WO2015080237A1 - ダイヤモンド被覆超硬合金製切削工具及びその製造方法 - Google Patents

ダイヤモンド被覆超硬合金製切削工具及びその製造方法 Download PDF

Info

Publication number
WO2015080237A1
WO2015080237A1 PCT/JP2014/081495 JP2014081495W WO2015080237A1 WO 2015080237 A1 WO2015080237 A1 WO 2015080237A1 JP 2014081495 W JP2014081495 W JP 2014081495W WO 2015080237 A1 WO2015080237 A1 WO 2015080237A1
Authority
WO
WIPO (PCT)
Prior art keywords
diamond
cemented carbide
tac
nbc
cutting tool
Prior art date
Application number
PCT/JP2014/081495
Other languages
English (en)
French (fr)
Inventor
英彰 高島
高岡 秀充
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Priority to US15/038,942 priority Critical patent/US10086438B2/en
Priority to EP14866573.0A priority patent/EP3075476B1/en
Priority to CN201480063553.XA priority patent/CN105764637B/zh
Publication of WO2015080237A1 publication Critical patent/WO2015080237A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • B23B27/148Composition of the cutting inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/16Milling-cutters characterised by physical features other than shape
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/001Joining burned ceramic articles with other burned ceramic articles or other articles by heating directly with other burned ceramic articles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5001Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with carbon or carbonisable materials
    • C04B41/5002Diamond
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/051Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/08Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds based on tungsten carbide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/271Diamond only using hot filaments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F2005/001Cutting tools, earth boring or grinding tool other than table ware
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/15Nickel or cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2302/00Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
    • B22F2302/10Carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2222/00Materials of tools or workpieces composed of metals, alloys or metal matrices
    • B23B2222/28Details of hard metal, i.e. cemented carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2226/00Materials of tools or workpieces not comprising a metal
    • B23B2226/27Composites
    • B23B2226/275Carbon fibre reinforced carbon composites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2226/00Materials of tools or workpieces not comprising a metal
    • B23B2226/31Diamond
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2228/00Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner
    • B23B2228/10Coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2222/00Materials of tools or workpieces composed of metals, alloys or metal matrices
    • B23C2222/28Details of hard metal, i.e. cemented carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2226/00Materials of tools or workpieces not comprising a metal
    • B23C2226/27Composites, e.g. fibre reinforced composites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2226/00Materials of tools or workpieces not comprising a metal
    • B23C2226/31Diamond
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2228/00Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner
    • B23C2228/10Coating
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/363Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/401Cermets
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/405Iron metal group, e.g. Co or Ni

