WO2017090432A1 - ポリプロピレン系樹脂発泡粒子の製造方法、ポリプロピレン系樹脂発泡粒子および型内発泡成形体 - Google Patents

ポリプロピレン系樹脂発泡粒子の製造方法、ポリプロピレン系樹脂発泡粒子および型内発泡成形体 Download PDF

Info

Publication number
WO2017090432A1
WO2017090432A1 PCT/JP2016/083280 JP2016083280W WO2017090432A1 WO 2017090432 A1 WO2017090432 A1 WO 2017090432A1 JP 2016083280 W JP2016083280 W JP 2016083280W WO 2017090432 A1 WO2017090432 A1 WO 2017090432A1
Authority
WO
WIPO (PCT)
Prior art keywords
polypropylene resin
particles
resin
polypropylene
mold foam
Prior art date
Application number
PCT/JP2016/083280
Other languages
English (en)
French (fr)
Inventor
圭志 佐藤
福澤 淳
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to JP2017552347A priority Critical patent/JP6670850B2/ja
Priority to EP16868380.3A priority patent/EP3381976B1/en
Priority to CN201680069241.9A priority patent/CN108291048B/zh
Publication of WO2017090432A1 publication Critical patent/WO2017090432A1/ja
Priority to US15/989,528 priority patent/US20180273719A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/16Making expandable particles
    • C08J9/18Making expandable particles by impregnating polymer particles with the blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/122Hydrogen, oxygen, CO2, nitrogen or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/22After-treatment of expandable particles; Forming foamed products
    • C08J9/228Forming foamed products
    • C08J9/232Forming foamed products by sintering expandable particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/06CO2, N2 or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/04Foams characterised by their properties characterised by the foam pores
    • C08J2205/052Closed cells, i.e. more than 50% of the pores are closed
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/04Homopolymers or copolymers of ethene
    • C08J2423/06Polyethene

