unit, and determines whether to start control based on the differential value dQ / dV. judge.
  • the calculation unit 320 determines the control start based on the differential value dQ / dV
  • the calculation unit 320 issues a control start command based on the differential value dQ / dV to the charge / discharge control unit 360, and proceeds to step S102.
  • the following example can be given as a criterion for the calculation unit 320 to determine the start of control based on the differential value dQ / dV. For example, when the battery 200 reaches the end-of-charge voltage for a predetermined number of times, and when the battery 200 reaches the end-of-discharge voltage for a predetermined number of times, the integration of the charge / discharge time reaches a predetermined time in the battery 200. When the integration of the charge / discharge capacity of the battery 200 reaches a predetermined capacity, or when the external load 500 consumes a predetermined amount of power.
  • the determination criteria it is preferable to determine the design life of the battery 200, the materials of the positive electrode 201 and the negative electrode 203, the use of the battery 200, and the like.
  • the time interval from the start of use of the battery 200 to the start of control based on the differential value dQ / dV is long, the deterioration of the battery 200 may progress and the deterioration suppressing effect may be reduced.
  • the time interval from the start of use of the battery 200 to the start of the control is short, there is a possibility that an error movement of the battery module 100 occurs.
  • the state of charge based on the differential value dQ / dV is started when the state of charge (SOC: State of Charge) of the battery 200 is low. This is because when the SOC is high, it is difficult to measure the peak P1 of the differential value dQ / dV as shown in FIG. In this case, in order to lower the SOC, the battery 200 may be controlled to be discharged before the control based on the differential value dQ / dV is started.
  • SOC State of Charge
  • step S102 the charge / discharge control unit 360 that has received a control start command based on the differential value dQ / dV from the calculation unit 320 starts charging the battery 200.
  • the charging / discharging control unit 360 opens the switch S1 of the external load 500 via the input / output unit 370, closes the switch S2 of the charging power source 400, and electrically connects the charging power source 400 and the battery 200. Then, the battery 200 is charged.
  • the charge / discharge control unit 360 refers to the measurement result of the measurement unit 310 held in the storage unit 350 via the input / output unit 370, and when the voltage of the battery 200 reaches a predetermined end-of-charge voltage, the process proceeds to step S103. move on.
  • step S103 the calculation unit 320 calculates the capacity Q of the battery 200, calculates a differential value dQ / dV obtained by differentiating the capacity Q with the voltage V, and proceeds to step S104.
  • step S104 the threshold voltage setting unit 330 identifies the inflection point on the discharge side that occurs in the differential value dQ / dV, that is, the peak P1, based on, for example, the graph shown in FIG.
  • step S105 the charge / discharge control unit 360 maintains the current setting of the discharge end voltage, and ends the control based on the differential value dQ / dV of the battery 200.
  • step S106 when the position of the peak P1 of the graph shifts to the high capacity side due to the deterioration of the battery 200, as shown in FIGS. 4A and 4B, the region of the charge capacity Q used by the battery 200 A peak P1 appears in the range of R2.
  • the process proceeds to step S106.
  • step S106 as described above, the threshold voltage setting unit 330 sets the voltage V1 at the specified peak P1 as the threshold voltage, and proceeds to step S107.
  • step S107 the end voltage setting unit 340 sets the discharge end voltage of the battery 200 based on the threshold voltage V1.
  • the end voltage setting unit 340 sets the discharge end voltage of the battery 200 to a voltage equal to or higher than the threshold voltage V1, and proceeds to step S105.
  • step S ⁇ b> 105 the charge / discharge control unit 360 ends the control based on the differential value dQ / dV of the battery 200.
  • the control circuit 300 controls the battery 200 based on the differential value dQ / dV, so that the peak P1 is shifted to the high capacity side as shown in FIG. Even in this case, the discharge end voltage of the secondary battery 200 can be reset to the voltage V2 corresponding to the peak P1 of the differential value dQ / dV. Thereby, it is possible to prevent the battery 200 from being used in the region R3 on the lower capacity side than the peak P1 where the battery 200 is likely to deteriorate.
  • the control circuit 300 sequentially sets the discharge end voltage of the battery 200 to the optimum voltage V2 based on the differential value dQ / dV, and the battery 200 is always deteriorated. It can be used in the range of the charge capacity Q that is unlikely to occur.
  • the low-capacity peak P1 generated in the differential value dQ / dV is specified, and the voltage V2 at the peak P1 is set as the threshold voltage.
  • a method for increasing the discharge end voltage another method can be used as long as it is a charge / discharge condition where the discharge end voltage can be expected to increase substantially.
  • there are methods such as reducing the critical discharge capacity and shifting the relationship between the SOC and the voltage to the charging side as a whole. It is preferable to set in consideration of the design life of the battery, the material of the positive and negative electrodes, the use of the battery, etc., and study the battery life when changing the charge / discharge conditions in advance to reduce the influence on the use of the battery and malfunction, It is desirable to set charging / discharging conditions that are highly effective.
  • an assembled battery can be configured by connecting a plurality of batteries 200 in series or in parallel.
  • the cell controller is an electronic circuit device for managing the state of each battery 200, an integrated circuit element for cell management provided corresponding to each battery 200, and a circuit element for changing the storage state of each battery 200
  • An example is a configuration in which a circuit for detecting the voltage of each battery 200, an insulating element such as a photocoupler, a circuit element constituting a noise removal circuit, and a circuit element constituting a protection circuit are mounted on a circuit board. It is done. According to the assembled battery having such a configuration, the same effects as those of the battery module 100 described above can be obtained.
  • a variable resistor is provided, and the current value on the battery 200 side where the end-of-discharge voltage is corrected is reduced, so that the individual batteries 200 in the assembled battery are reduced. It can also be expected to suppress the variation in deterioration of the material. Further, in an assembled battery in which a plurality of batteries 200 are connected in series, an effect of suppressing deterioration variation of each battery 200 can be expected by increasing the charging voltage of the battery 200 subjected to the above correction.
  • Embodiment 2 of the battery module of the present invention will be described with reference to FIGS. 1 to 7 of Embodiment 1.
  • FIG. 1 is a diagrammatic representation of Embodiment 1 of the battery module of the present invention.
  • the battery 200 is also ⁇ Q even in a part of the region R1 on the discharge side from the peak P1 shown in FIG. This is different from the first embodiment in that only max is used. Since the other points are the same, the same parts are denoted by the same reference numerals and description thereof is omitted.
  • the battery module 100 of the present embodiment is lower than the charge capacity Q1 at the peak P1 of the differential value dQ / dV and the charge capacity Q graph shown in FIG.
  • the charge capacity Q2 at the discharge-side boundary in the capacity range in which deterioration can be suppressed is set as the lower limit value of the charge capacity Q, that is, the discharge end capacity.
  • the capacity difference ⁇ Q between the charge capacity Q2 which is the lower limit value of the charge capacity Q in the battery 200 and the charge capacity Q1 at the peak P1 of the differential value dQ / dV is included in, for example, the negative electrode mixture layer of the negative electrode 203 provided in the battery 200. It is preferably 20% or less of the capacity Q Si based on the silicon active material. That is, it is preferable that the capacity difference ⁇ Q and the capacity Q Si of the silicon-based active material satisfy the relationship of the following formula (2).
  • Capacity Q Si of the silicon-based active material in the negative electrode mixture layer of the negative electrode 203 of the battery 200 is provided, the mixing ratio and the silicon-based active material of the anode active material, it is possible to identify the type of active material .
  • the capacity Q Si of the silicon-based active material when the battery 200 is discharged at a low rate of 1/10 C or less, the inflection point shown in FIG. 2A, that is, the capacity Q1 at the peak P1. Then, the discharge capacity at the time of discharging to the discharge end voltage at which the potential of the negative electrode 203 becomes 2.0 V may be replaced with ⁇ Q Si .
  • is preferably set according to the application. If the value of ⁇ is decreased, the life characteristics are improved, and if it is increased, the temporary capacity decrease can be reduced.
  • FIG. 7 is a flowchart for explaining details of setting of the discharge end voltage in step S107 shown in FIG.
  • step S107 shown in FIG. 5 includes steps from step S107a to step S107d shown in FIG. Since other operations are the same as those of the battery module 100 of the first embodiment, description thereof is omitted.
  • the battery 200 is used for a predetermined period from the start of use, for example, in a range R2 on the charge side, that is, on the high capacity side from the peak P1 of the differential value dQ / dV and the charge capacity Q graph shown in FIG. Yes.
  • step S107a the calculation unit 320 refers to the measurement result of the measurement unit 310 held in the storage unit 350 via, for example, the input / output unit 370, and based on the measurement result, the capacity Q1 at the threshold voltage V1 and the discharge termination. A capacity difference ⁇ Q with the capacity in voltage is calculated, and the process proceeds to step 107b.
  • step S107b when the peak P1 is shifted to the higher capacity side due to deterioration of the battery 200, the capacity difference ⁇ Q obtained by subtracting the discharge start capacity from the capacity of the peak P1 is equal to or less than the maximum value ⁇ Q max of the capacity difference ⁇ Q. To do. In this case, the calculation unit 320 determines that the capacity difference ⁇ Q is equal to or less than the maximum value ⁇ Q max (Y), and proceeds to step S107c.
  • step S107c the end voltage setting unit 340 maintains the discharge end voltage of the battery 200, and proceeds to step S105.
  • step S107d the end voltage setting unit 340 sets the discharge end voltage to a voltage corresponding to the capacity obtained by subtracting the maximum value ⁇ Q max from the capacity Q1 at the threshold voltage V1, and the process proceeds to step S105.
  • the battery 200 is placed on the discharge side from the peak P1 shown in FIG. 2A, that is, the region R1, which is lower in capacity than the peak P1. It can also be used in some of these. Therefore, not only the effects similar to those of the battery module 100 and the assembled battery of the first embodiment can be obtained, but also the influence of temporary capacity reduction caused by raising the discharge end voltage of the battery 200 can be minimized.
  • FIG. 8 is a diagram illustrating an example of a power supply device, and is a block diagram illustrating a drive system of a hybrid vehicle.
  • the drive system includes an assembled battery 610 including the battery module 100 described in the above embodiment, a battery monitoring device 600 that monitors the assembled battery 610, and an inverter device 700 that converts DC power from the assembled battery 610 into three-phase AC power.
  • a motor 800 for driving the vehicle is provided. Motor 800 is driven by three-phase AC power from inverter device 700.
  • the inverter device 700 and the battery monitoring device 600 are connected by CAN communication, and the inverter device 700 functions as a host controller for the battery monitoring device 600. Inverter device 700 operates based on command information from a higher-level controller (not shown).
  • the inverter device 700 includes a power module 710, an MCU 720, and a driver circuit 730 for driving the power module 710.
  • the power module 710 converts the DC power supplied from the assembled battery 610 into three-phase AC power for driving the motor 800.
  • a large-capacity smoothing capacitor of about 700 ⁇ F to about 2000 ⁇ F is provided between the high voltage lines HV + and HV ⁇ connected to the power module 710. The smoothing capacitor serves to reduce voltage noise applied to the integrated circuit provided in the battery monitoring device 600.
  • the charge of the smoothing capacitor is substantially zero, and when the relay RL is closed, a large initial current flows into the smoothing capacitor.
  • the relay RL may be fused and damaged due to the large current.
  • the MCU 720 charges the smoothing capacitor by changing the precharge relay RLP from the open state to the closed state at the start of driving of the motor 800 in accordance with a command from the higher-order controller, and then turns on the relay RL.
  • the power supply from the assembled battery 610 to the inverter device 700 is started from the open state to the closed state.
  • charging charging is performed while limiting the maximum current via the resistor RPRE.
  • the inverter device 700 controls the phase of AC power generated by the power module 710 with respect to the rotor of the motor 800, and operates the motor 800 as a generator during vehicle braking. That is, regenerative braking control is performed, and the electric power generated by the generator operation is regenerated to the assembled battery 610 to charge the assembled battery 610.
  • the inverter device 700 operates using the motor 800 as a generator.
  • the three-phase AC power generated by the motor 800 is converted into DC power by the power module 710 and supplied to the assembled battery 610. As a result, the assembled battery 610 is charged.
