WO2015072154A1 - 化成処理液および化成処理鋼板 - Google Patents

化成処理液および化成処理鋼板 Download PDF

Info

Publication number
WO2015072154A1
WO2015072154A1 PCT/JP2014/005750 JP2014005750W WO2015072154A1 WO 2015072154 A1 WO2015072154 A1 WO 2015072154A1 JP 2014005750 W JP2014005750 W JP 2014005750W WO 2015072154 A1 WO2015072154 A1 WO 2015072154A1
Authority
WO
WIPO (PCT)
Prior art keywords
chemical conversion
conversion treatment
steel sheet
mass
vanadium
Prior art date
Application number
PCT/JP2014/005750
Other languages
English (en)
French (fr)
Inventor
義治 岩水
厚雄 清水
雅典 松野
山本 雅也
Original Assignee
日新製鋼株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日新製鋼株式会社 filed Critical 日新製鋼株式会社
Priority to CN201480061570.XA priority Critical patent/CN105723016B/zh
Priority to ES14861969T priority patent/ES2755359T3/es
Priority to AU2014348133A priority patent/AU2014348133B2/en
Priority to EP14861969.5A priority patent/EP3070186B1/en
Priority to US15/030,228 priority patent/US20160237572A1/en
Priority to RU2016118622A priority patent/RU2643023C2/ru
Priority to KR1020177022835A priority patent/KR20170097792A/ko
Priority to CA2927805A priority patent/CA2927805C/en
Priority to MX2016006050A priority patent/MX2016006050A/es
Priority to KR1020167012305A priority patent/KR20160068920A/ko
Publication of WO2015072154A1 publication Critical patent/WO2015072154A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/60Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using alkaline aqueous solutions with pH greater than 8
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/60Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using alkaline aqueous solutions with pH greater than 8
    • C23C22/62Treatment of iron or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/40Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing molybdates, tungstates or vanadates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2222/00Aspects relating to chemical surface treatment of metallic material by reaction of the surface with a reactive medium
    • C23C2222/20Use of solutions containing silanes

Definitions

  • the present invention relates to a chemical conversion treatment solution for a chemical conversion treatment steel plate and a Zn-based plated steel plate.
  • Zn-plated steel sheets are used in a wide range of applications such as automobiles, building materials, and home appliances.
  • the surface of the plated steel sheet is subjected to a chromium-free chemical conversion treatment in order to impart corrosion resistance without oiling.
  • the chromium-free chemical conversion treatment is roughly classified into organic treatment and inorganic treatment.
  • the organic treatment forms a thick film containing an organic resin, while the inorganic treatment forms a thin film (film thickness: 1 ⁇ m or less) in order to obtain spot weldability.
  • Organic processing can give comparatively high corrosion resistance compared with inorganic processing.
  • even in inorganic processing there are some which show the same high corrosion resistance as organic processing by using an Al or Mg-containing Zn-based plated steel plate as a chemical conversion treatment original plate.
  • Patent Document 1 discloses a chemical conversion treated steel sheet in which a chromium-free chemical conversion coating film containing valve metal or a soluble fluoride of valve metal is formed on the surface of a Zn-based plated steel sheet.
  • Patent Document 2 discloses chromium containing a zirconium compound, vanadyl compound (VO 2+ salt), organic acid, silica compound, fluoride, lubricant, etc. on the surface of a Zn-plated steel sheet containing Mg—Al—Si.
  • a chemical conversion treated steel sheet having a free chemical conversion coated film is disclosed.
  • Patent Document 3 discloses a chemically treated steel sheet in which a chromium-free chemically treated film containing a basic zirconium compound, vanadyl compound, phosphoric acid compound, cobalt compound, organic acid, or the like is formed on the surface of a Zn-based plated steel sheet. Has been.
  • Patent Documents 1 to 3 as a chromium-free chemical conversion treatment, a rust preventive agent is combined, and an organic acid, fluoride, silane coupling agent, or the like is added to improve functionality. Those that can give better corrosion resistance than the chromate treatment of have been developed.
  • a chemical conversion treated steel sheet obtained by forming a chromium-free chemical conversion coating on the surface of a Zn-based plated steel sheet will blacken the surface of the plating layer due to oxidation when stored for a long time in a high temperature and humid environment. Sometimes. The blackening of the surface of the plating layer not only deteriorates the design property but also causes adverse effects such as a decrease in spot weldability. This phenomenon appears particularly remarkably in Al and Mg-containing Zn-based plated steel sheets.
  • Patent Document 4 proposes an organic chemical conversion treatment in which a hexavalent molybdenum oxyacid salt and an amine coexist.
  • a composite of pentavalent and hexavalent molybdenum is contained in the chemical conversion film. Oxyacid salts (so-called “molybdenum blue”) are formed.
  • the pentavalent molybdenum oxyacid salt in the chemical conversion film reacts with oxygen that has permeated the film to become hexavalent molybdenum oxyacid salt.
  • the pentavalent molybdenum oxyacid salt in the chemical conversion film captures oxygen that has passed through the film, oxidation of the plating layer surface is suppressed, and as a result, blackening is also suppressed.
  • This invention is made
  • An object of the present invention is to provide a chemical conversion treated steel sheet having excellent corrosion resistance and blackening resistance.
  • Another object of the present invention is to provide a chemical conversion treatment solution capable of forming a chemical conversion treatment film that improves corrosion resistance and blackening resistance even when dried at a low temperature for a short time.
  • the inventors of the present invention have examined the relationship between the processing conditions (such as the composition of the chemical conversion coating and the drying temperature) and various quality characteristics regarding the chromium-free chemical conversion treatment for the Zn-based plated steel sheet. As a result, the present inventors have found that it is important to improve the corrosion resistance to form a hardly soluble composite film with a small amount of soluble salt and solvent remaining. That is, it has been found that if an excessive amount of fluoride, organic acid, high boiling point amine or the like remains in the chemical conversion film, the corrosion resistance is remarkably lowered.
  • the present inventors have used a chemical conversion treatment liquid containing a water-soluble molybdate, vanadium salt, low-boiling amine, group 4A metal oxyacid salt, and phosphate.
  • the present inventors have found that the above-mentioned problems can be solved by forming a chemical conversion coating, and have further studied to complete the present invention.
  • a molar ratio of molybdenum to vanadium in the chemical conversion treatment solution is 0.4 to 5.5, and a molar ratio of amine to vanadium in the chemical conversion treatment solution includes a group 4A metal oxyacid salt and a phosphate compound.
  • the content of the hydrophilic resin in the chemical conversion treatment liquid is at most 100% by mass with respect to the total amount of vanadium and molybdenum in the chemical conversion treatment liquid.
  • the total content of fluorine ions derived from fluorine ions or fluorometal ions is at most 30% by mass with respect to the total amount of vanadium and molybdenum in the chemical conversion treatment liquid,
  • the silicon content of from silanol groups in the serial chemical conversion treatment liquid is at most 50% by weight relative to the total amount of vanadium and molybdenum of the chemical conversion treatment liquid, the chemical conversion treatment liquid.
  • this invention relates to the following chemical conversion treatment steel plates.
  • the chemical conversion treatment film is disposed on the surface of the Zn-based plating layer, and is disposed on the first chemical conversion treatment layer containing V, Mo and P, and the first chemical conversion treatment layer.
  • the chemical conversion treatment steel plate which has a 2nd chemical conversion treatment layer containing salt, and the ratio of pentavalent V with respect to all V in the said chemical conversion treatment film is 0.7 or more.
  • the group 4A metal oxyacid salt is a Zr oxyacid salt
  • the chemical conversion film has Mo: 1 to 60 parts by mass
  • V 2 to 20 parts by mass with respect to Zr: 100 parts by mass
  • P The chemical conversion treated steel sheet according to [3], containing 10 to 50 parts by mass.
  • the Zn-based plated steel sheet includes Al: 0.1 to 22.0 mass%, Mg: molten Al containing 1.5 to 10.0 mass%, molten Al having an Mg-containing Zn plating layer, and Mg containing The chemical conversion treated steel sheet according to [3] or [4], which is a Zn plated steel sheet.
  • a chemical conversion treated steel sheet excellent in corrosion resistance and blackening resistance can be produced even when the chemical conversion solution applied to the surface of the Zn-based plated steel sheet is dried at a low temperature in a short time.
  • the chemical conversion treated steel sheet of the present invention has a Zn-based plated steel sheet (chemical conversion-treated original sheet) and a chemical conversion film formed on the surface of the Zn-based plated steel sheet.
  • Zn-based plated steel sheet chemical conversion-treated original sheet
  • chemical conversion film formed on the surface of the Zn-based plated steel sheet.
  • Zn-based plated steel sheet As the chemical conversion treatment original plate, a Zn-based plated steel plate having excellent corrosion resistance and design properties is used.
  • the “Zn-based plated steel sheet” means a plated steel sheet having a Zn-based plated layer containing Al: 0.1 to 22.0 mass% and Zn: 50 mass% or more.
  • Examples of the Zn-based plated steel sheet include a hot-dip Zn-plated steel sheet (GI), an alloyed hot-dip Zn-plated steel sheet (GA), a hot-dip Zn—Al-plated steel sheet, and a hot-dip Zn—Al—Mg-plated steel sheet.
  • the plated layers of the hot-dip Zn-plated steel plate (GI) and the alloyed hot-dip Zn-plated steel plate (GA) also contain 0.1% by mass or more of Al for preventing oxidation.
  • the Zn-based plated steel sheet can be manufactured by a hot dipping method, an electroplating method, a vapor deposition method, or the like.
  • a hot-dip Zn—Al—Mg plated steel sheet includes an alloy plating bath containing Al: 1.0 to 22.0 mass%, Mg: 1.5 to 10.0 mass%, and the balance being substantially Zn. It can be manufactured by the hot dipping method used. Further, in order to improve the adhesion between the base steel plate and the plating layer, Si that can suppress the growth of the Al—Fe alloy layer at the interface between the base steel plate and the plating layer is 0.005 to 2.0 mass%. A range may be added to the plating bath. Further, Ti, B, Ti—B alloy, Ti-containing compound or B-containing compound may be added to the plating bath in order to suppress the formation and growth of Zn 11 Mg 2 phase which adversely affects the appearance and corrosion resistance. The addition amount of these compounds is preferably set so that Ti is in the range of 0.001 to 0.1% by mass and B is in the range of 0.0005 to 0.045% by mass. .
  • the type of the base steel plate of the Zn-based plated steel plate is not particularly limited.
  • Examples of the base steel sheet include ordinary steel, low alloy steel, stainless steel, and the like.
  • the chemical conversion treatment film is formed on the surface of the Zn-based plated steel sheet.
  • the chemical conversion coating improves the corrosion resistance and blackening resistance of the Zn-based plated steel sheet.
  • the chemical conversion treatment film is composed of a first chemical conversion treatment layer (reaction layer) mainly composed of V, Mo and P located on the surface of the Zn-based plated steel sheet, and a 4A group metal oxygen located on the first chemical conversion treatment layer.
  • a second chemical conversion treatment layer mainly composed of an acid salt.
  • corrosion resistance includes one or both of flat part corrosion resistance and processed part corrosion resistance.
  • Processed part corrosion resistance is the corrosion resistance of the part (processed part) that has been subjected to processing that deforms the chemically treated steel sheet such as bending in the chemically treated steel sheet
  • flat part corrosion resistance is the above processed part of the chemically treated steel sheet. Corrosion resistance of other parts.
  • the chemical conversion treatment film is coated with an alkaline chemical conversion treatment solution containing 1) water-soluble molybdate, 2) vanadium salt, 3) low-boiling amine, 4) group 4A metal oxyacid salt, and 5) phosphate. And then dried.
  • the first chemical conversion treatment layer reaction layer
  • the first chemical conversion treatment layer can be formed without using fluorine or the like even on the Al portion of the plating layer surface with poor reactivity. it can.
  • a chemical conversion treatment liquid having such a composition By using a chemical conversion treatment liquid having such a composition, it is possible to form a chemical conversion treatment film capable of improving the corrosion resistance and blackening resistance of a Zn-based plated steel sheet even when dried at a low temperature and in a short time. it can.
  • vanadium salt-derived V, water-soluble molybdate-derived Mo and phosphate-derived P are localized in the first chemical conversion treatment layer.
  • the group 4A metal oxyacid salt is localized in the second chemical conversion treatment layer.
  • Molybdate ions (hereinafter also referred to as Mo acid ions) form a complex with pentavalent V ions (hereinafter also referred to as pentavalent V ions) in an alkaline chemical conversion treatment solution, so that the valence of V is 5 It is presumed that the price is stabilized.
  • the molar ratio of molybdenum to vanadium in the chemical conversion liquid that is, the molar ratio of molybdenum element derived from molybdate to the vanadium element derived from vanadium salt (Mo / V) in the chemical conversion liquid is 0.4 to 5.5. Within range. When the molar ratio of the molybdenum element to the vanadium element is less than 0.4, the valence of V may not be maintained to be pentavalent.
  • the oxide film contributes to the improvement of corrosion resistance.
  • the type of molybdate is not particularly limited as long as the above functions can be exhibited.
  • Examples of molybdate include molybdic acid, ammonium molybdate, alkali metal molybdate, and the like. Among these, from the viewpoint of corrosion resistance, molybdic acid or ammonium molybdate is particularly preferable.
  • the amount of Mo contained in the chemical conversion film is preferably in the range of 1 to 60 parts by mass with respect to 100 parts by mass of Group 4A metal (for example, Zr). When Mo is less than 1 part by mass, blackening resistance may not be sufficiently improved. On the other hand, when Mo is more than 60 parts by mass, the plating layer surface and the amount of unreacted molybdate are excessive, which may reduce the corrosion resistance of the processed part.
  • Vanadium salt Vanadium salt contributes to improvement of corrosion resistance and also to improvement of blackening resistance.
  • V reacts preferentially with the plating layer surface together with molybdic acid and phosphorus.
  • a first chemical conversion layer is formed on the surface of the plating layer.
  • vanadium salt is not particularly limited as long as the above function can be exhibited.
  • examples of vanadium salts include ammonium metavanadate, sodium metavanadate, potassium metavanadate, vanadate in which vanadium pentoxide is dissolved with an amine.
  • the valence of V is all pentavalent (hereinafter, V having a valence of 5 is also referred to as “pentavalent V”).
  • V having a valence of 5 is also referred to as “pentavalent V”.
  • a vanadate salt in which ammonium metavanadate or vanadium pentoxide is dissolved with an amine is particularly preferable.
  • pentavalent V ions in the chemical conversion solution have low valence stability. Therefore, as it is, the concentration of pentavalent V ions does not reach the concentration for forming the reaction layer described above. Therefore, as described above, the concentration of pentavalent V ions in the chemical conversion solution is increased by coexisting with molybdate under alkaline conditions.
  • pentavalent V ions are preferentially deposited on the surface of the plating layer because they are not highly soluble in the chemical conversion solution compared to divalent to tetravalent vanadium ions chelated by reduction with an organic acid or the like. The reaction is likely to occur.
  • the vanadium salt content in the chemical conversion liquid is preferably 8 g / L or less in terms of V atom.
  • the content is more than 8 g / L, the stability of the chemical conversion solution is lowered, and a precipitate may be formed when stored for about one month at room temperature.
  • the problem regarding said stability does not arise.
  • the amount of V contained in the chemical conversion film is preferably in the range of 2 to 20 parts by mass with respect to 100 parts by mass of group 4A metal (for example, Zr).
  • group 4A metal for example, Zr.
  • V is less than 2 parts by mass, corrosion resistance and blackening resistance may not be sufficiently improved.
  • V is more than 20 parts by mass, the plating layer surface layer and the amount of unreacted pentavalent V become excessive, which may reduce the corrosion resistance.
  • the ratio of pentavalent V to total V in the chemical conversion film is 0.7 or more. If the ratio of pentavalent V to total V is less than 0.7, blackening resistance may not be sufficiently improved.
  • Amine Amine dissolves a salt containing pentavalent vanadium (hereinafter also referred to as pentavalent vanadium salt) in the chemical conversion solution while maintaining the valence of V at 5 (using an organic acid).
  • pentavalent vanadium salt a salt containing pentavalent vanadium
  • tetravalent and a complex oxyacid salt of pentavalent or hexavalent Mo is formed from molybdate.
  • the amine is preferably a low boiling point amine.
  • the low boiling point amine is an amine having a molecular weight of 80 or less.
  • An amine having a molecular weight of 80 or less generally has a low boiling point and hardly remains in the chemical conversion treatment film even when the chemical conversion treatment solution is dried at a low temperature and in a short time, and thus contributes to an improvement in corrosion resistance.
  • low boiling point amines include ammonia (used as aqueous ammonia), ethanolamine, 1-amino-2-propanol, and ethylenediamine.
  • a pentavalent vanadium salt having low solubility in water can be blended in the chemical conversion treatment liquid while maintaining the valence of V at 5.
  • the chemical conversion solution can be prepared by adding the obtained solution to an aqueous solution containing molybdate.
  • the chemical conversion treatment liquid may be directly prepared by adding the pentavalent vanadium salt after the molybdate and the amine, or the pentavalent vanadium salt may be added to the aqueous amine solution.
  • the resulting solution may be added to an aqueous solution containing molybdate to prepare a chemical conversion treatment solution.
  • an aqueous solution containing tetravalent vanadium (V 4+ ) is blue, whereas an aqueous solution containing pentavalent vanadium (V 5+ ) is yellow.
  • Valence can be estimated.
  • vanadate when vanadate is used as the vanadium salt, vanadium pentoxide is dissolved in an amine to prepare the vanadate. At this time, heat is generated when pentavalent V is dissolved in the amine.
  • pentavalent V may be reduced to tetravalent V in a high temperature environment of 40 ° C. or higher.
  • the method for maintaining the environmental temperature below 40 ° C. is not particularly limited. For example, by adding vanadium pentoxide to an aqueous amine solution (by diluting the amine and vanadium pentoxide), the environmental temperature can be maintained below 40 ° C.
  • the molar ratio of amine to V in the chemical conversion solution is 0.3 or more. When the said molar ratio is less than 0.3, there exists a possibility that the valence of V cannot be maintained at pentavalence.
  • the molar ratio of amine to V is preferably 10 or less from the viewpoint that the effect of maintaining the valence of V reaches its peak and the cost associated with the amine is suppressed.
  • Group 4A metal oxyacid salt forms a dense chemical conversion film to improve corrosion resistance. That is, it is difficult to form a dense chemical conversion treatment film with a chemical conversion treatment solution containing only molybdate and vanadium salt, but Mo and V are cross-linked by adding a group 4A metal oxyacid salt. Thus, a chemical conversion film having a high barrier property can be formed.
  • the type of group 4A metal is not particularly limited.
  • group 4A metals include Ti, Zr, Hf, and the like.
  • types of oxyacid salts include hydrates, ammonium salts, alkali metal salts, alkaline earth metal salts, and the like. Among these, from the viewpoint of corrosion resistance, an ammonium salt of Group 4A metal oxyacid is preferable, and ammonium zirconium carbonate is particularly preferable.
  • the chemical conversion treatment solution further contains a phosphate.
  • the phosphate forms a dense chemical conversion treatment film in cooperation with the group 4A metal oxyacid salt to further improve the corrosion resistance.
  • the kind of phosphate is not particularly limited as long as the above function can be exhibited.
  • Examples of the phosphate include alkali metal phosphates and ammonium phosphates.
  • diammonium hydrogen phosphate or ammonium dihydrogen phosphate which can sufficiently improve corrosion resistance even when dried at a low temperature for a short time, is preferable.
  • the amount of P in the chemical conversion film is preferably in the range of 10 to 50 parts by mass with respect to 100 parts by mass of the group 4A metal (for example, Zr).
  • the expected characteristic of the said chemical conversion treatment steel plate may become inadequate.
  • the functional group having polarity may be adsorbed on the plating surface, the formation of the reaction layer at the site may be hindered, and the corrosion resistance may be lowered.
  • a film-forming aid solvent such as butyl cellosolve
  • the chemical conversion treatment liquid of the present invention does not contain an organic acid, an organic resin, a silane coupling agent, and a film forming aid.
  • the specific component is not substantially contained in the chemical conversion treatment liquid. That is, the said chemical conversion liquid can be comprised substantially by said component.
  • substantially not contained means “may be contained within the range where the effects of the present invention described above are exhibited”, and “makes the effects of the present invention more prominent. From the viewpoint, it is preferably not contained at all ”.
  • the specific component include hydrophilic resins, fluorine derived from fluorine ions or fluorometal ions, and silicon derived from silanol groups.
  • the above hydrophilic resin is a resin that dissolves or uniformly disperses in an aqueous medium, and contains hydrophilic functional groups in an amount sufficient for dissolution or uniform dispersion in the aqueous medium.
  • the hydrophilic resin can also be referred to as an aqueous resin.
  • One or more hydrophilic resins may be used.
  • the hydrophilic resin include a resin that dissolves or uniformly disperses in an aqueous medium to increase the viscosity of the aqueous medium. More specifically, the hydrophilic functional group may be modified by modification as necessary. Acrylic resin, polyolefin, epoxy resin and polyurethane are included.
  • the hydrophilic functional group include a hydroxyl group, a carboxyl group, and an amino group.
  • the hydrophilic functional group may be one kind or more.
  • the reaction layer is considered to be formed when the polar group exhibits a specific interaction with a component constituting the reaction layer, such as molybdenum or vanadium in the chemical conversion solution.
  • the hydrophilic functional group when the hydrophilic resin is present in a large amount in the chemical conversion treatment liquid, the hydrophilic functional group exhibits an interaction such as hydrogen bonding or dehydration condensation with the polar group on the surface of the Zn-based plated steel sheet, and the reaction
  • the polar group that should interact with the components in the layer is relatively insufficient with respect to the components in the reaction layer. As a result, the formation of the reaction layer is inhibited, and the desired properties of the chemical conversion treated steel sheet are It will be insufficient.
  • the allowable content of the hydrophilic resin in the chemical conversion treatment liquid is at most 100 mass% (that is, 100 mass% or less) with respect to the total amount of vanadium and molybdenum in the chemical conversion treatment liquid. is there.
  • the content of the hydrophilic resin exceeds 100% by mass, the formation of the reaction layer is inhibited, and the expected functions such as corrosion resistance and blackening resistance in the chemical conversion treated steel sheet may be insufficient.
  • the content of the hydrophilic resin is preferably as small as possible, for example, preferably 50% by mass or less, and more preferably 20% by mass or less. Preferably, it is 0% by mass.
  • the fluorine derived from the fluorine ions or the fluorometal ions can exhibit an etching action on the surface of the Zn-based plated steel sheet to form a fluoride layer.
  • the fluorine include F - and MF 6 2- .
  • M represents a tetravalent metal element, for example, Zr, Ti, or Si.
  • the component that is the origin of the fluorine include potassium fluoride (KF), ammonium titanium fluoride ((NH 4 ) 2 TiF 6 ), and silicohydrofluoric acid (H 2 SiF 6 ).
  • the fluorine may be one kind or more.
  • the surface of the Zn-based plated steel sheet is dissolved by the etching action of the fluorine, and the fluorine in the chemical conversion treatment liquid concentrates on the dissolved portion.
  • a thin layer of fluoride is formed on the surface of the Zn-based plated steel sheet, and the polar group to be interacted with the component in the reaction layer exposed on the surface of the Zn-based plated steel sheet is a component in the reaction layer.
  • Examples of components resulting from dissolution of the surface of the Zn-based plated steel sheet include Zn 2+ , Al 3+ and Mg 2+, and examples of the fluoride include ZnF 2 , AlF 3 and MgF 2 .
  • the said fluoride can be confirmed from the said chemical conversion treatment steel plate by XPS.
  • the total content of fluorine ions or fluorine derived from fluorometal ions in the chemical conversion treatment liquid is at most 30% by mass (ie, 30% by mass) with respect to the total amount of vanadium and molybdenum in the chemical conversion treatment liquid. % Or less).
  • the content of the fluorine exceeds 30% by mass, the formation of the reaction layer is hindered, and desired functions such as corrosion resistance and blackening resistance in the chemical conversion treated steel sheet may be insufficient.
  • the content of the fluorine is preferably as small as possible, for example, preferably 10% by mass or less, and more preferably 5% by mass or less. Most preferably, it is 0 mass%.
  • the silicon derived from the silanol group has a hydroxyl group. Therefore, when the said chemical conversion liquid contains the said silicon, it is thought that formation of the said reaction layer is inhibited by presence of the silicon derived from the said silanol group for the same reason as the said hydrophilic resin. That is, when a large amount of the silicon is present in the chemical conversion solution, the hydroxyl group in the silanol group exhibits an interaction such as hydrogen bonding or dehydration condensation with the polar group on the surface of the Zn-based plated steel sheet, and the reaction layer contains The polar groups that should interact with the components of the reaction layer are relatively insufficient with respect to the components in the reaction layer.
  • the component that is the source of silicon include a silane coupling agent, and more specifically, 3-aminopropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, and vinylethoxysilane. .
  • the content of silicon derived from silanol groups in the chemical conversion treatment liquid is at most 50 mass% (that is, 50 mass% or less) with respect to the total amount of vanadium and molybdenum in the chemical conversion treatment liquid.
  • the content of silicon exceeds 50% by mass, formation of the reaction layer is hindered, and desired functions such as corrosion resistance and blackening resistance in the chemical conversion treated steel sheet may be insufficient.
  • the content of the silicon is preferably as small as possible, for example, preferably 20% by mass or less, and more preferably 10% by mass or less. Most preferably, it is 0 mass%.
  • the presence and content of the hydrophilic resin, the fluorine, or the silicon in the chemical conversion treatment liquid are determined by infrared spectroscopy (IR) analyzer, nuclear magnetic resonance (NMR) analyzer, inductively coupled plasma (ICP) emission. It can be determined using a known analyzer such as an analyzer or a fluorescent X-ray analyzer.
  • IR infrared spectroscopy
  • NMR nuclear magnetic resonance
  • ICP inductively coupled plasma
  • the method for specifying the structure of the chemical conversion coating is not particularly limited.
  • the chemical conversion treatment film includes the first chemical conversion treatment layer and the second chemical conversion treatment layer by observing a cross section of the chemical conversion treatment steel sheet with a transmission electron microscope (TEM).
  • the component contained in each chemical conversion treatment layer can be specified by energy dispersive X-ray spectrometry (EDS).
  • EDS energy dispersive X-ray spectrometry
  • GDS glow discharge emission spectroscopy
  • the ratio of pentavalent vanadium in the total vanadium in the chemical conversion film can be specified by X-ray photoelectron spectroscopy (XPS).
  • a chemical conversion treatment film is formed by apply
  • the method for applying the chemical conversion liquid is not particularly limited.
  • Examples of the method for applying the chemical conversion liquid include a roll coating method, a spin coating method, and a spray method.
  • the adhesion amount of the chemical conversion film is preferably in the range of 50 to 1000 mg / m 2 .
  • the adhesion amount is less than 50 mg / m 2 , the corrosion resistance cannot be sufficiently improved.
  • the adhesion amount exceeds 1000 mg / m 2 , the corrosion resistance becomes excessive.
  • the amount of the chemical conversion coating applied is more preferably in the range of 50 to 500 mg / m 2 .
  • the drying temperature (plate temperature) of the chemical conversion solution may be room temperature, but is preferably 30 ° C. or higher from the viewpoint of productivity.
  • the chemical conversion treatment liquid of the present invention can improve corrosion resistance and blackening resistance even when dried at a low temperature for a short time.
  • the drying temperature exceeds 120 ° C. cracks may occur due to the volumetric shrinkage of the chemical conversion film due to rapid decomposition of the ammonia component, and the corrosion resistance of the chemical conversion steel sheet may be reduced.
  • the drying temperature of the chemical conversion treatment liquid is preferably within the range of 30 to 120 ° C, and more preferably within the range of 35 to 85 ° C.
  • the chemical conversion treatment liquid according to the present invention includes the above-described water-soluble molybdate, vanadium salt, amine, group 4A metal oxyacid salt and phosphate compound, and the molybdate and amine are vanadium salts.
  • the above-mentioned hydrophilic resin, fluorine derived from fluorine ion or fluorometal ion, or silicon derived from silanol group is contained, or only up to the above-mentioned specific allowable amount. . Since it is produced using such a chemical conversion treatment liquid, the chemical conversion treatment steel sheet of the present invention contains a Zn-based plated steel sheet, V, Mo, P, and 4A group metal oxyacid salt, and the first chemical conversion treatment. And a chemical conversion film including a two-layer structure of the second chemical conversion layer. Therefore, the chemical conversion treated steel sheet of the present invention is excellent in corrosion resistance and blackening resistance even when the chemical conversion solution is dried at a low temperature in a short time.
  • Example 1 The water-soluble molybdate, vanadium salt, amine, group 4A metal oxyacid salt, and phosphate shown in Table 1 were dissolved in water to prepare chemical conversion treatment solutions 1 to 50.
  • Table 1 shows the names and symbols of the compounds added to the chemical conversion solution.
  • Tables 2 to 4 show the composition and color of each chemical conversion treatment liquid.
  • the vanadium salt was dissolved in an aqueous solution containing an amine and having a liquid temperature of 40 ° C. or lower.
  • the surface of the chemical conversion treatment original plate was degreased and dried.
  • each of the chemical conversion treatment solutions 1 to 18 shown in Table 2 is applied to the surface of the chemical conversion treatment original plate, and immediately after that, heated at a low temperature (final plate temperature of 40 ° C. or 80 ° C.) using an automatic discharge type electric hot air oven. It dried and formed the chemical conversion treatment film.
  • chemical conversion treated steel sheets 1 to 36 having the chemical conversion coating were produced.
  • the adhesion amount of the chemical conversion treatment film in the chemical conversion treatment steel plate was 200 mg / m 2 in all cases.
  • FIG. 1 is a TEM image of a cross section of a test piece of the chemical conversion treated steel sheet 17.
  • the chemical conversion treatment film of the chemical conversion treatment steel plate 17 has a two-layer structure including a first chemical conversion treatment layer and a second chemical conversion treatment layer.
  • FIG. 2 shows the element distribution in the depth direction from the surface measured using GDS for the test piece of the chemical conversion treated steel sheet 17.
  • the horizontal axis in FIG. 2 indicates the measurement time (corresponding to the depth from the surface), and the vertical axis indicates the relative intensity.
  • the first chemical conversion treatment layer of the chemical conversion treatment steel sheet 17 contains a large amount of Mo, V, and P, and the second chemical conversion treatment layer contains Zr. Yes.
  • the depth at which the chemical conversion film was sputtered was determined by measuring the thickness of the chemical conversion film from the observation result of the film cross section by TEM.
  • the ratio of pentavalent vanadium in the total vanadium is based on the sum of the area of the peak of about 516.5 eV derived from V 5+ (S V5 ) and the area of the peak of 514 eV derived from V 4+ (S V4 ). It was determined from the ratio of the area of the peak derived from the V 5+ (S V5 / (S V4 + S V5)).
  • the average value of the above ratios at 10 measurement points in each test piece was defined as the ratio (V 5+ / V) of pentavalent vanadium in the total vanadium in the chemical conversion treated steel sheet.
  • FIG. No. 4 chemical conversion treatment liquid was dried at a drying temperature of 80 ° C., and the test piece of the chemical conversion treatment steel plate 12 was measured. It is an intensity profile of a corresponding chemical bond energy.
  • the horizontal axis in FIG. 3 indicates the binding energy, and the vertical axis indicates the relative intensity for a short time (per second).
  • a solid line Mv in FIG. 3 is an intensity profile of chemical bond energy actually measured at the measurement point.
  • a dotted line P V5 indicates a peak derived from pentavalent vanadium
  • a dotted line P V4 indicates a peak derived from tetravalent vanadium
  • a solid line B indicates a baseline.
  • Tables 5 and 6 show the chemical conversion solution used, the ratio of each element in the chemical conversion coating, the results of the corrosion resistance test, and the blackening resistance test for each chemical conversion steel sheet.
  • surface the ratio of each element in a chemical conversion treatment film is represented as a mass part of each element with respect to Zr: 100 mass part.
  • a chemical conversion treated steel sheet formed on a plated steel sheet has good corrosion resistance and blackening resistance.
  • the chemical conversion treatment film includes water-soluble molybdate, vanadium salt, amine, 4A metal oxyacid salt and phosphate, and the molar ratio of molybdenum to vanadium is 0.4 to 5.5. It is obtained by applying and drying a chemical conversion treatment liquid having an amine molar ratio of 0.3 or more on the Zn-based plated steel sheet. Further, the good corrosion resistance and blackening resistance in the chemical conversion treated steel sheet can be obtained even when the chemical conversion liquid applied to the plated steel sheet is dried at a relatively low drying temperature of 40 ° C. or 80 ° C. .
  • a first chemical conversion treatment layer containing V, Mo and P, and a second chemical conversion treatment layer disposed on the first chemical conversion treatment layer and containing a group 4A metal oxyacid salt are provided.
  • a Zn-based plating layer having a Zn-based plating layer containing 0.1 to 22.0% by mass of Al, the chemical conversion coating having a ratio of pentavalent V to 0.7 or more of the total V in the chemical conversion coating The chemical conversion treated steel sheet arranged on the plated steel sheet has good corrosion resistance and blackening resistance in a wide range of the amount of the chemical conversion coating applied.
  • the chemical conversion treatment film includes water-soluble molybdate, vanadium salt, amine, 4A metal oxyacid salt and phosphate, and the molar ratio of molybdenum to vanadium is 0.4 to 5.5. It is obtained by applying and drying a chemical conversion treatment liquid having an amine molar ratio of 0.3 or more on the Zn-based plated steel sheet. Further, the above-mentioned good corrosion resistance and blackening resistance in the chemical conversion treated steel sheet can be obtained even when the chemical conversion liquid applied to the plated steel sheet is dried at a relatively low drying temperature of 40 ° C. or 80 ° C. It can be obtained regardless of the amount of coating.
  • Vanadyl tartrate was prepared by reducing vanadium pentoxide in an aqueous tartaric acid solution.
  • the Zr adhesion amount and V adhesion amount of the chemical conversion coating were both 200 mg / m 2 .
  • the chemical conversion treated steel sheet according to the present invention described above has better corrosion resistance and black resistance than the prior art. It turns out that it has modification
  • Example 3 The chemical conversion treatment steel plate produced in the following procedures was prepared.
  • the raw material for the chemical conversion treatment is made of an ultra-low carbon Ti-added steel strip with a thickness of 0.5 mm as a base material, and is a hot-dip galvanized production line. 90 g / m 2 ) was prepared and used as a chemical conversion treatment original plate.
  • the surface of the chemical conversion treatment original plate was degreased and dried.
  • the chemical conversion treatment liquids 19 to 50 shown in Tables 2 to 4 are applied to the surface of the chemical conversion treatment original plate, and immediately after that, heated at a low temperature (final plate temperature 40 ° C. or 80 ° C.) using an automatic discharge type electric hot air oven. It dried and formed the chemical conversion treatment film. In this way, chemical conversion treated steel plates 107 to 170 were produced.
  • Tables 12 to 15 show the chemical conversion solution used, the ratio of each element in the chemical conversion coating, the results of the corrosion resistance test, and the results of the blackening resistance test for each chemical conversion steel sheet.
  • the ratio of each element in a chemical conversion treatment film is represented as a mass part of each element with respect to Zr: 100 mass part.
  • a first chemical conversion treatment layer containing V, Mo and P, and a second chemical conversion treatment layer disposed on the first chemical conversion treatment layer and containing a group 4A metal oxyacid salt are provided.
  • a Zn-based plating layer having a Zn-based plating layer containing 0.1 to 22.0% by mass of Al, the chemical conversion coating having a ratio of pentavalent V to 0.7 or more of the total V in the chemical conversion coating It turns out that all the chemical conversion treatment steel plates arranged on the plated steel plate have good corrosion resistance and blackening resistance.
  • the chemical conversion treatment film includes water-soluble molybdate, vanadium salt, amine, 4A metal oxyacid salt and phosphate, and the molar ratio of molybdenum to vanadium is 0.4 to 5.5. It is obtained by applying and drying a chemical conversion treatment liquid having an amine molar ratio of 0.3 or more on the Zn-based plated steel sheet. In addition, the above-described good corrosion resistance and blackening resistance in the chemical conversion treated steel sheet can be obtained in a wide range of the amount of the chemical conversion coating film even if the chemical conversion treatment steel sheet is dried at a relatively low temperature. It is done.
  • the chemical conversion treated steel sheet of the present invention is excellent in the processed portion corrosion resistance and blackening resistance even when the chemical conversion solution is dried at a low temperature in a short time.
  • Example 4 [Preparation of chemical conversion solution 51] Ammonium molybdate, vanadium pentoxide, ethanolamine, ammonium zirconium carbonate (AZC), diammonium hydrogen phosphate and water shown in Table 1 were mixed so as to have the concentrations shown in Table 16 to obtain a chemical conversion treatment liquid 51. . Table 16 shows the composition and color of each chemical conversion treatment liquid. In Table 16, “Mo / V” is the molar ratio of the molybdenum element to the vanadium element, and “amine / V” is the molar ratio of the amine to the vanadium element.
  • Chemical conversion solutions 58 to 64 were obtained in the same manner as the chemical conversion solutions 51 to 57, respectively, except that an organic resin as a hydrophilic resin was further mixed so as to have a concentration shown in Table 17.
  • “AR” represents acrylic resin
  • “PO” represents polyolefin
  • “ER” represents epoxy resin
  • “PU” represents polyurethane.
  • the quantity of the organic resin in Table 17 is the quantity (mass%) of the organic resin with respect to the total quantity of vanadium and molybdenum in a chemical conversion liquid.
  • “Acrylic resin” includes “Boncoat 40-418EF” (“Boncoat” is a registered trademark of the company) manufactured by DIC Corporation, and “Polyolefin” includes “Zyxen” A type manufactured by Sumitomo Seika Co., Ltd. -AC ("Zyxen” is a registered trademark of the company), “Epoxy resin”, “ADEKA RESIN EM-0434AN” (“ADEKA RESIN” is a registered trademark of the company) manufactured by ADEKA Corporation, and “Polyurethane” ADEKA CORPORATION "Adekapon titer HUX-232" (“Adekapon titer” is a registered trademark of the same company) was used.
  • Chemical conversion liquids 67 to 73 were obtained in the same manner as the chemical conversion liquids 51 to 57, respectively, except that fluorine compounds that generate fluorine ions or fluorometal ions in water were further mixed so as to have the concentrations shown in Table 18.
  • the amount of the fluorine compound in Table 18 is the amount (mass%) of elemental fluorine with respect to the total amount of vanadium and molybdenum in the chemical conversion treatment liquid.
  • the elemental fluorine is derived from fluorine ions or fluorometal ions in the chemical conversion solution.
  • Chemical conversion liquids 74 to 80 were obtained in the same manner as the chemical conversion liquids 51 to 57, respectively, except that the silicon compound that generates silanol groups in water was further mixed so as to have the concentration shown in Table 19.
  • the amount of the silicon compound in Table 19 is the amount (mass%) of silicon element with respect to the total amount of vanadium and molybdenum in the chemical conversion treatment liquid.
  • the silicon element is derived from a silanol group in the chemical conversion treatment liquid.
  • each of the chemical conversion liquids 52 to 80 is used in place of the chemical conversion liquid 51, and the chemical conversion liquid is applied to the chemical conversion raw plate in the amount of adhesion shown in Table 20 or Table 21 and dried as shown in Table 20 or Table 21
  • Chemical conversion treated steel plates 172 to 200 were prepared in the same manner as the chemical conversion treated steel plate 51 except that they were dried by heating at a temperature. The drying time when the drying temperature is 80 ° C. is 6 seconds.
  • the chemical conversion treated steel sheet classified into Examples for example, the same two-layer structure as the chemical conversion treated steel sheet 17, that is, the first chemical conversion treated layer contains V, Mo, and P, and the second chemical conversion treated layer has 4A group. It was confirmed to contain a metal oxyacid salt. On the other hand, in the chemical conversion treatment steel sheet classified into a comparative example, said 2 layer structure in a chemical conversion treatment film was not confirmed.
  • Table 20 shows the types of chemical conversion treatment liquid, the amount of adhesion, the drying temperature, the content ratio of molybdenum, vanadium and phosphorus in the chemical conversion treatment film, the ratio of pentavalent vanadium, and various evaluation results for the chemical conversion steel plates 171 to 200. 21 respectively.
  • each content ratio of molybdenum, vanadium, and phosphorus is the mass part of each element with respect to 100 mass parts of Zr elements.
  • the flat portion At least one of the corrosion resistance, the processed portion corrosion resistance, and the blackening resistance may be insufficient.
  • the chemical conversion treatment steel plates 180, 182, and 183 using the chemical conversion treatment solutions 60, 62, and 63 having a relatively low hydrophilic resin concentration all of the flat portion corrosion resistance, the processed portion corrosion resistance, and the blackening resistance are all. It was good enough.
  • fluorine is contained as fluorine ions or fluorometal ions.
  • at least one of the flat portion corrosion resistance, the processed portion corrosion resistance, and the blackening resistance may be insufficient.
  • the chemical conversion treatment steel plates 189 and 190 using the chemical conversion treatment solutions 69 and 70 having a relatively low fluorine concentration all of the flat portion corrosion resistance, the processed portion corrosion resistance and the blackening resistance were sufficiently good.
  • the chemical conversion treated steel plates 194 to 200 using the chemical conversion treatment liquids 74 to 80 having the same composition as the chemical conversion treatment liquids 51 to 57 except for containing silicon derived from silanol groups At least one of the flat portion corrosion resistance, the processed portion corrosion resistance, and the blackening resistance may be insufficient.
  • the chemical conversion steel sheets 196 and 199 using the chemical conversion liquids 76 and 79 having a relatively low silicon concentration the flat part corrosion resistance, the processed part corrosion resistance, and the blackening resistance were sufficiently good.
  • a Zn-based plated steel sheet having a Zn-based plated layer containing 0.1 to 22.0% by mass of aluminum, water-soluble molybdate, vanadium salt, amine, group 4A metal oxyacid salt and phosphate compound A chemical conversion treatment liquid in which the molar ratio of molybdenum to vanadium is 0.4 to 5.5 and the molar ratio of amine to vanadium is 0.3 or more, with respect to the total amount of vanadium and molybdenum, When a chemical conversion treatment liquid having a content of the hydrophilic resin of at most 100% by mass, a fluorine concentration of at most 30% by mass, or a silicon concentration of at most 50% by mass is applied, It can be seen that even when the liquid is dried at a low temperature for a short time, a chemical conversion treated steel sheet excellent in processed portion corrosion resistance and blackening resistance can be obtained.
  • the chemical conversion steel sheet of the present invention is excellent in corrosion resistance and blackening resistance, it is useful in a wide range of applications such as automobiles, building materials, and home appliances.

Abstract

 Zn系めっき鋼板に化成処理液を塗布、乾燥することによって、化成処理皮膜を有する化成処理鋼板が構成される。上記化成処理皮膜には、V、MoおよびPを含む第1化成処理層と、当該層上の、4A族金属酸素酸塩を含む第2化成処理層と、が構築され、かつ化成処理皮膜中の全Vに対する5価のVの比率は0.7以上である。上記化成処理液は、V、Mo、アミン、4A族金属酸素酸塩およびPを特定の割合で含有し、かつ、親水性樹脂、フッ素またはケイ素を実質的には含有しない。

Description

化成処理液および化成処理鋼板
 本発明は、化成処理鋼板およびZn系めっき鋼板用の化成処理液に関する。
 Zn系めっき鋼板は、自動車や建材、家電製品などの幅広い用途で使用されている。通常、めっき鋼板の表面には、塗油せずに耐食性を付与するため、クロムフリーの化成処理が施されている。クロムフリーの化成処理は、有機系処理と無機系処理とに大別される。有機系処理は、有機樹脂を含む厚い皮膜を形成するのに対し、無機系処理は、スポット溶接性を得るために薄い皮膜(膜厚:1μm以下)を形成する。有機系処理は、無機系処理に比べて、比較的高い耐食性を付与できる。また、無機系処理でも、化成処理原板としてAl、Mg含有Zn系めっき鋼板を用いることで、有機系処理と同程度の高い耐食性を示すものもある。
 無機系処理としては、防錆剤の違いにより、チタン系やジルコニウム系、モリブデン系、これらを複合化させた系などが開発されている。また、耐食性を高めるために、シランカップリン剤やシリカゾル、有機酸などをさらに添加した系も開発されている(例えば、特許文献1~3参照)。
 特許文献1には、Zn系めっき鋼板の表面に、バルブメタルやバルブメタルの可溶性フッ化物などを含むクロムフリーの化成処理皮膜を形成した化成処理鋼板が開示されている。また、特許文献2には、Mg-Al-Si含有のZn系めっき鋼板の表面に、ジルコニウム化合物やバナジル化合物(VO2+の塩)、有機酸、シリカ化合物、フッ化物、潤滑剤などを含むクロムフリーの化成処理皮膜を形成した化成処理鋼板が開示されている。また、特許文献3には、Zn系めっき鋼板の表面に、塩基性ジルコニウム化合物やバナジル化合物、リン酸化合物、コバルト化合物、有機酸などを含むクロムフリーの化成処理皮膜を形成した化成処理鋼板が開示されている。
 特許文献1~3に記載されているように、クロムフリーの化成処理としては、防錆剤を複合化させ、さらに有機酸やフッ化物、シランカップリング剤など添加して機能性を高め、従来のクロメート処理よりも優れた耐食性を付与できるものが開発されている。しかしながら、Zn系めっき鋼板の表面にクロムフリーの化成処理皮膜を形成することで得られる化成処理鋼板は、高温、湿潤環境下で長時間保管されると、酸化によりめっき層の表面が黒色化することがある。めっき層表面の黒色化は、意匠性を低下させるだけでなく、スポット溶接性の低下などの悪影響を及ぼす原因となっている。この現象は、特にAl,Mg含有Zn系めっき鋼板で顕著に現れる。
 Zn系めっき鋼板の黒色化を抑制する手段として、特許文献4では、6価モリブデン酸素酸塩とアミンを共存させた有機系の化成処理が提案されている。特許文献4の技術では、アミンがモリブデン酸素酸と錯体を形成して、モリブデン酸素酸塩がZn合金めっき層と反応することを抑制するため、化成処理皮膜中に5価,6価モリブデンの複合酸素酸塩(いわゆる「モリブデンブルー」)が形成される。化成処理皮膜中の5価モリブデン酸素酸塩は、皮膜を透過してきた酸素と反応して6価モリブデン酸素酸塩になる。このように、化成処理皮膜中の5価モリブデン酸素酸塩が皮膜を透過してきた酸素を捕捉するため、めっき層表面の酸化が抑制され、結果として黒色化も抑制される。
特開2002-194558号公報 特開2003-055777号公報 国際公開第2007/123276号 特開2005-146340号公報
 化成処理鋼板に高耐食性を付与するためには、鋼板表面に塗布した化成処理液を十分に乾燥させて、難溶性の皮膜を形成することが必要である。乾燥温度が低く乾燥が不十分な場合には、耐食性が著しく低下する。したがって、化成処理鋼板を連続ラインで製造する場合、十分な乾燥と生産性とを両立させる観点から、到達板温50~200℃程度の高温で化成処理液を乾燥させることが必要である。
 近年、地球温暖化対策としてのCOの削減や、電力不足対策としての節電が求められている。特に、スコープ3への対応から、製品の原材料を製造する段階からCOの削減に寄与した製品が求められている。したがって、クロムフリーの化成処理においても、乾燥温度を下げると共に、乾燥時間を短縮することが望まれている。
 本発明は、かかる点に鑑みてなされたものであり、Zn系めっき鋼板を原板とする化成処理鋼板であって、塗布した化成処理液を低温かつ短時間で乾燥させても製造することができる、耐食性および耐黒変性に優れる化成処理鋼板を提供することを目的とする。
 また、本発明は、低温かつ短時間で乾燥させた場合であっても、耐食性および耐黒変性を向上させる化成処理皮膜を形成することができる化成処理液を提供することも目的とする。
 本発明者らは、Zn系めっき鋼板に対するクロムフリーの化成処理について、処理条件(化成処理皮膜の組成や乾燥温度など)と種々の品質特性との関係について検討した。その結果、本発明者らは、可溶性の塩および溶媒の残存量が少ない、難溶性の複合皮膜を形成することが、耐食性の向上に重要であることを見出した。すなわち、化成処理皮膜中に過剰量のフッ化物や有機酸、高沸点アミンなどが残存すると、耐食性が著しく低下することがわかった。特に、化成処理液を低温かつ短時間で乾燥させた場合、複合塩が形成されにくく、フッ化物や有機酸、高沸点アミンなどが残存しやすい傾向にあるため、化成処理液の組成が非常に重要であることがわかった。
 本発明者らは、これらの点を考慮して鋭意検討した結果、水溶性のモリブデン酸塩、バナジウム塩、低沸点アミン、4A族金属酸素酸塩およびリン酸塩を含む化成処理液を用いて化成処理皮膜を形成することで上記課題を解決できることを見出し、さらに検討を加えて本発明を完成させた。
 すなわち、本発明は、以下の化成処理液に関する。
 [1]Al:0.1~22.0質量%を含むZn系めっき層を有するZn系めっき鋼板に塗布されるための化成処理液であって、水溶性のモリブデン酸塩、バナジウム塩、アミン、4A族金属酸素酸塩およびリン酸化合物を含み、前記化成処理液中のバナジウムに対するモリブデンのモル比は、0.4~5.5であり、前記化成処理液中のバナジウムに対するアミンのモル比は、0.3以上であり、前記化成処理液における親水性樹脂の含有量は、前記化成処理液中のバナジウムおよびモリブデンの合計量に対して多くとも100質量%であり、前記化成処理液におけるフッ素イオンまたはフルオロメタルイオン由来のフッ素の合計の含有量は、前記化成処理液中のバナジウムおよびモリブデンの合計量に対して多くとも30質量%であり、前記化成処理液におけるシラノール基由来のケイ素の含有量は、前記化成処理液中のバナジウムおよびモリブデンの合計量に対して多くとも50質量%である、化成処理液。
 [2]前記アミンの分子量は、80以下である、[1]に記載の化成処理液。
 また、本発明は、以下の化成処理鋼板に関する。
 [3]Al:0.1~22.0質量%を含むZn系めっき層を有するZn系めっき鋼板と、前記Zn系めっき層の上に配置された化成処理皮膜と、を有する化成処理鋼板であって、前記化成処理皮膜は、前記Zn系めっき層表面に配置され、V、MoおよびPを含む第1化成処理層と、前記第1化成処理層の上に配置され、4A族金属酸素酸塩を含む第2化成処理層と、を有し、前記化成処理皮膜中における、全Vに対する5価のVの比率は、0.7以上である、化成処理鋼板。
 [4]前記4A族金属酸素酸塩は、Zr酸素酸塩であり、前記化成処理皮膜は、Zr:100質量部に対して、Mo:1~60質量部、V:2~20質量部、P:10~50質量部を含有する、[3]に記載の化成処理鋼板。
 [5]前記Zn系めっき鋼板は、Al:0.1~22.0質量%、Mg:1.5~10.0質量%を含む溶融Al、Mg含有Znめっき層を有する溶融Al、Mg含有Znめっき鋼板である、[3]または[4]に記載の化成処理鋼板。
 本発明によれば、Zn系めっき鋼板の表面に塗布した化成処理液を低温かつ短時間で乾燥させても、耐食性および耐黒変性に優れる化成処理鋼板を製造することができる。
乾燥温度80℃で作製された本発明に係る化成処理鋼板の一例の試験片の断面のTEM像である。 上記試験片の表面から深さ方向への元素分布を示す図である。 本発明に係る化成処理鋼板の他の例の試験片の化成処理皮膜/めっき層界面における、Vの2p軌道に対応する化学結合エネルギーの強度プロファイルを示す図である。
 本発明の化成処理鋼板は、Zn系めっき鋼板(化成処理原板)と、Zn系めっき鋼板の表面に形成された化成処理皮膜とを有する。以下、各構成要素について説明する。
 [Zn系めっき鋼板]
 化成処理原板としては、耐食性および意匠性に優れる、Zn系めっき鋼板が使用される。ここで「Zn系めっき鋼板」とは、Al:0.1~22.0質量%、Zn:50質量%以上を含むZn系めっき層を有するめっき鋼板を意味する。Zn系めっき鋼板の例には、溶融Znめっき鋼板(GI)や合金化溶融Znめっき鋼板(GA)、溶融Zn-Alめっき鋼板、溶融Zn-Al-Mgめっき鋼板などが含まれる。溶融Znめっき鋼板(GI)および合金化溶融Znめっき鋼板(GA)のめっき層も、酸化防止のため0.1質量%以上のAlを含む。Zn系めっき鋼板は、溶融めっき法や、電気めっき法、蒸着めっき法などにより製造されうる。
 たとえば、溶融Zn-Al-Mgめっき鋼板は、Al:1.0~22.0質量%、Mg:1.5~10.0質量%を含み、残部が実質的にZnである合金めっき浴を用いた溶融めっき法で製造することができる。また、基材鋼板とめっき層との密着性を向上させるために、基材鋼板とめっき層との界面におけるAl-Fe合金層の成長を抑制できるSiを0.005~2.0質量%の範囲でめっき浴に添加してもよい。さらに、外観および耐食性に悪影響を与えるZn11Mg相の生成および成長を抑制するために、Ti、B、Ti-B合金、Ti含有化合物またはB含有化合物をめっき浴に添加してもよい。これらの化合物の添加量は、Tiが0.001~0.1質量%の範囲内となるように、Bが0.0005~0.045質量%の範囲内となるように設定することが好ましい。
 Zn系めっき鋼板の基材鋼板の種類は、特に限定されない。基材鋼板の例には、普通鋼や低合金鋼、ステンレス鋼などが含まれる。
 [化成処理皮膜]
 化成処理皮膜は、Zn系めっき鋼板の表面に形成されている。化成処理皮膜は、Zn系めっき鋼板の耐食性および耐黒変性を向上させる。化成処理皮膜は、Zn系めっき鋼板表面に位置する、V、MoおよびPを主成分とする第1化成処理層(反応層)と、第1化成処理層の上に位置する、4A族金属酸素酸塩を主体とする第2化成処理層と、を有する。
 なお、「耐食性」は、平坦部耐食性および加工部耐食性の一方または両方を含む。「加工部耐食性」は、化成処理鋼板における、曲げ加工などの化成処理鋼板を変形させる加工を施した部分(加工部)の耐食性であり、「平坦部耐食性」は、化成処理鋼板における上記加工部以外の部分の耐食性である。
 [化成処理液]
 化成処理皮膜は、1)水溶性のモリブデン酸塩、2)バナジウム塩、3)低沸点アミン、4)4A族金属酸素酸塩、および5)リン酸塩を含む、アルカリ性の化成処理液を塗布し、乾燥させることで形成される。化成処理液のpHをアルカリ性に調整することで、反応性に乏しいめっき層表面のAl部分に対しても、フッ素などを使用することなく、第1化成処理層(反応層)を形成することができる。このような組成の化成処理液を使用することで、低温かつ短時間で乾燥させた場合であっても、Zn系めっき鋼板の耐食性および耐黒変性を向上させうる化成処理皮膜を形成することができる。なお、第1化成処理層には、バナジウム塩由来のV、水溶性のモリブデン酸塩由来のMoおよびリン酸塩由来のPが局在する。また、第2化成処理層には、4A族金属酸素酸塩が局在する。以下、化成処理液に含まれる各成分について説明する。
 1)モリブデン酸塩
 モリブデン酸塩は、化成処理液中におけるVの価数を安定化させると共に、化成処理鋼板の耐黒変性および耐食性を向上させる。モリブデン酸イオン(以下、Mo酸イオンともいう)は、アルカリ性の化成処理液中で5価のVイオン(以下、5価Vイオンともいう)と錯体を形成することで、Vの価数を5価に安定化させているものと推察される。
 化成処理液中のバナジウムに対するモリブデンのモル比、すなわち、化成処理液におけるバナジウム塩由来のバナジウム元素に対するモリブデン酸塩由来のモリブデン元素のモル比(Mo/V)は、0.4~5.5の範囲内である。バナジウム元素に対するモリブデン元素のモル比が0.4未満の場合、Vの価数を5価に維持することができないおそれがある。一方、バナジウム元素に対するモリブデン元素のモル比が5.5超の場合、Mo酸イオンが縮合酸を形成しやすくなり、5価Vイオンと錯体を形成するMo酸イオンが不足して、Vの価数が安定しないおそれがある。
 また、モリブデン酸塩とアミンを共存させた化成処理液を用いて化成処理皮膜を形成すると、化成処理皮膜中に5価または6価のMoの複合酸素酸塩が形成される。
 アルカリ性条件下で、バナジウム塩、モリブデン酸塩およびアミンを共存させた化成処理液を用いて化成処理皮膜を形成すると、Moは、バナジウム塩およびリンと共に、めっき層表面と優先的に反応して、めっき層表面に第1化成処理層(反応層)を形成する。このように、モリブデン酸塩がバナジウム酸およびリンとともにめっき層表面に均一な反応層を形成するため、耐黒変性が向上する。さらに、モリブデン酸塩とアミンを共存させていることにより、化成処理皮膜中に5価または6価のMo複合酸素酸塩が形成され、この5価モリブデン酸素酸塩が酸化されることで形成される酸化皮膜は、耐食性の向上にも寄与する。なお、上記格子欠陥が発生すると、めっき層は、可視領域の波長の光をより吸収して、金属光沢がより抑えられた灰色の外観を呈する、と考えられる。
 モリブデン酸塩の種類は、上記機能を発揮させることができれば特に限定されない。モリブデン酸塩の例には、モリブデン酸、モリブデン酸アンモニウム、モリブデン酸アルカリ金属塩などが含まれる。これらの中では、耐食性の観点から、モリブデン酸またはモリブデン酸アンモニウムが特に好ましい。化成処理皮膜中に含まれるMoの量は、4A族金属(例えばZr):100質量部に対して、1~60質量部の範囲内であることが好ましい。Moが1質量部未満の場合、耐黒変性を十分に向上させることができないおそれがある。一方、Moが60質量部超の場合、めっき層表面と未反応のモリブデン酸塩の量が過剰となり、加工部耐食性が低下するおそれがある。
 2)バナジウム塩
 バナジウム塩は、耐食性の向上に寄与すると共に、耐黒変性の向上にも寄与する。アルカリ性条件下で、バナジウム塩、モリブデン酸塩およびアミンを共存させた化成処理液を用いて化成処理皮膜を形成すると、Vは、モリブデン酸およびリンと共に、めっき層表面と優先的に反応して、めっき層表面に第1化成処理層(反応層)を形成する。このように、Vがモリブデン酸および4A族金属とともにめっき層表面に均一な反応層を形成するため、耐食性および耐黒変性が向上する。
 バナジウム塩の種類は、上記機能を発揮させることができれば特に限定されない。バナジウム塩の例には、メタバナジン酸アンモニウム、メタバナジン酸ナトリウム、メタバナジン酸カリウム、五酸化バナジウムをアミンで溶解させたバナジン酸塩などが含まれる。これらのバナジウム塩では、Vの価数は、いずれも5価(以下、価数が5のVを「5価V」ともいう)である。これらの中では、耐食性の観点から、メタバナジン酸アンモニウムまたは五酸化バナジウムをアミンで溶解させたバナジン酸塩が特に好ましい。
 一般的に、化成処理液中の5価Vイオンは、価数の安定性が低い。よって、そのままでは5価Vイオンの濃度は、上述した反応層を形成する濃度に達しない。そこで、前述したように、アルカリ性条件下で、モリブデン酸塩と共存させることで、化成処理液における5価Vイオンの濃度を高めている。また、5価Vイオンは、有機酸などにより還元されてキレート化した2~4価のバナジウムイオンと比較して、化成処理液における溶解度が高くないため、優先的にめっき層表面に析出して反応が生じやすいと考えられる。
 化成処理液中のバナジウム塩の含有量は、V原子換算で8g/L以下であることが好ましい。当該含有量が8g/L超の場合、化成処理液の安定性が低下し、室温で1ヶ月程度保管した際に、沈殿物が形成される可能性がある。なお、化成処理液を作製直後に使用する場合は、上記含有量を8g/L超としても、上記の安定性に係る問題は生じない。
 化成処理皮膜中に含まれるVの量は、4A族金属(例えばZr):100質量部に対して、2~20質量部の範囲内であることが好ましい。Vが2質量部未満の場合、耐食性および耐黒変性を十分に向上させることができないおそれがある。一方、Vが20質量部超の場合、めっき層表層と未反応の5価Vの量が過剰となり、耐食性が低下するおそれがある。
 また、化成処理皮膜中における、全Vに対する5価Vの比率は、0.7以上である。全Vに対する5価Vの比率が、0.7未満の場合、耐黒変性を十分に向上させることができないおそれがある。
 3)アミン
 アミンは、Vの価数を5価に維持したまま価数が5価のバナジウムを含む塩(以下、5価バナジウム塩ともいう)を化成処理液中に溶解させる(有機酸を使用した場合は4価となる)と共に、モリブデン酸塩から5価または6価Moの複合酸素酸塩を形成させる。アミンは、低沸点アミンであることが好ましい。低沸点アミンは、分子量が80以下のアミンである。分子量が80以下のアミンは、一般的に沸点が低く、化成処理液を低温かつ短時間で乾燥させた場合であっても化成処理皮膜中に残存しにくいため、耐食性の向上に寄与する。低沸点アミンの例には、アンモニア(アンモニア水として使用)、エタノールアミン、1-アミノ-2-プロパノール、エチレンジアミンが含まれる。乾燥後の化成処理皮膜中に過剰量のアミンが残存した場合、アミンが溶出することにより化成処理鋼板の耐食性が低下してしまう。したがって、化成処理皮膜中に残存するアミンの量は、化成処理鋼板の耐食性の低下を防止する観点から、N換算で10質量%以下にすることが好ましい。分子量が80以下のアミンを使用することで、残存アミンの量をN換算で10質量%以下にすることができる。
 5価バナジウム塩を液体のアミンまたはアミン水溶液に溶解させることで、水への溶解度が低い5価バナジウム塩を、Vの価数を5価に維持したまま化成処理液に配合することができる。5価バナジウム塩を液体のアミンに溶解させる場合は、得られた溶液をモリブデン酸塩が含まれる水溶液に添加することで、化成処理液を調製することができる。また、5価バナジウム塩をアミン水溶液に溶解させる場合は、モリブデン酸塩およびアミンの後に5価バナジウム塩を添加することで直接化成処理液を調製してもよいし、5価バナジウム塩をアミン水溶液に溶解させた後、得られた溶液をモリブデン酸塩が含まれる水溶液に添加して化成処理液を調製してもよい。通常、4価のバナジウム(V4+)を含む水溶液は、青色であるのに対し、5価のバナジウム(V5+)を含む水溶液は、黄色であることから、化成処理液の色から、バナジウムの価数を推定することができる。
 前述のとおり、バナジウム塩としてバナジン酸塩を使用する場合、五酸化バナジウムをアミンに溶解させてバナジン酸塩を調製する。このとき、5価Vをアミンに溶解させる際に熱が発生する。ここで、5価Vは、40℃以上の高温環境下において、4価Vに還元されるおそれがある。このため、Vの価数を5価に維持したまま5価バナジウム塩をアミンに溶解させるには、環境温度を40℃未満に維持する必要がある。環境温度を40℃未満に維持する方法は、特に限定されない。たとえば、アミン水溶液に五酸化バナジウムを添加することで(アミンおよび五酸化バナジウムを希釈することで)、環境温度を40℃未満に維持することができる。
 化成処理液中のVに対するアミンのモル比は、0.3以上である。当該モル比が0.3未満の場合、Vの価数を5価に維持することができないおそれがある。アミンのVの対するモル比は、Vの価数を維持する効果が頭打ちになる観点およびアミンに係るコストを抑える観点から、10以下であることが好ましい。
 4)4A族金属酸素酸塩
 4A族金属酸素酸塩は、緻密な化成処理皮膜を形成して、耐食性を向上させる。すなわち、モリブデン酸塩およびバナジウム塩のみを含む化成処理液では、緻密な化成処理皮膜を形成することは困難であるが、さらに4A族金属酸素酸塩を添加することで、MoやVなどを架橋して、バリアー性の高い化成処理皮膜を形成することができる。
 4A族金属の種類は、特に限定されない。4A族金属の例には、Ti、Zr、Hfなどが含まれる。酸素酸塩の種類の例には、水素酸塩、アンモニウム塩、アルカリ金属塩、アルカリ土類金属塩などが含まれる。これらの中では、耐食性の観点から、4A族金属酸素酸のアンモニウム塩であることが好ましく、炭酸ジルコニウムアンモニウムが特に好ましい。
 5)リン酸塩
 化成処理液は、リン酸塩をさらに含む。リン酸塩は、4A族金属酸素酸塩と協働することで、緻密な化成処理皮膜を形成して、耐食性をさらに向上させる。リン酸塩の種類は、上記機能を発揮させることができれば特に限定されない。リン酸塩の例には、リン酸アルカリ金属塩、リン酸アンモニウム塩が含まれる。特に、低温かつ短時間で乾燥させた場合であっても、耐食性を十分に向上させることができる、リン酸水素二アンモニウムまたはリン酸二水素アンモニウムが好ましい。化成処理皮膜中のPの量は、4A族金属(例えばZr):100質量部に対して、10~50質量部の範囲であることが好ましい。Pが10質量部未満の場合、化成処理皮膜に欠陥となるクラックが発生しやすくなり、耐食性が低下するおそれがある。一方、Pが50質量部超の場合、未反応のリン酸塩が化成処理皮膜中に残り、耐食性が低下するおそれがある。
 なお、従来のクロムフリー化成処理に使用されている特定の成分を上記化成処理液に添加すると、上記化成処理鋼板の所期の特性が不十分となることがある。たとえば、ある種の有機樹脂、シランカップリング剤、有機酸などを添加した場合、5価Vイオンが4価Vイオンに還元されやすく耐黒変性が低下するおそれがある。また、極性を有する官能基がめっき表面に吸着し、その部位での反応層の形成が阻害され、耐食性を低下させるおそれがある。この現象は、水系有機樹脂を低温で造膜させるための造膜助剤(ブチルセロソルブなどの溶剤)を添加した場合にも認められる。よって、本発明の化成処理液は、有機酸、有機樹脂、シランカップリング剤および造膜助剤を含まないことが好ましい。
 上記特定の成分は、上記化成処理液に実質的には含有されない。すなわち、上記化成処理液は、実質的には上記の成分で構成され得る。ここで、「実質的に含有されない」とは、「前述した本発明の効果が奏される範囲において含有されていてもよい」ことを意味し、「上記本発明の効果をより顕著に奏させる観点からは全く含有されないことが好ましい」ことを意味する。当該特定の成分の例には、親水性樹脂、フッ素イオンまたはフルオロメタルイオン由来のフッ素、および、シラノール基由来のケイ素、が含まれる。
 上記親水性樹脂とは、水系媒体中で溶解または均一に分散する樹脂であり、水系媒体中への溶解または均一な分散に十分な量で親水性官能基を含む。上記親水性樹脂は、水性の樹脂とも言われ得る。上記親水性樹脂は、一種でもそれ以上でもよい。当該親水性樹脂の例には、水系媒体に溶解または均一に分散して水系媒体の粘度を増加させる樹脂が含まれ、より具体的には、必要に応じて変性などによって上記親水性官能基を有する、アクリル樹脂、ポリオレフィン、エポキシ樹脂およびポリウレタンが含まれる。当該親水性官能基の例には、水酸基、カルボキシル基およびアミノ基が含まれる。当該親水性官能基も、一種でもそれ以上でもよい。
 ところで、上記Zn系めっき鋼板の表面には、水酸基などの、金属の表面に通常存在する極性基が存在する。上記反応層は、上記極性基が上記化成処理液中のモリブデンやバナジウムなどの、上記反応層を構成する成分と特定の相互作用を呈することで形成される、と考えられる。
 したがって、上記化成処理液中に上記親水性樹脂が多量に存在すると、上記親水性官能基が上記Zn系めっき鋼板の表面の上記極性基と水素結合や脱水縮合などの相互作用を呈し、上記反応層中の成分と相互作用すべき上記極性基が上記反応層中の成分に対して相対的に不足し、その結果、上記反応層の形成が阻害され、上記化成処理鋼板の所期の特性が不十分になる、と考えられる。
 上記の理由から、上記化成処理液における上記親水性樹脂の許容される含有量は、当該化成処理液中のバナジウムおよびモリブデンの合計量に対して多くとも100質量%(すなわち100質量%以下)である。上記親水性樹脂の上記含有量が100質量%を超えると、上記反応層の形成が阻害され、上記化成処理鋼板における耐食性や耐黒変性などの所期の機能が不十分となることがある。化成処理鋼板における所期の機能を十分に発現させる観点から、上記親水性樹脂の上記含有量は、少ないほど好ましく、例えば50質量%以下であることが好ましく、20質量%以下であることがより好ましく、0質量%であることが最も好ましい。
 上記フッ素イオンまたはフルオロメタルイオン由来のフッ素は、上記Zn系めっき鋼板の表面においてエッチング作用を呈し、フッ化物の層を形成し得る。当該フッ素の例には、FおよびMF 2-が含まれる。ここで、「M」は、四価の金属元素を表し、例えばZr、TiまたはSiである。上記フッ素の起源となる成分の例には、フッ化カリウム(KF)、フッ化チタンアンモニウム((NHTiF)およびケイフッ化水素酸(HSiF)が含まれる。当該フッ素は、一種でもそれ以上でもよい。
 上記化成処理液中に上記フッ素が多量に存在すると、上記フッ素の上記エッチング作用によって、上記Zn系めっき鋼板の表面が溶かされ、この溶かされた部分に上記化成処理液中の上記フッ素が集中し、上記Zn系めっき鋼板の表面にフッ化物の薄層が形成され、上記Zn系めっき鋼板の表面に露出する、上記反応層中の成分と相互作用すべき上記極性基が上記反応層中の成分に対して相対的に不足し、その結果、上記反応層の形成が阻害され、上記化成処理鋼板の所期の特性が不十分になる、と考えられる。上記Zn系めっき鋼板の表面の溶解による成分の例には、Zn2+、Al3+およびMg2+が含まれ、上記フッ化物の例には、ZnF、AlFおよびMgFが含まれる。なお、当該フッ化物は、XPSによって上記化成処理鋼板から確認することが可能である。
 上記の理由から、上記化成処理液におけるフッ素イオンまたはフルオロメタルイオン由来のフッ素の合計の含有量は、当該化成処理液中のバナジウムおよびモリブデンの合計量に対して多くとも30質量%(すなわち30質量%以下)である。上記フッ素の上記含有量が30質量%を超えると、上記反応層の形成が阻害され、上記化成処理鋼板における耐食性や耐黒変性などの所期の機能が不十分となることがある。化成処理鋼板における所期の機能を十分に発現させる観点から、上記フッ素の上記含有量は、少ないほど好ましく、例えば10質量%以下であることが好ましく、5質量%以下であることがより好ましく、0質量%であることが最も好ましい。
 上記シラノール基由来のケイ素は、水酸基を有する。したがって、上記化成処理液が上記ケイ素を含有すると、上記親水性樹脂と同様の理由で、上記シラノール基由来のケイ素の存在によって、上記反応層の形成が阻害される、と考えられる。すなわち、上記化成処理液中に上記ケイ素が多量に存在すると、上記シラノール基における水酸基が上記Zn系めっき鋼板の表面の上記極性基と水素結合や脱水縮合などの相互作用を呈し、上記反応層中の成分と相互作用すべき上記極性基が上記反応層中の成分に対して相対的に不足し、その結果、上記反応層の形成が阻害され、上記化成処理鋼板の所期の特性が不十分になる、と考えられる。上記ケイ素の起源となる成分の例には、シランカップリング剤が含まれ、より具体的には、3-アミノプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシランおよびビニルエトキシシランが含まれる。
 上記の理由から、上記化成処理液におけるシラノール基由来のケイ素の含有量は、当該化成処理液中のバナジウムおよびモリブデンの合計量に対して多くとも50質量%(すなわち50質量%以下)である。上記ケイ素の上記含有量が50質量%を超えると、上記反応層の形成が阻害され、上記化成処理鋼板における耐食性や耐黒変性などの所期の機能が不十分となることがある。化成処理鋼板における所期の機能を十分に発現させる観点から、上記ケイ素の上記含有量は、少ないほど好ましく、例えば20質量%以下であることが好ましく、10質量%以下であることがより好ましく、0質量%であることが最も好ましい。
 上記化成処理液中の上記親水性樹脂、上記フッ素、または上記ケイ素の存在およびその含有量は、赤外分光(IR)分析装置、核磁気共鳴(NMR)分析装置、誘導結合プラズマ(ICP)発光分析装置、蛍光X線分析装置などの公知の分析装置を用いて求めることが可能である。
 化成処理皮膜の構造を特定する方法は、特に限定されない。たとえば、化成処理皮膜が第1化成処理層および第2化成処理層を含むことは、透過型電子顕微鏡(TEM)により化成処理鋼板の断面を観察することで確認できる。また、エネルギー分散型X線分光測定(EDS)により、各化成処理層に含まれる成分を特定することができる。さらに、グロー放電発光分光分析法(GDS)により、各成分の分布を特定することができる。さらに、X線光電子分光分析法(XPS)により、化成処理皮膜中の全バナジウムに占める5価のバナジウムの比率を特定することができる。
 [化成処理皮膜の形成方法]
 前述のとおり、化成処理皮膜は、上記各成分を含む化成処理液をZn系めっき鋼板の表面に塗布し、乾燥させることで形成される。
 化成処理液の塗布方法は、特に限定されない。化成処理液の塗布方法の例には、ロールコート法、スピンコート法、スプレー法が含まれる。化成処理皮膜の付着量は、50~1000mg/mの範囲内が好ましい。付着量が50mg/m未満の場合、耐食性を十分に向上させることができない。一方、付着量が1000mg/mを超える場合、耐食性が過剰となってしまう。スポット溶接性も考慮すると、化成処理皮膜の付着量は、50~500mg/mの範囲内がより好ましい。
 化成処理液の乾燥温度(板温)は、常温でもよいが、生産性の観点からは30℃以上が好ましい。実施例で示されるように、本発明の化成処理液は、低温かつ短時間で乾燥させた場合であっても、耐食性および耐黒変性を向上させることができる。一方、乾燥温度が120℃を超えた場合、アンモニア成分の急激な分解などによる化成処理皮膜の体積収縮によってクラックが発生してしまい、化成処理鋼板の耐食性が低下してしまうおそれがある。したがって、化成処理液の乾燥温度は、30~120℃の範囲内が好ましく、35~85℃の範囲内がより好ましい。
 以上のように、本発明に係る化成処理液は、前述した水溶性のモリブデン酸塩、バナジウム塩、アミン、4A族金属酸素酸塩およびリン酸化合物を含むとともに、モリブデン酸塩およびアミンをバナジウム塩に対して上記の特定の割合で含み、上記親水性樹脂、上記フッ素イオンまたはフルオロメタルイオン由来のフッ素、あるいは上記シラノール基由来のケイ素を含有しないか、あるいは前述した特定の許容量までしか含有しない。このような化成処理液を用いて作製されることから、本発明の化成処理鋼板は、Zn系めっき鋼板と、V、Mo、Pおよび4A族金属酸素酸塩を含み、かつ上記第1化成処理層および上記第2化成処理層の2層構造を含む化成処理皮膜とを有する。よって、本発明の化成処理鋼板は、化成処理液を低温かつ短時間で乾燥させた場合であっても、耐食性および耐黒変性に優れている。
 以下、本発明について実施例を参照して詳細に説明するが、本発明はこれらの実施例により限定されない。
 [Zn系めっき鋼板の作製]
 板厚0.5mmの極低炭素Ti添加鋼の鋼帯を基材として、連続溶融亜鉛めっき製造ラインで、溶融Zn-6質量%Al-3質量%Mg-0.020質量%Si-0.020質量%Ti-0.0005質量%B合金めっき鋼板(片面あたりのめっき付着量90g/m)を作製し、化成処理原板として使用した。
 [実施例1]
 表1に記載の水溶性のモリブデン酸塩、バナジウム塩、アミン、4A族金属酸素酸塩、リン酸塩を水に溶解させて、化成処理液1~50を調製した。化成処理液に添加した各化合物の名称と記号を表1に示す。また、各化成処理液の組成および色を表2~4に示す。なお、Vの還元を防ぐため、バナジウム塩の溶解はアミンを含む液温40℃以下の水溶液中で行った。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 上記化成処理原板の表面を脱脂し、乾燥させた。次いで、当該化成処理原板の表面に表2に示される化成処理液1~18をそれぞれ塗布し、直後に自動排出型電気式熱風オーブンを用いて低温(到達板温40℃または80℃)で加熱乾燥して、化成処理皮膜を形成した。こうして、当該化成処理皮膜を有する化成処理鋼板1~36を作製した。なお、化成処理鋼板における化成処理皮膜の付着量は、いずれも200mg/mとした。
 [化成処理鋼板の評価]
 各化成処理鋼板から切り出した試験片について、化成処理皮膜の構造の特定、皮膜中の全バナジウム中に占める5価のバナジウムの比率の特定、皮膜付着量の測定、耐食性試験および耐黒変性試験を行った。
 (1)化成処理皮膜の構造特定
 化成処理皮膜の構造は、前述したTEM、EDS、GDSおよびXPSにより特定した。
 たとえば、図1は、化成処理鋼板17の試験片の断面のTEM像である。図1に示されるように、化成処理鋼板17の化成処理皮膜は、第1化成処理層および第2化成処理層を含む2層構造を有している。
 図2は、化成処理鋼板17の試験片についての、GDSを用いて測定した表面から深さ方向への元素分布である。図2の横軸は、測定時間(表面からの深さに対応)を示しており、縦軸は、相対強度を示している。図2に示されるように、化成処理鋼板17の化成処理皮膜における第1化成処理層には、Mo、VおよびPが多く含まれており、第2化成処理層には、Zrが含まれている。
 なお、特に図示しないが、実施例に区分される他の化成処理鋼板でも、化成処理鋼板17と同様にして、化成処理皮膜が上記の2層構造を有しており、第1化成処理層にV、MoおよびPを含み、第2化成処理層に4A族金属酸素酸塩を含むことが確認された。一方、比較例に区分される化成処理鋼板では、化成処理皮膜における上記の2層構造は確認されなかった。
 (2)化成処理皮膜の付着量の測定
 付着量の確認は蛍光X線装置により皮膜中のZrを測定し、その指標とした。
 (3)化成処理皮膜中の全バナジウムに占める5価のバナジウムの比率の測定
 化成処理皮膜中の全バナジウムに占める5価のバナジウムの比率(V5+/V)は、XPS分析法(X-ray Photoelectoron Spectroscopy)により、化成処理皮膜中のVの化学結合状態を分析することによって求めた。分析箇所は、上記試験片から無作為に選択した10箇所の各部位について、化成処理皮膜の表層と化成処理皮膜/めっき層界面との2箇所とした。化成処理皮膜/めっき層界面の分析は、化成処理皮膜を表層からArビームでスパッタ後に行った。化成処理皮膜をスパッタする深さは、TEMによる皮膜断面の観察結果より、化成処理皮膜の厚さを測定し、決定した。上記全バナジウムに占める5価のバナジウムの比率は、V5+に由来する約516.5eVのピークの面積(SV5)と、V4+に由来する514eVのピークの面積(SV4)との総和に対する上記V5+由来のピークの面積の比(SV5/(SV4+SV5))から求めた。各試験片における10点の測定箇所における上記比率の平均値を、化成処理鋼板における全バナジウムに占める5価のバナジウムの比率(V5+/V)とした。
 たとえば、図3は、No.4の化成処理液を乾燥温度80℃で乾燥させることで作製した化成処理鋼板12の試験片を測定した10点の測定箇所のある1箇所において、皮膜/めっき層界面における、Vの2p軌道に対応する化学結合エネルギーの強度プロファイルである。図3の横軸は、結合エネルギーを示しており、縦軸は、短時間(1秒当たり)の相対強度を示している。また、図3中の実線Mvは、当該測定点において実際に測定された化学結合エネルギーの強度プロファイルである。点線PV5は、5価のバナジウムに由来するピークを示し、点線PV4は、4価のバナジウムに由来するピークを示し、実線Bはベースラインを示している。
 図3から、上記試験片では、化成処理皮膜中におけるV5+比率が0.7以上であることが確認された。なお、特に図示しないが、他の化成処理鋼板でも、化成処理皮膜中におけるV5+比率が0.7以上であることが確認された。
 (4)平坦部耐食性試験
 各化成処理鋼板の試験片の端面をシールし、JIS Z2371に準拠して塩水噴霧試験を120時間行った後、上記試験片の表面に発生した白錆を観察した。各化成処理鋼板について、白錆発生面積率が5%以下の場合は「◎」、5%を超え10%以下の場合は「○」、10%を超え30%未満の場合は「△」、30%以上の場合は「×」と評価した。
 (5)加工部耐食性試験
 各化成処理鋼板の30mm×250mmの試験片に対してドロービード試験(ビード高さ:4mm、圧力:1.0kN)を行い、上記試験片の端面をシールし、JIS Z2371に準拠して塩水噴霧試験を24時間行った後、摺動面に発生した白錆を観察した。各化成処理鋼板について、白錆発生面積率が5%以下の場合は「◎」、5%を超え10%以下の場合は「○」、10%を超え30%未満の場合は「△」、30%以上の場合は「×」と評価した。
 (6)耐黒変性試験
 各化成処理鋼板の試験片を湿潤雰囲気(温度60℃、湿度90%RH)に所定時間放置した後、試験前後における上記試験片の明度を比較した。上記試験片の明度(L値)は、分光型色差計(TC-1800;有限会社東京電色)を用いて測定した。各化成処理鋼板について、明度差ΔLが3.0以下の場合は「◎」、3.0を超え6.0以下の場合は「○」、6.0を超え10.0未満の場合は「△」、10.0以上の場合は「×」と評価した。
 (7)評価結果
 各化成処理鋼板についての、使用した化成処理液、化成処理皮膜中の各元素の比率、耐食性試験の結果および耐黒変性試験の結果を表5、表6に示す。なお、下記表中、化成処理皮膜中の各元素の比率は、Zr:100質量部に対する各元素の質量部として表している。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 表5、6から明らかなように、V、MoおよびPを含む第1化成処理層と、第1化成処理層の上に配置され、4A族金属酸素酸塩を含む第2化成処理層とを有し、化成処理皮膜中における全Vに対する5価のVの比率を0.7以上とする化成処理皮膜を、Alを0.1~22.0質量%を含むZn系めっき層を有するZn系めっき鋼板上に配置してなる化成処理鋼板は、良好な耐食性および耐黒変性を有する。当該化成処理皮膜は、水溶性のモリブデン酸塩、バナジウム塩、アミン、4A族金属酸素酸塩およびリン酸塩を含み、バナジウムに対するモリブデンのモル比が0.4~5.5であり、バナジウムに対するアミンのモル比が0.3以上である化成処理液を上記Zn系めっき鋼板に塗布、乾燥することによって得られる。また、上記化成処理鋼板における上記の良好な耐食性および耐黒変性は、上記めっき鋼板に塗布された上記化成処理液を、40℃または80℃の比較的低い乾燥温度で乾燥させても、得られる。
 一方で、表5、6から明らかなように、化成処理皮膜中における5価のVの比率が0.7以下の場合、耐食性および耐黒変性に劣る。
 [実施例2]
 次に、化成処理液の種類とその付着量を下記表に示すように変更した以外は、化成処理鋼板1などと同様にして、化成処理鋼板37~100を作製し、化成処理鋼板1~36と同様に評価した。結果を下記表7~10に示す。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
 表7~10から明らかなように、V、MoおよびPを含む第1化成処理層と、第1化成処理層の上に配置され、4A族金属酸素酸塩を含む第2化成処理層とを有し、化成処理皮膜中における全Vに対する5価のVの比率を0.7以上とする化成処理皮膜を、Alを0.1~22.0質量%を含むZn系めっき層を有するZn系めっき鋼板上に配置してなる化成処理鋼板は、化成処理皮膜の付着量の幅広い範囲において、良好な耐食性および耐黒変性を有する。当該化成処理皮膜は、水溶性のモリブデン酸塩、バナジウム塩、アミン、4A族金属酸素酸塩およびリン酸塩を含み、バナジウムに対するモリブデンのモル比が0.4~5.5であり、バナジウムに対するアミンのモル比が0.3以上である化成処理液を上記Zn系めっき鋼板に塗布、乾燥することによって得られる。また、上記化成処理鋼板における上記の良好な耐食性および耐黒変性は、上記めっき鋼板に塗布された上記化成処理液を、40℃または80℃の比較的低い乾燥温度で乾燥させても、化成処理皮膜の付着量に関わらず得られる。
 次に、化成処理液を従来技術A~Cのそれぞれに変更した以外は、化成処理鋼板1などと同様にして、比較材である化成処理鋼板101~106を準備した。そして、実施例1と同様にして、上記の評価基準により評価した。結果を下記表11に示す。
 [従来技術A]
 市販の部分還元クロメート処理液(ZM-3387;日本パーカライジング株式会社)を化成処理原板の表面に塗布し、直後に自動排出型電気式熱風オーブンを用いて低温(到達板温40℃または80℃)で加熱乾燥して、化成処理皮膜を形成した。化成処理皮膜のCr付着量は200mg/mであった。
 [従来技術B]
 炭酸ジルコニウムアンモニウム、酒石酸バナジル、リン酸およびクエン酸を添加した青色透明の化成処理液を化成処理原板の表面に塗布し、直後に自動排出型電気式熱風オーブンを用いて低温(到達板温40℃または80℃)で加熱乾燥して、化成処理皮膜を形成した。酒石酸バナジルは、五酸化バナジウムを酒石酸水溶液中で還元させることで調製した。化成処理皮膜のZr付着量およびV付着量は、いずれも200mg/mであった。
 [従来技術C]
 フッ化チタン酸水素酸、リン酸を添加した無色透明の化成処理液を化成処理原板の表面に塗布し、直後に自動排出型電気式熱風オーブンを用いて低温(到達板温40℃または80℃)で加熱乾燥して、化成処理皮膜を形成した。化成処理皮膜のTi付着量は、200mg/mであった。
Figure JPOXMLDOC01-appb-T000011
 市販のクロメート処理液を使用したNo.101、102の化成処理鋼板は、化成処理液を低温で乾燥させたため、平坦部耐食性および加工部耐食性が劣っていた。また、従来技術の知見に基づき、有機酸を添加してVを還元させた化成処理液またはフッ化物を含む化成処理液を使用したNo.103~106の化成処理鋼板は、それぞれ、化成処理液を低温で乾燥させたため、平坦部耐食性、加工部耐食性および耐黒変性が顕著に劣っていた。
 以上、表11に示す従来技術での試験結果と、表5~10に示す実施例との比較により、前述した本発明に係る化成処理鋼板は、従来技術と比較し、良好な耐食性および耐黒変性を有することがわかる。また、当該化成処理鋼板は、前述した本発明に係る化成処理液からの化成処理皮膜の作製より得られることがわかる。さらに、当該良好な耐食性および耐黒変性は、当該化成処理液の低温での乾燥によっても得られることがわかる。
 [実施例3]
 以下の手順で作製した化成処理鋼板を準備した。化成処理原板は板厚0.5mmの極低炭素Ti添加鋼の鋼帯を基材として、連続溶融亜鉛めっき製造ラインで、溶融Zn-0.18質量%Alめっき鋼板(片面あたりのめっき付着量90g/m)を作製し、化成処理原板として使用した。
 化成処理原板の表面を脱脂し、乾燥させた。次いで、化成処理原板の表面に表2~4に示される化成処理液19~50を塗布し、直後に自動排出型電気式熱風オーブンを用いて低温(到達板温40℃または80℃)で加熱乾燥して、化成処理皮膜を形成した。こうして、化成処理鋼板107~170を作製した。
 各化成処理鋼板から切り出した試験片について、化成処理皮膜の構造の特定、皮膜中の全バナジウム中に占める5価のバナジウムの比率の特定、皮膜付着量の測定、耐食性試験および耐黒変性試験を行った。各化成処理鋼板についての、使用した化成処理液、化成処理皮膜中の各元素の比率、耐食性試験の結果および耐黒変性試験の結果を表12~15に示す。なお、化成処理皮膜中の各元素の比率は、Zr:100質量部に対する各元素の質量部として表している。
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
 表12~15から明らかなように、V、MoおよびPを含む第1化成処理層と、第1化成処理層の上に配置され、4A族金属酸素酸塩を含む第2化成処理層とを有し、化成処理皮膜中における全Vに対する5価のVの比率を0.7以上とする化成処理皮膜を、Alを0.1~22.0質量%を含むZn系めっき層を有するZn系めっき鋼板上に配置してなる化成処理鋼板は、いずれも、良好な耐食性および耐黒変性を有していることがわかる。当該化成処理皮膜は、水溶性のモリブデン酸塩、バナジウム塩、アミン、4A族金属酸素酸塩およびリン酸塩を含み、バナジウムに対するモリブデンのモル比が0.4~5.5であり、バナジウムに対するアミンのモル比が0.3以上である化成処理液を上記Zn系めっき鋼板に塗布、乾燥することによって得られる。また、上記化成処理鋼板における上記の良好な耐食性および耐黒変性は、比較的低い温度で化成処理液を乾燥させた化成処理鋼板であっても、化成処理皮膜の付着量の幅広い範囲において、得られる。
 以上の結果から、本発明の化成処理鋼板は、化成処理液を低温かつ短時間で乾燥させた場合であっても、加工部耐食性および耐黒変性に優れていることがわかる。
 [実施例4]
 [化成処理液51の調製]
 表1に示すモリブデン酸アンモニウム、五酸化バナジウム、エタノールアミン、炭酸ジルコニウムアンモニウム(AZC)、リン酸水素ニアンモニウムおよび水を、表16に示す濃度となるように混合し、化成処理液51を得た。各化成処理液の組成および色を表16に示す。表16中、「Mo/V」は、バナジウム元素に対するモリブデン元素のモル比であり、「アミン/V」は、バナジウム元素に対するアミンのモル比である。
 [化成処理液52~57の調製]
 モリブデン濃度、バナジウム塩の種類およびバナジウム濃度、アミンの種類および濃度、ジルコニウム濃度、リン酸塩の種類およびリン濃度を、表16に示すように変更した以外は化成処理液51と同様にして、化成処理液52~57をそれぞれ得た。
Figure JPOXMLDOC01-appb-T000016
 [化成処理液58~64の調製]
 親水性樹脂としての有機樹脂を表17に示す濃度となるようにさらに混合した以外は化成処理液51~57と同様にして、化成処理液58~64をそれぞれ得た。表17中、「AR」はアクリル樹脂を、「PO」はポリオレフィンを、「ER」はエポキシ樹脂を、「PU」はポリウレタンを、それぞれ表す。また、表17中の有機樹脂の量は、化成処理液中のバナジウムおよびモリブデンの合計量に対する有機樹脂の量(質量%)である。
 なお、「アクリル樹脂」には、DIC株式会社製の「ボンコート40-418EF」(「ボンコート」は同社の登録商標)を、「ポリオレフィン」には、住友精化株式会社製の「ザイクセン」Aタイプ-AC(「ザイクセン」は同社の登録商標)を、「エポキシ樹脂」には、株式会社ADEKA製の「アデカレジンEM-0434AN」(「アデカレジン」は同社の登録商標)を、そして「ポリウレタン」には、株式会社ADEKA製の「アデカポンタイターHUX-232」(「アデカポンタイター」は同社の登録商標)を、それぞれ用いた。
 [化成処理液65、66の調製]
 モリブデン濃度、バナジウム塩の種類およびバナジウム濃度、アミンの種類および濃度、ジルコニウム濃度、リン酸塩の種類およびリン濃度、有機樹脂の種類および濃度を、表17に示すように変更した以外は化成処理液51と同様にして、化成処理液65、66をそれぞれ得た。
Figure JPOXMLDOC01-appb-T000017
 [化成処理液67~73の調製]
 水中でフッ素イオンまたはフルオロメタルイオンを生成するフッ素化合物を表18に示す濃度となるようにさらに混合した以外は化成処理液51~57と同様にして、化成処理液67~73をそれぞれ得た。表18中のフッ素化合物の量は、化成処理液中のバナジウムおよびモリブデンの合計量に対するフッ素元素の量(質量%)である。当該フッ素元素は、化成処理液中のフッ素イオンまたはフルオロメタルイオンに由来している。
Figure JPOXMLDOC01-appb-T000018
 [化成処理液74~80の調製]
 水中でシラノール基を生成するケイ素化合物を表19に示す濃度となるようにさらに混合した以外は化成処理液51~57と同様にして、化成処理液74~80をそれぞれ得た。表19中のケイ素化合物の量は、化成処理液中のバナジウムおよびモリブデンの合計量に対するケイ素元素の量(質量%)である。当該ケイ素元素は、化成処理液中のシラノール基に由来している。
Figure JPOXMLDOC01-appb-T000019
 なお、上記化成処理液の調製において、Vの還元を防ぐため、アミンを含む液温40℃以下の水溶液にバナジウム塩を添加し、溶解させた。各化成処理液の色が黄色であることから、各化成処理液に含まれるVの価数は、5価(V5+)であると考えられる。
 [化成処理鋼板171~200の作製]
 上記化成処理原板の表面を脱脂し、乾燥させた。次いで、化成処理原板の表面に表16に示される化成処理液51を、表20に示す化成処理皮膜の付着量となる量で塗布し、直後に自動排出型電気式熱風オーブンを用いて乾燥温度(到達板温)40℃で2秒間加熱乾燥して、化成処理皮膜を形成した。こうして、化成処理鋼板171を作製した。
 また、化成処理液51に代えて化成処理液52~80のそれぞれを用い、表20または表21に示す付着量で当該化成処理液を化成処理原板に塗布し、表20または表21に示す乾燥温度で加熱乾燥する以外は、化成処理鋼板51と同様にして、化成処理鋼板172~200をそれぞれ作製した。なお、乾燥温度が80℃の場合の乾燥時間は6秒間である。
 [化成処理鋼板の測定、評価]
 各化成処理鋼板から切り出した試験片について、実施例1と同様にして化成処理皮膜の構造を特定すると共に、耐食性試験および耐黒変性試験を行った。
 その結果、実施例に区分される化成処理鋼板では、たとえば化成処理鋼板17と同様の2層構造が、すなわち第1化成処理層にV、MoおよびPを含み、第2化成処理層に4A族金属酸素酸塩を含むことが確認された。一方、比較例に区分される化成処理鋼板では、化成処理皮膜における上記の2層構造は確認されなかった。
 化成処理鋼板171~200における、化成処理液の種類、付着量、乾燥温度、化成処理皮膜中のモリブデン、バナジウムおよびリンの含有比、5価のバナジウムの比率、および各種評価結果を表20、表21にそれぞれ示す。なお、モリブデン、バナジウムおよびリンの各含有比は、Zr元素100質量部に対する各元素の質量部である。
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
 表16および表20から明らかなように、化成処理液51~57を使用した化成処理鋼板171~177の平坦部耐食性、加工部耐食性および耐黒変性は、いずれも十分良好であった。
 一方、表17および表20から明らかなように、親水性樹脂を含有する以外は化成処理液51~57と同じ組成の化成処理液58~64を使用した化成処理鋼板178~184では、平坦部耐食性、加工部耐食性および耐黒変性の少なくともいずれかが不十分となることがあった。具体的には、親水性樹脂の濃度が比較的低い化成処理液60、62、63を使用した化成処理鋼板180、182、183では、平坦部耐食性、加工部耐食性および耐黒変性のいずれもが十分良好であった。これに対して、親水性樹脂の濃度が比較的高い化成処理液58、59、61、64を使用した化成処理鋼板178、179、181、184では、平坦部耐食性、加工部耐食性および耐黒変性のいずれもが不十分であった。これは、化成処理液中に親水性樹脂が比較的高い濃度で含まれると、化成処理皮膜中の上記2層構造の構築が阻害されるため、と考えられる。
 また、化成処理鋼板185、186でも、平坦部耐食性、加工部耐食性および耐黒変性のいずれもが不十分であった。これは、化成処理液65、66中の「Mo/V」および「アミン/V」が同じであっても、リンの有無に関わらず、親水性樹脂を高い濃度で含有しているので、上記と同じ理由で化成処理皮膜中の上記2層構造の構築が阻害されるため、と考えられる。
 また、表18および表21から明らかなように、フッ素イオンまたはフルオロメタルイオンとしてフッ素を含有する以外は化成処理液51~57と同じ組成の化成処理液67~73を使用した化成処理鋼板187~193では、平坦部耐食性、加工部耐食性および耐黒変性の少なくともいずれかが不十分となることがあった。具体的には、フッ素濃度が比較的低い化成処理液69、70を使用した化成処理鋼板189、190では、平坦部耐食性、加工部耐食性および耐黒変性のいずれもが十分良好であった。これに対して、フッ素濃度が比較的高い化成処理液67、68、71~73を使用した化成処理鋼板187、188、191~193では、平坦部耐食性、加工部耐食性および耐黒変性のいずれもが不十分であった。これは、化成処理液中に上記のフッ素が比較的高い濃度で含まれると、化成処理皮膜中の上記2層構造の構築が阻害されるため、と考えられる。
 また、表19および表21から明らかなように、シラノール基由来のケイ素を含有する以外は化成処理液51~57と同じ組成の化成処理液74~80を使用した化成処理鋼板194~200では、平坦部耐食性、加工部耐食性および耐黒変性の少なくともいずれかが不十分となることがあった。具体的には、ケイ素濃度が比較的低い化成処理液76、79を使用した化成処理鋼板196、199では、平坦部耐食性、加工部耐食性および耐黒変性のいずれもが十分良好であった。これに対して、ケイ素濃度が比較的高い化成処理液74、75、77、78、80を使用した化成処理鋼板194、195、197、198、200では、平坦部耐食性、加工部耐食性および耐黒変性のいずれもが不十分であった。これは、化成処理液中に上記のケイ素が比較的高い濃度で含まれると、化成処理皮膜中の上記2層構造の構築が阻害されるため、と考えられる。
 以上より、0.1~22.0質量%のアルミニウムを含むZn系めっき層を有するZn系めっき鋼板に、水溶性のモリブデン酸塩、バナジウム塩、アミン、4A族金属酸素酸塩およびリン酸化合物を含み、バナジウムに対するモリブデンのモル比が0.4~5.5であり、かつバナジウムに対するアミンのモル比が0.3以上である化成処理液であって、バナジウムおよびモリブデンの合計量に対し、上記親水性樹脂の含有量が多くとも100質量%であり、上記フッ素濃度が多くとも30質量%であり、あるいは、上記ケイ素濃度が多くとも50質量%である化成処理液を適用すると、化成処理液を低温かつ短時間で乾燥させた場合であっても、加工部耐食性および耐黒変性に優れる化成処理鋼板が得られることがわかる。
 本出願は、2013年11月14日出願の特願2013-235543号、および、2014年11月14日出願の特願2014-231275号、に基づく優先権を主張する。当該出願明細書および図面に記載された内容は、すべて本願明細書に援用される。
 本発明の化成処理鋼板は、耐食性および耐黒変性に優れるため、例えば自動車や建材、家電製品などの幅広い用途において有用である。
 

Claims (5)

  1.  Al:0.1~22.0質量%を含むZn系めっき層を有するZn系めっき鋼板に塗布されるための化成処理液であって、
     水溶性のモリブデン酸塩、バナジウム塩、アミン、4A族金属酸素酸塩およびリン酸化合物を含み、
     前記化成処理液中のバナジウムに対するモリブデンのモル比は、0.4~5.5であり、
     前記化成処理液中のバナジウムに対するアミンのモル比は、0.3以上であり、
     前記化成処理液における親水性樹脂の含有量は、前記化成処理液中のバナジウムおよびモリブデンの合計量に対して多くとも100質量%であり、
     前記化成処理液におけるフッ素イオンまたはフルオロメタルイオン由来のフッ素の合計の含有量は、前記化成処理液中のバナジウムおよびモリブデンの合計量に対して多くとも30質量%であり、
     前記化成処理液におけるシラノール基由来のケイ素の含有量は、前記化成処理液中のバナジウムおよびモリブデンの合計量に対して多くとも50質量%である、化成処理液。
  2.  前記アミンの分子量は、80以下である、請求項1に記載の化成処理液。
  3.  Al:0.1~22.0質量%を含むZn系めっき層を有するZn系めっき鋼板と、前記Zn系めっき層の上に配置された化成処理皮膜と、を有する化成処理鋼板であって、
     前記化成処理皮膜は、前記Zn系めっき層表面に配置され、V、MoおよびPを含む第1化成処理層と、前記第1化成処理層の上に配置され、4A族金属酸素酸塩を含む第2化成処理層と、を有し、
     前記化成処理皮膜中における、全Vに対する5価のVの比率は、0.7以上である、
     化成処理鋼板。
  4.  前記4A族金属酸素酸塩は、Zr酸素酸塩であり、
     前記化成処理皮膜は、Zr:100質量部に対して、Mo:1~60質量部、V:2~20質量部、P:10~50質量部を含有する、
     請求項3に記載の化成処理鋼板。
  5.  前記Zn系めっき鋼板は、Al:0.1~22.0質量%、Mg:1.5~10.0質量%を含む溶融Al、Mg含有Znめっき層を有する溶融Al、Mg含有Znめっき鋼板である、請求項3または4に記載の化成処理鋼板。
     
PCT/JP2014/005750 2013-11-14 2014-11-14 化成処理液および化成処理鋼板 WO2015072154A1 (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
CN201480061570.XA CN105723016B (zh) 2013-11-14 2014-11-14 化学转化处理液及化学转化处理钢板
ES14861969T ES2755359T3 (es) 2013-11-14 2014-11-14 Solución de tratamiento de conversión química y lámina de acero químicamente convertida
AU2014348133A AU2014348133B2 (en) 2013-11-14 2014-11-14 Chemical conversion treatment solution and chemically converted steel sheet
EP14861969.5A EP3070186B1 (en) 2013-11-14 2014-11-14 Chemical conversion treatment solution and chemically converted steel sheet
US15/030,228 US20160237572A1 (en) 2013-11-14 2014-11-14 Chemical conversion treatment solution and chemically converted steel sheet
RU2016118622A RU2643023C2 (ru) 2013-11-14 2014-11-14 Раствор для химической конверсионной обработки и подвергнутый химической конверсионной обработке стальной лист
KR1020177022835A KR20170097792A (ko) 2013-11-14 2014-11-14 화성처리액 및 화성처리 강판
CA2927805A CA2927805C (en) 2013-11-14 2014-11-14 Chemical conversion treatment solution and chemically converted steel sheet
MX2016006050A MX2016006050A (es) 2013-11-14 2014-11-14 Solucion de tratamiento de conversion quimica y lamina de acero quimicamente convertida.
KR1020167012305A KR20160068920A (ko) 2013-11-14 2014-11-14 화성처리액 및 화성처리 강판

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-235543 2013-11-14
JP2013235543 2013-11-14
JP2014231275A JP6272207B2 (ja) 2013-11-14 2014-11-14 化成処理液
JP2014-231275 2014-11-14

Publications (1)

Publication Number Publication Date
WO2015072154A1 true WO2015072154A1 (ja) 2015-05-21

Family

ID=53057103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/005750 WO2015072154A1 (ja) 2013-11-14 2014-11-14 化成処理液および化成処理鋼板

Country Status (10)

Country Link
US (1) US20160237572A1 (ja)
JP (1) JP6272207B2 (ja)
KR (2) KR20160068920A (ja)
AU (1) AU2014348133B2 (ja)
CA (2) CA3026697C (ja)
MX (1) MX2016006050A (ja)
MY (1) MY176780A (ja)
RU (1) RU2643023C2 (ja)
SG (1) SG10201900594UA (ja)
WO (1) WO2015072154A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022186380A1 (ja) * 2021-03-04 2022-09-09 日本製鉄株式会社 表面処理鋼材

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PT3070186T (pt) * 2013-11-14 2019-11-20 Nippon Steel Nisshin Co Ltd Solução de tratamento de conversão química e folha de aço quimicamente convertida
JP6697298B2 (ja) * 2016-03-24 2020-05-20 日鉄日新製鋼株式会社 表面処理された溶融めっき鋼板およびその製造方法
JP2019173045A (ja) * 2018-03-26 2019-10-10 日鉄日新製鋼株式会社 無機系化成処理液および無機系化成処理鋼板
JP6928573B2 (ja) * 2018-03-26 2021-09-01 日本製鉄株式会社 無機系化成処理液および無機系化成処理鋼板
JP2020029623A (ja) * 2019-12-03 2020-02-27 日鉄日新製鋼株式会社 化成処理液および化成処理鋼板
KR20230113604A (ko) 2021-01-06 2023-07-31 닛폰세이테츠 가부시키가이샤 표면 처리 강판

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002194558A (ja) 2000-10-16 2002-07-10 Nisshin Steel Co Ltd 耐食性に優れた化成処理鋼板
JP2003055777A (ja) 2001-06-04 2003-02-26 Nippon Steel Corp 溶接性、耐食性に優れたクロメートフリー処理溶融亜鉛−アルミニウム合金めっき鋼板
JP2003277945A (ja) * 2002-03-20 2003-10-02 Nisshin Steel Co Ltd 非クロム型表面処理鋼板
JP2005146340A (ja) 2003-11-14 2005-06-09 Nisshin Steel Co Ltd 耐食性,耐黒変性に優れた溶融Mg含有亜鉛合金めっき鋼板
JP2005226155A (ja) * 2004-01-16 2005-08-25 Nisshin Steel Co Ltd 耐食性,耐アルカリ性に優れた化成処理鋼板
WO2007123276A1 (ja) 2006-04-20 2007-11-01 Nippon Steel Corporation 耐食性、耐黒変性、塗装密着性及び耐アルカリ性に優れる複合皮膜処理亜鉛含有めっき鋼材
JP2013235543A (ja) 2012-05-11 2013-11-21 Mitsubishi Electric Corp 設計支援システム及び設計支援方法
JP2014231275A (ja) 2013-05-29 2014-12-11 アイシン精機株式会社 車両の後輪操舵装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000199074A (ja) * 1998-12-28 2000-07-18 Nippon Parkerizing Co Ltd 希土類・鉄系焼結永久磁石の沈着型表面処理液および表面処理方法、ならびに該表面処理方法により得られた表面を有する希土類・鉄系焼結永久磁石
WO2001042530A1 (fr) * 1999-12-13 2001-06-14 Toyo Kohan Co., Ltd. Procede de production de tole d'acier traitee en surface, tole d'acier traitee en surface et tole d'acier traitee en surface recouverte de resine
JP3851106B2 (ja) * 2000-05-11 2006-11-29 日本パーカライジング株式会社 金属表面処理剤、金属表面処理方法及び表面処理金属材料
JP4975999B2 (ja) * 2004-10-26 2012-07-11 日本パーカライジング株式会社 金属表面処理剤、金属材料の表面処理方法及び表面処理金属材料
EP1847633B1 (en) * 2005-02-02 2018-08-22 Nihon Parkerizing Co., Ltd. Aqueous surface treating agent for metal material, surface treating method and surface-treated metal material
DE102005059314B4 (de) * 2005-12-09 2018-11-22 Henkel Ag & Co. Kgaa Saure, chromfreie wässrige Lösung, deren Konzentrat, und ein Verfahren zur Korrosionsschutzbehandlung von Metalloberflächen
KR20070044579A (ko) 2005-10-25 2007-04-30 삼성에스디아이 주식회사 스페이서 및 이를 구비한 전자 방출 표시 디바이스
JP5088095B2 (ja) * 2006-12-13 2012-12-05 Jfeスチール株式会社 平板部耐食性、耐黒変性およびプレス成形後の外観と耐食性に優れた表面処理亜鉛系めっき鋼板、並びに亜鉛系めっき鋼板用水系表面処理液
WO2009004684A1 (ja) * 2007-06-29 2009-01-08 Nihon Parkerizing Co., Ltd. 亜鉛系めっき鋼板用水系表面処理液及び亜鉛系めっき鋼板
DE102008053517A1 (de) * 2008-10-28 2010-04-29 Henkel Ag & Co. Kgaa Lackhaftung durch Polyvinylamine in sauren wässrigen polymerhaltigen Korrosionsschutzmitteln
JP5638191B2 (ja) * 2008-11-05 2014-12-10 日本パーカライジング株式会社 化成処理金属板およびその製造方法
JP5499773B2 (ja) * 2010-02-26 2014-05-21 Jfeスチール株式会社 亜鉛系めっき鋼板用の表面処理液ならびに亜鉛系めっき鋼板およびその製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002194558A (ja) 2000-10-16 2002-07-10 Nisshin Steel Co Ltd 耐食性に優れた化成処理鋼板
JP2003055777A (ja) 2001-06-04 2003-02-26 Nippon Steel Corp 溶接性、耐食性に優れたクロメートフリー処理溶融亜鉛−アルミニウム合金めっき鋼板
JP2003277945A (ja) * 2002-03-20 2003-10-02 Nisshin Steel Co Ltd 非クロム型表面処理鋼板
JP2005146340A (ja) 2003-11-14 2005-06-09 Nisshin Steel Co Ltd 耐食性,耐黒変性に優れた溶融Mg含有亜鉛合金めっき鋼板
JP2005226155A (ja) * 2004-01-16 2005-08-25 Nisshin Steel Co Ltd 耐食性,耐アルカリ性に優れた化成処理鋼板
WO2007123276A1 (ja) 2006-04-20 2007-11-01 Nippon Steel Corporation 耐食性、耐黒変性、塗装密着性及び耐アルカリ性に優れる複合皮膜処理亜鉛含有めっき鋼材
JP2013235543A (ja) 2012-05-11 2013-11-21 Mitsubishi Electric Corp 設計支援システム及び設計支援方法
JP2014231275A (ja) 2013-05-29 2014-12-11 アイシン精機株式会社 車両の後輪操舵装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022186380A1 (ja) * 2021-03-04 2022-09-09 日本製鉄株式会社 表面処理鋼材
JPWO2022186380A1 (ja) * 2021-03-04 2022-09-09
JP7376843B2 (ja) 2021-03-04 2023-11-09 日本製鉄株式会社 表面処理鋼材

Also Published As

Publication number Publication date
SG10201900594UA (en) 2019-02-27
AU2014348133B2 (en) 2017-10-12
MX2016006050A (es) 2016-07-18
KR20170097792A (ko) 2017-08-28
RU2643023C2 (ru) 2018-01-29
CA2927805A1 (en) 2015-05-21
CA2927805C (en) 2019-03-05
US20160237572A1 (en) 2016-08-18
JP2015117433A (ja) 2015-06-25
CA3026697A1 (en) 2015-05-21
AU2014348133A1 (en) 2016-05-12
MY176780A (en) 2020-08-21
CA3026697C (en) 2021-03-02
RU2016118622A (ru) 2017-12-19
JP6272207B2 (ja) 2018-01-31
KR20160068920A (ko) 2016-06-15

Similar Documents

Publication Publication Date Title
JP6272207B2 (ja) 化成処理液
JP4683582B2 (ja) 水系金属材料表面処理剤、表面処理方法及び表面処理金属材料
JP6653026B2 (ja) 鋼板表面処理用溶液組成物、それを用いて表面処理された亜鉛系めっき鋼板、及びその製造方法
US9200165B2 (en) Surface treatment liquid for zinc or zinc alloy coated steel sheet, zinc or zinc alloy-coated steel sheet, and method for manufacturing the same
RU2418098C2 (ru) Материал цинксодержащей плакированной стали с композитным покрытием, характеризующийся превосходными коррозионной стойкостью, стойкостью к почернению, адгезией покрытия и щелочестойкостью
KR101786392B1 (ko) 3가 크롬 및 무기화합물을 함유한 표면처리 용액조성물, 이를 이용하여 표면 처리된 아연계 도금강판 및 그 제조방법
ES2934840T3 (es) Composición de solución de tratamiento superficial para láminas de acero chapadas con aleación de zinc por inmersión en caliente con base ternaria, que proporciona una excelente resistencia a la corrosión y resistencia al ennegrecimiento, láminas de acero chapadas con aleación de zinc por inmersión en caliente con base ternaria usando la misma, y proce-dimiento de fabricación de la misma
TWI550099B (zh) Galvanized steel sheet containing aluminum and its manufacturing method
CN114502673B (zh) 表面处理溶液组合物、利用其进行表面处理的三元系热浸镀锌合金钢板及其制造方法
CN109891000B (zh) 表面处理钢板
TW201823514A (zh) 鋅系鍍覆鋼板用表面處理液、帶表面處理皮膜的鋅系鍍覆鋼板的製造方法及帶表面處理皮膜的鋅系鍍覆鋼板
JP6884083B2 (ja) 化成処理鋼板
JP2022505593A (ja) 3価クロム及び無機化合物を含有した表面処理溶液組成物、これを用いて表面処理された溶融亜鉛めっき鋼板の製造方法
WO2016163461A1 (ja) Zn-Mg合金めっき鋼板
TWI714101B (zh) 表面處理鋼板
WO2019187944A1 (ja) 化成処理液および化成処理鋼板
JP4283698B2 (ja) 端面耐食性に優れるプレコート鋼板およびその製造方法
JP6112148B2 (ja) 耐食性に優れた亜鉛系めっき鋼板
JP7460946B1 (ja) 表面処理鋼板
WO2024075833A1 (ja) 表面処理鋼板
JP4808585B2 (ja) 表面処理金属材料
WO2022190173A1 (ja) 塗装めっき鋼板又は塗装めっき鋼帯
KR20230141860A (ko) 표면 처리 강재
KR20230081132A (ko) 내식성 및 내흑변성이 우수한 삼원계 용융아연도금강판 표면처리용 조성물, 이를 이용하여 표면처리된 삼원계 용융아연도금강판 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14861969

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2927805

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15030228

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: MX/A/2016/006050

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 20167012305

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2014348133

Country of ref document: AU

Date of ref document: 20141114

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: IDP00201603149

Country of ref document: ID

REEP Request for entry into the european phase

Ref document number: 2014861969

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014861969

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016010299

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2016118622

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112016010299

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160506