Definitions

  • the present invention relates to a method for producing expanded polypropylene resin particles. More specifically, the present invention relates to a method for producing expanded polypropylene resin particles that provides a lightweight and high-strength in-mold expanded molded article. The present invention also relates to polypropylene resin expanded particles and in-mold expanded molded articles.
  • the polypropylene resin-in-mold foam-molded product obtained by filling polypropylene resin foam particles in a mold and heat-sealing with steam has the lightness and buffering characteristics that are characteristic of a foam, and is optional. Since it can be molded into any shape, it is used in various applications such as returnable boxes and buffer mats. In addition, in comparison with polystyrene resin and polyethylene resin in-mold foam moldings, polypropylene resin in-mold foam moldings are superior in heat resistance, so the changes in shape and physical properties are small even under high temperature conditions. It is also actively used for automotive parts that require advanced physical properties and quality.
  • the strength of a foamed molded product in a polypropylene resin mold is generally evaluated as compressive strength. That is, when the in-mold foam molded body is compressed by applying stress, the in-mold foam molded body having a smaller deformation is expressed as having higher strength.
  • the compression strength of the in-mold foam molded product is generally proportional to the strength of the polypropylene resin used as the base material when compared with the in-mold foam molded product having the same density. That is, when the strength of the polypropylene resin (B) is higher than that of the polypropylene resin (A), the compression strength of the in-mold foam molded body (B ′) having the same density made of the polypropylene resin (B) is polypropylene-based.
  • the flexural modulus is an index for the strength of the polypropylene resin. Therefore, a polypropylene resin having a high flexural modulus is used to improve the strength of the in-mold foam molding.
  • the inventors of the present invention have studied high foaming (weight reduction) and high strength of the in-mold foam molded body based on a pressure-reducing foaming process using an inorganic foaming agent such as carbon dioxide as a foaming agent. It was.
  • carbon dioxide gas has been selected because it has a low environmental impact and is extremely safe compared to organic volatile blowing agents such as butane and chlorofluorocarbons.
  • organic volatile blowing agents such as butane and chlorofluorocarbons.
  • the foaming process using carbon dioxide gas is inferior in foaming power as compared with the case of using an organic volatile foaming agent such as butane and chlorofluorocarbons, it is difficult to achieve high foaming.
  • Various high foaming techniques have been proposed so far in order to achieve weight reduction by a foaming process using carbon dioxide gas.
  • polypropylene resin particles are dispersed in a dispersion medium in a pressure resistant container, heated to a temperature higher than the temperature at which the polypropylene resin particles are softened, pressurized, and then opened at one end of the pressure resistant container.
  • the first expanded particles (hereinafter referred to as “single-stage expanded particles”) obtained by releasing the system resin particles into an atmosphere at a lower pressure than in the pressure-resistant container (hereinafter referred to as “single-stage expanded”), After impregnating with a foaming agent such as air again to give foaming power, it is further foamed by heating with steam or the like (hereinafter this process is referred to as “two-stage foaming”), and has a higher foaming ratio than the original foamed particles.
  • a method for obtaining polypropylene resin expanded particles (hereinafter referred to as “two-stage expanded particles”) is disclosed.
  • Patent Document 2 discloses that in the one-stage foaming process, polypropylene resin particles impregnated with carbon dioxide in a pressure-resistant container are released and foamed in a high-temperature atmosphere of 80 to 100 ° C., thereby achieving a high foaming ratio. It is disclosed that single-stage expanded particles can be obtained.
  • Patent Document 3 by using a polypropylene resin composition in which a large amount of a polypropylene resin and a specific polyethylene resin as a melt tension improver is added, foamed particles having large and uniform bubbles and in-mold It is disclosed that a foamed molded product can be obtained.
  • Patent Document 4 discloses a foam using a propylene polymer resin composition obtained by adding a specific ethylene polymer resin to a propylene polymer resin, as in Patent Document 3.
  • Patent Document 5 discloses that by adding a specific polyethylene-based resin to a polypropylene-based resin, expanded particles having improved fusing property in in-mold foam molding can be obtained.
  • Japanese Patent Publication Japanese Unexamined Patent Application Publication No. 2009-256410 (published on November 5, 2009)” International Publication Gazette “WO2014 / 136933 (published on September 12, 2014)” Japanese Patent Publication “Japanese Patent Laid-Open No. 2010-275499 (Released on Dec. 9, 2010)” Japanese Patent Publication “Japanese Patent Laid-Open No. 2010-265449 (published on November 25, 2010)” International Publication Gazette “WO2009 / 047998 (published on April 16, 2009)”
  • the present invention is a mold that makes use of the original strength of the base resin without losing physical properties and quality such as fusion and surface properties at the time of in-mold foam molding, even for polypropylene resin expanded particles with a high expansion ratio. It aims at providing the manufacturing method of the polypropylene resin expanded particle which provides an inner foaming molding.
  • the present inventor has one-stage foaming with less wrinkles using polypropylene resin particles made of a polypropylene resin composition in which a specific polyethylene resin is mixed with a polypropylene resin. It has been found that by producing particles, an in-mold foam molded article having high compressive strength can be obtained even if the in-mold foam molded article is reduced in weight. That is, this invention consists of the following structures.
  • polypropylene resin (X) 100 parts by weight, obtained by mixing a density 0.945 g / cm 3 or more 0.980 g / cm 3 less than the polyethylene-based resin (Y) one or more parts 10 parts by weight or less
  • the polypropylene resin (Z) is made of expanded particles having an expansion ratio of 10 times or more and less than 20 times.
  • polypropylene resin expanded particles with a high expansion ratio can utilize the original strength of the base resin without losing physical properties and quality such as fusion and surface properties during in-mold foam molding.
  • Tmh of this invention Example 1 in a DSC curve It is a figure which shows Tc of this invention Example 1 in a DSC curve. It is a figure which shows an example of the relationship (used when evaluating the intensity
  • Method for producing a polypropylene resin (Z) foaming particles of an embodiment of the present invention is to polypropylene-based resin (X) 100 parts by weight, a polyethylene of density less than 0.945 g / cm 3 or more 0.980 g / cm 3
  • Polypropylene resin (Z) particles having a high-temperature side crystal melting peak temperature of 146 ° C. or more and 160 ° C. or less obtained by mixing 1 part by weight or more and 10 parts by weight or less of resin (Y) are dispersed in an aqueous dispersion medium in a pressure resistant container.
  • the expanded polypropylene resin (Z) particles have an expansion ratio of 20 to 40 times, closed cells of 90% or more, and wrinkle shrinkage of 5% or less, and the expanded polypropylene resin (Z) particles It is characterized by being manufactured by a single foaming process.
  • the wrinkle shrinkage rate By using single-stage expanded particles in which the content is suppressed to 5% or less, an in-mold expanded molded article having a high compressive strength can be obtained even though it is lightweight.
  • the strength of the polypropylene resin itself is measured in the region where the polypropylene resin in-mold foam molded article has a high expansion ratio, for example, the density of the in-mold foam molded article is 30 g / L or less. In some cases, the maximum strength of the inner foamed molded article could not be utilized. In other words, the strength of the resin itself correlates with the strength of the in-mold foam molded product in the region where the in-mold foam molded product has a low foaming ratio, whereas in the high foam ratio, the strength is lower than expected from the correlation. There was a thing.
  • the foamed particles use an organic volatile foaming agent such as butane, and there is no description regarding an inorganic foaming agent such as carbon dioxide. Moreover, there is no description regarding the compressive strength of the in-mold foam-molded article, which is one of the problems of this case. Moreover, there is no description regarding the closed cells of the expanded particles related to the compressive strength.
  • the closed cell ratio described in the examples is around 70%.
  • the strength of a foamed polypropylene resin mold depends on the closed cell ratio. When the closed cell ratio is less than 90%, many of the cell membranes are broken, so that the strength of the in-mold foam molded product is low.
  • Patent Document 5 it has not been clarified about a problem that the strength of the in-mold foam-molded body in the high expansion ratio region may be lower than the value expected from the strength of the polypropylene resin as a raw material.
  • the polypropylene resin (X) used in one embodiment of the present invention is not particularly limited, and is a polypropylene homopolymer, ethylene / propylene random copolymer, butene-1 / propylene random copolymer, ethylene / butene-1 / Propylene random copolymer, ethylene / propylene block copolymer, butene-1 / propylene block copolymer, propylene-chlorinated vinyl copolymer and propylene / maleic anhydride copolymer.
  • ethylene / propylene random copolymer, butene-1 / propylene random copolymer or ethylene / butene-1 / propylene random copolymer has good foamability and good moldability. To preferred.
  • the ethylene / propylene random copolymer, butene-1 / propylene random copolymer, or ethylene / butene-1 / propylene random copolymer has a comonomer content of a polymerization component other than propylene of 100% by weight of each copolymer. Among them, those having a content of 0.2% by weight to 10% by weight are preferably used.
  • the polymerization catalyst for synthesizing the polypropylene resin (X) used in one embodiment of the present invention is not particularly limited, and a Ziegler catalyst, a metallocene catalyst, or the like can be used.
  • the melting point of the polypropylene resin (X) used in one embodiment of the present invention is preferably 145 ° C. or higher and 160 ° C. or lower, considering the high temperature side crystal melting peak temperature Tmh of the polypropylene resin (Z) described later.
  • the temperature is more preferably 155 ° C. or lower.
  • the method for obtaining the melting point is the same as the method for obtaining Tmh described later.
  • a bending elastic modulus is 1400 Mpa or more. If the strength of the polypropylene resin (X) is sufficient, the polypropylene resin (Z) also tends to have sufficient strength, and it is easy to suppress wrinkle shrinkage of the expanded particles even in a high expansion ratio region.
  • the melt index (hereinafter referred to as “MI”) of the polypropylene-based resin (X) used in one embodiment of the present invention is not particularly limited, but when it is 5 g / 10 min or more and 15 g / 10 min or less, it is independent at a high expansion ratio. It becomes easy to obtain expanded particles and in-mold expanded molded articles having a high cell ratio.
  • the MI value is a value measured under the conditions of a load of 2160 g and 230 ⁇ 0.2 ° C. in accordance with JIS K7210.
  • the polyethylene resin (Y) used in one embodiment of the present invention may contain a comonomer copolymerizable with ethylene in addition to ethylene as long as it has a predetermined density.
  • an ⁇ -olefin having 3 to 18 carbon atoms can be used as the comonomer copolymerizable with ethylene.
  • the ⁇ -olefin having 3 to 18 carbon atoms include propene, 1-butene, 1-pentene, 1-hexene, 3,3-dimethyl-1-butene, 4-methyl-1-pentene, 4, 4-dimethyl-1-pentene, 1-octene and the like may be mentioned, and these may be used alone or in combination of two or more.
  • Density of the polyethylene resin (Y) in an embodiment of the present invention is less than 0.945 g / cm 3 or more 0.980 g / cm 3, preferably 0.960 g / cm 3 or more 0.980 g / cm less than 3 It is.
  • the density of the polyethylene resin (Y) is less than 0.945 g / cm 3 , the effect of suppressing the wrinkle shrinkage of the expanded particles is not sufficiently exhibited.
  • the density of the polyethylene resin (Y) exceeds 0.980 g / cm 3 , the polypropylene resin (Z) becomes brittle, and there is a concern that the impact strength of the in-mold foam molded product may be reduced.
  • the resin-based resin (Z) foamed particles are difficult to extend and the in-mold foam moldability may be lowered.
  • the melting point of the polyethylene resin (Y) used in one embodiment of the present invention is not particularly limited, but those having a temperature of 125 ° C. or higher and 140 ° C. or lower are preferably used.
  • the MI of the polyethylene resin (Y) used in one embodiment of the present invention is not particularly limited, but is preferably about the same as that of the polypropylene resin (X).
  • the mixing ratio of the polypropylene resin (X) and the polyethylene resin (Y) is polyethylene based on 100 parts by weight of the polypropylene resin (X).
  • the resin (Y) is 1 to 10 parts by weight, preferably 2 to 8 parts by weight.
  • the mixing ratio of the polyethylene-based resin (Y) is less than 1 part by weight, the effect of suppressing wrinkle shrinkage of the expanded particles is not sufficiently exhibited.
  • the mixing ratio of the polyethylene-based resin (Y) exceeds 10 parts by weight, the expansion of the foamed particles at the time of in-mold molding may be deteriorated, or the closed cells of the in-mold foam-molded product may be decreased.
  • the high temperature side crystal melting peak temperature Tmh of the polypropylene resin (Z) used in one embodiment of the present invention is preferably 146 ° C. or higher and 160 ° C. or lower.
  • the high temperature side crystal melting peak temperature Tmh of the polypropylene resin (Z) is less than 146 ° C., the wrinkle shrinkage of the expanded particles may occur in the high expansion ratio region.
  • the high temperature side crystal melting peak temperature Tmh exceeds 160 ° C., the in-mold foam moldability may deteriorate.
  • the crystallization temperature Tc of the polypropylene resin (Z) used in one embodiment of the present invention is preferably higher than the crystallization temperature Tcx of the polypropylene resin (X).
  • Tcx the crystallization temperature
  • a bending elastic modulus is 1400 Mpa or more.
  • the MI of the polypropylene resin (Z) used in one embodiment of the present invention is not particularly limited, but when it is 5 g / 10 min or more and 15 g / 10 min or less, the foamed particles and the mold have a high expansion ratio and a high closed cell ratio. It becomes easy to obtain a foam molded article.
  • various additives can be added within a range not impairing the effects of the present invention.
  • the additive include a water absorbing agent and a cell nucleating agent. , Antioxidants, light resistance improvers and flame retardants.
  • water absorbing agent examples include polyethylene glycol, glycerin [chemical name 1,2,3-propanetriol] and melamine [chemical name 1,3,5-triazine-2,4,6-triamine]. It is not limited to these. Particularly preferred water-absorbing agents include polyethylene glycol and glycerin.
  • the amount of the water-absorbing agent added is preferably 0.01 parts by weight or more and 10 parts by weight or less with respect to 100 parts by weight of the polypropylene resin (X).
  • the amount is 0.01 parts by weight or more, the effect of adding the water-absorbing agent is likely to appear, and when the amount is 10 parts by weight or less, wrinkle shrinkage hardly occurs in the expanded particles.
  • cell nucleating agent examples include, but are not limited to, talc, kaolin, barium sulfate, zinc borate and silicon dioxide.
  • antioxidants examples include, but are not limited to, phenolic antioxidants and phosphorus antioxidants.
  • Examples of the light resistance improver include, but are not limited to, hindered amine light resistance improvers.
  • flame retardant examples include, but are not limited to, halogen flame retardants, phosphorus flame retardants, hindered amine flame retardants, and the like.
  • the polypropylene resin (Z) is usually melt-kneaded in advance using an extruder, kneader, Banbury mixer, roll, or the like so as to be easily used for foaming, and is cylindrical, elliptical, spherical. It is preferable to mold into a desired particle shape such as a cubic shape, a rectangular parallelepiped shape, a cylindrical shape (straw shape), or the like to obtain polypropylene resin (Z) particles.
  • the shape of the polypropylene resin (Z) particles is not necessarily the shape of the polypropylene resin (Z) expanded particles.
  • the polypropylene resin (Z) particles may shrink in the foaming process.
  • spherical polypropylene resin (Z) foam particles are obtained from the cylindrical or elliptical polypropylene resin (Z) particles. There is a case.
  • polypropylene resin (Z) particles from the viewpoint of productivity, it is melt-kneaded with an extruder, extruded into a strand shape from the tip of the extruder, and then cut to form polypropylene resin (Z) particles. More preferably.
  • the weight per one polypropylene resin (Z) particle in one embodiment of the present invention is preferably 0.1 mg to 100 mg, more preferably 0.3 mg to 10 mg.
  • a sufficient expansion ratio tends to be obtained when the polypropylene resin (Z) particles are expanded.
  • the weight per one polypropylene resin (Z) particle is an average resin particle weight obtained from 100 particles obtained by randomly selecting the polypropylene resin (Z) particles.
  • the weight per one polypropylene resin (Z) particle hardly changes even after the foaming step, and the weight per one polypropylene resin (Z) particle is equal to the polypropylene resin (Z). There is no problem as the weight per one of the expanded particles.
  • the expanded polypropylene resin (Z) particles according to an embodiment of the present invention can be produced using the expanded polypropylene resin (Z) particles thus obtained.
  • the polypropylene resin (Z) expanded particles according to an embodiment of the present invention can be manufactured as follows.
  • the polypropylene resin (Z) particles, an aqueous medium, an inorganic dispersant, a foaming agent and the like are accommodated in a pressure vessel and dispersed under stirring conditions, and the softening point temperature of the polypropylene resin (Z) particles.
  • the polypropylene resin (Z) particles are impregnated with a foaming agent while the temperature is increased and the pressure is higher than the saturated water vapor pressure at that temperature. Thereafter, if necessary, the temperature after the temperature rise is maintained for more than 0 minutes and not more than 120 minutes, and then the dispersion in the pressure vessel is discharged to a pressure region lower than the internal pressure of the pressure vessel, and the polypropylene resin (Z ) Expanded particles can be produced.
  • the pressure region lower than the internal pressure of the pressure vessel is preferably atmospheric pressure.
  • a single foaming process until the dispersion is released from a pressurized state to a lower pressure region is referred to as a “single-stage foaming process”.
  • the obtained polypropylene resin (Z) expanded particles are referred to as “one-stage expanded particles”.
  • the dispersion is a mixed liquid in which polypropylene resin (Z) particles, an aqueous medium, an inorganic dispersant, a foaming agent, and the like are contained in a pressure vessel and dispersed under stirring conditions.
  • the pressure-resistant container used at the time of producing the polypropylene resin (Z) expanded particles there is no particular limitation on the pressure-resistant container used at the time of producing the polypropylene resin (Z) expanded particles, as long as it can withstand the pressure in the container and the temperature in the container, for example, an autoclave type A pressure vessel is mentioned.
  • the temperature in the pressure vessel is raised to the softening point temperature or higher, the temperature is the high temperature side crystal melting peak temperature of the polypropylene resin (Z) particles ⁇ 20 ° C. or higher, and the polypropylene resin (Z) particles. It is preferable to raise the temperature to a temperature in the range of the high temperature side crystal melting peak temperature + 10 ° C. or less in order to ensure foamability. In one embodiment of the present invention, the temperature rising temperature is preferably in the range of 126 ° C. or higher and 170 ° C. or lower. However, the types of polypropylene resin and polyethylene resin used as raw materials, types of foaming agents, and desired foaming are used. It is appropriately determined depending on the magnification and the like.
  • aqueous medium used in one embodiment of the present invention for example, water, alcohol, ethylene glycol and / or glycerin can be used alone or in combination. From the viewpoint of foamability, workability or safety, etc. Water is preferably used, and water is most preferably used alone. In the present specification, the aqueous medium is also referred to as “aqueous dispersion medium”.
  • the amount of the aqueous medium can be used as 50 parts by weight or more and 500 parts by weight or less, preferably 100 parts by weight or more and 350 parts by weight or less with respect to 100 parts by weight of the polypropylene resin (Z) particles.
  • the amount of the aqueous medium can be used as 50 parts by weight or more and 500 parts by weight or less, preferably 100 parts by weight or more and 350 parts by weight or less with respect to 100 parts by weight of the polypropylene resin (Z) particles.
  • the amount of the aqueous medium can be used as 50 parts by weight or more and 500 parts by weight or less, preferably 100 parts by weight or more and 350 parts by weight or less with respect to 100 parts by weight of the polypropylene resin (Z) particles.
  • coalescence of a plurality of polypropylene resin (Z) particles can be prevented in the pressure vessel, and in the case of 500 parts by weight or less, productivity can be prevented from being lowered, which is preferable from the viewpoint of manufacturing. .
  • Examples of the inorganic dispersant used in an embodiment of the present invention include tribasic calcium phosphate, tribasic magnesium phosphate, basic magnesium carbonate, calcium carbonate, basic zinc carbonate, aluminum oxide, iron oxide, titanium oxide, Examples thereof include aluminosilicate, kaolin and barium sulfate, and these can be used alone or in combination. From the viewpoint of the stability of the dispersion, tricalcium phosphate, kaolin, or barium sulfate is preferred. By maintaining the stability of the dispersion, the plurality of polypropylene resin (Z) particles can be prevented from coalescing or lumping in the pressure vessel.
  • fused polypropylene resin (Z) expanded particles can be obtained, polypropylene resin (Z) expanded particles cannot be produced due to remaining lump of polypropylene resin (Z) particles in the pressure-resistant container, and polypropylene resin. (Z) It is possible to prevent such a situation that the productivity of the expanded particles is lowered.
  • a dispersion aid in order to increase the stability of the dispersion in the pressure vessel.
  • the dispersion aid include anionic surfactants. Specific examples include sodium dodecylbenzenesulfonate, sodium alkanesulfonate, sodium alkylsulfonate, sodium alkyldiphenyl ether disulfonate, and ⁇ -olefin sulfonic acid. Sodium etc. are mentioned. A specific example of sodium alkyl sulfonate is normal paraffin sulfonic acid soda.
  • the amount of the inorganic dispersant and / or dispersion aid used varies depending on the type and the type and amount of polypropylene resin (Z) particles used, but is usually inorganic based on 100 parts by weight of the aqueous medium.
  • the dispersant is preferably 0.1 to 5 parts by weight, and the dispersion aid is preferably 0.001 to 0.3 parts by weight.
  • coalescence of a plurality of polypropylene resin (Z) particles in a pressure vessel can be inhibited.
  • the amount of the dispersant remaining on the surface of the expanded polypropylene resin (Z) particles is increased, and it is possible to prevent the fusion between the expanded polypropylene resin (Z) particles in the molding described later, which is preferable. .
  • blowing agent used in one embodiment of the present invention examples include organic blowing agents such as propane, normal butane, isobutane, normal pentane, isopentane, hexane, cyclopentane, and cyclobutane, and carbon dioxide, water, air, and the like.
  • organic blowing agents such as propane, normal butane, isobutane, normal pentane, isopentane, hexane, cyclopentane, and cyclobutane
  • carbon dioxide water, air, and the like.
  • Inorganic foaming agents such as nitrogen are listed. These foaming agents may be used alone or in combination of two or more.
  • foaming agents isobutane or normal butane is excellent from the viewpoint of easily improving the expansion ratio, but these foaming agents are flammable, and it is necessary to make the equipment used an explosion-proof structure. There are caveats. From the viewpoint of safety, it is preferable to use an inorganic foaming agent such as carbon dioxide, water, air or nitrogen, and most preferably a foaming agent containing carbon dioxide.
  • the amount of the foaming agent is not limited, and may be appropriately used depending on the desired expansion ratio of the polypropylene resin (Z) expanded particles.
  • the polypropylene resin (Z ) It is preferably 2 parts by weight or more and 60 parts by weight or less with respect to 100 parts by weight of the particles.
  • the expansion ratio of the expanded polypropylene resin (Z) particles used in an embodiment of the present invention is 20 times to 40 times, preferably 25 times to 40 times.
  • the expansion ratio is less than 20 times, the problem of the present invention hardly occurs.
  • the expansion ratio exceeds 40 times, it may be difficult to obtain single-stage expanded particles with suppressed wrinkle shrinkage according to the present invention.
  • the following method is known as a method for obtaining polypropylene resin (Z) expanded particles having a high expansion ratio of 20 to 40 times in the one-stage expansion process.
  • a method of using a large amount of an organic foaming agent, an inorganic foaming agent, or a mixed foaming agent thereof can be obtained by composite foaming utilizing the foaming power of carbon dioxide and water.
  • the water-absorbing agent can be added to the polypropylene resin (Z).
  • the temperature of the low pressure region (hereinafter referred to as “foaming atmosphere”) that discharges the dispersion liquid (hereinafter referred to as “foaming atmosphere temperature”) is maintained at a high temperature.
  • Foaming atmosphere temperature is preferably 90 ° C. or higher and 105 ° C. or lower, and more preferably 95 ° C. or higher and 105 ° C. or lower. If the foaming atmosphere temperature is 90 ° C. or higher, the effect of improving the magnification of the foamed particles is sufficiently obtained, and if it is 105 ° C.
  • the agglomeration of the foamed particles can be suppressed.
  • the agglomeration refers to a phenomenon in which foamed particles in a state where the resin on the surface is melted adhere to each other and become an aggregated state.
  • polypropylene resin (Z) foamed particles having a high foaming ratio of 20 times or more and 40 times or less in the one-stage foaming step As a method of obtaining polypropylene resin (Z) foamed particles having a high foaming ratio of 20 times or more and 40 times or less in the one-stage foaming step, the foaming agent, the additive, and the foaming atmosphere temperature are appropriately combined. Good.
  • the closed cell ratio of the polypropylene resin (Z) expanded particles used in one embodiment of the present invention is 90% or more. When the number of closed cells is less than 90%, many of the cell membranes are broken, so that the strength of the in-mold foam molded product may be lowered.
  • the wrinkle shrinkage of the polypropylene resin (Z) expanded particles used in one embodiment of the present invention is 5% or less.
  • the wrinkle shrinkage ratio is the ratio of the volume (v) in which the volume is reduced by wrinkles with respect to the maximum volume (v ′) in the expanded particles having the same surface area, as described in Examples below.
  • the wrinkle shrinkage of the expanded particles means one-stage expansion, that is, immediately after the heated polypropylene-based resin (Z) particles are discharged into an atmosphere at a lower pressure than in the pressure resistant container, the expanded particles having a high closed cell ratio are in a softened state.
  • solidifying it refers to a phenomenon in which the foam particles shrink due to condensation of moisture in the foam particles and a decrease in internal pressure due to a change in gas volume, and wrinkles enter the foam particles.
  • the wrinkles of the expanded particles indicate that the resin film constituting the expanded particles is buckled.
  • the expansion ratio of the expanded polypropylene resin (Z) particles is 20 times or more, the resin film is likely to buckle when the present invention is not used.
  • the present invention clarifies that if there is a buckling history in the resin film constituting the expanded particles, the strength of the in-mold expanded molded body is lower than the strength expected from the polypropylene resin as a raw material. By suppressing wrinkle shrinkage, which is a bending history, it is possible to provide an in-mold foam-molded product that does not decrease in strength even at a high foaming ratio.
  • the expansion ratio is increased by foaming again the polypropylene-based resin (Z) expanded particles (single-stage expanded particles) obtained in the single-stage expansion process. It is possible.
  • single-stage expanded particles are produced by decompression foaming, and the single-stage expanded particles are placed in a pressure-resistant container and applied at a pressure of 0.1 MPa (gauge pressure) or higher and 0.6 MPa (gauge pressure) or lower with nitrogen, air, or carbon dioxide gas.
  • the single-stage expanded particles can be further foamed by heating with steam or the like to increase the expansion ratio.
  • Such a single-stage expanded particle is further expanded in a separate process, and the process of increasing the expansion ratio is called a “two-stage expanded process”.
  • the resulting polypropylene-based resin (Z) expanded particles are referred to as “two-stage expanded particles”. Call it.
  • this two-stage foaming process is a process in which the first-stage foamed particles are foamed and stretched at a lower temperature (about 100 to 120 ° C. and a vapor pressure of 0.10 MPa (gauge pressure) or less) compared to the one-stage foaming process. Since the resin film is stretched in a state where the property is low, the resin film of the two-stage expanded particles tends to be locally thinned and distorted. For these reasons, generally, when the double-stage expanded particles have a particularly high expansion ratio, physical properties such as desired compression strength may not be obtained as compared with the single-stage expanded particles of the same ratio. On the other hand, since the polypropylene resin (Z) expanded particles according to an embodiment of the present invention are single-stage expanded particles obtained by a single-stage expansion process, it is easy to obtain physical properties such as desired compression strength.
  • the polypropylene resin (Z) expanded particles according to an embodiment of the present invention become a polypropylene resin in-mold foam-molded product by performing general in-mold foam molding.
  • the polypropylene resin (Z) foamed particles are used for in-mold foam molding
  • an inorganic gas such as air
  • Method c) Conventionally known methods such as a method of filling foamed particles in a mold in a compressed state and molding may be used.
  • the polypropylene resin (Z) foamed particles may be produced by, for example, a method of producing a foamed molded product in a polypropylene resin mold.
  • the polypropylene resin may be contained in a mold that can be closed but cannot be sealed.
  • Polypropylene resin (Z) expanded particles are fused together.
  • the mold is cooled with water, cooled to such an extent that the deformation of the in-mold foam molded body after taking out the in-mold foam molded body can be suppressed, and then the mold is opened to obtain an in-mold foam molded body.
  • the in-mold foam molded body produced by the above-described method or the like preferably has an in-mold foam molded body density (also referred to as an apparent density) of 15 g / L or more and 30 g / L or less. If the in-mold foam molding density is 15 g / L or more, it is generally easy to obtain a good in-mold foam molding with little deformation and shrinkage. If the density of the in-mold foam molded product is 30 g / L or less, the effect of suppressing the decrease in the strength of the in-mold foam molded product is more prominent.
  • the in-mold foam molding density may be 15 g / L or more and less than 25 g / L.
  • the in-mold foam molding density is a value obtained by dividing the weight of the in-mold foam molding by the volume of the in-mold foam molding.
  • the volume of the in-mold foam-molded product is calculated from the outer dimensions when the in-mold foam-molded product has a simple rectangular parallelepiped shape. Submerged volume (obtained as load obtained as buoyancy when submerged foam molded product is submerged in water / (density of water ⁇ gravity acceleration)) Measured as such.
  • the in-mold foam molding density and compressive strength of the in-mold foam molding according to an embodiment of the present invention are preferably equal to or higher than the pass / fail judgment line shown in FIG.
  • the pass / fail judgment line is determined by the following procedure.
  • Polypropylene resin (Z) foaming with a foaming ratio of 10 times or more and less than 20 times using a polypropylene resin (Z) having the same composition as the raw material of the in-mold foam molded product to be evaluated Make particles.
  • a sample of the in-mold foam molded body made of the polypropylene resin (Z) foam particles is prepared.
  • the production method of the polypropylene resin (Z) expanded particles and the in-mold expanded molded body is as described above.
  • the measuring method of the in-mold foam molding density is as described above.
  • the compressive strength for example, 50% compressive stress can be used as an index, but is not limited as long as it is a known index.
  • a primary approximation line passing through the origin of the coordinate plane is drawn (broken line in FIG. 3).
  • the primary approximation line can be determined by a known regression line derivation method (such as the least square method).
  • the in-mold foam molded body density and compressive strength of the in-mold foam molded body according to an embodiment of the present invention are measured, and the points plotted on the coordinate plane are equal to or higher than the pass / fail judgment line determined by the above procedure. In this case, it is preferable that the compression strength is not excessively lowered by increasing the expansion ratio.
  • “beyond the pass / fail judgment line” means that the plotted point is on the pass / fail judgment line, and a case where the plotted point is above the pass / fail judgment line (circled area in FIG. 3).
  • the present invention may have the following configuration.
  • polypropylene resin (X) 100 parts by weight, obtained by mixing a density 0.945 g / cm 3 or more 0.980 g / cm 3 less than the polyethylene-based resin (Y) one or more parts 10 parts by weight or less
  • the polypropylene resin (Z) particles are foamed by being discharged into a foaming atmosphere having a foaming atmosphere temperature of 90 ° C. or more and 105 ° C. or less.
  • Tmh determined from the DSC curve of the polypropylene resin (Z) according to Example 1 is shown in FIG. 1, and Tc is shown in FIG.
  • the low temperature side crystal melting peak temperature presumed to be mainly derived from the polyethylene resin (Y), and mainly the polypropylene resin.
  • the DSC curve obtained in the above step (i) shows the crystallization peak temperature although the polyethylene resin (Y) is added to the polypropylene resin (X). Tc had only a single peak.
  • Expansion ratio (times) of expanded particles d ⁇ v / w.
  • Closed cell ratio of expanded particles (%) (1 ⁇ (Va ⁇ Vc) / Va) ⁇ 100
  • Vc was measured using Tokyo Science Co., Ltd. air comparison type hydrometer model 1000.
  • the volume Va (cm 3 ) was determined by submerging the entire amount of foamed particles after measuring Vc with the above-mentioned air-comparing hydrometer into a graduated cylinder containing ethanol and increasing the liquid level of the graduated cylinder (submerged method) This is the apparent volume of the expanded particles obtained from
  • the wrinkle shrinkage rate (%) of the expanded particles 100 ⁇ (1 ⁇ v / v ′).
  • In-mold foam molding density The dimensions of the three sides of the long axis, short axis, and thickness of the obtained in-mold foam molded product (cuboid shape) were measured with a caliper and multiplied to calculate the dimensional volume. Based on the dimensional volume and the separately measured weight, the in-mold foam molding density was calculated using the following formula.
  • In-mold foam molding density (weight) / (long axis dimension ⁇ short axis dimension ⁇ thickness dimension).
  • Compressive strength of in-mold foam molding Four test pieces each having a length of 50 mm, a width of 50 mm, and a thickness of 25 mm were cut out from the obtained in-mold foam molded product, and each was compressed at a speed of 10 mm / min according to NDS-Z0504. Compressive stress (MPa) (hereinafter referred to as “compressive strength”) was measured. The compressive strength of the in-mold foam molding was evaluated according to the following criteria. ⁇ : The compressive strength of all test pieces is equal to or higher than the pass / fail judgment line. X: A test piece having a compressive strength less than a pass / fail judgment line exists.
  • FIG. 3 shows the relationship between the density of the in-mold foam molded product and the compressive strength.
  • the reference line and the pass / fail judgment line were determined by plotting the compressive strength against the in-mold foam molding density for the in-mold foam molding made of foam particles having an expansion ratio of less than 20 times.
  • the foaming ratio is about 12 times, about 14 times.
  • the fact that the compressive strength is higher than the pass / fail judgment line means that the compression by increasing the foaming ratio even when the polypropylene resin (Z) is processed into an in-mold foam molded body having a high foaming ratio. This means that an excessive decrease in strength is not observed (the ratio of compressive strength to in-mold foam molding density does not decrease even when compared with in-mold foam moldings with a low expansion ratio).
  • the compression strength being less than the pass / fail judgment line means that when the polypropylene resin (Z) is molded into an in-mold foam molded product having a high foaming ratio, excessive compression is caused by increasing the foaming ratio. A decrease in strength has occurred.
  • the number Ns (number) of particles broken at the particle interface in the total number of particles N (number) among the expanded particles existing within the 15 mm ⁇ 15 mm area of the fracture surface was counted.
  • the fusing property was evaluated according to the following criteria.
  • In-mold foam molding fusion rate (%) 100 ⁇ (1 ⁇ Ns / N) ⁇ : The fusion rate is 80% or more. ⁇ : The fusion rate is 60% or more and less than 80%. X: The fusion rate is less than 60%.
  • Example 1 [Preparation of polypropylene resin particles]
  • Polypropylene resin (X), polyethylene resin (Y), and water-absorbing agent are mixed in the types and amounts shown in Table 1 and kneaded with a 50 mm ⁇ extruder (resin temperature 210 ° C.). After extrusion, granulation was carried out by cutting to produce resin particles (1.2 mg / grain) made of polypropylene resin (Z).
  • the dispersion was discharged through a 3 mm ⁇ orifice provided at the lower part of the pressure vessel while being held at the foaming pressure with carbon dioxide gas, and released into a foaming atmosphere maintained in the state shown in Table 1 to obtain single-stage foamed particles.
  • Example 9 [Preparation of polypropylene resin particles] After mixing polypropylene resin (X) and polyethylene resin (Y) in the types and amounts shown in Table 1, kneading with a 50 mm ⁇ extruder (resin temperature 210 ° C.), and extruding into a strand form from the tip of the extruder Then, granulation was performed by cutting to produce resin particles (1.2 mg / grain) made of polypropylene resin (Z).
  • the dispersion was discharged through a 3 mm ⁇ orifice provided at the lower part of the pressure vessel while being held at the foaming pressure with carbon dioxide gas, and released into a foaming atmosphere maintained in the state shown in Table 1 to obtain single-stage foamed particles.
  • PE polyethylene
  • CO 2 carbon dioxide
  • Bu isobutane
  • the dispersion was discharged into a foaming atmosphere maintained in the state shown in Table 2 through a 3 mm ⁇ orifice provided at the lower part of the pressure vessel while being kept at the foaming pressure with carbon dioxide gas to obtain one-stage foamed particles.
  • Table 1 shows the results of evaluating the compression strength, fusion property, and surface elongation of the obtained in-mold foam moldings for Examples 1 to 8.
  • the polypropylene resin (Z) expanded particles obtained by the production method satisfying the requirements of the present invention are molded in-mold expanded molded articles having good compressive strength, fusion property and surface elongation quality. It shows that it can be provided.
  • Table 2 shows the results of evaluating the compression strength, fusion property, and surface elongation of the obtained in-mold foam moldings for Comparative Examples 1 to 7.
  • Comparative Example 5 produced a two-stage foamed particle having a high expansion ratio without wrinkle shrinkage by two-stage foaming, and an in-mold foam molded article with good moldability was obtained, but the compression strength was low.
  • Comparative Example 6 since a resin having a Tmh exceeding 160 ° C. was used, the moldability in the in-mold foam molding deteriorated, and a good in-mold foam molded article could not be obtained. Specifically, mutual fusion between the expanded particles did not occur, and the shape could not be maintained after heating.
  • the polypropylene-based resin expanded particles produced by the method according to an embodiment of the present invention is a raw material for a lightweight and high-strength in-mold expanded molded body.
  • the in-mold foam molded product can be applied to, for example, the automobile industry.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

高発泡倍率においても基材樹脂本来の強度を活かせる型内発泡成形体の原料となる、ポリプロピレン系樹脂発泡粒子の製造方法を提供する。本発明に係るポリプロピレン系樹脂発泡粒子の製造方法は、特定のポリエチレン系樹脂を混合したポリプロピレン系樹脂組成物からなるポリプロピレン系樹脂粒子を用いて、皺収縮率を5%以下に抑制した一段発泡粒子を製造することを特徴とする。

Description

ポリプロピレン系樹脂発泡粒子の製造方法、ポリプロピレン系樹脂発泡粒子および型内発泡成形体
 本発明はポリプロピレン系樹脂発泡粒子の製造方法に関する。更に詳しくは軽量で高強度な型内発泡成形体を提供するポリプロピレン系樹脂発泡粒子の製造方法に関する。また、本発明はポリプロピレン系樹脂発泡粒子および型内発泡成形体にも関する。
 ポリプロピレン系樹脂発泡粒子を金型内に充填し、蒸気により加熱融着させて得られるポリプロピレン系樹脂型内発泡成形体は、発泡体としての特徴である軽量性および緩衝性を有する事と、任意の形状に自由に成形加工できる事とから、通い箱および緩衝マットなど種々の用途に使用されている。また、ポリスチレン系樹脂およびポリエチレン系樹脂の型内発泡成形体と比較して、ポリプロピレン系樹脂型内発泡成形体は耐熱性に優れる事から、高温条件でも形状および物性の変化が小さく、厳しい条件下で高度な物性および品質が要求される自動車部材にも積極的に利用されている。近年、自動車部材などの用途では、原料コスト削減および燃費向上などを主な目的として、更なる軽量化が求められている。それぞれの部材には一定の強度が要求されており、その強度目標を満足する必要がある。即ち、部材の軽量化の為には、樹脂の高発泡化技術だけでなく、型内発泡成形体の強度を向上させる技術も必要とされる。
 ポリプロピレン系樹脂型内発泡成形体の強度は、一般的に、圧縮強度として評価される。即ち、型内発泡成形体に応力を加えて圧縮したとき、変形が小さい型内発泡成形体ほど強度が高いと表現される。型内発泡成形体の圧縮強度は、通常、同じ密度の型内発泡成形体で比較した場合、基材とするポリプロピレン系樹脂の強度に比例する。即ち、ポリプロピレン系樹脂(A)に対してポリプロピレン系樹脂(B)の強度が高い場合、ポリプロピレン系樹脂(B)からなる同じ密度の型内発泡成形体(B´)の圧縮強度は、ポリプロピレン系樹脂(A)からなる型内発泡成形体(A´)よりも高くなる。ポリプロピレン系樹脂の強度は、一般的に曲げ弾性率が指標となる。よって、型内発泡成形体の強度を向上させるには曲げ弾性率の高いポリプロピレン系樹脂を使用する。
 一方、本発明者らは、発泡剤として炭酸ガス等の無機系発泡剤を用いた除圧発泡プロセスを基本として、型内発泡成形体の高発泡化(軽量化)および高強度化を検討してきた。炭酸ガスは、ブタンおよびフロン類などの有機系揮発性発泡剤と比較して環境負荷が小さく、極めて安全性が高いことから選択されてきた背景がある。しかしながら、炭酸ガスによる発泡プロセスは、ブタンおよびフロン類などの有機系揮発性発泡剤を用いた場合と比較して発泡力が劣るため高発泡化が難しい。炭酸ガスによる発泡プロセスで軽量化を達成する上で、これまでに種々の高発泡化技術が提案されている。
 例えば、特許文献1には、ポリプロピレン系樹脂粒子を耐圧容器内で分散媒に分散させ、ポリプロピレン系樹脂粒子が軟化する温度以上に加熱し、加圧した後、耐圧容器の一端を開放してポリプロピレン系樹脂粒子を耐圧容器内よりも低圧の雰囲気中に放出して(以下、この工程を「一段発泡」と称する)得られる、最初の発泡粒子(以下、「一段発泡粒子」と称する)に、再度空気などの発泡剤を含浸させ発泡力を付与した後、蒸気等により加熱しさらに発泡させ(以下、この工程を「二段発泡」と称する)、もとの発泡粒子より高発泡倍率であるポリプロピレン系樹脂発泡粒子(以下、「二段発泡粒子」と称する)を得る方法が開示されている。
 また、特許文献2には、前記一段発泡工程において、耐圧容器内で炭酸ガスを含浸させたポリプロピレン系樹脂粒子を80~100℃の高温雰囲気下に放出して発泡させることで、高発泡倍率な一段発泡粒子が得られる事が開示されている。
 一方、型内発泡成形体の改質技術として、ポリプロピレン系樹脂に対するポリエチレン系樹脂の添加技術がある。
 例えば、特許文献3には、ポリプロピレン系樹脂と、溶融張力向上剤として特定のポリエチレン系樹脂とを多量に添加したポリプロピレン系樹脂組成物を用いることによって、気泡が巨大で均一な発泡粒子および型内発泡成形体が得られることが開示されている。
 特許文献4には、特許文献3と同様にプロピレン重合体樹脂に特定のエチレン重合体樹脂を添加したプロピレン重合体樹脂組成物を用いた発泡体が開示されている。
 また、特許文献5には、ポリプロピレン系樹脂に特定のポリエチレン系樹脂を添加することによって、型内発泡成形での融着性を改善した発泡粒子が得られることが開示されている。
日本国公開特許公報「特開2009-256410号(2009年11月5日公開)」 国際公開公報「WO2014/136933号(2014年9月12日公開)」 日本国公開特許公報「特開2010-275499号(2010年12月9日公開)」 日本国公開特許公報「特開2010-265449号(2010年11月25日公開)」 国際公開公報「WO2009/047998号(2009年4月16日公開)」
 本発明は、高発泡倍率のポリプロピレン系樹脂発泡粒子であっても、型内発泡成形時の融着性および表面性などの物性および品質を失うことなく、基材樹脂本来の強度を活かした型内発泡成形体を提供するポリプロピレン系樹脂発泡粒子の製造方法を提供する事を目的としている。
 本発明者は、前記課題を解決すべく鋭意検討を行った結果、ポリプロピレン系樹脂に、特定のポリエチレン系樹脂を混合したポリプロピレン系樹脂組成物からなるポリプロピレン系樹脂粒子を用いて皺の少ない一段発泡粒子を作製することにより、軽量化された型内発泡成形体であっても圧縮強度が高い型内発泡成形体が得られることを見出した。即ち、本発明は、以下の構成よりなる。
 〔1〕ポリプロピレン系樹脂(X)100重量部に対し、密度0.945g/cm以上0.980g/cm未満のポリエチレン系樹脂(Y)を1重量部以上10重量部以下混合して得られる、146℃以上160℃以下の高温側結晶融解ピーク温度を有するポリプロピレン系樹脂(Z)粒子を、耐圧容器内で水系分散媒に分散させ、該耐圧容器内に発泡剤を導入し、加熱、加圧条件下でポリプロピレン系樹脂(Z)粒子に発泡剤を含浸させる工程と、前記ポリプロピレン系樹脂(Z)粒子を前記耐圧容器の内圧よりも低い圧力領域へ放出することにより、前記ポリプロピレン系樹脂(Z)粒子を発泡させてポリプロピレン系樹脂(Z)発泡粒子を得る工程と、を含み、前記ポリプロピレン系樹脂(Z)発泡粒子は、発泡倍率が20倍以上40倍以下、独立気泡が90%以上、且つ皺収縮率が5%以下であり、前記ポリプロピレン系樹脂(Z)発泡粒子を、1回の発泡工程で製造することを特徴とする、ポリプロピレン系樹脂(Z)発泡粒子の製造方法。
 〔2〕型内発泡成形体密度および圧縮強度を測定し、前記型内発泡成形体密度を横軸、前記圧縮強度を縦軸とする座標平面上にプロットしたとき、下記(1)~(3)の手順によって決定される合否判定線以上にプロットされる、型内発泡成形体。(1)ポリプロピレン系樹脂(X)100重量部に対し、密度0.945g/cm以上0.980g/cm未満のポリエチレン系樹脂(Y)を1重量部以上10重量部以下混合して得られる、146℃以上160℃以下の高温側結晶融解ピーク温度を有するポリプロピレン系樹脂(Z)を基材樹脂とし、発泡倍率が10倍以上20倍未満であるポリプロピレン系樹脂(Z)発泡粒子からなる型内発泡成形体のサンプルを用意する。(2)該サンプルの型内発泡成形体密度および圧縮強度を計測した値を、前記座標平面上に2点以上プロットする。(3)(2)においてプロットされた点に基づき、前記座標平面の原点を通る一次近似線を基準線とし、該基準線に対して圧縮強度が3.0%低い線を合否判定線とする。
 本発明によれば、高発泡倍率のポリプロピレン系樹脂発泡粒子であっても、型内発泡成形時の融着性および表面性などの物性および品質を失うことなく、基材樹脂本来の強度を活かした型内発泡成形体を提供するポリプロピレン系樹脂発泡粒子の製造方法を提供する事ができる。
DSC曲線における本発明実施例1のTmhを示す図である。 DSC曲線における本発明実施例1のTcを示す図である。 型内発泡成形体の密度と、型内発泡成形体の50%圧縮時の圧縮応力との関係(型内発泡成形体の強度を評価する際に用いられる)の一例を示す図である。
 本発明の一実施形態のポリプロピレン系樹脂(Z)発泡粒子の製造方法は、ポリプロピレン系樹脂(X)100重量部に対し、密度0.945g/cm以上0.980g/cm未満のポリエチレン系樹脂(Y)を1重量部以上10重量部以下混合して得られる、146℃以上160℃以下の高温側結晶融解ピーク温度を有するポリプロピレン系樹脂(Z)粒子を、耐圧容器内で水系分散媒に分散させ、該耐圧容器内に発泡剤を導入し、加熱、加圧条件下でポリプロピレン系樹脂(Z)粒子に発泡剤を含浸させる工程と、前記ポリプロピレン系樹脂(Z)粒子を前記耐圧容器の内圧よりも低い圧力領域へ放出することにより、前記ポリプロピレン系樹脂(Z)粒子を発泡させてポリプロピレン系樹脂(Z)発泡粒子を得る工程と、を含み、前記ポリプロピレン系樹脂(Z)発泡粒子は、発泡倍率が20倍以上40倍以下、独立気泡が90%以上、且つ皺収縮率が5%以下であり、前記ポリプロピレン系樹脂(Z)発泡粒子を、1回の発泡工程で製造することを特徴とする。
 本発明の一実施形態では、ポリプロピレン系樹脂に、特定のポリエチレン系樹脂を混合したポリプロピレン系樹脂組成物からなるポリプロピレン系樹脂粒子を用いて20倍以上の高発泡倍率であっても、皺収縮率を5%以下に抑制した一段発泡粒子を用いる事により、軽量でも圧縮強度の高い型内発泡成形体を得ることができる。
 これに対し、特許文献1および2の場合、ポリプロピレン系樹脂型内発泡成形体が高発泡倍率の領域、例えば型内発泡成形体密度30g/L以下の領域において、ポリプロピレン系樹脂そのものの強度を型内発泡成形体の強度として「最大限に」活かせない場合があった。即ち、型内発泡成形体が低発泡倍率の領域では樹脂そのものの強度が型内発泡成形体強度に相関するのに対して、高発泡倍率領域では相関関係から期待される強度より低い値となることがあった。
 特許文献3の場合、発泡粒子はブタンなどの有機系揮発性発泡剤を使用したものであり、炭酸ガス等の無機系発泡剤に関しては一切記載がない。また本件の課題の一つである型内発泡成形体の圧縮強度に関する記載もない。また圧縮強度に関係する発泡粒子の独立気泡に関する記載はない。
 特許文献4の場合、実施例記載の独立気泡率は70%前後である。一般的に、ポリプロピレン系樹脂型内発泡成形体における強度は独立気泡率にも依存する。独立気泡率が90%に満たない場合、気泡膜の多くは破れている為、型内発泡成形体は強度が低くなる。
 特許文献5の場合、高発泡倍率領域の型内発泡成形体の強度が、原料となるポリプロピレン系樹脂の強度から期待される値よりも低くなることがある課題については明らかにされていなかった。
 本発明の一実施形態で用いられるポリプロピレン系樹脂(X)としては、特に制限は無く、ポリプロピレンホモポリマー、エチレン/プロピレンランダム共重合体、ブテン-1/プロピレンランダム共重合体、エチレン/ブテン-1/プロピレンランダム共重合体、エチレン/プロピレンブロック共重合体、ブテン-1/プロピレンブロック共重体、プロピレン-塩素化ビニル共重合体およびプロピレン/無水マレイン酸共重合体等が挙げられる。これらのなかでも、エチレン/プロピレンランダム共重合体、ブテン-1/プロピレンランダム共重合体またはエチレン/ブテン-1/プロピレンランダム共重合体が良好な発泡性を有し、良好な成形性を有する点から好適である。
 エチレン/プロピレンランダム共重合体、ブテン-1/プロピレンランダム共重合体またはエチレン/ブテン-1/プロピレンランダム共重合体は、プロピレン以外の重合成分であるコモノマー含有率が、各共重合体100重量%中、0.2重量%以上10重量%以下のものが好適に用いられる。
 本発明の一実施形態で用いられるポリプロピレン系樹脂(X)を合成する際の重合触媒としては特に制限は無く、チーグラー系触媒、メタロセン系触媒などを用いることができる。
 本発明の一実施形態で用いられるポリプロピレン系樹脂(X)の融点は、後述するポリプロピレン系樹脂(Z)の高温側結晶融解ピーク温度Tmhを考慮すると、145℃以上160℃以下が好ましく、146℃以上155℃以下がより好ましい。融点の求め方は後述するTmhの求め方と同じである。
 本発明の一実施形態で用いられるポリプロピレン系樹脂(X)の強度としては特に制限はないが、曲げ弾性率が1400Mpa以上であることが好ましい。ポリプロピレン系樹脂(X)の強度が十分であるならば、ポリプロピレン系樹脂(Z)も十分な強度を有する傾向にあり、高発泡倍率領域でも発泡粒子の皺収縮を抑制し易い。
 本発明の一実施形態で用いられるポリプロピレン系樹脂(X)のメルトインデックス(以降、「MI」と称する)は特に制限されないが、5g/10min以上、15g/10min以下の場合、高発泡倍率で独立気泡率の高い発泡粒子および型内発泡成形体を得やすくなる。ここで、MI値は、JIS K7210に準拠し、荷重2160g、230±0.2℃の条件下で測定した値である。
 本発明の一実施形態で用いられるポリエチレン系樹脂(Y)は所定の密度であれば、エチレン以外に、エチレンと共重合可能なコモノマーを含んでいてもよい。
 前記エチレンと共重合可能なコモノマーとしては、炭素数3以上18以下のα-オレフィンを用いることができる。前記炭素数3以上18以下のα-オレフィンとしては、例えば、プロペン、1-ブテン、1-ペンテン、1-ヘキセン、3,3-ジメチル-1-ブテン、4-メチル-1-ペンテン、4,4-ジメチル-1-ペンテン、1-オクテンなどが挙げられ、これらは単独でも、2種以上を併用しても良い。
 本発明の一実施形態におけるポリエチレン系樹脂(Y)の密度は、0.945g/cm以上0.980g/cm未満であり、好ましくは0.960g/cm以上0.980g/cm未満である。
 ポリエチレン系樹脂(Y)の密度が0.945g/cm未満の場合には、発泡粒子の皺収縮抑制効果が十分に発揮されない。また、ポリエチレン系樹脂(Y)の密度が0.980g/cmを超える場合には、ポリプロピレン系樹脂(Z)が脆くなるため型内発泡成形体の衝撃強度が低下する懸念がある上、ポリプロピレン系樹脂(Z)発泡粒子が伸びにくくなり、型内発泡成形性が低下することがある。
 本発明の一実施形態で用いられるポリエチレン系樹脂(Y)の融点は特に制限はないが、125℃以上140℃以下のものが好適に用いられる。
 本発明の一実施形態で用いられるポリエチレン系樹脂(Y)のMIは特に制限されないが、ポリプロピレン系樹脂(X)と同程度のものが好ましい。
 本発明の一実施形態で用いられるポリプロピレン系樹脂(Z)におけるポリプロピレン系樹脂(X)とポリエチレン系樹脂(Y)との混合比は、ポリプロピレン系樹脂(X)100重量部に対して、ポリエチレン系樹脂(Y)1重量部以上10重量部以下であり、2重量部以上8重量部以下が好ましい。
 ポリエチレン系樹脂(Y)の混合比が1重量部未満では、発泡粒子の皺収縮を抑制する効果が十分に発揮されない。一方、ポリエチレン系樹脂(Y)の混合比が10重量部を超えると、型内成形時の発泡粒子の伸びが悪化したり、型内発泡成形体の独立気泡が低下したりする場合がある。
 本発明の一実施形態で用いられるポリプロピレン系樹脂(Z)の高温側結晶融解ピーク温度Tmhは、146℃以上、160℃以下であることが好ましい。ポリプロピレン系樹脂(Z)の高温側結晶融解ピーク温度Tmhが146℃未満の場合、高発泡倍率領域で発泡粒子の皺収縮が発生する場合がある。高温側結晶融解ピーク温度Tmhが160℃を超える場合、型内発泡成形性が悪化する場合がある。
 本発明の一実施形態で用いられるポリプロピレン系樹脂(Z)の結晶化温度Tcは、ポリプロピレン系樹脂(X)の結晶化温度Tcxよりも高温であることが好ましい。結晶化温度TcがTcxよりも高温の場合、発泡粒子の皺収縮を抑制する効果が得られやすい。
 本発明の一実施形態で用いられるポリプロピレン系樹脂(Z)の強度としては特に制限はないが、曲げ弾性率が1400Mpa以上であることが好ましい。
 本発明の一実施形態で用いられるポリプロピレン系樹脂(Z)のMIは、特に制限されないが、5g/10min以上、15g/10min以下の場合、高発泡倍率で独立気泡率の高い発泡粒子および型内発泡成形体を得やすくなる。
 本発明の一実施形態のポリプロピレン系樹脂(Z)においては、本願発明の効果を損ねない範囲で、種々の添加剤を添加することができ、添加剤としては、例えば、吸水剤、気泡核剤、酸化防止剤、耐光性改良剤および難燃剤等を挙げることができる。
 前記吸水剤としては、ポリエチレングリコール、グリセリン[化学名1,2,3-プロパントリオール]およびメラミン[化学名1,3,5-トリアジン-2,4,6-トリアミン]などが例示されるが、これらに限定されるものではない。特に好ましい吸水剤としてはポリエチレングリコールおよびグリセリンが挙げられる。
 前記吸水剤の添加量は、好ましくはポリプロピレン系樹脂(X)100重量部に対して0.01重量部以上10重量部以下である。0.01重量部以上の場合は吸水剤の添加による効果が表れ易く、10重量部以下の場合は発泡粒子に皺収縮が発生しにくい。
 前記気泡核剤としては、タルク、カオリン、硫酸バリウム、ホウ酸亜鉛および二酸化珪素等が例示されるが、これらに限定されるものではない。
 前記酸化防止剤としては、フェノール系酸化防止剤およびリン系酸化防止剤等が例示されるが、これらに限定されるものではない。
 前記耐光性改良剤としては、ヒンダードアミン系耐光性改良剤等が例示されるが、これらに限定されるものではない。
 前記難燃剤としては、ハロゲン系難燃剤、リン系難燃剤およびヒンダードアミン系難燃剤等が例示されるが、これらに限定されるものではない。
 本発明の一実施形態において、ポリプロピレン系樹脂(Z)は、通常、発泡に利用されやすいように予め押出機、ニーダー、バンバリミキサーまたはロール等を用いて溶融混練し、円柱状、楕円状、球状、立方体状、直方体状または筒状(ストロー状)等のような所望の粒子形状に成形加工し、ポリプロピレン系樹脂(Z)粒子とすることが好ましい。なお、前記ポリプロピレン系樹脂(Z)粒子の形状がそのままポリプロピレン系樹脂(Z)発泡粒子の形状になるとは限らない。例えば発泡工程においてポリプロピレン系樹脂(Z)粒子が縮む場合があり、このような場合は円柱状または楕円状のポリプロピレン系樹脂(Z)粒子から、球状のポリプロピレン系樹脂(Z)発泡粒子が得られる場合がある。
 ポリプロピレン系樹脂(Z)粒子の製造方法の中でも、生産性の観点からは、押出機で溶融混練し、押出機先端からストランド状に押出した後、カッティングすることによりポリプロピレン系樹脂(Z)粒子とすることがより好ましい。
 本発明の一実施形態におけるポリプロピレン系樹脂(Z)粒子の一粒あたりの重量は0.1mg以上100mg以下が好ましく、0.3mg以上10mg以下がより好ましい。ポリプロピレン系樹脂(Z)粒子の一粒あたりの重量が0.1mg以上の場合、前記ポリプロピレン系樹脂(Z)粒子を発泡する際に十分な発泡倍率を得られる傾向がある。一方、100mg以下の場合には、前記ポリプロピレン系樹脂(Z)粒子から得られるポリプロピレン系樹脂(Z)発泡粒子を型内発泡成形する際、厚みが薄い部分へも十分な充填性を与えられる傾向がある。ここで、ポリプロピレン系樹脂(Z)粒子の一粒あたりの重量は、前記ポリプロピレン系樹脂(Z)粒子をランダムに選んだ100粒から得られる平均樹脂粒子重量である。
 また、ポリプロピレン系樹脂(Z)粒子の一粒あたりの重量は、発泡工程を経てもほとんど変化することは無く、前記ポリプロピレン系樹脂(Z)粒子の一粒あたりの重量をポリプロピレン系樹脂(Z)発泡粒子の一粒あたりの重量としても問題は無い。
 このようにして得た発泡用のポリプロピレン系樹脂(Z)粒子を用いて、本発明の一実施形態に係るポリプロピレン系樹脂(Z)発泡粒子を製造することができる。
 本発明の一実施形態に係るポリプロピレン系樹脂(Z)発泡粒子は、次のようにして製造することができる。
 例えば、前記ポリプロピレン系樹脂(Z)粒子、水性媒体、無機系分散剤および発泡剤等を耐圧容器中に収容し、攪拌条件下に分散させると共に、前記ポリプロピレン系樹脂(Z)粒子の軟化点温度以上に昇温、および該温度における飽和水蒸気圧力以上に加圧した状態とし、前記ポリプロピレン系樹脂(Z)粒子に発泡剤を含浸させる。その後、必要に応じて昇温後の温度で0分を超え120分以下保持し、その後、耐圧容器の内圧よりも低い圧力領域に耐圧容器中の分散液を放出して、ポリプロピレン系樹脂(Z)発泡粒子を製造することができる。耐圧容器の内圧よりも低い圧力領域としては、大気圧であることが好ましい。なお、前記ポリプロピレン系樹脂(Z)粒子へ前記発泡剤を含浸させた後、前記分散液を加圧状態からより低い圧力領域へ放出するまでの一回の発泡工程を「一段発泡工程」と呼び、得られたポリプロピレン系樹脂(Z)発泡粒子を「一段発泡粒子」と呼ぶ。また、分散液とは、ポリプロピレン系樹脂(Z)粒子、水性媒体、無機系分散剤および発泡剤等を耐圧容器中に収容し、攪拌条件下に分散させた混合液体のことである。
 本発明の一実施形態において、ポリプロピレン系樹脂(Z)発泡粒子製造時に使用する耐圧容器には特に制限はなく、容器内圧力および容器内温度に耐えられるものであればよく、例えば、オートクレーブ型の耐圧容器が挙げられる。
 ここで、耐圧容器内の温度を軟化点温度以上に昇温する際、温度としては、ポリプロピレン系樹脂(Z)粒子の高温側結晶融解ピーク温度-20℃以上、前記ポリプロピレン系樹脂(Z)粒子の高温側結晶融解ピーク温度+10℃以下の範囲の温度に昇温することが、発泡性を確保する上で好ましい。本発明の一実施形態において昇温温度は、126℃以上、170℃以下の範囲が好適に用いられるが、原料となるポリプロピレン系樹脂およびポリエチレン系樹脂の種類、発泡剤の種類、並びに目的の発泡倍率等により適宜決定されるものである。
 本発明の一実施形態で用いられる水性媒体としては、例えば、水、アルコール、エチレングリコールおよび/またはグリセリン等を単独あるいは併用して用いることができるが、発泡性、作業性あるいは安全性等からは水を用いることが好ましく、水を単独で用いることが最も好ましい。なお、本明細書において、水性媒体を「水系分散媒」とも称する。
 水性媒体の量は、ポリプロピレン系樹脂(Z)粒子100重量部に対して50重量部以上500重量部以下として用いることができ、好ましくは、100重量部以上350重量部以下である。50重量部以上の場合、耐圧容器中で複数のポリプロピレン系樹脂(Z)粒子同士の合着を防止でき、500重量部以下の場合は生産性の低下を防止できるため、製造上の観点から好ましい。
 本発明の一実施形態で用いられる無機系分散剤としては、例えば、第三リン酸カルシウム、第三リン酸マグネシウム、塩基性炭酸マグネシウム、炭酸カルシウム、塩基性炭酸亜鉛、酸化アルミニウム、酸化鉄、酸化チタン、アルミノ珪酸塩、カオリンおよび硫酸バリウム等が挙げられ、これらを単独あるいは併用して用いることができる。分散液の安定性の観点からは、第三リン酸カルシウム、カオリン、あるいは硫酸バリウムが好ましい。分散液の安定性を保つことにより、耐圧容器中で複数のポリプロピレン系樹脂(Z)粒子同士が合着または塊となることを防げる。このため、合着したポリプロピレン系樹脂(Z)発泡粒子が得られる、耐圧容器中にポリプロピレン系樹脂(Z)粒子の塊が残存してポリプロピレン系樹脂(Z)発泡粒子が製造できない、ポリプロピレン系樹脂(Z)発泡粒子の生産性が低下するなどの事態を防止できる。
 本発明の一実施形態においては、耐圧容器内での分散液の安定性を高めるために、更に分散助剤を用いることが好ましい。分散助剤としては、例えば、アニオン系界面活性剤が挙げられ、具体的には例えば、ドデシルベンゼンスルホン酸ナトリウム、アルカンスルホン酸ナトリウム、アルキルスルホン酸ナトリウム、アルキルジフェニルエーテルジスルホン酸ナトリウムおよびα-オレフィンスルホン酸ナトリウム等が挙げられる。アルキルスルホン酸ナトリウムの具体例としては、ノルマルパラフィンスルホン酸ソーダが挙げられる。
 無機系分散剤および/または分散助剤の使用量は、その種類、並びに、用いるポリプロピレン系樹脂(Z)粒子の種類および使用量によって異なるが、通常、水性媒体100重量部に対して、無機系分散剤は0.1重量部以上5重量部以下であることが好ましく、分散助剤は0.001重量部以上0.3重量部以下であることが好ましい。無機系分散剤および/または分散助剤の使用量が適切である場合、耐圧容器中での複数のポリプロピレン系樹脂(Z)粒子同士の合着を阻害できる。更に、ポリプロピレン系樹脂(Z)発泡粒子の表面に残存する分散剤が多くなり、後述する成形においてポリプロピレン系樹脂(Z)発泡粒子同士の融着を阻害する原因となることが防止できるため、好ましい。
 本発明の一実施形態で用いられる発泡剤としては、例えば、プロパン、ノルマルブタン、イソブタン、ノルマルペンタン、イソペンタン、ヘキサン、シクロペンタンおよびシクロブタン等の有機系発泡剤、並びに、炭酸ガス、水、空気および窒素等の無機系発泡剤が挙げられる。これらの発泡剤は単独で用いてもよく、また、2種類以上併用してもよい。
 これらの発泡剤の中でも、発泡倍率を向上させやすい観点からは、イソブタンまたはノルマルブタンが優れているが、これらの発泡剤は可燃性であり、使用する設備を防爆構造とする必要があるなどの注意点がある。安全性の観点からは、炭酸ガス、水、空気または窒素等の無機系発泡剤を用いることが好ましく、炭酸ガスを含む発泡剤を用いることが最も好ましい。
 本発明の一実施形態において、発泡剤の使用量に限定はなく、ポリプロピレン系樹脂(Z)発泡粒子の所望の発泡倍率に応じて適宣使用すれば良いが、通常は、ポリプロピレン系樹脂(Z)粒子100重量部に対して、2重量部以上60重量部以下であることが好ましい。
 本発明の一実施形態で用いられるポリプロピレン系樹脂(Z)発泡粒子の発泡倍率は20倍以上40倍以下、好ましくは25倍以上40倍以下である。発泡倍率が20倍未満の場合、本発明の課題が発生しにくく、40倍を超えると、本発明による皺収縮率を抑制した一段発泡粒子を得る事が難しい場合がある。
 ところで、一段発泡工程において発泡倍率が20倍以上40倍以下の発泡倍率の高いポリプロピレン系樹脂(Z)発泡粒子を得る方法として以下の方法が知られている。例えば、有機系発泡剤、無機系発泡剤、またはそれらの混合発泡剤を多量に使用するという方法がある。なかでも安全性の高い方法として、炭酸ガスおよび水の発泡力を利用した複合発泡によって高発泡倍率のポリプロピレン系樹脂(Z)発泡粒子を得る事ができる。その際、ポリプロピレン系樹脂(Z)粒子への水の含浸を促進するために、ポリプロピレン系樹脂(Z)に前記吸水剤を添加することができる。
 また、別の方法として例えば、一段発泡工程において、分散液を放出する低い圧力領域(以下、「発泡雰囲気」と称す。)の温度(以下、「発泡雰囲気温度」と称す。)を高温に保持する事によっても発泡倍率の高いポリプロピレン系樹脂(Z)発泡粒子を得る事ができる。発泡雰囲気温度としては、90℃以上105℃以下が好ましく、95℃以上105℃以下がより好ましい。発泡雰囲気温度が90℃以上ならば、発泡粒子の倍率を向上させる効果が十分に得られ、105℃以下ならば、発泡粒子同士の塊化を抑制できる。ここで、塊化とは、表面の樹脂が溶融した状態の発泡粒子同士が付着して集合状態となる現象を指す。
 一段発泡工程において発泡倍率が20倍以上40倍以下の発泡倍率の高いポリプロピレン系樹脂(Z)発泡粒子を得る方法としては、前記発泡剤および前記添加剤、並びに前記発泡雰囲気温度を適宜組み合わせればよい。
 本発明の一実施形態で用いられるポリプロピレン系樹脂(Z)発泡粒子の独立気泡率は90%以上である。独立気泡が90%に満たない場合、気泡膜の多くは破れている為、型内発泡成形体の強度が低くなる場合がある。
 本発明の一実施形態で用いられるポリプロピレン系樹脂(Z)発泡粒子の皺収縮率は5%以下である。皺収縮率とは、後述の実施例に記載のように、見かけ上同じ表面積を有する発泡粒子において、最大体積(v´)に対して皺により体積が減少した体積(v)の比率である。皺収縮率が5%以下である場合、型内発泡成形体の強度が、原料となるポリプロピレン系樹脂の曲げ弾性率から期待される強度と同程度となり易い。
 ここで、発泡粒子の皺収縮とは、一段発泡、つまり加熱したポリプロピレン系樹脂(Z)粒子を耐圧容器内よりも低圧の雰囲気中に放出した直後、独立気泡率の高い発泡粒子が軟化状態から固化する際に、発泡粒子内の水分の凝縮および気体の体積変化に起因する内圧の減少によって収縮し、発泡粒子に皺が入る現象をいう。発泡粒子の皺は、発泡粒子を構成する樹脂膜が座屈したことを示している。ポリプロピレン系樹脂(Z)発泡粒子の発泡倍率が20倍以上になると本発明を用いない場合、樹脂膜が座屈しやすくなる。
 本発明は、発泡粒子を構成する樹脂膜に座屈した履歴があると、型内発泡成形体の強度が原料となるポリプロピレン系樹脂から期待される強度よりも低下する事を明らかにし、その座屈履歴である皺収縮を抑制することにより、高発泡倍率であっても強度低下のない型内発泡成形体を提供する事ができる。
 ところで、発泡倍率の高いポリプロピレン系樹脂(Z)発泡粒子を得るために、一段発泡工程で得たポリプロピレン系樹脂(Z)発泡粒子(一段発泡粒子)を、再度発泡させることで発泡倍率を高くすることが可能である。
 例えば、除圧発泡により一段発泡粒子を製造し、該一段発泡粒子を耐圧容器内に入れ、窒素、空気または炭酸ガス等で0.1MPa(ゲージ圧)以上0.6MPa(ゲージ圧)以下で加圧処理することにより一段発泡粒子内の圧力を常圧よりも高くした状態で、一段発泡粒子をスチーム等で加熱して更に発泡させ、発泡倍率を高めることが可能である。このような一段発泡粒子を、別の工程にて更に発泡させ、発泡倍率を高める工程を「二段発泡工程」と呼び、得られたポリプロピレン系樹脂(Z)発泡粒子を「二段発泡粒子」と呼ぶ。
 ただし、この二段発泡工程は、一段発泡工程と比較して低温(100~120℃程度、蒸気圧0.10MPa(ゲージ圧)以下)で一段発泡粒子を発泡延伸させる工程であり、樹脂の流動性が低い状態で延伸させるため、二段発泡粒子の樹脂膜には局所的な薄膜化や歪みが生じる傾向にある。これらの理由から、一般的に、二段発泡粒子は、特に高発泡倍率になると、同倍率の一段発泡粒子と比較して、所望の圧縮強度等の物性を得られないことがある。一方、本発明の一実施形態に係るポリプロピレン系樹脂(Z)発泡粒子は、一段発泡工程により得られた一段発泡粒子であるため、所望の圧縮強度等の物性を得易い。
 本発明の一実施形態に係るポリプロピレン系樹脂(Z)発泡粒子は、一般的な型内発泡成形をすることによってポリプロピレン系樹脂型内発泡成形体となる。
 前記ポリプロピレン系樹脂(Z)発泡粒子を型内発泡成形に用いる場合には、イ)そのまま用いる方法、ロ)予め発泡粒子中に空気等の無機ガスを圧入し、発泡能(内圧)を付与する方法、ハ)発泡粒子を圧縮状態で金型内に充填し成形する方法など、従来既知の方法を使用し得る。
 本発明の一実施形態において、ポリプロピレン系樹脂(Z)発泡粒子からポリプロピレン系樹脂型内発泡成形体を製造する方法としては、たとえば閉鎖し得るが密閉し得ない成形金型内に前記ポリプロピレン系樹脂(Z)発泡粒子を充填し、水蒸気などを加熱媒体として0.05MPa(ゲージ圧)以上、0.5MPa(ゲージ圧)以下程度の加熱水蒸気圧で3秒以上、30秒以下程度加熱することでポリプロピレン系樹脂(Z)発泡粒子同士を融着させる。このあと成形金型を水冷し、型内発泡成形体取り出し後の型内発泡成形体の変形を抑制できる程度まで冷却した後、金型を開き、型内発泡成形体とする方法などが挙げられる。
 上述した方法などにより製造された型内発泡成形体は、型内発泡成形体密度(見掛けの密度とも称する)が15g/L以上30g/L以下であることが好ましい。型内発泡成形体密度が15g/L以上ならば、一般に変形・収縮の少ない良好な型内発泡成形体が得やすい。型内発泡成形体密度が30g/L以下ならば、型内発泡成形体の強度の低下を抑制する効果が、より顕著に表れる。型内発泡成形体密度は、15g/L以上25g/L未満であってもよい。
 なお、型内発泡成形体密度とは、型内発泡成形体の重量を、該型内発泡成形体の体積によって除した値である。型内発泡成形体の体積は、該型内発泡成形体の形状が単純な直方体形状などである場合は、外寸より計算される。該型内発泡成形体の形状が複雑形状である場合は、水没体積(該型内発泡成形体を水中に沈めた際に浮力として得られる荷重÷(水の密度×重力加速度)として得られる)などとして測定される。
 本発明の一実施形態に係る型内発泡成形体の型内発泡成形体密度および圧縮強度は、図3に示した合否判定線以上にあることが好ましい。前記合否判定線は、以下の手順によって決定される。
 (1)評価しようとする型内発泡成形体の原料と同じ組成のポリプロピレン系樹脂(Z)を基材樹脂に用いて、発泡倍率が10倍以上20倍未満であるポリプロピレン系樹脂(Z)発泡粒子を作製する。次に該ポリプロピレン系樹脂(Z)発泡粒子からなる型内発泡成形体のサンプルを作製する。ポリプロピレン系樹脂(Z)発泡粒子および型内発泡成形体の作成方法は、上述した通りである。
 (2)(1)で作成したサンプルの型内発泡成形体密度および圧縮強度を測定する。測定された値を、型内発泡成形体密度を横軸、圧縮強度を縦軸とする座標平面上に2点以上プロットする。このとき、前記座標平面上にプロットする2点は、同じ発泡倍率のポリプロピレン系樹脂(Z)発泡粒子からなる型内発泡成形体サンプルから測定してもよいし、異なる発泡倍率のポリプロピレン系樹脂(Z)発泡粒子からなる型内発泡成形体サンプルを使用して測定してもよい。(3)において近似線が引きやすいという観点からは、発泡倍率の互いに異なるポリプロピレン系樹脂(Z)発泡粒子からなる型内発泡成形体サンプルを2種類以上用意し、型内発泡成形体密度および圧縮強度を測定することが好ましい。
 なお、型内発泡成形体密度の測定方法は、上述した通りである。圧縮強度としては、例えば50%圧縮応力を指標とすることができるが、公知の指標であるならば限定されない。
 (3)(2)においてプロットされた点に基づき、前記座標平面の原点を通る一次近似線を引く(図3の破線)。一次近似線は、公知の回帰直線の導出方法(最小二乗法など)によって、決定することができる。次に、前記一次近似線よりも圧縮強度が3.0%低い直線を、合否判定線とする(図3の実線)。すなわち、前記一次近似線がy=axで表される場合、合否判定線はy=0.97axで表される。
 本発明の一実施形態に係る型内発泡成形体の型内発泡成形体密度および圧縮強度を測定し、前記座標平面上にプロットした点が、以上の手順により決定された合否判定線以上にある場合、発泡倍率を高くすることによる圧縮強度の過度の低下が発生していないことになるため、好ましい。なお、「合否判定線以上にある」とは、前記プロットした点が合否判定線上にある場合、および合否判定線よりも上側にある場合(図3の○の領域)を意味する。
 なお、本発明は以下の構成であってもよい。
 〔1〕ポリプロピレン系樹脂(X)100重量部に対し、密度0.945g/cm以上0.980g/cm未満のポリエチレン系樹脂(Y)を1重量部以上10重量部以下混合して得られる、146℃以上160℃以下の高温側結晶融解ピーク温度を有するポリプロピレン系樹脂(Z)粒子を、耐圧容器内で水系分散媒に分散させ、該耐圧容器内に発泡剤を導入し、加熱、加圧条件下でポリプロピレン系樹脂(Z)粒子に発泡剤を含浸させる工程と、前記ポリプロピレン系樹脂(Z)粒子を前記耐圧容器の内圧よりも低い圧力領域へ放出することにより、前記ポリプロピレン系樹脂(Z)粒子を発泡させてポリプロピレン系樹脂(Z)発泡粒子を得る工程と、を含み、前記ポリプロピレン系樹脂(Z)発泡粒子は、発泡倍率が20倍以上40倍以下、独立気泡が90%以上、且つ皺収縮率が5%以下であり、前記ポリプロピレン系樹脂(Z)発泡粒子を、1回の発泡工程で製造することを特徴とする、ポリプロピレン系樹脂(Z)発泡粒子の製造方法。
 〔2〕炭酸ガスを含む発泡剤を用いることを特徴とする前記〔1〕記載のポリプロピレン系樹脂(Z)発泡粒子の製造方法。
 〔3〕前記ポリプロピレン系樹脂(Z)粒子を、90℃以上、105℃以下の発泡雰囲気温度とした発泡雰囲気へ放出することにより発泡させることを特徴とする、前記〔1〕または〔2〕に記載のポリプロピレン系樹脂(Z)発泡粒子の製造方法。
 〔4〕前記ポリプロピレン系樹脂(Z)がポリプロピレン系樹脂(X)よりも高い結晶化温度を有する前記〔1〕~〔3〕のいずれかに記載のポリプロピレン系樹脂(Z)発泡粒子の製造方法。
 〔5〕前記ポリプロピレン系樹脂(Z)粒子が、吸水剤を含有することを特徴とする、前記〔1〕~〔4〕のいずれかに記載のポリプロピレン系樹脂(Z)発泡粒子の製造方法。
 〔6〕前記吸水剤がポリエチレングリコールおよび/またはグリセリンである、前記〔5〕に記載のポリプロピレン系樹脂(Z)発泡粒子の製造方法。
 〔7〕前記吸水剤の含有量が、ポリプロピレン系樹脂(X)100重量部に対して0.01重量部以上10重量部以下である、前記〔5〕または〔6〕に記載のポリプロピレン系樹脂(Z)発泡粒子の製造方法。
 〔8〕前記〔1〕~〔7〕のいずれかに記載の方法により製造されるポリプロピレン系樹脂(Z)発泡粒子。
 〔9〕前記〔8〕に記載のポリプロピレン系樹脂(Z)発泡粒子を用いた型内発泡成形体。
 〔10〕前記〔9〕に記載の型内発泡成形体であって、型内発泡成形体密度が15g/L以上30g/L以下であることを特徴とする型内発泡成形体。
 〔11〕型内発泡成形体密度および圧縮強度を測定し、前記型内発泡成形体密度を横軸、前記圧縮強度を縦軸とする座標平面上にプロットしたとき、下記(1)~(3)の手順によって決定される合否判定線以上にプロットされる、型内発泡成形体。(1)ポリプロピレン系樹脂(X)100重量部に対し、密度0.945g/cm以上0.980g/cm未満のポリエチレン系樹脂(Y)を1重量部以上10重量部以下混合して得られる、146℃以上160℃以下の高温側結晶融解ピーク温度を有するポリプロピレン系樹脂(Z)を基材樹脂とし、発泡倍率が10倍以上20倍未満であるポリプロピレン系樹脂(Z)発泡粒子からなる型内発泡成形体のサンプルを用意する。(2)該サンプルの型内発泡成形体密度および圧縮強度を計測した値を、前記座標平面上に2点以上プロットする。(3)(2)においてプロットされた点に基づき、前記座標平面の原点を通る一次近似線を基準線とし、該基準線に対して圧縮強度が3.0%低い線を合否判定線とする。
 〔12〕前記〔11〕に記載の型内発泡成形体であって、型内発泡成形体密度が15g/L以上30g/L以下である型内発泡成形体。
 次に本実験を実施例および比較例に基づき説明するが、本発明はこれらの実施例に限定されるものではない。
 また、実施例および比較例における評価は下記の方法で行った。
 (結晶化温度Tcと高温側結晶融解ピーク温度Tmh)
 DSC6200型(セイコーインスツルメンツ(株)製)を用いた分析法により、樹脂4mg以上6mg以下を10℃/minの昇温速度で40℃から220℃まで昇温して融解させた後、以下の工程で測定を実施した。
 (i)まず、10℃/minの降温速度で220℃から40℃まで降温して結晶化させた。このとき得られる結晶化ピーク温度をTcとした。
 (ii)次いで、再度10℃/minの昇温速度で40℃から220℃まで昇温した際に得られるDSC曲線の最も高温側に現れるピークを、高温側結晶融解ピーク温度Tmhとした。
 なお、実施例1に係るポリプロピレン系樹脂(Z)のDSC曲線から決定される、Tmhを図1に、Tcを図2に示した。
 図1に示されているように、上記(ii)の工程で得られたDSC曲線では、主にポリエチレン系樹脂(Y)由来と推測される低温側結晶融解ピーク温度と、主にポリプロピレン系樹脂(X)由来と推測される高温側結晶融解ピーク温度Tmhとの2つの結晶融解ピーク温度が得られた。
 また、図2に示されているように、上記(i)の工程で得られたDSC曲線は、ポリプロピレン系樹脂(X)にポリエチレン系樹脂(Y)を添加しているものの、結晶化ピーク温度Tcは、単一のピークのみを有した。
 (発泡粒子の発泡倍率)
 嵩体積約50cmの発泡粒子の重量w(g)およびエタノール水没体積v(cm)を求め、発泡前の樹脂粒子の密度d=0.9(g/cm)から次式により発泡粒子の発泡倍率を求めた。
 発泡粒子の発泡倍率(倍)=d×v/w。
 (発泡粒子の独立気泡率)
 ASTM D2856-87の手順C(PROSEDURE C)に記載の方法に従って得られる発泡粒子の体積をVc(cm)とし、下記式に従って独立気泡率(%)を求めた。
 発泡粒子の独立気泡率(%)=(1-(Va-Vc)/Va)×100
 なお、Vcは、東京サイエンス株式会社製空気比較式比重計モデル1000を用いて測定した。また、体積Va(cm)は、前記空気比較式比重計にてVcを測定した後の発泡粒子の全量をエタノールの入ったメスシリンダー内に沈め、メスシリンダーの液面上昇分(水没法)から求めた、発泡粒子の見かけ上の体積である。
 (発泡粒子の皺収縮率)
 嵩体積約100cmの発泡粒子のエタノール水没体積v(cm)を求めた。次に、該発泡粒子をすべて回収して常温で乾燥し、完全にエタノールを揮発させた。その後、密閉式の耐圧容器内に入れ、0.1MPa/60min以下の速度で容器内圧力0.30MPa(ゲージ圧)まで加圧して0.20MPa(絶対圧)の内圧を付与した該発泡粒子を耐圧容器から取り出し、エタノール水没体積v´を同様に測定し、次式により皺収縮率を算出した。
 発泡粒子の皺収縮率(%)=100×(1-v/v´)。
 (型内発泡成形体密度)
 得られた型内発泡成形体(直方体形状)の長軸、短軸、厚みの3辺の寸法をノギスで測定し、これを乗じて寸法体積を計算した。前記寸法体積および別途測定した重量により、以下の式を用いて、型内発泡成形体密度を算出した。
 型内発泡成形体密度=(重量)/(長軸寸法×短軸寸法×厚み寸法)。
 (型内発泡成形体の圧縮強度)
 得られた型内発泡成形体から、縦50mm×横50mm×厚み25mmの各4つのテストピースを切り出し、NDS-Z0504に準拠し、それぞれ10mm/分の速度で圧縮した際の50%圧縮時の圧縮応力(MPa)(以下、「圧縮強度」と称す。)を測定した。型内発泡成形体の圧縮強度については以下の基準により評価した。
○:すべてのテストピースの圧縮強度が合否判定線以上である。
×:圧縮強度が合否判定線未満のテストピースが存在する。
 図3に型内発泡成形体の密度と圧縮強度との関係を示した。基準線および合否判定線は、発泡倍率20倍未満の発泡粒子からなる型内発泡成形体について、型内発泡成形体密度に対する圧縮強度をプロットすることにより決定した。具体的には、表1および表2に記載のそれぞれのポリプロピレン系樹脂(Z)に対して、表に記載の発泡条件のうち発泡圧力のみを適宜調整し、発泡倍率が約12倍、約14倍および約16倍である、3種類のポリプロピレン系樹脂(Z)発泡粒子を作製した。次に、前記3種類のポリプロピレン系樹脂(Z)発泡粒子から、型内発泡成形体密度がそれぞれ約45g/L、約40g/Lおよび約35g/Lである、3種類の型内発泡成形体を得た。前記3種類の型内発泡成形体について、図3のように型内発泡成形体密度に対する圧縮強度をそれぞれプロットし、原点(型内発泡成形体密度0g/L、圧縮強度0MPa)を通る一次近似線を引いて基準線とした。該基準線の傾きをaとした。さらに、該基準線に対して圧縮強度が3.0%分だけ低い線を引き、これを合否判定線とした。
 表1および表2において、圧縮強度が合否判定線以上にあるということは、ポリプロピレン系樹脂(Z)を高発泡倍率の型内発泡成形体に加工した場合でも、発泡倍率を高くしたことによる圧縮強度の過度の低下が見られない(低発泡倍率の型内発泡成形体と比較しても、型内泡成形体密度に対する圧縮強度の比が低下していない)ことを意味している。逆に、圧縮強度が合否判定線未満であるということは、ポリプロピレン系樹脂(Z)を高発泡倍率の型内発泡成形体に成形した場合に、発泡倍率を高くしたことに起因する過度の圧縮強度の低下が発生していることになる。
 (型内発泡成形体の融着性)
 加熱圧0.32MPa(ゲージ圧)での型内発泡成形によって得られる縦400mm×横300mm×厚み50mmの型内発泡成形体の、1つの頂点から縦軸方向に100mmの点Aと、前記頂点から横軸方向に100mmの点Bとを結んだライン上に、アートナイフで深さ10mm程度の切り込みを入れて割り、その破断面の観察を行った。破断面の15mm×15mmの面積内に存在する発泡粒子のうち、全粒子数N(個)に占める粒子界面で割れた粒子の数Ns(個)を計数した。融着性は以下の基準により評価した。
 型内発泡成形体の融着率(%)=100×(1-Ns/N)
○:融着率が80%以上
△:融着率が60%以上、80%未満
×:融着率が60%未満。
 (型内発泡成形体の表面伸び)
 加熱圧0.32MPa(ゲージ圧)での型内発泡成形により得られた型内発泡成形体において、該型内発泡成形体表面の50mm×50mmの面積内に含まれる粒間数を計数した。表面伸びは、以下の基準により評価した。
○:1mm以上の粒間数が5個未満
△:1mm以上の粒間数が5個以上、10個未満
×:1mm以上の粒間数が10個以上。
 (実施例で使用した樹脂および吸水剤)
 (1)ポリプロピレン系樹脂(X)
・ポリプロピレン系樹脂A
 R3410(LG)
 融点148℃、曲げ弾性率 1498MPa、MI=7.1g/min
・ポリプロピレン系樹脂B
 F227A(プライムポリマー)
 融点143℃、曲げ弾性率 1250MPa、MI=6.2g/min
・ポリプロピレン系樹脂C
 E228(プライムポリマー)
 融点146℃、曲げ弾性率 1300MPa、MI=8.0g/min
・ポリプロピレン系樹脂D
 J106G(プライムポリマー)
 融点162℃、曲げ弾性率 1600MPa、MI=15.0g/min。
 (2)ポリエチレン系樹脂(Y)
・ポリエチレン系樹脂A
 HI-ZEX 2200J(プライムポリマー)
 密度0.964g/cm、融点135℃
・ポリエチレン系樹脂B
 NEO-ZEX 2540R(プライムポリマー)
 密度0.923g/cm、融点121℃。
 (3)吸水剤
・グリセリン(花王ケミカルズ):精製グリセリン
・ポリエチレングリコール(ライオン株式会社):PEG#300。
 (実施例1~8)
 [ポリプロピレン系樹脂粒子の作製]
 ポリプロピレン系樹脂(X)、ポリエチレン系樹脂(Y)、吸水剤を表1に示す種類および量にて混合し、50mmφの押出機で混練(樹脂温度210℃)し、押出機先端からストランド状に押出した後、カッティングすることにより造粒し、ポリプロピレン系樹脂(Z)からなる樹脂粒子(1.2mg/粒)を製造した。
 [ポリプロピレン系樹脂一段発泡粒子の作製]
 10L耐圧容器に、水300重量部、得られたポリプロピレン系樹脂(Z)粒子100重量部、分散剤として第三リン酸カルシウム1.0重量部、分散助剤としてノルマルパラフィンスルホン酸ソーダ0.5重量部、および発泡剤として炭酸ガスを6.0重量部仕込み、撹拌下、昇温し、表1に示す発泡温度(容器内温度)および発泡圧力(容器内圧力)で30分間保持した。その後、炭酸ガスで前記発泡圧力に保持しながら耐圧容器の下部に設けた3mmφオリフィスを通して分散液を、表1に示す状態に保持した発泡雰囲気下に放出し、一段発泡粒子を得た。
 [ポリプロピレン系樹脂一段発泡粒子からの型内発泡成形体の作製]
 次に、得られた一段発泡粒子に0.2MPa(絶対圧)の内圧を付与し、長軸400mm×短軸300mm×厚み50mmの直方体状金型に充填し、水蒸気(0.32MPa(ゲージ圧))にて12秒加熱、融着させ、型内発泡成形体を得、金型から取り出した。金型から取り出した型内発泡成形体を75℃の乾燥器中で24時間乾燥、養生した後、型内発泡成形体の品質を確認した。結果を、表1に示す。
 (実施例9)
 [ポリプロピレン系樹脂粒子の作製]
 ポリプロピレン系樹脂(X)、ポリエチレン系樹脂(Y)を表1に示す種類および量にて混合し、50mmφの押出機で混練(樹脂温度210℃)し、押出機先端からストランド状に押出した後、カッティングすることにより造粒し、ポリプロピレン系樹脂(Z)からなる樹脂粒子(1.2mg/粒)を製造した。
 [ポリプロピレン系樹脂一段発泡粒子の作製]
 10L耐圧容器に、水300重量部、得られたポリプロピレン系樹脂(Z)粒子100重量部、分散剤として第三リン酸カルシウム1.5重量部、分散助剤としてノルマルパラフィンスルホン酸ソーダ0.05重量部、および発泡剤としてイソブタンを10.0重量部仕込み、撹拌下、昇温し、表1に示す発泡温度(容器内温度)および発泡圧力(容器内圧力)で30分間保持した。その後、炭酸ガスで前記発泡圧力に保持しながら耐圧容器の下部に設けた3mmφオリフィスを通して分散液を、表1に示す状態に保持した発泡雰囲気下に放出し、一段発泡粒子を得た。
 [ポリプロピレン系樹脂一段発泡粒子からの型内発泡成形体の作製]
 次に、得られた一段発泡粒子に0.2MPa(絶対圧)の内圧を付与し、長軸400mm×短軸300mm×厚み50mmの直方体状金型に充填し、水蒸気(0.32MPa(ゲージ圧))にて12秒加熱、融着させ、型内発泡成形体を得、金型から取り出した。金型から取り出した型内発泡成形体を75℃の乾燥器中で24時間乾燥、養生した後、型内発泡成形体の品質を確認した。結果を、表1に示す。
 なお、表中「PE」はポリエチレン、「CO」は炭酸ガス、「Bu」はイソブタンを表す。
Figure JPOXMLDOC01-appb-T000001
 (比較例1~7)
 [ポリプロピレン系樹脂粒子の作製]
 ポリプロピレン系樹脂(X)、ポリエチレン系樹脂(Y)、吸水剤を表2に示す種類および量にて混合し、50mmφの押出機で混練(樹脂温度210℃)し、押出機先端からストランド状に押出した後、カッティングすることにより造粒し、ポリプロピレン系樹脂(Z)からなる樹脂粒子(1.2mg/粒)を製造した。
 [ポリプロピレン系樹脂一段発泡粒子の作製]
 10L耐圧容器に、水300重量部、得られたポリプロピレン系樹脂(Z)粒子100重量部、分散剤として第三リン酸カルシウム1.0重量部、分散助剤としてノルマルパラフィンスルホン酸ソーダ0.5重量部、および発泡剤として炭酸ガスを6.0重量部仕込み、撹拌下、昇温し、表2に示す発泡温度(容器内温度)および発泡圧力(容器内圧力)で30分間保持した。その後、炭酸ガスで前記発泡圧力に保持しながら耐圧容器の下部に設けた3mmφオリフィスを通して分散液を、表2に示す状態に保持した発泡雰囲気下に放出し、一段発泡粒子を得た。
 [ポリプロピレン系樹脂一段発泡粒子からの型内発泡成形体の作製]
 次に、得られた一段発泡粒子に0.2MPa(絶対圧)の内圧を付与し、長軸400mm×短軸300mm×厚み50mmの直方体状金型に充填し、水蒸気(0.32MPa(ゲージ圧))にて12秒加熱、融着させ、型内発泡成形体を得、金型から取り出した。
金型から取り出した型内発泡成形体を75℃の乾燥器中で24時間乾燥、養生した後、型内発泡成形体の品質を確認した。結果を、表2に示す。なお、表中「PE」はポリエチレン、「CO」は炭酸ガスを表す。
Figure JPOXMLDOC01-appb-T000002
 表1には、実施例1~8について、得られた型内発泡成形体の圧縮強度、融着性および表面伸びを評価した結果が示されている。
 実施例1~8の結果より、本発明の要件を満たす製法で得られたポリプロピレン系樹脂(Z)発泡粒子が、圧縮強度、融着性および表面伸びの品質が良好な型内発泡成形体を提供できることを示している。
 一方、表2には、比較例1~7について、得られた型内発泡成形体の圧縮強度、融着性および表面伸びを評価した結果が示されている。
 比較例1はポリエチレン系樹脂を添加しなかったために、皺収縮が発生し、圧縮強度を満足する型内発泡成形体が得られなかった。
 比較例2は、ポリエチレン系樹脂Aの添加量が多いために、融着性および表面伸びが悪化し、良好な型内発泡成形体が得られなかった。
 比較例3は、ポリプロピレン系樹脂Bの融点が低いために、一段発泡粒子の皺収縮が発生し、圧縮強度を満足する型内発泡成形体が得られなかった。
 比較例4は、添加したポリエチレン系樹脂Bの密度が低いために、Tcが高温にならず、皺収縮が発生し、圧縮強度を満足する型内発泡成形体が得られず、さらに、成形時の融着性にも悪影響を与えた。
 比較例5は、二段発泡によって皺収縮のない高発泡倍率の二段発泡粒子を作製し、成形性良好な型内発泡成形体が得られたが、圧縮強度は低い結果であった。
 比較例6は、Tmhが160℃を越える樹脂を用いたために、型内発泡成形での成形性が悪化し、良好な型内発泡成形体を得ることが出来なかった。具体的には発泡粒子間の相互融着が起こらず、加熱後も形状を保持し得なかった。
 比較例7は、発泡倍率が40倍を超えているために、ポリプロピレン系樹脂(Z)発泡粒子の独立気泡率が低下し、さらに皺収縮も悪化した。その結果、圧縮強度を満足する型内発泡成形体が得られず、さらに型内発泡成形体の外観にも悪影響を与えた。
 本発明の一実施形態に係る方法により製造されるポリプロピレン系樹脂発泡粒子は、軽量かつ高強度な型内発泡成形体の原料となる。該型内発泡成形体は、例えば、自動車産業などに応用され得る。

Claims (12)

  1.  ポリプロピレン系樹脂(X)100重量部に対し、密度0.945g/cm以上0.980g/cm未満のポリエチレン系樹脂(Y)を1重量部以上10重量部以下混合して得られる、146℃以上160℃以下の高温側結晶融解ピーク温度を有するポリプロピレン系樹脂(Z)粒子を、耐圧容器内で水系分散媒に分散させ、該耐圧容器内に発泡剤を導入し、加熱、加圧条件下でポリプロピレン系樹脂(Z)粒子に発泡剤を含浸させる工程と、
     前記ポリプロピレン系樹脂(Z)粒子を前記耐圧容器の内圧よりも低い圧力領域へ放出することにより、前記ポリプロピレン系樹脂(Z)粒子を発泡させてポリプロピレン系樹脂(Z)発泡粒子を得る工程と、を含み、
     前記ポリプロピレン系樹脂(Z)発泡粒子は、発泡倍率が20倍以上40倍以下、独立気泡が90%以上、且つ皺収縮率が5%以下であり、
     前記ポリプロピレン系樹脂(Z)発泡粒子を、1回の発泡工程で製造することを特徴とする、ポリプロピレン系樹脂(Z)発泡粒子の製造方法。
  2.  炭酸ガスを含む発泡剤を用いることを特徴とする請求項1記載のポリプロピレン系樹脂(Z)発泡粒子の製造方法。
  3.  前記ポリプロピレン系樹脂(Z)粒子を、90℃以上、105℃以下の発泡雰囲気温度とした発泡雰囲気へ放出することにより発泡させることを特徴とする、請求項1または2に記載のポリプロピレン系樹脂(Z)発泡粒子の製造方法。
  4.  前記ポリプロピレン系樹脂(Z)がポリプロピレン系樹脂(X)よりも高い結晶化温度を有する請求項1~3のいずれか一項に記載のポリプロピレン系樹脂(Z)発泡粒子の製造方法。
  5.  前記ポリプロピレン系樹脂(Z)粒子が、吸水剤を含有することを特徴とする、請求項1~4のいずれか一項に記載のポリプロピレン系樹脂(Z)発泡粒子の製造方法。
  6.  前記吸水剤がポリエチレングリコールおよび/またはグリセリンである、請求項5に記載のポリプロピレン系樹脂(Z)発泡粒子の製造方法。
  7.  前記吸水剤の含有量が、ポリプロピレン系樹脂(X)100重量部に対して、0.01重量部以上10重量部以下である、請求項5または6に記載のポリプロピレン系樹脂(Z)発泡粒子の製造方法。
  8.  請求項1~7のいずれか一項に記載のポリプロピレン系樹脂(Z)発泡粒子の製造方法により製造されるポリプロピレン系樹脂(Z)発泡粒子。
  9.  請求項8記載のポリプロピレン系樹脂(Z)発泡粒子を用いた型内発泡成形体。
  10.  請求項9に記載の型内発泡成形体であって、型内発泡成形体密度が15g/L以上30g/L以下であることを特徴とする型内発泡成形体。
  11.  型内発泡成形体密度および圧縮強度を測定し、前記型内発泡成形体密度を横軸、前記圧縮強度を縦軸とする座標平面上にプロットしたとき、下記(1)~(3)の手順によって決定される合否判定線以上にプロットされる、型内発泡成形体。
     (1)ポリプロピレン系樹脂(X)100重量部に対し、密度0.945g/cm3以上0.980g/cm3未満のポリエチレン系樹脂(Y)を1重量部以上10重量部以下混合して得られる、146℃以上160℃以下の高温側結晶融解ピーク温度を有するポリプロピレン系樹脂(Z)を基材樹脂とし、発泡倍率が10倍以上20倍未満であるポリプロピレン系樹脂(Z)発泡粒子からなる型内発泡成形体のサンプルを用意する。
     (2)該サンプルの型内発泡成形体密度および圧縮強度を計測した値を、前記座標平面上に2点以上プロットする。
     (3)(2)においてプロットされた点に基づき、前記座標平面の原点を通る一次近似線を基準線とし、該基準線に対して圧縮強度が3.0%低い線を合否判定線とする。
  12.  型内発泡成形体密度が15g/L以上30g/L以下であることを特徴とする、請求項11記載の型内発泡成形体。
PCT/JP2016/083280 2015-11-26 2016-11-09 ポリプロピレン系樹脂発泡粒子の製造方法、ポリプロピレン系樹脂発泡粒子および型内発泡成形体 WO2017090432A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017552347A JP6670850B2 (ja) 2015-11-26 2016-11-09 ポリプロピレン系樹脂発泡粒子の製造方法、ポリプロピレン系樹脂発泡粒子および型内発泡成形体
EP16868380.3A EP3381976B1 (en) 2015-11-26 2016-11-09 Method for producing polypropylene-based resin foamed particles, polypropylene-based resin foamed particles, and in-mold foam molded article
CN201680069241.9A CN108291048B (zh) 2015-11-26 2016-11-09 聚丙烯系树脂发泡颗粒的制造方法、聚丙烯系树脂发泡颗粒及模内发泡成型体
US15/989,528 US20180273719A1 (en) 2015-11-26 2018-05-25 Method for producing polypropylene-based resin foamed particles, polypropylene-based resin foamed particles, and in-mold foam molded article

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015230292 2015-11-26
JP2015-230292 2015-11-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/989,528 Continuation US20180273719A1 (en) 2015-11-26 2018-05-25 Method for producing polypropylene-based resin foamed particles, polypropylene-based resin foamed particles, and in-mold foam molded article

Publications (1)

Publication Number Publication Date
WO2017090432A1 true WO2017090432A1 (ja) 2017-06-01

Family

ID=58763224

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/083280 WO2017090432A1 (ja) 2015-11-26 2016-11-09 ポリプロピレン系樹脂発泡粒子の製造方法、ポリプロピレン系樹脂発泡粒子および型内発泡成形体

Country Status (5)

Country Link
US (1) US20180273719A1 (ja)
EP (1) EP3381976B1 (ja)
JP (1) JP6670850B2 (ja)
CN (1) CN108291048B (ja)
WO (1) WO2017090432A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019172204A1 (ja) * 2018-03-08 2019-09-12 株式会社カネカ ポリプロピレン系樹脂発泡粒子およびその製造方法
WO2023176805A1 (ja) * 2022-03-15 2023-09-21 株式会社カネカ ポリプロピレン系発泡粒子およびポリプロピレン系発泡粒子の製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008255286A (ja) * 2007-04-09 2008-10-23 Kaneka Corp 黒色のポリプロピレン系樹脂予備発泡粒子
WO2009047998A1 (ja) * 2007-10-11 2009-04-16 Kaneka Corporation ポリプロピレン系樹脂予備発泡粒子及びその製造方法
US20090176902A1 (en) * 2006-08-25 2009-07-09 Manfred Stadlbauer Polypropylene foam
JP2010265449A (ja) * 2009-04-14 2010-11-25 Tosoh Corp プロピレン重合体樹脂組成物
EP2508555A1 (en) * 2011-03-21 2012-10-10 Electrolux Home Products Corporation N.V. Process for producing pre-expandable plastic beads and beads obtainable according to said process
WO2014136933A1 (ja) * 2013-03-08 2014-09-12 株式会社カネカ ポリプロピレン系樹脂発泡粒子の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2754687B1 (en) * 2007-12-11 2018-08-22 Kaneka Corporation Process for producing expanded polyolefin resin particles and expanded polyolefin resin particles
JP2010275499A (ja) * 2009-06-01 2010-12-09 Tosoh Corp ポリプロピレン系樹脂組成物からなる予備発泡粒子、その製造方法及び型内発泡成形体
CN105849167B (zh) * 2013-12-27 2020-04-14 株式会社钟化 聚烯烃系树脂发泡粒子及聚烯烃系树脂模内发泡成型体
EP3339358B1 (en) * 2015-08-20 2020-12-02 Kaneka Corporation Polypropylene resin foamed particles, method for producing polypropylene resin foamed particles and polypropylene resin in-mold foam-molded article

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090176902A1 (en) * 2006-08-25 2009-07-09 Manfred Stadlbauer Polypropylene foam
JP2008255286A (ja) * 2007-04-09 2008-10-23 Kaneka Corp 黒色のポリプロピレン系樹脂予備発泡粒子
WO2009047998A1 (ja) * 2007-10-11 2009-04-16 Kaneka Corporation ポリプロピレン系樹脂予備発泡粒子及びその製造方法
JP2010265449A (ja) * 2009-04-14 2010-11-25 Tosoh Corp プロピレン重合体樹脂組成物
EP2508555A1 (en) * 2011-03-21 2012-10-10 Electrolux Home Products Corporation N.V. Process for producing pre-expandable plastic beads and beads obtainable according to said process
WO2014136933A1 (ja) * 2013-03-08 2014-09-12 株式会社カネカ ポリプロピレン系樹脂発泡粒子の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3381976A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019172204A1 (ja) * 2018-03-08 2019-09-12 株式会社カネカ ポリプロピレン系樹脂発泡粒子およびその製造方法
JPWO2019172204A1 (ja) * 2018-03-08 2021-02-18 株式会社カネカ ポリプロピレン系樹脂発泡粒子およびその製造方法
JP7269220B2 (ja) 2018-03-08 2023-05-08 株式会社カネカ ポリプロピレン系樹脂発泡粒子およびその製造方法
WO2023176805A1 (ja) * 2022-03-15 2023-09-21 株式会社カネカ ポリプロピレン系発泡粒子およびポリプロピレン系発泡粒子の製造方法

Also Published As

Publication number Publication date
EP3381976A4 (en) 2019-04-24
EP3381976A1 (en) 2018-10-03
CN108291048B (zh) 2021-07-06
CN108291048A (zh) 2018-07-17
JPWO2017090432A1 (ja) 2018-08-23
EP3381976B1 (en) 2022-01-26
US20180273719A1 (en) 2018-09-27
JP6670850B2 (ja) 2020-03-25

Similar Documents

Publication Publication Date Title
JP5375613B2 (ja) ポリプロピレン系樹脂予備発泡粒子及びその製造方法
WO2011086937A1 (ja) ポリエチレン系樹脂発泡粒子、およびポリエチレン系樹脂型内発泡成形体
JP5976098B2 (ja) ポリプロピレン系樹脂発泡粒子およびポリプロピレン系樹脂発泡粒子からなる型内発泡成形体、並びに、これらの製造方法
WO2016111017A1 (ja) プロピレン系樹脂発泡粒子及び発泡粒子成形体
WO2015076306A1 (ja) ポリエチレン系樹脂発泡粒子およびポリエチレン系樹脂型内発泡成形体およびその製造方法
JP5188144B2 (ja) 摩擦音のしないポリプロピレン系樹脂予備発泡粒子
JP5630591B2 (ja) ポリオレフィン系樹脂予備発泡粒子およびその製造方法
JP5242321B2 (ja) 摩擦音の低減されたポリプロピレン系樹脂予備発泡粒子
JP6084046B2 (ja) ポリエチレン系樹脂発泡粒子およびポリエチレン系樹脂型内発泡成形体およびその製造方法
WO2013031745A1 (ja) ポリエチレン系樹脂発泡粒子及びその成形体
JP6670850B2 (ja) ポリプロピレン系樹脂発泡粒子の製造方法、ポリプロピレン系樹脂発泡粒子および型内発泡成形体
JP5591965B2 (ja) ポリオレフィン系樹脂予備発泡粒子およびその製造方法
WO2016158686A1 (ja) ポリエチレン系樹脂発泡成形体の製造方法
JP5475149B2 (ja) 摩擦音のしないポリプロピレン系樹脂予備発泡粒子
JP5347368B2 (ja) ポリプロピレン系樹脂発泡粒子、および型内発泡成形体
JP4940688B2 (ja) ポリプロピレン系樹脂予備発泡粒子の製造方法
WO2016147775A1 (ja) 帯電防止性能を有するポリエチレン系樹脂発泡粒子およびポリエチレン系樹脂型内発泡成形体およびその製造方法
JP5315759B2 (ja) ポリプロピレン系樹脂型内発泡成形体の製造方法
JP5216353B2 (ja) ポリプロピレン系樹脂発泡粒子の製造方法
JP2013181074A (ja) スチレン改質ポリエチレン系樹脂粒子、発泡性複合樹脂粒子、予備発泡粒子、発泡成形体及び予備発泡粒子の製造方法
JP2017179281A (ja) ポリプロピレン系樹脂発泡粒子、および、ポリプロピレン系樹脂型内発泡成形体、およびその製造方法
JP5460227B2 (ja) ポリプロピレン系樹脂型内発泡成形体
JP2009221258A (ja) ポリプロピレン系樹脂予備発泡粒子
JP2009256410A (ja) ポリプロピレン系樹脂発泡粒子の製造方法
JP5161593B2 (ja) ポリプロピレン系樹脂発泡粒子の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16868380

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017552347

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016868380

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016868380

Country of ref document: EP

Effective date: 20180626