  • the MCU 720 controls the driver circuit 730 to generate a rotating magnetic field in the advance direction with respect to the rotation of the rotor of the motor 800 in accordance with a command from the host controller, and the switching of the power module 710 is performed. Control the behavior. In this case, DC power is supplied from the assembled battery 610 to the power module 710. Further, when charging the assembled battery 610 by regenerative braking control, the MCU 720 controls the driver circuit 730 to generate a rotating magnetic field in a delay direction with respect to the rotation of the rotor of the motor 800, and the power module 710 Controls the switching operation. In this case, electric power is supplied from the motor 800 to the power module 710, and DC power of the power module 710 is supplied to the assembled battery 610. As a result, the motor 800 acts as a generator.
  • the power module 710 of the inverter device 700 performs conduction and cutoff operations at high speed and performs power conversion between DC power and AC power. At this time, since a large current is interrupted at a high speed, a large voltage fluctuation occurs due to the inductance of the DC circuit. In order to suppress this voltage fluctuation, the above-described large-capacity smoothing capacitor is provided.
  • the assembled battery 610 includes two battery blocks 610A and 610B connected in series. Each of the battery blocks 610A and 610B includes 16 battery cells connected in series. Battery block 610A and battery block 610B are connected in series via a service disconnect SD for maintenance / inspection in which a switch and a fuse are connected in series. When the service disconnect SD is opened, the direct circuit of the electric circuit is cut off, and even if a connection circuit is formed at one place between the battery blocks 610A and 610B and the vehicle, no current flows. With such a configuration, high safety can be maintained. With such a configuration, high safety can be maintained. Also, even if a human touches between HV + and HV ⁇ during inspection, it is safe because a high voltage is not applied to the human body.
  • a high voltage line HV + between the assembled battery 610 and the inverter device 700 is provided with a battery disconnect unit BDU including a relay RL, a resistor RP, and a precharge relay RLP.
  • a series circuit of the resistor RP and the precharge relay RLP is connected in parallel with the relay RL.
  • the battery monitoring device 600 mainly performs measurement of each cell voltage, measurement of total voltage, measurement of current, cell temperature, cell capacity adjustment, and the like.
  • ICs integrated circuits 1 to IC6 as cell controllers are provided.
  • the 16 battery cells provided in each of the battery blocks 610A and 610B are divided into three cell groups, and one integrated circuit is provided in each cell group.
  • the cell controller has a function of managing each cell, and performs cell voltage monitoring, overcharge / overdischarge detection, voltage equalization between cells, and the like.
  • the charge / discharge control unit 360, voltage detection element 311 and current detection element 321 shown in FIG. 1 are provided in this cell controller.
  • IC1 to IC6 include a communication system 602 and a 1-bit communication system 604.
  • serial communication with the microcomputer 630 is performed in a daisy chain manner via the insulating element (for example, photocoupler) PH.
  • the 1-bit communication system 604 transmits an abnormal signal when cell overcharge is detected.
  • the communication system 602 is divided into an upper communication path for IC1 to IC3 of the battery block 610A and a lower communication path for IC4 to IC6 of the battery block 610B.
  • the microcomputer 630 functions as a host controller of the cell controllers (IC1 to IC6), and monitors the assembled battery 610 (total voltage monitor, current monitor, temperature monitor, information acquisition from the cell controller, etc.) Perform external circuit control (relay control, etc.), battery status detection (SOC calculation, deterioration status, allowable charge / discharge current calculation, etc.), various diagnoses (overcharge protection, overdischarge protection, leakage detection, failure detection, etc.) .
  • a current sensor Si such as a Hall element is installed in the battery disconnect unit BDU, and the output of the current sensor Si is input to the microcomputer 630. Signals relating to the total voltage and temperature of the assembled battery 610 are also input to the microcomputer 630 and measured by an AD converter (ADC) of the microcomputer 630, respectively. Temperature sensors are provided at a plurality of locations in the battery blocks 610A and 610B.
  • the measurement unit 310, the calculation unit 320, the threshold voltage setting unit 330, the end voltage setting unit 340, the storage unit 350, and the input / output unit 370 illustrated in FIG. 1 are provided in the battery monitoring device 600, and are the same as those described in the above embodiment.
  • the battery monitoring device 600 controls charging / discharging of the battery 200 based on the differential value dQ / dV described. As a means for changing the discharge end voltage, it is possible to change the SOC calculation, overdischarge protection or the like.
  • a lithium-ion secondary battery mounted on a vehicle has been described as an example, but the present invention is not limited to mounting on a vehicle, and stores power generated by solar power generation or wind power generation, The present invention can also be applied to a lithium ion secondary battery module of a lithium ion secondary battery that is used for applications to be supplied to an electric power system.
  • FIG. 9 is a diagram showing a schematic configuration of the plug-in hybrid vehicle.
  • the battery blocks 610A and 610B described in the example of the power supply device described above were manufactured, and these battery blocks were connected in series to manufacture a battery 920.
  • a drive system having the same configuration as that of the plug-in hybrid vehicle was manufactured using the battery 920, the handle 921, the control device 922, the accelerator 923, the signal cable 924, the converter 925, and the power cable 926.
  • the motor 927 and the wheel 928 of the plug-in hybrid vehicle were replaced with charging / discharging devices.
  • This charging / discharging device corresponds to the external load 500 and the charging power source 400 shown in FIG. 1, consumes power from the battery module 100, and supplies regenerative energy to the battery module 100.
  • the control device 922 includes the control circuit 300 shown in FIG.
  • the battery 920 can be installed at the bottom of the vehicle body of the plug-in hybrid vehicle.
  • the control device 922 transmits a signal to the converter 925 via the signal cable 924.
  • the converter 925 performs arithmetic processing on the signal transmitted from the control device 922, increases / decreases the output from the battery 920, controls the power consumption of the motor 927 via the power cable 926, and accelerates the wheel 928. Braking can be performed.
  • the electric energy stored in the battery 920 can be consumed during acceleration, and the electric energy can be taken in during braking (so-called regeneration is performed).
  • FIG. 10 shows changes in the charging state of the battery module 100 over time during running and during nighttime charging.
  • the battery 200 is in a certain SOC or more, the battery is used in a large proportion of the battery and the vehicle travels in the EV mode with good fuel efficiency.
  • the battery reaches a certain SOC, the battery is charged within a certain range. Drive in HEV mode with repeated discharge.
  • the battery is charged at night with external power when the vehicle is stopped.
  • control start in step S101 can be replaced with the start of night charging.
  • the mode is switched to the HEV mode and the SOC is changed to a region where the peak P1 does not exist.
  • the plug-in hybrid vehicle of the present embodiment it is possible to keep the rate of decrease of the chargeable capacity low even when the battery 200 is used for a long time. Since the capacity of the battery 200 of the battery module 100 can be maintained high over a long period of time, the manufactured battery 920 can stably obtain long-life characteristics.
  • this invention is not limited to this, For example, it can also apply to the stationary power storage system for an electric power storage use. Also in this case, the capacity of the battery 200 can be maintained high over a long period of time, and long-life characteristics can be stably obtained even in a high temperature environment.
  • a positive electrode was produced. LiNi 1/3 Mn 1/3 Co 1/3 O 2 was added to 86.0 parts by weight as a positive electrode active material, and 6.0 parts by weight and 2.0 parts by weight of powdered carbon and acetylene black were added as conductive materials, respectively.
  • a solution prepared by dissolving 6.0 parts by weight of PVDF in NMP in advance as a binder was added and further mixed with a planetary mixer to prepare a positive electrode mixture slurry. This slurry was uniformly and evenly applied to both surfaces of a current collector made of an aluminum foil having a thickness of 20 ⁇ m by a coating machine. After the application, compression molding was performed with a roll press to obtain a positive electrode.
  • a negative electrode was produced. Silicon-based active material as a negative electrode active material and graphite in a mixing ratio of 5 parts by weight and 95 parts by weight, equivalent to 1.5 parts by weight of solid content of 1% aqueous solution of CMC (carbomethylcellulose), and 40% of SBR An amount corresponding to 1.5 parts by weight of the solid content of the aqueous solution was added, and further mixed with a planetary mixer to prepare a negative electrode mixture slurry. This slurry was uniformly and evenly applied to both surfaces of a current collector made of a rolled copper foil having a thickness of 10 ⁇ m by a coating machine. After the application, it was compression molded with a roll press to obtain a negative electrode.
  • CMC carbomethylcellulose
  • the positive electrode and the negative electrode were cut
  • the current collecting tab an aluminum lead piece was used for the positive electrode and a nickel lead piece was used for the negative electrode. Thereafter, a separator made of a porous polyethylene film having a thickness of 30 ⁇ m was wound while being sandwiched between the positive electrode and the negative electrode. The wound body was inserted into the battery can, the negative electrode tab was connected to the bottom of the battery can by resistance welding, and the positive electrode lid was connected to the positive electrode tab by ultrasonic welding.
  • ethylene carbonate (EC): dimethyl carbonate (DMC): diethyl carbonate (DEC) 1: 1: 1 in a volume ratio, and vinylene was used as an additive.
  • An electrolyte containing 1 wt% of carbonate and fluoroethylene carbonate was injected, and then the positive electrode lid was caulked and sealed to obtain a target lithium ion secondary battery.
  • the battery module 100 described in the first and second embodiments is created, and the differential value dQ / dV of the second embodiment shown in FIGS. Control based on was performed to evaluate battery characteristics.
  • the manufactured battery was charged to 4.20 V at a current equivalent to 0.3 CA at around room temperature (25 ° C.), and then constant voltage charging was performed until the current became 0.03 C at 4.20 V. After a 30-minute pause, constant current discharge was performed up to 3.0 V with a constant current corresponding to 0.3 CA. This was initialized by performing 4 cycles, and the battery capacity at the 4th cycle was measured, and the measured battery capacity was defined as the initial battery capacity. The initial battery capacity was 1.15 Ah.
  • the position check of the inflection point that is, the control based on the differential value dQ / dV was started from the 50th cycle, and thereafter performed every 5 cycles according to the flowchart shown in FIG. ⁇ in the formula (2) was 0.
  • the changed charging / discharging conditions were performed by a method of reducing the discharge voltage by 0.03V. Then, after leaving it to stand at 25 ° C. for 12 hours, it was charged to 4.20 V with a considerable current, and then constant voltage charging was performed until the current became 0.03 CA at 4.20 V. After 30 minutes of rest, constant current discharge was performed up to 3.0 V with a constant current equivalent to 0.3 CA, and the battery capacity of the battery after 1000 cycles was measured to be 0.966 Ah. Further, the cumulative discharge capacity during the cycle was 828000 Ah.
  • Battery capacity retention rate (%) (battery capacity after 500 cycles) / (initial battery capacity) (3)
  • Example 2 to Example 12 and Comparative Example 1 to Comparative Example 13 are the same as Example 1 except that the mixing ratio of SiO in the negative electrode active material and ⁇ in the formula (2) were changed.
  • the battery capacity maintenance rate was calculated by the method described above. When mixed at a Si mixing ratio of 30 wt% and 65 wt%, the inflection point in the graph of the differential value dQ / dV and the charge capacity Q shown in FIGS. 2A and 4A, that is, the position of the peak P1 is obtained. In addition, the discharge SOC during the cycle was appropriately increased to 40% and 55%.
  • Examples 1 to 12 charging and discharging conditions were changed by performing an inflection point check within a range where ⁇ is 0.2 or less, that is, control based on the differential value dQ / dV.
  • the control was not performed, or the charge / discharge conditions were changed with a value of ⁇ exceeding 0.2.
  • Table 1 in Examples 1 to 12, the capacity maintenance rate after 1000 cycles was 65% or more, and the 1000 cycle integrated discharge capacity was a relatively high value of 500,000 Ah or more.
  • the capacity retention rate after 1000 cycles was lower than 65%, and the 1000 cycle integrated discharge capacity tended to be lower than in the Examples.
  • Comparative Example 13 the control based on the differential value dQ / dV did not improve, and the integrated discharge capacity tended to decrease due to malfunction.
  • the lithium ion secondary battery can suppress the decrease in the battery capacity of the lithium ion secondary battery even after 1000 cycles of charge and discharge and can improve the cycle characteristics.
  • Next battery module could be provided.
  • SYMBOLS 100 Battery module, 200 ... Battery (lithium ion secondary battery), 203 ... Negative electrode, 300 ... Control circuit, 310 ... Measurement part, 320 ... Operation part, 330 ... Threshold voltage setting part, 340 ... End voltage setting part, 350 ... storage unit, 360 ... discharge control unit, 610 ... battery assembly, P1 ... peak, the maximum value of Delta] Q max ... capacitance difference, V1 ... voltage corresponding to P1 of the initial battery, corresponding to P1 of V2 ... after degradation Voltage