Definitions

  • the present invention provides a diamond-coated carbonized carbon that exhibits excellent chipping resistance and peeling resistance by providing excellent impact resistance and adhesion in high-speed cutting of difficult-to-cut materials such as CFRP (carbon fiber reinforced plastic).
  • CFRP carbon fiber reinforced plastic
  • the present invention relates to a tungsten-based cemented carbide cutting tool.
  • a diamond-coated cemented carbide cutting tool (hereinafter referred to as a “diamond-coated tool”) in which a diamond film is coated on a tool base made of a tungsten carbide (WC) -based cemented carbide (hereinafter referred to as a “carbide”). It has been known. In conventional diamond-coated tools, the adhesion between the tool base and the diamond film is not sufficient. To improve this, the diamond formation from the cemented carbide tool base surface is obstructed before the diamond film is formed. Various proposals have been made such as removing cobalt and forming a diamond film on a tool substrate.
  • Patent Document 1 in a diamond-coated tool, Co (cobalt) on a substrate surface is removed by performing a stepwise etching process on a cemented carbide substrate to form irregularities of about WC particles on the cemented carbide substrate.
  • Co cobalt
  • the adhesion between the diamond film and the cemented carbide tool substrate is improved by coating the diamond film.
  • Patent Document 2 discloses that in a diamond-coated tool, an intermediate layer such as W (tungsten) is coated on a cemented carbide substrate on which irregularities are formed by electrolytic etching, and a diamond film is coated on the intermediate layer. Is intended to improve the adhesion between the diamond film and the tool substrate.
  • W tungsten
  • Patent Document 3 when a cemented carbide tool base is coated with diamond, the element carbide periodic table IVa group, Va group, VIa group metal carbide, silicon carbide or alumina is provided on the surface of the cemented carbide tool base. And the like are disclosed.
  • the adhesion between the tool substrate and the diamond film is improved by subjecting such a cemented carbide tool substrate surface to electrolytic etching to form irregularities on the substrate surface.
  • Patent Document 3 SiC particles are embedded in a cemented carbide substrate, and the SiC particles function as masking that inhibits etching, and a convex shape is formed on the cemented carbide substrate. It is difficult to embed, and it is also difficult to bury SiC particles, which are hard ceramics, in a hard cemented carbide substrate.
  • the technical problem to be solved by the present invention is to improve the adhesion between the diamond film and the tool base and improve the edge strength of the diamond-coated tool and prevent chipping. It is to provide a diamond-coated tool having improved cutting performance and peeling resistance and having a long cutting life.
  • the present inventors diligently repeated research and experiments on the above-described problems of diamond-coated tools.
  • a treatment for removing Co in the metal binder phase existing on the outermost surface of the tool base is performed.
  • the present inventors have found that the removal of Co causes a reduction in toughness at the cutting edge and causes a reduction in the strength of the cutting edge.
  • the cemented carbide substrate contains TaC (tantalum carbide) and NbC (niobium carbide), depending on the sintering conditions, TaC and NbC may grow between WC particles during sintering, so Thus, TaC and NbC crystal grains are formed without gaps. (2) For this reason, the Co binder phase existing between the WC particles on which TaC and NbC crystal grains are formed is pushed out to the outside between the TaC, NbC and WC particles during sintering.
  • TaC tantalum carbide
  • NbC niobium carbide
  • survive on upper part is formed by the process (3rd pre-processing process) which removes Co of the base
  • This invention is made
  • a plurality of convex portions exist on the surface of the tool base, the average height of the plurality of convex portions is 1.0 to 3.0 ⁇ m, the average width is 0.5 to 6.0 ⁇ m, and the height relative to the width
  • a sintering step for forming the tool base by: A first pretreatment step of immersing the tool substrate in an acid solution containing dilute sulfuric acid and hydrogen peroxide; The tool base that has been subjected to the first pretreatment step is placed in an alkaline etching solution containing sodium hydroxide at a concentration of 5 to 15% by volume in a state where a current of 1.5 to 2.5 A / dm 2 flows.
  • a method for manufacturing a diamond-coated cemented carbide cutting tool comprising:
  • the “upper part of the convex part” in the present invention means one or two of TaC and NbC remaining as a result of etching without being removed on the diamond film side of the convex part.
  • the “lower part of the convex part” is located below the upper part (on the tool base side of the convex part) and has Co and WC remaining without being removed by etching because TaC and NbC exist above. It means the part composed of particles.
  • a convex part is comprised only in an upper part and a lower part.
  • the diamond-coated cemented carbide cutting tool of the present invention has Co of 3 to 15% by mass, the total amount of one or two of TaC and NbC is 0.1 to 3.0% by mass, and the balance is WC.
  • a tool base made of a tungsten carbide-based cemented carbide alloy is coated with a diamond film and has a plurality of convex portions on the surface of the tool base, and the average height of the plurality of convex portions is 1. 0 to 3.0 ⁇ m, the average width is 0.5 to 6.0 ⁇ m, and the aspect ratio defined by the height with respect to the width is 0.5 to 3.0.
  • the lower part of the convex part which is composed of one or two of NbC and is located below the upper part is composed of WC and Co, thereby improving the adhesion between the tool base and the diamond film and the cutting edge. Strength is improved. According to the cutting tool made of diamond-coated cemented carbide of the present invention, excellent cutting edge strength and wear resistance can be exhibited in cutting such as CFRP, and the effect is great. In addition, by setting the number of convex portions per unit area to 500 to 10,000 / mm 2 , the adhesion between the tool base and the diamond film and the strength of the blade edge can be further improved, and a higher effect can be obtained. it can.
  • Co is 3 to 15% by mass
  • the total amount of one or two of TaC and NbC is 0.1 to 3.0% by mass
  • the balance is WC.
  • a plurality of convex portions 13 are present on the surface of the tool base 12, and the average of the heights 7 of the plurality of convex portions 13 is present.
  • the average width 6 is 0.5 to 6.0 ⁇ m
  • the average aspect ratio defined by the height 7 with respect to the width 6 is 0.5 to 3.0.
  • the upper portion 8 of the convex portion 13 is composed of one or two of TaC and NbC (reference numeral 1), and the lower portion 9 of the convex portion 13 positioned below the upper portion 8 is WC (reference numeral 2). ) And Co (Co bonded phase 4).
  • Co content in cemented carbide constituting the tool base 3 to 15% by mass
  • the toughness of the tool base 12 becomes low and defects are likely to occur during cutting, which is not preferable.
  • the volume ratio occupied by the voids (holes) 3 increases in the area where Co is removed after the etching process, and the area where Co is removed becomes brittle.
  • the interfacial strength with the surface of the substrate 12 is undesirably lowered. Therefore, the Co content in the cemented carbide is determined to be 3 to 15% by mass.
  • the content of Co in the cemented carbide is preferably 5 to 7% by mass, but is not limited thereto.
  • Total content of one or two of TaC and NbC in the cemented carbide constituting the tool base 0.1 to 3.0% by mass
  • the density (number per unit volume) of the protrusions 13 is Less than 500 pieces / mm 2 , the effect of the desired convex portion 13 cannot be obtained.
  • the content ratio of TaC and NbC, which are hard particles exceeds 3.0% by mass, the toughness of the tool base 12 is lowered and defects are likely to occur.
  • the total content ratio of one or two of TaC and NbC in the cemented carbide constituting the tool base 12 is determined to be 0.1 to 3.0 mass%.
  • the total content of one or two of TaC and NbC in the cemented carbide is preferably 0.5 to 1.5% by mass, but is not limited thereto.
  • the average height 7 of the plurality of convex portions 13 formed on the surface of the tool base 12 is set to 1.0 to 3.0 ⁇ m.
  • the average of the heights 7 of the plurality of convex portions 13 is preferably 1.5 to 2.0 ⁇ m, but is not limited thereto.
  • the average of the widths 6 of the plurality of convex portions 13 formed on the surface of the tool base 12 is set to 0.5 to 6.0 ⁇ m.
  • the average of the widths 6 of the plurality of convex portions 13 is preferably 1.5 to 3.0 ⁇ m, but is not limited thereto.
  • the average aspect ratio defined by the height 7 (height / width) with respect to the width 6 of the protrusion 13 formed on the surface of the tool base 12 is less than 0.5, the unevenness of the protrusion 13 is small and sufficient. Adhesiveness with the diamond film 5 cannot be obtained.
  • the average aspect ratio of the convex portion 13 exceeds 3.0, the strength of the convex portion 13 becomes weak and sufficient adhesion to the diamond film 5 cannot be obtained. Therefore, the average aspect ratio defined by the height 7 with respect to the width 6 of the convex portion 13 formed on the surface of the tool base 12 is set to 0.5 to 3.0.
  • the average aspect ratio is preferably 0.7 to 1.3, but is not limited thereto.
  • the number of convex portions 13 formed on the surface of the tool base 12 per unit area is preferably 500 to 10,000 / mm 2 .
  • this number is less than 500 pieces / mm 2 , sufficient adhesion to the diamond film 5 cannot be obtained.
  • this number exceeds 10,000 pieces / mm 2 , the ratio of the total amount of one or two of TaC and NbC in the cemented carbide constituting the tool base 12 is high. There is a risk that the toughness is reduced and defects are caused. Therefore, the number of convex portions 13 formed on the surface of the tool base 12 per unit area is preferably 500 to 10,000 pieces / mm 2 .
  • the number of convex portions 13 per unit volume is more preferably 4000 to 7000 / mm 2 , but is not limited thereto.
  • the lower portion 9 of the convex portion 13 formed on the surface of the tool base 12 is composed only of WC (reference numeral 2 in FIG. 1) and Co (Co binder phase 4), and the Co content in the lower portion 9 is 2 to 2. It is preferable that it is 13 mass%. In this case, the strength at the lower portion 9 of the convex portion 13 is not significantly reduced as compared with the inside of the tool base 12. For this reason, the diamond film 5 is difficult to peel off from the convex portion 13, so that the adhesion with the diamond film 5 can be further improved.
  • the Co content in the lower portion 9 of the convex portion 13 is more preferably 2 to 13% by mass, but is not limited thereto.
  • the upper portion 8 of the convex portion 13 formed on the surface of the tool base 12 is composed mainly of one or two of TaC or NbC, and one or two of TaC and NbC in the upper portion 8.
  • the total content is preferably 95 to 100% by mass.
  • the upper portion 8 is composed of only one crystal grain 1 made of TaC or NbC.
  • the average film thickness of the diamond film 5 coated on the surface of the tool base 12 is 3 to 30 ⁇ m. If it is less than 3 ⁇ m, sufficient wear resistance and peel resistance cannot be exhibited over a long period of use. On the other hand, if the average film thickness of the diamond film 5 exceeds 30 ⁇ m, chipping, chipping, and peeling are likely to occur, and the processing accuracy also decreases. Therefore, the average film thickness of the diamond film 5 is preferably 3 to 30 ⁇ m. The average film thickness is more preferably 10 to 15 ⁇ m in order to achieve both wear resistance and processing accuracy of the tool, but is not limited thereto.
  • the number of raised portions 14 per unit area is 500 to 10,000 / mm 2. It is preferable that When the number is less than 500 pieces / mm 2 , the number of convex portions 13 per unit area is small, so that sufficient adhesion with the diamond film 5 cannot be obtained.
  • the number of the raised portions 14 per unit area exceeds 10,000 pieces / mm 2 , that is, when the number of convex portions 13 exceeds 10,000 pieces / mm 2 , in the cemented carbide constituting the tool base 12 Since the ratio of the total amount of one or two of TaC and NbC is high, the toughness of the tool base 12 may be reduced, and there is a possibility of causing defects. Therefore, the number of the raised portions 14 formed on the surface of the diamond film 5 per unit area is preferably 500 to 10,000 / mm 2 .
  • the number of the raised portions 14 per unit volume is more preferably 4000 to 7000 pieces / mm 2 , but is not limited thereto.
  • the height 11 of the raised portions 14 formed on the surface of the diamond film 5 is preferably 1.0 to 3.0 ⁇ m on average. In this case, an effect of increasing the adhesion between the diamond film and the substrate can be obtained.
  • the average of the heights 11 of the plurality of raised portions 14 is preferably 1.5 to 2.0 ⁇ m, but is not limited thereto.
  • the average width 10 of the raised portions 14 formed on the surface of the diamond film 5 is preferably 3.0 to 20.0 ⁇ m. In this case, since the contact area with the material to be cut can be reduced in cutting, cutting resistance can be reduced and chip discharge can be improved.
  • the average width 10 of the plurality of raised portions 14 is preferably 8 to 15 ⁇ m, but is not limited thereto.
  • the tribological characteristics at the time of cutting can be improved.
  • the tribological characteristics of a diamond-coated cemented carbide cutting tool can be improved in cutting work on metal.
  • processing characteristics such as processing accuracy can be improved. .
  • the height 11 and width 10 of the portion 14, the number of raised portions 14 per unit area, and the film thickness of the diamond film 5 are preferably determined by the following method. First, a cross section perpendicular to the surface of the tool base 12 and perpendicular to the surface of the tool base 12 is observed with a scanning electron microscope.
  • the region composed of TaC or NbC crystal grains (reference numeral 1 in FIG. 1) in the above observation region, that is, the upper portion 8 is specified by Auger electron spectroscopy. To do.
  • the maximum value of the width of the upper portion 8 in the direction parallel to the surface of the tool base 12 is defined as the width 6 of the convex portion 13.
