WO2015076306A1 - ポリエチレン系樹脂発泡粒子およびポリエチレン系樹脂型内発泡成形体およびその製造方法 - Google Patents
ポリエチレン系樹脂発泡粒子およびポリエチレン系樹脂型内発泡成形体およびその製造方法 Download PDFInfo
- Publication number
- WO2015076306A1 WO2015076306A1 PCT/JP2014/080671 JP2014080671W WO2015076306A1 WO 2015076306 A1 WO2015076306 A1 WO 2015076306A1 JP 2014080671 W JP2014080671 W JP 2014080671W WO 2015076306 A1 WO2015076306 A1 WO 2015076306A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polyethylene resin
- resin
- polyethylene
- particles
- less
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/16—Making expandable particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B9/00—Making granules
- B29B9/10—Making granules by moulding the material, i.e. treating it in the molten state
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C35/00—Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
- B29C35/02—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
- B29C35/04—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould using liquids, gas or steam
- B29C35/049—Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould using liquids, gas or steam using steam or damp
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C35/00—Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
- B29C35/16—Cooling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C44/00—Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
- B29C44/34—Auxiliary operations
- B29C44/3461—Making or treating expandable particles
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/0061—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/04—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
- C08J9/12—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
- C08J9/122—Hydrogen, oxygen, CO2, nitrogen or noble gases
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/16—Making expandable particles
- C08J9/18—Making expandable particles by impregnating polymer particles with the blowing agent
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/22—After-treatment of expandable particles; Forming foamed products
- C08J9/228—Forming foamed products
- C08J9/232—Forming foamed products by sintering expandable particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C35/00—Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
- B29C35/16—Cooling
- B29C2035/1616—Cooling using liquids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2023/00—Use of polyalkenes or derivatives thereof as moulding material
- B29K2023/04—Polymers of ethylene
- B29K2023/06—PE, i.e. polyethylene
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2023/00—Use of polyalkenes or derivatives thereof as moulding material
- B29K2023/04—Polymers of ethylene
- B29K2023/06—PE, i.e. polyethylene
- B29K2023/0608—PE, i.e. polyethylene characterised by its density
- B29K2023/0633—LDPE, i.e. low density polyethylene
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2023/00—Use of polyalkenes or derivatives thereof as moulding material
- B29K2023/04—Polymers of ethylene
- B29K2023/06—PE, i.e. polyethylene
- B29K2023/0608—PE, i.e. polyethylene characterised by its density
- B29K2023/065—HDPE, i.e. high density polyethylene
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2105/00—Condition, form or state of moulded material or of the material to be shaped
- B29K2105/04—Condition, form or state of moulded material or of the material to be shaped cellular or porous
- B29K2105/046—Condition, form or state of moulded material or of the material to be shaped cellular or porous with closed cells
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2105/00—Condition, form or state of moulded material or of the material to be shaped
- B29K2105/04—Condition, form or state of moulded material or of the material to be shaped cellular or porous
- B29K2105/048—Expandable particles, beads or granules
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2995/00—Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
- B29K2995/0037—Other properties
- B29K2995/0092—Other properties hydrophilic
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2201/00—Foams characterised by the foaming process
- C08J2201/02—Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
- C08J2201/034—Post-expanding of foam beads or sheets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2203/00—Foams characterized by the expanding agent
- C08J2203/06—CO2, N2 or noble gases
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2205/00—Foams characterised by their properties
- C08J2205/04—Foams characterised by their properties characterised by the foam pores
- C08J2205/052—Closed cells, i.e. more than 50% of the pores are closed
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2323/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2323/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
- C08J2323/04—Homopolymers or copolymers of ethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2323/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2323/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
- C08J2323/04—Homopolymers or copolymers of ethene
- C08J2323/06—Polyethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2423/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2423/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
- C08J2423/04—Homopolymers or copolymers of ethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2423/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2423/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
- C08J2423/04—Homopolymers or copolymers of ethene
- C08J2423/06—Polyethene
Definitions
- the present invention relates to a polyethylene resin foamed particle and a polyethylene resin in-mold foam molded article.
- Polyethylene-based resin foam moldings are excellent in flexibility and heat insulation, and are therefore used in various applications as buffer packaging materials and heat insulation materials.
- foamed particles obtained by foaming polyethylene resin particles with a foaming agent such as butane gas in advance are filled in a mold, and a heat medium such as water vapor is introduced.
- a heat medium such as water vapor is introduced.
- In-mold foam molding in which heat fusion is performed is known.
- crosslinked polyethylene has been used because a foam having a high expansion ratio and excellent heat resistance can be easily obtained.
- a non-crosslinked polyethylene resin having good recyclability is also moldable. It has been proposed to produce a good molded body (see Patent Documents 1 and 2).
- linear low density polyethylene resin has two endothermic peaks in a melting curve obtained by differential scanning calorimetry (DSC) by heat treatment (annealing), and the peak width is constant.
- DSC differential scanning calorimetry
- An invention is disclosed in which the above-described polyethylene-based resin can be used as a base resin to widen the molding processing width of the obtained polyethylene-based resin expanded particles.
- Linear low density polyethylene is a copolymer of ethylene and ⁇ -olefin, and a molecular chain having a larger amount of ⁇ -olefin as a comonomer tends to be a crystal having a lower melting temperature and lower crystallinity. Therefore, in order to widen the peak width of the melting curve by heat treatment, a resin having a wide distribution of comonomer amount is required.
- Patent Document 4 it is considered that the distribution of the comonomer amount is widened by mixing polyethylene resins having different densities.
- Patent Document 3 as expanded particles using a highly rigid polyethylene resin, the density is 0.940 g / cm 3 or more, and the melt index (hereinafter also referred to as “MI”) 0.01 to 0.5 g / 10. And a resin blended with a low-density polyethylene resin having a density of 0.920 g / cm 3 to 0.940 g / cm 3 and an MI of 0.1 to 10 g / 10 min as a base resin. Expanded foam particles are disclosed.
- Patent Document 3 it is necessary to blend a large amount of high-density polyethylene having a low MI and poor fluidity, and an increase in energy required for kneading when granulating resin particles as raw materials for pre-foamed particles The increase in the extruder pressure limits the amount of resin processing, and there is a concern that productivity will be reduced.
- the expanded particles blended with high-density polyethylene such as Patent Document 3 also have two endothermic peaks in the melting curve obtained by differential scanning calorimetry, compared with expanded particles whose peak width is a certain value or more. It has been found that the expanded particles may shrink or the width of the molding process may be narrowed.
- Patent Documents 5 and 6 also disclose foamed particles using a mixed resin of two or more kinds of polyethylene resins as a base resin.
- mixing of a high-pressure method low-density polyethylene having a low melting point and a low rigidity is essential, and there is a concern about a decrease in heat resistance and a decrease in mechanical properties.
- foaming agents used in the field volatile organic foaming agents have been used as in Patent Documents 1 to 4 because foamed particles with a high foaming ratio can be obtained.
- inorganic gases such as carbon dioxide (carbon dioxide) have recently been used as blowing agents (see Patent Documents 7 and 8).
- the foamability and the moldability may be different.
- the open cell ratio hereinafter abbreviated as “open-cell ratio” of the molded body increases as the heating temperature during molding (in-mold foam molding) is increased. In some cases, however, the appearance of the molded product and the physical properties deteriorate.
- JP 59-187035 A Japanese Patent Laid-Open No. 62-15239 JP-A-6-316645 Japanese Patent Laid-Open No. 7-216153 Japanese Patent Laid-Open No. 9-025356 JP-A-6-157803 JP 2000-17079 A JP 2010-59393 A
- An object of the present invention is to provide polyethylene-based resin expanded particles capable of producing a polyethylene-based resin-molded in-mold expanded molded article having a wide molding processing temperature range and good molded article appearance and physical properties. Further, the object of the present invention is to produce foamed particles without impairing the productivity of the resin particles used as raw materials for the pre-foamed particles. The molding processing temperature range is wide, and the appearance and physical properties of the molded product are good. An object of the present invention is to provide polyethylene-based resin expanded particles capable of producing a polyethylene-based resin in-mold expanded molded body.
- the object of the present invention is that even in the DSC curve obtained by differential scanning calorimetry (DSC), even if the expanded particle has two narrow melting peak temperature ranges, the low temperature side melting peak and the high temperature side melting peak, It is possible to produce foamed particles without impairing the productivity of resin particles used as raw materials. Even if the heating temperature at the time of molding is increased, there is little increase in the open cell ratio of the molded body and the appearance is good.
- An object of the present invention is to provide polyethylene-based resin expanded particles from which a polyethylene-based resin-in-mold expanded molded article can be obtained.
- an object of the present invention is to produce a polyethylene resin-in-mold foam-molded article having a good foam appearance and good physical properties, even if the heating temperature at the time of molding is increased, the foaming rate of the molded article is hardly increased.
- An object of the present invention is to provide polyethylene-based resin expanded particles.
- the present inventor has a storage elastic modulus at an angular frequency of 1 rad / second in dynamic viscoelasticity measurement at 190 ° C. of 900 Pa to 5000 Pa, an angular frequency of 100 rad / second.
- polyethylene resin foamed particles obtained by foaming polyethylene resin particles having a storage modulus of 100000 Pa or less in seconds, the heating temperature at the time of molding can be increased without impairing the productivity of the resin particles.
- DSC curve obtained by differential scanning calorimetry (DSC) it is possible to obtain an in-mold foam molded product with a small increase in the open cell ratio of the molded product and good molded product appearance and dimensional stability.
- Polyethylene resin foamed particles obtained by foaming polyethylene resin particles having a storage elastic modulus at an angular frequency of 1 rad / sec and a storage elastic modulus at an angular frequency of 100 rad / sec in the above-mentioned range in dynamic viscoelasticity measurement Can be used to obtain an in-mold foam molded article having a wide molding processing width and a good molded article appearance without impairing the productivity of resin particles, and (A ′′) a density of 0.
- this invention consists of the following structures.
- Polyethylene resin foamed particles obtained by foaming polyethylene resin particles in which a linear polyethylene resin is a base resin,
- the storage elastic modulus at an angular frequency of 1 rad / sec in the dynamic viscoelasticity measurement at 190 ° C. of the polyethylene resin particles is 900 Pa or more and 5000 Pa or less, and the storage elastic modulus at an angular frequency of 100 rad / sec is 100000 Pa or less
- DSC differential scanning calorimetry
- Polyethylene resin expanded particles characterized by [2]
- the base resin is (A) 60% by weight to 97% by weight of a linear polyethylene resin having a melt index of 1.2 g / 10 min to 10 g / 10 min and (B) a melt index of 0.01 g / 10% or more and 0.3 g / 10 min or less linear polyethylene resin of 3% by weight to 40% by weight of mixed resin [total of (A) and (B) is 100% by weight]
- the melting crystal calorie q calculated from the DSC curve at the second temperature increase obtained when the temperature is increased again to 220 ° C. at a temperature increase rate of 10 ° C./min is 145 J / g or more.
- the base resin of the polyethylene resin particles is (A ′) a polyethylene resin having a melt index of 1.2 g / 10 min or more and 10 g / 10 min or less and 60 wt% or more and 97 wt% or less, and (B ′) melt. 3% to 40% by weight of a polyethylene-based resin having an index of 0.01 g / 10 min to 0.3 g / 10 min [total of (A ′) and (B ′) is 100% by weight] ,
- (A ) Density 0.915 g / cm 3 or more 0.940 g / cm less than 3, a melt index 1.0 g / 10 min or more 10 g / 10 minutes or less linear low density polyethylene resin 50 wt% 97% by weight or less and (B ′′) a high density polyethylene resin having a density of 0.940 g / cm 3 or more and a melt index of 0.01 g / 10 minutes or more and 0.3 g / 10 minutes or less 3% by weight or more and 50% by weight or less.
- the base resin is a polyethylene resin having a melt index of 0.8 g / 10 min or more and 3.0 g / 10 min or less (the sum of (A ′′) and (B ′′) is 100 wt%).
- a polyethylene-based resin expanded particle In a DSC curve obtained by differential scanning calorimetry (DSC) of polyethylene resin expanded particles, it has two melting peaks, a low temperature side melting peak and a high temperature side melting peak, The ratio (%) of the high-temperature side melting peak heat amount in the DSC curve to the entire melting peak heat amount is 0.05 times or more of the mixing ratio (%) of the (A ′′) linear low-density polyethylene resin in the base resin.
- Polyethylene resin expanded particles characterized by being 0.4 times or less.
- One-stage foaming step Polyethylene resin particles are dispersed in an aqueous dispersion medium together with a foaming agent, heated and pressurized to a temperature higher than the softening temperature of the polyethylene resin particles, and then released into a pressure range lower than the internal pressure of the sealed container.
- the foaming agent is an inorganic gas and / or water.
- the foamed polyethylene resin particles according to any one of [1] to [8] are filled in a molding space that can be closed but cannot be sealed by two molds without pretreatment.
- an in-mold expanded molded article having a small appearance and a good appearance can be obtained even if the heating temperature at the time of molding is increased.
- the polyethylene resin foamed particles of the present invention it is possible to produce the foamed particles without impairing the productivity of the resin particles used as the raw material of the foamed particles, and even if the heating temperature during the molding process is increased. Thus, an in-mold foam molded article having a small appearance and a good appearance can be obtained.
- the two melt peak temperature ranges of the low temperature side melt peak and the high temperature side melt peak are narrow.
- DSC differential scanning calorimetry
- an in-mold foam molded article having a good appearance can be obtained. Therefore, conventionally, a highly rigid polyethylene-based resin or the like has a narrow melting peak width, and thus it has been difficult to use it as expanded particles, but it can be used by setting the storage elastic modulus within the range of the present invention.
- DSC differential scanning calorimeter
- B is the low temperature side contact and C is the low temperature side contact and the portion enclosed by the line segment (AB) and the DSC curve is the high temperature side melting peak heat quantity (Qh), and the line segment (AC) and the DSC curve.
- the part surrounded by is defined as the calorific value (Ql) of the low temperature side melting peak.
- the polyethylene resin particles of the present invention are heated from 20 ° C. to 220 ° C. at a rate of 10 ° C./min by a differential scanning calorimeter (DSC) method, and 10 ° C. at a rate of 10 ° C./min.
- Preferred embodiments of the polyethylene resin expanded particles for achieving the object of the present invention include the following embodiments.
- Polyethylene resin foamed particles obtained by foaming polyethylene resin particles in which a linear polyethylene resin is a base resin, and the angle of the polyethylene resin particles in dynamic viscoelasticity measurement at 190 ° C.
- the storage elastic modulus at a frequency of 1 rad / sec is 900 Pa to 5000 Pa
- the storage elastic modulus at an angular frequency of 100 rad / sec is 100000 Pa or less
- a DSC curve obtained by warming differential scanning calorimetry it has two melting peaks, a low-temperature side melting peak and a high-temperature side melting peak. Also referred to as expanded particles 1).
- Polyethylene resin foamed particles having a peak temperature width of 11 ° C. or less, and having a storage elastic modulus at an angular frequency of 1 rad / sec in a dynamic viscoelasticity measurement at 190 ° C.
- Polyethylene resin foam particles 2 which are obtained by foaming polyethylene resin particles having a storage modulus at a frequency of 100 rad / sec of 100000 Pa or less.
- (A ) Density 0.915 g / cm 3 or more 0.940 g / cm less than 3, a melt index 1.0 g / 10 min or more 10 g / 10 minutes or less linear low density polyethylene resin 50 wt% 97% by weight or less and (B ′′) a high density polyethylene resin having a density of 0.940 g / cm 3 or more and a melt index of 0.01 g / 10 minutes or more and 0.3 g / 10 minutes or less 3% by weight or more and 50% by weight or less.
- the base resin is a polyethylene resin having a melt index of 0.8 g / 10 min or more and 3.0 g / 10 min or less (the sum of (A ′′) and (B ′′) is 100 wt%).
- DSC differential scanning calorimetry
- the polyethylene resin expanded particles 1 of the present invention use a linear polyethylene resin as a base resin.
- the linear polyethylene resin in the present invention is a homopolymer of ethylene polymerized using a polymerization catalyst or the like, and a copolymer of ethylene and a comonomer copolymerizable with ethylene (the comonomer becomes a short chain branch). And high density polyethylene, medium density polyethylene, linear low density polyethylene, and mixed resins thereof.
- an ⁇ -olefin having 3 to 18 carbon atoms can be used as the comonomer copolymerizable with ethylene.
- ethylene an ⁇ -olefin having 3 to 18 carbon atoms
- propene, 1-butene, 1-pentene, 1-hexene, 3,3-dimethyl-1 -Butene, 4-methyl-1-pentene, 4,4-dimethyl-1-pentene, 1-octene and the like may be mentioned, and these may be used alone or in combination of two or more.
- the base resin further includes a low-density polyethylene-based resin, a linear polyethylene-based resin, within a range that does not impair the uniformity of the bubbles of the polyethylene-based resin expanded particles and the mechanical properties of the obtained in-mold foam molded product.
- a blend of at least one selected from the group consisting of crosslinked polyethylene resins can also be used.
- polyethylene resin particles are produced.
- the polyethylene-based resin particles have a storage elastic modulus at an angular frequency of 1 rad / sec in dynamic viscoelasticity measurement at 190 ° C. of 900 Pa to 5000 Pa, preferably 1100 Pa to 4000 Pa, more preferably 1300 Pa or higher. 3000 Pa or less.
- the storage elastic modulus at an angular frequency of 1 rad / sec in dynamic viscoelasticity measurement at 190 ° C. is less than 900 Pa
- the open cell ratio tends to increase when the processing temperature is increased during foam molding in the mold. Yes, when it exceeds 5000 Pa, the foamed particles are difficult to foam during in-mold foam molding, and the surface beauty and dimensional stability tend to be impaired.
- the storage elastic modulus at an angular frequency of 100 rad / sec in dynamic viscoelasticity measurement at 190 ° C. is 100000 Pa or less, preferably 95000 Pa or less, more preferably 90000 Pa or less.
- the resin pressure and kneading at the time of extrusion are produced during the production of the resin particles used as the raw material of the expanded particles.
- the torque value at the time tends to be high, and the productivity tends to decrease due to machine restrictions.
- the storage elastic modulus was measured by using a rotational rheometer, after sufficiently preheating a flat resin sample at 190 ° C., and then applying a strain by changing the rotation angle at a constant period. This is done by detecting the stress.
- a cone plate type is used as a measurement jig, and measurement is performed in a nitrogen atmosphere. The measurement is performed in the range of angular frequency from 0.1 rad / sec to 100 rad / sec, and the storage elastic modulus and loss elastic modulus at each angular frequency are obtained.
- values of storage elastic modulus at an angular frequency of 1 rad / second and 100 rad / second are adopted.
- Polyethylene resin particles having a storage elastic modulus at an angular frequency of 1 rad / sec in the dynamic viscoelasticity measurement at 190 ° C. of 900 Pa to 5000 Pa and a storage elastic modulus at an angular frequency of 100 rad / sec of 100,000 Pa or less There is no particular limitation on the method of obtaining the linear polyethylene resin (A) having a high melt index MI, and the linear polyethylene resin (B) having a very low melt index MI was mixed. Examples thereof include using a resin as a base resin.
- the melt index MI at 190 ° C. of the polyethylene resin particles is preferably 0.8 g / 10 min or more and 3.0 g / 10 min or less, more preferably 1.0 g / 10 min or more and 2.5 g / 10 min. It is as follows. When the MI of the polyethylene resin particles is less than 0.8 g / 10 min, the storage elastic modulus is high, the storage elastic modulus at an angular frequency of 100 rad / sec is likely to exceed 100,000 Pa, and the fluidity Therefore, there is a tendency that it is difficult to obtain an in-mold foam molded article having a good appearance.
- the storage elastic modulus at an angular frequency of 1 rad / sec is likely to be less than 900 Pa, and the open cell ratio of the in-mold foam molded product is high. Tend to be higher.
- the MI of the polyethylene resin particles is a value measured at a temperature of 190 ° C. and a load of 2.16 kg in accordance with JIS K7210.
- the density of the polyethylene resin particles preferably not more than 0.915 g / cm 3 or more 0.940 g / cm 3, more preferably not more than 0.918 g / cm 3 or more 0.935 g / cm 3.
- the density of the polyethylene resin particles is less than 0.915 g / cm 3 , there is a concern that the rigidity of the resin is low and the mechanical properties are lowered.
- the density of the polyethylene resin particles exceeds 0.940 g / cm 3 , the resin may become brittle, and there is a concern that the impact strength may be lowered, and the processing temperature range tends to be narrowed.
- the base resin of the polyethylene resin foamed particles 1 is a resin in which a linear polyethylene resin (A) having a high melt index MI and a linear polyethylene resin (B) having a very low melt index MI are mixed.
- the melt index MI of the linear polyethylene resin (A) having a high MI as the main component is preferably from 1.2 g / 10 min to 10 g / 10 min, and preferably from 1.2 g / 10 min to 6 g. 0.0 g / 10 min or less is more preferable.
- melt index MI of the linear polyethylene resin (B) having a very low melt index MI is preferably 0.01 g / 10 min or more and 0.3 g / 10 min or less, and 0.02 g / 10 min or more and 0.0. 2 g / 10 min or less is more preferable.
- the total amount of (A) and (B) is 100 wt. %
- the linear polyethylene resin (A) is 60% by weight or more and 97% by weight or less
- the linear polyethylene resin (B) is 3% by weight or more and 40% by weight or less
- the polyethylene resin (A) is 70% by weight or more and 95% by weight or less
- the linear polyethylene resin (B) is 5% by weight or more and 30% by weight or less.
- the storage elastic modulus at an angular frequency of 1 rad / sec is 900 Pa to 5000 Pa, the angular frequency is 100 rad / sec.
- the storage elastic modulus in seconds tends to be 100,000 Pa or less.
- the density of the linear polyethylene resin (A) is preferably not more than 0.915 g / cm 3 or more 0.940 g / cm 3, is 0.918 g / cm 3 or more 0.935 g / cm 3 or less It is more preferable.
- the density of the linear polyethylene-based resin (A) is less than 0.915 g / cm 3 , there is a concern that the rigidity of the base resin is low and the mechanical properties are lowered.
- the density of the linear polyethylene-based resin (A) exceeds 0.940 g / cm 3 , the base resin may become brittle, and the impact strength may be lowered, and the processing temperature range becomes narrow. Tend.
- the density of the linear polyethylene resin (B) is preferably not more than 0.915 g / cm 3 or more 0.970 g / cm 3, is 0.920 g / cm 3 or more 0.970 g / cm 3 or less It is more preferable.
- the density of the linear polyethylene-based resin (B) is less than 0.915 g / cm 3 , there is a concern that the base resin has low rigidity and mechanical properties are lowered.
- the density of the linear polyethylene-based resin (B) exceeds 0.970 g / cm 3 , the base resin may become brittle, and the impact strength may be lowered, and the resin is difficult to melt. The kneadability during the production of the resin particles is lowered, and there is a concern that the cell structure of the obtained foam is not uniform and the physical properties are lowered.
- Range of storage elastic modulus and its range at an angular frequency of 1 rad / sec and an angular frequency of 100 rad / sec in the dynamic viscoelasticity measurement at 190 ° C. of the polyethylene resin particles used in the production of the polyethylene resin foamed particles 2 Is the same as that of the polyethylene-based resin expanded particles 1.
- Examples of the polyethylene resin used for the production of the polyethylene resin expanded particles 2 include a high density polyethylene resin, a low density polyethylene resin, a linear low density polyethylene resin, a linear low density polyethylene having a long chain branch, and And mixtures thereof.
- these polyethylene resins linear low density polyethylene resins, linear low density polyethylene having long chain branches, and high density polyethylene are obtained from the viewpoint of obtaining mechanical strength and highly expanded polyethylene resin expanded particles. It is preferable to use a base resin and a mixture thereof as a main raw material, and it is more preferable to use a linear low density polyethylene base resin, a high density polyethylene resin and a mixture thereof as a main raw material.
- the polyethylene resin used for the production of the polyethylene resin foamed particles 2 may contain a comonomer copolymerizable with ethylene in addition to ethylene.
- a comonomer copolymerizable with ethylene an ⁇ -olefin having 3 to 18 carbon atoms can be used.
- propene, 1-butene, 1-pentene, 1-hexene, 3,3-dimethyl-1- Examples include butene, 4-methyl-1-pentene, 4,4-dimethyl-1-pentene, and 1-octene. These may be used alone or in combination of two or more.
- the polyethylene resin used for the production of the polyethylene resin expanded particles 2 may contain a polyethylene resin having a cross-linked structure and a long-chain branched structure as long as the processability and recyclability are not affected.
- the range of the melt index MI of the polyethylene resin particles and the reason why the range is preferable are the same as those of the polyethylene resin expanded particles 1.
- a base resin is a resin in which a polyethylene resin (A ′) having a higher melt index is a main component and a polyethylene resin (B ′) having a very low melt index is mixed. Etc.
- the melt index of the polyethylene resin (A ′) is preferably from 1.2 g / 10 min to 10 g / 10 min, and more preferably from 1.2 g / 10 min to 6.0 g / 10 min.
- the melt index of the polyethylene resin (B ′) having a very low melt index is preferably from 0.01 g / 10 min to 0.3 g / 10 min, more preferably from 0.02 g / 10 min to 0.2 g / 10 min. preferable.
- the total of (A ′) and (B ′) is 100% by weight, preferably 60% by weight of the polyethylene resin (A ′). 97 wt% or less and polyethylene resin (B ') 3 wt% up to 40 wt% or less, more preferably polyethylene resin (A') 70 wt% or more and 95 wt% or less and polyethylene resin (B ') Is 5% by weight and 30% by weight or less.
- the storage elastic modulus at an angular frequency of 1 rad / sec is 900 Pa to 5000 Pa, and the angular frequency is 100 rad / sec.
- the storage elastic modulus at 100 is likely to be 100,000 Pa or less.
- the density range of the polyethylene resins (A ′) and (B ′) and the reason why the range is preferable are the same as those of the polyethylene resins (A) and (B) of the polyethylene resin expanded particles 1.
- the present invention provides pre-foaming with a wide molding processing width even when a polyethylene resin having a narrow melting temperature range is used as a raw material, such as foamed particles obtained from polyethylene resin particles having high crystallinity and high rigidity.
- the aim is also to obtain particles.
- the methods for measuring the amount of crystal of polyethylene resin can be calculated from the heat of melting curve obtained from a differential scanning calorimeter (DSC).
- DSC differential scanning calorimeter
- the temperature was increased from 20 ° C. to 220 ° C. at a rate of temperature increase of 10 ° C./min, cooled to 10 ° C. at a rate of temperature decrease of 10 ° C./min, and then again 10 ° C.
- From a polyethylene resin particle having a calorific value of melting crystal (q in FIG. 2) calculated from a DSC curve at the time of the second temperature increase obtained when the temperature is increased to 220 ° C. at a temperature increase rate of 1 min / min.
- the melting peak temperature range in the DSC curve of the expanded particles tends to be particularly narrow.
- the heat of fusion crystal q of the polyethylene resin particles tends to be 145 J / g or more.
- the melting crystal calorie q of the polyethylene resin particles is more preferably 170 J / g or less.
- the melting crystal calorie q of the polyethylene resin exceeds 170 J / g, in the DSC curve of the expanded particles, the two melting peaks of the low temperature side melting peak and the high temperature side melting peak cannot be obtained, or the melting temperature width becomes narrow. Therefore, molding processability may be deteriorated.
- Polyethylene resin foamed particles 3 of the present invention (A ") a density of less than 0.915 g / cm 3 or more 0.940 g / cm 3 and a melt index 1.0 g / 10 min or more 10 g / 10 minutes or less linear High density polyethylene having a low density polyethylene resin of 50% by weight to 97% by weight, (B ") density of 0.940 g / cm 3 or more, and a melt index of 0.01 g / 10 minutes to 0.3 g / 10 minutes.
- the resin is mixed at 3 wt% to 50 wt% [total of (A ′′) and (B ′′) is 100 wt%], and the melt index after mixing is 0.8 g / 10 min to 3.0 g / 10
- a polyethylene resin that is less than or equal to a minute is used as a base resin.
- (A ") linear low density polyethylene resin and (B") high density polyethylene resin more preferably, (A ") 70% by weight or more of linear low density polyethylene resin is 95% by weight. % By weight and (B ”) 5% by weight and 30% by weight or less of the high-density polyethylene resin.
- (A ") When the linear low-density polyethylene resin is less than 50% by weight, the minimum molding pressure that can secure the fusing property at the time of in-mold foam molding increases, the processing temperature rises, and the mold The internal foam moldability tends to be poor, and when it exceeds 97% by weight, there is a tendency that continuous foaming tends to occur when the molding pressure (processing temperature) during in-mold foam molding increases.
- the melt index MI of the polyethylene resin mixture as the base resin is 0.8 g / 10 min or more and 3.0 g / 10 min or less, more preferably 1.0 g / 10 min or more and 2.5 g / 10 min or less. It is.
- MI of the polyethylene-based resin mixture is less than 0.8 g / 10 minutes, the fluidity is deteriorated, so that the ratio of the obtained foamed particles is lowered, and it is difficult to obtain an in-mold foam molded article having a good appearance.
- Tend When the MI of the polyethylene resin mixture exceeds 3.0 g / 10 minutes, the foamed particles tend to shrink.
- linear low density polyethylene resin is 0.915 g / cm 3 or more 0.940 g / cm less than 3, 0.918 g / cm 3 It is preferably 0.935 g / cm 3 or less.
- a ′′ When the density of the linear low density polyethylene resin is less than 0.915 g / cm 3 , the rigidity of the resin is low and the mechanical properties are lowered. There are concerns.
- a " When the density of the linear low-density polyethylene resin is 0.940 g / cm 3 or more, the resin may become brittle, and there is a concern that the impact strength may be lowered, and the processing temperature range is narrow. Tend to be.
- the melt index MI of the linear low density polyethylene resin (A ′′) used for the production of the polyethylene resin expanded particles 3 is preferably 1.0 g / 10 min or more and 10 g / 10 min or less, and 1.5 g / 10 min. More preferably, it is 7.0 g / 10 min or less.
- a ′′ When the MI of the linear low density polyethylene resin is less than 1.0 g / 10 min, the fluidity deteriorates, so that the obtained expanded particles There is a tendency that the magnification of the resin is low, and it is difficult to obtain an in-mold foam-molded article having a good appearance.
- a ′′ When the MI of the linear low-density polyethylene resin exceeds 10 g / 10 minutes, the open cell ratio of the foamed particles and the in-mold foam molded product tends to be high.
- the (A ") linear low density polyethylene resin used in the production of the polyethylene resin expanded particles 3 may be used by blending a plurality of linear low density polyethylene resins having different densities. As long as the uniformity of the bubbles of the polyethylene resin foam particles and the mechanical properties of the resulting in-mold foam molding are not impaired, the linear low density polyethylene resin is replaced with the medium density polyethylene resin and the low density polyethylene resin. At least one selected from the group can be blended and used.
- the (A ") linear low density polyethylene resin used for the production of the polyethylene resin expanded particles 3 is a copolymer of a comonomer copolymerizable with ethylene other than ethylene.
- a comonomer copolymerizable with ethylene can be used ⁇ -olefins having 3 to 18 carbon atoms, such as propene, 1-butene, 1-pentene, 1-hexene, 3,3-dimethyl-1-butene, 4-methyl-1 -Pentene, 4,4-dimethyl-1-pentene, 1-octene and the like may be mentioned, and these may be used alone or in combination of two or more.
- Polyethylene used in the manufacture of foamed resin particles 3 (B ")
- the density of the high density polyethylene-based resin is a resin 0.940 g / cm 3 or more, 0.945 g / cm 3 or more is preferable.
- (B") high density When the density of the polyethylene resin is less than 0.940 g / cm 3 , the amount of the comonomer is large and the molecular weight is difficult to increase, and thus it may be difficult to obtain a high density polyethylene resin having the target MI.
- the melt index MI of the (B ") high-density polyethylene resin used for the production of the polyethylene resin expanded particles 3 is 0.01 g / 10 min or more and 0.3 g / 10 min or less, and 0.01 g / 10 min or more. 0.1 g / 10 min or less is preferable.
- the MI of the high-density polyethylene resin exceeds 0.3 g / 10 min, the open cell ratio tends to increase when the processing temperature is raised during in-mold foam molding.
- the (B ′′) high-density polyethylene resin used in the production of the polyethylene-based resin expanded particles 3 may be used by blending a plurality of high-density polyethylene-based resins having different densities. As long as the air bubble uniformity and the mechanical properties of the resulting in-mold foam molded article are not impaired, the high-density polyethylene resin contains at least one selected from the group consisting of medium-density polyethylene resins and low-density polyethylene resins. It can also be used by blending.
- the (B ") high-density polyethylene resin used for the production of the polyethylene resin foamed particles 3 may contain a comonomer copolymerizable with ethylene other than ethylene.
- a comonomer copolymerizable with ethylene carbon
- An ⁇ -olefin having a number of 3 or more and 18 or less can be used, for example, propene, 1-butene, 1-pentene, 1-hexene, 3,3-dimethyl-1-butene, 4-methyl-1-pentene, 4 , 4-dimethyl-1-pentene, 1-octene and the like, and these may be used alone or in combination of two or more.
- Examples of the method for producing the polyethylene resin particles 1 to 3 of the present invention include the following methods. First, a polyethylene resin as a raw material and an additive (if necessary) are mixed by a mixing method such as a dry blend method or a master batch method. Next, the obtained mixture is melt-kneaded using an extruder, kneader, Banbury mixer (registered trademark), roll, etc., and then chopped using a cutter, pelletizer, etc., to obtain a particle shape, thereby producing a polyethylene system. Resin particles are obtained.
- the weight per polyethylene resin particle in the present invention is preferably 0.2 mg or more and 10 mg or less, and more preferably 0.5 mg or more and 6.0 mg or less.
- the weight per polyethylene resin particle is less than 0.2 mg, there is a possibility that the shrinkage rate of the obtained in-mold foam molded product is increased.
- the weight exceeds 10 mg, filling into the mold is possible. May become difficult.
- the weight per polyethylene resin particle is an average resin particle weight obtained from 100 randomly selected polyethylene resin particles.
- the weight per polyethylene resin particle hardly changes even after the foaming step, and the weight per polyethylene resin particle can be regarded as the weight per polyethylene resin foam particle. There is no problem.
- the polyethylene-based resin particles of the present invention may contain additives such as a cell nucleating agent, a hydrophilic compound, an antioxidant, an antistatic agent, a colorant, and a flame retardant as necessary.
- inorganic nucleating agents such as talc, calcium stearate, calcium carbonate, silica, kaolin, titanium oxide, bentonite and barium sulfate are generally used. These may be used alone or in combination of two or more. Among these cell nucleating agents, a cell having uniform talc can be obtained, which is preferable.
- a hydrophilic compound it is preferable to add a hydrophilic compound to the polyethylene resin particles of the present invention. By adding a hydrophilic compound, even when an inorganic gas is used as a foaming agent, expanded particles having a high expansion ratio can be easily obtained.
- the hydrophilic compound used in the present invention is a compound containing a hydrophilic group such as a carboxy group, a hydroxyl group, an amino group, a sulfo group, or a polyoxyethylene group or a derivative thereof, and includes a hydrophilic polymer.
- a hydrophilic group such as a carboxy group, a hydroxyl group, an amino group, a sulfo group, or a polyoxyethylene group or a derivative thereof, and includes a hydrophilic polymer.
- examples of the compound containing a carboxyl group include lauric acid and sodium laurate
- examples of the compound containing a hydroxyl group include ethylene glycol and glycerin.
- Examples of other hydrophilic organic compounds include organic compounds having a triazine ring such as melamine (chemical name: 1,3,5-triazine-2,4,6-triamine), isocyanuric acid, and isocyanuric acid condensate. . These hydrophilic
- the hydrophilic polymer is a polymer having a water absorption rate of 0.5% by weight or more as measured in accordance with ASTM D570, and is a so-called hygroscopic polymer, several times to several times its own weight without dissolving in water. It includes a water-absorbing polymer that absorbs water 100 times and is difficult to dehydrate even under pressure, and a water-soluble polymer that dissolves in water at room temperature to high temperature.
- hydrophilic polymer for example, Ethylene-acrylic acid-maleic anhydride terpolymer; An ionomer resin in which the carboxyl group of the ethylene- (meth) acrylic acid copolymer is neutralized with an alkali metal ion such as sodium ion or potassium ion or a transition metal ion such as zinc ion, and the molecules are crosslinked; Carboxy group-containing polymers such as ethylene- (meth) acrylic acid copolymers; Polyamides such as nylon-6, nylon-6,6, copolymer nylon; Nonionic water-absorbing polymers such as polyethylene glycol and polypropylene glycol; Polyether-polyolefin resin block copolymer represented by perestat (trade name, manufactured by Sanyo Kasei Co., Ltd.); Cross-linked polyethylene oxide polymers typified by Aqua Coke (trade name, manufactured by Sumitomo Seika); Etc.
- hydrophilic polymers may be used alone or
- nonionic water-absorbing polymers and polyether-polyolefin resin block copolymers have relatively good dispersion stability in a pressure-resistant container, and absorb water when added in a relatively small amount. It is preferable because it exhibits its properties.
- hydrophilic compounds glycerin, polyethylene glycol, polypropylene glycol, and melamine are easy to obtain expanded particles having a high expansion ratio even when inorganic gas is used as a foaming agent. Since the foaming pressure can be lowered, the pressure resistance of the equipment can be lowered, leading to cost reduction.
- the content of the hydrophilic compound in the polyethylene resin expanded particles of the present invention is preferably 0.01 parts by weight or more and 10 parts by weight or less, and 0.03 parts by weight with respect to 100 parts by weight of the polyethylene resin mixture (base resin). Part to 5 parts by weight is more preferable, and 0.05 part to 1 part by weight is more preferable.
- the content of the hydrophilic compound is less than 0.01 parts by weight, the effect of obtaining expanded particles with a high expansion ratio tends to be not obtained.
- the content exceeds 10 parts by weight the expansion ratio is further improved. The effect tends to hardly occur, and the surface beauty and mechanical properties of the in-mold foam molded product obtained may be impaired.
- the polyethylene resin expanded particles of the present invention can be produced using the polyethylene resin particles obtained in this way.
- polyethylene resin particles are dispersed in an aqueous dispersion medium together with a foaming agent, and heated to a temperature equal to or higher than the softening temperature of the polyethylene resin particles.
- the inside of the sealed container is evacuated as necessary, and then foamed into the sealed container.
- the agent is introduced, and then heated to a temperature equal to or higher than the softening temperature of the polyethylene resin.
- the amount of foaming agent added is adjusted so that the pressure in the sealed container rises to about 1.5 MPa (gauge pressure) or more and 5 MPa or less (gauge pressure) by heating.
- the temperature of the released atmosphere may be adjusted to about room temperature to 110 ° C.
- a method for introducing the foaming agent in the present invention a method other than the above may be used. For example, after introducing a polyethylene resin particle, an aqueous dispersion medium, and a dispersant as necessary into a sealed container, as necessary. After blowing the inside of the sealed container, the foaming agent may be introduced while heating to a temperature equal to or higher than the softening temperature of the polyethylene resin.
- a polyethylene resin particle, an aqueous dispersion medium, and a dispersing agent as necessary are charged in a sealed container, and then heated to near the foaming temperature.
- An agent may be introduced.
- the expansion ratio and average cell diameter of the polyethylene resin expanded particles for example, carbon dioxide, nitrogen, air, or a substance used as a foaming agent is press-fitted before releasing into a low pressure region.
- carbon dioxide, nitrogen, air, or a substance used as a foaming agent is press-fitted before releasing into a low pressure region.
- the foaming ratio and the average cell diameter can be adjusted by introducing the gas into the gas and controlling the pressure.
- the expansion ratio and the average cell diameter can be adjusted by appropriately changing the temperature in the sealed container (generally the foaming temperature) before discharging into the low pressure region.
- the expansion ratio of the polyethylene-based resin expanded particles tends to increase by increasing the internal pressure in the sealed container, increasing the pressure release rate, or increasing the temperature in the sealed container before release.
- the average cell diameter of the polyethylene resin expanded particles tends to decrease by increasing the internal pressure in the sealed container, increasing the pressure release speed, or the like.
- blowing agent used in the present invention examples include saturated hydrocarbons such as propane, butane and pentane, ethers such as dimethyl ether, alcohols such as methanol and ethanol, inorganic gases such as air, nitrogen and carbon dioxide, and water. It is done. These foaming agents may be used alone or in combination. Among these foaming agents, carbon dioxide, nitrogen, air, and water are preferably used because the environmental load is particularly small and there is no risk of combustion, and foamed particles with a relatively high expansion ratio can be easily obtained. Carbon dioxide gas is most preferred.
- the polyethylene resin expanded particles of the present invention show two melting peaks, a low temperature side melting peak and a high temperature side melting peak, in a DSC curve obtained by differential scanning calorimetry (DSC).
- DSC differential scanning calorimetry
- the DSC curve obtained by differential scanning calorimetry of polyethylene resin foamed particles refers to polyethylene resin foamed particles of 1 mg to 10 mg at a heating rate of 10 ° C./min using a differential scanning calorimeter. It is a DSC curve obtained when it heats up from 20 degreeC to 220 degreeC.
- the polyethylene resin expanded particles of the present invention have two melting peaks, a low temperature side melting peak and a high temperature side melting peak, in the DSC curve at the first temperature rise obtained by differential scanning calorimetry (DSC).
- the present invention can be applied even when the peak temperature width is 9 ° C. or less. Therefore, a polyethylene resin having a high crystallinity and high rigidity can be used as the base resin.
- the peak temperature width is more preferably 5 ° C. or higher. When the temperature is lower than 5 ° C., the moldability may be deteriorated even if the polyethylene resin particles of the present invention are used.
- the DSC in the step of foaming the polyethylene resin particles, the DSC is held by holding the polyethylene resin particles impregnated with the foaming agent at a temperature equal to or higher than a temperature at which a part of the crystals starts to melt.
- the curve two melting peaks, a low temperature side melting peak and a high temperature side melting peak, can be obtained.
- the heat amount (Ql) of the low temperature side melting peak and the heat amount (Qh) of the high temperature side melting peak are defined as follows. That is, let A be the point where the endotherm is the smallest between the two melting peaks of the low-temperature side melting peak and the high-temperature side melting peak of the DSC curve, and draw a tangent line from the point A to the DSC curve. Where B is the low temperature contact and C is the low temperature side contact, the portion enclosed by line segment AB and the DSC curve is the amount of heat (Qh) of the high temperature side melting peak, and the portion surrounded by line segment AC and the DSC curve is the low temperature side The amount of heat (Ql) at the melting peak.
- DSC ratio the ratio of the high-temperature side melting peak calorie
- the DSC ratio of the polyethylene resin expanded particles of the present invention is preferably 4% or more and 50% or less, more preferably 7% or more and 35% or less.
- the foaming power of the polyethylene resin expanded particles is too high, and the vicinity of the mold surface (the surface layer portion of the in-mold expanded molded product) ) Foamed at a stretch, and the foamed particles are fused together.
- the water vapor used for in-mold foam molding does not penetrate into the foam particles inside, and the inside of the in-mold foam molded product is not fused. There is a tendency to become in-mold foam moldings with poor adhesion.
- the DSC ratio in the polyethylene resin expanded particles of the present invention depends on the properties of the base resin, and is 0.05% of the mixing ratio (%) of the polyethylene resin (A, A ′, A ′′) in the base resin.
- the DSC ratio is within this range, it is easy to obtain an in-mold foam molded article having a low open cell ratio and good surface aesthetics.
- the DSC ratio in the polyethylene resin expanded particles is the temperature in the sealed container before the release into the low-pressure region described above when obtaining the polyethylene resin expanded particles (hereinafter, sometimes referred to as “expanded temperature”). It is also possible to adjust by changing the hold time as appropriate.
- the DSC ratio tends to increase by decreasing the temperature in the closed container (foaming temperature), increasing the hold time, and the like. Conversely, the DSC ratio tends to be lowered by increasing the temperature in the closed container (foaming temperature), shortening the hold time, etc., and further when the foaming is performed in a state where the crystal is completely melted by increasing the foaming temperature or the like.
- the sealed container used in the present invention is not particularly limited as long as it can withstand the pressure in the container and the temperature in the container at the time of producing the foamed particles, and examples thereof include an autoclave type pressure resistant container.
- aqueous dispersion medium used in the present invention it is preferable to use only water, but a dispersion medium in which methanol, ethanol, ethylene glycol, glycerin or the like is added to water can also be used.
- a hydrophilic compound when contained in the present invention, water in the aqueous dispersion medium also acts as a foaming agent and contributes to improvement of the expansion ratio.
- a dispersant in the aqueous dispersion medium in order to prevent coalescence of the polyethylene resin particles.
- dispersant used in the present invention examples include inorganic dispersants such as tricalcium phosphate, tribasic magnesium phosphate, basic magnesium carbonate, calcium carbonate, barium sulfate, kaolin, talc, and clay. These dispersants may be used alone or in combination of two or more.
- Carboxylate types such as N-acyl amino acid salts, alkyl ether carboxylates, acylated peptides
- Sulfonate types such as alkyl sulfonates, n-paraffin sulfonates, alkyl benzene sulfonates, alkyl naphthalene sulfonates, sulfosuccinates
- Sulfate ester types such as sulfated oil, alkyl sulfate, alkyl ether sulfate, alkyl amide sulfate, alkyl allyl ether sulfate
- Phosphate ester types such as alkyl phosphates and polyoxyethylene phosphates
- Anionic surfactants such as
- dispersion aids polyanionic polymer surfactants such as maleic acid copolymer salts and polyacrylates, polystyrene anion salts such as polystyrene sulfonates and naphthalsulfonic acid formalin condensate salts are used. Molecular surfactants can also be used. These dispersing aids may be used alone or in combination of two or more.
- the amount of the dispersant and the dispersion aid used in the present invention varies depending on the type, the type of polyethylene resin particles used and the amount used, but usually 0.1 wt. It is preferable to blend 3 parts by weight or more and 3 parts by weight or less, and it is preferable to blend 0.001 part by weight or more and 0.1 parts by weight or less of the dispersion aid.
- the polyethylene resin particles are usually used in an amount of 20 to 100 parts by weight with respect to 100 parts by weight of the aqueous dispersion medium in order to improve dispersibility in the aqueous dispersion medium. preferable.
- the expandable polyethylene resin particles can be foamed by bringing water vapor into contact with the expandable polyethylene resin particles to obtain polyethylene resin expanded particles.
- the step of obtaining the polyethylene resin expanded particles from the polyethylene resin particles may be referred to as “one-stage expanded process”, and the polyethylene resin expanded particles thus obtained are referred to as “one-stage expanded particles”. There is a case.
- the expanded foam is more expanded than the single-stage expanded particle by contacting with water vapor of a specific pressure.
- an inorganic gas for example, air, nitrogen, carbon dioxide gas, etc.
- the expanded foam is more expanded than the single-stage expanded particle by contacting with water vapor of a specific pressure.
- Polyethylene resin expanded particles with improved magnification can be obtained.
- the process of further foaming the polyethylene resin foamed particles to obtain a polyethylene resin foamed particle having a higher expansion ratio is sometimes referred to as a “two-stage foaming process”.
- the polyethylene-based resin expanded particles obtained through the process may be referred to as “two-stage expanded particles”.
- the “two-stage foaming step” refers to impregnating a single-stage foamed particle with an inorganic gas (for example, air, nitrogen, carbon dioxide gas, etc.) and applying an internal pressure, and then bringing it into contact with water vapor at a specific pressure.
- an inorganic gas for example, air, nitrogen, carbon dioxide gas, etc.
- the water vapor pressure in the two-stage foaming step is preferably adjusted to 0.02 MPa (gauge pressure) or more and 0.15 MPa (gauge pressure) or less in consideration of the expansion ratio of the two-stage foam particles. It is more preferable to adjust at 0.03 MPa (gauge pressure) or more and 0.1 MPa (gauge pressure) or less.
- the internal pressure of the inorganic gas impregnated in the first-stage expanded particles is preferably changed appropriately in consideration of the expansion ratio of the second-stage expanded particles, but is 0.12 MPa (absolute pressure) or 0.6 MPa (absolute pressure). It is preferable.
- the expansion ratio of the polyethylene resin expanded particles of the present invention is not particularly limited, and may be adjusted as necessary.
- the expansion ratio of the polyethylene resin expanded particles is preferably 2 to 50 times, preferably 8 to 45 times, from the viewpoint of weight reduction and mechanical properties of the polyethylene resin in-mold foam molded product. The following is more preferable, and 11 times or more and 40 times or less are more preferable.
- the expansion ratio of the polyethylene resin foamed particles is less than 2 times, the effect of weight reduction is small, and when it exceeds 50 times, the mechanical properties such as the compression stress of the in-mold foam-molded polyethylene resin mold tends to decrease. It is in.
- the expansion ratio of the polyethylene-based resin expanded particles is the graduated cylinder containing ethanol after measuring the weight wb (g) of the expanded polyethylene-based resin particles and the weight wr (g) of the expanded polyethylene-based resin particles.
- the average cell diameter of the expanded polyethylene resin particles of the present invention is preferably 80 ⁇ m or more and 500 ⁇ m or less, and more preferably 120 ⁇ m or more and 400 ⁇ m or less.
- the average cell diameter of the polyethylene resin foamed particles is less than 80 ⁇ m, the shrinkage of the obtained foamed product in the polyethylene resin mold tends to increase, and when it exceeds 500 ⁇ m, the appearance of the obtained foamed product in the polyethylene resin mold Tend to get worse.
- the open cell ratio of the polyethylene-based resin expanded particles of the present invention is preferably 10% or less, more preferably 5% or less. If the open cell ratio of the polyethylene resin foam particles exceeds 10%, shrinkage occurs when foam molding is performed in the mold, and the surface property of the resulting polyethylene resin foam molded article is lowered, and the compressive strength is also lowered. Tend to.
- the open-cell ratio of the polyethylene resin expanded particles refers to an air-comparing hydrometer based on the method described in ASTM D2856-87 Procedure C (PROSEDURE C) with respect to the polyethylene resin expanded particles.
- the volume of Vc (cm 3 ) was measured, and the total amount of the polyethylene resin expanded particles after the measurement of Vc was submerged in a graduated cylinder containing ethanol.
- in-mold foam molding is performed in which the polyethylene-based resin foam particles obtained as described above are filled into a mold having a predetermined shape and heated with water vapor or the like to fuse the foam particles with each other.
- a polyethylene-type resin type in-mold foam molding can be obtained.
- a method of filling the mold and heat-sealing with water vapor (B) A method of compressing polyethylene resin expanded particles with gas pressure and filling them into a mold, and using the recovery force of the polyethylene resin expanded particles, heat-sealing with water vapor, (C) A method of filling polyethylene resin expanded particles in a mold without heat treatment and heat-sealing with water vapor, Such a method can be used.
- an inorganic gas for example, air, nitrogen, carbon dioxide gas, etc.
- the method (c) which is the simplest method, is preferable because a molded product having a beautiful appearance and a small dimensional shrinkage against the mold can be obtained.
- in-mold foam-molding a polyethylene-based resin in-mold foam molded product from the polyethylene-based resin foam particles of the present invention for example, from two molds without particularly pre-treating polyethylene-based resin foam particles in advance. Filled into a molding space that can be closed but cannot be sealed, and molded with steam or the like as a heating medium at a heating steam pressure of about 0.05 to 0.20 MPa (gauge pressure) for a heating time of about 3 to 30 seconds.
- Examples include a method in which polyethylene-based resin foam particles are fused together, the mold is cooled by water cooling, the mold is opened, and a foam-molded body in a polyethylene-based resin mold is obtained.
- Polyethylene resins used in Examples and Comparative Examples are polyolefin manufacturers [SK Chemical Co., Ltd., Nippon Polyethylene Co., Ltd., Dow Chemical Japan Co., Ltd., Prime Polymer Co., Ltd., Ube Maruzen Polyethylene Co., Ltd.] Purchased from. Table 1 shows the properties of each polyethylene resin.
- a press machine pre-heated to 190 ° C. (37 TS molding machine, manufactured by Fujiki Kogyo Co., Ltd.) is provided with a flat plate space of 100 mm (vertical) ⁇ 100 mm (horizontal) using a 1.0 mm thick spacer, and polyethylene resin particles Was hot pressed at a pressure of 56 kg / cm 2 (5.5 MPa) for 5 minutes. Then, after cooling in a press state until it became 50 degreeC, the spacer was removed and the polyethylene-type resin board of about 100 mm (length) x about 100 mm (width) x about 1 mm (thickness) was obtained.
- a test piece was obtained by punching out the obtained polyethylene resin plate using a punch having a diameter of 25 mm.
- a viscoelasticity measuring device manufactured by TA Instruments, ARES, was used, and a cone plate type jig having a diameter of 25 mm and a cone angle of 0.04 rad was attached.
- Set up a thermostat to surround the jig and keep it at 190 ° C. After the jig is preheated, open the thermostat, insert a test piece between the parallel plates, close the thermostat and preheat for 5 minutes before calibration. Compressed to a cone plate spacing of 0.07 mm as described on the certificate.
- the thermostat After compression, the thermostat was opened again, the resin protruding from the cone plate was scraped off with a brass spatula, the thermostat was closed and the temperature was kept again for 5 minutes, and then dynamic viscoelasticity measurement was started.
- the measurement is performed in the range of angular frequency from 0.1 rad / sec to 100 rad / sec, and the storage elastic modulus and loss elastic modulus at each angular frequency are obtained.
- values of storage elastic modulus at an angular frequency of 1 rad / sec and 100 rad / sec were adopted.
- the amount of strain was 5%, and the measurement was performed in a nitrogen atmosphere.
- MI of the polyethylene resin particles was measured under the conditions of an orifice of 2.0959 ⁇ 0.005 mm ⁇ , an orifice length of 8.000 ⁇ 0.025 mm, a load of 2160 g, and 190 ⁇ 0.2 ° C. using an MI measuring instrument described in JIS K7210. Measured with
- ⁇ Shrinkage of expanded particles> The obtained polyethylene resin single-stage expanded particles were observed and evaluated according to the following criteria. ⁇ : Almost no wrinkles on the surface of the first-stage expanded particles. ⁇ : Some wrinkles are observed on the surface of the first-stage expanded particles. X: The surface of the first-stage expanded particles is full and clearly contracted.
- ⁇ Minimum molding pressure during molding> Obtained by performing molding by changing the set vapor pressure of the main heating step in [Preparation of foamed molded article in polyethylene resin mold] by 0.01 MPa within a range of 0.10 to 0.18 MPa (gauge pressure).
- a crack having a depth of about 5 mm was put on the surface with a knife, the foamed molded body in the mold was divided along the crack, the fractured surface was observed, and the total number of particles on the fractured surface was observed. The ratio of the number of broken particles was determined, and the compact fusion rate was evaluated. The lowest steam pressure at which the fusion rate reached 80% or more was taken as the minimum molding pressure.
- ⁇ Maximum molding pressure during molding> Obtained by performing molding by changing the set vapor pressure of the main heating step in [Preparation of foamed molded article in polyethylene resin mold] by 0.01 MPa within a range of 0.10 to 0.18 MPa (gauge pressure).
- a small piece of about 25 mm ⁇ 25 mm ⁇ 30 mm was cut out from the center portion to obtain a foam sample for measurement.
- the volume vc (cm) of the foam sample for measurement was measured using an air-comparing hydrometer [manufactured by Tokyo Science Co., Ltd., Model 1000]. 3 ) measured.
- ⁇ Molding width> The difference between the lowest molding pressure and the highest molding pressure was taken as the molding width.
- the surface and end portions of the foamed molded products molded under the condition of minimum molding pressure + 0.01 MPa were observed and evaluated according to the following criteria.
- the edge part of a foaming molding is a ridgeline part which the surface and surface of an in-mold foaming molding cross
- ⁇ Adjacent foamed particles are fused well in any part, and there is no gap between the foamed particles.
- ⁇ There are a few places where there are gaps between adjacent expanded particles.
- X There are many places where there are gaps between adjacent expanded particles.
- the foam molded body molded at the minimum molding pressure or the foam molded body molded at the minimum molding pressure + 0.02 MPa condition is about 25 mm ⁇ 25 mm ⁇ 30 mm from the center.
- a small piece was cut out to obtain a foam sample for measurement.
- the open cell ratio (%) of the foamed molded product was calculated by the method described in “ ⁇ Maximum molding pressure during molding>”.
- Example 1 [Preparation of polyethylene resin particles]
- a linear polyethylene resin 90 parts by weight of (A-1) and 10 parts by weight of (B-1) are mixed, and 0.2 parts by weight of glycerin is added to 100 parts by weight of the mixed linear polyethylene resin.
- Part, 0.1 parts by weight of talc as a cell nucleating agent was dry blended.
- the dry blended mixture is put into a twin screw extruder with a diameter of 45 mm, melt kneaded at a resin temperature of about 220 ° C., extruded into a strand through a circular die attached to the tip of the extruder, water cooled, and then with a cutter
- the polyethylene resin particles were obtained by cutting.
- the particle weight per grain was 4.5 mg.
- Table 2 shows the evaluation results of the resin pressure during production. Table 2 shows the results of measuring the storage elastic modulus and MI of the obtained polyethylene resin particles.
- the set steam pressure in this heating step was changed by 0.01 MPa in a range of 0.10 to 0.18 MPa (gauge pressure), and molding was performed at each steam pressure.
- the holding time at the set pressure was 4 seconds.
- Each obtained foamed molded product was allowed to stand at 23 ° C. for 2 hours, then cured at 75 ° C. for 24 hours, and then left in a room at 23 ° C. for 4 hours to obtain an evaluation object.
- the dimensional shrinkage ratio against the mold and the surface beauty Evaluation was conducted. Furthermore, as the evaluation of the open cell rate, the open cell rate (L) at the minimum molding pressure and the open cell rate (H) at the minimum molding pressure + 0.02 MPa were measured. The results are shown in Table 2.
- Example 2 In [Production of polyethylene-based resin particles], the type and mixing amount of the linear polyethylene-based resin were changed as shown in Table 2, and in [Production of polyethylene-based resin foamed particles], the foaming temperature and foaming at the first stage of foaming were performed. Except that the pressure, the internal pressure at the time of two-stage foaming and the vapor pressure were changed as shown in Table 2, polyethylene resin particles, polyethylene resin foam particles, and polyethylene resin in-mold foam molding were carried out in the same manner as in Example 1. The body was made. Table 2 shows the evaluation results of the obtained polyethylene-based resin particles, polyethylene-based resin foamed particles, and polyethylene-based resin in-mold foam molding.
- Example 9 In [Preparation of polyethylene resin particles], glycerin was not added, and in [Preparation of polyethylene resin foam particles], the foaming temperature and pressure during the first stage foaming, the internal pressure and vapor pressure during the two stage foaming are shown in Table 2. Except for changing as shown, polyethylene resin particles, polyethylene resin foam particles, and polyethylene resin in-mold foam-molded articles were produced in the same manner as in Example 1. Table 2 shows the evaluation results of the obtained polyethylene-based resin particles, polyethylene-based resin foamed particles, and polyethylene-based resin in-mold foam molding.
- Example 5 Polyethylene resin foamed particles were produced in the same manner as in Example 1 except that the ⁇ one-stage foaming> in ⁇ Preparation of polyethylene-based resin foamed particles> was changed to 130 ° C.
- the obtained first-stage expanded particles were beads having many wrinkles and large shrinkage, and the melting particle in the DSC curve of the expanded particles was one.
- ⁇ Two-stage foaming> was carried out in the same manner as in [Production of polyethylene-based resin foamed particles] in Example 1, but the foamed particles did not swell, and foamed particles with the desired magnification could not be obtained.
- the resulting foam had a low open cell ratio of 20% or less, and the vapor pressure was reduced from the minimum molding pressure to 0. 0. 0. Even when the pressure is increased by 02 MPa, an increase in the open cell ratio of the molded product is 5% or less, and an in-mold foam molded product having a good appearance is obtained.
- the foamed particles of the present invention a good in-mold foam-molded product can be obtained even if the molding steam pressure changes, so that the production stability can be improved and the quality can be stabilized.
- the resin pressure which is an index of productivity when producing resin particles, is 8.0 MPa or less, and the productivity of resin particles is also good.
- the foaming pressure can be suppressed by the presence of glycerin, which is a hydrophilic substance.
- Comparative Examples 1 and 2 when the storage elastic modulus at an angular frequency of 1 rad / sec is less than 900 Pa, the range of increase in the open cell foam rate due to the increase in the heating vapor pressure during in-mold foam molding Is 5% or more, and it can be seen that bubbles are easily formed.
- Comparative Example 3 when the storage elastic modulus at an angular frequency of 100 rad / sec exceeds 100000 Pa, an excellent in-mold foam molded product can be obtained, but the resin pressure at the time of resin particle production is 8. It can be seen that the productivity is worse than 0 MPa.
- Example 10 [Preparation of polyethylene resin particles]
- a polyethylene resin 80 parts by weight of (A-3) and 20 parts by weight of (B-1) are mixed, and 0.2 parts by weight of glycerol is added to 100 parts by weight of the mixed linear polyethylene resin.
- a nucleating agent 0.1 part by weight of talc was dry blended. The dry blended mixture is put into a twin screw extruder with a diameter of 45 mm, melt kneaded at a resin temperature of about 220 ° C., extruded into a strand through a circular die attached to the tip of the extruder, water cooled, and then with a cutter The polyethylene resin particles were obtained by cutting. The particle weight per grain was 4.5 mg. Table 4 shows the results of measuring the storage elastic modulus, the heat of fusion crystal q, and MI of the obtained polyethylene resin particles.
- the set steam pressure in this heating step was changed by 0.01 MPa in a range of 0.10 to 0.18 MPa (gauge pressure), and molding was performed at each steam pressure.
- the holding time at the set pressure was 4 seconds.
- Each obtained foamed molded product was allowed to stand at 23 ° C. for 2 hours, then cured at 75 ° C. for 24 hours, and then left in a room at 23 ° C. for 4 hours to obtain an evaluation object.
- Example 11 to 16 In [Preparation of polyethylene resin particles], the type and mixing amount of the polyethylene resin were changed as shown in Table 4, and in [Preparation of polyethylene resin foam particles] A polyethylene resin particle, a polyethylene resin foam particle, and a polyethylene resin in-mold foam-molded article are produced in the same manner as in Example 10 except that the internal pressure and vapor pressure during staged foaming are changed as shown in Table 4. did. Table 4 shows the evaluation results of the obtained polyethylene-based resin particles, polyethylene-based resin foamed particles, and polyethylene-based resin in-mold foam molding.
- the polyethylene-based resin expanded particles of the present invention have a resin pressure of 8.0 MPa or less when the resin particles are produced.
- the melting peak temperature width of the expanded particles is as narrow as 11 ° C. or less, an in-mold expanded molded article having a good appearance with a wide molding width is obtained.
- Example 17 [Preparation of polyethylene resin particles]
- A 95 parts by weight of (A-2) linear low-density polyethylene resin and (B-1) 5 parts by weight of (B) high-density polyethylene resin are mixed, and a total of 100 polyethylene resins are mixed.
- the dry blended mixture is put into a twin screw extruder with a diameter of 45 mm, melt kneaded at a resin temperature of 220 ° C., extruded into a strand through a circular die attached to the tip of the extruder, water cooled, and cut with a cutter.
- the particle weight per grain was 4.5 mg.
- the set steam pressure in this heating step was changed by 0.01 MPa in a range of 0.10 to 0.18 MPa (gauge pressure), and molding was performed at each steam pressure.
- the holding time at the set pressure was 4 seconds.
- Each obtained foamed molded product was allowed to stand at 23 ° C. for 2 hours, then cured at 75 ° C. for 24 hours, and then left in a room at 23 ° C. for 4 hours to obtain an evaluation object.
- the dimensional shrinkage ratio against the mold and the surface beauty Evaluation was conducted. Furthermore, as the evaluation of the open cell rate, the open cell rate (L) at the minimum molding pressure and the open cell rate (H) at the minimum molding pressure + 0.02 MPa were measured. The results are shown in Table 6.
- Example 18 to 23 In [Production of polyethylene-based resin particles], the types and mixing amounts of (A) linear low-density polyethylene-based resin and (B) high-density polyethylene-based resin were changed as shown in Table 6, and [polyethylene-based resin foaming] In the preparation of particles], the polyethylene-based resin particles and the polyethylene-based resin were obtained in the same manner as in Example 17, except that the foaming temperature at the first stage foaming, the internal pressure at the second stage foaming and the vapor pressure were changed as shown in Table 6. Resin foam particles and a polyethylene resin in-mold foam-molded article were produced. Table 6 shows the evaluation results of the obtained polyethylene-based resin particles, polyethylene-based resin expanded particles, and polyethylene-based resin in-mold foam molding.
- the ratio (%) of the high-temperature-side melting peak heat amount in the DSC curve to the entire melting peak heat amount is the mixing ratio of the (A) linear low-density polyethylene resin in the base resin ( %) Is not 0.05 times or more and 0.4 times or less, it is impossible to obtain an in-mold foam molded article having a low open cell ratio and good surface aesthetics and dimensional stability.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Polymers & Plastics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
また、本発明の目的は、予備発泡粒子の原料となる樹脂粒子の生産性を損なうことなく発泡粒子を製造することが可能であり、成形加工温度幅が広く、成形体外観、物性が良好なポリエチレン系樹脂型内発泡成形体を製造することができる、ポリエチレン系樹脂発泡粒子を提供することにある。
また、本発明の目的は、示差走査熱量測定(DSC)により得られるDSC曲線において、低温側融解ピークおよび高温側融解ピークの2つの融解ピーク温度幅が狭い発泡粒子であっても、発泡粒子の原料となる樹脂粒子の生産性を損なうことなく発泡粒子を製造することが可能であり、成形加工時の加熱温度を上げても、成形体の連泡率の上昇が少なく、かつ、外観良好なポリエチレン系樹脂型内発泡成形体を得ることができる、ポリエチレン系樹脂発泡粒子を提供することにある。
更に、本発明の目的は、成形加工時の加熱温度を上げても、成形体の連泡率が上昇しにくく、成形体外観、物性が良好なポリエチレン系樹脂型内発泡成形体を製造することができる、ポリエチレン系樹脂発泡粒子を提供することにある。
[1] 直鎖状ポリエチレン系樹脂が基材樹脂であるポリエチレン系樹脂粒子を発泡して得られるポリエチレン系樹脂発泡粒子であって、
ポリエチレン系樹脂粒子の190℃での動的粘弾性測定における角振動数1rad/秒での貯蔵弾性率が900Pa以上5000Pa以下、角振動数100rad/秒での貯蔵弾性率が100000Pa以下であり、
10℃/分の昇温速度にて20℃から220℃まで昇温する示差走査熱量測定(DSC)により得られるDSC曲線において、低温側融解ピークおよび高温側融解ピークの2つの融解ピークを有することを特徴とする、ポリエチレン系樹脂発泡粒子。
[2] 基材樹脂が、(A)メルトインデックス1.2g/10分以上10g/10分以下の直鎖状ポリエチレン系樹脂60重量%以上97重量%以下および(B)メルトインデックス0.01g/10分以上0.3g/10分以下の直鎖状ポリエチレン系樹脂3重量%以上40重量%以下である混合樹脂[(A)と(B)の合計は100重量%]であり、
ポリエチレン系樹脂粒子のメルトインデックスが0.8g/10分以上3.0g/10分以下であることを特徴とする、[1]に記載のポリエチレン系樹脂発泡粒子。
[3] 10℃/分の昇温速度にて20℃から220℃まで昇温する示差走査熱量測定(DSC)により得られるDSC曲線において、低温側融解ピークと高温側融解ピークの2つの融解ピークを有し、ピーク温度幅が11℃以下であるポリエチレン系樹脂発泡粒子であって、
190℃での動的粘弾性測定における角振動数1rad/秒での貯蔵弾性率が900Pa以上5000Pa以下、角振動数100rad/秒での貯蔵弾性率が100000Pa以下であるポリエチレン系樹脂粒子を発泡して得られることを特徴とする、ポリエチレン系樹脂発泡粒子。
[4] 上記樹脂粒子が、示差走査熱量計(DSC)を用いて10℃/分の昇温速度にて20℃から220℃まで昇温し、10℃/分の速度にて10℃まで冷却した後、再度10℃/分の昇温速度にて220℃まで昇温した際に得られる2回目昇温時DSC曲線から算出される融解結晶熱量qが145J/g以上であることを特徴とする、[3]に記載のポリエチレン系樹脂発泡粒子。
[5] ポリエチレン系樹脂粒子の基材樹脂が、(A’)メルトインデックス1.2g/10分以上10g/10分以下のポリエチレン系樹脂を60重量%以上97重量%以下および(B’)メルトインデックス0.01g/10分以上0.3g/10分以下のポリエチレン系樹脂を3重量%以上40重量%以下の混合樹脂[(A’)と(B’)の合計は100重量%]であり、
ポリエチレン系樹脂粒子のメルトインデックスが0.8g/10分以上3.0g/10分以下であることを特徴とする、[3]または[4]に記載のポリエチレン系樹脂発泡粒子。
[6] (A”)密度0.915g/cm3以上0.940g/cm3未満、メルトインデックス1.0g/10分以上10g/10分以下の直鎖状低密度ポリエチレン系樹脂を50重量%以上97重量%以下および(B”)密度0.940g/cm3以上、メルトインデックス0.01g/10分以上0.3g/10分以下の高密度ポリエチレン系樹脂を3重量%以上50重量%以下で混合[(A”)と(B”)の合計は100重量%]し、樹脂混合物のメルトインデックスが0.8g/10分以上3.0g/10分以下であるポリエチレン系樹脂を基材樹脂とするポリエチレン系樹脂発泡粒子であって、
ポリエチレン系樹脂発泡粒子の示差走査熱量測定(DSC)により得られるDSC曲線において、低温側融解ピークと高温側融解ピークの2つの融解ピークを有し、
DSC曲線における高温側融解ピーク熱量の融解ピーク熱量全体に占める比率(%)が、基材樹脂中の(A”)直鎖状低密度ポリエチレン系樹脂の混合割合(%)の0.05倍以上0.4倍以下であることを特徴とする、ポリエチレン系樹脂発泡粒子。
[7] ポリエチレン系樹脂粒子の基材樹脂100重量部に対して、0.01重量部以上10重量部以下の親水性化合物を含有することを特徴とする、[1]~[6]のいずれかに記載のポリエチレン系樹脂発泡粒子。
[8] 発泡粒子の連泡率が10%以下であることを特徴とする、[1]~[7]のいずれかに記載のポリエチレン系樹脂発泡粒子。
[9] [1]~[8]のいずれかに記載のポリエチレン系樹脂発泡粒子を、金型内に充填した後、型内発泡成形して得られることを特徴とする、ポリエチレン系樹脂型内発泡成形体。
[10] [1]~[8]のいずれかに記載のポリエチレン系樹脂発泡粒子の製造方法であって、下記の一段発泡工程を経ることを特徴とする、ポリエチレン系樹脂発泡粒子の製造方法。
一段発泡工程:ポリエチレン系樹脂粒子を発泡剤とともに水系分散媒に分散させ、ポリエチレン系樹脂粒子の軟化温度以上まで加熱、加圧した後、密閉容器の内圧よりも低い圧力域に放出することによりポリエチレン系樹脂発泡粒子を製造する工程。
[11] 発泡剤が無機ガス、および/または、水であることを特徴とする、[10]に記載のポリエチレン系樹脂発泡粒子の製造方法。
[12] 無機ガスが炭酸ガスであることを特徴とする、[11]に記載のポリエチレン系樹脂発泡粒子の製造方法。
[13] [1]~[8]のいずれかに記載のポリエチレン系樹脂発泡粒子を、予め前処理することなく、2つの金型よりなる閉鎖しうるが密閉し得ない成形空間内に充填し、加熱媒体により加熱することによって得ることを特徴とする、ポリエチレン系樹脂型内発泡成形体の製造方法。
[1]直鎖状ポリエチレン系樹脂が基材樹脂であるポリエチレン系樹脂粒子を発泡して得られるポリエチレン系樹脂発泡粒子であって、ポリエチレン系樹脂粒子の190℃での動的粘弾性測定における角振動数1rad/秒での貯蔵弾性率が900Pa以上5000Pa以下、角振動数100rad/秒での貯蔵弾性率が100000Pa以下であり、10℃/分の昇温速度にて20℃から220℃まで昇温する示差走査熱量測定(DSC)により得られるDSC曲線において、低温側融解ピークおよび高温側融解ピークの2つの融解ピークを有することを特徴とする、ポリエチレン系樹脂発泡粒子(以下、「ポリエチレン系樹脂発泡粒子1」ともいう。)。
[2]10℃/分の昇温速度にて20℃から220℃まで昇温する示差走査熱量測定(DSC)により得られるDSC曲線において、低温側融解ピークと高温側融解ピークの2つの融解ピークを有し、ピーク温度幅が11℃以下であるポリエチレン系樹脂発泡粒子であって、190℃での動的粘弾性測定における角振動数1rad/秒での貯蔵弾性率が900Pa以上5000Pa以下、角振動数100rad/秒での貯蔵弾性率が100000Pa以下であるポリエチレン系樹脂粒子を発泡して得られることを特徴とする、ポリエチレン系樹脂発泡粒子(以下、「ポリエチレン系樹脂発泡粒子2」ともいう。)。
[3](A”)密度0.915g/cm3以上0.940g/cm3未満、メルトインデックス1.0g/10分以上10g/10分以下の直鎖状低密度ポリエチレン系樹脂を50重量%以上97重量%以下および(B”)密度0.940g/cm3以上、メルトインデックス0.01g/10分以上0.3g/10分以下の高密度ポリエチレン系樹脂を3重量%以上50重量%以下で混合[(A”)と(B”)の合計は100重量%]し、樹脂混合物のメルトインデックスが0.8g/10分以上3.0g/10分以下であるポリエチレン系樹脂を基材樹脂とするポリエチレン系樹脂発泡粒子であって、ポリエチレン系樹脂発泡粒子の示差走査熱量測定(DSC)により得られるDSC曲線において、低温側融解ピークと高温側融解ピークの2つの融解ピークを有し、DSC曲線における高温側融解ピーク熱量の融解ピーク熱量全体に占める比率(%)が、基材樹脂中の(A”)直鎖状低密度ポリエチレン系樹脂の混合割合(%)の0.05倍以上0.4倍以下であることを特徴とする、ポリエチレン系樹脂発泡粒子(以下、「ポリエチレン系樹脂発泡粒子3」ともいう。)。
まず、原料となるポリエチレン系樹脂および、添加剤(必要な場合)をドライブレンド法、マスターバッチ法等の混合方法により混合する。
次いで、得られた混合物を、押出機、ニーダー、バンバリーミキサー(登録商標)、ロール等を用いて溶融混練した後に、カッター、ペレタイザー等を用いて細断し、粒子形状とすることにより、ポリエチレン系樹脂粒子が得られる。
エチレン-アクリル酸-無水マレイン酸三元共重合体;
エチレン-(メタ)アクリル酸共重合体のカルボキシ基をナトリウムイオン、カリウムイオンなどのアルカリ金属イオンや亜鉛イオンなどの遷移金属イオンで中和し、分子間を架橋させたアイオノマー系樹脂;
エチレン-(メタ)アクリル酸共重合体などのカルボキシ基含有ポリマー;
ナイロン-6、ナイロン-6,6、共重合ナイロンなどのポリアミド;
ポリエチレングリコール、ポリプロピレングリコール等のノニオン型吸水性ポリマー;
ペレスタット(商品名、三洋化成社製)等に代表されるポリエーテル-ポリオレフィン系樹脂ブロック共重合体;
アクアコーク(商品名、住友精化社製)等に代表される架橋ポリエチレンオキサイド系重合体;
などが挙げられる。これら親水性ポリマーは単独で用いてもよく、2種類以上を併用してもよい。
N-アシルアミノ酸塩、アルキルエーテルカルボン酸塩、アシル化ペプチド等のカルボン酸塩型;
アルキルスルホン酸塩、n-パラフィンスルホン酸塩、アルキルベンゼンスルホン酸塩、アルキルナフタレンスルホン酸塩、スルホコハク酸塩等のスルホン酸塩型;
硫酸化油、アルキル硫酸塩、アルキルエーテル硫酸塩、アルキルアミド硫酸塩、アルキルアリルエーテル硫酸塩等の硫酸エステル型;
アルキルリン酸塩、ポリオキシエチレンリン酸塩等のリン酸エステル型;
等の陰イオン界面活性剤をあげることができる。
発泡粒子中央の切断面に関する顕微鏡観察により得られる画像において、発泡粒子のほぼ中心を通る直線を引き、該直線が貫通している気泡数nおよび、該直線と発泡粒子表面との交点から定まる発泡粒子径L(μm)を読み取り、式(1)によって求める。
平均気泡径(μm)=L÷n ・・・(1)
連泡率(%)=(Va-Vc)÷Va×100
(イ)ポリエチレン系樹脂発泡粒子を無機ガス(例えば、空気や窒素、炭酸ガス、等)で加圧処理して、ポリエチレン系樹脂発泡粒子内に無機ガスを含浸させ所定のポリエチレン系樹脂発泡粒子内圧を付与した後、金型に充填し、水蒸気で加熱融着させる方法、
(ロ)ポリエチレン系樹脂発泡粒子をガス圧力で圧縮して金型に充填し、ポリエチレン系樹脂発泡粒子の回復力を利用して、水蒸気で加熱融着させる方法、
(ハ)特に前処理することなく、ポリエチレン系樹脂発泡粒子を金型に充填し、水蒸気で加熱融着させる方法、
などの方法が利用し得る。
・グリセリン[ライオン(株)製、精製グリセリンD]
・パウダー状塩基性第三リン酸カルシウム[太平化学産業(株)製]
・アルキルスルホン酸ナトリウム(n-パラフィンスルホン酸ソーダ[花王(株)製、ラテムルPS])
[ポリエチレン系樹脂粒子の作製]において、押出機に表示されるダイ手前部の樹脂圧力を確認し、以下の基準にて評価を実施した。
○: 樹脂圧力が7.5MPa以下。
△: 樹脂圧力が7.5MPaを超えて8.0MPa以下。
×: 樹脂圧力が8.0MPaを超える。
予め190℃に予熱されたプレス機[藤設備工業製、37TS成形機]に、1.0mm厚のスペーサーを用いて100mm(縦)×100mm(横)の平板状空間を設け、ポリエチレン系樹脂粒子を56kg/cm2(5.5MPa)の圧力で5分間熱プレスした。その後、50℃になるまでプレス状態で冷却した後、スペーサーを取り除いて、約100mm(縦)×約100mm(横)×約1mm(厚み)のポリエチレン系樹脂板を得た。得られたポリエチレン系樹脂板から、φ25mmのポンチを用いて打ち抜き、試験片を得た。
測定装置としては、TAインスツルメンツ社製粘弾性測定装置、ARESを用い、直径25mm、コーン角0.04rad、のコーンプレート型冶具を装着した。冶具を囲うように恒温槽を設置して190℃に保温し、冶具が予熱された後に恒温槽を開け、パラレルプレート間に試験片を挿入して恒温槽を閉じ、5分間予熱した後にキャリブレーション証明書記載のコーンプレート間隔0.07mmまで圧縮した。圧縮後、再度恒温槽を開き、コーンプレートからはみ出した樹脂を真鍮のヘラで掻き取り、恒温槽を閉じて再度5分間保温した後に、動的粘弾性測定を開始した。
測定は、角振動数0.1rad/秒から100rad/秒までの範囲で行い、各角振動数での貯蔵弾性率と損失弾性率が得られる。これらの結果のうち、角振動数1rad/秒および100rad/秒での貯蔵弾性率の値を採用した。なお、歪み量は5%で、窒素雰囲気下で測定を行った。
示差走査熱量計[セイコーインスツルメンツ(株)製、DSC6200型]を用いて、得られたポリエチレン系樹脂粒子5~6mgを10℃/分の昇温速度にて20℃から220℃まで昇温し、10℃/分の速度にて10℃まで冷却した後、再度10℃/分の昇温速度にて220℃まで昇温し、2回目の昇温時のDSC曲線を得た(図2に例示)。得られたDSC曲線の吸熱ピーク総熱量(q)を樹脂粒子の融解結晶熱量とした。
ポリエチレン系樹脂粒子のMIは、JIS K7210記載のMI測定器を用い、オリフィス2.0959±0.005mmφ、オリフィス長さ8.000±0.025mm、荷重2160g、190±0.2℃の条件下で測定した。
得られたポリエチレン系樹脂一段発泡粒子を観察し、以下の基準にて評価した。
○: 一段発泡粒子表面にほとんど皺が無い。
△: 一段発泡粒子表面に皺が少し見られる。
×: 一段発泡粒子表面が皺だらけであり、明らかに収縮している。
得られたポリエチレン系樹脂発泡粒子の重量wb(g)、発泡前のポリエチレン系樹脂粒子の重量wr(g)を測定後、それぞれエタノールの入ったメスシリンダー中に沈め、メスシリンダーの水位上昇分(水没法)にて体積vb、vr(cm3)を測定し、ポリエチレン系樹脂発泡粒子の真比重ρb=wb/vb、ポリエチレン系樹脂粒子の真比重ρr=wr/vrを算出し、発泡前後の真比重の比(ρr/ρb)として算出した。
得られたポリエチレン系樹脂二段発泡粒子を、両刃カミソリ[フェザー安全剃刀(株)製、「ハイ・ステンレス」両刃]を用いて、発泡粒子の中央で切断した。
該切断面を、光学顕微鏡[キーエンス社製、VHX-100]を用いて、倍率50倍にて観察して得られた画像において、発泡粒子のほぼ中心を通る直線を引き、該直線が貫通している気泡数nおよび、該直線と発泡粒子表面との交点から定まる発泡粒子径L(μm)を読み取り、式(1)によって求めた。
平均気泡径(μm)=L÷n ・・・(1)
示差走査熱量計[セイコーインスツルメンツ(株)製、DSC6200型]を用いて、得られたポリエチレン系樹脂一段発泡粒子5~6mgを10℃/分の昇温速度で20℃から220℃まで昇温する際に得られるDSC曲線(図1に例示)を得た。
得られたDSC曲線における、低温側融解ピーク温度(Tl)と高温側融解ピーク温度(Th)の温度差(Th-Tl)を融解ピーク温度幅とした。
DSC比は、該融解ピークのうち低温側の融解ピーク熱量Qlと、高温側の融解ピーク熱量Qhから次式により算出した。
DSC比=Qh÷(Ql+Qh)×100
得られたポリエチレン系樹脂二段発泡粒子に対して、ASTM D2856-87の手順C(PROSEDURE C)に記載の方法に準拠して、空気比較式比重計[東京サイエンス(株)製、モデル1000]を用いて、体積Vc(cm3)を測定した。
次いで、Vcを測定後のポリエチレン系樹脂発泡粒子の全量を、エタノールの入ったメスシリンダー中に沈め、メスシリンダーの水位上昇分(水没法)から、ポリエチレン系樹脂発泡粒子の見かけ上の体積Va(cm3)を求めた。
発泡粒子の連泡率は、下記の式によって算出した。
連泡率(%)=(Va-Vc)÷Va×100
[ポリエチレン系樹脂型内発泡成形体の作製]における本加熱工程の設定蒸気圧力を、0.10~0.18MPa(ゲージ圧)の範囲内で、0.01MPaずつ変更して成形を行って得られた、各評価対象発泡成形体において、表面にナイフで約5mmの深さのクラックを入れ、クラックに沿って型内発泡成形体を割り、破断面を観察し、破断面の全粒子数に対する破壊粒子数の割合を求め、成形体融着率を評価した。
融着率が80%以上に達する最低の蒸気圧力を、最低成形圧力とした。
[ポリエチレン系樹脂型内発泡成形体の作製]における本加熱工程の設定蒸気圧力を、0.10~0.18MPa(ゲージ圧)の範囲内で、0.01MPaずつ変更して成形を行って得られた、各評価対象発泡成形体において、中心部から約25mm×25mm×30mmの小片を切り出して測定用発泡体サンプルとした。
ASTM D2856-87の手順C(PROSEDURE C)に記載の方法に準拠して、空気比較式比重計[東京サイエンス(株)製、モデル1000]を用いて、測定用発泡体サンプルの体積vc(cm3)を測定した。
他方、vc測定後のポリエチレン系樹脂発泡体サンプルの全体を、エタノールの入ったメスシリンダー中に沈め、メスシリンダーの水位上昇分(水没法)から、ポリエチレン系樹脂発泡体の見かけ上の体積va(cm3)を測定した。
下記の式により、発泡成形体の連泡率(%)を算出した。
発泡成形体の連泡率(%)=(va-vc)÷va×100
ところで、蒸気圧力の上昇に従い、連泡率が上昇する挙動を示すが、連泡率が22%以下に収まる最高の圧力を最高成形圧力とした。なお、連泡率が20~25%を境に、型内発泡成形体の収縮が大きくなる傾向にあった。
最低成形圧力と最高成形圧力の差を成形加工幅とした。
得られた評価対象発泡成形体のうち、最低成形圧力+0.01MPa条件にて成形した発泡成形体に関して、表面および端部を観察し、以下の基準にて評価した。なお、発泡成形体の端部とは、型内発泡成形体の面と面が交差する稜線部である。
○: 隣り合う発泡粒子同士がいずれの部分においてもきれいに融着しており、発泡粒子間に隙間がない。
△: 隣り合う発泡粒子間に隙間がある箇所が少し存在する。
×: 隣り合う発泡粒子間に隙間がある箇所が多数存在する。
得られた評価対象発泡成形体のうち、最低成形圧力+0.01MPa条件にて成形した発泡成形体に関して、長手寸法(400mm方向)を、デジタルノギス[(株)ミツトヨ製]を用いて、測定した。
対応する金型寸法をL0とし、発泡成形体の寸法をL1として、下記の式により、対金型寸法収縮率を算出し、以下の基準にて評価した。
対金型寸法収縮率(%)=(L0-L1)÷L0×100
○: 対金型寸法収縮率が3%以下。
△: 対金型寸法収縮率が3%を超えて4%以下。
×: 対金型寸法収縮率が4%より大きい。
得られた型内発泡成形体のうち、最低成形圧力にて成形した発泡成形体または、最低成形圧力+0.02MPa条件にて成形した発泡成形体に関して、その中心部から約25mm×25mm×30mmの小片を切り出して測定用発泡体サンプルとした。
該サンプルについて、前記「<成形時の最高成形圧力>」に記載の方法により、発泡成形体の連泡率(%)を算出した。
[ポリエチレン系樹脂粒子の作製]
直鎖状ポリエチレン系樹脂として(A-1)90重量部および(B-1)10重量部を混合し、混合された直鎖状ポリエチレン系樹脂合計100重量部に対して、グリセリン0.2重量部、セル造核剤としてタルク0.1重量部をドライブレンドした。
ドライブレンドされた混合物を、口径45mmの2軸押出機に投入し、樹脂温度約220℃で溶融混練し、押出機の先端に取り付けられた円形ダイを通して、ストランド状に押出し、水冷後、カッターで切断し、ポリエチレン系樹脂粒子を得た。一粒あたりの粒子重量は4.5mgであった。製造時の樹脂圧力評価結果を、表2に示す。
得られたポリエチレン系樹脂粒子について、貯蔵弾性率、MIを測定した結果を、表2に示す。
<一段発泡>
容量10Lの耐圧オートクレーブ中に、得られたポリエチレン系樹脂粒子100重量部(2.4kg)、水200重量部、難水溶性無機化合物としての第三リン酸カルシウム0.5重量部、界面活性剤としてのアルキルスルホン酸ナトリウム(n-パラフィンスルホン酸ソーダ)0.03重量部を仕込んだ後、攪拌下、発泡剤として炭酸ガスを7重量部添加した。
オートクレーブ内容物を昇温し、表2記載の発泡温度121.6℃まで加熱した。その後、炭酸ガスを追加圧入してオートクレーブ内圧を表2記載の発泡圧力3.5MPa-Gまで昇圧した。前記発泡温度、発泡圧力で30分間保持した後、オートクレーブ下部のバルブを開き、直径4.0mmの開口オリフィス(1穴)を通して、オートクレーブ内容物を100℃雰囲気下に放出して、ポリエチレン系樹脂発泡粒子を得た。
得られた一段発泡粒子について、発泡倍率、DSC比を測定した結果を、表2に示す。
<二段発泡>
得られたポリエチレン系樹脂一段発泡粒子の水分を除去した後、さらに、耐圧容器内に入れ、加圧することにより空気を含浸させて、一段発泡粒子の内圧0.18MPaに調節した後、蒸気(蒸気圧0.052MPa-G)により加熱し、二段発泡を実施し、発泡倍率約25倍のポリエチレン系樹脂二段発泡粒子を得た。
得られたポリエチレン系樹脂二段発泡粒子の平均気泡径、連泡率を測定した結果を、表2に示す。
得られたポリエチレン系樹脂二段発泡粒子の水分を除去した後、長さ400mm×幅300mm×厚み60mmの平板状の成形空間を有する金型内に充填し、金型チャンバー内を蒸気にて10秒間加熱した。その後、排気弁を閉めて12秒間蒸気にて加熱することにより、発泡粒子同士を融着させた。続いて、蒸気を排気し、金型内および成形体表面を水冷した後、成形体を取り出して、ポリエチレン系樹脂型内発泡成形体を得た。
なお、本加熱工程の設定蒸気圧力を0.10~0.18MPa(ゲージ圧)の範囲内で、0.01MPaずつ変更して、それぞれの蒸気圧力での成形を行った。なお、本加熱工程での加熱時間12秒のうち、設定圧力での保持時間は4秒であった。
得られた各発泡成形体は、23℃で2時間静置し、次に75℃で24時間養生した後、23℃の室内に4時間静置して、評価対象物とした。
融着率が80%以上に達する蒸気圧力の最低値(最低成形圧力)を特定した後、最低成形圧力+0.01MPa条件にて成形した発泡成形体に関して、対金型寸法収縮率、表面美麗性の評価を実施した。さらに、連泡率の評価として、最低成形圧力時の連泡率(L)および、最低成形圧力+0.02MPa条件時での連泡率(H)を測定した。結果を、表2に示す。
[ポリエチレン系樹脂粒子の作製]において、直鎖状ポリエチレン系樹脂の種類および混合量を表2に示すように変更し、[ポリエチレン系樹脂発泡粒子の作製]において、一段発泡時の発泡温度および発泡圧力、二段発泡時の内圧および蒸気圧を表2に示すように変更した以外は、実施例1と同様の操作により、ポリエチレン系樹脂粒子、ポリエチレン系樹脂発泡粒子、ポリエチレン系樹脂型内発泡成形体を作製した。
得られたポリエチレン系樹脂粒子、ポリエチレン系樹脂発泡粒子、ポリエチレン系樹脂型内発泡成形体における評価結果を、表2に示す。
[ポリエチレン系樹脂粒子の作製]において、グリセリンを添加せず、[ポリエチレン系樹脂発泡粒子の作製]において、一段発泡時の発泡温度および発泡圧力、二段発泡時の内圧および蒸気圧を表2に示すように変更した以外は、実施例1と同様の操作により、ポリエチレン系樹脂粒子、ポリエチレン系樹脂発泡粒子、ポリエチレン系樹脂型内発泡成形体を作製した。
得られたポリエチレン系樹脂粒子、ポリエチレン系樹脂発泡粒子、ポリエチレン系樹脂型内発泡成形体における評価結果を、表2に示す。
[ポリエチレン系樹脂粒子の作製]において、直鎖状ポリエチレン系樹脂の種類および混合量を表3に示すように変更し、[ポリエチレン系樹脂発泡粒子の作製]において、一段発泡時の発泡温度および発泡圧力、二段発泡時の内圧および蒸気圧を表3に示すように変更した以外は、実施例1と同様の操作により、ポリエチレン系樹脂粒子、ポリエチレン系樹脂発泡粒子、ポリエチレン系樹脂型内発泡成形体を作製した。
得られたポリエチレン系樹脂粒子、ポリエチレン系樹脂発泡粒子、ポリエチレン系樹脂型内発泡成形体における評価結果を、表3に示す。
[ポリエチレン系樹脂発泡粒子の作製]の<一段発泡>において、一段発泡時の発泡温度を130℃に変更した以外は、実施例1と同様の操作により、ポリエチレン系樹脂発泡粒子を作製した。得られた一段発泡粒子は、皺が多く、収縮の大きいビーズであり、発泡粒子のDSC曲線における融解ピークは1つであった。
実施例1の[ポリエチレン系樹脂発泡粒子の作製]と同様の操作により、<二段発泡>を実施したが、発泡粒子が膨らまず、目的の倍率の発泡粒子が得られなかった。
また、実施例1と実施例9の比較から、親水性物質であるグリセリンの存在により、発泡圧力を抑えることができることが判る。
比較例3のように、角振動数100rad/秒での貯蔵弾性率が100000Paを超えるような場合、型内発泡成形体は良好なものが得られるものの、樹脂粒子作製時の樹脂圧力が8.0MPaを超え、生産性が悪化することが判る。
比較例4のように角振動数1rad/秒での貯蔵弾性率が5000Paを超えるような場合、連泡率の低い型内発泡成形体が得られるものの、外観、寸法安定性が悪いものとなる。
比較例5のように、発泡粒子のDSC曲線のピークが1つの場合、得られる発泡粒子が連泡化する為か、皺が多く収縮したものとなり、二段発泡を試みても目的の倍率の発泡粒子が得られないことが判る。
[ポリエチレン系樹脂粒子の作製]
ポリエチレン系樹脂として(A-3)80重量部および(B-1)20重量部を混合し、混合された直鎖状ポリエチレン系樹脂合計100重量部に対して、グリセリン0.2重量部、セル造核剤としてタルク0.1重量部をドライブレンドした。
ドライブレンドされた混合物を、口径45mmの2軸押出機に投入し、樹脂温度約220℃で溶融混練し、押出機の先端に取り付けられた円形ダイを通して、ストランド状に押出し、水冷後、カッターで切断し、ポリエチレン系樹脂粒子を得た。一粒あたりの粒子重量は4.5mgであった。
得られたポリエチレン系樹脂粒子について、貯蔵弾性率、融解結晶熱量q、MIを測定した結果を、表4に示す。
<一段発泡>
容量10Lの耐圧オートクレーブ中に、得られたポリエチレン系樹脂粒子100重量部(2.4kg)、水200重量部、難水溶性無機化合物としての第三リン酸カルシウム0.5重量部、界面活性剤としてのアルキルスルホン酸ナトリウム(n-パラフィンスルホン酸ソーダ)0.03重量部を仕込んだ後、攪拌下、発泡剤として炭酸ガスを7重量部添加した。
オートクレーブ内容物を昇温し、表4記載の発泡温度122.4℃まで加熱した。その後、炭酸ガスを追加圧入してオートクレーブ内圧を表4記載の発泡圧力3.5MPa-Gまで昇圧した。前記発泡温度、発泡圧力で30分間保持した後、オートクレーブ下部のバルブを開き、直径4.0mmの開口オリフィス(1穴)を通して、オートクレーブ内容物を100℃雰囲気下に放出して、ポリエチレン系樹脂発泡粒子を得た。
得られた一段発泡粒子について、発泡倍率、融解ピーク温度幅、DSC比を測定した結果を、表4に示す。
<二段発泡>
得られたポリエチレン系樹脂一段発泡粒子の水分を除去した後、さらに、耐圧容器内に入れ、加圧することにより空気を含浸させて、一段発泡粒子の内圧0.20MPaに調節した後、蒸気(蒸気圧0.053MPa-G)により加熱し、二段発泡を実施し、発泡倍率約25倍のポリエチレン系樹脂二段発泡粒子を得た。
得られたポリエチレン系樹脂二段発泡粒子の平均気泡径、連泡率を測定した。結果を、表4に示す。
得られたポリエチレン系樹脂二段発泡粒子の水分を除去した後、長さ400mm×幅300mm×厚み60mmの平板状の成形空間を有する金型内に充填し、金型チャンバー内を蒸気にて10秒間加熱した。その後、排気弁を閉めて12秒間蒸気にて加熱することにより、発泡粒子同士を融着させた。続いて、蒸気を排気し、金型内および成形体表面を水冷した後、成形体を取り出して、ポリエチレン系樹脂型内発泡成形体を得た。
なお、本加熱工程の設定蒸気圧力を0.10~0.18MPa(ゲージ圧)の範囲内で、0.01MPaずつ変更して、それぞれの蒸気圧力での成形を行った。なお、本加熱工程での加熱時間12秒のうち、設定圧力での保持時間は4秒であった。
得られた各発泡成形体は、23℃で2時間静置し、次に75℃で24時間養生した後、23℃の室内に4時間静置して、評価対象物とした。
融着率が80%以上に達する蒸気圧力の最低値(最低成形圧力)を特定した後、最低成形圧力+0.01MPa条件にて成形した発泡成形体に関して、対金型寸法収縮率、表面美麗性の評価を実施した。さらに、得られた型内発泡成形体の連泡率を測定し、最高成形圧力を特定した。結果を、表4に示す。
[ポリエチレン系樹脂粒子の作製]において、ポリエチレン系樹脂の種類および混合量を表4に示すように変更し、[ポリエチレン系樹脂発泡粒子の作製]において、一段発泡時の発泡温度および発泡圧力、二段発泡時の内圧および蒸気圧を表4に示すように変更した以外は、実施例10と同様の操作により、ポリエチレン系樹脂粒子、ポリエチレン系樹脂発泡粒子、ポリエチレン系樹脂型内発泡成形体を作製した。
得られたポリエチレン系樹脂粒子、ポリエチレン系樹脂発泡粒子、ポリエチレン系樹脂型内発泡成形体における評価結果を、表4に示す。
[ポリエチレン系樹脂粒子の作製]において、ポリエチレン系樹脂の種類および混合量を表5に示すように変更し、[ポリエチレン系樹脂発泡粒子の作製]において、一段発泡時の発泡温度および発泡圧力、二段発泡時の内圧および蒸気圧を表5に示すように変更した以外は、実施例10と同様の操作により、ポリエチレン系樹脂粒子、ポリエチレン系樹脂発泡粒子、ポリエチレン系樹脂型内発泡成形体を作製した。
得られたポリエチレン系樹脂粒子、ポリエチレン系樹脂発泡粒子、ポリエチレン系樹脂型内発泡成形体における評価結果を、表5に示す。
また、比較例8~9のように、角振動数100rad/秒での貯蔵弾性率が100000Paを超えるような場合、成形加工幅は0.02MPa以上となるものの、樹脂粒子作製時の樹脂圧力が8.0MPaを超え、生産性が悪化することが判る。
[ポリエチレン系樹脂粒子の作製]
(A)直鎖状低密度ポリエチレン系樹脂として(A-2)95重量部および(B)高密度ポリエチレン系樹脂として(B-1)5重量部を混合し、混合されたポリエチレン系樹脂合計100重量部に対して、グリセリン0.2重量部、セル造核剤としてタルク0.1重量部をドライブレンドした。
ドライブレンドされた混合物を、口径45mmの2軸押出機に投入し、樹脂温度220℃で溶融混練し、押出機の先端に取り付けられた円形ダイを通して、ストランド状に押出し、水冷後、カッターで切断し、ポリエチレン系樹脂粒子を得た。一粒あたりの粒子重量は4.5mgであった。
<一段発泡>
容量10Lの耐圧オートクレーブ中に、得られたポリエチレン系樹脂粒子100重量部(2.4kg)、水200重量部、難水溶性無機化合物としての第三リン酸カルシウム0.5重量部、界面活性剤としてのアルキルスルホン酸ナトリウム(n-パラフィンスルホン酸ソーダ)0.03重量部を仕込んだ後、攪拌下、発泡剤として炭酸ガスを7重量部添加した。
オートクレーブ内容物を昇温し、表6記載の発泡温度121.8℃まで加熱した。その後、炭酸ガスを追加圧入してオートクレーブ内圧を表6記載の発泡圧力3.5MPa-Gまで昇圧した。前記発泡温度、発泡圧力で30分間保持した後、オートクレーブ下部のバルブを開き、直径4.0mmの開口オリフィス(1穴)を通して、オートクレーブ内容物を100℃雰囲気下に放出して、ポリエチレン系樹脂発泡粒子を得た。
得られた一段発泡粒子について、発泡倍率、DSC比を測定し、収縮状態を観察した結果を、表6に示す。
<二段発泡>
得られたポリエチレン系樹脂一段発泡粒子の水分を除去した後、さらに、耐圧容器内に入れ、加圧することにより空気を含浸させて、一段発泡粒子の内圧0.20MPaに調節した後、蒸気(蒸気圧0.048MPa-G)により加熱し、二段発泡を実施し、発泡倍率約25倍のポリエチレン系樹脂二段発泡粒子を得た。
得られたポリエチレン系樹脂二段発泡粒子の平均気泡径、連泡率を測定した結果を、表6に示す。
得られたポリエチレン系樹脂二段発泡粒子の水分を除去した後、長さ400mm×幅300mm×厚み60mmの成形空間を有する金型内に充填し、金型チャンバー内を蒸気にて10秒間加熱した。その後、排気弁を閉めて12秒間蒸気にて加熱することにより、発泡粒子同士を融着させた。続いて、蒸気を排気し、金型内および成形体表面を水冷した後、成形体を取り出して、ポリエチレン系樹脂型内発泡成形体を得た。
なお、本加熱工程の設定蒸気圧力を0.10~0.18MPa(ゲージ圧)の範囲内で、0.01MPaずつ変更して、それぞれの蒸気圧力での成形を行った。なお、本加熱工程での加熱時間12秒のうち、設定圧力での保持時間は4秒であった。
得られた各発泡成形体は、23℃で2時間静置し、次に75℃で24時間養生した後、23℃の室内に4時間静置して、評価対象物とした。
融着率が80%以上に達する蒸気圧力の最低値(最低成形圧力)を特定した後、最低成形圧力+0.01MPa条件にて成形した発泡成形体に関して、対金型寸法収縮率、表面美麗性の評価を実施した。さらに、連泡率の評価として、最低成形圧力時の連泡率(L)および、最低成形圧力+0.02MPa条件時での連泡率(H)を測定した。結果を、表6に示す。
[ポリエチレン系樹脂粒子の作製]において、(A)直鎖状低密度ポリエチレン系樹脂および(B)高密度ポリエチレン系樹脂の種類および混合量を表6に示すように変更し、[ポリエチレン系樹脂発泡粒子の作製]において、一段発泡時の発泡温度、二段発泡時の内圧および蒸気圧を表6に示すように変更した以外は、実施例17と同様の操作により、ポリエチレン系樹脂粒子、ポリエチレン系樹脂発泡粒子、ポリエチレン系樹脂型内発泡成形体を作製した。
得られたポリエチレン系樹脂粒子、ポリエチレン系樹脂発泡粒子、ポリエチレン系樹脂型内発泡成形体における評価結果を、表6に示す。
[ポリエチレン系樹脂粒子の作製]において、(A)直鎖状低密度ポリエチレン系樹脂および(B)高密度ポリエチレン系樹脂の種類および混合量を表7に示すように変更し、[ポリエチレン系樹脂発泡粒子の作製]において、一段発泡時の発泡温度および発泡圧力、二段発泡時の内圧および蒸気圧を表7に示すように変更した以外は、実施例17と同様の操作により、ポリエチレン系樹脂粒子、ポリエチレン系樹脂発泡粒子、ポリエチレン系樹脂型内発泡成形体を作製した。ただし、一段発泡時に収縮が大きかった発泡粒子については、良好な発泡粒子が得られなかったものとして、それ以降の評価は実施しなかった。
得られたポリエチレン系樹脂粒子、ポリエチレン系樹脂発泡粒子、ポリエチレン系樹脂型内発泡成形体における評価結果を表7に示す。
なお、比較例17および18の一段発泡粒子は、DSC曲線において、1つの融解ピークしか示さなかった。
Claims (13)
- 直鎖状ポリエチレン系樹脂が基材樹脂であるポリエチレン系樹脂粒子を発泡して得られるポリエチレン系樹脂発泡粒子であって、
ポリエチレン系樹脂粒子の190℃での動的粘弾性測定における角振動数1rad/秒での貯蔵弾性率が900Pa以上5000Pa以下、角振動数100rad/秒での貯蔵弾性率が100000Pa以下であり、
10℃/分の昇温速度にて20℃から220℃まで昇温する示差走査熱量測定(DSC)により得られるDSC曲線において、低温側融解ピークおよび高温側融解ピークの2つの融解ピークを有することを特徴とする、ポリエチレン系樹脂発泡粒子。 - 基材樹脂が、(A)メルトインデックス1.2g/10分以上10g/10分以下の直鎖状ポリエチレン系樹脂60重量%以上97重量%以下および(B)メルトインデックス0.01g/10分以上0.3g/10分以下の直鎖状ポリエチレン系樹脂3重量%以上40重量%以下である混合樹脂[(A)と(B)の合計は100重量%]であり、
ポリエチレン系樹脂粒子のメルトインデックスが0.8g/10分以上3.0g/10分以下であることを特徴とする、請求項1に記載のポリエチレン系樹脂発泡粒子。 - 10℃/分の昇温速度にて20℃から220℃まで昇温する示差走査熱量測定(DSC)により得られるDSC曲線において、低温側融解ピークと高温側融解ピークの2つの融解ピークを有し、ピーク温度幅が11℃以下であるポリエチレン系樹脂発泡粒子であって、
190℃での動的粘弾性測定における角振動数1rad/秒での貯蔵弾性率が900Pa以上5000Pa以下、角振動数100rad/秒での貯蔵弾性率が100000Pa以下であるポリエチレン系樹脂粒子を発泡して得られることを特徴とする、ポリエチレン系樹脂発泡粒子。 - 上記樹脂粒子が、示差走査熱量計(DSC)を用いて10℃/分の昇温速度にて20℃から220℃まで昇温し、10℃/分の速度にて10℃まで冷却した後、再度10℃/分の昇温速度にて220℃まで昇温した際に得られる2回目昇温時DSC曲線から算出される融解結晶熱量qが145J/g以上であることを特徴とする、請求項3記載のポリエチレン系樹脂発泡粒子。
- ポリエチレン系樹脂粒子の基材樹脂が、(A’)メルトインデックス1.2g/10分以上10g/10分以下のポリエチレン系樹脂を60重量%以上97重量%以下および(B’)メルトインデックス0.01g/10分以上0.3g/10分以下のポリエチレン系樹脂を3重量%以上40重量%以下の混合樹脂[(A’)と(B’)の合計は100重量%]であり、
ポリエチレン系樹脂粒子のメルトインデックスが0.8g/10分以上3.0g/10分以下であることを特徴とする、請求項3または4に記載のポリエチレン系樹脂発泡粒子。 - (A”)密度0.915g/cm3以上0.940g/cm3未満、メルトインデックス1.0g/10分以上10g/10分以下の直鎖状低密度ポリエチレン系樹脂を50重量%以上97重量%以下および(B”)密度0.940g/cm3以上、メルトインデックス0.01g/10分以上0.3g/10分以下の高密度ポリエチレン系樹脂を3重量%以上50重量%以下で混合[(A”)と(B”)の合計は100重量%]し、樹脂混合物のメルトインデックスが0.8g/10分以上3.0g/10分以下であるポリエチレン系樹脂を基材樹脂とするポリエチレン系樹脂発泡粒子であって、
ポリエチレン系樹脂発泡粒子の示差走査熱量測定(DSC)により得られるDSC曲線において、低温側融解ピークと高温側融解ピークの2つの融解ピークを有し、
DSC曲線における高温側融解ピーク熱量の融解ピーク熱量全体に占める比率(%)が、基材樹脂中の(A”)直鎖状低密度ポリエチレン系樹脂の混合割合(%)の0.05倍以上0.4倍以下であることを特徴とする、ポリエチレン系樹脂発泡粒子。 - ポリエチレン系樹脂粒子の基材樹脂100重量部に対して、0.01重量部以上10重量部以下の親水性化合物を含有することを特徴とする、請求項1~6のいずれか1項に記載のポリエチレン系樹脂発泡粒子。
- 発泡粒子の連泡率が10%以下であることを特徴とする、請求項1~7のいずれか1項に記載のポリエチレン系樹脂発泡粒子。
- 請求項1~8のいずれか1項記載のポリエチレン系樹脂発泡粒子を、金型内に充填した後、型内発泡成形して得られることを特徴とする、ポリエチレン系樹脂型内発泡成形体。
- 請求項1~8のいずれか1項に記載のポリエチレン系樹脂発泡粒子の製造方法であって、下記の一段発泡工程を経ることを特徴とする、ポリエチレン系樹脂発泡粒子の製造方法。
一段発泡工程:ポリエチレン系樹脂粒子を発泡剤とともに水系分散媒に分散させ、ポリエチレン系樹脂粒子の軟化温度以上まで加熱、加圧した後、密閉容器の内圧よりも低い圧力域に放出することによりポリエチレン系樹脂発泡粒子を製造する工程。 - 発泡剤が無機ガス、および/または、水であることを特徴とする、請求項10記載のポリエチレン系樹脂発泡粒子の製造方法。
- 無機ガスが炭酸ガスであることを特徴とする、請求項11記載のポリエチレン系樹脂発泡粒子の製造方法。
- 請求項1~8のいずれか1項に記載のポリエチレン系樹脂発泡粒子を、予め前処理することなく、2つの金型よりなる閉鎖しうるが密閉し得ない成形空間内に充填し、加熱媒体により加熱することによって得ることを特徴とする、ポリエチレン系樹脂型内発泡成形体の製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/038,056 US10351688B2 (en) | 2013-11-20 | 2014-11-19 | Polyethylene resin foamed particles, polyethylene resin in-mold foam-molded article, and production methods thereof |
EP14864413.1A EP3072922B1 (en) | 2013-11-20 | 2014-11-19 | Polyethylene resin foamed particles, polyethylene resin in-mold expansion-molded article, and methods respectively for producing those products |
CN201480063054.0A CN105764968B (zh) | 2013-11-20 | 2014-11-19 | 聚乙烯系树脂发泡粒子和聚乙烯系树脂模内发泡成型体及其制造方法 |
JP2015549175A JP6547628B2 (ja) | 2013-11-20 | 2014-11-19 | ポリエチレン系樹脂発泡粒子およびポリエチレン系樹脂型内発泡成形体およびその製造方法 |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013240176 | 2013-11-20 | ||
JP2013-240176 | 2013-11-20 | ||
JP2014136454 | 2014-07-02 | ||
JP2014-136454 | 2014-07-02 | ||
JP2014-184790 | 2014-09-11 | ||
JP2014184790 | 2014-09-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015076306A1 true WO2015076306A1 (ja) | 2015-05-28 |
Family
ID=53179566
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/080671 WO2015076306A1 (ja) | 2013-11-20 | 2014-11-19 | ポリエチレン系樹脂発泡粒子およびポリエチレン系樹脂型内発泡成形体およびその製造方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US10351688B2 (ja) |
EP (1) | EP3072922B1 (ja) |
JP (1) | JP6547628B2 (ja) |
CN (1) | CN105764968B (ja) |
MY (1) | MY175462A (ja) |
WO (1) | WO2015076306A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016147775A1 (ja) * | 2015-03-13 | 2016-09-22 | 株式会社カネカ | 帯電防止性能を有するポリエチレン系樹脂発泡粒子およびポリエチレン系樹脂型内発泡成形体およびその製造方法 |
WO2016158686A1 (ja) * | 2015-03-27 | 2016-10-06 | 株式会社カネカ | ポリエチレン系樹脂発泡成形体の製造方法 |
CN108884261A (zh) * | 2016-03-30 | 2018-11-23 | 株式会社钟化 | 聚乙烯系树脂发泡颗粒的制造方法及聚乙烯系树脂模内发泡成型体的制造方法 |
WO2023067953A1 (ja) | 2021-10-21 | 2023-04-27 | 株式会社ジェイエスピー | ポリエチレン系樹脂発泡粒子及びその製造方法 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6920610B2 (ja) * | 2017-04-27 | 2021-08-18 | キョーラク株式会社 | 発泡ダクト |
CN109651695B (zh) * | 2018-12-30 | 2021-08-20 | 无锡会通轻质材料股份有限公司 | 一种易熔结、高耐温性发泡聚乙烯珠粒及其制备方法 |
CN113201167A (zh) * | 2021-05-17 | 2021-08-03 | 南京给力新材料有限公司 | 一种空心epe粒子制备方法及泡沫体生产工艺 |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59187035A (ja) | 1983-04-08 | 1984-10-24 | Asahi Chem Ind Co Ltd | 線状ポリエチレン樹脂発泡用粒子 |
JPS6215239A (ja) | 1985-07-12 | 1987-01-23 | Kanegafuchi Chem Ind Co Ltd | 無架橋直鎖状低密度ポリエチレン予備発泡粒子およびその成形法 |
JPH06157803A (ja) | 1992-11-24 | 1994-06-07 | Asahi Chem Ind Co Ltd | 無架橋ポリエチレン系樹脂予備発泡粒子及びその製造方法 |
JPH06316645A (ja) | 1993-10-19 | 1994-11-15 | Kanegafuchi Chem Ind Co Ltd | 無架橋エチレン系樹脂予備発泡粒子 |
JPH07216153A (ja) | 1994-01-26 | 1995-08-15 | Sumitomo Chem Co Ltd | 無架橋発泡用エチレン−α−オレフィン共重合体樹脂組成物 |
JPH0925356A (ja) | 1995-07-07 | 1997-01-28 | Asahi Chem Ind Co Ltd | ポリエチレン系樹脂の無架橋予備発泡粒子の製造方法 |
JP2000017079A (ja) | 1998-07-02 | 2000-01-18 | Jsp Corp | 無架橋ポリエチレン系樹脂発泡粒子及びその成型体 |
JP2004010648A (ja) * | 2002-06-04 | 2004-01-15 | Daicel Chem Ind Ltd | ポリオレフィン系樹脂発泡体 |
WO2009075208A1 (ja) * | 2007-12-11 | 2009-06-18 | Kaneka Corporation | ポリオレフィン系樹脂発泡粒子の製造方法およびポリオレフィン系樹脂発泡粒子 |
JP2010059393A (ja) | 2008-08-05 | 2010-03-18 | Kaneka Corp | 熱可塑性樹脂発泡粒子およびその製造方法 |
WO2011086937A1 (ja) * | 2010-01-15 | 2011-07-21 | 株式会社カネカ | ポリエチレン系樹脂発泡粒子、およびポリエチレン系樹脂型内発泡成形体 |
JP2011201085A (ja) * | 2010-03-24 | 2011-10-13 | Jsp Corp | ポリプロピレン系樹脂発泡ブロー成形体の製造方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3847728A (en) * | 1972-05-31 | 1974-11-12 | Toyo Seikan Kaisha Ltd | Resinous compositions having improved gas permeation resistance and molded structures thereof |
JP5314411B2 (ja) * | 2008-12-19 | 2013-10-16 | 株式会社ジェイエスピー | ポリプロピレン系樹脂発泡粒子成形体の製造方法、及び該成形体 |
-
2014
- 2014-11-19 WO PCT/JP2014/080671 patent/WO2015076306A1/ja active Application Filing
- 2014-11-19 CN CN201480063054.0A patent/CN105764968B/zh active Active
- 2014-11-19 EP EP14864413.1A patent/EP3072922B1/en active Active
- 2014-11-19 JP JP2015549175A patent/JP6547628B2/ja active Active
- 2014-11-19 MY MYPI2016000880A patent/MY175462A/en unknown
- 2014-11-19 US US15/038,056 patent/US10351688B2/en active Active
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59187035A (ja) | 1983-04-08 | 1984-10-24 | Asahi Chem Ind Co Ltd | 線状ポリエチレン樹脂発泡用粒子 |
JPS6215239A (ja) | 1985-07-12 | 1987-01-23 | Kanegafuchi Chem Ind Co Ltd | 無架橋直鎖状低密度ポリエチレン予備発泡粒子およびその成形法 |
JPH06157803A (ja) | 1992-11-24 | 1994-06-07 | Asahi Chem Ind Co Ltd | 無架橋ポリエチレン系樹脂予備発泡粒子及びその製造方法 |
JPH06316645A (ja) | 1993-10-19 | 1994-11-15 | Kanegafuchi Chem Ind Co Ltd | 無架橋エチレン系樹脂予備発泡粒子 |
JPH07216153A (ja) | 1994-01-26 | 1995-08-15 | Sumitomo Chem Co Ltd | 無架橋発泡用エチレン−α−オレフィン共重合体樹脂組成物 |
JPH0925356A (ja) | 1995-07-07 | 1997-01-28 | Asahi Chem Ind Co Ltd | ポリエチレン系樹脂の無架橋予備発泡粒子の製造方法 |
JP2000017079A (ja) | 1998-07-02 | 2000-01-18 | Jsp Corp | 無架橋ポリエチレン系樹脂発泡粒子及びその成型体 |
JP2004010648A (ja) * | 2002-06-04 | 2004-01-15 | Daicel Chem Ind Ltd | ポリオレフィン系樹脂発泡体 |
WO2009075208A1 (ja) * | 2007-12-11 | 2009-06-18 | Kaneka Corporation | ポリオレフィン系樹脂発泡粒子の製造方法およびポリオレフィン系樹脂発泡粒子 |
JP2010059393A (ja) | 2008-08-05 | 2010-03-18 | Kaneka Corp | 熱可塑性樹脂発泡粒子およびその製造方法 |
WO2011086937A1 (ja) * | 2010-01-15 | 2011-07-21 | 株式会社カネカ | ポリエチレン系樹脂発泡粒子、およびポリエチレン系樹脂型内発泡成形体 |
JP2011201085A (ja) * | 2010-03-24 | 2011-10-13 | Jsp Corp | ポリプロピレン系樹脂発泡ブロー成形体の製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3072922A4 |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016147775A1 (ja) * | 2015-03-13 | 2016-09-22 | 株式会社カネカ | 帯電防止性能を有するポリエチレン系樹脂発泡粒子およびポリエチレン系樹脂型内発泡成形体およびその製造方法 |
EP3269762A4 (en) * | 2015-03-13 | 2018-08-01 | Kaneka Corporation | Polyethylene resin foam particles having antistatic performance, and polyethylene resin in-mold foam-molded article and method for manufacturing same |
WO2016158686A1 (ja) * | 2015-03-27 | 2016-10-06 | 株式会社カネカ | ポリエチレン系樹脂発泡成形体の製造方法 |
US10100166B2 (en) | 2015-03-27 | 2018-10-16 | Kaneka Corporation | Method for manufacturing polyethylene resin foam molded article |
CN108884261A (zh) * | 2016-03-30 | 2018-11-23 | 株式会社钟化 | 聚乙烯系树脂发泡颗粒的制造方法及聚乙烯系树脂模内发泡成型体的制造方法 |
JPWO2017169568A1 (ja) * | 2016-03-30 | 2019-02-07 | 株式会社カネカ | ポリエチレン系樹脂発泡粒子の製造方法、及びポリエチレン系樹脂型内発泡成形体の製造方法 |
EP3438173A4 (en) * | 2016-03-30 | 2019-12-11 | Kaneka Corporation | METHOD FOR THE PRODUCTION OF EXPANDED POLYETHYLENIC RESIN PEARLS AND METHOD FOR PRODUCING POLYETHYLENE-BASED CAST-RESIN ARTICLES THROUGH IN-MOLD GIESSEN |
CN108884261B (zh) * | 2016-03-30 | 2021-06-25 | 株式会社钟化 | 聚乙烯系树脂发泡颗粒的制造方法及聚乙烯系树脂模内发泡成型体的制造方法 |
WO2023067953A1 (ja) | 2021-10-21 | 2023-04-27 | 株式会社ジェイエスピー | ポリエチレン系樹脂発泡粒子及びその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
EP3072922B1 (en) | 2020-01-01 |
CN105764968B (zh) | 2019-07-30 |
JP6547628B2 (ja) | 2019-07-24 |
CN105764968A (zh) | 2016-07-13 |
MY175462A (en) | 2020-06-29 |
US20160304693A1 (en) | 2016-10-20 |
JPWO2015076306A1 (ja) | 2017-03-16 |
EP3072922A1 (en) | 2016-09-28 |
EP3072922A4 (en) | 2017-09-13 |
US10351688B2 (en) | 2019-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015076306A1 (ja) | ポリエチレン系樹脂発泡粒子およびポリエチレン系樹脂型内発泡成形体およびその製造方法 | |
WO2010113471A1 (ja) | ポリプロピレン系共重合体樹脂発泡粒子 | |
JP6084046B2 (ja) | ポリエチレン系樹脂発泡粒子およびポリエチレン系樹脂型内発泡成形体およびその製造方法 | |
JP5630591B2 (ja) | ポリオレフィン系樹脂予備発泡粒子およびその製造方法 | |
WO2016158686A1 (ja) | ポリエチレン系樹脂発泡成形体の製造方法 | |
WO2013031745A1 (ja) | ポリエチレン系樹脂発泡粒子及びその成形体 | |
JP5253119B2 (ja) | 熱可塑性樹脂発泡粒子の製造方法 | |
JP5324967B2 (ja) | 熱可塑性樹脂発泡粒子およびその製造方法 | |
JP5591965B2 (ja) | ポリオレフィン系樹脂予備発泡粒子およびその製造方法 | |
JP2013100555A (ja) | ポリオレフィン系樹脂予備発泡粒子およびその製造方法 | |
WO2016147775A1 (ja) | 帯電防止性能を有するポリエチレン系樹脂発泡粒子およびポリエチレン系樹脂型内発泡成形体およびその製造方法 | |
JP5364289B2 (ja) | ポリプロピレン系樹脂発泡粒子の製造方法 | |
JP6625472B2 (ja) | ポリプロピレン系樹脂発泡粒子、および、ポリプロピレン系樹脂型内発泡成形体、およびその製造方法 | |
JP5347368B2 (ja) | ポリプロピレン系樹脂発泡粒子、および型内発泡成形体 | |
WO2017090432A1 (ja) | ポリプロピレン系樹脂発泡粒子の製造方法、ポリプロピレン系樹脂発泡粒子および型内発泡成形体 | |
JP5220486B2 (ja) | ポリオレフィン系樹脂予備発泡粒子およびその製造方法 | |
JP2009221258A (ja) | ポリプロピレン系樹脂予備発泡粒子 | |
JP6847584B2 (ja) | 帯電防止性能を有するポリエチレン系樹脂発泡粒子及びポリエチレン系樹脂発泡成形体およびその製造方法 | |
JP2019156872A (ja) | ポリエチレン系樹脂発泡粒子、および、ポリエチレン系樹脂型内発泡成形体の製造方法 | |
JP5248939B2 (ja) | ポリプロピレン系樹脂発泡粒子 | |
JP2009256410A (ja) | ポリプロピレン系樹脂発泡粒子の製造方法 | |
JP2009256411A (ja) | ポリプロピレン系樹脂型内発泡成形体の製造方法 | |
JP5331344B2 (ja) | ポリプロピレン系樹脂予備発泡粒子 | |
JP5161593B2 (ja) | ポリプロピレン系樹脂発泡粒子の製造方法 | |
JP2011219688A (ja) | ポリエチレン系樹脂発泡粒子、およびポリエチレン系樹脂型内発泡成形体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14864413 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015549175 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15038056 Country of ref document: US |
|
REEP | Request for entry into the european phase |
Ref document number: 2014864413 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014864413 Country of ref document: EP |