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sustainable Energy (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

 電池モジュール100は、リチウムイオン二次電池200と制御回路300を備える。制御回路300は、リチウムイオン二次電池200の充放電の電圧、電流および時間を測定する測定部310と、電圧、電流、および時間に基づいて容量Qを算出し、容量Qを電圧Vで微分した微分値dQ/dVを算出する演算部320と、黒鉛のステージ構造に基づいて生じる微分値dQ/dVの低容量側のピークを特定して、該ピークにおける電圧を閾電圧に設定する閾電圧設定部330と、閾電圧に基づいてリチウムイオン二次電池200の放電終止電圧を設定する終止電圧設定部340と、放電終止電圧に基づいてリチウムイオン二次電池200の充放電を制御する充放電制御部360と、を有する。

Description

電池モジュールおよび組電池
 本発明は、電池モジュールおよび組電池に係り、特にリチウムイオン二次電池を備えた電池モジュールおよび組電池に関する。
  リチウムイオン二次電池は、高いエネルギー密度を有するため、例えば鉄道、自動車等の車両搭載用、若しくは太陽光発電または風力発電等で発電した電力を蓄え、電力系統に供給する用途等に用いられる電池として注目されている。リチウムイオン二次電池(以下、適宜「電池」と言う。)を搭載した自動車としては、例えば、エンジンを搭載しないゼロエミッション電気自動車、エンジンと二次電池の両方を搭載したハイブリッド電気自動車、さらには系統電源から直接充電するプラグインハイブリッド電気自動車等がある。また、リチウムイオン二次電池は、電力系統が遮断された非常時に電力を供給する定置式電力貯蔵システムとしての用途も期待されている。
  このような多様な用途に対し、高容量かつ長寿命な電池が要求されている。例えば、環境温度が高くなったり充放電サイクルを繰り返したりしても、充電可能な電池の容量、すなわち電池容量の減少率が低く、長期にわたって電池容量の維持率が高いことが要求されている。また、路面からの輻射熱あるいは車内からの熱伝導により、例えば60℃以上の高温環境における保存特性およびサイクル寿命が、重要な要求性能となっている。
  現在、電極の材料として一般的に使用されている黒鉛では、略理論容量に近い容量に達し、さらなる電池の高容量化は見込めない。そのため、電池の高容量化の観点から、電極の材料としてSi系材料を使用することが検討されている。しかし、Siは放充電に伴う膨張収縮が大きく、充放電を繰り返すことによるサイクル劣化が起きやすいことが知られている。
  このような事情に鑑み、例えば、特許文献1には、負極合剤層において、SiOxと黒鉛との合計を100質量%としたときに、SiOxの比率が2~30質量%であり、負極の初回充放電効率が、正極の初回充放電効率よりも高いことを特徴とする非水二次電池が開示されている。
  また、特許文献2には、充放電サイクルの経過に伴い、異なるサイクル数だけ充放電したときのリチウムイオン二次電池の放電後の開回路時の電圧を、少なくとも2回検出するリチウム二次電池の寿命推定方法と劣化制御方法が開示されている。特許文献2では、検出した各電圧値のうち少なくとも2つを各サイクル数に対してプロットし、さらに各プロット点を通る円弧を描き、この円弧の大きさに基づき、リチウム二次電池の寿命を推定する。特許文献2では、この推定寿命に基づいてリチウム二次電池の充電および放電を制御することにより、劣化の進行を抑制することができるとされている。
  さらに、特許文献3には、負極活物質としてリチウムを含有するケイ素の酸化物を用いた非水電解質二次電池を放電させる方法であって、リチウム基準極に対する負極電圧が0.6Vを超えない範囲で放電させるように制御することを特徴とする非水電解質二次電池の放電制御方法が開示されている。
特開2012-169300号公報 特開2009-162750号公報 特開平11-233155号公報
 本発明者らは、電池のサイクル特性について鋭意検討した結果、負極電極の表面の負極合剤層にケイ素系活物質を含むリチウムイオン二次電池では、電池の劣化が進むとサイクル劣化が加速されることを見出した。そのため、特許文献1に記載のように、電池の初期状態を規定するだけでは、電池の劣化を十分に抑制することができない。また、特許文献2に記載のリチウム二次電池の放電後の開回路時の電圧の変化は、実際には電池の劣化が進行してから起こるため、電池の長寿命化の対策としては不十分である。また、特許文献3に記載の方法では、正極電極および負極電極に加えて第3の電極が必要となるため、電池容量が低下する。
 本発明は、前記課題に鑑みてなされたものであり、その目的とするところは、リチウムイオン二次電池のサイクル特性を向上させることができる電池モジュールおよび組電池を提供することにある。
 前記目的を達成すべく、本発明の電池モジュールは、負極電極の表面にケイ素系活物質および黒鉛を含む負極合剤層を有するリチウムイオン二次電池と、該リチウムイオン二次電池の充放電を制御する制御回路とを備えた電池モジュールであって、前記制御回路は、前記リチウムイオン二次電池の充放電の電圧、電流および時間を測定する測定部と、前記電圧、電流、および時間に基づいて前記リチウムイオン二次電池の容量Qを算出し、該容量Qを前記電圧Vで微分した微分値dQ/dVを算出する演算部と、前記黒鉛のステージ構造に基づいて生じる前記微分値dQ/dVの低容量側のピークを特定して、該ピークにおける電圧を閾電圧に設定する閾電圧設定部と、前記閾電圧に基づいて前記リチウムイオン二次電池の放電終止電圧を設定する終止電圧設定部と、前記放電終止電圧に基づいて前記リチウムイオン二次電池の充放電を制御する充放電制御部と、を有することを特徴とする。
 本発明の電池モジュールおよび組電池によれば、微分値dQ/dVに生じる低容量側のピークを特定して、該ピークにおける電圧を閾電圧に設定し、該閾電圧に基づいてリチウムイオン二次電池の放電終止電圧を設定することで、リチウムイオン二次電池のサイクル特性を向上させることができる。
本発明の実施形態1に係る電池モジュールの概略構成を示す回路図。 図1に示す電池モジュールの演算部の演算結果に基づくグラフであり、(a)は横軸を容量Q、縦軸を微分値dQ/dVとするグラフ、(b)は横軸を容量Q、縦軸を電圧Vとするグラフ。 図1に示す電池モジュールが備える電池の内部構造を模式的に示した断面図。 図1に示す電池の劣化を示す図2に対応するグラフであり、(a)は横軸を容量Q、縦軸を微分値dQ/dVとするグラフ、(b)は横軸を容量Q、縦軸を電圧Vとするグラフ。 図1に示す電池モジュールの動作を説明するフロー図。 実施形態2において、図2に対応するグラフであり、(a)は横軸を容量Q、縦軸を微分値dQ/dVとするグラフ、(b)は横軸を容量Q、縦軸を電圧Vとするグラフ。 本発明の実施形態2に係る電池モジュールの動作を説明するフロー図。 図1に示す電池モジュールを適用した電源装置の一例を示す図。 図1に示す電池モジュールを適用した自動車の概略構成を示す図。 図8に示す自動車が備える電池モジュールの充電状態の変化を示す図。
 以下、図面を参照して本発明の電池モジュールおよび組電池の実施の形態について説明する。
[実施形態1]
 まず、本発明の電池モジュールの実施形態1について説明する。図1は、本実施形態に係る電池モジュール100の概略構成を示す回路図である。
<電池モジュール>
 電池モジュール100は、リチウムイオン二次電池である電池200と、該電池200の充放電を制御する制御回路300とを備えている。電池200の正極端子および負極端子は、それぞれ制御回路300およびスイッチS1,S2を介して充電用電源400および外部負荷500に接続されている。
(制御回路)
 次に、電池モジュール100が備える制御回路300について詳細に説明する。制御回路300は、測定部310、演算部320、閾電圧設定部330、終止電圧設定部340、記憶部350および充放電制御部360を備えている。これらの各部は、単一或いは複数のコンピュータユニットで構成され、例えば通信バス等により構成される入出力部370を介してデータを交換可能に構成されている。
 制御回路300の各部を構成するコンピュータユニットは、例えば、記憶装置やCPUなどで構成されるコントローラ、計算機システム、またはマイクロコンピュータである。情報を入力して演算を行い、演算した結果を出力することが可能な手段であれば、コンピュータユニット以外のものでもよい。また、制御回路300の各部は、独立した基板で実現してもよいし、同一デバイス上に構成してマイクロコンピュータとして実現してもよい。また、制御回路300の各部の機能を同一のコンピュータユニットによって実現してもよい。
 測定部310は、電池200の正極外部端子および負極外部端子に接続された電圧測定素子311および電流測定素子312を備えている。測定部310は、電圧測定素子311および電流測定素子312から入出力部370を介して入力される信号に基づいて、電池200の放充電の電圧および電流を測定する。また、測定部310は、電池200の充電時間、放電時間、休止時間(スタンバイ時間)、および不使用時間等を測定する。測定部310が測定した電池200の電圧、電流および各種の時間情報は、例えば入出力部370を介して記憶部350に入力されて保持される。
 演算部320は、例えば入出力部370を介して記憶部350に保持された電池200の電圧、電流および各種の時間情報等を参照して積算などの演算処理を行い、例えば入出力部370を介して記憶部350に演算結果を保持する。演算部320は、これらの演算結果に基づいて、例えば、電池200の放電若しくは充電時間、放電若しくは充電電圧、放電若しくは充電電流等の電池200の充放電制御パラメータを決定し、例えば入出力部370を介して記憶部350にこれらの充放電制御パラメータを保持する。
 また、演算部320は、例えば入出力部370を介して記憶部350に保持された電池200の充放電の電圧V、電流Iおよび時間t等を参照し、この電圧V、電流Iおよび時間t等に基づいて電池200の容量Qを算出する。具体的には、演算部320は、電流Iと時間tの積によって容量Qとして充電容量を算出する。本実施形態では、容量Qとして充電容量を用いているが、放電容量を用いることもできる。演算部320は、さらに、算出した容量Qを電圧Vで微分した微分値dQ/dVを算出する。演算部320が算出した容量Qおよび微分値dQ/dVは、例えば入出力部370を介して記憶部350に入力されて保持される。
 図2は、演算部320の演算結果に基づくグラフを表し、(a)は横軸を充電容量Q、縦軸を微分値dQ/dVとするグラフであり、(b)は横軸を充電容量Q、縦軸を電圧Vとするグラフである。
 閾電圧設定部330は、例えば入出力部370を介して、記憶部350に保持された容量Qおよび微分値dQ/dVを参照し、例えば、図2(a)に示すグラフに基づいて、微分値dQ/dVに生じる放電側で低容量側の変曲点、すなわちピークP1を特定する。この低容量側のピークP1は、電池200の負極が備える負極合剤層に含まれる黒鉛のステージ構造に基づくものである。このピークP1の近傍、すなわち、グラフ中のハッチングされた低容量の領域R1における二点鎖線で示す高容量側の境界B1およびその近傍で、黒鉛の3rdステージから2ndステージへの移動が生じている。
 このとき、図2(b)に示す容量Qと電圧Vの曲線において、ハッチングされた低容量の放電側の領域R1の境界B1の近傍で、電圧Vの比較的小さな変化に対して容量Qが比較的大きく変化する。これにより、図2(a)に示すように、ハッチングされた低容量の領域R1の境界B1で、微分値dQ/dVに低容量側のピークP1が発生する。閾電圧設定部330は、このピークP1を特定すると共に、該ピークP1における電圧V1を閾電圧に設定する。閾電圧設定部330が設定した閾電圧V1は、例えば入出力部370を介して記憶部350に入力されて保持される。
 また、図2(a)に示すグラフにおいて、微分値dQ/dVは、低容量側のピークP1よりも充電側である高容量側に、黒鉛の2ndステージから1stステージへの遷移に基づく高容量側のピークP2が生じている。高容量側のピークP2の頂点は、低容量側のピークP1の頂点と異なり、比較的平坦な部分が見られる。すなわち、微分値dQ/dVは、低容量側に比較的鋭いピークP1を有し、高容量側に比較的緩やかなピークP2を有している。
 終止電圧設定部340は、初期状態においては、電池200の放電終止電圧を所定の電圧に設定している。終止電圧設定部340は、後述する微分値dQ/dVに基づく電池200の制御時において、例えば入出力部370を介して記憶部350に保持された閾電圧V1を参照し、該閾電圧V1に基づいて、電池200の放電終止電圧を設定する。本実施形態において、終止電圧設定部340は、電池200の放電終止電圧を閾電圧V1に設定する。終止電圧設定部340が設定した放電終止電圧V1は、例えば入出力部370を介して記憶部350に入力されて保持される。
 充放電制御部360は、電池200と、外部負荷500および充電用電源400との間に配置されている。充放電制御部360は、例えば入出力部370を介して外部負荷500のスイッチS1を閉じ、電池200と外部負荷500を電気的に接続し、電池200を放電させて外部負荷500へ電力の供給を行う。充放電制御部360は、例えば入出力部370を介して外部負荷500のスイッチS1を開くことで、外部負荷500への電力の供給を停止する。
 充放電制御部360は、後述する微分値dQ/dVに基づく電池200の制御時において、例えば入出力部370を介して記憶部350に保持された放電終止電圧V1を参照し、放電終止電圧V1に基づいて電池200の充放電を制御する。充放電制御部360は、電池200の放電時に、例えば入出力部370を介して測定部310の測定結果を参照し、電池200の電圧が放電終止電圧V1まで低下したときに、外部負荷500への電力の供給を停止する。
 また、充放電制御部360は、例えば電池200の電圧が放電終止電圧V1まで低下したときに、例えば入出力部370を介して充電用電源400のスイッチS2を閉じ、電池200と充電用電源400を電気的に接続して電池200の充電を行う。充放電制御部360は、電池200の充電時に、例えば入出力部370を介して測定部の測定結果を参照し、電池200の電圧が所定の充電終止電圧に達した時に、例えば入出力部370を介して充電用電源400のスイッチS2を開き、電池200の充電を完了する。また、充放電制御部360は、入出力部370を介して記憶部350に保持された充放電制御パラメータを参照することで、充放電時の電池200の電圧および電流が所望の状態になるように、電池200の充放電を制御する。
 記憶部350は、例えば入出力部370を介して測定部310、演算部320、閾電圧設定部330、終止電圧設定部340、および充放電制御部360が相互に受け渡すデータを保持可能に構成されている。記憶部350の具体的な構成に特に制限は無く、例えばフロッピーディスク(FD)(登録商標)、ハードディスクドライブ(HDD)等の磁気記録媒体を用いることができる。また、ランダムアクセスメモリ(RAM)、フラッシュメモリ(USBメモリ等)等の半導体媒体を記憶部350として用いてもよい。さらに、コンパクトディスク(CD-R、CD-RW等)、デジタルバーサタイルディスク(DVD-R、DVD+R、DVD+RW、DVD-RW、DVD-RAM等)、HD-DVD、ブルーレイディスク等の光記録媒体を記憶部350として用いてもよい。
 なお、制御回路300に記憶部350を設けず、測定部310、演算部320、閾電圧設定部330、終止電圧設定部340、および充放電制御部360が、記憶部350を介さずに相互に直接、データを受け渡すようにしてもよい。
 また、図示は省略するが、電池200の温度を計測するために、例えば熱電対、サーミスタ等の温度計測手段を設けてもよい。この場合、温度計測手段により計測した温度を、例えば入出力部370を介して記憶部350に保持し、演算部310が記憶部350に保持した電池200の温度を参照して各種の演算において温度補正を行うことが好ましい。これにより、電池200の充放電を温度に応じて最適に制御することができ、より正確な充放電制御が可能になる。
(リチウムイオン二次電池)
 次に、本実施形態の電池モジュール100が備える電池200の構成の一例について、図3を用いて詳細に説明する。図3は、電池200の内部構造を模式的に示した断面図である。