  • a point on the upper part 8 having the longest distance from the surface of the tool base 12 is set as one end point, and a point until WC or Co is detected by performing line analysis in the film thickness direction is set as the other end point. Let the distance be the height 7 of the convex portion 13.
  • each convex portion 13 is obtained by dividing the height 7 of each convex portion 13 by the width 6 and calculating the arithmetic average. Further, with respect to the height 11 of the raised portion 14, the surface of the diamond film 5 is used as a reference plane, the point on the raised portion 14 having the maximum distance from the reference plane is set as one end point, and the distance from the reference plane to one end point is set. Is the height 11 of the raised portion 14 and measured using a scanning electron microscope.
  • the surface of the diamond film 5 is observed using a laser microscope, and the region where the height difference from the reference plane exceeds 1 ⁇ m is defined as the raised portion, and the contour of the raised portion (the starting point of the raised portion and The maximum diameter of the set of points) is the width 10 of the raised portion 14.
  • the average film thickness of the diamond film 5 is determined by measuring the film thickness at any five points in the region where the convex portion 13 is not formed in the cross-section of the cutting edge of the tool using a scanning electron microscope, and calculating the arithmetic average. The average film thickness is taken.
  • the number of the raised portions 14 per unit area is measured by observing three fields of 100 ⁇ m square on the surface of the diamond film 5 with a scanning electron microscope. The number of the raised portions 14 per unit area of the raised portions 14 formed on the diamond film 5 in each visual field is calculated, and the arithmetic average of the three visual fields is calculated to obtain the number of the raised portions 14 per unit area.
  • the number of the raised portions 14 per unit area is set to the number of the convex portions 13 per unit area.
  • the confocal microscopic Raman spectroscope employing the confocal optical system is used to make the confocal from the surface of the base.
  • the peak signal intensity indicating sp 3 coupling is imaged two-dimensionally.
  • the number of the projections 13 per unit area is calculated by calculating the number of the projections 13 per unit area, and the arithmetic average of the three fields of view is calculated. The number is 13 per unit area.
  • the diamond-coated tool 100 and the tool base 12 of the present embodiment as described above can be manufactured by the following manufacturing method.
  • a WC-based cemented carbide containing Co powder and at least one of TaC powder and NbC powder is sintered.
  • the content of each component in the WC-based cemented carbide is 3 to 15% by mass of Co
  • the total amount of one or two of TaC and NbC is 0.1 to 3.0% by mass
  • the balance is WC. is there.
  • the particle diameter of TaC and NbC powder particles is preferably about 1 ⁇ m (specifically 0.8 to 1.3 ⁇ m), more preferably fine particles of 1 ⁇ m or less.
  • the particle diameter of the Co powder is preferably 1 to 2 ⁇ m, and the particle diameter of the WC powder is preferably 0.5 to 1.5 ⁇ m.
  • These powders are preferably granulated at about 200 ° C. (190 to 210 ° C.) using a spray dryer. It is preferable to produce a sintered body by compacting such a powder and sintering it by holding at a temperature of 1380-1500 ° C. for 1-2 hours in a vacuum atmosphere (0.1-10 Pa).
  • the substrate is immersed in 1 L of an acid mixed solution composed of dilute sulfuric acid (1.0% by volume) and hydrogen peroxide (3% by volume) at room temperature (23 ° C.) for 15 to 25 seconds. Co near the surface of the cemented carbide substrate is removed by etching.
  • the acid mixed solution it is preferable that dilute sulfuric acid is 0.4 to 1.0% by volume and hydrogen peroxide is 2 to 5% by volume.
  • the immersion temperature is preferably 20 to 25 ° C.
  • a current amount per unit area of 1.5 to 2.5 A / dm 2 is added to 1 L (concentration 5 to 15 vol%) of an etching solution containing NaOH (50 to 150 g). Electrolytic etching is performed for 30 to 60 minutes in a state where an electric current is applied so as to remove WC on the surface of the substrate.
  • the shape of the protrusion formed in the second pretreatment step is the amount of current applied during etching, the concentration of the alkaline etching solution, the etching time, the amount of TaC or NbC constituting the cemented carbide substrate, and TaC during substrate production. Alternatively, it is controlled by the particle size of the NbC raw material powder, the granulation step, and the sintering step.
  • a third pretreatment step 1 L of an acid mixed solution of dilute sulfuric acid 0.4 to 1.0 volume% and hydrogen peroxide 2 to 5 volume% is used for 8 to 15 seconds at room temperature (20 to 25 ° C.). Soak in. Thereby, a part of the Co bonded phase is removed to a depth of 5 to 6 ⁇ m. (6) Next, a diamond film 5 having an average film thickness of 3 to 30 ⁇ m is coated on the tool base 12 in a hot filament CVD process.
  • FIG. 1 A schematic diagram of a cross section of the interface between the diamond film and the substrate of the diamond-coated tool of the present embodiment manufactured by the above method is shown in FIG.
  • the average height 7 of the portion 13 is 1 to 3 ⁇ m
  • the average width 6 is 0.5 to 6 ⁇ m
  • the average aspect ratio of the height to the width is 0.5 to 3.0
  • diamond is formed on the surface of the tool base 12. It was confirmed that the convex portion 13 was formed so as to bite into the film 5.
  • the upper part (upper part 8) of the convex part 13 is composed of TaC and NbC1
  • the lower part of the convex part (lower part 9) is the WC particle 2. It was composed of Co (Co bonded phase 4).
  • the ridges 14 having a width 10 of 3 to 20 ⁇ m were 500 to 10000 / mm 2 per unit area in three arbitrary fields of 100 ⁇ m square on the surface of the surface observation sample of this embodiment. .
  • the manufacturing method described above has the following effects. That is, in the first pretreatment step, Co (Co-bonded phase 4) on the surface of the tool base 12 is removed, whereas TaC existing on the surface of the tool base 12 and Co immediately below NbC1 are TaC. Since NbC1 breaks contact with the acid etching solution, it remains without being removed. As a result, the bonding force between the WC particles 2 is maintained by the remaining Co bonding phase 4 immediately below TaC and NbC1. For this reason, even if WC2 on the surface of the tool base 12 is removed by electrolytic etching in the second pretreatment step, the WC particles 2 included in the convex portion 13 remain without being removed.
  • a convex portion 13 is formed on the tool base 12 in which the upper portion 8 is made of TaC or NbC and the lower portion 9 is made of WC particles and Co.
  • the CVD process is performed on the surface of the tool base 12, the diamond film 5 is formed in a state in which the convex portions 13 are bitten like a wedge in the diamond film 5. Therefore, the adhesion between the tool base 12 and the diamond film 5 is formed. Becomes higher.
  • the adhesion of the film of the diamond-coated tool and the strength of the cutting edge are determined by the metal bonding phase (mainly Co and Co) on the surface of the tool base 12 in order to improve the bonding strength (adhesion) between the tool base 12 and the diamond film 5.
  • the metal bonding phase mainly Co and Co
  • the upper surface is made of TaC or NbC
  • the lower part is made of WC and Co on the surface of the tool base 12 at a predetermined ratio.
  • the adhesion unique between the surface of the tool base 12 and the diamond film 5 is improved by the configuration unique to the present embodiment.
  • the above-described problems of adhesion and cutting edge strength are solved by such a novel technical idea.
  • the diamond-coated tool of this embodiment will be specifically described based on examples.
  • a diamond-coated cemented carbide drill is described as a specific example of the diamond-coated tool
  • the present invention is not limited to this, but a diamond-coated cemented carbide insert, a diamond-coated cemented carbide end mill, etc. Needless to say, the present invention can be applied to various diamond-coated tools.
  • WC powder, Co powder, TaC powder, NbC powder each having a predetermined average particle diameter in the range of 0.5 to 1.0 ⁇ m are blended in the proportions shown in Table 1. Further, a binder (specifically, paraffin) and a solvent (specifically, toluene, xylene, mesitylene, tetralin, decalin, etc.) were added, followed by ball mill mixing in acetone for 24 hours, followed by drying under reduced pressure. Thereafter, all of them were extruded and pressed to form round bar compacts having a diameter of 10 mm and a length of 150 mm.
  • a binder specifically, paraffin
  • a solvent specifically, toluene, xylene, mesitylene, tetralin, decalin, etc.
  • the diamond-coated WC-based cemented carbide drills (hereinafter simply referred to as “the drills of the present invention”) 1 to 9 of this embodiment shown in Table 3 are manufactured. did.
  • the amount of TaC or NbC raw material powder constituting the cemented carbide substrate and the particle size of the raw material powder, the sintering temperature of the cemented carbide, the sintering time, and (c) The shape of the protrusions formed on the surface of the tool base was controlled by the amount of current applied during the step), the concentration of the etching solution, and the etching time.
  • a drill base was manufactured in the same manner as in the above (a) using the raw material powder blended in the ratio shown in Table 1.
  • the drill base was immersed in 1 L of an acid mixed solution of dilute sulfuric acid (0.5% by volume) and hydrogen peroxide (3% by volume) at the treatment time shown in Table 2 (10 to 20 seconds) at room temperature (23 ° C.).
  • a part of the metallic binder phase mainly comprising Co in the vicinity of the surface of the drill base was removed by etching to a depth of 5 to 6 ⁇ m (first pretreatment step).
  • a drill base was manufactured in the same manner as in the above (a) using the raw material powder blended in the ratio shown in Table 1.
  • the drill base is immersed in 1 L of an acid mixed solution of dilute sulfuric acid (0.5% by volume) and hydrogen peroxide (3% by volume) at a treatment time (8 to 15 seconds) shown in Table 2 at room temperature (23 ° C.).
  • a part of the metallic binder phase mainly comprising Co in the vicinity of the surface of the drill base was removed by etching to a depth of 5 to 6 ⁇ m (first pretreatment step).
  • it was immersed in 1 L of mixed alkaline solution of potassium ferrocyanide (100 g) and NaOH (100 g) at 45 ° C. for 30 to 60 minutes (second pretreatment step).
  • the drill base was immersed in 1 L of an acid mixed solution of dilute sulfuric acid (0.5% by volume) and hydrogen peroxide (3% by volume) at the treatment time shown in Table 2 (12 to 15 seconds) at room temperature (23 ° C.). A part of the metal-bonded phase mainly containing Co in the vicinity of the surface was removed (third pretreatment step).
  • the diamond-coated WC-base cemented carbide drills (hereinafter simply referred to as “reference example drills”) 1 to 6 of reference examples shown in Table 3 were produced.
  • Convex portions in the observation field are formed by observing the film thickness of the diamond films of the present invention drills 1 to 9, comparative example drills 1 to 11 and reference drills 1 to 6 using the above-described scanning electron microscope.
  • the film thickness was measured at five points, and the average film thickness was calculated. Table 3 shows these values.
  • the drills 1 to 9 and the comparative drills 1 to 11 and the reference drills 1 to 6 of the present invention the height, width and width of the convex portions formed on the tool base surface by cross-sectional observation using the scanning electron microscope described above.
  • the aspect ratio defined by the height relative to the height and the height and width of the ridge formed on the surface of the diamond film were measured, and the arithmetic average was obtained for each.
  • the convex portions observed in the drills 1 to 9 of the present invention are all defined by the average height of 1.0 to 3.0 ⁇ m, the average width of 0.5 to 6.0 ⁇ m, and the height relative to the width.
  • the aspect ratio is 0.5 to 3.0, and it is confirmed that the ridges have an average height of 1.0 to 3.0 ⁇ m and an average width of 3.0 to 20.0 ⁇ m. It was. Further, by observing the surface of the drills 1 to 9 of the present invention, the comparative drills 1 to 11 and the reference drills 1 to 6 with a scanning electron microscope, the number of raised portions per unit area (unit volume of the convex portion in Table 3) Per number). The results are shown in Table 3. In addition, since those values could not be measured for the case where the convex portion was not formed, “ ⁇ ” was shown in Table 3.
  • the CFRP high-speed drilling test is performed under the following conditions: Went.
  • the normal cutting speed described in the following conditions is a cutting speed at which the efficiency (generally, the number of parts that can be processed before the tool life) is optimized when a conventional coated tool is used.
  • the drills 1 to 9 of the present invention have a height of 1.0 to 3.0 ⁇ m, a width of 0.5 to 6.0 ⁇ m and a height relative to the width on the tool base surface.
  • the lower part of the convex part located below was composed of WC and Co.
  • the height of the raised portion formed on the surface of the diamond film due to the convex portion is 1.0 to 3.0 ⁇ m
  • the width is 3.0 to 20.0 ⁇ m
  • the unit area of the raised portion The number per unit was 500 to 10,000 pieces / mm 2 .
  • the comparative drills 1 to 11 and the reference drills 1 to 6 in which the predetermined protrusions are not formed on the surface of the tool base like the drill of the present invention are clearly inferior in adhesiveness and have a short life. Met.
  • the diamond-coated cemented carbide cutting tool of the present invention is applicable not only to diamond-coated cemented carbide drills but also to various diamond-coated tools such as diamond-coated cemented carbide inserts and diamond-coated cemented carbide end mills. It is. For this reason, the diamond-coated cemented carbide cutting tool of the present invention exhibits excellent cutting edge strength and wear resistance, so that it can sufficiently satisfy cutting energy saving and cost reduction. Industrial applicability is enormous.

Abstract

 Coが3~15質量%、TaC、NbCの内の1種または2種の合計量が0.1~3.0質量%、残部がWCで構成される炭化タングステン基超硬合金からなる工具基体にダイヤモンド膜を被覆形成したダイヤモンド被覆超硬合金製切削工具において、前記工具基体表面に複数の凸部が存在し、該凸部の上部位はTaC、NbCの内の1種または2種で構成され、上記上部位の下方に位置する前記凸部の下部位はWCとCoで構成される。

Description

ダイヤモンド被覆超硬合金製切削工具及びその製造方法
 本発明は、CFRP(炭素繊維強化プラスチック)などの難削材の高速切削加工において、すぐれた耐衝撃性および密着性を備えることによって、すぐれた耐チッピング性および耐剥離性を発揮するダイヤモンド被覆炭化タングステン基超硬合金製切削工具に関する。
 本願は、2013年11月29日に日本に出願された特願2013-247280号、及び2014年11月26日に日本に出願された特願2014-238392号に基づき優先権を主張し、その内容をここに援用する。
 従来、炭化タングステン(WC)基超硬合金(以下、「超硬合金」という)からなる工具基体に、ダイヤモンド膜を被覆したダイヤモンド被覆超硬合金製切削工具(以下、「ダイヤモンド被覆工具」という)が知られている。従来のダイヤモンド被覆工具においては、工具基体とダイヤモンド膜の密着性が十分でないため、これを改善するために、ダイヤモンド膜を成膜する前に超硬合金製工具基体表面からダイヤモンドの形成を阻害するコバルトを除去し、工具基体上にダイヤモンド膜を成膜するなどの種々の提案がなされている。
 例えば、特許文献1には、ダイヤモンド被覆工具において、超硬合金基体を段階的にエッチング処理することにより基体表面のCo(コバルト)を除去し、超硬合金基体上にWC粒子程度の凹凸を形成し、ダイヤモンド膜を被覆することによって、ダイヤモンド膜と超硬合金製工具基体との密着性を改善することが開示されている。
 また、特許文献2には、ダイヤモンド被覆工具において、電解エッチング処理により凹凸が形成された超硬合金基体上にW(タングステン)等の中間層を被覆し、中間層上にダイヤモンド膜を被覆することによって、ダイヤモンド膜と工具基体との密着性改善を図ることが開示されている。
 さらに、例えば、特許文献3には、超硬合金製工具基体をダイヤモンドで被覆するにあたり、超硬合金工具基体表面に元素周期律表IVa族、Va族、VIa族の金属炭化物、炭化ケイ素またはアルミナ等のセラミック粒子を埋め込むことが開示されている。特許文献3では、このような超硬合金工具基体表面に電解エッチング処理を施して基体表面に凹凸を形成することにより、工具基体とダイヤモンド膜の密着性を改善している。
欧州特許第519587号明細書 特開2000-144451号公報 特許平8-92741号公報
 近年の切削加工の技術分野における省力化および省エネ化、さらに低コスト化に対する要求は強く、これに伴い、切削加工は益々高速化の傾向にある。一方、従来ダイヤモンド被覆工具を、例えば、CFRPなどの難削材を高い加工精度での高速切削に用いる場合には、ドリルに鋭利な刃先が要求されるため、特に高い刃先強度が要求されるが、従来ダイヤモンド被覆工具は刃先強度が十分でなく、また、ダイヤモンド膜の剥離が生じやすい。そのため、長期の使用に亘って満足できる耐チッピング性および耐摩耗性を発揮することはできず、その結果、比較的短時間で使用寿命に至ることが多かった。
 例えば、特許文献1に開示されているような、工具基体の表面近傍の結合相の量、すなわちCo量を少なくすることによってダイヤモンド膜と工具基体との密着性を向上させる処理を行った場合であっても、CFRPなどの高速切削加工においては刃先に繰り返し衝撃が加わるため、刃先近傍の強度が十分でなく、チッピングまたは剥離の発生により早期に切削工具としての寿命に至るという課題があった。
 また、特許文献2に示すような前処理を行う場合、電解エッチングによりWCとCoが同時に溶出してしまうため、凸部の強度維持が困難であり、W中間層と超硬合金基体間の密着性にも課題があった。特許文献3ではSiC粒子を超硬合金基体に埋め込み、SiC粒子がエッチングを阻害するマスキングとして機能し、凸形状を超硬合金基体上に形成させているが、WC粒子間に隙間なくSiC粒子を埋め込むことは困難であり、硬い超硬合金基体に硬質セラミックスであるSiC粒子を埋め込むことも至難であった。
 そこで、本発明が解決しようとする技術的課題、すなわち本発明の目的は、ダイヤモンド被覆工具において、ダイヤモンド膜と工具基体との密着性を向上させるとともにダイヤモンド被覆工具の刃先強度を向上させ、耐チッピング性および耐剥離性が向上した、切削寿命が長いダイヤモンド被覆工具を提供することである。
 前述のようなダイヤモンド被覆工具の課題について本発明者らは鋭意、研究と実験を繰り返した。その結果、従来のダイヤモンド被覆工具においては、前述のようにダイヤモンド膜と工具基体との密着性を上げるために工具基体の最表面に存在する金属結合相中のCoを除去する処理を行っているが、そのCoの除去が刃先における靭性の低下を招き、刃先強度低下の原因となっていることを本発明者らは突き止めた。
 そこで、例えば、CFRPなどの高速穴あけ加工や高速エンドミル加工のように、切れ刃に高負荷が作用する切削条件に用いられた場合でも、すぐれた刃先強度を備えるとともに、長期の使用に亘ってすぐれた耐摩耗性を発揮するダイヤモンド被覆工具を提供すべく、工具基体表面近傍に存在する金属結合相中のCoに焦点を当て鋭意研究を重ねた。その結果、本発明者らは次のような知見を得た。
 すなわち、
(1)超硬合金基体がTaC(炭化タンタル)、NbC(炭化ニオブ)を含有する場合、焼結条件によっては焼結時にTaC、NbCがWC粒子間において結晶粒成長することにより、WC粒子間にTaC、NbC結晶粒が隙間なく形成される。
(2)そのため、TaC、NbC結晶粒が形成されたWC粒子間に存在していたCo結合相は、焼結時にTaC、NbCとWC粒子間の外側に押し出される。
(3)前記(1)、(2)の基体に酸溶液(酸混合溶液)による第1前処理工程、すなわち、化学的なエッチング(希硫酸+過酸化水素水)を行うと、基体表面近傍にTaC、NbCが存在している箇所はCoエッチングが進行しない。
(4)基体表面近傍に存在するTaC、NbCの直下には酸処理(第1前処理工程)によって除去されなかったCoが存在している。そして、NaOHを含むアルカリエッチング溶液を用いた電解エッチング処理(第2前処理工程)によって、TaC、NbCの周りのWC粒子が除去される。そして、基体表面のCoを酸により除去する工程(第3前処理工程)によって、TaC、NbCが上部に残存している凸部が形成される。
(5)その後、この超硬合金基体にダイヤモンド膜を形成すると、TaC、NbCが上部に残存している凸部がダイヤモンド膜内部に楔のように食い込む形で存在するため、形状的作用によりダイヤモンド膜の密着性が強くなり、チッピングおよび剥離が抑えられる。
 本発明は、前記知見に基づいてなされたものであって、以下を特徴とするものである。
[1] Coが3~15質量%、TaC、NbCの内の1種または2種の合計量が0.1~3.0質量%、残部がWCで構成される炭化タングステン基超硬合金からなる工具基体にダイヤモンド膜を被覆形成したダイヤモンド被覆超硬合金製切削工具において、
 前記工具基体表面に複数の凸部が存在し、前記複数の凸部の高さの平均が1.0~3.0μm、幅の平均が0.5~6.0μm、および前記幅に対する前記高さで定義されるアスペクト比の平均が0.5~3.0であり、
 該凸部の上部位はTaC、NbCの内の1種または2種で構成され、上記上部位の下方に位置する前記凸部の下部位はWCとCoで構成される、ダイヤモンド被覆超硬合金製切削工具。
[2] 前記凸部の単位面積当たりの数が500~10000個/mmである[1]に記載のダイヤモンド被覆超硬合金製切削工具。
[3] 前記ダイヤモンド膜の平均膜厚が3~30μmである[1]または[2]に記載のダイヤモンド被覆超硬合金製切削工具。
[4] 前記ダイヤモンド膜の表面に複数の隆起部が形成され、前記複数の隆起部の高さの平均が1.0~3.0μm、幅の平均が3.0~20.0μmである[1]乃至[3]のいずれかに記載のダイヤモンド被覆超硬合金製切削工具。
[5] 前記隆起部の単位面積当たりの数が500~10000個/mmであることを特徴とする[4]に記載のダイヤモンド被覆超硬合金製切削工具。
[6] 前記下部位におけるCoの含有量が2~13質量%である[1]乃至[5]のいずれかに記載のダイヤモンド被覆超硬合金製切削工具。
[7] 前記上部位におけるTaC、NbCの内の1種または2種の合計の含有量が95~100質量%である[1]乃至[6]のいずれかに記載のダイヤモンド被覆超硬合金製切削工具。
[8] [1]乃至[7]のいずれかに記載のダイヤモンド被覆超硬合金製切削工具の製造方法であって、
 Co粉末と、TaC粉末及びNbC粉末の少なくとも一方と、WC粉末とを、スプレードライヤーを用いて190~210℃で造粒する造粒工程と、
 前記造粒工程を経た前記Co粉末と、前記TaC粉末及びNbC粉末の少なくとも一方と、前記WC粉末とを混合し、0.1~10Pa、1380~1500℃で1~2時間保持して焼結することにより前記工具基体を形成する焼結工程と、
 前記工具基体を、希硫酸と過酸化水素水を含む酸溶液に浸漬する第1前処理工程と、
 前記第1前処理工程を施した前記工具基体を、水酸化ナトリウムを含む濃度5~15体積%のアルカリエッチング溶液に、1.5~2.5A/dmの電流を流した状態で30~60分間浸漬して電解エッチング処理を行う第2前処理工程と、
 前記第2前処理工程を施した前記工具基体を、希硫酸と過酸化水素水を含む酸溶液に浸漬する第3前処理工程と、
 前記第3前処理工程を施した前記工具基体に対し、ダイヤモンド膜を被覆する工程と、
 を備えるダイヤモンド被覆超硬合金製切削工具の製造方法。
 ここで、本発明における「凸部の上部位」とは、エッチングの結果、凸部のダイヤモンド膜側に除去されずに残っているTaC、NbCの内の1種または2種を意味している。「凸部の下部位」とは、前述した上部位の下方(凸部の工具基体側)に位置し、上方にTaC、NbCが存在するためにエッチングによって除去されず残存しているCoとWC粒子とから構成されている部分を意味している。なお、凸部は上部位と下部位のみで構成される。
 本発明のダイヤモンド被覆超硬合金製切削工具は、Coが3~15質量%、TaC、NbCの内の1種または2種の合計量が0.1~3.0質量%、残部がWCで構成される炭化タングステン基超硬合金からなる工具基体にダイヤモンド膜を被覆形成したものであって、工具基体表面に複数の凸部が存在し、前記複数の凸部の高さの平均が1.0~3.0μm、幅の平均が0.5~6.0μmおよび前記幅に対する前記高さで定義されるアスペクト比が0.5~3.0であり、該凸部の上部位はTaC、NbCの内の1種または2種で構成され前記上部位の下方に位置する凸部の下部位はWCとCoで構成されることによって、工具基体とダイヤモンド膜との密着性を向上させるとともに刃先強度を向上させたものである。本発明のダイヤモンド被覆超硬合金製切削工具によれば、CFRPなどの切削加工において、すぐれた刃先強度および耐摩耗性を発揮でき、その効果は絶大である。また、凸部の単位面積当たりの数を500~10000個/mmとすることにより、工具基体とダイヤモンド膜との密着性や刃先強度をさらに向上させることができ、より高い効果を得ることができる。
本発明の実施形態に係るダイヤモンド被覆膜の断面を模式的に表した膜構成模式図である。
 以下、本発明の実施形態について図を参照して詳細に説明する。
 本実施形態に係るダイヤモンド被覆超合金製切削工具は、Coが3~15質量%、TaC、NbCの内の1種または2種の合計量が0.1~3.0質量%、残部がWCで構成される炭化タングステン基超硬合金からなる工具基体12にダイヤモンド膜5を被覆形成したダイヤモンド被覆超硬合金製切削工具である。本実施形態のダイヤモンド被覆超硬合金製切削工具100では、図1に模式的に示すように、工具基体12表面に複数の凸部13が存在し、複数の凸部13の高さ7の平均が1.0~3.0μm、幅6の平均が0.5~6.0μm、および前記幅6に対する高さ7で定義されるアスペクト比の平均が0.5~3.0である。また、凸部13の上部位8はTaC、NbC(符号1)の内の1種または2種で構成され、上記上部位8の下方に位置する凸部13の下部位9はWC(符号2)とCo(Co結合相4)で構成される。
 次に、各構成を上述のように規定した理由、及び好ましい構成について説明する。
(工具基体を構成する超硬合金中のCoの含有割合:3~15質量%)
 工具基体12を構成する超硬合金のCoの含有量が3質量%未満の場合、工具基体12の靭性が低くなり、切削時に欠損が生じやすくなるため好ましくない。一方、15質量%を超えると、エッチング処理後、Coが除去された領域において空隙(空孔)3が占める体積割合が多くなりCoが除去された領域が脆弱になるため、ダイヤモンド膜5と工具基体12表面との界面強度が低下し好ましくない。したがって、超硬合金中のCoの含有量を、3~15質量%と定めた。超硬合金中のCoの含有量は、好ましくは5~7質量%であるが、これに限定されない。
(工具基体を構成する超硬合金中のTaC、NbCの内の1種または2種の合計含有割合:0.1~3.0質量%)
 工具基体12を構成する超硬合金中のTaC、NbCの内の1種または2種の合計含有割合が、0.1質量%未満の場合、凸部13の密度(単位体積当たりの数)が500個/mmを下回り、所望の凸部13の効果が得られない。一方、硬質粒子であるTaC、NbCの含有割合が3.0質量%を超えると、工具基体12の靭性が低下し、欠損を生じやすくなる。したがって、工具基体12を構成する超硬合金中のTaC、NbCの内の1種または2種の合計含有割合を、0.1~3.0質量%と定めた。超硬合金中のTaC、NbCの内の1種または2種の合計含有割合は、好ましくは0.5~1.5質量%であるが、これに限定されない。
(工具基体表面に形成される複数の凸部の高さの平均:1.0~3.0μm)
 工具基体12表面に形成される複数の凸部13の高さ7が平均で1.0μm未満の場合、凸部13の起伏が小さく、十分なダイヤモンド膜5との密着性を得られない。一方、複数の凸部13の高さ7が平均で3.0μmを超えると切削時に凸部13を起点としてダイヤモンド膜5が剥離する恐れがある。したがって、工具基体12表面に形成される複数の凸部13の高さ7の平均を、1.0~3.0μmと定めた。複数の凸部13の高さ7の平均は、好ましくは1.5~2.0μmであるが、これに限定されない。
(工具基体表面に形成される複数の凸部の幅の平均:0.5~6.0μm)
 工具基体12表面に形成される複数の凸部13の幅6が平均で0.5μm未満の場合、凸部13を構成するWCは数粒子程度となり、凸部13の強度が低く、十分なダイヤモンド膜5との密着性を得られない。一方、複数の凸部13の幅6が平均で6.0μmを超えると切削時に凸部13を起点としてダイヤモンド膜5が剥離する恐れがある。したがって、工具基体12表面に形成される複数の凸部13の幅6の平均を、0.5~6.0μmと定めた。複数の凸部13の幅6の平均は、好ましくは1.5~3.0μmであるが、これに限定されない。
(工具基体表面に形成される凸部の幅に対する高さで定義されるアスペクト比の平均:0.5~3.0)
 工具基体12表面に形成される凸部13の幅6に対する高さ7(高さ/幅)で定義されるアスペクト比の平均が0.5未満の場合、凸部13の起伏が小さく、十分なダイヤモンド膜5との密着性を得られない。一方、凸部13のアスペクト比の平均が3.0を超える場合、凸部13の強度が弱くなり、十分なダイヤモンド膜5との密着性を得られない。したがって、工具基体12表面に形成される凸部13の幅6に対する高さ7で定義されるアスペクト比の平均を、0.5~3.0と定めた。アスペクト比の平均は、好ましくは0.7~1.3であるが、これに限定されない。
(凸部の単位体積当たりの数:500~10000個/mm
 工具基体12表面に形成される凸部13の単位面積当たりの数が500~10000個/mmであることが好ましい。この数が500個/mmを下回ると、十分なダイヤモンド膜5との密着性を得られない。一方、この数が10000個/mmを超える場合は、工具基体12を構成する超硬合金中のTaC、NbCの内の1種または2種の合計量の割合が高いため、工具基体12の靭性が低下し、欠損を生じる恐れがある。したがって、工具基体12表面に形成される凸部13の単位面積当たりの数は、500~10000個/mmとすることが好ましい。凸部13の単位体積当たりの数は、より好ましくは4000~7000個/mmであるが、これに限定されない。
(凸部の下部位におけるCoの含有量:2~13質量%)
 工具基体12表面に形成される凸部13の下部位9は、WC(図1の符号2)とCo(Co結合相4)とのみで構成され、下部位9におけるCoの含有量が2~13質量%であることが好ましい。この場合、凸部13の下部位9における強度が、工具基体12内部と比較して著しく低くなることがない。そのため、凸部13を起点としてダイヤモンド膜5が剥離し難くなるので、ダイヤモンド膜5との密着性をより高めることができる。凸部13の下部位9におけるCoの含有量は、より好ましくは2~13質量%であるが、これに限定されない。
(凸部の上部位におけるTaC、NbCの内の1種または2種の合計の含有量:95~100質量%)
 工具基体12表面に形成される凸部13の上部位8は、TaCまたはNbCの内の1種または2種を主成分としており、上部位8におけるTaC、NbCの内の1種または2種の合計の含有量が95~100質量%であることが好ましい。図1の例では、TaCまたはNbCからなる一つの結晶粒1のみで上部位8が構成されている。上部位8におけるTaC、NbCの内の1種または2種の合計の含有量を上記の範囲とすることにより、上部位におけるCo量が少なくなるので、下部位へのエッチングを阻害できる。凸部13の上部位8におけるTaC、NbCの内の1種または2種の合計の含有量は、より好ましくは95~100質量%であるが、これに限定されない。
(ダイヤモンド膜の平均膜厚:3~30μm)
 本実施形態において、工具基体12表面に被覆するダイヤモンド膜5の平均膜厚が3~30μmであることが好ましい。3μm未満では、長期の使用に亘って十分な耐摩耗性と耐剥離性を発揮することができない。一方、ダイヤモンド膜5の平均膜厚が30μmを超えると、チッピング、欠損、剥離が発生しやすくなり、かつ加工精度も低下する。したがって、ダイヤモンド膜5の平均膜厚は、3~30μmとすることが好ましい。平均膜厚は、工具の耐摩耗性と加工精度とを両立させるために、10~15μmであることがより好ましいが、これに限定されない。
(ダイヤモンド膜の表面に形成される隆起部の単位面積当たりの数:500~10000個/mm
 工具基体12の表面に形成された凸部13に起因してダイヤモンド膜5の表面に複数の隆起部14が形成される場合、隆起部14の単位面積当たりの数が500~10000個/mmであることが好ましい。500個/mmを下回ると、単位面積あたりの凸部13の数が少ないため、十分なダイヤモンド膜5との密着性を得られない。一方、単位面積当たりの隆起部14の数が10000個/mmを超える場合、すなわち、凸部13の数が10000個/mmを超える場合は、工具基体12を構成する超硬合金中のTaC、NbCの内の1種または2種の合計量の割合が高いため、工具基体12の靭性が低下し、欠損を生じる恐れがある。したがって、ダイヤモンド膜5の表面に形成される隆起部14の単位面積当たりの数は、500~10000個/mmとすることが好ましい。隆起部14の単位体積当たりの数は、より好ましくは4000~7000個/mmであるが、これに限定されない。
(ダイヤモンド膜の表面に形成される複数の隆起部の高さの平均:1.0~3.0μm)
 ダイヤモンド膜5の表面に形成された隆起部14の高さ11が平均で1.0~3.0μmであることが好ましい。この場合、ダイヤモンド膜と基体との密着力を高めるという効果を得られる。複数の隆起部14の高さ11の平均は、好ましくは1.5~2.0μmであるが、これに限定されない。
(ダイヤモンド膜の表面に形成される複数の隆起部の幅の平均:3.0~20.0μm)
 ダイヤモンド膜5の表面に形成された隆起部14の幅10が平均で3.0~20.0μmであることが好ましい。この場合、切削において被切削材との接触面積を低減できるので、切削抵抗を低減できると共に、切りくずの排出性を向上できる。複数の隆起部14の幅10の平均は、好ましくは8~15μmであるが、これに限定されない。
 ここで、ダイヤモンド膜5の表面に隆起部14を形成することにより、切削時のトライボロジー特性を向上することができる。特に金属を対象とする切削加工において、ダイヤモンド被覆超硬合金製切削工具のトライボロジー特性を向上できる。一方、ダイヤモンド膜5の表面に隆起部14を設けない場合(例えば、凸部に起因して形成された隆起部14を研削等により除去した場合)、加工精度をはじめとする加工特性を向上できる。
(測定方法)
 工具基体12表面における凸部13の高さ7、幅6、幅6に対する高さ7で定義されるアスペクト比の値、および単位面積当たりの凸部13の数、ならびにダイヤモンド膜5の表面における隆起部14の高さ11、幅10、および単位面積当たりの隆起部14の数、およびダイヤモンド膜5の膜厚は、次のような方法で決定することが好ましい。
 まず、走査型電子顕微鏡により工具基体12表面近傍且つ工具基体12表面に垂直な断面の観察を行う。ダイヤモンド膜5と超硬合金基体(工具基体12)との界面(工具基体12表面)から膜厚方向に10μm、工具基体12表面と平行な方向に100μmの観察領域で得られた画像内に観察された複数の凸部13および隆起部14について測定を行う。
 凸部13の高さ7及び幅6を測定する際、オージェ電子分光法により上記の観察領域においてTaCまたはNbCの結晶粒(図1の符号1)で構成される領域、すなわち上部位8を特定する。そして、工具基体12表面と平行な方向における上部位8の幅の最大値を凸部13の幅6とする。また、工具基体12表面から最も距離の大きい上部位8上の点を一端点とし、膜厚方向に線分析を行ってWCまたはCoが検出されるまでの点を他端点として、両端点間の距離を凸部13の高さ7とする。
 そして、それぞれの凸部13の高さ7を幅6で割り、算術平均を算出することによってそれぞれの凸部13のアスペクト比を求める。
 また、隆起部14の高さ11については、ダイヤモンド膜5の表面を基準面として、基準面からの距離が最大となる隆起部14上の点を一端点とし、基準面から一端点までの距離を隆起部14の高さ11とし、走査型電子顕微鏡を用いて測定する。隆起部14の幅10については、レーザー顕微鏡を用いてダイヤモンド膜5の表面を観察し、基準面からの高低差が1μmを超えた領域を隆起部とし、隆起部の輪郭(隆起部の起点となる点の集合)の最大径を隆起部14の幅10とする。
 ダイヤモンド膜5の平均膜厚は、走査型電子顕微鏡を用いて工具の刃先の断面において、凸部13が形成されていない領域の任意の5点における膜厚を測定し、算術平均を算出して、平均膜厚とする。
 隆起部14の単位面積当たりの数については、走査型電子顕微鏡により、ダイヤモンド膜5の表面上の任意の100μm四方の3視野を観察して測定する。各視野のダイヤモンド膜5に形成された隆起部14の単位面積当たりの隆起部14の数を算出し、3視野の算術平均を算出し、隆起部14の単位面積当たりの数とする。
 工具基体12の表面に形成された凸部13に起因した複数の隆起部14をダイヤモンド膜5の表面に形成する場合、隆起部14の単位面積当たりの数を凸部13の単位面積当たりの数とする。一方、工具基体12の表面に形成された凸部13に起因した複数の隆起部14を形成しない場合は、共焦点光学系を採用した共焦点顕微ラマン分光装置により、共焦点を基体の表面より膜厚方向に1μmダイヤモンド側に合わせ、任意の100μm四方の3視野を走査し、さらにsp3結合を示すピークの信号強度を2次元的に画像化する。得られた画像において、sp3結合を示すピークの信号強度が得られない箇所を凸部13として、単位面積当たりの凸部13の数を算出し、3視野の算術平均を算出し、凸部13の単位面積当たりの数とする。
(製造方法)
 前述したような本実施形態のダイヤモンド被覆工具100、及びその工具基体12は、次のような製法で製造することができる。
(1)まず、Co粉末と、TaC粉末及びNbC粉末の少なくとも一方とを含有するWC基超硬合金を焼結する。WC基超硬合金における各成分の含有割合は、Coが3~15質量%、TaC、NbCの内の1種または2種の合計量が0.1~3.0質量%、残部がWCである。ここで、TaC、NbCの結晶粒成長を施すため、TaC、NbC粉末粒子の粒子径は1μm程度(詳細には0.8~1.3μm)が好ましく、より好ましくは1μm以下の微粒が好ましい。焼結によりTaC、NbCが結晶粒成長し、WC粒子間にTaC、NbCの結晶粒が隙間なく形成される。Co粉末の粒子径は1~2μmが好ましく、WC粉末の粒子径は0.5~1.5μmが好ましい。なお、これらの粉末を、スプレードライヤーを用いて、200℃程度(190~210℃)で造粒することが好ましい。
 このような粉末を圧粉し、真空雰囲気(0.1~10Pa)中、1380~1500℃の温度で1~2時間保持して焼結し、焼結体を製造することが好ましい。
(2)次いで、前記焼結体を研磨加工して、超硬合金製工具基体12を形成する。
(3)第1前処理工程として、希硫酸(1.0体積%)と過酸化水素(3体積%)とからなる酸混合溶液1Lに15~25秒間、室温(23℃)で浸漬し、超硬合金基体表面近傍のCoをエッチングで除去する。酸混合溶液において、希硫酸は0.4~1.0体積%、過酸化水素は2~5体積%であることが好ましい。また、浸漬温度は20~25℃であることが好ましい。第1前処理工程により、Co結合相の一部を5~6μmの深さまで除去することが好ましい。
(4)次いで、第2前処理工程として、NaOH(50~150g)を含むエッチング溶液1L(濃度5~15体積%)に、単位面積当たりの電流量が1.5~2.5A/dmになるように電流を通電した状態で30~60分、電解エッチングを行い、基体の表面のWCを除去する。第2前処理工程にて形成される凸部の形状は、エッチング時に印加する電流量とアルカリエッチング溶液の濃度、エッチング時間、超硬合金基体を構成するTaCまたはNbCの量、基体製造時のTaCまたはNbCの原料粉の粒径、造粒工程および焼結工程によって制御される。
(5)次いで、第3前処理工程として、希硫酸0.4~1.0体積%と過酸化水素2~5体積%の酸混合溶液1Lに8~15秒間、室温(20~25℃)で浸漬する。これにより、Co結合相の一部を5~6μmの深さまで除去する。
(6)次いで、熱フィラメントCVDプロセスにおいて、平均膜厚3~30μmのダイヤモンド膜5を工具基体12に被覆する。
 上記の方法で製造された本実施形態のダイヤモンド被覆工具のダイヤモンド膜と基体の界面の断面の模式図を図1に示す。走査電子顕微鏡により上記の方法で製造された本実施形態のダイヤモンド被覆工具の断面を観察した結果、ダイヤモンド膜5と超硬合金工具基体12との界面には複数の凸部13が存在し、凸部13の高さ7の平均が1~3μm、幅6の平均が0.5~6μm、幅に対する高さのアスペクト比の平均が0.5~3.0であり、工具基体12表面にダイヤモンド膜5に食い込むように凸部13が形成されていることが確認された。また、ダイヤモンド膜5の表面に、高さが1~3μmである隆起部14を確認した。オージェ電子分光法により凸部13断面の組成を分析した結果、凸部13の上部(上部位8)がTaCとNbC1で構成されており、凸部の下部(下部位9)はWC粒子2とCo(Co結合相4)で構成されていた。また本実施形態の表面観察の試料の表面の任意の100μm四方の3視野において、幅10が3~20μmである隆起部14が単位面積当たり500~10000個/mmであることが確認された。このような結果から、上述した製造方法が次のような作用を奏することが分かる。
 すなわち、第1前処理工程において、工具基体12表面のCo(Co結合相4)が除去されるのに対し、工具基体12表面に存在しているTaC、NbC1の直下に存在するCoは、TaC、NbC1により酸エッチング液との接触が断たれるため、除去されずに残存する。その結果、TaC、NbC1の直下では残存するCo結合相4によりWC粒子2間の結合力が維持される。このため、第2前処理工程において工具基体12表面のWC2が電解エッチングにより除去されても、凸部13に含まれるWC粒子2は除去されずに残存する。それによって、上部位8がTaCまたはNbCで構成され、下部位9がWC粒子とCoで構成される凸部13が工具基体12上に形成される。そして、この工具基体12表面にCVDプロセスを行うと凸部13がダイヤモンド膜5中に楔のように食い込んだ状態でダイヤモンド膜5が形成されるため、工具基体12とダイヤモンド膜5との密着性が高くなる。
 以上のように、ダイヤモンド被覆工具の膜の密着性と刃先強度とは、工具基体12とダイヤモンド膜5の接合強度(密着性)を向上するために工具基体12表面の金属結合相(主としてCoおよびCo合金)を除去すると、刃先強度が低下するというという、いわば、トレードオフの関係にある。これに対し本実施形態では、工具基体12表面に上部(上部位8)がTaCまたはNbCで構成され、下部(下部位9)がWCとCoで構成されている凸部13を所定の割合で形成するという本実施形態に特有の構成により、工具基体12表面とダイヤモンド膜5との密着性を向上させている。本実施形態では、このような新規な技術的思想により、上記の密着性と刃先強度との問題を解決している。
 つぎに、本実施形態のダイヤモンド被覆工具について、実施例に基づき具体的に説明する。
 なお、ここでは、ダイヤモンド被覆工具の具体例としてダイヤモンド被覆超硬合金製ドリルについて述べるが、本発明はこれに限られるものではなく、ダイヤモンド被覆超硬合金製インサート、ダイヤモンド被覆超硬合金製エンドミル等、各種のダイヤモンド被覆工具に適用できることは言うまでもない。
(a)原料粉末として、いずれも0.5~1.0μmの範囲内の所定の平均粒径を有するWC粉末、Co粉末、TaC粉末、NbC粉末を、表1に示される割合に配合し、さらにバインダー(具体的には、パラフィン)と溶剤(具体的には、トルエン、キシレン、メシチレン、テトラリン、デカリン等)を加えてアセトン中で24時間ボールミル混合し、減圧乾燥した。その後、いずれも押し出しプレス成形し、直径が10mm、長さが150mmの丸棒圧粉体とし、これらの丸棒圧粉体を、表2に示す条件、即ち、1Paの真空雰囲気中、1380~1500℃の温度で1~2時間保持するという焼結条件で焼結することで焼結体を得た。その後、該焼結体を研磨加工することにより、WC基超硬合金焼結体を製造した。
 ついで、前記WC基超硬合金焼結体を、溝形成部の外径寸法がφ6.5mm、長さ80mmとなるように研削加工することにより、WC基超硬合金製ドリル基体(以下、単に「ドリル基体」という)を製造した。
(b)ついで、前記ドリル基体を、希硫酸(0.5体積%)と過酸化水素(3体積%)の酸混合溶液1Lに8~15秒間、室温(23℃)で浸漬し、ドリル基体の表面近傍のCoを主成分とする金属結合相の一部を5~6μmの深さまでエッチングで除去した。(第1前処理工程)
(c)さらに、これらのドリル基体を、NaOH(80~120g)を含むエッチング溶液1Lに、単位面積当たりの電流量が1.5~2.5A/dmになるように電流を通電した状態で30分、電解エッチングを行い基体表面のWCを除去した。(第2前処理工程)
(d)ついで、前記ドリル基体を、希硫酸(0.5体積%)と過酸化水素(3体積%)の酸混合溶液1Lに8~15秒間、室温(23℃)で浸漬し、ドリル基体の表面近傍のCoを主成分とする金属結合相の一部を5~6μmの深さまでエッチングで除去した。(第3前処理工程)
(e)次いで、0.1μm以下の一次粒子径を有するダイヤモンド粉末を配合したエタノール中で超音波処理による傷つけ処理を行い、ついで、ダイヤモンド粉末を熱フィラメントCVD装置に装入した。そして、フィラメント温度を2200℃、水素ガスとメタンガスを100:1の流量比で流しながら、工具基体温度を900℃に維持し、3~30μmの膜厚のダイヤモンド膜を成膜した。
 上記(a)~(e)の製造工程を行うことにより、表3に示す本実施形態のダイヤモンド被覆WC基超硬合金製ドリル(以下、単に、「本発明ドリル」という)1~9を製造した。なお、上記(b)~(d)の工程は、表2に示す条件で行った。
 前記製造工程において、(a)の工程の際に、超硬合金基体を構成するTaCまたはNbC原料粉の量および原料粉の粒径、超硬合金の焼結温度、焼結時間、および(c)の工程の際に印加する電流量とエッチング溶液の濃度、エッチング時間によって、工具基体表面に形成される凸部の形状を制御した。
 比較のため、表1に示される割合に配合された原料粉末を用いて、上記(a)と同様の方法で、ドリル基体を製造した。ドリル基体を希硫酸(0.5体積%)と過酸化水素(3体積%)の酸混合溶液1Lに表2に示す処理時間(10~20秒間)、室温(23℃)で浸漬して、ドリル基体の表面近傍のCoを主成分とする金属結合相の一部を5~6μmの深さまでエッチングで除去した(第1前処理工程)。次いで、表2に示す条件、即ち、NaOH(100g)混合アルカリ溶液1Lに、単位面積当たりの電流量が0.5~3.5A/dmになるように電流を通電した状態で20~60分という条件で電解エッチングを行った(第2前処理工程)。その後、本発明ドリルと同様の第3前処理工程を、表2の処理時間だけ行った(第3前処理工程)。これにより、表3に示す比較例のダイヤモンド被覆WC基超硬合金製ドリル(以下、単に、「比較例ドリル」という)1~11を製造した。
 参考のため、表1に示される割合に配合された原料粉末を用いて、上記(a)と同様の方法で、ドリル基体を製造した。ドリル基体を、希硫酸(0.5体積%)と過酸化水素(3体積%)の酸混合溶液1Lに表2に示す処理時間(8~15秒間)、室温(23℃)で浸漬し、ドリル基体の表面近傍のCoを主成分とする金属結合相の一部を5~6μmの深さまでエッチングで除去した(第1前処理工程)。次いで、表2に示す条件、即ち、フェルシアン化カリウム(100g)とNaOH(100g)混合アルカリ溶液1Lに、45℃で30~60分浸漬した(第2前処理工程)。そして、希硫酸(0.5体積%)と過酸化水素(3体積%)の酸混合溶液1Lに表2に示す処理時間(12~15秒間)、室温(23℃)で浸漬し、ドリル基体の表面近傍のCoを主成分とする金属結合相の一部を除去した(第3前処理工程)。表3に示す参考例のダイヤモンド被覆WC基超硬合金製ドリル(以下、単に、「参考例ドリル」という)1~6を製造した。
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
 
 本発明ドリル1~9、比較例ドリル1~11および参考ドリル1~6のダイヤモンド膜の膜厚を、前述の走査型電子顕微鏡を用いた断面観察により、観察視野内の凸部が形成されていない5点の膜厚を測定し、平均膜厚を算出した。
 表3にこれらの値を示す。
 また、本発明ドリル1~9、比較例ドリル1~11および参考ドリル1~6について、前述の走査型電子顕微鏡による断面観察により、工具基体表面に形成された凸部の高さ、幅および幅に対する高さで定義されるアスペクト比ならびにダイヤモンド膜の表面に形成される隆起部の高さおよび幅を測定し、それぞれについて算術平均を求めた。その結果、本発明ドリル1~9において観察された凸部はいずれも高さの平均が1.0~3.0μm、幅の平均が0.5~6.0μmおよび前記幅に対する高さで定義されるアスペクト比が0.5~3.0であり、隆起部はいずれも高さの平均が1.0~3.0μm、幅の平均が3.0~20.0μmであることが確認された。
 さらに、本発明ドリル1~9および比較例ドリル1~11および参考ドリル1~6について走査型電子顕微鏡により表面観察することにより、単位面積当たりの隆起部の数(表3における凸部の単位体積当たりの数)を測定した。その結果を表3に示す。
 なお、凸部が形成されていないものについてはこれらの値を測定できなかったため、表3に「-」と記した。
Figure JPOXMLDOC01-appb-T000003
 
 つぎに、前記本発明ドリル1~9、比較例ドリル1~11および参考ドリル1~6(いずれも、ドリル径はφ6.5mm)を用いて、以下の条件で、CFRPの高速ドリル穴開け試験を行った。なお、以下の条件に記載されている通常の切削速度とは、従来被覆工具を用いた場合の効率(一般には、工具寿命までに加工できる部品の数など)が最適となる切削速度である。
 被削材:厚さ15mmのCFRP,
 切削速度:240m/min(通常の切削速度は、100m/min),
 送り:0.23mm/rev,
 穴深さ:15mm(貫通穴),
 前記切削試験において、切削の異常音および切削時の荷重が異常を示した際に、試験を中断し、剥離・欠損の有無を確認した。剥離・欠損等が確認された場合、それまでの穴あけ加工数を加工寿命とした。
 また、100穴迄欠損せず、切れ刃の中央の逃げ面の摩耗形態が正常である(欠損、チッピングがない)ことを、本発明ドリルの合格条件とした。
 表4にこれらの評価結果を示す。
Figure JPOXMLDOC01-appb-T000004
 
 表3、4の結果からも明らかなように、本発明ドリル1~9は、工具基体表面に高さが1.0~3.0μm、幅が0.5~6.0μmおよび前記幅に対する高さで定義されるアスペクト比が0.5~3.0である複数の凸部が存在し、該凸部の上部位はTaC、NbCの内の1種または2種で構成され前記上部位の下方に位置する凸部の下部位はWCとCoで構成されていた。また、前記凸部に起因してダイヤモンド膜の表面に形成される隆起部の高さが1.0~3.0μm、幅が3.0~20.0μmであり、かつ前記隆起部の単位面積当たりの数が500~10000個/mmであった。これによって、CFRP等の難削材の高速ドリル穴開け切削加工において、すぐれた刃先強度を示すとともに、長期の使用に亘ってすぐれた耐摩耗性を発揮した。
 これに対して、本発明ドリルのような工具基体表面に所定の凸部が形成されていない比較ドリル1~11および参考ドリル1~6は、密着性に劣り、短期に寿命に至ることが明らかであった。
 本発明のダイヤモンド被覆超硬合金製切削工具は、ダイヤモンド被覆超硬合金製ドリルばかりでなく、ダイヤモンド被覆超硬合金製インサート、ダイヤモンド被覆超硬合金製エンドミル等、各種のダイヤモンド被覆工具に適用できるものである。このため、本発明のダイヤモンド被覆超硬合金製切削工具は、すぐれた刃先強度と耐摩耗性を発揮することから、切削加工の省エネ化、低コスト化に十分満足に対応できるものであり、その産業上の利用可能性はきわめて大きい。
1 TaC又はNbC
2 WC
3 空孔
4 Co結合相
5 ダイヤモンド膜
6 基体の表面に形成される凸部の幅
7 基体の表面に形成される凸部の高さ
8 上部位
9 下部位
10 ダイヤモンド膜の表面に形成される隆起部の幅
11 ダイヤモンド膜の表面に形成される隆起部の高さ
12 工具基体
13 凸部
14 隆起部
100 ダイヤモンド被覆超硬合金製切削工具

Claims (8)

  1.  Coが3~15質量%、TaC、NbCの内の1種または2種の合計量が0.1~3.0質量%、残部がWCで構成される炭化タングステン基超硬合金からなる工具基体にダイヤモンド膜を被覆形成したダイヤモンド被覆超硬合金製切削工具において、
     前記工具基体表面に複数の凸部が存在し、前記複数の凸部の高さの平均が1.0~3.0μm、幅の平均が0.5~6.0μm、および前記幅に対する前記高さで定義されるアスペクト比の平均が0.5~3.0であり、
     該凸部の上部位はTaC、NbCの内の1種または2種で構成され、上記上部位の下方に位置する前記凸部の下部位はWCとCoで構成される、ダイヤモンド被覆超硬合金製切削工具。
  2.  前記凸部の単位面積当たりの数が500~10000個/mmである請求項1に記載のダイヤモンド被覆超硬合金製切削工具。
  3.  前記ダイヤモンド膜の平均膜厚が3~30μmである請求項1または2に記載のダイヤモンド被覆超硬合金製切削工具。
  4.  前記ダイヤモンド膜の表面に複数の隆起部が形成され、前記複数の隆起部の高さの平均が1.0~3.0μm、幅の平均が3.0~20.0μmである請求項1乃至3のいずれかに記載のダイヤモンド被覆超硬合金製切削工具。
  5.  前記隆起部の単位面積当たりの数が500~10000個/mmであることを特徴とする請求項4に記載のダイヤモンド被覆超硬合金製切削工具。
  6.  前記下部位におけるCoの含有量が2~13質量%である請求項1乃至5のいずれかに記載のダイヤモンド被覆超硬合金製切削工具。
  7.  前記上部位におけるTaC、NbCの内の1種または2種の合計の含有量が95~100質量%である請求項1乃至6のいずれかに記載のダイヤモンド被覆超硬合金製切削工具。
  8.  請求項1乃至7のいずれかに記載のダイヤモンド被覆超硬合金製切削工具の製造方法であって、
     Co粉末と、TaC粉末及びNbC粉末の少なくとも一方と、WC粉末とを、スプレードライヤーを用いて190~210℃で造粒する造粒工程と、
     前記造粒工程を経た前記Co粉末と、前記TaC粉末及びNbC粉末の少なくとも一方と、前記WC粉末とを混合し、0.1~10Pa、1380~1500℃で1~2時間保持して焼結することにより前記工具基体を形成する焼結工程と、
     前記工具基体を、希硫酸と過酸化水素水を含む酸溶液に浸漬する第1前処理工程と、
     前記第1前処理工程を施した前記工具基体を、水酸化ナトリウムを含む濃度5~15体積%のアルカリエッチング溶液に、1.5~2.5A/dmの電流を流した状態で30~60分間浸漬して電解エッチング処理を行う第2前処理工程と、
     前記第2前処理工程を施した前記工具基体を、希硫酸と過酸化水素水を含む酸溶液に浸漬する第3前処理工程と、
     前記第3前処理工程を施した前記工具基体に対し、ダイヤモンド膜を被覆する工程と、
     を備えるダイヤモンド被覆超硬合金製切削工具の製造方法。
PCT/JP2014/081495 2013-11-29 2014-11-28 ダイヤモンド被覆超硬合金製切削工具及びその製造方法 WO2015080237A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/038,942 US10086438B2 (en) 2013-11-29 2014-11-28 Cutting tool made of diamond-coated cemented carbide and method for producing the same
EP14866573.0A EP3075476B1 (en) 2013-11-29 2014-11-28 Diamond-coated cemented carbide cutting tool
CN201480063553.XA CN105764637B (zh) 2013-11-29 2014-11-28 金刚石包覆硬质合金制切削工具及其制造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013247280 2013-11-29
JP2013-247280 2013-11-29
JP2014-238392 2014-11-26
JP2014238392A JP5716861B1 (ja) 2013-11-29 2014-11-26 ダイヤモンド被覆超硬合金製切削工具及びその製造方法

Publications (1)

Publication Number Publication Date
WO2015080237A1 true WO2015080237A1 (ja) 2015-06-04

Family

ID=53199172

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/081495 WO2015080237A1 (ja) 2013-11-29 2014-11-28 ダイヤモンド被覆超硬合金製切削工具及びその製造方法

Country Status (5)

Country Link
US (1) US10086438B2 (ja)
EP (1) EP3075476B1 (ja)
JP (1) JP5716861B1 (ja)
CN (1) CN105764637B (ja)
WO (1) WO2015080237A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105039764A (zh) * 2015-07-28 2015-11-11 常州西利合金工具有限公司 金刚石涂层专用高硬硬质合金材料的制备方法
WO2018014054A1 (de) * 2016-07-18 2018-01-25 Ceratizit Austria Gesellschaft M.B.H. Verfahren zum herstellen eines hartmetallprodukts und hartmetallprodukt

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6330999B2 (ja) * 2014-03-03 2018-05-30 三菱マテリアル株式会社 ダイヤモンド被覆超硬合金製切削工具
CN106756392A (zh) * 2016-12-14 2017-05-31 单麒铭 一种油田用WC‑Co硬质合金喷嘴的制备方法
CN108611540B (zh) * 2018-07-13 2021-01-12 昆山长野超硬合金有限公司 一种用于金刚石涂层的硬质合金及其制备方法
CN112011781A (zh) * 2019-05-30 2020-12-01 上海名古屋精密工具股份有限公司 湿法刻蚀粘结相的工艺及其废液回收方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0519587A1 (en) 1991-04-26 1992-12-23 National Center For Manufucturing Sciences Methods for coating adherent diamond films on cemented tungsten carbide substrates
JPH0768425A (ja) * 1993-09-03 1995-03-14 Fujitsu Ltd ダイヤモンド被覆工具の製造方法
JPH0839360A (ja) * 1994-07-29 1996-02-13 Shin Etsu Chem Co Ltd 高耐久超硬合金工具およびその製造方法
JPH0892741A (ja) 1994-09-20 1996-04-09 New Japan Radio Co Ltd ダイヤモンド堆積用超硬合金の表面処理方法
JPH08209348A (ja) * 1995-01-31 1996-08-13 Showa Denko Kk ダイヤモンド被覆工具用基板を製造する方法
US5700518A (en) * 1996-04-26 1997-12-23 Korea Institute Of Science And Technology Fabrication method for diamond-coated cemented carbide cutting tool
JPH10130092A (ja) * 1996-10-22 1998-05-19 Toshiba Tungaloy Co Ltd ダイヤモンド被覆焼結合金
JP2000144451A (ja) 1998-09-04 2000-05-26 Ngk Spark Plug Co Ltd ダイヤモンド被覆超硬合金部材
JP2001293603A (ja) * 2001-02-28 2001-10-23 Mitsubishi Materials Corp 気相合成ダイヤモンド被覆切削工具
JP2010520068A (ja) * 2007-02-28 2010-06-10 エレメント シックス (プロダクション)(プロプライエタリィ) リミテッド 基材の加工方法
JP2011074473A (ja) * 2009-10-01 2011-04-14 Toyota Central R&D Labs Inc 被覆超硬合金部材

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69018243T2 (de) * 1989-09-22 1995-07-27 Showa Denko Kk Verfahren zur herstellung von diamant mittels dampfniederschlag auf elektrochemisch behandeltem substrat.
CA2060823C (en) * 1991-02-08 2002-09-10 Naoya Omori Diamond-or diamond-like carbon-coated hard materials
EP0627498B1 (en) * 1993-05-25 2000-08-09 Ngk Spark Plug Co., Ltd Ceramic-based substrate, and methods for producing same
US5560839A (en) * 1994-06-27 1996-10-01 Valenite Inc. Methods of preparing cemented metal carbide substrates for deposition of adherent diamond coatings and products made therefrom
US5650059A (en) * 1995-08-11 1997-07-22 Credo Tool Company Method of making cemented carbide substrate
JPH10310494A (ja) * 1996-05-31 1998-11-24 Ngk Spark Plug Co Ltd ダイヤモンド被覆膜付き超硬部材の製造方法
US6096377A (en) * 1997-11-07 2000-08-01 Balzers Hochvakuum Ag Process for coating sintered metal carbide substrates with a diamond film
EP0984077A3 (en) * 1998-09-04 2003-08-13 Ngk Spark Plug Co., Ltd Diamond-coated hard metal member
US6881475B2 (en) * 2001-06-13 2005-04-19 Sumitomo Electric Industries, Ltd Amorphous carbon coated tool and fabrication method thereof
WO2004031437A1 (de) * 2002-09-27 2004-04-15 Cemecon Ag Beschichtungsverfahren und beschichteter körper
JP2007083382A (ja) 2005-08-26 2007-04-05 Sumitomo Electric Hardmetal Corp 硬質炭素被覆工具
SE530516C2 (sv) * 2006-06-15 2008-06-24 Sandvik Intellectual Property Belagt hårdmetallskär, metod att tillverka detta samt dess användning vid fräsning av gjutjärn
CA2677700A1 (en) 2007-02-28 2008-09-04 Element Six (Production) (Pty) Ltd Method of machining a workpiece
JP2011051060A (ja) * 2009-09-02 2011-03-17 Mitsubishi Materials Corp 表面被覆切削工具
JP2011131347A (ja) * 2009-12-25 2011-07-07 Mitsubishi Materials Corp ダイヤモンド被覆超硬合金製切削工具
JP5282911B2 (ja) * 2010-03-26 2013-09-04 三菱マテリアル株式会社 ダイヤモンド被覆切削工具

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0519587A1 (en) 1991-04-26 1992-12-23 National Center For Manufucturing Sciences Methods for coating adherent diamond films on cemented tungsten carbide substrates
JPH0768425A (ja) * 1993-09-03 1995-03-14 Fujitsu Ltd ダイヤモンド被覆工具の製造方法
JPH0839360A (ja) * 1994-07-29 1996-02-13 Shin Etsu Chem Co Ltd 高耐久超硬合金工具およびその製造方法
JPH0892741A (ja) 1994-09-20 1996-04-09 New Japan Radio Co Ltd ダイヤモンド堆積用超硬合金の表面処理方法
JPH08209348A (ja) * 1995-01-31 1996-08-13 Showa Denko Kk ダイヤモンド被覆工具用基板を製造する方法
US5700518A (en) * 1996-04-26 1997-12-23 Korea Institute Of Science And Technology Fabrication method for diamond-coated cemented carbide cutting tool
JPH10130092A (ja) * 1996-10-22 1998-05-19 Toshiba Tungaloy Co Ltd ダイヤモンド被覆焼結合金
JP2000144451A (ja) 1998-09-04 2000-05-26 Ngk Spark Plug Co Ltd ダイヤモンド被覆超硬合金部材
JP2001293603A (ja) * 2001-02-28 2001-10-23 Mitsubishi Materials Corp 気相合成ダイヤモンド被覆切削工具
JP2010520068A (ja) * 2007-02-28 2010-06-10 エレメント シックス (プロダクション)(プロプライエタリィ) リミテッド 基材の加工方法
JP2011074473A (ja) * 2009-10-01 2011-04-14 Toyota Central R&D Labs Inc 被覆超硬合金部材

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3075476A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105039764A (zh) * 2015-07-28 2015-11-11 常州西利合金工具有限公司 金刚石涂层专用高硬硬质合金材料的制备方法
WO2018014054A1 (de) * 2016-07-18 2018-01-25 Ceratizit Austria Gesellschaft M.B.H. Verfahren zum herstellen eines hartmetallprodukts und hartmetallprodukt

Also Published As

Publication number Publication date
US10086438B2 (en) 2018-10-02
CN105764637A (zh) 2016-07-13
JP2015127092A (ja) 2015-07-09
EP3075476B1 (en) 2019-10-30
EP3075476A1 (en) 2016-10-05
EP3075476A4 (en) 2017-08-16
CN105764637B (zh) 2017-11-14
JP5716861B1 (ja) 2015-05-13
US20160375497A1 (en) 2016-12-29

Similar Documents

Publication Publication Date Title
JP5716861B1 (ja) ダイヤモンド被覆超硬合金製切削工具及びその製造方法
KR102320077B1 (ko) 표면 피복 절삭 공구 및 그 제조 방법
JPWO2018174139A1 (ja) ダイヤモンド被覆超硬合金切削工具
KR102312226B1 (ko) 표면 피복 절삭 공구 및 그 제조 방법
JP6399349B2 (ja) ダイヤモンド被覆超硬合金製切削工具
JP6489505B2 (ja) 刃先強度を向上させたダイヤモンド被覆超硬合金製切削工具
JP6195068B2 (ja) 刃先強度を向上させたダイヤモンド被覆超硬合金製切削工具
JP6171525B2 (ja) 刃先強度を向上させたダイヤモンド被覆超硬合金製切削工具
JP5282911B2 (ja) ダイヤモンド被覆切削工具
JP6102613B2 (ja) 刃先強度を向上させたダイヤモンド被覆超硬合金製切削工具
JP5850396B2 (ja) 靭性と耐摩耗性に優れたダイヤモンド被覆超硬合金製切削工具
JP2008238392A (ja) 切削工具
JP6330999B2 (ja) ダイヤモンド被覆超硬合金製切削工具
JP2017064840A (ja) ダイヤモンド被覆超硬合金製切削工具
JP2013532227A (ja) 被覆された物体及び物体の被覆方法
JP6040698B2 (ja) ダイヤモンド被覆超硬合金製ドリル
JP5838858B2 (ja) 耐摩耗性に優れたダイヤモンド被覆超硬合金製ドリル
JP2011131347A (ja) ダイヤモンド被覆超硬合金製切削工具
JP7313604B2 (ja) ダイヤモンド被覆切削工具
EP4180155A1 (en) Diamond-coated tool
JP5459504B2 (ja) ダイヤモンド被覆切削工具
JP2018158400A (ja) ダイヤモンド被覆超硬合金製切削工具
JP7216915B2 (ja) ダイヤモンド被覆超硬合金製工具
JP5477781B2 (ja) ダイヤモンド被覆切削工具
JP2019181574A (ja) ダイヤモンド被覆超硬合金製切削工具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14866573

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014866573

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014866573

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15038942

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE