WO2015071984A1 - 複合粒子、複合粒子の製造方法、及び、その用途 - Google Patents
複合粒子、複合粒子の製造方法、及び、その用途 Download PDFInfo
- Publication number
- WO2015071984A1 WO2015071984A1 PCT/JP2013/080723 JP2013080723W WO2015071984A1 WO 2015071984 A1 WO2015071984 A1 WO 2015071984A1 JP 2013080723 W JP2013080723 W JP 2013080723W WO 2015071984 A1 WO2015071984 A1 WO 2015071984A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- particles
- composite
- silica particles
- composite particles
- silica
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
- C08F2/12—Polymerisation in non-solvents
- C08F2/16—Aqueous medium
- C08F2/18—Suspension polymerisation
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/60—Additives non-macromolecular
- C09D7/61—Additives non-macromolecular inorganic
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
- C08F2/38—Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
- C08F2/44—Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/10—Esters
- C08F220/12—Esters of monohydric alcohols or phenols
- C08F220/14—Methyl esters, e.g. methyl (meth)acrylate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/12—Powdering or granulating
- C08J3/126—Polymer particles coated by polymer, e.g. core shell structures
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/12—Powdering or granulating
- C08J3/128—Polymer particles coated by inorganic and non-macromolecular organic compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K9/00—Use of pretreated ingredients
- C08K9/04—Ingredients treated with organic substances
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D133/00—Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
- C09D133/04—Homopolymers or copolymers of esters
- C09D133/06—Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
- C09D133/10—Homopolymers or copolymers of methacrylic acid esters
- C09D133/12—Homopolymers or copolymers of methyl methacrylate
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D201/00—Coating compositions based on unspecified macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2333/00—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
- C08J2333/04—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
- C08J2333/06—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2401/00—Characterised by the use of cellulose, modified cellulose or cellulose derivatives
- C08J2401/02—Cellulose; Modified cellulose
- C08J2401/04—Oxycellulose; Hydrocellulose
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/34—Silicon-containing compounds
- C08K3/36—Silica
Definitions
- the present invention relates to composite particles comprising polymer particles and silica particles attached to the surfaces of the polymer particles, a method for producing the composite particles, and uses thereof (external preparations, coating agents, optical films, resin compositions) , And molded body).
- Polymer particles having an average particle size of 0.01 to 100 ⁇ m are, for example, additives for coating agents such as paints (matting agents, etc.), additives for inks (matting agents, etc.), and main components of adhesives. Or additives, additives for artificial marble (low shrinkage agents, etc.), paper treatment agents, packing materials for external preparations such as cosmetics (fillers for improving slipperiness), column packing materials for chromatography, static It is used in applications such as toner additives used for charge image development, anti-blocking agents for films, and light diffusing agents for light diffusers (such as light diffusing films).
- the polymer particles are usually produced by suspension polymerization of a polymerizable monomer.
- a suspension stabilizer such as silica is used so that droplets containing a polymerizable monomer can be polymerized in a system in which droplets do not coalesce and the droplets are stably suspended. Used. Thereby, fine polymer particles having a uniform particle size distribution can be obtained.
- Patent Document 1 a composition containing an aqueous medium, a polymerizable monomer, a polymerization initiator, an inorganic dispersant (for example, colloidal silica) and an emulsifier is stirred, and oil droplets are dispersed in the aqueous medium.
- a method is described which includes a step of forming a liquid and a step of heating the dispersion while stirring to polymerize the polymerizable monomer. According to this method, resin particles (polymer particles) having a uniform particle diameter can be obtained.
- silica particles By the way, in recent years, as one of methods for imparting new characteristics to the polymer particles or improving the characteristics of the polymer particles, it has been considered to combine the silica particles with the polymer particles. For example, it is considered that when silica particles are attached to the surface of polymer particles, the hydrophilicity of the particle surface and the hardness of the particles themselves can be improved. Since particles having hydrophilicity on the surface are easily dispersed in an aqueous medium, they should be suitably used as a raw material for additives for aqueous coating agents such as aqueous paints (matting agents, etc.) and aqueous external preparations such as lotions. Can do. In addition, by improving the hardness of the particles themselves, an improvement in scratch resistance can be expected when used as an additive for coating agents such as paints.
- Patent Document 1 it is possible to obtain resin particles in which the coating amount of the inorganic dispersant on the surface of the resin particles is 0.0001 to 0.02 g / m 2 .
- this method was made for the purpose of obtaining resin particles (polymer particles) with a small amount of inorganic dispersant such as silica on the surface.
- inorganic particles on the resin particle surface were obtained. The adhesion of the dispersant is suppressed. For this reason, the silica particles adhering to the surface of the resin particles obtained by this method in a small amount do not adhere firmly to the surface of the resin particles and are easily dropped from the resin particles.
- the present invention has been made in view of such a situation, and a composite particle manufacturing method capable of obtaining composite particles in which silica particles are difficult to drop off from the surface of polymer particles, and obtained by this manufacturing method. It aims at providing the composite particle and the use of this composite particle.
- the method for producing composite particles of the present invention is a method for producing composite particles comprising polymer particles and silica particles attached to the polymer particles, in the presence of silica particles having water-soluble cellulose adsorbed on the surface. And a polymerization step in which a polymerizable monomer is obtained by subjecting the polymerizable monomer to aqueous suspension polymerization.
- the composite particles of the present invention are characterized by containing polymer particles, silica particles adhering to the surface of the polymer particles, and water-soluble celluloses.
- the silica particles are firmly attached to the surface of the polymer particles due to the inclusion of water-soluble celluloses, the silica particles are difficult to fall off from the surface of the polymer particles.
- the external preparation of the present invention is characterized by containing the composite particles of the present invention.
- the external preparation of the present invention contains the composite particles of the present invention, it has good slip properties. Further, when the external preparation of the present invention contains an aqueous solvent, good dispersibility of the composite particles can be obtained due to the hydrophilicity of the silica particles attached to the surface of the polymer particles.
- the coating agent of the present invention is characterized by containing the composite particles of the present invention.
- the coating agent of the present invention contains the composite particles of the present invention, light diffusibility can be imparted to the coating film formed from the coating agent. Moreover, in the coating agent of this invention, since the hardness of a composite particle is ensured by the silica particle adhering to the polymer particle surface, the improvement of the scratch resistance of the coating film formed from the said coating agent can be anticipated. Further, when the coating agent of the present invention contains an aqueous solvent, good dispersibility of the composite particles can be obtained due to the hydrophilicity of the silica particles attached to the surface of the polymer particles.
- optical film of the present invention is characterized in that a coating agent is applied to a substrate.
- optical film of the present invention contains the coating agent of the present invention, it has light diffusibility.
- the resin composition of the present invention is characterized by containing the composite particles of the present invention and a base resin.
- the resin composition of the present invention has light diffusibility due to the inclusion of the composite particles of the present invention.
- the molded article of the present invention is characterized by being formed by molding the resin composition of the present invention.
- the molded article of the present invention is formed by molding a resin composition containing the composite particles of the present invention, the molded article of the present invention has light diffusibility due to the inclusion of the composite particles of the present invention.
- the manufacturing method of the composite particle which can obtain the composite particle which a silica particle cannot fall easily from the surface of a polymer particle, the composite particle obtained by this manufacturing method, and the use of this composite particle are provided. be able to.
- FIG. 1 is a transmission electron microscope (TEM) image showing an enlarged part of the cross section of the composite particle obtained in Example 1 of the present invention.
- FIG. 2 is a transmission electron microscope (TEM) image of the cross section of the composite particle obtained in Example 1 of the present invention, and is an image in which the interface portion between the polymer particle and the silica particle is enlarged.
- TEM transmission electron microscope
- the production method of the present invention is a method for producing composite particles including polymer particles and silica particles attached to the polymer particles.
- This production method includes a polymerization step in which a composite monomer is obtained by subjecting a polymerizable monomer to aqueous suspension polymerization in the presence of silica particles having water-soluble cellulose adsorbed on the surface thereof.
- the polymerizable monomer used in the production method of the present invention is not particularly limited.
- a compound having a polymerizable carbon-carbon double bond (in a broad sense, a vinyl bond) having no phosphate ester bond hereinafter, it is simply referred to as a polymerizable vinyl monomer.
- the polymerizable vinyl monomer is not particularly limited, and includes a monofunctional monomer having one alkenyl group (broadly defined vinyl group), a polyfunctional monomer having two or more alkenyl groups (broadly defined vinyl group), and the like. Can be mentioned.
- Examples of the monofunctional monomer include ⁇ -methylene aliphatic monocarboxylic acid ester; styrene; o-methylstyrene, m-methylstyrene, p-methylstyrene, p-ethylstyrene, 2,4-dimethylstyrene, p- n-butyl styrene, p-tert-butyl styrene, pn-hexyl styrene, pn-octyl styrene, pn-nonyl styrene, pn-decyl styrene, pn-dodecyl styrene, p-methoxy Styrene derivatives such as styrene, p-phenylstyrene, p-chlorostyrene, 3,4-dichlorostyrene; vinyl carb
- Examples of the ⁇ -methylene aliphatic monocarboxylic acid ester include methyl acrylate, ethyl acrylate, propyl acrylate, n-butyl acrylate, isobutyl acrylate, n-octyl acrylate, dodecyl acrylate, and 2-ethylhexyl acrylate.
- ⁇ , ⁇ -unsaturated carboxylic acids such as acrylic acid, methacrylic acid, maleic acid, fumaric acid and the like can also be used as monofunctional monomers. Further, two or more of these may be used in combination.
- vinyl ethers such as vinyl methyl ether, vinyl ethyl ether, vinyl isobutyl ether; vinyl ketones such as vinyl methyl ketone, vinyl hexyl ketone, methyl isopropenyl ketone; N-vinyl pyrrole, N-vinyl carbazole, N-vinyl indole, N-vinyl compounds such as N-vinylpyrrolidone; vinyl naphthalene salts and the like can also be used as a monofunctional monomer by combining one or more kinds within a range not impeding the effects of the present invention.
- the above monofunctional monomers may be used alone or in combination of two or more.
- the monofunctional monomers described above styrene, methyl methacrylate, and the like are more preferable as the monofunctional monomer used in the present invention because they are inexpensive.
- polyfunctional monomer examples include divinylbenzene; ethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate (with 2 to 10 repeating units), propylene glycol di (meth) acrylate, and polypropylene glycol di (meth) acrylate.
- the polymerizable vinyl monomer when used as the polymerizable monomer, the polymerizable vinyl monomer preferably includes both a monofunctional monomer and a polyfunctional monomer.
- a favorable crosslinked structure can be formed in the polymer particles, and good solvent resistance can be imparted to the composite particles.
- the amount of the polyfunctional monomer used is preferably in the range of 0.5 to 50% by weight, more preferably in the range of 1 to 40% by weight, based on the total amount of polymerizable vinyl monomers used. preferable.
- a better cross-linked structure can be formed in the polymer particles, and further excellent solvent resistance can be imparted to the composite particles.
- the polymerizable vinyl monomer may be used as the polymerizable monomer, but depending on the type of water-soluble cellulose described later, the polymerizable vinyl monomer and the following formula:
- the polymerizable phosphoric acid monomers shown in (1) to (5) may be used in combination.
- the polymerizable vinyl monomer and the polymerizable phosphoric acid monomer depending on the type of water-soluble cellulose described later, in the aqueous suspension polymerization of the polymerizable monomer, the polymerizable monomer in the aqueous medium The stability of the droplet can be improved. Therefore, in the production method of the present invention, the polymerizable phosphoric acid monomer can be suitably used together with the polymerizable vinyl monomer.
- n 1 to 5, when a is 1, b is 2, and when a is 2, b is 1.
- n 1 to 5
- n 1 to 6
- polymerizable phosphoric acid monomer represented by the above formula (2) include “KAYAMER (registered trademark) PM-2” manufactured by Nippon Kayaku Co., Ltd., and “Light Ester P” manufactured by Kyoeisha Chemical Co., Ltd. -2M "and the like.
- polymerizable phosphoric acid monomer represented by the above formula (4) examples include “Phosmer (registered trademark) CL” manufactured by Unichemical Co., Ltd.
- the amount of the polymerizable phosphoric acid monomer used is 100 parts by weight of the polymerizable vinyl monomer.
- the content is preferably in the range of 0.01 to 1 part by weight, and more preferably in the range of 0.01 to 0.8 part by weight.
- the amount of the polymerizable phosphoric acid monomer used exceeds 1 part by weight with respect to 100 parts by weight of the polymerizable vinyl monomer, the emulsion particles (by-product fine particles by emulsion polymerization) and the like appear during polymerization.
- composite particles having a particle size that is too small are likely to be formed, and the coefficient of variation of the particle size of the composite particles may be increased.
- the aqueous medium for the aqueous suspension polymerization of the polymerizable monomer is water or a mixture of water and a water-soluble medium (for example, alcohol such as methanol or ethanol). Medium.
- the amount of the aqueous medium used is preferably 100 to 1000 parts by weight with respect to 100 parts by weight of the polymerizable monomer.
- the aqueous suspension polymerization of the polymerizable monomer is preferably performed in the presence of a polymerization initiator.
- oil-soluble peroxide polymerization initiators or azo polymerization initiators usually used for aqueous suspension polymerization can be suitably used.
- peroxide-based polymerization initiator examples include benzoyl peroxide, lauroyl peroxide, octanoyl peroxide, orthochlorobenzoyl peroxide, orthomethoxybenzoyl peroxide, methyl ethyl ketone peroxide, diisopropyl peroxydicarbonate, cumene hydroperoxide. Cyclohexanone peroxide, t-butyl hydroperoxide, diisopropylbenzene hydroperoxide and the like.
- Examples of the azo polymerization initiator include 2,2′-azobisisobutyronitrile, 2,2′-azobis (2,4-dimethylvaleronitrile), 2,2′-azobis (2,3- Dimethylbutyronitrile), 2,2′-azobis (2-methylbutyronitrile), 2,2′-azobis (2,3,3-trimethylbutyronitrile), 2,2′-azobis (2-isopropyl) Butyronitrile), 1,1′-azobis (cyclohexane-1-carbonitrile), 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile), (2-carbamoylazo) isobutyronitrile 4,4′-azobis (4-cyanovaleric acid), dimethyl-2,2′-azobisisobutyrate and the like.
- 2,2′-azobisisobutyronitrile, 2,2′-azobis (2,4-dimethylvaleronitrile), benzoyl peroxide, peroxide are used from the viewpoint of decomposition rate and the like.
- Lauroyl or the like is preferable as a polymerization initiator that can be used in the production method of the present invention.
- the amount of the polymerization initiator used is preferably 0.01 to 10 parts by weight and more preferably 0.1 to 5.0 parts by weight with respect to 100 parts by weight of the polymerizable monomer. preferable.
- the amount of the polymerization initiator used is less than 0.01 part by weight relative to 100 parts by weight of the polymerizable monomer, it is difficult to sufficiently perform the polymerization initiation function, and the amount exceeds 10 parts by weight. This is not preferable because an effect commensurate with the amount of use cannot be obtained and the cost is uneconomical.
- the aqueous suspension polymerization of the polymerizable monomer is performed in the presence of silica particles adsorbed with water-soluble celluloses.
- the silica particles adsorbed with the water-soluble cellulose function as a suspension stabilizer.
- the silica particles are not particularly limited, and any known particles can be used, and those having an average primary particle diameter of 500 nm or less are preferably used. When silica particles having an average primary particle diameter of more than 500 nm are used, the amount of addition required for stable suspension polymerization increases, which is uneconomical and it is difficult to stably disperse the polymerizable monomer. Therefore, it is not preferable.
- the average primary particle size of the silica particles is preferably as small as possible, more preferably in the range of 5 to 150 nm, and still more preferably in the range of 8 to 100 nm.
- colloidal silica can be preferably used.
- colloidal silica include powdered colloidal silica such as precipitated silica powder and gas phase method silica powder; colloidal silica sol stably dispersed to a primary particle level in a medium.
- colloidal silica sols stably dispersed to the primary particle level in a medium are more suitable for use in the production method of the present invention.
- an aqueous silica sol, an organosilica sol or the like can be preferably used.
- an aqueous colloidal silica is used from the viewpoint of dispersion stability of a sol of colloidal silica because an aqueous suspension polymerization is performed on the polymerizable monomer (that is, an aqueous medium is used for the polymerization of the polymerizable monomer).
- the silica concentration (solid content concentration) in the colloidal silica sol is preferably 5 to 50% by weight because it is generally commercially available and can be easily obtained.
- colloidal silica examples include Snowtex (registered trademark) series manufactured by Nissan Chemical Industries, Ltd., for example, general-purpose type Snowtex (registered trademark) (alkalinity: “Spherical particles having a particle diameter of 5 to 100 nm). “ST-XS”, “ST-30”, “ST-50”, “ST-30L”, “ST-ZL”, acidic: “ST-OXS”, “ST-O”, “ST-O-40” , “ST-OL”, “ST-OZL35”), large-sized SNOWTEX (registered trademark) which is a spherical particle having a particle diameter of 70 to 480 nm (alkalinity: “ST-MP-2040”, “ST-MP-”).
- the amount of silica particles used (hereinafter referred to as the amount added) is preferably 0.022 to 0.15 g / m 2 per unit surface area of the composite particles obtained by this production method.
- the addition amount of the silica particles is less than 0.022 g / m 2 , the composite particles may have insufficient adhesion of the silica particles to the surface of the polymer particles. If more than m 2, the effect can not be obtained commensurate with it, it may become uneconomical.
- the water-soluble celluloses adsorbed on the silica particles are not particularly limited, and examples thereof include alkyl celluloses such as methyl cellulose; hydroxyalkyl celluloses such as hydroxymethyl cellulose, hydroxyethyl cellulose, and hydroxypropyl cellulose; hydroxyethyl methyl cellulose, hydroxy Examples thereof include compounds such as hydroxyalkylalkylcelluloses such as propylmethylcellulose. Among these compounds, hydroxyalkylcelluloses and hydroxyalkylalkylcelluloses are preferable, and hydroxypropylcellulose (HPC) and hydroxypropylmethylcellulose (HPMC) are more preferable. These compounds may be used alone or in combination of two or more.
- alkyl celluloses such as methyl cellulose
- hydroxyalkyl celluloses such as hydroxymethyl cellulose, hydroxyethyl cellulose, and hydroxypropyl cellulose
- HPMC hydroxypropylmethylcellulose
- HPC Hydroxypropyl cellulose
- LCST critical solution temperature
- commercially available products include, for example, NISSO (registered trademark) manufactured by Nippon Soda Co., Ltd.
- the HPC series (“SSL”, “SL”, “L”, “M”, “H”, etc.) can be mentioned.
- Metroles (registered trademark) series more specifically, Metrows (registered trademark) 60SH series having a cloud point of 60 ° C. (“ SH60-50 ”,“ 60SH-4000 ”,“ 60SH-10000 ”), and Metrows (registered trademark) 65SH series (“ 65SH-50 ”,“ 65SH-400 ”,“ 65SH-1500 ”) having a cloud point of 65 ° C. , “65SH-4000”), Metroles (registered trademark) 90SH series having a cloud point of 90 ° C. (“90SH-100”, “90SH-400”, “90SH-4000”, “90SH-15000”), etc. be able to.
- the amount of the water-soluble cellulose adsorbed on the silica particles is not particularly limited, and can be appropriately set according to the specific surface area of the silica particles used in the present invention, but 0.05 g to 1 g of the silica particles. It is preferably 0.5 g.
- the amount of water-soluble cellulose adsorbed on silica particles can be determined by referring to, for example, the Journal of Polymer Science and Technology published by the Society of Polymer Science, Japan. 40, No.10, pp. It can be measured using the method described in 697-702 (Oct, 1983). For example, it can be measured by the [Method for measuring the amount of water-soluble cellulose adsorbed on silica particles] described in the Examples section below.
- the production method of the present invention preferably includes an adsorption step of treating the silica particles with the water-soluble celluloses and adsorbing the water-soluble celluloses on the surface of the silica particles before the polymerization step.
- a method for treating the silica particles with the water-soluble celluloses for adsorbing the water-soluble celluloses on the surface of the silica particles is not particularly limited, and a known method can be applied.
- a method of coexisting silica particles and water-soluble celluloses in a medium and physically adsorbing water-soluble celluloses on the surface of silica particles for example, Rheological and Interfacial Properties of Silicon Oil Prepared by Polymer Pre-adsorbed onto Silica Particles, Colloids Surfaces A: Physicochem. Eng. Aspects, 328, 2008, 114-122.
- the method described in the literature is preferred.
- the water-soluble celluloses adsorbed on the silica particles by this treatment method are hardly detached from the silica particles in the polymerization step and are in a stable state.
- T means the lower critical solution temperature (° C.) or cloud point (° C.) of the water-soluble celluloses).
- T-15 the lower critical solution temperature
- T + 20 cloud point
- the surface of the silica particles is more effectively dissolved in water.
- Cellulose can be physically adsorbed.
- the water-soluble cellulose has only one of a lower critical solution temperature and a cloud point depending on its characteristics.
- the water-soluble cellulose that has not been adsorbed to the silica particles in the adsorption step may be removed by centrifugation or the like before the polymerization step, or the composite particles obtained in the polymerization step after the polymerization step. It may be removed by washing in a purification step for purifying.
- the suspension stability other than the silica particles is within a range not impeding the effect of improving the suspension stability by the silica particles adsorbed by the water-soluble celluloses.
- An agent may be further used.
- the aqueous suspension polymerization of the polymerizable monomer may be performed in the presence of a surfactant in order to further improve the suspension stability.
- a surfactant any of an anionic surfactant, a cationic surfactant, an amphoteric surfactant and a nonionic surfactant can be used.
- anionic surfactant examples include sodium oleate; fatty acid soap such as castor oil potash soap; alkyl sulfate ester salt such as sodium lauryl sulfate and ammonium lauryl sulfate; alkylbenzene sulfonate such as sodium dodecylbenzenesulfonate; alkylnaphthalene Examples include sulfonic acid salts; alkane sulfonic acid salts; dialkyl sulfosuccinic acid salts; alkyl phosphoric acid ester salts; naphthalene sulfonic acid formalin condensates; polyoxyethylene alkyl phenyl ether sulfuric acid ester salts;
- Nonionic surfactants include, for example, polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene fatty acid ester, sorbitan fatty acid ester, polyoxysorbitan fatty acid ester, polyoxyethylene alkylamine, glycerin fatty acid ester, oxy And ethylene-oxypropylene block polymer.
- cationic surfactant examples include alkylamine salts such as laurylamine acetate and stearylamine acetate; quaternary ammonium salts such as lauryltrimethylammonium chloride.
- zwitterionic surfactants examples include lauryl dimethylamine oxide, phosphate ester surfactants, and phosphite surfactants.
- the above surfactants may be used alone or in combination of two or more.
- the surfactant is appropriately selected in consideration of the diameter of the resulting composite particles, the dispersion stability of the polymerizable monomer during aqueous suspension polymerization, and the amount used is appropriately adjusted.
- the aqueous suspension polymerization of the polymerizable monomer may be performed in the presence of a water-soluble polymerization inhibitor in order to suppress the generation of emulsified particles in the aqueous system.
- water-soluble polymerization inhibitor examples include nitrites, sulfites, hydroquinones, ascorbic acids, water-soluble vitamin Bs, citric acid, and polyphenols.
- the aqueous suspension polymerization of the polymerizable monomer is not limited to the effects of the present invention, and other additives such as pigments, dyes, antioxidants, ultraviolet absorbers. Etc. may be performed in the presence of
- the pigment examples include inorganic pigments such as lead white, red lead, yellow lead, carbon black, ultramarine, zinc oxide, cobalt oxide, titanium dioxide, iron oxide, titanium yellow, and titanium black; Navels Yellow, Naphthol Yellow S , Yellow pigments such as Hansa Yellow 10G, Benzidine Yellow G, Benzidine Yellow GR, Quinoline Yellow Lake, Permanent Yellow NCG, Tartrazine Lake; Orange Pigments such as Molybdenum Orange, Permanent Orange RK, Benzidine Orange G, Indanthrene Brilliant Orange GK Permanent red 4R, risor red, pyrazolone, red 4R, watching red calcium salt, lake red D, brilliant carmine 6B, eosin lake, rhodamine lake B, alizarin lake, brilia Red pigments such as Tocarmine B; Purple pigments such as Fast Violet B, Methyl Violet Lake, Dioxane Violet; Alkaline Blue Lake, Victoria Blue Lake, Phthalocyan
- the dye examples include a nitroso dye, a nitro dye, an azo dye, a stilbene azo dye, a diphenylmethane dye, a triphenylmethane dye, a xanthene dye, an acridine dye, a quinoline dye, a methine dye, a polymethine dye, a thiazole dye, an indamine dye, and an Indian dye.
- a phenol dye, an azine dye, an oxazine dye, a thiazine dye, a sulfur dye, etc. can be mentioned.
- antioxidants examples include 2,6-di-t-butyl-4-methylphenol (BHT), n-octadecyl-3 ′-(3 ′, 5′-di-t-butyl-4′-hydroxyphenyl) ) Propionate, pentaerythrityl-tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], 1,3,5-tris (3,5-di-tert-butyl-4- Hydroxybenzyl) isocyanurate, 1,3,5-trimethyl-2,4,6-tris (3,5-di-tert-butyl-4-hydroxybenzyl) benzene, 3,9-bis [2- ⁇ 3- (3-t-butyl-4-hydroxy-5-methylphenyl) propionyloxy ⁇ -1,1-dimethylethyl] -2,4,8,10-tetraoxaspiro [5.5] undecane Distearyl pent
- ultraviolet absorber examples include benzophenone ultraviolet absorbers, benzotriazole ultraviolet absorbers (for example, “ADEKA STAB (registered trademark) LA-31” manufactured by ADEKA Corporation), hydroxyphenyltriazine ultraviolet absorbers, and the like. .
- the polymerizable monomer is subjected to aqueous suspension polymerization in the presence of silica particles having the water-soluble cellulose adsorbed on the surface thereof.
- a monomer mixture is prepared by mixing a polymerizable monomer with a polymerization initiator and / or a polymerization inhibitor and / or other additives as necessary, and the prepared monomer mixture is dissolved in water.
- the aqueous cellulose is dispersed in an aqueous medium containing silica particles adsorbed on the surface (optionally further containing a surfactant and / or other suspension stabilizer, if necessary).
- Examples of the method of dispersing the monomer mixture in the aqueous medium include, for example, a method in which the monomer mixture is directly added to the aqueous medium and dispersed as monomer droplets by stirring force of a propeller blade or the like; the monomer mixture is directly added in the aqueous medium
- the method using a high-pressure disperser such as the above-mentioned microfluidizer or nanomizer or the method of passing through the above-mentioned MPG (microporous glass) porous film can make the particle diameters more uniform, It can be preferably used as a method of dispersing the mixture in an aqueous medium.
- suspension polymerization is started by heating the aqueous medium (aqueous suspension) in which the monomer mixture is dispersed. It is preferable to stir the aqueous suspension during the polymerization reaction. The stirring may be performed to such an extent that the monomer mixture can be prevented from floating as droplets and the composite particles produced by polymerization can be prevented from settling.
- the polymerization temperature is preferably in the range of 30 to 120 ° C, and more preferably in the range of 40 to 80 ° C.
- the time for maintaining this polymerization temperature is preferably in the range of 0.1 to 20 hours.
- the obtained composite particles are separated as a hydrous cake by a method such as suction filtration, centrifugal dehydration, centrifugal separation, pressure dehydration, and the obtained hydrous cake is washed with water and dried as necessary.
- a method such as suction filtration, centrifugal dehydration, centrifugal separation, pressure dehydration, and the obtained hydrous cake is washed with water and dried as necessary.
- the desired composite particles can be obtained.
- the size and shape of the composite particles of the present invention are not particularly limited, but according to the composite particle manufacturing method, composite particles having a volume average particle diameter of 1 to 100 ⁇ m can be obtained.
- the average particle diameter of the obtained composite particles can be adjusted.
- the polymerizable monomer is subjected to aqueous suspension polymerization in the presence of silica particles on which water-soluble celluloses are adsorbed on the surface, water-soluble celluloses adsorbed on the surface of silica particles can be obtained.
- the silica particles can be firmly attached to the surface of the polymer particles. For this reason, it is possible to obtain composite particles in which silica particles are difficult to fall off from the surface of the polymer particles.
- the composite particles of the present invention in which silica particles are attached to the surface of polymer particles (polymer of polymerizable monomers), for example, the TEM images (transmission electron) of FIGS. As shown in the microscope, it is possible to obtain composite particles in which at least a part of the polymer particles is coated with a layer composed of a plurality of the silica particles (black portions in FIGS. 1 and 2). .
- the composite particles of the present invention include polymer particles, silica particles attached to the surface of the polymer particles, and water-soluble celluloses.
- the silica particles may be attached to the surface of the polymer particles via the water-soluble celluloses, or may be directly attached to the surface of the polymer particles.
- the water-soluble celluloses may be attached to both the silica particles and the polymer particles, or only to one of the silica particles and the polymer particles. It may be.
- the amount of the silica particles attached to the surface of the polymer particles is not particularly limited, but is within a range of 0.010 to 0.10 g / m 2 per unit surface area of the composite particles. It is preferable that Composite particles formed by attaching silica particles to polymer particles when the amount of silica particles attached to the surface of the polymer particles is 0.010 to 0.10 g / m 2 per unit surface area of the composite particles The characteristic characteristic can be sufficiently obtained.
- the adhesion amount (g / m 2 ) of the silica particles on the surface of the polymer particles is obtained by, for example, the [calculation method of the adhesion amount] described in the section of Examples described later. Can do.
- the silica particles are firmly attached to the surface of the polymer particles due to the inclusion of the water-soluble celluloses, the silica particles are difficult to fall off from the surface of the polymer particles.
- the composite particles of the present invention are external preparations such as additives for improving the feeling of use such as slipperiness, additives for making skin defects such as pores, spots and wrinkles inconspicuous by the light diffusion effect, etc. Can be contained.
- the external preparation of the present invention contains the composite particles of the present invention.
- the content of the composite particles in the external preparation of the present invention can be appropriately set according to the type of external preparation, but is preferably in the range of 1 to 80% by weight, and in the range of 3 to 70% by weight. Is more preferable.
- the content of the composite particles with respect to the total amount of the external preparation is less than 1% by weight, a clear effect due to the inclusion of the composite particles may not be recognized.
- the content of the composite particles exceeds 80% by weight, a remarkable effect commensurate with the increase in content may not be recognized, which is not preferable in terms of production cost.
- the external preparation of the present invention can be used, for example, as an external medicine or cosmetic.
- the topical medicine is not particularly limited as long as it is applied to the skin, and specific examples include creams, ointments, emulsions and the like.
- Cosmetics include, for example, soaps, body shampoos, facial cleansing creams, scrub facial cleansers, toothpastes, and other cosmetics; funerals, face powders (loose powders, pressed powders, etc.), foundations (powder foundations, liquid foundations, emulsification types) Foundation), lipstick, lip balm, blusher, eyebrow cosmetics (eye shadow, eyeliner, mascara, etc.), nail polish and other makeup cosmetics; pre-shave lotion, body lotion and other lotions; body powder, baby powder and other bodies
- External preparations skin care agents such as lotion, cream, milky lotion (skin lotion), antiperspirants (liquid antiperspirants, solid antiperspirants, cream antiperspirants, etc.), packs, hair washing cosmetics, dyes Hair, hair
- the composite particles blended in the external preparation of the present invention may be those treated with a surface treatment agent such as an oil agent, a silicone compound and a fluorine compound, an organic powder, an inorganic powder or the like.
- a surface treatment agent such as an oil agent, a silicone compound and a fluorine compound, an organic powder, an inorganic powder or the like.
- any oil agent can be used as long as it is usually used for external preparations.
- hydrocarbon oils such as liquid paraffin, squalane, petrolatum, paraffin wax; lauric acid, myristic acid, palmitic acid, stearic acid, olein Higher fatty acids such as acids, behenic acid, undecylenic acid, oxystearic acid, linoleic acid, lanolin fatty acid, synthetic fatty acids; ester oils such as glyceryl trioctanoate, propylene glycol dicaprate, cetyl 2-ethylhexanoate, isocetyl stearate; beeswax Waxes such as whale wax, lanolin, carnauba wax and candelilla wax; oils and fats such as linseed oil, cottonseed oil, castor oil, egg yolk oil, coconut oil; metal soaps such as zinc stearate and zinc laurate; cetyl alcohol, stearyl Alcohol
- the method of treating the composite particles with the oil agent is not particularly limited.
- a dry method in which an oil agent is added to the composite particles and the oil agent is coated by stirring with a mixer or the like, and the oil agent is ethanol, propanol, ethyl acetate.
- a wet method for coating an oil agent can be used by dissolving in a suitable solvent such as hexane by heating, adding composite particles thereto, mixing and stirring, and then removing the solvent under reduced pressure or heating to remove.
- any silicone compound can be used as long as it is usually used in external preparations.
- the method for treating the composite particles with the silicone compound is not particularly limited, and for example, the dry method or the wet method described above can be used.
- a baking treatment may be performed, or in the case of a reactive silicone compound, a reaction catalyst or the like may be added as appropriate.
- the fluorine compound may be any compound as long as it is usually blended with an external preparation, and examples thereof include perfluoroalkyl group-containing esters, perfluoroalkylsilanes, perfluoropolyethers, and polymers having a perfluoro group.
- a method for treating the composite particles with the fluorine compound is not particularly limited, and for example, the dry method or the wet method described above can be used.
- a baking treatment may be performed, or in the case of a reactive fluorine compound, a reaction catalyst or the like may be added as appropriate.
- Examples of the organic powder include natural polymer compounds such as gum arabic, tragacanth gum, guar gum, locust bean gum, karaya gum, iris moss, quince seed, gelatin, shellac, rosin, and casein; sodium carboxymethyl cellulose, hydroxyethyl cellulose, methyl cellulose, Semi-synthetic polymer compounds such as ethyl cellulose, sodium alginate, ester gum, nitrocellulose, hydroxypropyl cellulose, crystalline cellulose; polyvinyl alcohol, polyvinyl pyrrolidone, sodium polyacrylate, carboxyvinyl polymer, polyvinyl methyl ether, polyamide resin, silicone oil, Nylon particles, polymethyl methacrylate particles, crosslinked polystyrene particles, silicone particles, urethane particles, poly Styrene particles include resin particles such as fluorine resin particles.
- natural polymer compounds such as gum arabic, tragacanth gum, guar gum, locust bean gum
- the inorganic powder examples include iron oxide, ultramarine blue, salmon, chromium oxide, chromium hydroxide, carbon black, manganese violet, titanium oxide, zinc oxide, talc, kaolin, mica, calcium carbonate, magnesium carbonate, and silicic acid.
- examples thereof include aluminum, barium silicate, calcium silicate, magnesium silicate, silica, zeolite, barium sulfate, calcined calcium sulfate (baked gypsum), calcium phosphate, hydroxyapatite, and ceramic powder.
- These organic powders and inorganic powders may be subjected to surface treatment in advance.
- the surface treatment method a known surface treatment technique as described above can be used.
- the main agent or additive generally used can be mix
- a main agent or additive include water, lower alcohols (alcohols having 5 or less carbon atoms), fats and oils, hydrocarbons, higher fatty acids, higher alcohols, sterols, fatty acid esters, metal soaps, moisturizers, Surfactant, polymer compound, coloring material raw material, fragrance, clay minerals, antiseptic / bactericidal agent, anti-inflammatory agent, antioxidant, ultraviolet absorber, organic-inorganic composite particle, pH adjuster (triethanolamine, etc.), Special blending additives, active pharmaceutical ingredients, etc. are mentioned.
- fats and oils include avocado oil, almond oil, olive oil, cacao fat, beef tallow, sesame fat, wheat germ oil, safflower oil, shea butter, turtle oil, straw oil, persic oil, castor oil, grape oil , Macadamia nut oil, mink oil, egg yolk oil, owl, palm oil, rosehip oil, hydrogenated oil, silicone oil, orange luffy oil, carnauba wax, candelilla wax, whale wax, jojoba oil, montan wax, beeswax, lanolin, etc. It is done.
- hydrocarbon examples include liquid paraffin, petrolatum, paraffin, ceresin, microcrystalline wax, squalane and the like.
- higher fatty acid examples include fatty acids having 11 or more carbon atoms such as lauric acid, myristic acid, palmitic acid, stearic acid, oleic acid, behenic acid, undecylenic acid, oxystearic acid, linoleic acid, lanolin fatty acid, and synthetic fatty acid. Is mentioned.
- higher alcohol examples include lauryl alcohol, cetyl alcohol, cetostearyl alcohol, stearyl alcohol, oleyl alcohol, behenyl alcohol, lanolin alcohol, hydrogenated lanolin alcohol, hexyldecanol, octyldecanol, isostearyl alcohol, jojoba alcohol And alcohols having 6 or more carbon atoms such as decyltetradecanol.
- sterol examples include cholesterol, dihydrocholesterol, phytocholesterol and the like.
- fatty acid esters include linoleic acid esters such as ethyl linoleate; lanolin fatty acid esters such as lanolin fatty acid isopropyl; lauric acid esters such as hexyl laurate; isopropyl myristate, myristyl myristate, cetyl myristate, myristic acid Myristic acid esters such as octyldecyl and octyldodecyl myristate; oleic acid esters such as decyl oleate and octyldodecyl oleate; dimethyloctanoic acid esters such as hexyldecyl dimethyloctanoate; cetyl isooctanoate (cetyl 2-ethylhexanoate) Isooctanoic acid ester such as decyl palmitate; g
- metal soap examples include zinc laurate, zinc myristate, magnesium myristate, zinc palmitate, zinc stearate, aluminum stearate, calcium stearate, magnesium stearate, zinc undecylenate and the like.
- humectant examples include glycerin, propylene glycol, 1,3-butylene glycol, polyethylene glycol, sodium dl-pyrrolidonecarboxylate, sodium lactate, sorbitol, sodium hyaluronate, polyglycerin, xylit, maltitol and the like. It is done.
- the surfactant include anionic surfactants such as higher fatty acid soaps, higher alcohol sulfates, N-acyl glutamates and phosphates; cationic interfaces such as amine salts and quaternary ammonium salts.
- Active agents amphoteric surfactants such as betaine type, amino acid type, imidazoline type, lecithin; fatty acid monoglyceride, polyethylene glycol, propylene glycol fatty acid ester, sorbitan fatty acid ester (for example, sorbitan isostearate), sucrose fatty acid ester, polyglycerin fatty acid
- Nonionic surfactants such as esters and ethylene oxide condensates are listed.
- polymer compound examples include natural polymer compounds such as gum arabic, gum tragacanth, guar gum, locust bean gum, karaya gum, iris moss, quince seed, gelatin, shellac, rosin, and casein; sodium carboxymethyl cellulose, hydroxyethyl cellulose, Semi-synthetic polymer compounds such as methyl cellulose, ethyl cellulose, sodium alginate, ester gum, nitrocellulose, hydroxypropyl cellulose, crystalline cellulose; polyvinyl alcohol, polyvinyl pyrrolidone, sodium polyacrylate, carboxyvinyl polymer, polyvinyl methyl ether, polyamide resin, silicone Oil, nylon particles, poly (meth) acrylate particles (for example, polymethyl methacrylate particles), Polystyrene particles, silicone particles, urethane particles, synthetic polymer compound of the resin particles such as polyethylene particles.
- (meth) acryl means methacryl or acryl
- the color material raw material include iron oxide (red iron oxide, yellow iron oxide, black iron oxide, etc.), ultramarine blue, sweet potato, chromium oxide, chromium hydroxide, carbon black, manganese violet, titanium oxide, zinc oxide, Talc, kaolin, calcium carbonate, magnesium carbonate, mica, aluminum silicate, barium silicate, calcium silicate, magnesium silicate, silica, zeolite, barium sulfate, calcined calcium sulfate (baked gypsum), calcium phosphate, hydroxyapatite, ceramic powder And inorganic pigments such as azo, nitro, nitroso, xanthene, quinoline, anthraquinoline, indigo, triphenylmethane, phthalocyanine, and pyrene.
- iron oxide red iron oxide, yellow iron oxide, black iron oxide, etc.
- ultramarine blue sweet potato
- chromium oxide chromium hydroxide
- carbon black manganese violet
- powder raw material such as the above-described polymer compound powder raw material and coloring material raw material
- those subjected to surface treatment in advance can be used.
- a surface treatment method known surface treatment techniques can be used, for example, oil treatment with hydrocarbon oil, ester oil, lanolin, etc., silicone treatment with dimethylpolysiloxane, methylhydrogenpolysiloxane, methylphenylpolysiloxane, etc.
- Silane coupling agent treatment with isopropyl triisostearoyl titanate Titanium coupling agent treatment with isopropyl tris (dioctylpyrophosphate) titanate, metal soap treatment, acylgluta Amino treatment with phosphate and the like, lecithin treatment with hydrogenated egg yolk lecithin, collagen treatment, polyethylene process, moisture retention treatment, an inorganic compound treatment, and processing methods such as mechanochemical treatment.
- clay minerals include components having several functions such as extender pigments and adsorbents, such as talc, mica, sericite, titanium sericite (sericite coated with titanium oxide), and white cloud. Mother, VEEGUM (registered trademark) manufactured by Vanderbilt, and the like.
- Specific examples of the perfume include anisaldehyde, benzyl acetate, geraniol and the like.
- Specific examples of the antiseptic / bactericidal agent include methyl paraben, ethyl paraben, propyl paraben, benzalkonium, benzethonium and the like.
- Specific examples of the antioxidant include dibutylhydroxytoluene, butylhydroxyanisole, propyl gallate, tocopherol and the like.
- the anti-inflammatory agent examples include ⁇ -aminocaproic acid, glycyrrhizic acid, dipotassium glycyrrhizinate, ⁇ -glycyrrhetinic acid, lysozyme chloride, guaiazulene, hydrocortisone and the like. These can be used individually or in mixture of 2 or more types.
- Specific examples of the ultraviolet absorber include inorganic absorbents such as fine particle titanium oxide, fine particle zinc oxide, fine particle cerium oxide, fine particle iron oxide, fine particle zirconium oxide, benzoic acid-based, paraaminobenzoic acid-based, and anthranilic acid-based. And organic absorbents such as salicylic acid, cinnamic acid, benzophenone, and dibenzoylmethane.
- Specific examples of the special combination additive include hormones such as estradiol, estrone, ethinyl estradiol, cortisone, hydrocortisone, prednisone, vitamins such as vitamin A, vitamin B, vitamin C, vitamin E, citric acid, tartaric acid, lactic acid Skin astringents such as aluminum chloride, aluminum sulfate / potassium sulfate, allantochlorohydroxyalumonium, zinc paraphenol sulfonate, zinc sulfate, cantalis tincture, pepper tincture, ginger tincture, assembly extract, garlic extract, hinokitiol, carpronium chloride And hair growth promoters such as pentadecanoic acid glyceride, vitamin E, estrogen, and photosensitizer, and whitening agents such as magnesium phosphate-L-ascorbate and kojic acid.
- hormones such as estradiol, estrone, ethinyl estradiol, cort
- the external preparation of the present invention described above contains the composite particles of the present invention, it has good slip properties. Moreover, when the said external preparation contains an aqueous solvent, the dispersibility of a composite particle is acquired with the hydrophilic property of the silica particle adhering to the surface of a polymer particle.
- the composite particles of the present invention can be contained in a coating agent as a coating film softening agent, a paint matting agent, a light diffusing agent, and the like.
- the coating agent of the present invention contains the composite particles of the present invention.
- the coating agent contains a binder resin as necessary.
- a binder resin an organic solvent or water-soluble resin, or an emulsion-type aqueous resin that can be dispersed in water can be used, and any known binder resin can be used.
- the binder resin for example, trade names “Dianar (registered trademark) LR-102” and “Dianar (registered trademark) BR-106” manufactured by Mitsubishi Rayon Co., Ltd., or products manufactured by Dainichi Seika Kogyo Co., Ltd.
- binder resins examples include acrylic resins such as “medium VM”; alkyd resins; polyester resins; polyurethane resins; chlorinated polyolefin resins; amorphous polyolefin resins; These binder resins can be appropriately selected depending on the adhesion of the coating agent to the substrate to be coated, the environment in which it is used, and the like.
- the compounding amount of the composite particles is appropriately adjusted depending on the film thickness of the coating film formed by the coating agent containing the binder resin, the average particle diameter of the composite particles, the coating method, the use application, etc., but 100 parts by weight of the binder resin On the other hand, it is preferably in the range of 1 to 300 parts by weight, and more preferably in the range of 5 to 100 parts by weight.
- the compounding amount of the composite particles is less than 1 part by weight with respect to 100 parts by weight of the binder resin, the matte effect may not be sufficiently obtained.
- the compounding amount of the composite particles exceeds 300 parts by weight with respect to 100 parts by weight of the binder resin, the dispersion of the composite particles may occur because the viscosity of the coating agent becomes too large. The appearance of the coating film surface may be deteriorated such that microcracks are generated on the surface of the coating film obtained by coating the coating agent or the surface of the coating film obtained is rough.
- the coating agent contains a medium as necessary.
- a medium it is preferable to use a solvent (solvent) capable of dissolving the binder resin or a dispersion medium capable of dispersing the binder resin.
- a solvent solvent capable of dissolving the binder resin
- a dispersion medium capable of dispersing the binder resin.
- any of an aqueous medium and an oily medium can be used.
- Oil-based media include hydrocarbon solvents such as toluene, xylene and cyclohexane; ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone; ester solvents such as ethyl acetate and butyl acetate; dioxane, ethylene glycol diethyl ether and ethylene glycol mono And ether solvents such as butyl ether.
- Examples of the aqueous medium include water and alcohols (for example, isopropanol). These media may use only 1 type and may mix and use 2 or more types.
- the content of the medium in the coating agent is usually in the range of 20 to 60% by weight with respect to the total amount of the coating agent.
- coating agents include curing agents, colorants (external pigments, color pigments, metal pigments, mica powder pigments, dyes, etc.), antistatic agents, leveling agents, fluidity modifiers, ultraviolet absorbers, light stabilizers, etc. Other additives may be included.
- the substrate to which the coating agent is applied is not particularly limited, and a substrate according to the application can be used.
- a glass substrate, a transparent substrate made of a transparent substrate resin, or the like is used as a substrate to be coated.
- a transparent substrate as the substrate to be coated and coating a transparent substrate with a coating agent (light diffusion coating agent) that does not contain a colorant, a light diffusion film or An optical film such as an antiglare film can be produced.
- the composite particles function as a light diffusing agent.
- matte paper can be produced by using paper as a substrate to be coated and applying a coating agent (paper coating agent) containing no colorant to form a transparent coating film.
- paper coating agent paper coating agent
- Coating method of the coating agent is not particularly limited, and any known method can be used.
- the coating method include a comma direct method, a spin coating method, a spray coating method, a roll coating method, a dipping method, a knife coating method, a curtain flow method, and a laminating method.
- the coating agent may be diluted by adding a diluent in order to adjust the viscosity as necessary.
- Diluents include hydrocarbon solvents such as toluene and xylene; ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone; ester solvents such as ethyl acetate and butyl acetate; ether solvents such as dioxane and ethylene glycol diethyl ether; water An alcohol solvent or the like. These diluents may be used alone or in combination of two or more. When manufacturing an optical film, it is preferable to use a method in which irregularities derived from composite particles are formed on the surface of the coating film as a coating method.
- the coating agent of the present invention contains the composite particles of the present invention, light diffusibility can be imparted to the coating film formed from the coating agent. Moreover, in the said coating agent, since the hardness of a composite particle is ensured by the silica particle adhering to the polymer particle surface, the improvement of the scratch resistance of the coating film formed from the said coating agent can be anticipated. Moreover, when the said coating agent contains an aqueous solvent, the favorable dispersibility of a composite particle is obtained by the hydrophilic property of the silica particle adhering to the surface of a polymer particle.
- optical film of the present invention is obtained by applying the coating agent of the present invention to a film-like substrate.
- the optical film include a light diffusion film and an antiglare film.
- optical film substrate examples include a glass substrate and a transparent substrate made of a transparent substrate resin.
- the transparent base resin examples include acrylic resins such as polymethyl methacrylate, polyesters such as alkyl (meth) acrylate-styrene copolymers, polycarbonate, polyethylene terephthalate (hereinafter abbreviated as “PET”), polyethylene, and polypropylene. , Polystyrene and the like.
- acrylic resin, alkyl (meth) acrylate-styrene copolymer, polycarbonate, polyester, and polystyrene are preferable when excellent transparency is required for the transparent base resin.
- These transparent base resins can be used alone or in combination of two or more.
- the thickness of the coating film obtained by applying the coating agent is preferably in the range of 5 to 100 ⁇ m.
- the resin composition of the present invention contains the composite particles of the present invention and a base resin. Since the resin composition of the present invention contains the composite particles of the present invention and is excellent in light diffusibility, a lighting cover (light emitting diode (LED) lighting lighting cover, fluorescent lamp lighting lighting cover, etc.), light diffusion sheet It can be used as a raw material for a light diffuser such as a light diffusion plate.
- a lighting cover light emitting diode (LED) lighting lighting cover, fluorescent lamp lighting lighting cover, etc.
- LED light emitting diode
- light diffusion sheet It can be used as a raw material for a light diffuser such as a light diffusion plate.
- thermoplastic resin a thermoplastic resin different from the polymer components constituting the composite particles is usually used.
- the thermoplastic resin used as the base resin include acrylic resin, alkyl (meth) acrylate-styrene copolymer, polycarbonate, polyester, polyethylene, polypropylene, and polystyrene.
- acrylic resin, alkyl (meth) acrylate-styrene copolymer, polycarbonate, polyester, and polystyrene are preferable when excellent transparency is required for the base resin.
- These thermoplastic resins can be used alone or in combination of two or more.
- the addition ratio of the composite particles to the base resin is preferably in the range of 0.1 to 70 parts by weight, preferably in the range of 1 to 50 parts by weight with respect to 100 parts by weight of the base resin. Is more preferable.
- the addition ratio of the composite particles to the base resin is less than 0.1 parts by weight with respect to 100 parts by weight of the base resin, it may be difficult to impart light diffusibility to the light diffuser.
- the addition ratio of the composite particles to the base resin is more than 70 parts by weight with respect to 100 parts by weight of the base resin, the light diffuser can be given light diffusibility, but the light diffuser can transmit light. May be low.
- the method for producing the resin composition is not particularly limited, and can be produced by mixing the composite particles and the base resin by a conventionally known method such as a mechanical pulverization and mixing method.
- a mechanical pulverization and mixing method for example, the resin composition is obtained by mixing and stirring the composite particles and the base resin using an apparatus such as a Henschel mixer, a V-type mixer, a turbula mixer, a hybridizer, and a rocking mixer. Can be manufactured.
- the molded article of the present invention is formed by molding the resin composition of the present invention.
- Specific examples of the molded article of the present invention include light diffusers such as illumination covers (light-emitting diode (LED) illumination illumination covers, fluorescent lamp illumination illumination covers, etc.), light diffusion sheets, and light diffusion plates. .
- the composite particles and the base resin are mixed with a mixer and kneaded with a melt kneader such as an extruder to obtain a pellet made of a resin composition, and then the pellet is extruded or the pellet A molded body having an arbitrary shape can be obtained by injection molding after melting.
- a melt kneader such as an extruder
- the average primary particle diameter of silica particles (specifically, the Z average particle diameter calculated by cumulant analysis method) is measured by, for example, a particle size measuring apparatus (“Zetasizer Nano ZS” manufactured by Malvern) using a dynamic light scattering method. To do.
- a dispersion liquid in which silica particles to be measured are dispersed in ion-exchanged water is used.
- the dispersion is prepared so that the concentration of the silica particles is 1% by weight, and the assumed average primary particle diameter of the silica particles is 100 nm or more. In this case, the dispersion is prepared so that the concentration of silica particles is 0.1% by weight.
- Silica particles are prepared by setting a polyethylene cell in the measurement part of the particle size measuring apparatus by the dynamic light scattering method (“Zetasizer Nano ZS” manufactured by Malvern), and dispensing the dispersion into the polyethylene cell. Measure the Z average particle size.
- the Z average particle diameter is a value obtained by analyzing measurement data of a dynamic light scattering method such as a particle dispersion using a cumulant analysis method.
- the average value of the particle diameter and the polydispersity index (PDI) are obtained, and the average value of the particle diameter is defined as the Z average particle diameter.
- the work of fitting a polynomial to the logarithm of the G1 correlation function obtained by measurement is called cumulant analysis, and the constant b in the following equation is called a second-order cumulant or Z-average diffusion coefficient.
- LN (G1) A + bt + ct 2 + dt 3 + et 4 +...
- a value obtained by converting the constant b into a particle diameter using the viscosity of the dispersion and several apparatus constants is the Z average particle diameter.
- a centrifuge (“Hitachi High-Speed Cooling Centrifuge HIMAC CR22GII” manufactured by Hitachi High-Technologies Corporation) is used. And centrifuge at 25000 G for 30 minutes. 1 ml of 5% phenol aqueous solution is added to 1 ml of the obtained supernatant, 5 ml of concentrated sulfuric acid is added, and the mixture is allowed to stand for 10 minutes, and then left in an aqueous solution at 25 ° C. for 10 minutes to obtain a measurement sample. .
- the absorbance at 485 nm was measured with an ultraviolet-visible spectrophotometer (“UV-visible spectrophotometer UV-2450” manufactured by Shimadzu Corporation), and a calibration curve (relationship between the absorbance and the concentration of water-soluble celluloses). Is used to determine the concentration (g / l) of water-soluble celluloses in the supernatant.
- UV-visible spectrophotometer UV-2450 manufactured by Shimadzu Corporation
- the calibration curve is created by the following method. That is, three types of aqueous solutions with different concentrations are prepared by adding 0.01 g, 0.05 g, and 0.1 g of water-soluble cellulose used in preparing the dispersion medium to 100 g of ion-exchanged water. 0.25 g of each prepared aqueous solution is diluted with 0.75 g of ion-exchanged water, and the absorbance of each diluted aqueous solution is measured. Then, a calibration curve of a linear curve is created by plotting the weight and absorbance of water-soluble celluloses in the aqueous solution.
- the adsorption amount (g) of water-soluble cellulose per 1 g of silica particles is obtained by the following formula.
- volume average particle diameter of particles (composite particles or polymer particles) obtained in Examples and Comparative Examples described later is measured by Coulter Multisizer III (measurement device manufactured by Beckman Coulter, Inc.). The measurement shall be performed using an aperture calibrated according to the Multisizer TM 3 User's Manual issued by Beckman Coulter, Inc.
- the aperture used for the measurement is selected by selecting an aperture having a size of 50 ⁇ m when the assumed volume average particle diameter of the particles to be measured (composite particles or polymer particles) is 1 ⁇ m or more and 10 ⁇ m or less (particles to be measured ( When the assumed volume average particle diameter of the composite particle or polymer particle is larger than 10 ⁇ m and not more than 30 ⁇ m, an aperture having a size of 100 ⁇ m is selected, and the assumed volume average particle diameter of the particle (composite particle or polymer particle) is An aperture having a size of 280 ⁇ m is selected when it is larger than 30 ⁇ m and not larger than 90 ⁇ m, and an aperture having a size of 400 ⁇ m is selected when the assumed volume average particle diameter of the particles (composite particles or polymer particles) is larger than 90 ⁇ m and not larger than 150 ⁇ m. Select as appropriate. When the volume average particle diameter after measurement is different from the assumed volume average particle diameter, the aperture is changed to an aperture having an appropriate size, and measurement is performed again.
- the current (aperture current) is set to ⁇ 800, the gain (gain) is set to 4, and if an aperture having a size of 100 ⁇ m is selected, the current (aperture current) is ⁇ 1600, Gain (gain) is set to 2, and when an aperture having a size of 280 ⁇ m and 400 ⁇ m is selected, Current (aperture current) is set to ⁇ 3200 and Gain (gain) is set to 1.
- the volume average particle diameter of the particles is an arithmetic average in a volume-based particle size distribution of 100,000 particles.
- Addition amount (W S ⁇ W m ) ⁇ X
- W S Weight of silica particles used in the production of composite particles
- W m Weight of the polymerizable vinyl monomer used in the production of the composite particles
- X Specific surface area of particles (m 2 / g) measured by the above specific surface area measurement method
- Adhering amount (A ⁇ 100) ⁇ X
- X Specific surface area of particles (m 2 / g) measured by the above specific surface area measurement method
- the residue remaining after burning the particles in an electric furnace at 550 ° C. for 30 minutes in the above ignition residue measurement method contains components other than silica particles, and measured by the above ignition residue measurement method.
- the amount of silica particles attached per unit surface area of the particles obtained by the above production (g / m 2 ) is calculated according to the following formula: Can be sought. Whether or not the residue contains silica particles and the amount of silica particles contained in the residue can be determined using a known method such as elemental analysis.
- Adhesion amount ⁇ (A ⁇ 100) ⁇ (B ⁇ 100) ⁇ ⁇ X
- Example 1 Production example of composite particles
- SNOWTEX registered trademark
- O-40 silica particles, colloidal silica manufactured by Nissan Chemical Industries, Ltd., average primary 1.1 g (particle size 25 nm, solid content 40 wt%) (SiO 2 pure content 0.44 g)
- Metrolose registered trademark
- 65SH-400 abbreviated as “HPMC (65SH-400)” as a water-soluble cellulose, Shin-Etsu Chemical Industry Co., Ltd.
- MMA methyl methacrylate
- EGDMA ethylene glycol dimethacrylate
- ADVN 2,2′-azobis (2,4-dimethylvaleronitrile
- the monomer mixture containing the polymerization initiator is added to the dispersion medium in the polymerization vessel, and the mixture is stirred for about 3 minutes at 4500 rpm with a homomixer (High Flex Disperser HG-2 manufactured by SMT). The monomer mixture was finely dispersed.
- reaction solution in the polymerization vessel was cooled to room temperature while stirring.
- reaction solution is suction filtered using qualitative filter paper 101 (“Toyo qualitative filter paper” manufactured by Advantech Toyo Co., Ltd.), washed with ion-exchanged water, and then drained, and then in an oven at 90 ° C. all day and night. Composite particles were obtained by drying.
- qualitative filter paper 101 “Toyo qualitative filter paper” manufactured by Advantech Toyo Co., Ltd.
- the composite particles were composed of polymer particles and silica particles attached to the polymer particles. It was accepted to contain. Further, in this composite particle, it was confirmed that a layer made of silica particles was formed on the surface of the polymer particle.
- the obtained composite particles had a volume average particle diameter of 20.2 ⁇ m, a specific surface area of 0.29 m 2 / g, and an ignition residue of 0.60% by weight. Further, the addition amount of silica particles was 0.029 g / m 2 , and the adhesion amount of silica particles in the obtained composite particles was 0.021 g / m 2 per unit surface area of the composite particles.
- Example 2 Production example of composite particles
- As water-soluble celluloses Metroose (registered trademark) 65SH-400 (HPMC (65SH-400)) instead of 0.09 g, Metroz (registered trademark) 65SH-4000 (abbreviated as “HPMC (65SH-4000)”, Shin-Etsu Chemical Co., Ltd.
- Composite particles were obtained in the same manner as in Example 1 except that 0.09 g of hydroxypropylmethylcellulose (manufactured by Kogyo Co., Ltd., cloud point 65 ° C.) was used.
- the amount of water-soluble cellulose adsorbed on the silica particles was 0.17 g per 1 g of silica particles.
- the obtained composite particles had a volume average particle diameter of 24.6 ⁇ m, a specific surface area of 0.24 m 2 / g, and an ignition residue of 0.70% by weight. Further, the addition amount of silica particles was 0.035 g / m 2 , and the adhesion amount of silica particles in the obtained composite particles was 0.029 g / m 2 .
- Example 3 Production example of composite particles
- As water-soluble celluloses instead of Metros (registered trademark) 65SH-400 (HPMC (65SH-400)) 0.09 g, Metros (registered trademark) 65SH-50 (abbreviated as “HPMC (65SH-50)”, Shin-Etsu Chemical Co., Ltd.
- HPMC hydroxypropylmethylcellulose
- KAYAMER registered trademark
- PM-21 a polymerizable phosphoric acid monomer was used.
- “Nippon Kayaku Co., Ltd.) 0.05 g” was used to obtain composite particles in the same manner as in Example 1.
- the amount of water-soluble cellulose adsorbed on the silica particles was 0.16 g per 1 g of silica particles.
- the obtained composite particles had a volume average particle diameter of 21.8 ⁇ m, a specific surface area of 0.28 m 2 / g, and an ignition residue of 0.60% by weight.
- the amount of the silica particles was 0.030 g / m 2
- the adhesion amount of the silica particles in the obtained composite particles was 0.021 g / m 2.
- Example 4 Production example of composite particles
- St styrene
- EGDMA ethylene glycol dimethacrylate
- MMA methyl methacrylate
- EGDMA ethylene glycol dimethacrylate
- the obtained composite particles had a volume average particle diameter of 20 ⁇ m, a specific surface area of 0.29 m 2 / g, and an ignition residue of 0.80% by weight. Further, the addition amount of silica particles was 0.029 g / m 2 , and the adhesion amount of silica particles in the obtained composite particles was 0.028 g / m 2 .
- Example 5 Production example of composite particles
- SNOWTEX registered trademark
- O-40 ST-O-40
- SNOWTEX OXS Nissan Chemical Industries, Ltd.
- a composite particle was obtained in the same manner as Example 1 except that 2.3 g (SiO 2 pure content 0.35 g) of colloidal silica manufactured by Co., Ltd., average primary particle size 7.8 nm, solid content 15 wt% was used. It was.
- the obtained composite particles had a volume average particle diameter of 20.5 ⁇ m, a specific surface area of 0.29 m 2 / g, and an ignition residue of 0.33% by weight. Moreover, the addition amount of the silica particles was 0.023 g / m 2 , and the adhesion amount of the silica particles in the obtained composite particles was 0.011 g / m 2 .
- Example 6 Production example of composite particles
- Snowtex registered trademark
- O-40 ST-O-40
- Snowtex OZL-35 (abbreviated as “ST-OZL-35”)
- the obtained composite particles had a volume average particle diameter of 20.9 ⁇ m, a specific surface area of 0.29 m 2 / g, and an ignition residue of 1.9% by weight.
- the addition amount of silica particles was 0.10 g / m 2
- the adhesion amount of silica particles in the obtained composite particles was 0.066 g / m 2 .
- Example 7 Production example of composite particles
- SNOWTEX PS-MO (abbreviated as “ST-PS-MO”)
- composite particles were obtained.
- the obtained composite particles had a volume average particle diameter of 20.5 ⁇ m, a specific surface area of 0.29 m 2 / g, and an ignition residue of 0.60% by weight. Moreover, the addition amount of the silica particles was 0.025 g / m 2 , and the adhesion amount of the silica particles in the obtained composite particles was 0.021 g / m 2 .
- Example 8 Production example of composite particles
- As water-soluble celluloses in place of 0.09 g of Metroles (registered trademark) 65SH-50 (HPMC (65SH-50)), NISSO HPCH (hydroxypropylcellulose manufactured by Nippon Soda Co., Ltd., lower critical solution temperature 45 ° C.)
- Composite particles were obtained in the same manner as in Example 3 except that 0.09 g was used and the mixing temperature 60 ° C. in preparing the dispersion medium was changed to 40 ° C.
- the obtained composite particles had a volume average particle diameter of 19.8 ⁇ m, a specific surface area of 0.29 m 2 / g, and an ignition residue of 0.80% by weight. Further, the addition amount of silica particles was 0.029 g / m 2 , and the adhesion amount of silica particles in the obtained composite particles was 0.028 g / m 2 .
- Example 9 Production example of composite particles
- the amount of SNOWTEX (registered trademark) O-40 (ST-O-40) used as silica particles was changed to 2.75 g (1.1 g pure SiO 2 content), and Metrouse (registered trademark) as water-soluble celluloses. )
- the composite particles were prepared in the same manner as in Example 1 except that the amount of 65SH-400 (HPMC (65SH-400)) was changed to 0.22 g and the rotation speed of the homomixer was changed from 4500 rpm to 9000 rpm. Obtained.
- the obtained composite particles had a volume average particle diameter of 7.9 ⁇ m, a specific surface area of 0.63 m 2 / g, and an ignition residue of 1.45% by weight. Further, the addition amount of silica particles was 0.033 g / m 2 , and the adhesion amount of silica particles in the obtained composite particles was 0.023 g / m 2 .
- Example 10 Production example of composite particles
- the amount of SNOWTEX (registered trademark) O-40 (ST-O-40) used as silica particles was changed to 0.55 g (a pure amount of SiO 2 0.22 g), and Metrouse (registered trademark) as water-soluble celluloses.
- the composite particles were prepared in the same manner as in Example 1 except that the amount of 65SH-400 (HPMC (65SH-400)) was changed to 0.04 g and the rotation speed of the homomixer was changed from 4500 rpm to 2500 rpm. Obtained.
- the obtained composite particles had a volume average particle diameter of 40.9 ⁇ m, a specific surface area of 0.13 m 2 / g, and an ignition residue of 0.29% by weight. Moreover, the addition amount of the silica particles was 0.033 g / m 2 , and the adhesion amount of the silica particles in the obtained composite particles was 0.022 g / m 2 .
- Example 11 Production example of composite particles
- the amount of Snowtex (registered trademark) O-40 (ST-O-40) used as silica particles was changed to 0.28 g (a pure amount of SiO 2 0.11 g), and Metrouse (registered trademark) as water-soluble celluloses.
- the composite particles were prepared in the same manner as in Example 1 except that the amount of 65SH-400 (HPMC (65SH-400)) was changed to 0.02 g, and the rotation speed of the homomixer was changed from 4500 rpm to 2500 rpm. Obtained.
- the obtained composite particles had a volume average particle diameter of 80.7 ⁇ m, a specific surface area of 0.06 m 2 / g, and an ignition residue of 0.15% by weight.
- the amount of the silica particles was 0.033 g / m 2
- the adhesion amount of the silica particles in the obtained composite particles was 0.025 g / m 2.
- Example 12 Production example of composite particles
- the amount of water used as an aqueous medium was changed to 200 g, and the amount of Snowtex (registered trademark) O-40 (ST-O-40) used as silica particles was 4.0 g (SiO 2 pure amount 1.6 g).
- the amount of Metroses (registered trademark) 65SH-400 (HPMC (65SH-400)) used as water-soluble celluloses was changed to 0.32 g, and methyl methacrylate (MMA) was used as a polymerizable vinyl monomer.
- HPMC 65SH-400
- the obtained composite particles had a volume average particle diameter of 20.1 ⁇ m, a specific surface area of 0.29 m 2 / g, and an ignition residue of 0.70% by weight. Further, the addition amount of silica particles was 0.029 g / m 2 , and the adhesion amount of silica particles in the obtained composite particles was 0.024 g / m 2 .
- Example 1 Comparative production example of composite particles
- Suspension polymerization was attempted in the same manner as in Example 1 except that Metrolose (registered trademark) 65SH-400 (HPMC (65SH-400)) as a water-soluble cellulose was not used. The stability of the droplets of the mixture was low, and composite particles could not be obtained.
- Metrolose registered trademark
- 65SH-400 HPMC (65SH-400)
- MMA methyl methacrylate
- TMPTA trimethylolpropane triacrylate
- LPO lauroyl peroxide
- the monomer mixture After adding the monomer mixture containing the polymerization initiator to the dispersion medium in the polymerization vessel and stirring at 4,500 rpm for about 3 minutes with a homomixer, the monomer mixture is finely dispersed in the dispersion medium.
- a dispersion stabilizer 1.0 g of PVA-420 (Kuraray Co., Ltd. polyvinyl alcohol (PVA)) was added.
- stirring was continued at a stirring speed of 100 rpm, and suspension polymerization was performed for 6 hours after the temperature of the dispersion medium to which the monomer mixture was added reached 55 ° C.
- reaction solution in the polymerization vessel was cooled to room temperature while stirring.
- reaction solution is suction filtered using qualitative filter paper 101 (“Toyo qualitative filter paper” manufactured by Advantech Toyo Co., Ltd.), washed with ion-exchanged water, and then drained, and then in an oven at 90 ° C. all day and night. Composite particles were obtained by drying.
- qualitative filter paper 101 “Toyo qualitative filter paper” manufactured by Advantech Toyo Co., Ltd.
- the obtained composite particles had a volume average particle diameter of 20.6 ⁇ m, a specific surface area of 0.29 m 2 / g, and an ignition residue of 0.10% by weight. Moreover, the addition amount of the silica particles was 0.0069 g / m 2 , and the adhesion amount of the silica particles in the obtained composite particles was 0.0034 g / m 2 .
- the volume average particle diameter of the particles obtained in Comparative Example 5 was 20.4 ⁇ m, and the specific surface area was 0.29 m 2 / g. Further, the addition amount of silica particles was 0.0034 g / m 2 , but the ignition residue was less than the lower limit of quantification. Since the ignition residue was less than the lower limit of quantification, it was recognized that the particles obtained in Comparative Example 5 contained almost no silica particles, and were not composite particles but polymer particles.
- the addition amount of silica particles was 0.0034 g / m 2 , but the ignition residue was less than the lower limit of quantification. Since the ignition residue was less than the lower limit of quantification, it was recognized that the particles obtained in Comparative Example 6 contained almost no silica particles, and were not composite particles but polymer particles.
- the volume average particle diameter of the particles obtained in Comparative Example 7 was 20.3 ⁇ m, and the specific surface area was 0.29 m 2 / g. Moreover, although the addition amount of the silica particle was 0.010 g / m ⁇ 2 >, the ignition residue was less than the lower limit of quantification. Since the ignition residue was less than the lower limit of quantification, it was recognized that the particles obtained in Comparative Example 7 contained almost no silica particles and were not composite particles but polymer particles.
- Comparative Example 9 Comparative production example of composite particles
- the amount of Snowtex (registered trademark) OXS (ST-OXS) used as silica particles was changed to 10.6 g (SiO 2 pure amount 1.6 g), and the amount of polyoxyethylene lauryl ether used as a surfactant was changed.
- Production of composite particles was attempted in the same manner as in Comparative Example 4 except that the number of revolutions of the homomixer was changed to 0.04 g and the number of revolutions of the homomixer 4500 rpm was changed to 9000 rpm.
- the composite particles obtained in Comparative Example 9 had a volume average particle size of 4.7 ⁇ m, a specific surface area of 1.06 m 2 / g, and an ignition residue of 0.40% by weight. Further, the addition amount of silica particles was 0.0075 g / m 2 , and the adhesion amount of silica particles in the obtained composite particles was 0.0038 g / m 2 .
- Comparative Example 10 Comparative production example of composite particles Except that the usage amount of Snowtex (registered trademark) OXS (ST-OXS) as silica particles was changed to 0.67 g (SiO 2 pure amount 0.10 g), and the rotation speed of the homomixer 4500 rpm was changed to 1500 rpm. In the same manner as in Comparative Example 4, production of composite particles was attempted.
- Snowtex registered trademark
- OXS ST-OXS
- the volume average particle diameter of the particles obtained in Comparative Example 10 was 130 ⁇ m, and the specific surface area was 0.04 m 2 / g. Moreover, although the addition amount of the silica particle was 0.010 g / m ⁇ 2 >, the ignition residue was less than the lower limit of quantification. Since the ignition residue was less than the lower limit of quantification, it was recognized that the particles obtained in Comparative Example 10 contained almost no silica particles, and were not composite particles but polymer particles.
- the amounts of various raw materials used in the production, the measurement results of the average primary particle diameter of the silica particles used in the production, and the volume of the particles (composite particles) obtained by the production Tables 1 to 4 show the measurement results of the average particle diameter, specific surface area, and ignition residue, the calculation results of the addition amount of silica particles, and the calculation results of the adhesion amount of silica particles in the composite particles obtained by production. .
- the particles obtained in Examples 1 to 12 were composite particles including polymer particles and silica particles attached to the surface of the polymer particles.
- the silica particles were hardly dropped, and the composite particles obtained in Examples 1 to 12 were polymer. It was confirmed that the silica particles were firmly attached to the surface of the particles, that is, the silica particles were hardly removed from the surface of the polymer particles.
- the adhesion amount of silica particles on the surface of the polymer particles is 0.010 to 0.10 g / m 2 (specifically 0.011 to 0.066 g / m 2 ).
- m 2 ) and the composite particles of the present invention were found to have many silica particles attached to the surface of the polymer particles.
- Comparative Examples 5 to 7 and 10 according to the method for producing resin particles disclosed in Patent Document 1, although polymer particles can be obtained, the amount of silica particles added (the coating amount referred to in Patent Document 1) is increased. In contrast, the amount of silica particles adhering to the polymer particle surface was small. Specifically, in Comparative Examples 5 to 7 and 10, the addition amount of silica particles is 0.0034 to 0.010 g / m 2 , but the ignition residue is less than the lower limit of quantification, and the obtained polymer Adhesion of silica particles to the particle surface was not confirmed.
- Comparative Examples 4 and 9 although composite particles containing polymer particles and silica particles attached to the surface of the polymer particles are obtained, the composite particles obtained by suspension polymerization are washed and drained. At that time, the silica particles were confirmed to fall off. That is, the composite particles obtained in Comparative Examples 4 and 9 are those in which the silica particles are not firmly attached to the surface of the polymer particles, that is, the silica particles are likely to fall off from the surface of the polymer particles. Was recognized.
- the addition amount of the silica particles is 0.0069 to 0.0075 g / m 2 , but the adhesion amount of the silica particles on the polymer particle surface of the obtained composite particles is 0.0034. It was less than the amount of the silica particles added to ⁇ 0.0038 g / m 2, and was smaller than the amount of silica particles adhering to the surface of the polymer particles of the composite particles of Examples 1 to 12.
- Example 13 Production example of optical film
- 30 g of particles (composite particles) obtained in Example 8 and 100 g of acrylic polyol (trade name: Medium VM, manufactured by Dainichi Seika Kogyo Co., Ltd., resin solid content, 34% by weight, solvent dispersion) as a binder resin curing A coating agent was obtained by mixing 30 g of isocyanate (trade name: VM-D, Dainichi Seika Kogyo Co., Ltd.) as an agent. Then, after apply
- the gloss of the optical film obtained in Example 13 was measured using a gloss checker (gloss meter) “IG-331” manufactured by Horiba, Ltd. Specifically, according to the method described in JIS Z8741, the gloss at 60 ° of the optical film was measured by the gloss checker (gloss meter) “IG-331”. The gloss value is lower as the diffusibility of the light reflected on the surface of the optical film (specifically, the surface of the coating film formed by coating the coating agent) is higher, and the matte property is better. means.
- Example 14 Production example of external preparation (body lotion)] 3 parts by weight of the composite particles obtained in Example 8, 50 parts by weight of ethanol, 0.1 part by weight of glycyrrhizic acid, 0.5 part by weight of a fragrance, and 46.4 parts by weight of purified water are sufficiently mixed with a mixer. Mix to obtain body lotion.
- the composite particles of the present invention are, for example, coating agents (coating compositions for paper), coating agents for information recording paper, or coating agents (coating compositions) used as coating agents for optical members such as optical films.
- An anti-blocking agent for films such as food packaging films;
- an external preparation such as an additive for external preparations such as cosmetics (additive for improving slipperiness or correcting skin defects such as spots and wrinkles) It can be used as a raw material.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Wood Science & Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Polymerisation Methods In General (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Graft Or Block Polymers (AREA)
- Paints Or Removers (AREA)
- Cosmetics (AREA)
Abstract
Description
本発明の製造方法は、重合体粒子と、この重合体粒子に付着したシリカ粒子とを含む複合粒子の製造方法である。この製造方法は、水溶性セルロース類が表面に吸着したシリカ粒子の存在下で、重合性モノマーを、水系懸濁重合させて、複合粒子を得る重合工程を含んでいる。
本発明の製造方法において使用される重合性モノマーとしては、特に限定されないが、例えば、リン酸エステル結合を有さず、重合可能な炭素-炭素二重結合(広義のビニル結合)を有する化合物(以下、単に、重合性ビニル系モノマーという)が好ましい。
場合によっては、アクリル酸、メタクリル酸、マレイン酸、フマル酸等のようなα,β-不飽和カルボン酸を単官能モノマーとして使用することもできる。さらに、これらを2種以上組み合わせて用いてもよい。また、ビニルメチルエーテル、ビニルエチルエーテル、ビニルイソブチルエーテル等のビニルエーテル類;ビニルメチルケトン、ビニルヘキシルケトン、メチルイソプロペニルケトン等のビニルケトン類;N-ビニルピロール、N-ビニルカルバゾール、N-ビニルインドール、N-ビニルピロリドン等のN-ビニル化合物;ビニルナフタリン塩等を、本発明の効果を妨げない範囲で1種または2種以上を組み合わせて単官能モノマーとして使用することもできる。
本発明の製造方法の前記重合工程において、前記重合性モノマーを水系懸濁重合させるための水性媒体としては、水、又は、水と水溶性媒体(例えば、メタノール、エタノール等のアルコール)との混合媒体が挙げられる。水性媒体の使用量は、複合粒子の安定化を図るために、通常、重合性モノマーの使用量100重量部に対して、100~1000重量部であることが好ましい。
本発明の製造方法の前記重合工程において、前記重合性モノマーの水系懸濁重合は、重合開始剤の存在下で行うことが好ましい。
前記アゾ系重合開始剤としては、例えば、2,2'-アゾビスイソブチロニトリル、2,2'-アゾビス(2,4-ジメチルバレロニトリル)、2,2'-アゾビス(2,3-ジメチルブチロニトリル)、2,2'-アゾビス(2-メチルブチロニトリル)、2,2'-アゾビス(2,3,3-トリメチルブチロニトリル)、2,2'-アゾビス(2-イソプロピルブチロニトリル)、1,1'-アゾビス(シクロヘキサン-1-カルボニトリル)、2,2'-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、(2-カルバモイルアゾ)イソブチロニトリル、4,4'-アゾビス(4-シアノバレリン酸)、ジメチル-2,2'-アゾビスイソブチレート等が挙げられる。
本発明の製造方法の前記重合工程において、前記重合性モノマーの水系懸濁重合は、水溶性セルロース類が吸着したシリカ粒子の存在下で行われる。前記重合工程において、前記水溶性セルロース類が吸着したシリカ粒子は、懸濁安定剤として、機能する。
前記シリカ粒子の表面に前記水溶性セルロース類を吸着させるための、前記水溶性セルロース類による前記シリカ粒子の処理方法としては、特に限定されず、公知の方法を適用することができ、例えば、水系媒体中においてシリカ粒子および水溶性セルロース類を共存させ、シリカ粒子の表面に水溶性セルロース類を物理的に吸着させる方法(具体例としては、Rheological and Interfacial Properties of Silicone Oil Emulsions Prepared by Polymer Pre-adsorbed onto Silica Particles,Colloids Surfaces A:Physicochem.Eng.Aspects,328,2008,114-122.の文献に記載の方法)が好ましい。この処理方法によりシリカ粒子に吸着させた水溶性セルロース類は、前記重合工程において、シリカ粒子からほとんど脱離せず、安定した状態にある。
本発明の製造方法の前記重合工程において、前記重合性モノマーの水系懸濁重合は、懸濁安定性をより向上させるために、界面活性剤の存在下で行ってもよい。前記界面活性剤としては、アニオン性界面活性剤、カチオン性界面活性剤、両性イオン界面活性剤及びノニオン性界面活性剤のいずれをも用いることができる。
本発明の製造方法の前記重合工程において、前記重合性モノマーの水系懸濁重合は、水系での乳化粒子の発生を抑えるために、水溶性の重合禁止剤の存在下で行ってもよい。
本発明の製造方法の前記重合工程において、前記重合性モノマーの水系懸濁重合は、本発明の効果を妨げない範囲で、その他の添加剤、例えば、顔料、染料、酸化防止剤、紫外線吸収剤などの存在下で行われてよい。
前記顔料としては、例えば、鉛白、鉛丹、黄鉛、カーボンブラック、群青、酸化亜鉛、酸化コバルト、二酸化チタン、酸化鉄、チタン黄、チタンブラック等の無機顔料;ネーブルスイエロー、ナフトールイエローS、ハンザイエロー10G、ベンジジンイエローG、ベンジジンイエローGR、キノリンイエローレーキ、パーマネントイエローNCG、タートラジンレーキ等の黄色顔料;モリブデンオレンジ、パーマネントオレンジRK、ベンジジンオレンジG、インダンスレンブリリアントオレンジGK等の橙色顔料;パーマネントレッド4R、リソールレッド、ピラゾロン、レッド4R、ウォッチングレッドカルシウム塩、レーキレッドD、ブリリアントカーミン6B、エオシンレーキ、ローダミンレーキB、アリザリンレーキ、ブリリアントカーミンB等の赤色顔料;ファストバイオレットB、メチルバイオレットレーキ、ジオキサンバイオレット等の紫色顔料;アルカリブルーレーキ、ビクトリアブルーレーキ、フタロシアニンブルー、無金属フタロシアニンブルー、フタロシアニンブルー部分塩化物;ファストスカイブルー、インダンスレンブルーBC等の青色顔料;ピグメントグリーンB、マラカイトグリーンレーキ、ファナルイエローグリーンG等の緑色顔料;イソインドリノン顔料、キナクリドン顔料、ペリノン顔料、ペリレン顔料、不溶性アゾ顔料、溶性アゾ顔料、染色レーキ顔料等の有機顔料を挙げることができる。
本発明の製造方法の重合工程では、前記水溶性セルロース類が表面に吸着したシリカ粒子の存在下で、重合性モノマーを、水系懸濁重合させる。例えば、前記重合工程では、重合性モノマーに、必要に応じて重合開始剤及び/又は重合禁止剤及び/又はその他の添加剤を混合してモノマー混合物を調製し、調製されたモノマー混合物を、水溶性セルロース類が表面に吸着したシリカ粒子を含む(必要に応じて、さらに、界面活性剤及び/又はその他の懸濁安定剤含む)水性媒体中に分散させて、水系懸濁重合を行う。
上記した複合粒子の製造方法によれば、重合体粒子(重合性モノマーの重合体)の表面にシリカ粒子が付着した本発明の複合粒子、例えば、図1及び図2のTEM画像(透過型電子顕微鏡)に示されるような、前記重合体粒子の少なくとも一部が、複数個の前記シリカ粒子(図1及び図2中の黒色部分)からなる層で被覆されてなる複合粒子を得ることができる。
本発明の複合粒子は、滑り性等の使用感を向上させるための添加剤や、光拡散効果により、毛穴、シミ、シワ等の肌の欠点を目立たなくするための添加剤等として、外用剤に含有させることができる。本発明の外用剤は、本発明の複合粒子を含んでいる。
前記有機粉体としては、例えばアラビアゴム、トラガントガム、グアーガム、ローカストビーンガム、カラヤガム、アイリスモス、クインスシード、ゼラチン、セラック、ロジン、カゼイン等の天然高分子化合物;カルボキシメチルセルロースナトリウム、ヒドロキシエチルセルロース、メチルセルロース、エチルセルロース、アルギン酸ナトリウム、エステルガム、ニトロセルロース、ヒドロキシプロピルセルロース、結晶セルロース等の半合成高分子化合物;ポリビニルアルコール、ポリビニルピロリドン、ポリアクリル酸ナトリウム、カルボキシビニルポリマー、ポリビニルメチルエーテル、ポリアミド樹脂、シリコーン油、ナイロン粒子、ポリメタクリル酸メチル粒子、架橋ポリスチレン粒子、シリコーン粒子、ウレタン粒子、ポリエチレン粒子、フッ素樹脂粒子等の樹脂粒子が挙げられる。また、前記無機粉体としては、例えば酸化鉄、群青、コンジョウ、酸化クロム、水酸化クロム、カーボンブラック、マンガンバイオレット、酸化チタン、酸化亜鉛、タルク、カオリン、マイカ、炭酸カルシウム、炭酸マグネシウム、ケイ酸アルミニウム、ケイ酸バリウム、ケイ酸カルシウム、ケイ酸マグネシウム、シリカ、ゼオライト、硫酸バリウム、焼成硫酸カルシウム(焼セッコウ)、リン酸カルシウム、ヒドロキシアパタイト、セラミックパウダー等が挙げられる。また、これら有機粉体や無機粉体は、予め表面処理を行ったものでもよい。表面処理方法としては、前記のような、公知の表面処理技術が利用できる。
前記香料の具体例としては、アニスアルデヒド、ベンジルアセテート、ゲラニオール等が挙げられる。前記防腐・殺菌剤の具体例としては、メチルパラベン、エチルパラベン、プロピルパラベン、ベンザルコニウム、ベンゼトニウム等が挙げられる。前記酸化防止剤の具体例としては、ジブチルヒドロキシトルエン、ブチルヒドロキシアニソール、没食子酸プロピル、トコフェロール等が挙げられる。前記抗炎症剤の具体例としては、ε-アミノカプロン酸、グリチルリチン酸、グリチルリチン酸ジカリウム、β-グリチルレチン酸、塩化リゾチーム、グアイアズレン、ヒドロコルチゾン等を挙げることができる。これらは、単独又は2種以上を混合して用いることができる。前記紫外線吸収剤の具体例としては、微粒子酸化チタン、微粒子酸化亜鉛、微粒子酸化セリウム、微粒子酸化鉄、微粒子酸化ジルコニウム等の無機系吸収剤、安息香酸系、パラアミノ安息香酸系、アントラニリック酸系、サルチル酸系、桂皮酸系、ベンゾフェノン系、ジベンゾイルメタン系等の有機系吸収剤が挙げられる。
前記特殊配合添加物の具体例としては、エストラジオール、エストロン、エチニルエストラジオール、コルチゾン、ヒドロコルチゾン、プレドニゾン等のホルモン類、ビタミンA、ビタミンB、ビタミンC、ビタミンE等のビタミン類、クエン酸、酒石酸、乳酸、塩化アルミニウム、硫酸アルミニウム・カリウム、アラントインクロルヒドロキシアルムニウム、パラフェノールスルホン酸亜鉛、硫酸亜鉛等の皮膚収斂剤、カンタリスチンキ、トウガラシチンキ、ショウキョウチンキ、センブリエキス、ニンニクエキス、ヒノキチオール、塩化カルプロニウム、ペンタデカン酸グリセリド、ビタミンE、エストロゲン、感光素等の発毛促進剤、リン酸-L-アスコルビン酸マグネシウム、コウジ酸等の美白剤等が挙げられる。
本発明の複合粒子は、塗膜軟質化剤、塗料用艶消し剤、光拡散剤等としてコーティング剤に含有させることが可能である。本発明のコーティング剤は、本発明の複合粒子を含んでいる。
さらに、コーティング剤には、硬化剤、着色剤(体質顔料、着色顔料、金属顔料、マイカ粉顔料、染料等)、帯電防止剤、レベリング剤、流動性調整剤、紫外線吸収剤、光安定剤等の他の添加剤が含まれていてもよい。
本発明の光学フィルムは、本発明のコーティング剤をフィルム状の基材に塗工したものである。光学フィルムの具体例としては、光拡散フィルムや防眩フィルム等を挙げることができる。
本発明の樹脂組成物は、本発明の複合粒子と基材樹脂とを含むものである。この本発明の樹脂組成物は、本発明の複合粒子を含み、光拡散性に優れることから、照明カバー(発光ダイオード(LED)照明用照明カバー、蛍光灯照明用照明カバー等)、光拡散シート、光拡散板等の光拡散体の原料として使用できる。
本発明の成形体は、本発明の樹脂組成物を成形してなるものである。本発明の成形体の具体例としては、照明カバー(発光ダイオード(LED)照明用照明カバー、蛍光灯照明用照明カバー等)、光拡散シート、光拡散板等の光拡散体を挙げることができる。
〔シリカ粒子の平均一次粒子径の測定方法〕
シリカ粒子の平均一次粒子径(具体的には、キュムラント解析法で算出したZ平均粒子径)は、例えば動的光散乱法による粒径測定装置(Malvern社製の「Zetasizer Nano ZS」)により測定する。
測定試料としては、測定するシリカ粒子をイオン交換水中に分散させて、分散液としたものを使用する。なお、シリカ粒子の想定の平均一次粒子径が100nm未満の場合は、シリカ粒子の濃度が1重量%となるように上記分散液を調製し、シリカ粒子の想定の平均一次粒子径が100nm以上の場合は、シリカ粒子の濃度が0.1重量%となるように上記分散液を調製する。上記動的光散乱法による粒径測定装置(Malvern社製の「Zetasizer Nano ZS」)の測定部に、ポリエチレン製セルをセットし、前記ポリエチレン製セルに上記分散液を分注して、シリカ粒子のZ平均粒子径を測定する。
上記定数bを、上記分散液の粘度と幾つかの装置定数を用いて粒子径に換算した値がZ平均粒子径である。
後述する実施例1~3については、複合粒子の製造工程で得た水溶性セルロース類が吸着したシリカ粒子を含む分散媒を用い、シリカ粒子1gあたりの水溶性セルロース類の吸着量(g)を以下の方法により、測定した。
D:シリカ粒子1gあたりの水溶性セルロース類の吸着量(g)
C:上記上澄み液中における水溶性セルロース類の濃度(g/l)
WH:複合粒子の製造に使用した水溶性セルロース類の重量(g)
WS:複合粒子の製造に使用したシリカ粒子の重量(g)
V:複合粒子の製造において上記分散媒の調製に使用した水性媒体の体積(l)
後述する実施例及び比較例で得られた粒子(複合粒子または重合体粒子)の体積平均粒子径は、コールターマルチサイザーIII(ベックマン・コールター株式会社製測定装置)により測定する。測定は、ベックマン・コールター株式会社発行のMultisizerTM 3ユーザーズマニュアルに従って校正されたアパチャーを用いて実施するものとする。
測定対象の粒子(複合粒子または重合体粒子)1.0gを計量した後、計量した粒子を550℃で30分間、電気炉内で焼失させて、残った残渣の重量(g)を測定する。そして、測定した残渣の重量(g)を、測定前の粒子の重量(1.0g)で除し、百分率換算して、強熱残分(重量%)を得る。
測定対象の粒子(複合粒子または重合体粒子)を0.25g計量した。計量した粒子を、ドデシルベンゼンスルホン酸ナトリウム0.025gと、純水50gと混合し、この混合物を超音波にて10分間撹拌して、樹脂粒子を分散させたものを測定試料とした。そして、この測定試料中の粒子の比表面積を、レーザー回折式粒度分布測定装置(Malvern Instruments Ltd製、「マスターサイザー2000」)を用いて、下記測定条件で測定した。
分散媒;水
解析モデル;汎用
粒子屈折率;1.50
分散媒屈折率;1.33
複合粒子の製造におけるシリカ粒子の使用重量と、重合性ビニル系モノマーの使用重量と、上記比表面積の測定方法により測定された粒子(複合粒子または重合体粒子)の比表面積とを用いて、以下の算出式により、上記製造で得られた粒子の単位表面積あたりのシリカ粒子の添加量(g/m2)を求める。
WS:複合粒子の製造におけるシリカ粒子の使用重量(g)
Wm:複合粒子の製造における重合性ビニル系モノマーの使用重量(g)
X:上記比表面積の測定方法により測定された粒子の比表面積(m2/g)
後述する実施例及び比較例で得られた粒子については、上記強熱残分は、粒子中のシリカ粒子の量とほぼ等しいことから、上記強熱残分の測定方法により測定された強熱残分と、上記比表面積の測定方法により測定された粒子の比表面積とを用いて、以下の式により、上記製造で得られた粒子の単位表面積あたりのシリカ粒子の付着量(g/m2)を求める。
A:強熱残分の測定方法により測定された強熱残分(重量%)
X:上記比表面積の測定方法により測定された粒子の比表面積(m2/g)
なお、上記強熱残分の測定方法において前記粒子を550℃の電気炉内で30分間、焼失させて残った残渣が、シリカ粒子以外の成分を含み、上記強熱残分の測定方法により測定された強熱残分が、粒子中のシリカ粒子の量と異なる場合には、以下の式により、上記製造で得られた粒子の単位表面積あたりのシリカ粒子の付着量(g/m2)を求めることができる。なお、上記残渣がシリカ粒子を含むか否か、及び、上記残渣中に含まれるシリカ粒子の量については、元素分析等の公知の方法を用いて判別することが可能である。
A:強熱残分の測定方法により測定された強熱残分(重量%)
B:上記残渣中におけるシリカ粒子の含有率(重量%)
X:上記比表面積の測定方法により測定された粒子の比表面積(m2/g)
〔実施例1:複合粒子の製造例〕
攪拌装置を有する重合容器に、水性媒体としての水150gと、シリカ粒子としてのスノーテックス(登録商標)O-40(略称「ST-O-40」、日産化学工業株式会社製コロイダルシリカ、平均一次粒子径25nm、固形分40重量%)1.1g(SiO2純分量0.44g)と、水溶性セルロース類としてのメトローズ(登録商標)65SH-400(略称「HPMC(65SH-400)」、信越化学工業株式会社製ヒドロキシプロピルメチルセルロース、曇点65℃)0.09gとを投入し、60℃の温度で24時間混合した。これにより、水溶性セルロース類が吸着したシリカ粒子を含む分散媒を得た。この分散媒を用いてシリカ粒子に対する水溶性セルロース類の吸着量を測定したところ、シリカ粒子1gあたり0.18gの水溶性セルロース類がシリカ粒子に吸着していた。
〔実施例2:複合粒子の製造例〕
水溶性セルロース類として、メトローズ(登録商標)65SH-400(HPMC(65SH-400))0.09gに代えて、メトローズ(登録商標)65SH-4000(略称「HPMC(65SH-4000)」、信越化学工業株式会社製ヒドロキシプロピルメチルセルロース、曇点65℃)を0.09g使用したこと以外は、実施例1と同様にして複合粒子を得た。
〔実施例3:複合粒子の製造例〕
水溶性セルロース類として、メトローズ(登録商標)65SH-400(HPMC(65SH-400))0.09gに代えて、メトローズ(登録商標)65SH-50(略称「HPMC(65SH-50)」、信越化学工業株式会社製ヒドロキシプロピルメチルセルロース、曇点65℃)を0.09g使用し、モノマー混合物の調製において、さらに、重合性リン酸系モノマーとしてのKAYAMER(登録商標)PM-21(略称「PM-21」、日本化薬株式会社製)0.05gを使用したこと以外は、実施例1と同様にして複合粒子を得た。
重合性ビニル系モノマーとして、メタクリル酸メチル(MMA)50g及びエチレングリコールジメタクリレート(EGDMA)2.5gに代えて、スチレン(St)50g及びエチレングリコールジメタクリレート(EGDMA)2.5gを使用したこと以外は、実施例1と同様にして複合粒子を得た。
シリカ粒子として、スノーテックス(登録商標)O-40(ST-O-40)1.1g(SiO2純分量0.44g)に代えて、スノーテックスOXS(略称「ST-OXS」、日産化学工業株式会社製コロイダルシリカ、平均一次粒子径7.8nm、固形分15重量%)を2.3g(SiO2純分量0.35g)使用したこと以外は、実施例1と同様にして複合粒子を得た。
シリカ粒子として、スノーテックス(登録商標)O-40(ST-O-40)1.1g(SiO2純分量0.44g)に代えて、スノーテックスOZL-35(略称「ST-OZL-35」、日産化学工業株式会社製コロイダルシリカ、平均一次粒子径85nm、固形分35重量%)を4.28g(SiO2純分量1.5g)使用したこと以外は、実施例1と同様にして複合粒子を得た。
シリカ粒子として、スノーテックス(登録商標)O-40(ST-O-40)1.1g(SiO2純分量0.44g)に代えて、スノーテックスPS-MO(略称「ST-PS-MO」、日産化学工業株式会社製コロイダルシリカ、平均一次粒子径21.5nmの球状粒子が結合、固形分15重量%)を2.53g(SiO2純分量0.38g)使用したこと以外は、実施例1と同様にして複合粒子を得た。
水溶性セルロース類として、メトローズ(登録商標)65SH-50(HPMC(65SH-50))0.09gに代えて、NISSO HPC H(日本曹達株式会社製ヒドロキシプロピルセルロース、下限臨界共溶温度45℃)0.09gを使用し、分散媒を調製する際の混合温度60℃を40℃に変更したこと以外は、実施例3と同様にして複合粒子を得た。
シリカ粒子としてのスノーテックス(登録商標)O-40(ST-O-40)の使用量を2.75g(SiO2純分量1.1g)に変更し、水溶性セルロース類としてのメトローズ(登録商標)65SH-400(HPMC(65SH-400))の使用量を0.22gに変更し、さらに、ホモミキサーの回転数4500rpmを9000rpmに変更したこと以外は、実施例1と同様にして複合粒子を得た。
シリカ粒子としてのスノーテックス(登録商標)O-40(ST-O-40)の使用量を0.55g(SiO2純分量0.22g)に変更し、水溶性セルロース類としてのメトローズ(登録商標)65SH-400(HPMC(65SH-400))の使用量を0.04gに変更し、さらに、ホモミキサーの回転数4500rpmを2500rpmに変更したこと以外は、実施例1と同様にして複合粒子を得た。
〔実施例11:複合粒子の製造例〕
シリカ粒子としてのスノーテックス(登録商標)O-40(ST-O-40)の使用量を0.28g(SiO2純分量0.11g)に変更し、水溶性セルロース類としてのメトローズ(登録商標)65SH-400(HPMC(65SH-400))の使用量を0.02gに変更し、さらに、ホモミキサーの回転数4500rpmを2500rpmに変更したこと以外は、実施例1と同様にして複合粒子を得た。
水性媒体としての水の使用量を200gに変更し、シリカ粒子としてのスノーテックス(登録商標)O-40(ST-O-40)の使用量を4.0g(SiO2純分量1.6g)に変更し、水溶性セルロース類としてのメトローズ(登録商標)65SH-400(HPMC(65SH-400))の使用量を0.32gに変更し、重合性ビニル系モノマーとして、メタクリル酸メチル(MMA)50g及びエチレングリコールジメタクリレート(EGDMA)2.5gに代えて、メタクリル酸メチル(MMA)140g及びトリメチロールプロパントリアクリレート(TMPTA)60gを使用し、重合開始剤として、2,2’-アゾビス(2,4-ジメチルバレロニトリル)(ADVN)0.5gに代えて、ラウロイルパーオキサイド(LPO)1.0gを使用したこと以外は、実施例1と同様にして複合粒子を得た。
水溶性セルロース類としてのメトローズ(登録商標)65SH-400(HPMC(65SH-400))を使用しないこと以外は、実施例1と同様にして、懸濁重合を試みたが、分散媒中におけるモノマー混合物の液滴の安定性が低く、複合粒子を得ることができなかった。
シリカ粒子としてのスノーテックス(登録商標)O-40(ST-O-40)を使用しないこと以外は、実施例1と同様にして、懸濁重合を試みたが、分散媒中におけるモノマー混合物の液滴の安定性が低く、複合粒子を得ることができなかった。
分散媒の調製において、水溶性セルロース類としてのメトローズ(登録商標)65SH-400(HPMC(65SH-400))0.09gに代えて、ゴーセノールGL-05(略称「GL-05」、日本合成化学株式会社製ポリビニルアルコール(PVA))0.09gを使用したこと以外は、実施例1と同様にして、懸濁重合を試みたが、分散媒中におけるモノマー混合物の液滴の安定性が低く、複合粒子を得ることができなかった。
攪拌装置を有する重合容器に、水性媒体としての水200gと、シリカ粒子としてのスノーテックス(登録商標)OXS(略称「ST-OXS」、日産化学工業株式会社製コロイダルシリカ、平均一次粒子径7.8nm、固形分15重量%)2.67g(SiO2純分量0.40g)と、界面活性剤としてのポリオキシエチレンラウリルエーテル0.02gとを投入し、30℃の温度で1時間混合した。これにより、シリカ粒子と界面活性剤とを含む分散媒を得た。
シリカ粒子として、スノーテックス(登録商標)OXS(ST-OXS)2.67g(SiO2純分量0.40g)に代えて、スノーテックス(登録商標)OL(略称「ST-OL」、日産化学工業株式会社製コロイダルシリカ、平均一次粒子径70nm、固形分20重量%)を1.0g(SiO2純分量0.20g)を使用し、ポリオキシエチレンラウリルエーテルの使用量を0.03gに変更したこと以外は、比較例4と同様にして複合粒子の製造を試みた。本比較例5で得られた粒子の体積平均粒子径は20.4μmで、比表面積は0.29m2/gであった。また、シリカ粒子の添加量は0.0034g/m2であるが、強熱残分は定量下限未満であった。強熱残分が定量下限未満であることから、比較例5で得られた粒子は、シリカ粒子をほとんど含まないと認められ、複合粒子ではなく、重合体粒子であると認められた。
シリカ粒子として、スノーテックス(登録商標)OXS(ST-OXS)2.67g(SiO2純分量0.40g)に代えて、スノーテックス(登録商標)MP-2040(略称「ST-OXS」、日産化学工業株式会社製コロイダルシリカ、平均一次粒子径200nm、固形分40重量%)を0.5g(SiO2純分量0.20g)使用したこと以外は、比較例4と同様にして、複合粒子の製造を試みた。本比較例6で得られた粒子の体積平均粒子径は20.1μmで、比表面積は0.29m2/gであった。また、シリカ粒子の添加量は0.0034g/m2であるが、強熱残分は定量下限未満であった。強熱残分が定量下限未満であることから、比較例6で得られた粒子は、シリカ粒子をほとんど含まないと認められ、複合粒子ではなく、重合体粒子であると認められた。
シリカ粒子として、スノーテックス(登録商標)OXS(ST-OXS)2.67g(SiO2純分量0.40g)に代えて、スノーテックス(登録商標)MP-4540M(略称「ST-MP-4540M」、日産化学工業株式会社製コロイダルシリカ、平均一次粒子径450nm、固形分40重量%)を1.5g(SiO2純分量0.60g)を使用し、ポリオキシエチレンラウリルエーテルの使用量を0.06gに変更したこと以外は、比較例4と同様にして複合粒子の製造を試みた。
攪拌装置を有する重合容器に水とシリカ粒子と水溶性セルロース類とを投入した後、60℃の温度で24時間混合せずに(水溶性セルロース類をシリカ粒子に吸着させるための処理を行わずに)、水溶性セルロース類及びシリカ粒子を含む分散媒を得た以外は、実施例1と同様にして、複合粒子の製造を試みたが、重合中に、粒子同士が合着してしまい、複合粒子を得ることができなかった。
シリカ粒子としてのスノーテックス(登録商標)OXS(ST-OXS)の使用量を10.6g(SiO2純分量1.6g)に変更し、界面活性剤としてのポリオキシエチレンラウリルエーテルの使用量を0.04gに変更し、ホモミキサーの回転数4500rpmを9000rpmに変更したこと以外は、比較例4と同様にして複合粒子の製造を試みた。
シリカ粒子としてのスノーテックス(登録商標)OXS(ST-OXS)の使用量を0.67g(SiO2純分量0.10g)に変更し、ホモミキサーの回転数4500rpmを1500rpmに変更したこと以外は、比較例4と同様にして複合粒子の製造を試みた。
実施例8で得られた粒子(複合粒子)30gと、バインダー樹脂としてのアクリルポリオール(商品名:メジウム VM、大日精化工業株式会社製、樹脂固形分34重量%、溶剤分散系)100g、硬化剤としてイソシアネート(商品名:VM-D、大日精化工業株式会社)30gとを混合してコーティング剤を得た。この後、得られたコーティング剤を、基材としての厚み100μmのポリエステルフィルム上に、アプリケーターを用いて塗布した後、70℃で10分間熱風乾燥し、光学フィルムを得た。得られた光学フィルムの全光線透過率、ヘイズ、およびグロスを測定した。結果を以下の表5に示す。
実施例13で得られた光学フィルムのヘイズおよび全光線透過率は、日本電色工業株式会社製のヘイズメーター「NDH-4000」を使用して測定した。全光線透過率の測定はJIS K 7361-1に、ヘイズの測定はJIS K 7136にそれぞれ従って実施した。なお、表3に示すヘイズおよび全光線透過率は、2個の測定サンプルの測定値の平均値である(測定サンプル数n=2)。ヘイズの値は、光学フィルムを透過した光(透過光)の拡散性が高い程、高くなる。
実施例13で得られた光学フィルムのグロスは、株式会社堀場製作所製のグロスチェッカ(光沢計)「IG-331」を使用して、測定した。具体的には、JIS Z8741に記載の方法に準拠して、上記グロスチェッカ(光沢計)「IG-331」により、光学フィルムの60°でのグロスを測定した。グロスの値は、光学フィルムの表面(具体的には、コーティング剤が塗工されて形成された塗膜表面)で反射した光の拡散性が高い程、低くなり、艶消し性がよいことを意味する。
実施例8で得られた複合粒子3重量部と、エタノール50重量部と、グリチルリチン酸0.1重量部と、香料0.5重量部と、精製水46.4重量部とをミキサーにて十分混合し、ボディローションを得た。
Claims (14)
- 重合体粒子と、この重合体粒子に付着したシリカ粒子とを含む複合粒子の製造方法であって、
水溶性セルロース類が表面に吸着したシリカ粒子の存在下で、重合性モノマーを、水系懸濁重合させて、複合粒子を得る重合工程を含むことを特徴とする複合粒子の製造方法。 - 請求項1に記載の複合粒子の製造方法であって、
前記水溶性セルロース類として、ヒドロキシプロピルセルロースおよび/またはヒドロキシプロピルメチルセルロースを用いることを特徴とする複合粒子の製造方法。 - 請求項1又は2に記載の複合粒子の製造方法であって、
前記重合工程の前に、前記シリカ粒子を前記水溶性セルロース類で処理して、前記シリカ粒子の表面に前記水溶性セルロース類を吸着させる吸着工程を含むことを特徴とする複合粒子の製造方法。 - 請求項3に記載の複合粒子の製造方法であって、
前記吸着工程では、(T-15)℃(Tは、前記水溶性セルロース類の下限臨界共溶温度(℃)または曇点(℃)を意味する。)以上の温度条件下に、前記シリカ粒子と前記水溶性セルロース類とを共存させて、前記シリカ粒子の表面に前記水溶性セルロース類を吸着させることを特徴とする複合粒子の製造方法。 - 請求項1~4のいずれか1つに記載の複合粒子の製造方法であって、
前記シリカ粒子の量を、前記複合粒子の単位表面積あたり、0.022~0.15g/m2とする複合粒子の製造方法。 - 請求項1~5のいずれか1つに記載の複合粒子の製造方法により得られる複合粒子であって、
重合体粒子の表面の少なくとも一部が、シリカ粒子からなる層で被覆されていることを特徴とする複合粒子。 - 重合体粒子と、前記重合体粒子の表面に付着したシリカ粒子と、水溶性セルロース類とを含むことを特徴とする複合粒子。
- 請求項7に記載の複合粒子であって、
前記重合体粒子の表面における前記シリカ粒子の付着量が、当該複合粒子の単位表面積あたり、0.010~0.10g/m2であることを特徴とする複合粒子。 - 請求項7又は8に記載の複合粒子であって、
前記重合体粒子の表面の少なくとも一部が、シリカ粒子からなる層で被覆されていることを特徴とする複合粒子。 - 請求項6~9のいずれか1つに記載の複合粒子を含むことを特徴とする外用剤。
- 請求項6~9のいずれか1つに記載の複合粒子を含むことを特徴とするコーティング剤。
- 請求項11に記載のコーティング剤を基材に塗工してなることを特徴とする光学フィルム。
- 請求項6~9のいずれか1つに記載の複合粒子と、基材樹脂とを含むことを特徴とする樹脂組成物。
- 請求項13に記載の樹脂組成物を成形してなることを特徴とする成形体。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/035,018 US20160280936A1 (en) | 2013-11-13 | 2013-11-13 | Composite particles, method for producing composite particles, and use thereof |
PCT/JP2013/080723 WO2015071984A1 (ja) | 2013-11-13 | 2013-11-13 | 複合粒子、複合粒子の製造方法、及び、その用途 |
CN201380080925.5A CN105722867B (zh) | 2013-11-13 | 2013-11-13 | 复合颗粒、复合颗粒的制造方法及其用途 |
EP13897565.1A EP3070106B1 (en) | 2013-11-13 | 2013-11-13 | Composite particles, method for producing same, and use thereof |
JP2015547327A JP6316309B2 (ja) | 2013-11-13 | 2013-11-13 | 複合粒子、複合粒子の製造方法、及び、その用途 |
KR1020167012634A KR101876749B1 (ko) | 2013-11-13 | 2013-11-13 | 복합 입자, 복합 입자의 제조 방법 및 그 용도 |
US16/165,238 US10876010B2 (en) | 2013-11-13 | 2018-10-19 | Composite particles, method for producing composite particles, and use thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2013/080723 WO2015071984A1 (ja) | 2013-11-13 | 2013-11-13 | 複合粒子、複合粒子の製造方法、及び、その用途 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/035,018 A-371-Of-International US20160280936A1 (en) | 2013-11-13 | 2013-11-13 | Composite particles, method for producing composite particles, and use thereof |
US16/165,238 Division US10876010B2 (en) | 2013-11-13 | 2018-10-19 | Composite particles, method for producing composite particles, and use thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015071984A1 true WO2015071984A1 (ja) | 2015-05-21 |
Family
ID=53056952
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/080723 WO2015071984A1 (ja) | 2013-11-13 | 2013-11-13 | 複合粒子、複合粒子の製造方法、及び、その用途 |
Country Status (6)
Country | Link |
---|---|
US (2) | US20160280936A1 (ja) |
EP (1) | EP3070106B1 (ja) |
JP (1) | JP6316309B2 (ja) |
KR (1) | KR101876749B1 (ja) |
CN (1) | CN105722867B (ja) |
WO (1) | WO2015071984A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016195006A1 (ja) | 2015-06-04 | 2016-12-08 | 株式会社日本触媒 | 有機重合体微粒子 |
WO2017038138A1 (ja) * | 2015-08-31 | 2017-03-09 | 積水化成品工業株式会社 | 複合粒子及びその製造方法、並びにその用途 |
JP2018053206A (ja) * | 2016-09-30 | 2018-04-05 | 積水化成品工業株式会社 | 複合粒子及びその製造方法並びにその用途 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2018203084B2 (en) * | 2017-05-10 | 2023-09-21 | Rohm And Haas Company | Process for preparing an aqueous dispersion of polymeric microspheres |
WO2019003626A1 (ja) * | 2017-06-27 | 2019-01-03 | 三菱瓦斯化学株式会社 | 透明スクリーン用樹脂組成物、透明スクリーン用フィルム、及び透明スクリーン用フィルムの製造方法 |
EP3575362A1 (de) * | 2018-05-29 | 2019-12-04 | Covestro Deutschland AG | Abdeckungen für led-lichtquellen |
KR102208205B1 (ko) | 2018-10-30 | 2021-01-29 | 한진화학 주식회사 | 2액형 광확산 코팅제 조성물 |
CN110469825A (zh) * | 2019-07-25 | 2019-11-19 | 徐春雷 | 一种光谱精准滤色调整方法 |
CN111019304B (zh) * | 2019-12-23 | 2021-05-18 | 浙江大学 | 一种可生物降解纳米复合材料 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62270602A (ja) * | 1986-05-19 | 1987-11-25 | Daicel Chem Ind Ltd | 多糖誘導体の製造方法 |
JPH08259470A (ja) * | 1995-12-27 | 1996-10-08 | Nakarai Tesuku Kk | 光学分割剤 |
JPH10298774A (ja) * | 1997-04-18 | 1998-11-10 | Nkk Corp | 歪取り焼鈍後の特性が優れた電磁鋼板用絶縁皮膜の形成方法 |
JPH11171800A (ja) * | 1997-10-03 | 1999-06-29 | Daicel Chem Ind Ltd | 光学異性体用分離剤及びその製造法 |
WO2011062173A1 (ja) | 2009-11-18 | 2011-05-26 | 綜研化学株式会社 | 樹脂粒子およびその製造方法 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62266561A (ja) | 1986-05-15 | 1987-11-19 | Canon Inc | 重合トナ−の製造方法 |
JPH04256345A (ja) | 1991-02-07 | 1992-09-11 | Toagosei Chem Ind Co Ltd | 半導体装置 |
JPH05320534A (ja) | 1992-05-28 | 1993-12-03 | Mitsubishi Heavy Ind Ltd | 顔料及びその製造方法 |
JPH07173997A (ja) | 1993-12-20 | 1995-07-11 | Konoike Constr Ltd | トンネル内壁覆工構造およびその工法 |
JPH07309918A (ja) * | 1994-03-25 | 1995-11-28 | Takeda Chem Ind Ltd | 多相重合体粒子凝集体およびこれを含む吸油材 |
JP4263780B2 (ja) | 1996-12-26 | 2009-05-13 | 株式会社日本触媒 | 無機分散安定剤およびそれを用いた樹脂粒子の製法 |
JP4398009B2 (ja) | 1999-06-15 | 2010-01-13 | 株式会社日本触媒 | 分散安定剤およびそれを用いた樹脂粒子の製法 |
JP2003064110A (ja) | 2001-08-23 | 2003-03-05 | New Industry Research Organization | 界面活性粒子、ポリマー粒子およびその製造方法 |
WO2006001330A1 (ja) | 2004-06-24 | 2006-01-05 | Ishihara Sangyo Kaisha, Ltd | 二酸化チタン顔料及びその製造方法並びにそれを含む樹脂組成物 |
JP4794313B2 (ja) | 2006-02-20 | 2011-10-19 | 積水化成品工業株式会社 | 重合体粒子及びその製造方法 |
JP5358242B2 (ja) | 2009-03-26 | 2013-12-04 | 積水化成品工業株式会社 | 重合体粒子及びその製造方法 |
JP5727323B2 (ja) * | 2011-03-17 | 2015-06-03 | 積水化成品工業株式会社 | 有機無機複合粒子、その製造方法、およびその用途 |
WO2014050177A1 (ja) * | 2012-09-26 | 2014-04-03 | 積水化成品工業株式会社 | 多孔質樹脂粒子、多孔質樹脂粒子の製造方法、およびその用途 |
JP6199222B2 (ja) * | 2014-03-28 | 2017-09-20 | 積水化成品工業株式会社 | 複合粒子、複合粒子の製造方法、及び外用剤 |
JP6294204B2 (ja) * | 2014-09-30 | 2018-03-14 | 積水化成品工業株式会社 | 複合粒子、複合粒子の製造方法、及び、その用途 |
-
2013
- 2013-11-13 EP EP13897565.1A patent/EP3070106B1/en active Active
- 2013-11-13 US US15/035,018 patent/US20160280936A1/en not_active Abandoned
- 2013-11-13 KR KR1020167012634A patent/KR101876749B1/ko active IP Right Grant
- 2013-11-13 JP JP2015547327A patent/JP6316309B2/ja active Active
- 2013-11-13 WO PCT/JP2013/080723 patent/WO2015071984A1/ja active Application Filing
- 2013-11-13 CN CN201380080925.5A patent/CN105722867B/zh active Active
-
2018
- 2018-10-19 US US16/165,238 patent/US10876010B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62270602A (ja) * | 1986-05-19 | 1987-11-25 | Daicel Chem Ind Ltd | 多糖誘導体の製造方法 |
JPH08259470A (ja) * | 1995-12-27 | 1996-10-08 | Nakarai Tesuku Kk | 光学分割剤 |
JPH10298774A (ja) * | 1997-04-18 | 1998-11-10 | Nkk Corp | 歪取り焼鈍後の特性が優れた電磁鋼板用絶縁皮膜の形成方法 |
JPH11171800A (ja) * | 1997-10-03 | 1999-06-29 | Daicel Chem Ind Ltd | 光学異性体用分離剤及びその製造法 |
WO2011062173A1 (ja) | 2009-11-18 | 2011-05-26 | 綜研化学株式会社 | 樹脂粒子およびその製造方法 |
Non-Patent Citations (3)
Title |
---|
"KOBUNSHI RONBUNSHU", vol. 40, October 1983, THE SOCIETY OF POLYMER SCIENCE, pages: 697 - 702 |
"Rheological and Interfacial Properties of Silicone Oil Emulsions Prepared by Polymer Pre-adsorbed onto Silica Particles", COLLOIDS SURFACES A: PHYSICOCHEM. ENG. ASPECTS, vol. 328, 2008, pages 114 - 122 |
See also references of EP3070106A4 |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016195006A1 (ja) | 2015-06-04 | 2016-12-08 | 株式会社日本触媒 | 有機重合体微粒子 |
EP3305816A4 (en) * | 2015-06-04 | 2019-02-27 | Nippon Shokubai Co., Ltd. | FINE ORGANIC POLYMER PARTICLES |
US11104753B2 (en) | 2015-06-04 | 2021-08-31 | Nippon Shokubai Co., Ltd. | Organic polymer fine particles |
WO2017038138A1 (ja) * | 2015-08-31 | 2017-03-09 | 積水化成品工業株式会社 | 複合粒子及びその製造方法、並びにその用途 |
CN107949581A (zh) * | 2015-08-31 | 2018-04-20 | 积水化成品工业株式会社 | 复合颗粒和其制造方法、以及其用途 |
KR20180048934A (ko) | 2015-08-31 | 2018-05-10 | 세키스이가세이힝코교가부시키가이샤 | 복합 입자와 그 제조 방법 및 그 용도 |
JPWO2017038138A1 (ja) * | 2015-08-31 | 2018-06-14 | 積水化成品工業株式会社 | 複合粒子及びその製造方法、並びにその用途 |
KR102047656B1 (ko) | 2015-08-31 | 2019-11-22 | 세키스이가세이힝코교가부시키가이샤 | 복합 입자와 그 제조 방법 및 그 용도 |
CN107949581B (zh) * | 2015-08-31 | 2020-09-29 | 积水化成品工业株式会社 | 复合颗粒和其制造方法、以及其用途 |
JP2018053206A (ja) * | 2016-09-30 | 2018-04-05 | 積水化成品工業株式会社 | 複合粒子及びその製造方法並びにその用途 |
Also Published As
Publication number | Publication date |
---|---|
KR20160071443A (ko) | 2016-06-21 |
US20190055425A1 (en) | 2019-02-21 |
JPWO2015071984A1 (ja) | 2017-03-09 |
US10876010B2 (en) | 2020-12-29 |
EP3070106A4 (en) | 2017-07-05 |
EP3070106A1 (en) | 2016-09-21 |
CN105722867B (zh) | 2018-05-11 |
CN105722867A (zh) | 2016-06-29 |
US20160280936A1 (en) | 2016-09-29 |
EP3070106B1 (en) | 2019-01-09 |
JP6316309B2 (ja) | 2018-04-25 |
KR101876749B1 (ko) | 2018-07-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6661721B2 (ja) | 複合粒子及びその用途 | |
JP6316309B2 (ja) | 複合粒子、複合粒子の製造方法、及び、その用途 | |
JP6284917B2 (ja) | 多孔質樹脂粒子、多孔質樹脂粒子の製造方法、およびその用途 | |
JP6178398B2 (ja) | 多孔質樹脂粒子およびその用途 | |
WO2017038138A1 (ja) | 複合粒子及びその製造方法、並びにその用途 | |
JP2013227535A (ja) | 多孔質樹脂粒子、多孔質樹脂粒子の製造方法、及び、その用途 | |
WO2014156994A9 (ja) | 多孔質樹脂粒子、その製造方法、分散液およびその用途 | |
WO2013161098A1 (ja) | 重合体粒子、その製造方法、及び、その用途 | |
JP6294204B2 (ja) | 複合粒子、複合粒子の製造方法、及び、その用途 | |
JP6645944B2 (ja) | 複合粒子及びその製造方法並びにその用途 | |
JP2002327004A (ja) | 樹脂粒子凝集体、その製造方法および用途 | |
JP6199222B2 (ja) | 複合粒子、複合粒子の製造方法、及び外用剤 | |
TWI579325B (zh) | 複合粒子、複合粒子的製造方法及其用途 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13897565 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15035018 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 2015547327 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2013897565 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020167012634 Country of ref document: KR Ref document number: 2013897565 Country of ref document: EP |