 電池200はリチウムイオン二次電池であり、正極201、セパレータ202、負極203、電池容器すなわち電池缶204、正極集電タブ205、負極集電タブ206、内蓋207、内圧開放弁208、ガスケット209、正温度係数(Positive temperature coefficient;PTC)抵抗素子210、電池蓋211、軸心212から構成される。電池蓋211は、内蓋207、内圧開放弁208、ガスケット209、およびPTC抵抗素子210からなる一体化された部品である。また、軸心212には、正極201、セパレータ202および負極203が捲回されている。
 正極201は、正極活物質、導電剤、バインダ、および集電体から構成され、集電体の表面に正極活物質、導電剤およびバインダからなる正極合剤層を備えている。
 正極活物質を例示すると、LiCoO、LiNiO、およびLiMn4が代表例である。他に、LiMnO、LiMn、LiMnO、LiMn12、LiMn2-X(ただし、M=Co,Ni,Fe,Cr,Zn,Tiからなる群から選ばれる少なくとも1種、x=0.01~0.2)、LiMnMO(ただし、M=Fe,Co,Ni,Cu,Znからなる群から選ばれる少なくとも1種)、Li1-XMn(ただし、A=Mg,B,Al,Fe,Co,Ni,Cr,Zn,Caからなる群から選ばれる少なくとも1種、x=0.01~0.1)、LiNi1-X(ただし、M=Co,Fe,Gaからなる群から選ばれる少なくとも1種、x=0.01~0.2)、LiFeO、Fe(SO、LiCo1-X(ただし、M=Ni,Fe,Mnからなる群から選ばれる少なくとも1種、x=0.01~0.2)、LiNi1-xMxO(ただし、M=Mn,Fe,Co,Al,Ga,Ca,Mgからなる群から選ばれる少なくとも1種、x=0.01~0.2)、Fe(MoO、FeF、LiFePO、およびLiMnPO等を列挙することができる。
 正極活物質は、電位を測定しやすくする観点から以下の式(1)で表されるリチウム複合酸化物を含んでいることが好ましく、特に、LiNi1/3Mn1/3Co1/3を含むことが好ましい。
        LiNiMnCo   …(1)
 前記式(1)中、Mは、Fe,V,Ti,Cu,Al,Sn,Zn,Mg,B,Wからなる群から選ばれる少なくとも1種を表し、a,b,cおよびdは、それぞれ、0.2≦a≦0.8,0.1≦b≦0.4,0≦c≦0.4,0≦d≦0.1を満たす値であって、かつ、a+b+c+d=1を満たす関係にある。なお、前記の各例示物において、例えば「M」「x」等の各例示物で重複する文字が記載されているが、それらの文字はそれぞれの例示物において独立しているものとする。以下の記載においても、特に指定しない限り同様とする。
 正極活物質の粒径は、通常、正極活物質、導電剤、およびバインダから形成される合剤層の厚さ以下になるように規定される。正極活物質の粉末中に合剤層厚さ以上のサイズを有する粗粒がある場合、予めふるい分級や風流分級等により粗粒を除去し、合剤層厚さ以下の粒子を作製することが好ましい。また、正極活物質は、一般に酸化物系であるために電気抵抗が高いので、電気伝導性を補うための炭素粉末からなる導電剤を利用する。正極活物質および導電剤はともに通常は粉末であるので、粉末にバインダを混合して、粉末同士を結合させると同時に集電体へ接着させることができる。
 正極201の集電体には、厚さが10~100μmのアルミニウム箔、厚さが10~100μmで孔径が0.1~10mmのアルミニウム製穿孔箔、エキスパンドメタル、または発泡金属板等が用いられる。アルミニウムの他に、ステンレスやチタン等の材質も適用可能である。本実施形態では、材質、形状、製造方法等に制限されることなく、任意の集電体を使用することができる。正極活物質、導電剤、バインダ、および有機溶媒を混合した正極スラリーを、ドクターブレード法、ディッピング法、またはスプレー法等によって集電体へ付着させた後、有機溶媒を乾燥させ、ロールプレスによって加圧成形することにより、集電体の表面に正極合剤層を備えた正極201を作製することができる。また、塗布から乾燥までを複数回行うことにより、複数の正極合剤層を集電体に積層化させることも可能である。
 負極203は、負極活物質、バインダ、および集電体から構成され、集電体の表面に負極活物質、導電剤およびバインダからなる負極合剤層を備えている。電池200の高レートの充放電が必要な場合には、負極合剤層にさらに導電剤を添加することもある。負極活物質は、ケイ素系活物質として、シリコンの金属およびこれらの合金、ケイ素の低級酸化物LiSiO(0≦x、0<y<2)のリチウムと合金を形成する材料、または金属間化合物を形成する材料等を含む。
 負極活物質に含まれるケイ素系活物質と黒鉛との質量の合計を100wt%としたときに、負極活物質は、ケイ素系活物質を2wt%以上かつ65wt%以下含み、黒鉛を35wt%以上かつ98wt%以下の比率で含む。ケイ素系活物質の比率が2wt%未満だった場合、ケイ素系活物質の容量による電池200の高容量化の恩恵が小さく、またケイ素活物質に起因する電池200の劣化も小さいことから、一時的な容量低下の影響が顕在化しやすい。また、ケイ素系活物質の比率が65wt%よりも多い場合、図2(a)に示すピークP1が不明瞭で電池モジュール100に誤作動が生じやすい。
 負極活物質が含むケイ素系活物質の前記の比率は、30wt%以下であることが好ましく、10wt%以下であることがより好ましい。これにより、電池200のサイクル容量維持率を向上させ、サイクル時の放電積算容量のバランスを改善することができる。
 ケイ素系活物質としては、特にSiOx(酸化ケイ素)を用いることが好ましい。ただし、Siに対するOの原子比xは、0.5≦x≦1.5である。SiOxはケイ素系合金に比べてサイクル劣化が小さく、電池200において良好なサイクル特性を最大限生かすことが可能である。前記SiOxは、Siの結晶および非晶質相を含んでいるのが好ましい。例えば、非晶質のSiOマトリックス中に、Si、例えば微結晶Siが分散した構造のものが含まれ、この非晶質のSiOと、その中に分散しているSiを合わせて、前記の原子比xが0.5≦x≦1.5を満足していればよい。
 負極活物質が含む黒鉛は黒鉛層間距離(d002)が0.335nm以上0.338nm以下であることが好ましい。黒鉛の電位曲線はステージ構造を有するため、負極203が備える負極合剤層がこのような黒鉛を含むことにより、リチウムイオン二次電池のサイクル特性を大幅に向上させることができる。負極活物質に用いる黒鉛は、リチウムイオンを化学的に吸蔵・放出可能な天然黒鉛、人造黒鉛、メソフェ-ズ炭素、膨張黒鉛、炭素繊維、気相成長法炭素繊維、ピッチ系炭素質材料、ニードルコークス、石油コークス、およびポリアクリロニトリル系炭素繊維等を原料として製造される。なお、前記の黒鉛層間距離(d002)は、XRD(X-Ray Diffraction Method:X線粉末回折法)等を用いて測定することができる。
 ケイ素系活物質および黒鉛原料の炭素粒子は、粒子表面に導電性の被覆層が設けられた、いわゆるコア・シェル構造の被覆粒子であることが好ましい。被覆層としては、例えば、非晶質炭素被覆をあげることができる。非晶質炭素被覆層の原材料は特に限定されないが、例えば、フェノール樹脂(例えば、ノボラック型フェノール樹脂)、ナフタレン、アントラセン、クレオソート油等の多環芳香族炭化水素である非晶質炭素質材料を用いることができる。被覆層を形成するには、例えば、非晶質炭素材料を有機溶媒中に希釈し、その中に炭素粒子を分散させて、炭素粒子表面に非晶質炭素材料を付着させる。次に、非晶質炭素材料が付着した炭素粒子材料を濾取して乾燥させることで有機溶媒を除去し、さらに加熱処理して、炭素粒子表面に非晶質炭素材料による被覆層を形成し被覆炭素粒子とする。加熱処理温度は、例えば200℃以上かつ1000℃以下の範囲が好ましく、例えば500℃以上かつ800℃以下の範囲がより好ましい。加熱処理時間は、例えば1時間以上かつ50時間以下の範囲が好ましい。
 また、負極活物質は、適宜第3の活物質も含んでも構わない。例えば、非黒鉛炭素やアルミニウム、スズ等の金属およびこれらの合金、リチウム含有の遷移金属窒化物Li(3-X)N、およびスズの低級酸化物LiSnOのリチウムと合金を形成する材料または金属間化合物を形成する材料等を選択することができる。第3の負極活物質材料としては、特に制限がなく、前記の材料以外でも利用可能であるが、図2(a)に示すピークP1の近辺に特徴的な電位変化しないことが好ましい。ピークP1の近辺にさらに別のピークが存在した場合、電池モジュール100に誤作動が生じやすくなる可能性がある。非黒鉛炭素は、前記の黒鉛を除く炭素材料であって、リチウムイオンを吸蔵または放出することができるものである。これには、黒鉛層の間隔が0.34nm以上であって、2000℃以上の高温熱処理により黒鉛に変化する炭素材料や、5員環または6員環の環式炭化水素や、環式含酸素有機化合物を熱分解によって合成した非晶質炭素材料等が含まれる。
 一般に、負極活物質は粉末であるため、負極活物質をバインダと混合して粉末同士を結合させると同時に集電体へ塗布して接着させている。本実施形態に係る電池200の負極203は、負極活物質の粒径を、負極活物質およびバインダからなる負極合剤層の厚さ以下にすることが望ましい。負極活物質の粉末中に負極合剤層の厚さ以上の粒径を有する粗粒がある場合、予めふるい分級や風流分級等により粗粒を除去し、負極合剤層の厚さ以下の粒子を使用することが好ましい。
 負極合剤層は、負極集電体の表面に密着していることが好ましい。負極合剤層の厚さは特に限定されないが、1~200μmの範囲であることが好ましい。
 バインダの材質は特に限定されないが、例えば、スチレン-ブタジエンゴム(SBR)、カルボキシメチルセルロース、ポリフッ化ビニリデン(PVDF)、およびこれらの混合材料や複合材料を用いることができる。スチレン-ブタジエンゴムとカルボキシメチルセルロースとの混合物が好ましい。
 負極203の集電体としては、厚さが10~100μmの銅箔、厚さが10~100μmで孔径0.1~10mmの銅製穿孔箔、エキスパンドメタル、または発泡金属板等を用いることができる。銅の他に、ステンレス、チタン、またはニッケル等の材質も適用可能である。本実施形態では、材質、形状、製造方法等に制限されることなく、任意の集電体を使用することができる。
 前記した負極活物質、バインダ、および有機溶媒を混合した負極スラリーを、ドクターブレード法、ディッピング法、またはスプレー法等によって集電体へ付着させた後、有機溶媒を乾燥させ、ロールプレスによって加圧成形することにより、集電体の表面に負極合剤層を備えた負極203を作製することができる。また、塗布から乾燥までを複数回行うことにより、多層合剤層を負極203の集電体の表面に形成することも可能である。
 以上の方法で作製した正極201および負極203の間にセパレータ202を配置し、正極201および負極203の短絡を防止する。セパレータ202には、ポリエチレン、ポリプロピレン等からなるポリオレフィン系高分子シート、またはポリオレフィン系高分子と4フッ化ポリエチレンを代表とするフッ素系高分子シートを溶着させた2層構造等を使用することが可能である。電池温度が高くなったときにセパレータ202が収縮しないように、セパレータ202の表面にセラミックスおよびバインダの混合物を薄層状に形成してもよい。これらのセパレータ202は、電池200の充放電時にリチウムイオンを透過させる必要があるため、一般に細孔径が、例えば0.01μm以上かつ10μm以下、気孔率が、例えば20%以上かつ90%以下であれば、リチウムイオン二次電池に使用可能である。
 このようなセパレータ202を正極201および負極203の間に配置し、軸心212に捲回した電極群を作製する。軸心212は、正極201、セパレータ202および負極203を担持できるものであれば、公知の任意のものを用いることができる。電極群は、図3に示した円筒形状の他に、短冊状電極を積層したもの、または正極201と負極203を扁平状等の任意の形状に捲回したもの等、種々の形状にすることができる。
 電池容器204の形状は、電極群の形状に合わせ、円筒形、偏平長円形状、扁平楕円形状、角形等の形状を選択してもよい。電池容器204の材質は、アルミニウム、ステンレス鋼、ニッケルメッキ鋼製等、非水電解質に対し耐食性のある材料から選択される。また、電池容器204を正極201または負極203に電気的に接続する場合は、非水電解質と接触している部分において、電池容器204の腐食やリチウムイオンとの合金化による材料の変質が起こらないように、電池容器204の材料の選定を行う。
 電池容器204に電極群を収納し、電池容器204の内壁に負極集電タブ206を接続し、電池蓋211の底面に正極集電タブ205を接続する。電解液は、電池200の密閉の前に電池容器204の内部に注入する。電解液の注入方法は、電池蓋211を解放した状態で、電極群に直接的に含浸させる方法、または電池蓋211に設置した注入口から注入する方法がある。その後、電池蓋211を電池容器204に密着させ、電池200の全体を密閉する。電解液の注入口がある場合は、それも密封する。電池200を密閉する方法には、溶接、かしめ等公知の技術が用いられる。
 本実施形態で使用可能な電解液の代表例として、エチレンカーボネートにジメチルカーボネート、ジエチルカーボネート、またはエチルメチルカーボネート等を混合した溶媒に、電解質として六フッ化リン酸リチウム(LiPF)、またはホウフッ化リチウム(LiBF)を溶解させた溶液がある。本実施形態では、溶媒や電解質の種類、溶媒の混合比に制限されることなく、他の電解液も利用可能である。
 電解液に使用可能な非水溶媒の例としては、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ビニレンカーボネート、γ-ブチロラクトン、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、1、2-ジメトキシエタン、2-メチルテトラヒドロフラン、ジメチルスルフォキシド、1、3-ジオキソラン、ホルムアミド、ジメチルホルムアミド、プロピオン酸メチル、プロピオン酸エチル、リン酸トリエステル、トリメトキシメタン、ジオキソラン、ジエチルエーテル、スルホラン、3-メチル-2-オキサゾリジノン、テトラヒドロフラン、1、2-ジエトキシエタン、クロルエチレンカーボネート、またはクロルプロピレンカーボネート等の非水溶媒がある。本実施形態の電池200に内蔵される正極201または負極203上で分解しなければ、これ以外の溶媒を用いてもよい。
 電解質の例としては、LiPF、LiBF、LiClO、LiCFSO、LiCFCO、LiAsF、LiSbF、またはリチウムトリフルオロメタンスルホンイミドで代表されるリチウムのイミド塩等、多種類のリチウム塩がある。これらの塩を、上記の溶媒に溶解してできた非水電解液を電池用電解液として使用することができる。本実施形態の電池200に内蔵される正極201または負極203上で分解しなければ、これ以外の電解質を用いてもよい。電解質として、固体高分子電解質(ポリマー電解質)を用いる場合には、ポリエチレンオキシド、ポリアクリロニトリル、ポリフッ化ビニリデン、ポリメタクリル酸メチル、ポリヘキサフルオロプロピレン、ポリエチレンオキサイド等のイオン伝導性ポリマーを電解質に用いることができる。これらの固体高分子電解質を用いた場合、セパレータ202を省略することができる利点がある。さらに、電解質として、イオン性液体を用いることができる。例えば、1-ethyl-3-methylimidazolium tetrafluoroborate(EMI-BF)、リチウム塩LiN(SOCF(LiTFSI)とトリグライムとテトラグライムとの混合錯体、環状四級アンモニウム系陽イオン(N-methyl-N-propylpyrrolidiniumが例示される。)、およびイミド系陰イオン(bis(fluorosulfonyl)imideが例示される。)より、正極201または負極203上で分解しない組み合わせを選択して、本実施形態に係る電池200に用いることができる。
 以下、前述の電池200および制御回路300を備える本実施形態の電池モジュール100の作用について説明する。
 発明者らが鋭意検討を行った結果、ケイ素系活物質および黒鉛を混合した負極活物質からなる負極合剤層を有する負極203を備えた電池200のサイクル特性の改善には、放電終止容量の制御が重要であることが分かった。すなわち、負極合剤層にケイ素系活物質および黒鉛を含む負極203を用いた電池200は、ある一定容量以下の放電範囲を使用した場合に、劣化が大きくなることが分かった。さらに、発明者らが鋭意検討を行った結果、電池200の劣化の理由として、ケイ素系活物質および黒鉛を含む負極合剤層を備えた負極203の駆動範囲が重要であることが分かった。つまり、負極203の放電側、すなわち図2(a)および図2(b)に示す領域R1で、電池200をサイクルで使用すると、電池200の劣化が大きくなる。
 一方で、負極203の駆動範囲は、負極203に吸蔵されたLiが失活し、電池200が劣化するにつれ放電側に移動する。その結果、負極の放電側の領域が電池の充電側にシフトする。すなわち、電池200が劣化するに従って、図2(a)および図2(b)に示すピークP1の位置が、図4(a)および図4(b)に示すように、高電圧V2、高容量側にシフトし、劣化の大きい領域R1の境界B1が高容量側にシフトする。そのため、仮に電池200の使用開始時に、放電終止電圧V1や充電容量Qを用いて低容量側の領域R1よりも劣化が小さい高容量側の領域R2を使用するように電池200の駆動範囲を設定しても、図4(b)に示すように負極の駆動範囲が電池の、高容量側にシフトし、劣化が大きい領域R3を使用し始めることになる。そのため、電池200の充放電に使用する放電終始電圧V1や充電容量Qの範囲を固定した場合、電池200を使用するにつれ、サイクル劣化が加速度的に大きくなる。
 負極203の駆動範囲が放電側に移動する度合いは、電池200の駆動方法や、放置温度等の環境要因、作製時のバラツキ等によって大きく左右される。さらに、負極203の駆動範囲の移動の度合いは、電池200の駆動方法や放置温度等の環境要因は、ユーザの使用形態に大きく左右される。そのため、同じ条件で作製された電池200であっても、電池200の電圧の絶対値や、電池200の劣化率では、負極203の駆動範囲の移動の度合いは判断できない。
 発明者らは、前記課題を解決するべく鋭意検討した結果、容量Qと、容量Qを電圧Vで微分した微分値dQ/dVの低容量側の変曲点、すなわち図2(a)および図4(a)に示すピークP1に基づいて、所定の条件が満たされた場合に、電池200の充放電条件を適宜変更することにより、電池200のサイクル特性の向上を可能にする電池モジュール100を提供することができることを見出した。なお、本実施形態では、微分値としてdQ/dVを用いているが、微分値としてdV/dQを用いることもできる。ただし、dV/dQは、dQ/dVよりもピークP1がやや不明瞭な傾向があるため、電池モジュール100が誤作動を生じやすい。
 また、発明者らが鋭意検討を行った結果、ケイ素系活物質および黒鉛を混合した負極活物質を含む負極合剤層を有する負極を用いたリチウムイオン二次電池において、変曲点、すなわち図2(a)および図4(a)に示すピークP1より放電側の領域R1,R3をサイクル駆動させると、サイクル劣化が大きいことを見出した。換言すると、ピークP1よりも充電側の範囲で電池200を使用すれば、電池200を高容量でかつ長寿命で使用可能な電池モジュール100を提供することができる。
 図5は、図1に示す本実施形態の電池モジュール100の動作を説明するフロー図である。
 電池モジュール100は、図5に示すステップS101において、微分値dQ/dVに基づく制御を開始するか否かを制御回路300によって判定する。具体的には、例えば、演算部320によって、入出力部を介して記憶部350に保持された測定部310の測定結果を参照し、微分値dQ/dVに基づく制御を開始するか否かを判定する。演算部320は、微分値dQ/dVに基づく制御開始を判定すると、充放電制御部360に微分値dQ/dVに基づく制御開始の指令を発し、ステップS102へ進む。
 演算部320が微分値dQ/dVに基づく制御の開始を判定する際の判定基準としては、以下の例を挙げることができる。例えば、電池200が所定の回数に亘って充電終止電圧に到達した時、電池200が所定の回数に亘って放電終止電圧に到達した時、電池200において充放電時間の積算が所定の時間に達した時、電池200の充放電容量の積算が所定の容量に達した時、または、外部負荷500が所定の電力量を消費した時などである。
 前記の判定基準を決定する際は、電池200の設計寿命、正極201および負極203の材料、電池200の用途等を考慮して決定するのが好ましい。電池200の使用開始から微分値dQ/dVに基づく制御開始までの時間の間隔が長い場合、電池200の劣化が進行して劣化抑制効果が小さくなる虞がある。一方、電池200の使用開始から前記の制御開始までの時間の間隔が短い場合、電池モジュール100の誤差動が起きてしまう可能性がある。
 また、電池200の充電状態(SOC:State of Charge)が低いことを、微分値dQ/dVに基づく制御を開始する条件とすることが好ましい。SOCが高い場合、図2(a)に示すような微分値dQ/dVのピークP1を測定することが困難であり、誤差要因にしかならないためである。この場合、SOCを低くするために、微分値dQ/dVに基づく制御を開始する前に電池200を放電させる制御を行ってもよい。
 ステップS102において、演算部320から微分値dQ/dVに基づく制御開始の指令を受けた充放電制御部360は、電池200の充電を開始する。例えば、充放電制御部360は、入出力部370を介して外部負荷500のスイッチS1を開き、充電用電源400のスイッチS2を閉じて、充電用電源400と電池200を電気的に接続することで、電池200を充電する。充放電制御部360は、例えば、入出力部370を介して記憶部350に保持された測定部310の測定結果を参照し、電池200の電圧が所定の充電終止電圧に達したら、ステップS103に進む。
 ステップS103において、演算部320は、前記したように、電池200の容量Qを算出すると共に、容量Qを電圧Vで微分した微分値dQ/dVを算出し、ステップS104に進む。
 ステップS104において、閾電圧設定部330は、例えば図2(a)に示すグラフに基づいて、微分値dQ/dVに生じる放電側の変曲点、すなわちピークP1を特定する。
 図2(b)に示す低容量側の領域R1よりも高容量側の領域R2の範囲内で電池200の使用を開始した場合、電池200の劣化によってグラフの曲線が高容量側にシフトするまでの間は、ピークP1は検出されない。このように、ピークP1が存在せず、閾電圧設定部330によってピークP1を特定できない場合(N)には、ステップS105に進む。ステップ105において、充放電制御部360は、現在の放電終止電圧の設定を維持し、電池200の微分値dQ/dVに基づく制御を終了する。
 一方、電池200の劣化によって、図4(a)および図4(b)に示すように、グラフのピークP1の位置が高容量側にシフトすると、電池200が使用している充電容量Qの領域R2の範囲内にピークP1が現れる。このように、電池200の充電容量Qの使用範囲内でピークP1が存在し、閾電圧設定部330によってピークP1が特定された場合(Y)には、ステップS106に進む。
 ステップS106において、閾電圧設定部330は、前記したように、特定したピークP1における電圧V1を閾電圧に設定し、ステップS107に進む。
 ステップS107において、終止電圧設定部340は、閾電圧V1に基づいて電池200の放電終止電圧を設定する。本実施形態において、終止電圧設定部340は、電池200の放電終止電圧を、閾電圧V1と等しいかまたは閾電圧V1よりも高い電圧に設定し、ステップS105に進む。ステップS105において、充放電制御部360は、電池200の微分値dQ/dVに基づく制御を終了する。
 以上のように、制御回路300が電池200に対して微分値dQ/dVに基づく制御を行うことで、電池200の劣化によって図4(b)に示すようにピークP1が高容量側にシフトした場合であっても、二次電池200の放電終止電圧を微分値dQ/dVのピークP1に対応する電圧V2に再設定することができる。これにより、電池200が劣化しやすいピークP1よりも低容量側の領域R3において、電池200を使用しないようにすることができる。このように、本実施形態の電池モジュール100によれば、制御回路300によって電池200の放電終止電圧を、逐次、微分値dQ/dVに基づく最適な電圧V2に設定し、電池200を常に劣化が生じ難い充電容量Qの範囲で使用することができる。
 以上説明したように、本実施形態の電池モジュール100によれば、微分値dQ/dVに生じる低容量側のピークP1を特定して、該ピークP1における電圧V2を閾電圧に設定し、該閾電圧V2に基づいて電池200の放電終止電圧を設定することで、電池200のサイクル特性を向上させることができる。
 なお、放電終止電圧を上昇させる方法としては、放電終止電圧が実質上昇することが期待できる充放電条件であれば別の方法を用いることができる。具体的には、限界放電容量を減らす、SOCと電圧の関係を全体的に充電側にシフトするなどの方法がある。電池の設計寿命、正負極の材料、電池の用途、等を考慮して設定するのが好ましく、あらかじめ充放電条件変更時の電池寿命を検討して電池の用途への影響や誤作動が少なく、効果が大きい充放電条件を設定する事が望ましい。
<組電池>
 前述の電池モジュール100において、複数の電池200を直列または並列に接続することで、組電池を構成することができる。この場合、個々の電池200にセルコントローラを設ける事が好ましい。セルコントローラは、各電池200の状態を管理するための電子回路装置であり、各電池200に対応して設けられたセル管理用集積回路素子、各電池200の蓄電状態を変更するための回路素子、各電池200の電圧を検出するための回路、フォトカプラなどの絶縁素子、ノイズ除去回路を構成する回路素子、および保護回路を構成する回路素子などが回路基板に実装される構成が一例として挙げられる。このような構成を有する組電池によれば、前述の電池モジュール100と同様の効果を得ることができる。
 なお、複数の電池200を並列に接続した組電池においては、可変抵抗を備え、放電終止電圧の補正を行なった電池200側の電流値を小さくすることで、組電池内での個々の電池200の劣化ばらつきを抑える効果も期待できる。また、複数の電池200を直列に接続した組電池においては、上記の補正を行なった電池200の充電電圧を高くすることで、個々の電池200の劣化ばらつきを抑える効果も期待できる。
[実施形態2]
 次に、本発明の電池モジュールの実施形態2について、実施形態1の図1から図7を援用して説明する。
 本実施形態の電池モジュール100は、電池200を、図6に示すように図2(a)に示すピークP1よりも放電側、すなわちピークP1よりも低容量側の領域R1の一部においてもΔQmaxだけ使用する点で、前述の実施形態1と異なっている。その他の点は同一であるので、同一の部分には同一の符号を付して説明は省略する。
 本実施形態の電池モジュール100は、電池200を使用する際に、図2(a)に示す微分値dQ/dVと充電容量QのグラフのピークP1における充電容量Q1よりも低く、かつ電池200の劣化を抑制可能な容量の範囲の放電側の境界における充電容量Q2を、充電容量Qの下限値、すなわち放電終止容量としている。
 電池200における充電容量Qの下限値である充電容量Q2と、微分値dQ/dVのピークP1における充電容量Q1との容量差ΔQは、例えば電池200が備える負極203の負極合剤層に含まれるケイ素活物質に基づく容量QSiの20%以下であることが好ましい。すなわち、前記の容量差ΔQとケイ素系活物質の容量QSiとは、下記式(2)の関係を満たすことが好ましい。
    ΔQ≦αQSi(αは0<α≦0.2を満たす定数)  …(2)
 前記式(2)において、αが0.2よりも大きいと、必要なサイクル劣化の抑制が困難になる。電池200が備える負極203の負極合剤層に含まれるケイ素系活物質の容量QSiは、負極活物質中のケイ素系活物質の混合率や、活物質の種類によって特定することが可能である。ケイ素系活物質の容量QSiの特定が困難である場合は、電池200が1/10C以下の低レートで放電した際に、図2(a)に示す変曲点、すなわちピークP1における容量Q1から、負極203の電位が2.0Vになる放電終止電圧まで放電した際の放電容量を、αQSiと置き換えても構わない。
 αは、用途によって設定することが好ましく、αの値を小さくすれば寿命特性が良好になるし、大きくすれば一時的な容量低下を少なくすることが可能である。前記式(2)に基づく容量差ΔQの最大値ΔQmax=αQSiは、予め制御回路300の記憶部350に記録して保持させておくのが好ましい。すなわち、本実施形態において、制御回路300は、閾電圧V1における容量Q1と放電終止電圧における容量との容量差ΔQが予め記録された記憶部350を備えている。
 次に、本実施形態の電池モジュール100の動作について説明する。図7は、図5に示すステップS107における放電終止電圧の設定の詳細について説明するフロー図である。
 本実施形態の電池モジュール100は、図5に示すステップS107が、図7に示すステップS107aからステップS107dまでのステップを有する点で、実施形態1と異なっている。その他の動作は実施形態1の電池モジュール100と同一であるので、説明は省略する。
 電池200は、使用開始から所定の期間、例えば、図2(a)に示す微分値dQ/dVと充電容量QのグラフのピークP1よりも充電側、すなわち高容量側の範囲R2で使用されている。
 ステップS107aにおいて、演算部320は、例えば入出力部370を介して記憶部350に保持された測定部310の測定結果を参照し、該測定結果に基づいて閾電圧V1における容量Q1と、放電終止電圧における容量との容量差ΔQを算出し、ステップ107bに進む。
 ステップS107bにおいて、演算部320は、例えば入出力部370を介して記憶部350に保持された容量差ΔQの最大値ΔQmax=αQSiを参照し、算出した容量差ΔQが最大値ΔQmax以下であるか否か、すなわち前記式(2)を満たすか否かを判定する。
 ステップS107bにおいて、電池200の劣化によってピークP1が高容量側にシフトしている場合、ピークP1の容量から放電終始容量を減じた容量差ΔQが、容量差ΔQの最大値ΔQmax以下であるとする。この場合、演算部320は、容量差ΔQが最大値ΔQmax以下である(Y)と判定し、ステップS107cに進む。
 ステップS107cにおいて、終止電圧設定部340は、電池200の放電終止電圧を維持し、ステップS105に進む。
 しかし、ステップS107bにおいて、ピークP1時の容量からから放電終止電圧における容量を減じた容量差ΔQが、最大値ΔQmaxよりも大きい場合、演算部320は、容量差ΔQが最大値ΔQmax以下ではない(N)と判定し、ステップS107dに進む。すなわち、算出された容量差ΔQが記録された最大値ΔQmax=αQSiよりも大きい場合に、ステップS107dに進む。
 ステップS107dにおいて、終止電圧設定部340は、放電終止電圧を、閾電圧V1における容量Q1から最大値ΔQmaxを減じた容量に対応する電圧に設定し、ステップS105に進む。
 本実施形態の電池モジュール100および電池モジュール100を備えた組電池によれば、電池200を、図2(a)に示すピークP1よりも放電側、すなわちピークP1よりも低容量側の領域R1,の一部においても使用することができる。したがって、実施形態1の電池モジュール100および組電池と同様の効果が得られるだけでなく、電池200の放電終止電圧を引き上げることによる一時的な容量減少の影響を最小限にすることができる。
[電源装置]
 以下、前述の実施形態に係る電池モジュール100を適用可能な電源装置について説明する。図8は、電源装置の一例を示す図であり、ハイブリッド自動車の駆動システムを示すブロック図である。
 駆動システムは、前述の実施形態で説明した電池モジュール100を備えた組電池610、組電池610を監視する電池監視装置600、組電池610からの直流電力を3相交流電力に変換するインバータ装置700、車両駆動用のモータ800を備えている。モータ800は、インバータ装置700からの3相交流電力により駆動される。インバータ装置700と電池監視装置600とはCAN通信で結ばれており、インバータ装置700は電池監視装置600に対して上位コントローラとして機能する。また、インバータ装置700は、さらに上位のコントローラ(不図示)からの指令情報に基づいて動作する。
 インバータ装置700は、パワーモジュール710と、MCU720と、パワーモジュール710を駆動するためのドライバ回路730とを有している。パワーモジュール710は、組電池610から供給される直流電力を、モータ800を駆動するための3相交流電力に変換する。なお、図示していないが、パワーモジュール710に接続される強電ラインHV+,HV-間には、約700μF~約2000μF程度の大容量の平滑キャパシタが設けられている。この平滑キャパシタは、電池監視装置600に設けられた集積回路に加わる電圧ノイズの低減する働きをする。
 インバータ装置700の動作開始状態では平滑キャパシタの電荷は略ゼロであり、リレーRLを閉じると大きな初期電流が平滑キャパシタへ流れ込む。そして、この大電流のためにリレーRLが融着して破損するおそれがある。この問題を解決するために、MCU720は、さらに上位のコントローラからの命令に従い、モータ800の駆動開始時に、プリチャージリレーRLPを開状態から閉状態にして平滑キャパシタを充電し、その後にリレーRLを開状態から閉状態として、組電池610からインバータ装置700への電力の供給を開始する。平滑キャパシタを充電する際には、抵抗RPREを介して最大電流を制限しながら充電を行う。このような動作を行うことで、リレー回路を保護すると共に、電池セルやインバータ装置700を流れる最大電流を所定値以下に低減でき、高い安全性を維持できる。
 なお、インバータ装置700は、モータ800の回転子に対するパワーモジュール710により発生する交流電力の位相を制御して、車両制動時にはモータ800をジェネレータとして動作させる。すなわち回生制動制御を行い、ジェネレータ運転により発電された電力を組電池610に回生して組電池610を充電する。組電池610の充電状態が基準状態より低下した場合には、インバータ装置700はモータ800を発電機として運転する。モータ800で発電された3相交流電力は、パワーモジュール710により直流電力に変換されて組電池610に供給される。その結果、組電池610は充電される。
 一方、モータ800を力行運転する場合、MCU720は上位コントローラの命令に従い、モータ800の回転子の回転に対して進み方向の回転磁界を発生するようにドライバ回路730を制御し、パワーモジュール710のスイッチング動作を制御する。この場合は、組電池610から直流電力がパワーモジュール710に供給される。また、回生制動制御により組電池610を充電する場合には、MCU720は、モータ800の回転子の回転に対して遅れ方向の回転磁界を発生するようにドライバ回路730を制御し、パワーモジュール710のスイッチング動作を制御する。この場合はモータ800から電力がパワーモジュール710に供給され、パワーモジュール710の直流電力が組電池610へ供給される。結果的にモータ800は発電機として作用することとなる。
 インバータ装置700のパワーモジュール710は、導通および遮断動作を高速で行い直流電力と交流電力間の電力変換を行う。このとき、大電流を高速で遮断するので、直流回路の有するインダクタンスにより大きな電圧変動が発生する。この電圧変動を抑制するため、上述した大容量の平滑キャパシタが設けられている。
 組電池610は、直列接続された2つの電池ブロック610A,610Bで構成されている。各電池ブロック610A,610Bは、直列接続された16セルの電池セルを備えている。電池ブロック610Aと電池ブロック610Bとは、スイッチとヒューズとが直列接続された保守・点検用のサービスディスコネクトSDを介して直列接続される。このサービスディスコネクトSDが開くことで電気回路の直接回路が遮断され、仮に電池ブロック610A,610Bのどこかで車両との間に1箇所接続回路ができたとしても電流が流れることはない。このような構成により高い安全性を維持できる。このような構成により高い安全性を維持できる。又、点検時に人間がHV+とHV-の間を触っても、高電圧は人体に印加されないので安全である。
 組電池610とインバータ装置700との間の強電ラインHV+には、リレーRL,抵抗RPおよびプリチャージリレーRLPを備えた電池ディスコネクトユニットBDUが設けられている。抵抗RPおよびプリチャージリレーRLPの直列回路は、リレーRLと並列に接続されている。
 電池監視装置600は、主に各セル電圧の測定、総電圧の測定、電流の測定、セル温度およびセルの容量調整等を行う。そのために、セルコントローラとしてのIC(集積回路)1~IC6が設けられている。各電池ブロック610A,610B内に設けられた16セルの電池セルは、それぞれ3つのセルグループに分けられ、各セルグループに一つの集積回路が設けられている。セルコントローラは各セルの管理を行う機能を有するものであり、例えば、セル電圧のモニタ、過充電/過放電検知、セル間の電圧の均等化等を行う。図1に示す充放電制御部360、電圧検出素子311および電流検出素子321は、このセルコントローラに設けられている。
 IC1~IC6は、通信系602と1ビット通信系604とを備えている。セル電圧値読み取りや各種コマンド送信のための通信系602においては、絶縁素子(例えば、フォトカプラ)PHを介してデイジーチェーン方式でマイコン630とシリアル通信を行う。1ビット通信系604は、セル過充電が検知されたときの異常信号を送信する。図1に示す例では、通信系602は、電池ブロック610AのIC1~IC3に対する上位の通信経路と、電池ブロック610BのIC4~IC6に対する下位の通信経路とに分けられている。
 マイコン630は、セルコントローラ(IC1~IC6)の上位のコントローラとしての機能を有するものであり、組電池610のモニタ(総電圧のモニタ、電流モニタ、温度モニタ、セルコントローラからの情報取得など)、外部回路の制御(リレー制御など)、電池状態の検知(SOC演算、劣化状態、許容充放電電流演算など)、各種診断(過充電保護、過放電保護、漏電検知、故障検知など)等を行う。
 電池ディスコネクトユニットBDU内にはホール素子等の電流センサSiが設置されており、電流センサSiの出力はマイコン630に入力される。組電池610の総電圧および温度に関する信号もマイコン630に入力され、それぞれマイコン630のAD変換器(ADC)によって測定される。温度センサは電池ブロック610A,610B内の複数箇所に設けられている。
 図1に示す測定部310、演算部320、閾電圧設定部330、終止電圧設定部340、記憶部350および入出力部370は、電池監視装置600内に設けられており、前述の実施形態で説明した微分値dQ/dVに基づく電池200の充放電の制御は電池監視装置600にて行う。放電終止電圧の変更の手段としては、SOC演算の変更、過放電保護等の方法で行うことが可能である。
 なお、上述した実施の形態では、車両搭載用のリチウムイオン二次電池を例に説明したが、本発明は、車両搭載用に限らず、太陽光発電または風力発電等で発電した電力を蓄え、電力系統に供給する用途等に用いられるリチウムイオン二次電池のリチウムイオン二次電池モジュールにも適用することができる。
[自動車]
 次に、前述の実施形態の電池モジュール100および組電池を備えた自動車の一例について説明する。図9は、プラグインハイブリッド自動車の概略構成を示す図である。
 前述の電源装置の例において説明した電池ブロック610A,610Bと同一仕様の電池ブロックを12セット製造し、これらの電池ブロックを直列接続して、バッテリー920を製作した。そして、プラグインハイブリッド自動車と同じ構成の駆動システムを、バッテリー920、ハンドル921、制御装置922、アクセル923、信号ケーブル924、変換器925、および電力ケーブル926を用いて製作した。なお、プラグインハイブリッド自動車のモータ927と車輪928は、充放電装置に置き換えた。この充放電装置は、図1に示した外部負荷500および充電用電源400に対応するものであり、電池モジュール100からの電力を消費し、回生エネルギーを電池モジュール100に供給する。また、制御装置922は、図1に示した制御回路300を有している。
 この駆動システムを用いて、プラグインハイブリッド自動車にバッテリー920を搭載したときと同じ運転試験を実施した。バッテリー920は、プラグインハイブリッド自動車の車体底部に設置することができる。
 運転者がハンドル921を操作した場合またはアクセル923を踏み込んだ場合、制御装置922は、信号ケーブル924を介して変換器925に信号を伝達する。変換器925は、制御装置922から伝達された信号の演算処理を行い、バッテリー920からの出力を増減して、電力ケーブル926を介してモータ927の消費電力量を制御し、車輪928の加速または制動を行うことができる。加速時にはバッテリー920に蓄えられた電気エネルギーを消費し、制動時には電気エネルギーを取り込む(いわゆる回生を行う)ことができる。
 図10に、走行中および夜間充電時の電池モジュール100の時間経過ごとの充電状態の変化を示す。電池200が一定以上のSOCにある際には、バッテリーの利用割合が多く、燃費が良いEVモードで自動車は走行し、ある一定のSOCに到達した段階で、SOCがある範囲で一定で充電と放電を繰り返すHEVモードで走行する。更に、走行を休止した段階で外部電力にて夜間充電を行う。
 図5で説明したフローにおいて、ステップS101の制御開始は、夜間充電の開始に置き換えることが出来る。この際、充電曲線のdQ/dVに変曲点すなわちピークP1が存在した場合、HEVモードに切り替えてSOCをピークP1が存在しない領域まで変更する。
 本実施形態のプラグインハイブリッド自動車によれば、電池200を長期間使用しても充電可能な容量の低下率を低く抑えることが可能となる。長期に渡って電池モジュール100の電池200の容量を高く維持できるため、作製したバッテリー920は、長寿命な特性を安定して得ることができる。なお、ここではプラグインハイブリッド自動車への適用例を説明したが、本発明はこれに限定されず、例えば、電力貯蔵用途の定置式電力貯蔵システムに適用することもできる。この場合にも、長期に渡って電池200の容量を高く維持でき、高温環境下においても長寿命な特性を安定して得ることができる。
 以上、図面を用いて本発明の実施の形態を詳述してきたが、具体的な構成はこの実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲における設計変更等があっても、それらは本発明に含まれるものである。
 以下、前述の実施形態に基づく本発明の電池モジュールの実施例について説明する。
[実施例1]
 前述の実施形態1で説明した図3に示す電池200と同様の構成を有するリチウムイオン二次電池を作製した。この際、正極活物質としてLiNi1/3Mn1/3Co1/3を用いた。ケイ素系活物質としてのSiOと、天然黒鉛(X線構造解析による黒鉛層間距離(d002)=0.336nm)からなる負極活物質を用いた。また、正極としてアルミニウム箔を、負極として銅箔を用いた。ケイ素系活物質の混合比は2wt%とした。
 まず、正極を作製した。正極活物質としてLiNi1/3Mn1/3Co1/3を86.0重量部に、導電材として粉末状炭素とアセチレンブラックをそれぞれ6.0重量部と2.0重量部加え、予め結着剤として6.0重量部のPVDFをNMPに溶解した溶液を加えて、さらにプラネタリ-ミキサーで混合し正極合剤スラリーを調製した。このスラリーを、厚さ20μmのアルミニウム箔からなる集電体の両面に塗布機で均一かつ均等に塗布した。塗布後、ロールプレス機により圧縮成形し、正極とした。
 次に、負極を作製した。負極活物質としてのケイ素系活物質と黒鉛が混合比で、5重量部および95重量部に、CMC(カルボメチルセルロース)の1%水溶液の固形分1.5重量部相当量と、SBRの40%水溶液の固形分1.5重量部相当量を加え、さらにプラネタリ-ミキサーで混合し負極合剤スラリーを調製した。このスラリーを、厚さ10μmの圧延銅箔からなる集電体の両面に塗布機で均一かつ均等に塗布した。塗布後、ロールプレス機で圧縮成形し、負極とした。
 そして、正極と負極を所望の大きさに裁断し、合剤層の未塗布部にそれぞれ集電タブを超音波溶接した。集電タブとして、正極にはアルミニウムのリード片、負極にはニッケルのリード片をそれぞれ用いた。その後、多孔性のポリエチレンフィルムからなる厚み30μmのセパレータを正極および負極で挟みながら捲回した。この捲回体を電池缶に挿入し、負極タブを電池缶の缶底に抵抗溶接により接続し、正極タブには正極蓋を超音波溶接により接続した。次に、体積比で、エチレンカーボネート(EC):ジメチルカーボネート(DMC):ジエチルカーボネート(DEC)=1:1:1の混合溶媒に、1mol/lのLiPFを溶解させ、添加剤として、ビニレンカーボネートおよびフルオロエチレンカーボネートを1wt%ずつ添加した電解液を注液し、その後、正極蓋を電池缶にかしめて密封し、目的のリチウムイオン二次電池を得た。
 作製したリチウムイオン二次電池を用いて上述の実施形態1、2で説明した電池モジュール100を作成し、下記に示す方法によって図5および図7に示す前述の実施形態2の微分値dQ/dVに基づく制御を行い、電池特性を評価した。
 作製した電池を常温(25℃)前後で0.3CA相当の電流で4.20Vまで充電し、その後4.20Vで電流が0.03Cになるまで定電圧充電を行った。30分休止後に0.3CA相当の定電流で3.0Vまで定電流放電を行った。これを4サイクル行って初期化し、4サイクル目の電池容量を測定し、測定された電池容量を初期電池容量とした。初期電池容量は1.15Ahであった。
 次に、25℃で、1000回の充放電サイクルを行った。各サイクルにおいては、0.3C相当の電流で4.20Vまで充電し、その後4.20Vで電流が0.03Cになるまで定電圧充電を行った。放電は、8Wの定電力でSOC20%相当の3.55Vまで行った。充放電の間には休止を15分行った。
 変曲点の位置チェック、すなわち微分値dQ/dVに基づく制御は、50サイクル目から開始し、以後5サイクルごとに図5に示すフローチャートに従って行った。前記式(2)のαは0で行った。変更した充放電条件は、放電電圧を0.03V下げる方法で行った。その後、25℃で12時間放置した後、相当の電流で4.20Vまで充電し、その後4.20Vで電流が0.03CAになるまで定電圧充電を行った。30分休止後に0.3CA相当の定電流で3.0Vまで定電流放電を行い、1000サイクル後の電池の電池容量を測定したところ、0.966Ahであった。また、サイクル中の積算放電容量は828000Ahであった。
 以上により得られた結果を用いて、下記式(3)によって電池容量維持率を算出した。その結果を表1に示す。
 電池容量維持率(%)=(500サイクル後の電池容量)/(初期電池容量)…(3)
Figure JPOXMLDOC01-appb-T000001
[実施例2から実施例12および比較例1から比較例13]
 表1に示す実施例2から実施例12および比較例1から比較例13は、負極活物質中のSiOの混合率および前記式(2)のαを変更したことを除き、実施例1と同様の方法で電池容量維持率を算出した。なお、Si混合率30wt%および65wt%で混合した時には、図2(a)および図4(a)に示す微分値dQ/dVと充電容量Qのグラフの変曲点、すなわちピークP1の位置に合わせて、サイクル時の放電SOCを40%、55%に適宜引き上げた。
 実施例1から12においては、αが0.2以下の範囲で変曲点チェック、すなわち微分値dQ/dVに基づく制御を行って、充放電条件の変更を行った。比較例1から12では、前記制御を行わないか、αが0.2を超える値で充放電条件の変更を行った。表1に示すように、実施例1から12においては、1000サイクル後の容量維持率が65%以上であり、かつ1000サイクル積算放電容量が500000Ah以上の比較的高い値になった。これに対し、比較例1から12では、1000サイクル後の容量維持率が65%よりも低く、1000サイクル積算放電容量が実施例と比較して低くなる傾向が見られた。また、比較例13では、微分値dQ/dVに基づく制御を行っても改善せず、誤作動により積算放電容量が小さくなる傾向があった。
 以上のように、実施例1から実施例12によって、1000サイクルの充放電後であってもリチウムイオン二次電池の電池容量減少の抑制を可能にし、サイクル特性の向上を可能にしたリチウムイオン二次電池モジュールを提供することができた。
100…電池モジュール、200…電池(リチウムイオン二次電池)、203…負極電極、300…制御回路、310…測定部、320…演算部、330…閾電圧設定部、340…終止電圧設定部、350…記憶部、360…充放電制御部、610…組電池、P1…ピーク、ΔQmax…容量差の最大値、V1…初期電池のP1に対応する電圧、V2…劣化後のP1に対応する電圧

Claims (7)

  1.  負極電極の表面にケイ素系活物質および黒鉛を含む負極合剤層を有するリチウムイオン二次電池と、該リチウムイオン二次電池の充放電を制御する制御回路とを備えた電池モジュールであって、
     前記制御回路は、
     前記リチウムイオン二次電池の充放電の電圧、電流および時間を測定する測定部と、
     前記電圧、電流、および時間に基づいて前記リチウムイオン二次電池の容量Qを算出し、該容量Qを前記電圧Vで微分した微分値dQ/dVを算出する演算部と、
     前記黒鉛のステージ構造に基づいて生じる前記微分値dQ/dVの低容量側のピークを特定して、該ピークにおける電圧を閾電圧に設定する閾電圧設定部と、
     前記閾電圧に基づいて前記リチウムイオン二次電池の放電終止電圧を設定する終止電圧設定部と、
     前記放電終止電圧に基づいて前記リチウムイオン二次電池の充放電を制御する充放電制御部と、
     を有することを特徴とする電池モジュール。
  2.  前記制御回路は、前記閾電圧における前記容量と前記放電終止電圧における前記容量との容量差の最大値が予め記録された記憶部を備え、
     前記演算部は、前記測定部の測定結果に基づいて前記容量差を算出し、
     前記終止電圧設定部は、算出された前記容量差が記録された前記最大値よりも大きい場合に、前記放電終止電圧を、前記閾電圧における容量から前記最大値を減じた容量に対応する電圧に設定することを特徴とする請求項1に記載の電池モジュール。
  3.  前記最大値は、前記ケイ素活物質に基づく容量の20%以下であることを特徴とする請求項2に記載の電池モジュール。
  4.  前記ケイ素活物質は酸化ケイ素であり、前記負極合剤層に含まれる該酸化ケイ素と前記黒鉛の合計の質量を100wt%としたときに、前記負極合剤層は、該酸化ケイ素を2wt%以上かつ65wt%以下の比率で含むことを特徴とする請求項3に記載の電池モジュール。
  5.  前記負極合剤層は、前記酸化ケイ素を10wt%以下の比率で含むことを特徴とする請求項4に記載の電池モジュール。
  6.  請求項1から請求項5のいずれか一項に記載の電池モジュールと、複数の前記リチウムイオン二次電池とを備えることを特徴とする組電池。
  7.  個々の前記リチウムイオン二次電池を制御するセルコントローラを備え、該セルコントローラに前記充放電制御部が設けられていることを特徴とする請求項6に記載の組電池。
PCT/JP2014/081732 2013-11-29 2014-12-01 電池モジュールおよび組電池 WO2015080285A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480062576.9A CN105723559B (zh) 2013-11-29 2014-12-01 电池组件和组合电池
JP2015551034A JP6192738B2 (ja) 2013-11-29 2014-12-01 電池モジュールおよび組電池
US15/032,883 US10063072B2 (en) 2013-11-29 2014-12-01 Battery module and assembled battery
EP14865072.4A EP3076478B1 (en) 2013-11-29 2014-12-01 Battery module and assembled battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-248513 2013-11-29
JP2013248513 2013-11-29

Publications (1)

Publication Number Publication Date
WO2015080285A1 true WO2015080285A1 (ja) 2015-06-04

Family

ID=53199219

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/081732 WO2015080285A1 (ja) 2013-11-29 2014-12-01 電池モジュールおよび組電池

Country Status (5)

Country Link
US (1) US10063072B2 (ja)
EP (1) EP3076478B1 (ja)
JP (1) JP6192738B2 (ja)
CN (1) CN105723559B (ja)
WO (1) WO2015080285A1 (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017059386A (ja) * 2015-09-16 2017-03-23 株式会社東芝 電池パックおよび充電制御方法
JP2018147665A (ja) * 2017-03-03 2018-09-20 日産自動車株式会社 二次電池の制御方法及び装置
JP2018185209A (ja) * 2017-04-25 2018-11-22 株式会社デンソー 蓄電装置
CN109061481A (zh) * 2018-06-28 2018-12-21 奇瑞汽车股份有限公司 电池的荷电状态确定方法、装置及存储介质
JP2019050151A (ja) * 2017-09-11 2019-03-28 株式会社デンソー 電源システム
JP2019097370A (ja) * 2017-11-17 2019-06-20 廣達電腦股▲ふん▼有限公司 電源管理回路
WO2019167475A1 (ja) * 2018-02-28 2019-09-06 パナソニックIpマネジメント株式会社 非水電解質二次電池の充電方法、及び非水電解質二次電池の充電システム
WO2019181119A1 (ja) * 2018-03-20 2019-09-26 本田技研工業株式会社 情報処理装置、情報処理方法、プログラム、可搬式電力供給装置、及びレンタルシステム
CN110471001A (zh) * 2018-05-11 2019-11-19 丰田自动车株式会社 锂离子电池的诊断方法和锂离子电池的诊断装置
WO2020218826A1 (ko) * 2019-04-22 2020-10-29 주식회사 엘지화학 배터리의 미분 전압 커브를 결정하기 위한 장치 및 방법과, 상기 장치를 포함하는 배터리 팩
WO2021200444A1 (ja) * 2020-03-30 2021-10-07 三洋電機株式会社 二次電池システム
JP2023516306A (ja) * 2020-10-23 2023-04-19 エルジー エナジー ソリューション リミテッド バッテリー管理装置及び方法
JP2023527137A (ja) * 2020-12-29 2023-06-27 エルジー エナジー ソリューション リミテッド バッテリー診断装置、バッテリー診断方法、バッテリーパック及び電気車両
WO2024003654A1 (ja) * 2022-06-29 2024-01-04 株式会社半導体エネルギー研究所 二次電池の充電管理システム
JP7509119B2 (ja) 2021-11-15 2024-07-02 トヨタ自動車株式会社 電池の劣化診断装置、及び電池の劣化診断方法

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015154593A (ja) * 2014-02-14 2015-08-24 ソニー株式会社 充放電制御装置、電池パック、電子機器、電動車両および充放電制御方法
JP6181590B2 (ja) * 2014-04-02 2017-08-16 信越化学工業株式会社 非水電解質二次電池用負極及び非水電解質二次電池
KR101985812B1 (ko) * 2015-08-18 2019-06-04 주식회사 엘지화학 전지 충전 한계 예측 방법과 이를 이용한 전지 급속 충전 방법 및 장치
KR101997746B1 (ko) * 2015-09-24 2019-07-08 삼성전자주식회사 전지 팩 및 이의 충/방전 제어 방법
JP6380417B2 (ja) * 2016-01-21 2018-08-29 横河電機株式会社 二次電池容量測定システム及び二次電池容量測定方法
US10283982B2 (en) * 2016-01-27 2019-05-07 Gm Global Technology Operations Llc. Voltage disconnect architecture
JP6639999B2 (ja) * 2016-03-31 2020-02-05 株式会社マキタ 充電装置
CN107112601B (zh) * 2016-05-31 2019-01-29 深圳市大疆创新科技有限公司 电池的控制方法及系统、智能电池、可移动平台
CN107664750A (zh) * 2016-07-27 2018-02-06 致茂电子(苏州)有限公司 电池检测装置及其方法
US10650621B1 (en) 2016-09-13 2020-05-12 Iocurrents, Inc. Interfacing with a vehicular controller area network
US10707531B1 (en) 2016-09-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes
US10259336B2 (en) * 2016-10-18 2019-04-16 Ford Global Technologies, Llc Charging a battery using interpack switch
EP3514878A4 (en) * 2016-10-21 2019-11-06 GS Yuasa International Ltd. ENERGY STORAGE DEVICE FOR VEHICLE, VEHICLE DISCHARGE SYSTEM, DISCHARGE CONTROL METHOD AND ENERGY STORAGE ELEMENT FOR VEHICLE
JP6760033B2 (ja) * 2016-12-14 2020-09-23 株式会社デンソー 電池パックと電源システム
CN106680730B (zh) * 2017-03-01 2023-06-30 侬泰轲(上海)检测科技有限责任公司 一种可检测荷电状态的充放电装置及荷电状态的检测方法
US10697417B2 (en) * 2017-10-06 2020-06-30 Briggs & Stratton Corporation Battery connections for battery start of internal combustion engines
CN111247446A (zh) * 2017-10-24 2020-06-05 株式会社杰士汤浅国际 估计装置、估计方法以及计算机程序
TWI649573B (zh) * 2017-12-04 2019-02-01 財團法人工業技術研究院 電池內短路阻抗之偵測方法和系統
TWI657639B (zh) 2017-12-04 2019-04-21 Industrial Technology Research Institute 電池放電流程決定方法和系統
JPWO2019167493A1 (ja) * 2018-02-28 2021-03-11 パナソニックIpマネジメント株式会社 非水電解質二次電池の充電方法、及び非水電解質二次電池の充電システム
US11167375B2 (en) 2018-08-10 2021-11-09 The Research Foundation For The State University Of New York Additive manufacturing processes and additively manufactured products
JP6935793B2 (ja) * 2018-12-04 2021-09-15 株式会社デンソー 電池システム
CN110962681A (zh) * 2019-01-18 2020-04-07 宁德时代新能源科技股份有限公司 蓄电池的监控系统、电池包及电动汽车
KR102678203B1 (ko) * 2019-02-01 2024-06-26 에스케이온 주식회사 배터리 관리 시스템
JP7228790B2 (ja) * 2019-02-05 2023-02-27 パナソニックIpマネジメント株式会社 充電制御装置及び充電制御方法
KR20200122903A (ko) * 2019-04-19 2020-10-28 주식회사 엘지화학 비파괴 저항 분석을 이용한 배터리 관리 장치 및 방법
US11145931B2 (en) 2019-06-26 2021-10-12 International Business Machines Corporation Configuring large capacity batteries
CN112440744B (zh) * 2019-08-29 2022-05-17 北京新能源汽车股份有限公司 一种蓄电池电量管理的控制方法、整车控制器及管理系统
US11646596B2 (en) * 2020-03-26 2023-05-09 Robert Bosch Gmbh Portable power station having multiple battery modules and method of operating a portable power station having multiple battery modules
JP6954399B2 (ja) * 2020-03-26 2021-10-27 住友大阪セメント株式会社 リチウムイオンポリマー電池およびその製造方法
CN111781506B (zh) * 2020-05-26 2023-02-03 上海空间电源研究所 一种高精度可调的锂电池单体电压控制电路
KR20220010961A (ko) * 2020-07-20 2022-01-27 주식회사 엘지에너지솔루션 배터리 관리 시스템, 배터리 관리 방법, 배터리 팩 및 전기 차량
KR102652327B1 (ko) * 2020-09-09 2024-03-27 주식회사 엘지에너지솔루션 배터리 관리 장치 및 방법
CN112526370B (zh) * 2020-11-10 2022-07-29 深圳市拓邦锂电池有限公司 一种三电极锂离子电池的电压测试方法
CN112644334B (zh) * 2021-01-12 2022-08-16 一汽解放汽车有限公司 防止电池过放电的控制方法、系统、车辆及存储介质
KR20220101996A (ko) * 2021-01-12 2022-07-19 주식회사 엘지에너지솔루션 배터리 관리 장치 및 방법
KR20220107550A (ko) * 2021-01-25 2022-08-02 주식회사 엘지에너지솔루션 배터리 분류 장치 및 방법
JP7235789B2 (ja) * 2021-03-18 2023-03-08 本田技研工業株式会社 劣化セルの内部劣化状態推定方法、及び測定システム
JP7235790B2 (ja) * 2021-03-18 2023-03-08 本田技研工業株式会社 劣化セルの内部劣化状態推定方法、及び測定システム
CN113189496B (zh) * 2021-04-30 2022-10-04 重庆长安新能源汽车科技有限公司 一种验证脉冲加热对动力电池寿命影响的方法
DE102021004015B3 (de) * 2021-08-04 2022-09-29 Sew-Eurodrive Gmbh & Co Kg Verfahren zum Betrieb einer Batterie
CN115946572B (zh) * 2022-11-21 2023-06-30 上海玫克生储能科技有限公司 电池模组的容量计算及补电控制方法、系统、设备和介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11233155A (ja) 1998-02-13 1999-08-27 Japan Storage Battery Co Ltd 非水電解質二次電池の放電制御方法
JP2002507826A (ja) * 1998-03-16 2002-03-12 エヴァレディー バッテリー カンパニー インコーポレイテッド スマート・バッテリの性能強化方法及びデバイス
JP2009162750A (ja) 2007-12-13 2009-07-23 Panasonic Corp リチウム二次電池の寿命推定方法と劣化抑制方法、寿命推定器と劣化抑制器、それを用いた電池パック、充電器
JP2012169300A (ja) 2012-06-06 2012-09-06 Hitachi Maxell Energy Ltd 非水二次電池
JP5287872B2 (ja) * 2009-09-25 2013-09-11 トヨタ自動車株式会社 二次電池システム
JP2013196805A (ja) * 2012-03-16 2013-09-30 Hitachi Ltd リチウムイオン二次電池システムおよびリチウムイオン二次電池システムの制御方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201174408Y (zh) * 2004-10-04 2008-12-31 布莱克和戴克公司 监视电池组电池的设备及在充电期间平衡电池电压的装置
US7443140B2 (en) * 2005-08-02 2008-10-28 Texas Instruments Incorporated Method and apparatus for operating a battery to avoid damage and maximize use of battery capacity by terminating battery discharge
TW201136082A (en) * 2010-02-22 2011-10-16 O2Micro Inc Battery protection circuit, method and battery pack thereof
US8405356B2 (en) * 2010-03-05 2013-03-26 Panasonic Corporation Full charge capacity value correction circuit, battery pack, and charging system
JP5584927B2 (ja) * 2010-06-04 2014-09-10 日立オートモティブシステムズ株式会社 電池制御装置および蓄電装置
JP5821877B2 (ja) * 2012-03-27 2015-11-24 Tdk株式会社 リチウムイオン二次電池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11233155A (ja) 1998-02-13 1999-08-27 Japan Storage Battery Co Ltd 非水電解質二次電池の放電制御方法
JP2002507826A (ja) * 1998-03-16 2002-03-12 エヴァレディー バッテリー カンパニー インコーポレイテッド スマート・バッテリの性能強化方法及びデバイス
JP2009162750A (ja) 2007-12-13 2009-07-23 Panasonic Corp リチウム二次電池の寿命推定方法と劣化抑制方法、寿命推定器と劣化抑制器、それを用いた電池パック、充電器
JP5287872B2 (ja) * 2009-09-25 2013-09-11 トヨタ自動車株式会社 二次電池システム
JP2013196805A (ja) * 2012-03-16 2013-09-30 Hitachi Ltd リチウムイオン二次電池システムおよびリチウムイオン二次電池システムの制御方法
JP2012169300A (ja) 2012-06-06 2012-09-06 Hitachi Maxell Energy Ltd 非水二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3076478A4

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017059386A (ja) * 2015-09-16 2017-03-23 株式会社東芝 電池パックおよび充電制御方法
JP2018147665A (ja) * 2017-03-03 2018-09-20 日産自動車株式会社 二次電池の制御方法及び装置
JP2018185209A (ja) * 2017-04-25 2018-11-22 株式会社デンソー 蓄電装置
JP6992275B2 (ja) 2017-04-25 2022-02-03 株式会社デンソー 蓄電装置
JP2019050151A (ja) * 2017-09-11 2019-03-28 株式会社デンソー 電源システム
JP2019097370A (ja) * 2017-11-17 2019-06-20 廣達電腦股▲ふん▼有限公司 電源管理回路
JPWO2019167475A1 (ja) * 2018-02-28 2021-03-04 パナソニックIpマネジメント株式会社 非水電解質二次電池の充電方法、及び非水電解質二次電池の充電システム
US11811255B2 (en) 2018-02-28 2023-11-07 Panasonic Intellectual Property Management Co., Ltd. Charging method of non-aqueous electrolyte secondary battery, and charging system of non-aqueous electrolyte secondary battery
WO2019167475A1 (ja) * 2018-02-28 2019-09-06 パナソニックIpマネジメント株式会社 非水電解質二次電池の充電方法、及び非水電解質二次電池の充電システム
JP7190666B2 (ja) 2018-02-28 2022-12-16 パナソニックIpマネジメント株式会社 非水電解質二次電池の充電方法、及び非水電解質二次電池の充電システム
WO2019181119A1 (ja) * 2018-03-20 2019-09-26 本田技研工業株式会社 情報処理装置、情報処理方法、プログラム、可搬式電力供給装置、及びレンタルシステム
US12039591B2 (en) 2018-03-20 2024-07-16 Honda Motor Co., Ltd. Information processing apparatus, information processing method, storage medium, portable electric power supply apparatus, and rental system
CN110471001A (zh) * 2018-05-11 2019-11-19 丰田自动车株式会社 锂离子电池的诊断方法和锂离子电池的诊断装置
CN109061481B (zh) * 2018-06-28 2020-10-09 奇瑞汽车股份有限公司 电池的荷电状态确定方法、装置及存储介质
CN109061481A (zh) * 2018-06-28 2018-12-21 奇瑞汽车股份有限公司 电池的荷电状态确定方法、装置及存储介质
KR20200123658A (ko) * 2019-04-22 2020-10-30 주식회사 엘지화학 배터리의 미분 전압 커브를 결정하기 위한 장치 및 방법과, 상기 장치를 포함하는 배터리 팩
WO2020218826A1 (ko) * 2019-04-22 2020-10-29 주식회사 엘지화학 배터리의 미분 전압 커브를 결정하기 위한 장치 및 방법과, 상기 장치를 포함하는 배터리 팩
CN112639499A (zh) * 2019-04-22 2021-04-09 株式会社Lg化学 用于确定电池的差分电压曲线的装置和方法以及包括该装置的电池组
US11460506B2 (en) 2019-04-22 2022-10-04 Lg Energy Solution, Ltd. Apparatus and method for determining differential voltage curve of battery and battery pack comprising the apparatus
KR102659679B1 (ko) 2019-04-22 2024-04-19 주식회사 엘지에너지솔루션 배터리의 미분 전압 커브를 결정하기 위한 장치 및 방법과, 상기 장치를 포함하는 배터리 팩
CN112639499B (zh) * 2019-04-22 2023-08-29 株式会社Lg新能源 用于确定电池的差分电压曲线的装置和方法以及包括该装置的电池组
WO2021200444A1 (ja) * 2020-03-30 2021-10-07 三洋電機株式会社 二次電池システム
JP7439942B2 (ja) 2020-10-23 2024-02-28 エルジー エナジー ソリューション リミテッド バッテリー管理装置及び方法
JP2023516306A (ja) * 2020-10-23 2023-04-19 エルジー エナジー ソリューション リミテッド バッテリー管理装置及び方法
JP7459440B2 (ja) 2020-12-29 2024-04-02 エルジー エナジー ソリューション リミテッド バッテリー診断装置、バッテリー診断方法、バッテリーパック及び電気車両
JP2023527137A (ja) * 2020-12-29 2023-06-27 エルジー エナジー ソリューション リミテッド バッテリー診断装置、バッテリー診断方法、バッテリーパック及び電気車両
JP7509119B2 (ja) 2021-11-15 2024-07-02 トヨタ自動車株式会社 電池の劣化診断装置、及び電池の劣化診断方法
WO2024003654A1 (ja) * 2022-06-29 2024-01-04 株式会社半導体エネルギー研究所 二次電池の充電管理システム

Also Published As

Publication number Publication date
EP3076478A1 (en) 2016-10-05
US10063072B2 (en) 2018-08-28
CN105723559B (zh) 2018-10-12
US20160254687A1 (en) 2016-09-01
EP3076478A4 (en) 2017-08-02
CN105723559A (zh) 2016-06-29
JP6192738B2 (ja) 2017-09-06
JPWO2015080285A1 (ja) 2017-03-16
EP3076478B1 (en) 2019-06-05

Similar Documents

Publication Publication Date Title
JP6192738B2 (ja) 電池モジュールおよび組電池
JP5537521B2 (ja) リチウムイオン二次電池制御システムおよび組電池制御システム
JP4461114B2 (ja) 組電池システム、組電池の充電方法及び充電式掃除機
JP4413888B2 (ja) 蓄電池システム、車載電源システム、車両、および蓄電池システムの充電方法
JP6155605B2 (ja) リチウムイオン二次電池、電池パック、電子機器、電動車両、蓄電装置および電力システム
JP5191502B2 (ja) リチウムイオン二次電池システムおよびリチウムイオン二次電池
JP5775725B2 (ja) 充電制御システム
US9643501B2 (en) Vehicle including power storage unit
JP5485080B2 (ja) 放電制御システム
JP5708977B2 (ja) 組電池
US20130059199A1 (en) Non-aqueous electrolyte solution type lithium ion secondary battery
JP2013008586A (ja) リチウムイオン二次電池、リチウムイオン二次電池用負極、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
WO2008015987A1 (en) Nonaqueous electrolyte battery, battery pack and vehicle
US20120032647A1 (en) Method for determining completion of charge of lithium ion secondary battery, method for determining termination of discharge of lithium ion secondary battery, charge control circuit, discharge control circuit, and power supply
JP4714229B2 (ja) リチウム二次電池
JP5526368B2 (ja) 非水電解質二次電池
JP6183443B2 (ja) リチウムイオン二次電池、リチウムイオン二次電池用負極、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
JP2012238461A (ja) 二次電池及びその製造方法
JP6120083B2 (ja) 非水電解液二次電池の製造方法
JP5618156B2 (ja) 密閉型リチウム二次電池の製造方法
WO2022200907A1 (ja) 蓄電池管理システム、車両およびサーバ装置
JP2020167068A (ja) 全固体リチウムイオン二次電池およびその製造方法、並びにこれを用いた全固体リチウムイオン二次電池システムおよび全固体リチウムイオン二次電池の充電方法
WO2013183460A1 (ja) リチウムイオン二次電池制御システム、電池システム、並びにこれを備える移動体及び電力貯蔵システム
JP2021077531A (ja) 非水電解質二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14865072

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015551034

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15032883

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014865072

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014865072

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE