WO2011062173A1 - 樹脂粒子およびその製造方法 - Google Patents

樹脂粒子およびその製造方法 Download PDF

Info

Publication number
WO2011062173A1
WO2011062173A1 PCT/JP2010/070429 JP2010070429W WO2011062173A1 WO 2011062173 A1 WO2011062173 A1 WO 2011062173A1 JP 2010070429 W JP2010070429 W JP 2010070429W WO 2011062173 A1 WO2011062173 A1 WO 2011062173A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin particles
inorganic dispersant
amount
polymerizable monomer
meth
Prior art date
Application number
PCT/JP2010/070429
Other languages
English (en)
French (fr)
Inventor
敏雄 関谷
Original Assignee
綜研化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 綜研化学株式会社 filed Critical 綜研化学株式会社
Priority to CA2779893A priority Critical patent/CA2779893A1/en
Priority to US13/505,748 priority patent/US20120238705A1/en
Priority to CN201080050945.4A priority patent/CN102597012B/zh
Priority to EP20100831567 priority patent/EP2502940A4/en
Priority to JP2011541931A priority patent/JPWO2011062173A1/ja
Publication of WO2011062173A1 publication Critical patent/WO2011062173A1/ja
Priority to IN4969DEN2012 priority patent/IN2012DN04969A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • C08F2/24Emulsion polymerisation with the aid of emulsifying agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica

Definitions

  • the present invention relates to resin particles and a method for producing the same. More specifically, the present invention relates to resin particles having a uniform particle diameter and a method for producing the same.
  • Resin particles are widely used in optical material applications, cosmetic applications, molding resins, paint additives, and the like. In each application, resin particles having a uniform particle diameter are required.
  • the treatment of the reaction solution has been a problem because the polymerization system contains a metal.
  • the addition amount of an inorganic compound such as silica is more than a certain level, the silica adhering to the surface of the obtained resin particles may become an obstacle in the subsequent processing.
  • An object of the present invention is to obtain resin particles having a uniform particle size with a small amount of inorganic dispersant such as silica attached to the surface. Furthermore, it aims at reducing the metal in the waste liquid produced in manufacture of this particle
  • the present invention includes, for example, the following [1] to [9].
  • Resin particles having an inorganic dispersant attached to the surface and having a volume average particle diameter of 1 to 1000 ⁇ m, Formula (I) Coating amount of inorganic dispersant on resin particle surface (Amount of inorganic dispersant (parts by weight) / Amount of polymerizable monomer (parts by weight)) / Resin particle specific surface area measured with Mastersizer 2000 manufactured by Malvern Instruments Ltd (I) (However, the amount of the inorganic dispersant and the polymerizable monomer on the right side of the formula (I) is the amount charged when the resin particles are produced, and the amount of the polymerizable monomer is 100 parts by weight)
  • the resin particles, wherein the coating amount of the inorganic dispersant on the surface of the resin particles obtained in (1) is 0.0001 to 0.02 g / m 2 .
  • Step 1 A step of stirring a composition containing an aqueous medium, a polymerizable monomer, a polymerization initiator, an inorganic dispersant, and an emulsifier to form a liquid in which oil droplets are dispersed in the aqueous medium;
  • Step 2 A method for producing resin particles, comprising: heating the dispersion while stirring to polymerize the polymerizable monomer.
  • the inorganic dispersant is used in an amount of 0.01 to 2.0 parts by weight with respect to 100 parts by weight of the polymerizable monomer.
  • a method for producing resin particles is also used.
  • resin particles having a uniform particle diameter can be obtained. Furthermore, the obtained resin particles have a low coverage with an inorganic dispersant such as silica on the surface and are excellent in redispersibility. Furthermore, the resin product containing the resin particles is excellent in luminance when used for an optical sheet member, and is suitable for various processing. In addition, since the amount of the metal-containing compound and the halogen-containing compound used in the production process is small, the concentration of those compounds in the waste liquid is low, and adverse effects on the environment can be reduced.
  • FIG. 1 shows the relationship between the silica coating amount on the resin particle surface (calculated value based on MS specific surface area) and luminance. It is a SEM photograph of the resin particle of the present invention.
  • the resin particles of the present invention are preferably produced using suspension polymerization.
  • the method for producing the resin particles of the present invention includes: [Step 1] Stirring a composition containing an aqueous medium, a polymerizable monomer, a polymerization initiator, an inorganic dispersant and an emulsifier to form a liquid in which oil droplets are dispersed in the aqueous medium; [Step 2] Heating the dispersion while stirring to polymerize the polymerizable monomer, Have.
  • Step 1-1 It is preferable to include a step of adding a dispersion stabilizer to the dispersion and stirring.
  • the resin particles obtained by the above production method are subjected to a medium removal step such as suction filtration, centrifugal separation, and a cross flow cleaning device, a drying step such as shelf drying, vacuum drying, spray drying, a pulverization step, and the like to obtain a target resin. Particles can be obtained. Moreover, in order to make a particle diameter more uniform, you may use a classification process together as needed.
  • a medium removal step such as suction filtration, centrifugal separation, and a cross flow cleaning device
  • a drying step such as shelf drying, vacuum drying, spray drying, a pulverization step, and the like to obtain a target resin. Particles can be obtained. Moreover, in order to make a particle diameter more uniform, you may use a classification process together as needed.
  • the above polymerizable monomer, polymerization initiator, inorganic dispersant, emulsifier, and other optional components are added to an aqueous medium, a device having a stirring blade rotating function, a homomixer, an ultrasonic wave Disperse using a disperser or the like using stirring force or shearing force. And the dispersion liquid in which the oil droplet was formed in the aqueous medium is obtained.
  • the stirring speed is preferably 2 to 25 m / s as the peripheral speed at the end of the stirring blade, and the stirring time is preferably 1 to 60 minutes.
  • the stirring temperature is preferably a temperature at which the polymerizable monomer does not polymerize, usually at room temperature.
  • the polymerizable monomer used in the production of the resin particles of the present invention is not particularly limited as long as it is a polymerizable monomer in which oil droplets can form a dispersed state in an aqueous medium.
  • polymerizable monomer examples include (meth) acrylic acid monomers, styrene monomers, functional group-containing monomers, polyfunctional monomers, conjugated diene monomers, and polyurethane resins. And (meth) acrylic monomers and styrene monomers that can easily produce spherical resin particles. More specific examples include the following, but are not limited to the following.
  • (meth) acrylic acid monomer As a (meth) acrylic acid monomer, (Meth) acrylic acid alkyl ester; methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, pentyl (meth) acrylate, hexyl (meth) acrylate, (Meth) acrylate-2-ethylhexyl, octyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth) acrylate and dodecyl (meth) acrylate, etc.
  • styrenic monomers examples include styrene, methyl styrene, dimethyl styrene, trimethyl styrene, ethyl styrene, diethyl styrene, triethyl styrene, propyl styrene, butyl styrene, hexyl styrene, heptyl styrene and octyl styrene, and other alkyl styrene and fluoro styrene.
  • Chlorostyrene bromostyrene, dibromostyrene, chloromethylstyrene, iodinated styrene, nitrostyrene, acetylstyrene, methoxystyrene, ⁇ -methylstyrene, vinyltoluene and the like.
  • Oxazoline group-containing polymerizable compounds As a functional group-containing monomer, Oxazoline group-containing polymerizable compounds; 2-vinyl-2-oxazoline, 2-vinyl-5-methyl-2-oxazoline, 2-isopropenyl-2-oxazoline, etc.
  • Aziridine group-containing polymerizable compounds (meth) acryloylaziridine, (meth) acrylic acid-2-aziridinylethyl, etc.
  • Epoxy group-containing vinyl monomers allyl glycidyl ether, (meth) acrylic acid glycidyl ether, (meth) acrylic acid-2-ethyl glycidyl ether, etc.
  • Hydroxyl group-containing vinyl compounds (meth) acrylic acid-2-hydroxyethyl, (meth) acrylic acid-2-hydroxypropyl, (meth) acrylic acid-2-hydroxybutyl, (meth) acrylic acid and polypropylene glycol or polyethylene glycol Adducts of monoesters and lactones with 2-hydroxyethyl (meth) acrylate, etc. Fluorine-containing vinyl monomer; fluorine-substituted (meth) acrylic acid alkyl ester, etc.
  • Carboxyl group-containing vinyl monomers unsaturated carboxylic acids such as (meth) acrylic acid, itaconic acid, crotonic acid, maleic acid and fumaric acid, salts thereof and (partial) ester compounds and acid anhydrides thereof, etc.
  • Reactive halogen-containing vinyl monomers (meth) acrylic acid-2-chloroethyl, 2-chloroethyl vinyl ether, vinyl monochloroacetate, vinylidene chloride, etc.
  • Amide group-containing vinyl monomers (meth) acrylamide, N-methylol (meth) acrylamide, N-methoxyethyl (meth) acrylamide, N-butoxymethyl (meth) acrylamide, etc.
  • Organosilicon group-containing vinyl compound monomer vinyltrimethoxysilane, 3-methacryloxypropyltrimethoxysilane, allyltrimethoxysilane, trimethoxysilylpropylallylamine, 2-methoxyethoxytrimethoxysilane, etc.
  • macromonomers substances having a radical polymerizable vinyl group at the terminal of the copolymer of the above monomers (for example, fluorine macromonomer, silicon-containing macromonomer, urethane macromonomer), Acrylonitrile; vinyl acetate;
  • Bifunctional monomer As a polyfunctional monomer, Bifunctional monomer; ethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, polyoxyethylene di (meth) acrylate, neo Pentyl glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, divinylbenzene, etc.
  • Trifunctional monomer trimethylolpropane triacrylate, trimethylolethane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol tri (meth) acrylate, ethoxylated trimethylolpropane tri (meth) acrylate, Propoxylated trimethylolpropane tri (meth) acrylate, tris (2- (meth) acryloxyethyl isocyanurate), etc.
  • Tetrafunctional or higher monomer pentaerythritol tetra (meth) acrylate, ethoxylated pentaerythritol tetra (meth) acrylate, propoxylated pentaerythritol tetra (meth) acrylate, dipentaerythritol tetra (meth) acrylate, ethoxylated dipentaerythritol Tetra (meth) acrylate, propoxylated dipentaerythritol tetra (meth) acrylate, ditrimethylolpropanetetra (meth) acrylate, ethoxylated ditrimethylolpropanetetra (meth) acrylate and ethoxylated ditrimethylolpropanetetra (meth) acrylate Tetra (meth) acrylate compounds such as Diisocyanate compounds having an aliphatic between diisocyanates such as hexamethylene di
  • conjugated diene monomer examples include butadiene, isoprene and chloroprene.
  • a polyol mainly composed of glycol and a diisocyanate raw material can be used.
  • polyol examples include diol compounds such as ethylene glycol and diethylene glycol, and polyether glycols.
  • the above monomers may be used alone or in combination.
  • Polymerization initiator In the production of the resin particles of the present invention, it is preferable to use a polymerization initiator.
  • a radical polymerization initiator is preferable. Examples of such radical polymerization initiators include organic peroxides, azo initiators, and other radical polymerization initiators.
  • organic peroxides used here include cumene hydroperoxide (CHP), ditertiary butyl peroxide, dicumyl peroxide, benzoyl peroxide (BPO), lauroyl peroxide (LPO), dimethylbis ( Tertiary butyl peroxy) hexane, dimethyl bis (tertiary butyl peroxy) hexyne-3, bis (tertiary butyl peroxy isopropyl) benzene, bis (tertiary butyl peroxy) trimethylcyclohexane, butyl-bis (tertiary butyl) Peroxy) valerate, tertiary butyl 2-ethylhexaneperoxide, dibenzoyl peroxide, paramentane hydroperoxide, and tertiary butyl peroxybenzoate.
  • Rukoto can.
  • azo initiators examples include 2,2-azobisisobutyronitrile, 2,2-azobis-2-methylbutyronitrile, 2,2-azobis-2,4-dimethylvaleronitrile, 2,2 -Azobis-4-methoxy-2,4-dimethylvaleronitrile, 2,2-azobis (methyl 2-methylpropanoate), 2,2-azobis (2-methylpropaneamidine) dihydrochloride, etc. it can.
  • Inorganic dispersant Silica, titanium oxide, alumina, etc. are mentioned as an inorganic dispersing agent used for manufacture of the resin particle of this invention.
  • silica is preferable because the refractive index of the resin particles and the inorganic dispersant is close and does not adversely affect the optical performance.
  • colloidal silica As the type of silica, it is preferable to use colloidal silica because the particle diameter is as small as nano-order and dispersed in water as primary particles.
  • the average primary particle size before addition of colloidal silica to the reaction system is preferably 1 to 500 nm, and more preferably 1 to 200 nm.
  • the average primary particle diameter of colloidal silica When the average primary particle diameter of colloidal silica is in the above range, resin particles having a uniform particle diameter can be obtained.
  • the smaller the average primary particle diameter of colloidal silica the higher the function as an inorganic dispersant and the easier it is to obtain the effect of stabilizing the oil droplets. Even if a material larger than the above range is used, the oil droplet stabilizing effect more than that used in the range of the present invention cannot be obtained.
  • an emulsifier In the production of the resin particles of the present invention, an emulsifier is used in addition to the inorganic dispersant in order to disperse the components in an aqueous medium.
  • emulsifiers include polymer dispersants, nonionic surfactants, and ionic surfactants.
  • polymer dispersant examples include proteins (eg, gelatin); lecithin; water-soluble rubber such as gum arabic and tragacanth; sodium alginate; cellulose derivatives such as carboxymethylcellulose, ethoxycellulose, and hydroxypropylmethylcellulose; starch and derivatives thereof; Polyvinyl alcohol; polyvinyl pyrrolidone, etc .; polyoxyethylene alkyl ether, polyoxyethylene alkylphenyl ether, polyoxyethylene lauryl ether, polyethylene glycol fatty acid ester, polyvinyl alcohol, polyvinyl alcohol-based graft polymer (polyvinyl pyrrolidone and its derivatives grafted) Sorbitan oleate, sorbitan stearate, sorbitan palmi Nonionic surfactants such as sorbitan fatty acid esters such as acid esters; cetyl alcohol, polyoxyethylene alkyl ethers such as polyoxyethylene lauryl ether and polyoxyethylene stearyl
  • Polyoxyethylene sorbitan fatty acid ester polyoxyethylene sorbitol fatty acid ester, glycerin fatty acid ester
  • Polyoxyethylene fatty acid esters such as polyethylene glycol monolaurate and polyethylene glycol distearate; polyoxyethylene hydrogenated castor oil, polyoxyethylene alkylamine, alkylalkanolamide
  • anionic surfactants include sodium lauryl sulfate and ammonium lauryl sulfate
  • Alkyl sulfate salts such as polyoxyethylene alkyl sulfate salts, sodium dodecylbenzenesulfonate, sodium dialkylsulfosuccinate, ammonium polyoxyalkylene alkenyl ether sulfate, fatty acid salt, sodium salt of naphthalene sulfonic acid formalin condensate
  • cationic surface activity Agents include alkylamine salts such as coconut amine acetate and stearylamine acetate
  • Such emulsifiers can be used alone or in combination.
  • the emulsifier preferably contains no metal or has a low metal content in terms of waste liquid treatment.
  • a colorant component such as a polymerization inhibitor, an antioxidant, an ultraviolet absorber, an antifoaming agent, a near infrared absorber, a fluorescent whitening agent, a pigment, and a dye can be used.
  • Examples of the polymerization inhibitor include sodium nitrite and dibutylhydroxytoluene.
  • Examples of the antioxidant include hindered phenolic antioxidants.
  • Examples of the ultraviolet absorber include hindered amine light stabilizers, hindered amine polymerizable compounds, benzotriazole polymerizable compounds, and the like.
  • any oil-soluble dye / pigment that is less soluble in water than the monomer can be used as appropriate.
  • oil-soluble dye examples include Solvent Blue 35, Solvent Red 132, Solvent Black 27, Solvent Yellow 16, and the like having a color index number (CI).
  • dyes that are usually used in writing recording liquids such as clarine, azo, quinophthalone, and phthalocyanine, leuco dyes that are used as thermal recording paper and temperature-sensitive color materials, and tar dyes that are used in cosmetics Also mentioned.
  • various direct dyes, acid dyes, basic dyes, azoic dyes, reactive dyes, fluorescent dyes, and the like can be used.
  • pigments that can be dispersed in the monomer include various types such as permanent yellow DHG, Pigment Red 57: 1, Lionol Blue 7027, Carbon Black, Black Pearls 430, Titanium Dioxide, Zinc Oxide, Bengala, and Ultramarine Blue. Examples include inorganic and organic pigments.
  • composition in Step 1 In the composition in [Step 1] in the production process for obtaining the resin particles of the present invention, the above components are present in the aqueous medium in the following amounts.
  • the following amounts represent the total polymerizable monomer as 100 parts by weight.
  • the inorganic dispersant is preferably 0.01 to 2.0 parts by weight, more preferably 0.05 to 1.0 parts by weight.
  • the emulsifier is preferably 0.0001 to 0.1 parts by weight, more preferably 0.001 to 0.05 parts by weight.
  • aqueous medium examples include water and a mixture of water and alcohol.
  • the ratio of the total weight of the inorganic dispersant and the emulsifier to the weight of the aqueous medium is preferably 0.0011 to 2.1 / 50 to 300, more preferably 0.051 to 1.05 / 50 to 200. is there.
  • the amount of the initiator is preferably 0.05 to 5 parts by weight, and more preferably 0.1 to 2 parts by weight.
  • Step 1-1 A step of adding a dispersion stabilizer to the dispersion and stirring. Step 1-1 is performed in an inert gas atmosphere, and the stirring speed is 2 as the peripheral speed at the end of the stirring blade.
  • the stirring time is preferably 1 to 60 minutes.
  • the stirring temperature is preferably a temperature at which the polymerizable monomer does not polymerize, usually at room temperature. Examples of the agitation means include those similar to those in step 1.
  • Dispersion stabilizer In the present invention, it is preferable to use a dispersion stabilizer in order to stabilize the formed dispersion after forming a dispersion state of oil droplets having a desired particle diameter using the inorganic dispersant and the emulsifier.
  • the dispersion stabilizer can be selected from the above-mentioned emulsifiers, and among them, a polymer dispersant is preferable.
  • polyvinyl alcohol and surfactants such as polyoxyalkylene phenyl ether sulfate are suitable because they are excellent in the function of stabilizing the dispersion state of oil droplets and are inexpensive and easy to use.
  • the amount of the dispersion stabilizer is preferably 0.1 to 5 parts by weight, and more preferably 0.2 to 2 parts by weight.
  • the stirring speed is preferably 0.2 to 2 m / s as the peripheral speed at the end of the stirring blade, and the heating temperature is preferably 50 to 80 ° C.
  • the temperature is gradually increased and the polymerization is accelerated at 80 to 95 ° C.
  • the time taken from the start of polymerization to completion is from 1 to 10 hours, preferably from 2 to 6 hours.
  • Examples of the agitation means include those similar to those in step 1.
  • Resin particles The resin particles of the present invention thus obtained have the following properties.
  • the volume average particle diameter of the resin particles of the present invention is 1 to 1000 ⁇ m, preferably 2 to 300 ⁇ m.
  • the volume average particle diameter of the resin particles of the present invention is the above value, which is related to various factors such as selection of the polymerizable monomer, stirring speed, and the like. It is considered that such an excellent value was obtained due to the amount of the additive used.
  • Resin particles having a volume average particle diameter in the above range do not include fine particles and coarse particles, and are suitably used for various applications.
  • the specific surface area of the resin particles of the present invention is preferably 0.01 to 6.0 m 2 / g, more preferably 0.02 to 3.0 m 2 / g. That the specific surface area of the resin particles of the present invention is the above value is related to various factors such as selection of a polymerizable monomer, stirring speed, and the like, particularly an inorganic dispersant, an emulsifier, etc. in suspension polymerization. It is considered that such an excellent value was obtained due to the amount of additive used. Resin particles having a specific surface area in the above range do not include fine particles and coarse particles, and are suitably used for various applications.
  • the CV value of the resin particles of the present invention is preferably 10 to 50%, more preferably 10 to 40%.
  • the CV value is a value obtained by 100 ⁇ standard deviation of particle diameter / number average particle diameter.
  • the fact that the CV value of the resin particles of the present invention is the above value is related to various factors such as selection of the polymerizable monomer, stirring speed, etc., but especially the inorganic dispersant, emulsifier, etc. in suspension polymerization. It is considered that such an excellent value was obtained due to the amount of additive used.
  • Resin particles having a CV value in the above range do not include fine particles and coarse particles, and are suitably used for various applications.
  • An inorganic dispersant is attached to the surface of the resin particles.
  • the coating amount of the inorganic dispersant on the resin particle surface is 0.0001 to 0.02 g / m 2 , preferably 0.0005 to 0.015 g / m 2 when calculated by the following formula (I).
  • Coating amount of inorganic dispersant on resin particle surface (Amount of inorganic dispersant (parts by weight) / Amount of polymerizable monomer (parts by weight)) / Resin particle specific surface area measured with Mastersizer 2000 manufactured by Malvern Instruments Ltd (I) (However, the amount of the inorganic dispersant and the polymerizable monomer on the right side of the formula (I) is the amount charged when the resin particles are produced, and the amount of the polymerizable monomer is 100 parts by weight)
  • the above formula is a value calculated assuming that all of the inorganic dispersant is adsorbed on the surface of the resin particles.
  • the reason why the coating amount of the inorganic dispersant falls within the above range is considered to be largely attributable to the amount of the additive used such as the inorganic dispersant and the emulsifier in the suspension polymerization.
  • Resin particles having an inorganic dispersant coating amount in the above range can be suitably used for various applications because processing is prevented by the inorganic dispersant on the resin surface.
  • the elution halogen concentration with respect to the resin particles is preferably less than 24 ppm, more preferably less than 20 ppm, and particularly preferably 0 to 10 ppm.
  • the reason why the amount of halogen on the surface of the resin particles falls within the above range is considered to be because the amount of halogen-containing compound used in the production process is small.
  • concentration is a value with respect to 100g of resin particles.
  • the concentration of the eluted metal with respect to the resin particles is preferably 20 ppm or less, more preferably 0 to 10 ppm.
  • the reason why the amount of the metal on the surface of the resin particles falls within the above range is considered to be because the amount of the metal-containing compound used in the production process is small.
  • concentration is a value with respect to 100g of resin particles.
  • the luminance of the acrylic resin sheet containing the resin particles of the present invention is 0 as compared with the luminance of the acrylic resin sheet containing the same concentration of resin particles having no inorganic dispersant attached to the resin particle surface. More than 1% higher. As described above, the luminance can be obtained in such a value because the amount of the inorganic dispersant such as silica attached to the resin particle surface of the present invention is small. It is more suitably used for applications such as a light diffusion sheet, a light diffusion plate, and an antiglare film.
  • the number of rotations until the resin particles are completely redispersed in methyl ethyl ketone is preferably 1 to 55 times, more preferably 1 to 45 times.
  • the reason why such a value of the redispersibility in the solvent is obtained is that the amount of the inorganic dispersant such as silica on the resin particle surface of the present invention is within the scope of the present invention as described above. If the redispersibility in the solvent is in the above range, it is possible to redisperse the particles that have settled over time, so that the formation of aggregated particles can be suppressed, and problems caused by sedimentation of the particles are reduced. Furthermore, it has an advantage such as easy handling, and is suitably used for applications such as a light diffusion sheet, an antiglare film, and a paint.
  • the inorganic dispersant surrounds the oil droplets containing the polymerizable monomer in the dispersion and becomes a structure that adsorbs to the interface of the oil droplets, thereby stabilizing the interface potential between the aqueous medium and the oil droplets. It is thought that there is. That is, it is considered that the potential of the oil droplet is changed and stabilized by the inorganic dispersant. However, such stabilization requires a large amount of inorganic dispersant.
  • the reason why the amount of the inorganic dispersant added to the reaction system is small and the coating amount of the inorganic dispersant on the surface of the obtained resin particles is small is considered to be due to the interaction between the inorganic dispersant and the emulsifier.
  • the emulsifier also adjusts the electric potential at the interface between the aqueous medium and the oil droplets. It is considered that the emulsifier acts on the potential of the oil droplet surface together with the inorganic dispersant and also adjusts the potential of the inorganic dispersant to influence the adsorption state between the inorganic dispersant and the oil droplet. Furthermore, it is considered that the aggregation and dispersion of the inorganic dispersant are adjusted.
  • the emulsifier can change the potential of the inorganic dispersant just by adding a trace amount, works with the surface potential of the oil droplets together with the inorganic dispersant.
  • the inorganic dispersant is present in the system in a state that is neither secondary aggregation nor primary particles (considered as a pseudo-aggregation state). It is thought that oil droplets are stabilized. This pseudo-aggregation state is considered that the inorganic dispersant reversibly changes between the secondary aggregation state and the primary particle state.
  • the effect of the emulsifier is related to the electric potential, a difference appears in the adsorption state depending on the polarity of the emulsifier. Therefore, the optimum amount of emulsifier varies depending on its polarity.
  • the inorganic dispersant and the emulsifier in an amount within the scope of the present invention, an appropriate amount of the inorganic dispersant is adsorbed to the oil droplets containing the polymerizable monomer in the reaction system, and each oil It is considered that the droplet size is stabilized in a nearly uniform state.
  • the obtained resin particles can be used for cosmetics, optical materials, molding resins, film blocking prevention, paints, and the like.
  • ⁇ Evaluation 1 Volume average particle diameter and specific surface area of resin particles> Preparation of measurement sample: 0.25 g of resin particles obtained in the examples were weighed, 0.025 g of sodium dodecylbenzenesulfonate and 50 g of pure water were added, and an ultrasonic dispersion machine (device name: ULTRASONIC HOMOGENIZER UH-50) , Manufactured by SMT Co., Ltd., frequency 20 kHz) for 10 minutes was used as a measurement sample.
  • an ultrasonic dispersion machine device name: ULTRASONIC HOMOGENIZER UH-50
  • the volume average particle diameter and specific surface area of the measurement sample were measured under the following measurement conditions using the following measurement apparatus.
  • Measuring device Mastersizer 2000 (laser diffraction type particle size distribution measuring device), manufactured by Malvern Instruments Ltd Measuring conditions: Dispersion medium water, analytical model General purpose, particle refractive index 1.50, dispersion medium refractive index 1.33
  • the volume average particle diameter was D (4,3) (volume reference average diameter) obtained under the described measurement conditions.
  • a sample is used.
  • Measuring apparatus FPIA3000 (flow type particle image analyzer), Sysmex Corporation measurement conditions: When the particle diameter is 10 ⁇ m or more, LPF mode, 10 ⁇ m or less Were measured in HPF mode. The number of measurements was 50,000. The analysis was performed based on the equivalent circle diameter (number basis), and the CV value obtained there was used.
  • ⁇ Evaluation 4 Chlorine concentration> Extraction method: 100 g of resin particles obtained in the example and 200 g of ultrapure water dispersed for 24 hours with a shaker were filtered through a filter having a pore size of 0.2 ⁇ m to obtain a measurement sample.
  • Measuring device 761 Compact IC, manufactured by Metrohm Ltd.
  • Measurement conditions Column (Shodex IC SI-90 4E [4.0 ⁇ 250mm]), mobile phase (2.0 mM NaHCO / 2.0 mM NaCO), flow rate (1.2 ml / min), column temperature (20.0 ° C.) Measurement sample volume: 20.0 ⁇ l The measured concentration is converted to the elution concentration with respect to 100 g of particles.
  • ⁇ Evaluation 5 Sodium concentration> Extraction method: 100 g of resin particles obtained in the example and 200 g of ultrapure water dispersed for 24 hours with a shaker were filtered through a filter having a pore size of 0.2 ⁇ m to obtain a measurement sample.
  • Measuring device Inductively coupled plasma optical emission spectrometry (ICP / AES) (VISTA-PRO: manufactured by VARIAN) Measurement conditions: Measured by inductively coupled plasma optical emission spectrometry.
  • ICP / AES Inductively coupled plasma optical emission spectrometry
  • VISTA-PRO manufactured by VARIAN
  • Measurement conditions Measured by inductively coupled plasma optical emission spectrometry.
  • a standard sample for atomic absorption of Na (1000 ppm) is diluted with pure water and concentrated hydrochloric acid is added to prepare a sample for a calibration curve in the concentration range of 1 to 50 ppm.
  • hydrochloric acid with the same concentration as the calibration curve sample. , Measured
  • Luminance of resin particle-containing sample> (Coating liquid adjustment) 1. 3 g of the resin particles obtained in Example 1 and 4.45 g of toluene are weighed and stirred 50 times using a stir bar. 2. 2 g of an acrylic binder (U-245B manufactured by Soken Chemical Co., Ltd.) is added and stirred 50 times using a stir bar. 3. 0.88 g of a polyisocyanate curing agent was added, and the mixture was stirred 50 times using a stir bar to obtain a coating solution. 4). In the same manner for the resin particles obtained in Example 4, Comparative Examples 3, 7 and 8, and Reference Example 1, respective coating solutions were obtained.
  • Coating The above coating solution was applied using an automatic coating machine under the following conditions. Coating machine: Rk Print Coat Instruments Co., Ltd. Name: K Control Coater 101 Bar: No3 (wet film thickness 24 ⁇ m) Coating speed: 5cm / sec Drying conditions: 80 ° C, 3 minutes (thermal circulation dryer with adjustable temperature) Base material: 100 ⁇ m PET (Brightness measurement) The coated sample was measured using a luminance meter under the following conditions. The backlight was set to 1200 cd / m2, and one sheet was mounted for measurement.
  • Coating machine Rk Print Coat Instruments Co., Ltd. Name: K Control Coater 101 Bar: No3 (wet film thickness 24 ⁇ m) Coating speed: 5cm / sec Drying conditions: 80 ° C, 3 minutes (thermal circulation dryer with adjustable temperature) Base material: 100 ⁇ m PET (Brightness measurement) The coated sample was measured using a luminance meter under the following conditions. The backlight was set to 1200 cd / m
  • Luminance meter (high-functionality, general-purpose luminance, color shift measurement system): RISA-COLOR / CD8 HI-LAND company Luminance measurement conditions: Measured by the division method, 10 blocks in the vertical direction, 10 blocks in the horizontal direction, 100 blocks in total, sample size 6 cm x 4.5 cm The measurement range is set to 5.5cm x 4cm in the sample frame. The distance from the camera to the sample was 152 cm.
  • ⁇ Evaluation 8 Average primary particle diameter of inorganic dispersant> Measurement sample adjustment: The inorganic dispersant is adjusted to a concentration of 1% by weight when the particle size of the inorganic dispersant is less than 100 nm using purified water as a dispersion medium, and 0.1% by weight when the particle size is 100 nm or more. % Concentration was adjusted. The volume average particle diameter of the measurement sample was measured under the following measurement conditions using the following measurement apparatus. Measuring apparatus: Zetasizer 3000HSA (manufactured by Malvern Instruments Ltd), using disposable PP cell. Measurement conditions: measurement condition Auto, analysis mode Contin, average value of two measurement times.
  • the Z average diameter obtained on this condition be the average primary particle diameter of an inorganic dispersing agent.
  • ⁇ Evaluation 9 Average particle size at the time of dispersion of the inorganic dispersant> Measurement sample preparation: Purified water is used as a dispersion medium and the emulsifier is adjusted to the concentrations of Examples and Comparative Examples, and then an inorganic dispersant is added. If the average primary particle size of the inorganic dispersant is less than 100 nm, the concentration is 1 When the average primary particle diameter of the inorganic dispersant was less than 100 nm, the concentration was adjusted to 0.1% by weight so as to obtain a sample. The volume average particle diameter of the measurement sample was measured under the following measurement conditions using the following measurement apparatus.
  • Measuring device Zetasizer 3000HSA (manufactured by Malvern Instruments Ltd) Measurement conditions: measurement condition Auto, analysis mode Contin, average value of two measurement times. The Z average diameter obtained under these conditions is defined as the average particle diameter when the inorganic dispersant is dispersed.
  • ⁇ Evaluation 10 Redispersibility of inorganic dispersant>
  • Preparation of measurement sample using purified water as a dispersion medium, adjusting the emulsifier to the concentration of Examples and Comparative Examples, adding an inorganic dispersant, adjusting the concentration of the inorganic dispersant to 1% by weight, and dispersing After making it into a state, it was diluted 2 times with purified water to obtain a redispersion confirmation sample. The volume average particle diameter of the measurement sample was measured in the same manner as in Evaluation 9.
  • Example 1 In a 1-liter four-necked flask equipped with a thermometer and a nitrogen inlet tube, 140 g of methyl methacrylate (MMA), 60 g of trimethylolpropane triacrylate (TMPTA), and 1.0 g of lauroyl peroxide (LPO) as an initiator It was charged and dissolved. Next, 200 g of water, 0.4 g of colloidal silica (average primary particle diameter 9 nm), and 0.02 g of polyoxyethylene lauryl ether were weighed and put into a homomixer (TK homomixer MARKII2.5 type Primix Co., Ltd.).
  • MMA methyl methacrylate
  • TMPTA trimethylolpropane triacrylate
  • LPO lauroyl peroxide
  • this mixture was heated to 60 ° C. and reacted for 2 hours, and subsequently reacted at 90 ° C. for 1 hour.
  • the volume average particle diameter of the polymer particles was 15.4 ⁇ m.
  • this emulsion was dehydrated by suction filtration and then dried at 100 ° C. for 5 hours in a shelf dryer. Next, pulverization was performed to obtain resin particles.
  • Example 4 Resin particles were prepared in the same manner as in Example 1 except that the amounts of the polymerizable monomer, the dispersant and the emulsifier were as shown in Table 1, and the rotation speed of the homomixer was 4000 rpm (5.9 m / s). Obtained.
  • Example 5 Resin particles were prepared in the same manner as in Example 1 except that the amounts of the polymerizable monomer, the dispersant and the emulsifier were as shown in Table 1, and the rotation speed of the homomixer was 2000 rpm (2.9 m / s). Obtained.
  • Example 9 Resin particles were obtained in the same manner as in Example 1, except that 0.004 g of lauryltrimethylammonium chloride was used instead of polyoxyethylene lauryl ether.
  • Example 10 Resin particles were obtained in the same manner as in Example 1 except that 0.04 g of stearyl betaine was used instead of polyoxyethylene lauryl ether.
  • Example 18 2.5 g of 1,4-butanediol, 47.5 g of isocyanurate type polyisocyanate of hexamethylene diisocyanate as an isocyanate component, and 0.0015 g of dibutyltin dilaurate (trade name accelerator S manufactured by Soken Chemical Co., Ltd.) as a catalyst Then, 32.5 g of methyl ethyl ketone (MEK) was mixed as a diluent solvent to prepare a prepolymer. The molar ratio of isisoanate to hydroxyl group was 5.0.
  • MEK methyl ethyl ketone
  • this mixture was heated to 60 ° C. and reacted for 2 hours, and subsequently reacted at 90 ° C. for 1 hour.
  • the average particle diameter of the polymer particles was 15.5 ⁇ m.
  • this emulsion was dehydrated by suction filtration, and then dried at 100 with a shelf dryer for 5 hours.
  • pulverization was performed to obtain resin particles.
  • the obtained particles had a CV value of 58.3% and a wide particle size distribution.
  • Emulsified for 3 minutes at room temperature A solution obtained by dissolving 2 g of polyvinyl alcohol (trade name: PVA-420, Kuraray Co., Ltd.) as a dispersion stabilizer in 140 g of water was added to the emulsion.
  • the stirring blade was a turbine blade having a diameter of 75 mm and stirred at room temperature at 100 rpm (0.39 m / s).
  • this mixture was heated to 65 ° C. and reacted for 2 hours. Subsequently, 0.4 g of sodium hydroxide was added and reacted at 95 ° C. for 3 hours. The average particle diameter of the polymer particles was 15.4 ⁇ m. Next, this emulsion was dehydrated by suction filtration, and the resulting cake was redispersed with 300 g of ion-exchanged water and again dehydrated by suction filtration. Then, it dried for 5 hours at 100 degreeC with the shelf dryer. Next, pulverization was performed to obtain resin particles.
  • Example 1 The same operations as in Example 1 were carried out with the formulation described in Table 2 to carry out polymerization.
  • As an operation for removing silica 2 parts by weight of sodium hydroxide was added to the polymerization solution, and kept at 90 ° C. for 2 hours while stirring. Thereafter, the polymerization solution was cooled and the emulsion was dehydrated by suction filtration. The obtained cake was redispersed with 300 g of ion-exchanged water and again dehydrated by suction filtration. Then, it dried for 5 hours at 100 degreeC with the shelf dryer. Next, pulverization was performed to obtain resin particles. When the amount of silica of the obtained resin particles was measured, the silica weight before removal was 100% and was less than 5%.
  • Example 2 With the formulation shown in Table 2, the same operation as in Example 1 was performed to obtain resin particles.
  • the obtained polymer particles have an average particle diameter of 15.2 and the silica coating amount per surface area is 0.0041 g / m 2 , but the CV value is 61.3% and the number of fine and coarse particles is large. Including results.
  • the inorganic dispersant at this time did not show a primary particle size even when redispersion was attempted by adding purified water, and was in a secondary aggregation state of 500 nm or more, and a precipitate of aggregates was confirmed.
  • Table 4 shows the dispersion state of the inorganic dispersant.
  • Examples of the particle size of the inorganic dispersant returning to the primary particle size after re-dispersion and examples of changing the particle size after dispersion and after re-dispersion are the aggregation states of the inorganic dispersant in the polymerization system in the particle production of the present invention. Is considered to be in a pseudo-aggregated state. Therefore, it is considered that the pseudo-aggregated inorganic dispersant is reversibly changed between the primary particles and the secondary agglomerates and may easily return to the primary particles. In such Examples and Reference Examples, resin particles having a uniform particle diameter and a low coverage of the inorganic dispersant on the surface are obtained.
  • examples in which the particle size of the inorganic dispersant does not return to the primary particle size after re-dispersion or examples in which the particle size does not change after dispersion and after re-dispersion are those of the inorganic dispersant in the polymerization system in the particle production of the present invention.
  • the aggregation state is considered to be secondary aggregation.
  • a precipitate can be confirmed.
  • resin particles having a uniform particle diameter and a high coverage of the inorganic dispersant on the surface are obtained. Abbreviations in the table are as follows.
  • MMA methyl methacrylate
  • TMPAT trimethylolpropane triacrylate
  • BA butyl acrylate
  • EGDMA ethylene glycol dimethacrylate
  • St Styrene
  • DVB divinylbenzene
  • MAA methacrylic acid
  • HEMA 2-hydroxyethyl methacrylate
  • HDDA 1,6-hexanediol diacrylate.
  • the resin particles of the present invention can be used for cosmetics, optical materials, molding resins, film blocking prevention, paints, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polymerisation Methods In General (AREA)
  • Paints Or Removers (AREA)

Abstract

[課題]表面にシリカ等の無機分散剤の付着量の少ない粒子径の揃った樹脂粒子を得ることを目的とする。 [解決手段]本発明の樹脂粒子は、無機分散剤が表面に付着し、体積平均粒子径が1~1000μmである樹脂粒子であって、下記式(I)樹脂粒子表面の無機分散剤の被覆量=(無機分散剤の量(重量部)/重合性単量体の量(重量部))/Malvern Instruments Ltd 製マスターサイザー2000で測定した樹脂粒子比表面積・・・(I)(ただし式(I)右辺の無機分散剤および重合性単量体の量は、樹脂粒子製造時の仕込み量であり、重合性単量体の量を100重量部とする)で求められる前記樹脂粒子表面の前記無機分散剤の被覆量が、0.0001~0.02g/m2であることを特徴とする。

Description

樹脂粒子およびその製造方法
 本発明は、樹脂粒子およびその製造方法に関する。より詳しくは、粒子径の揃った樹脂粒子およびその製造方法に関する。
 樹脂粒子は、光学材料用途、化粧品用途、成形用樹脂、塗料への添加剤等に広く用いられている。各用途において、樹脂粒子は、粒子径の揃った品質のものが求められている。
 粒子径の揃った樹脂粒子を得るための製造方法として、懸濁重合および噴霧重合で製造された広い粒度分布範囲の樹脂粒子を分級する製造方法、シード重合において粒径が制御されたシード粒子を用いてシードを膨潤させることにより一定の粒度分布とする製造方法などが開示されている。しかしながら、これらの製造方法は、いずれも複数の工程が必要であり、費用、作業を多く要した。
 これらの問題を解決するために、懸濁重合において、反応系中での重合性単量体を含む油液の分散状態または表面状態を調整し、粒子径の揃った樹脂粒子を得ることが検討されている。たとえば、懸濁安定剤としてのコロイダルシリカおよびアルカリ金属のハロゲン化物の存在下で、水系懸濁重合する方法(特許文献1参照)、疎水性無機酸化物、新水性有機化合物および水溶性中性塩の存在下懸濁重合する方法(特許文献2参照)、懸濁剤の存在下懸濁重合する方法(特許文献3参照)が知られている。
 しかしながら、これらの方法では、重合系に金属を含むため反応液の処理が問題であった。また、シリカ等の無機化合物の添加量が一定以上でないと効果が得られないため、得られた樹脂粒子の表面に付着したシリカが、その後の加工において、障害となることがあった。
特開2007-217645号公報 特開2000-355639号公報 特開平6-16707号公報
 よって、懸濁重合における重合性単量体を含む油滴をより効率良く分散および安定化することにより、加工性が良く、粒子径の揃った樹脂粒子を得ることが望まれた。
 本発明は、表面にシリカ等の無機分散剤の付着量の少ない粒子径の揃った樹脂粒子を得ることを目的とする。さらに、該粒子の製造において生じる廃液中の金属を減少させることを目的とする。
 本発明は、たとえば以下の[1]~[9]である。
 [1]無機分散剤が表面に付着し、体積平均粒子径が1~1000μmである樹脂粒子であって、
下記式(I)
樹脂粒子表面の無機分散剤の被覆量=
(無機分散剤の量(重量部)/重合性単量体の量(重量部))/Malvern Instruments  Ltd 製マスターサイザー2000で測定した樹脂粒子比表面積・・・(I)
(ただし式(I)右辺の無機分散剤および重合性単量体の量は、樹脂粒子製造時の仕込み量であり、重合性単量体の量を100重量部とする)
で求められる前記樹脂粒子表面の前記無機分散剤の被覆量が、0.0001~0.02g/m2であることを特徴とする樹脂粒子。
 [2]CV値が10~50%である[1]に記載の樹脂粒子。
 [3]樹脂粒子に対する溶出ハロゲン濃度が、24ppm未満であることを特徴とする[1]または[2]に記載の樹脂粒子。
 [4]樹脂粒子に対する溶出金属濃度が、20ppm未満であることを特徴とする[1]~[3]のいずれかに記載の樹脂粒子。
 [5]前記無機分散剤がシリカであることを特徴とする[1]~[4]のいずれかに記載の樹脂粒子。
 [6][工程1]水系媒体、重合性単量体、重合開始剤、無機分散剤および乳化剤を含む組成物を攪拌して、水系媒体中に油滴が分散した液を形成する工程と、
 [工程2]前記分散液を攪拌しながら加熱し、前記重合性単量体を重合する工程とを
有することを特徴とする樹脂粒子の製造方法。
 [7]前記[工程1]において、前記重合性単量体100重量部に対して前記無機分散剤を0.01~2.0重量部の量で用いることを特徴とする[6]に記載の樹脂粒子の製造方法。
 [8]前記[工程1]において、前記無機分散剤の系への添加前の平均一次粒子径が1~500nmであることを特徴とする[6]または[7]に記載の樹脂粒子の製造方法。
 [9]前記無機分散剤が、コロイダルシリカであることを特徴とする[6]~[8]のいずれかに記載の樹脂粒子の製造方法。
 本発明によれば、粒子径の揃った樹脂粒子を得ることができる。さらに、得られた樹脂粒子は、表面にシリカ等の無機分散剤の被覆率が低く、再分散性に優れる。さらには該樹脂粒子含有する樹脂製品は、光学シート部材に使用した場合、輝度に優れ、種々の加工に適する。また、製造過程において金属含有化合物およびハロゲン含有化合物の使用量が少ないため、廃液中のそれらの化合物の濃度が低く、環境への悪影響を低減することができる。
図1は、樹脂粒子表面のシリカ被覆量(MS比表面積に基づく計算値)と輝度との関係を示す。 本発明の樹脂粒子のSEM写真である。
 以下、本発明について具体的に説明する。
 本発明の樹脂粒子は、好適には懸濁重合を用いて製造される。
 本発明の樹脂粒子の製造方法は、
 [工程1]水系媒体、重合性単量体、重合開始剤、無機分散剤および乳化剤を含む組成物を攪拌して、水系媒体中に油滴が分散した液を形成する工程と、
 [工程2]前記分散液を攪拌しながら加熱し、前記重合性単量体を重合する工程とを、
有する。
 [工程1]と[工程2]との間には、
 [工程1-1]前記分散液に分散安定剤を加え、攪拌する工程
を含んでいることが好ましい。
 上記製造方法により得られた樹脂粒子を、吸引濾過、遠心分離、クロスフロー洗浄装置等の媒体除去工程、棚段乾燥、真空乾燥、スプレードライ等の乾燥工程、粉砕工程等を経て、目的の樹脂粒子を得ることができる。また、より粒子径を揃える為に、必要に応じて分級工程を併用してもよい。
(1)[工程1]水系媒体、重合性単量体、重合開始剤、無機分散剤および乳化剤を含む組成物を攪拌して、水系媒体中に油滴が分散した液を形成する工程
 工程1においては、不活性ガス雰囲気下、水系媒体に、上記重合性単量体、重合開始剤、無機分散剤、乳化剤、およびその他の任意成分を、攪拌翼回転機能のある装置、ホモミキサー、超音波分散機等により攪拌力またはせん断力等を用いて分散する。そして、油滴が水系媒体中に形成された分散液を得る。
 工程1において、攪拌速度としては、攪拌翼端部の周速度として2~25m/sが好ましく、攪拌時間としては、1~60分が好ましい。攪拌温度としては、重合性単量体が重合しない温度、通常室温で行うことが好ましい。
 [重合性単量体]
 本発明の樹脂粒子の製造に用いられる重合性単量体としては、水性媒体中で油滴が分散状態を形成できる重合性単量体であれば特に限定されない。
 重合性単量体の具体例としては、(メタ)アクリル酸系単量体、スチレン系単量体、官能基含有単量体、多官能性単量体、共役ジエン系単量体、ポリウレタン樹脂を形成するモノマー、ポリオール等が挙げられ、好ましくは球状樹脂粒子を製造し易い(メタ)アクリル系単量体、スチレン系単量体を挙げることができる。より具体的には、以下のものが挙げられるが、下記に限定されない。
 (メタ)アクリル酸系単量体としては、
 (メタ)アクリル酸アルキルエステル;(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸ペンチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸-2-エチルヘキシル、(メタ)アクリル酸オクチル、(メタ)アクリル酸ノニル、(メタ)アクリル酸デシルおよび(メタ)アクリル酸ドデシル 等、
 (メタ)アクリル酸アリールエステル; (メタ)アクリル酸フェニルおよび(メタ)アクリル酸ベンジル 等、
 (メタ)アクリル酸アルコキシアルキル;(メタ)アクリル酸メトキシエチル、(メタ)アクリル酸エトキシエチル、(メタ)アクリル酸プロポキシエチル、(メタ)アクリル酸ブトキシエチルおよび(メタ)アクリル酸エトキシプロピル 等、
 (メタ)アクリル酸および(メタ)アクリル酸アルカリ金属塩などの塩;
 脂環式アルコールの(メタ)アクリル酸エステル;(メタ)アクリル酸シクロヘキシル 等が挙げられる。
 スチレン系単量体としては、スチレン、メチルスチレン、ジメチルスチレン、トリメチルスチレン、エチルスチレン、ジエチルスチレン、トリエチルスチレン、プロピルスチレン、ブチルスチレン、へキシルスチレン、ヘプチルスチレンおよびオクチルスチレンなどのアルキルスチレン、フロロスチレン、クロロスチレン、ブロモスチレン、ジブロモスチレン、クロルメチルスチレン、ヨウ化スチレン、ニトロスチレン、アセチルスチレン、メトキシスチレン、α―メチルスチレン、ビニルトルエン 等が挙げられる。
 官能基含有単量体としては、
 オキサゾリン基含有重合性化合物;2-ビニル-2-オキサゾリン、2-ビニル-5-メチル-2-オキサゾリンおよび2-イソプロペニル-2-オキサゾリン 等、
 アジリジン基含有重合性化合物;(メタ)アクリロイルアジリジン、(メタ)アクリル酸-2-アジリジニルエチル 等、
 エポキシ基含有ビニル単量体;アリルグリシジルエーテル、(メタ)アクリル酸グリシジルエーテル、および(メタ)アクリル酸-2-エチルグリシジルエーテル 等、
 ヒドロキシル基含有ビニル化合物;(メタ)アクリル酸-2-ヒドロキシエチル、(メタ)アクリル酸-2-ヒドロキシプロピル、(メタ)アクリル酸-2-ヒドロキシブチル、(メタ)アクリル酸とポリプロピレングリコールまたはポリエチレングリコールとのモノエステルおよびラクトン類と(メタ)アクリル酸-2-ヒドロキシエチルとの付加物 等、
 含フッ素ビニル単量体;フッ素置換(メタ)アクリル酸アルキルエステル 等、
 カルボキシル基含有ビニル単量体;(メタ)アクリル酸、イタコン酸、クロトン酸、マレイン酸およびフマル酸のような不飽和カルボン酸、これらの塩並びにこれらの(部分)エステル化合物および酸無水物 等、
 反応性ハロゲン含有ビニル単量体;(メタ)アクリル酸-2-クロロエチル、2-クロルエチルビニルエーテル、モノクロロ酢酸ビニルおよび塩化ビニリデン 等、
 アミド基含有ビニル単量体;(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド、N-メトキシエチル(メタ)アクリルアミドおよびN-ブトキシメチル(メタ)アクリルアミド 等、
 有機ケイ素基含有ビニル化合物単量体;ビニルトリメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、アリルトリメトキシシラン、トリメトキシシリルプロピルアリルアミンおよび2-メトキシエトキシトリメトキシシラン 等、
 その他、マクロモノマー類;上記単量体の共重合物末端にラジカル重合性ビニル基を有する物質(例えば;フッ素系マクロモノマー、シリコン含有マクロモノマー、ウレタン系マクロモノマー)、
 アクリロニトリル;酢酸ビニル;を挙げることができる。
 多官能性単量体としては、
 二官能性単量体;エチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ポリオキシエチレンジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、ジビニルベンゼン 等、
 三官能性単量体;トリメチロールプロパントリアクリレート、トリメチロールエタントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、エトキシ化トリメチロールプロパーントリ(メタ)アクリレート、プロポキシ化トリメチロールプロパーントリ(メタ)アクリレート、トリス(2-(メタ)アクリロキシエチルイソシアヌレート)  等、
 四官能以上の単量体;ペンタエリスリトールテトラ(メタ)アクリレート、エトキシ化ペンタエリスリトールテトラ(メタ)アクリレート、プロポキシ化ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、エトキシ化ジペンタエリスリトールテトラ(メタ)アクリレート、プロポキシ化ジペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパーンテトラ(メタ)アクリレート、エトキシ化ジトリメチロールプロパーンテトラ(メタ)アクリレートおよびエトキシ化ジトリメチロールプロパーンテトラ(メタ)アクリレートなどのテトラ(メタ)アクリレート化合物、
 ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、ジイソシアネートメチルシクロヘキサン、イソフォロンジイソシアネートおよびメチレンビス(4-シクロヘキシルイソシアネート)のようなジイソシナネートの間に脂肪族を有するジイソシアネート化合物、またはジイソシアネートメチルベンゼンあるいは4,4,-ジフェニルメタンジイソシアネートのような芳香族基を有するジイソシアネート化合物と、グリシドールジ(メタ)アクリレートとの付加反応により得られるアダクト、
 ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート 等が挙げられる。
 共役ジエン系単量体としては、ブタジエン、イソプレンおよびクロロプレン等が挙げられる。
 ポリウレタン樹脂を形成するモノマーとしては、グリコールを主成分とするポリオールとジイソシアネート原料等とを用いる事ができ、例えば、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネートやp-フェニレンジイソシアネート等の芳香族ジイソシアネート類、脂肪族ジイソシアネート類、2官能末端イソシアネートウレタンプレポリマー等が挙げられる。
 ポリオールとしては、エチレングリコール、ジエチレングリコールなどのジオール化合物やポリエーテルグリコール類 等が挙げられる。
 上記単量体は、単独で用いてもよく、複数を混合して用いても良い。
 [重合開始剤]
 本発明の樹脂粒子の製造においては、重合開始剤を用いることが好ましい。重合開始剤としては、ラジカル重合開始剤が好ましい。このようなラジカル重合開始剤の例として、有機過酸化物、アゾ系開始剤及びそれ以外のラジカル重合開始剤を挙げることができる。
 ここで使用される有機過酸化物の例としては、クメンハイドロパーオキサイド(CHP)、ジターシャリーブチルパーオキサイド、ジクミルパーオキサイド、ベンゾイルパーオキサイド(BPO)、ラウロイルパーオキサイド(LPO)、ジメチルビス(ターシャリーブチルパーオキシ)ヘキサン、ジメチルビス(ターシャリーブチルパーオキシ)ヘキシン-3、ビス(ターシャリーブチルパーオキシイソプロピル)ベンゼン、ビス(ターシャリーブチルパーオキシ)トリメチルシクロヘキサン、ブチル-ビス(ターシャリーブチルパーオキシ)バレラート、2-エチルヘキサンペルオキシ酸ターシャリーブチル、ジベンゾイルパーオキサイド、パラメンタンハイドロパーオキサイドおよびターシャリーブチルパーオキシベンゾアートを挙げることができる。
 アゾ系開始剤の例としては、2,2-アゾビスイソブチロニトリル、2,2-アゾビス-2-メチルブチロニトリル、2,2-アゾビス-2,4-ジメチルバレロニトリル、2,2-アゾビス-4-メトキシ-2,4-ジメチルバレロニトリル、2,2-アゾビス(2-メチルプロパン酸メチル)、2,2-アゾビス(2-メチルプロパンアミジン)・2塩酸塩などを挙げることができる。
 [無機分散剤]
 本発明の樹脂粒子の製造に用いられる無機分散剤としては、シリカ、酸化チタン、アルミナ等が挙げられる。上記無機分散剤の中でも、樹脂粒子と無機分散剤との屈折率が近く光学性能に悪影響を与えない点から、シリカが好ましい。
 シリカの種類としては、粒子径がナノオーダーと小さく、一次粒子として水に分散されている点から、コロイダルシリカを用いることが好ましい。コロイダルシリカの反応系への添加前の平均一次粒子径は、1~500nmが好ましく、1~200nmがより好ましい。
 コロイダルシリカの平均一次粒子径が上記範囲にあると、粒子径の揃った樹脂粒子を得ることができる。コロイダルシリカの平均一次粒子径は、小さいほど無機分散剤としての機能が高く、油滴の安定化効果を得やすいが、上記範囲より小さい場合は非常に高額となるため経済性が好ましくない。上記範囲よりさらに大きいものを用いても、本発明の範囲で用いた以上の油滴の安定化効果は得られない。
 [乳化剤]
 本発明の樹脂粒子の製造には、上記成分を水性媒体に分散させるために、上記無機分散剤に加えて、乳化剤を使用する。乳化剤の例としては、高分子分散剤および非イオン性界面活性剤、イオン性界面活性剤が挙げられる。
 高分子分散剤としては、タンパク質(例;ゼラチンなど);レシチン;アラビアゴム、トラガントゴムなどの水溶性ゴム、;アルギン酸ナトリウム;カルボキシメチルセルロース、エトキシセルロース、ヒドロキシプロピルメチルセルロースなどのセルロース誘導体;澱粉およびその誘導体;ポリビニルアルコール;ポリビニルピロリドンなど;ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンラウリルエーテル、ポリエチレングリコール脂肪酸エステル、ポリビニルアルコール、ポリビニルアルコール系グラフトポリマー(ポリビニルビロリドン及びその誘導体をグラフトしたもの)など;ソルビタンオレイン酸エステル、ソルビタンステアリン酸エステル、ソルビタンパルミチン酸エステルなどのソルビタン脂肪酸エステル;セチルアルコールなど、非イオン性界面活性剤としては、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテルなどのポリオキシエチレンアルキルエーテル類;ポリオキシエチレンアルキレンアルキルエーテルなどのポリオキシアルキレン誘導体;ポリオキシアルキレンアルケニルエーテル、ポリオキシエチレンアルキルフェニルエーテル;ソルビタンモノラウレート、ソルビタンモノステアレートなどのソルビタン脂肪酸エステル;ポリオキシエチレンソルビタンモノラウレート、ポリオキシエチレンソルビタンモノオレエートなどのポリオキシエチレンソルビタン脂肪酸エステル;ポリオキシエチレンソルビトール脂肪酸エステル、グリセリン脂肪酸エステル;ポリエチレングリコールモノラウレート、ポリエチレングリコールジステアレートなどのポリオキシエチレン脂肪酸エステル;ポリオキシエチレン硬化ひまし油、ポリオキシエチレンアルキルアミン、アルキルアルカノールアミド;陰イオン性界面活性剤としては、ラウリル硫酸ナトリウム、ラウリル硫酸アンモニウムなどのアルキル硫酸エステル塩;ポリオキシエチレンアルキル硫酸エステル塩、ドデシルベンゼンスルホン酸ナトリウム、ジアルキルスルホコハク酸ナトリウム、ポリオキシアルキレンアルケニルエーテル硫酸アンモニウム、脂肪酸塩、ナフタレンスルフォン酸ホルマリン縮合物のナトリウム塩;陽イオン界面活性剤としてはココナットアミンアセテート、ステアリルアミンアセテートなどのアルキルアミン塩;ラウリルトリメチルアンモニウムクロライド、ステアリルトリメチルアンモニウムクロライド、セチルトリメチルアンモニウムクロライド、アルキルベンジルジメチルアンモニウムクロライドなどの第四級アンモニウム塩;両性界面活性剤としてはステアリルベタイン、ラウリルベタイン、ラウリルジメチルアミンオキサイドなどのアルキルベタイン、アルキルアミンオキサイドなどを挙げることができる。
 このような乳化剤は単独であるいは組み合わせて使用することができる。
 乳化剤は、金属を含まない、または金属の含有量が少ないことが、廃液処理の点で好ましい。
 [その他の任意成分]
 その他必要に応じて、重合禁止剤、酸化防止剤、紫外線吸収剤、消泡剤、近赤外線吸収剤、蛍光増白剤や、顔料、染料の様な着色剤成分を用いる事ができる。
 重合禁止剤としては、亜硝酸ナトリウム、ジブチルヒドロキシトルエンなどが挙げられる。酸化防止剤としては、ヒンダードフェノール系酸化防止剤が挙げられる。紫外線吸収剤としては、ヒンダードアミン系光安定剤、ヒンダードアミン系重合性化合物、ベンゾトリアゾール系重合性化合物等が挙げられる。
 着色剤としては、単量体より水に溶解し難い油溶性染顔料であれば適宜使用できる。
 油溶性染料としては、例えばカラーインデックス番号(C.I.)がソルベントブルー35、ソルベントレッド132、ソルベントブラック27、ソルベントイエロー16等が挙げられる。また、クラリン系、アゾ系、キノフタロン系、フタロシアニン系等の筆記記録液に通常用いられる染料や、感熱記録紙や感温色材として用いられるロイコ染料、また、化粧品に使用されているタール染料なども挙げられる。さらに、各種の直接染料、酸性染料、塩基性染料、アゾイック染料、反応性染料、蛍光染料等も使用できる。
 単量体への分散が可能な顔料としては、例えば、パーマネントイエローDHGやピグメントレッド57:1、リオノールブルー7027、カーボンブラック、ブラックパールズ430、二酸化チタン、酸化亜鉛、ベンガラ、群青等の各種の無機・有機顔料等が挙げられる。
 [工程1における組成物]
 本発明の樹脂粒子を得るための製造工程中の[工程1]における組成物は、上記成分が以下の量で、水系媒体中に存在している。以下の量は、全重合性単量体を100重量部として表したものである。
 無機分散剤は、0.01~2.0重量部が好ましく、0.05~1.0重量部がより好ましい。乳化剤は、0.0001~0.1重量部が好ましく、0.001~0.05重量部がより好ましい。
 各成分の量が上記範囲にあると、粒度分布の揃った樹脂粒子を得ることができ、また後述の無機分散剤の樹脂粒子表面被覆率等の所望の物性を有する樹脂粒子を得ることができる。無機分散剤の量が、上記範囲よりも多いと、油滴の安定性、経済性から好ましくなく、上記範囲よりも少ないと、油滴の安定化効果が十分得られない。
 水系媒体としては、水ならびに水およびアルコール等の混合物が挙げられる。
 また、無機分散剤および乳化剤の重量の合計と水系媒体の重量との比は、好ましくは0.0011~2.1/50~300、より好ましくは0.051~1.05/50~200である。
 各成分の重量比が上記範囲にあると、粒度分布の揃った樹脂粒子を得ることができ、また後述の無機分散剤の樹脂粒子表面被覆率等の所望の物性を有する樹脂粒子を得ることができる。
 開始剤の量は、0.05~5重量部が好ましく、0.1~2重量部がより好ましい。
(2)[工程1-1]前記分散液に分散安定剤を加え、攪拌する工程
 工程1-1は、不活性ガス雰囲気下で行い、攪拌速度としては、攪拌翼端部の周速度として2~25m/sが好ましく、攪拌時間としては、1~60分が好ましい。攪拌温度としては、重合性単量体が重合しない温度、通常室温で行うことが好ましい。攪拌手段としては、工程1と同様のものが挙げられる。
 [分散安定剤]
 本発明では、上記無機分散剤および乳化剤を用いて所望する粒子径となる油滴の分散状態を形成した後、形成された分散液を安定化させる為に、分散安定剤を用いる事が好ましい。分散安定剤としては、前記の乳化剤から選択することかでき、中でも高分子分散剤が好ましい。特に、油滴の分散状態を安定化する機能に優れ、安価で用いやすいことから、ポリビニルアルコールや、界面活性剤、例えば、ポリオキシアルキレンフェニルエーテル硫酸塩等が好適である。
 分散安定剤の量は、0.1~5重量部が好ましく、0.2~2重量部がより好ましい。
(3)[工程2]前記分散液を攪拌しながら加熱し、前記重合性単量体を重合する工程
 重合性単量体および重合開始剤からなる油滴が分散された後、攪拌等により分散状態を保ちながら、不活性ガス雰囲気下で加熱し、重合を行う。
 攪拌速度としては、攪拌翼端部の周速度として0.2~2m/sが好ましく、加熱温度としては、50~80℃が好ましい。温度は段階的に加温し、80~95℃で重合を促進させる。重合開始から完了までにかかる時間は1~10時間であり、好ましくは2~6時間である。攪拌手段としては、工程1と同様のものが挙げられる。
 尚、ウレタン樹脂の形成には、縮合反応を用いるのが一般的である。
 (4)樹脂粒子
 このようにして得られた本発明の樹脂粒子は、以下の性質を有する。
 (i)本発明の樹脂粒子の体積平均粒子径は、1~1000μm、好ましくは2~300μmである。本発明の樹脂粒子の体積平均粒子径が上記値であることは、重合性単量体の選択、攪拌速度等の種々の要因が関連しているが、特に懸濁重合における無機分散剤、乳化剤等の添加剤の使用量に起因してこのような優れた値が得られたと考えられる。体積平均粒子径が上記範囲である樹脂粒子は、微小粒子および粗大粒子が含まれず、種々の用途に好適に用いられる。
 (ii)本発明の樹脂粒子の比表面積としては、好ましくは0.01~6.0m2/g、より好ましくは0.02~3.0m2/gである。本発明の樹脂粒子の比表面積が上記値であることは、重合性単量体の選択、攪拌速度等の種々の要因が関連しているが、特に懸濁重合における無機分散剤、乳化剤等の添加剤の使用量に起因してこのような優れた値が得られたと考えられる。比表面積が上記範囲である樹脂粒子は、微小粒子および粗大粒子が含まれず、種々の用途に好適に用いられる。
 (iii)本発明の樹脂粒子のCV値は、好ましくは10~50%、より好ましくは10~40%である。ここで、CV値は100×粒子径の標準偏差/個数平均粒子径で求められる値である。本発明の樹脂粒子のCV値が上記値であることは、重合性単量体の選択、攪拌速度等の種々の要因が関連しているが、特に懸濁重合における無機分散剤、乳化剤等の添加剤の使用量に起因してこのような優れた値が得られたと考えられる。CV値が上記範囲である樹脂粒子は、微小粒子および粗大粒子が含まれず、種々の用途に好適に用いられる。
 (iv)樹脂粒子表面には、無機分散剤が付着している。
樹脂粒子表面の無機分散剤被覆量は、下記式(I)により計算で算出すると、0.0001~0.02g/m2であり、好ましくは0.0005~0.015g/m2である。
樹脂粒子表面の無機分散剤の被覆量=
(無機分散剤の量(重量部)/重合性単量体の量(重量部))/Malvern Instruments  Ltd 製マスターサイザー2000で測定した樹脂粒子比表面積・・・(I)
(ただし式(I)右辺の無機分散剤および重合性単量体の量は、樹脂粒子製造時の仕込み量であり、重合性単量体の量を100重量部とする)
 上記式は、無機分散剤が全て樹脂粒子の表面に吸着したものとして算出した値である。
 無機分散剤被覆量が上記範囲となるのは、懸濁重合における無機分散剤、乳化剤等の添加剤の使用量に起因する割合が多いと考えられる。無機分散剤被覆量が上記範囲である樹脂粒子は、加工に際し樹脂表面上の無機分散剤による障害が抑えられ、種々の用途に好適に用いられる。
 なお、実際の被覆量については、少なくても計算値以下であると考えられる。
 (v)樹脂粒子に対する溶出ハロゲン濃度は、好ましくは24ppm未満であり、より好ましくは20ppm未満であり、特に好ましくは0~10ppmである。樹脂粒子表面のハロゲンの量が上記範囲となるのは、上記製造工程に用いられる、ハロゲン含有化合物の使用量が少ないためであると考えられる。樹脂表面のハロゲンの量が上記範囲にあると、廃液が環境に与える悪影響を抑えることができる。なお、上記濃度は樹脂粒子100gに対する値である。
 (vi)樹脂粒子に対する溶出金属濃度は、好ましくは20ppm以下であり、より好ましくは0~10ppmである。樹脂粒子表面の金属の量が上記範囲となるのは、上記製造工程に用いられる、金属含有化合物の使用量が少ないためであると考えられる。樹脂表面の金属の量が上記範囲にあると、廃液が環境に与える悪影響を抑えることができる。なお、上記濃度は樹脂粒子100gに対する値である。
 (vii)本発明の樹脂粒子を含有するアクリル樹脂シートの輝度は、樹脂粒子表面に無機分散剤が付着していない樹脂粒子を同濃度で含有するアクリル樹脂シートの輝度と比較すると、輝度が0.1%以上高い。輝度がこのような値が得られるのは、上述の通り、本発明の樹脂粒子表面へのシリカ等の無機分散剤の付着量が少ないためであると考えられる、輝度が上記範囲にあると、光拡散シート、光拡散板、防眩フィルム等の用途に、より好適に用いられる。
 (viii)本発明の樹脂粒子の溶剤再分散性は、樹脂粒子がメチルエチルケトン中に完全に再分散するまでの回転数が、好ましくは1~55回、より好ましくは1~45回である。溶剤への再分散性がこのような値が得られるのは、上述の通り、本発明の樹脂粒子表面へのシリカ等の無機分散剤の付着量が本発明の範囲内であるためと考えられる、溶剤への再分散性が上記範囲にあると、経時で沈降した粒子の再分散が可能であることから、凝集粒子の生成を抑制でき、粒子の沈降等により発生する不具合が低減される、さらには取り扱いが容易である等の利点を有し、光拡散シート、防眩フィルム、塗料等の用途により好適に用いられる。
 (5)無機分散剤の反応系内での挙動について
 本発明の樹脂粒子が上記物性となる理由としては、以下の理由が考えられる。
 無機分散剤が、分散液中で重合性単量体を含む油滴を取り巻き、油滴の界面に吸着する構造となることにより、水系媒体と油滴との間の界面電位は安定化されているものと考えられる。すなわち、無機分散剤により、油滴の電位は変化し、安定しているものと考えられる。しかしながら、このような安定化には、多量の無機分散剤が必要である。
 本発明において、反応系への無機分散剤の添加量が少なく、また得られた樹脂粒子表面の無機分散剤被覆量が少ない理由は、無機分散剤と乳化剤との相互作用によるものと考えられる。乳化剤も、水系媒体と油滴との間の界面の電位を調整するものである。乳化剤は、無機分散剤とともに油滴表面の電位に働くとともに、無機分散剤の電位も調整し、無機分散剤と油滴との間の吸着状態に影響を与えているものと考えられる。さらに、無機分散剤の凝集および分散を調整しているものと考えられる。
 すなわち、乳化剤の量が多すぎると、無機分散剤は二次凝集し、油滴表面への吸着量が減り、粒子径及び粒度分布(微小・粗大粒子生成量)の制御は困難となると考えられる。
 一方、乳化剤は、極微量を添加するだけでも、無機分散剤の電位を変化させる事ができ、
無機分散剤と共に油滴表面の電位に働く。
 したがって、本発明の範囲に無機分散剤と乳化剤の量を調整することによって、無機分散剤は、二次凝集でもなく、一次粒子でもない状態(擬似凝集状態と考えられる)で系中に存在し、油滴を安定させているものと考えられる。この擬似凝集状態は、無機分散剤が二次凝集の状態と一次粒子の状態との間を可逆的に変化しているものと考えられる。
 ただし、上記乳化剤の効果は電位が関係していることから、乳化剤の極性により該吸着状態に違いが現れる。その為、乳化剤の最適添加量はその極性により異なる。
 このように、無機分散剤と乳化剤を本発明の範囲内の量で併用することにより、反応系において、重合性単量体を含む油滴に適切な量の無機分散剤が吸着され、各油滴の大きさが均一に近い状態で安定化されていると考えられる。
(6)用途
 得られた樹脂粒子は、化粧品、光学材料、成型用樹脂、フィルムのブロッキング防止、塗料等に用いることができる。
 以下、実施例に基づいて本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
 (測定方法)
 本件明細書および実施例における各数値は、以下の測定方法で測定した。
 <評価1:樹脂粒子の体積平均粒子径および比表面積>
測定試料調整:実施例により得られた樹脂粒子を0.25g 計量し、ドデシルベンゼンスルホン酸ナトリウムを0.025g、純水50g を加えた系を超音波分散機(装置名:ULTRASONIC HOMOGENIZER  UH-50、株式会社SMT製、周波数20kHz)にて10分間分散したものを測定試料とした。
 測定試料の体積平均粒子径および比表面積を、下記測定装置を用いて下記測定条件で測定した。
測定装置:マスターサイザー2000(レーザー回折式粒度分布測定装置)、Malvern Instruments  Ltd 製
測定条件:分散媒 水、解析モデル 汎用、粒子屈折率1.50、分散媒屈折率1.33
体積平均粒子径は、記載の測定条件により得られたD(4,3)(体積基準平均径)とした。
 <評価2:樹脂粒子表面積あたりの無機分散剤被覆量(MS比表面積に基づく計算値)>
 以下の式により求めた。
樹脂粒子表面の無機分散剤の被覆量(MS比表面積に基づく計算値)=
(無機分散剤の量(重量部)/重合性単量体の量(重量部))/Malvern Instruments  Ltd 製マスターサイザー2000で測定した樹脂粒子比表面積・・・(I)
(ただし式(I)右辺の無機分散剤および重合性単量体の量は、樹脂粒子製造時の仕込み量であり、重合性単量体の量を100重量部とする)
 <評価3:CV 値>
測定試料調整:実施例により得られた樹脂粒子を0.25g 計量し、ドデシルベンゼンスルホン酸ナトリウムを0.05g、純水50g を加えた系を超音波分散機にて10分間分散したものを測定試料とする。
(i)測定試料の体積平均粒子径が75μm以下の場合
測定装置:FPIA3000(フロー式粒子像分析装置)、シスメックス株式会社製
測定条件:粒子径が10μm以上の場合はLPFモード、10μm以下の場合はHPFモードにて測定を行った。測定個数は5万個測定した。解析は円相当径(個数基準)により行い、そこで求められたCV値を用いた。
(ii)測定試料の体積平均粒子径が75μmを超える場合
デジタルマイクロスコープ((株)キーエンス製)にて450倍で撮影した場合の粒子50個の粒子径を実測し、その標準偏差を用いてCv値とした。
 <評価4:塩素濃度>
抽出方法:実施例により得られた樹脂粒子100g、超純水200gを24時間、振とう器にて分散させた濾液を孔径0.2μmのフィルターで濾過したものを測定試料とした。
測定装置:Metrohm Ltd. 社製、 761 Compact IC
測定条件:カラム(Shodex IC SI-90 4E[4.0×250mm])、移動相(2.0mM NaHCO/2.0mM NaCO)、流速(1.2ml/min)、カラム温度(20.0℃)
測定試料量:20.0μl
尚、計測濃度は粒子100gに対する溶出濃度に換算する。
 <評価5:ナトリウム濃度>
抽出方法:実施例により得られた樹脂粒子100g、超純水200gを24時間、振とう器にて分散させた濾液を孔径0.2μmのフィルターで濾過したものを測定試料とした。
測定装置:誘導結合プラズマ発光分析法(ICP/AES)(VISTA-PRO:VARIAN製)
測定条件:誘導結合プラズマ発光分析法にて測定した。(Naの原子吸光用標準試料(1000ppm)を純水で希釈し、濃塩酸を加え1~50ppm濃度範囲で検量線用試料を作成する。計測試料に検量線試料と同濃度となる塩酸を加え、上記測定装置にて測定した。)
尚、計測濃度は粒子100gに対する溶出濃度に換算する。
 <評価6:樹脂粒子含有試料の輝度>
(塗工液調整)
1.実施例1により得られた樹脂粒子を3g、トルエンを4.45gを計量し、攪拌棒を用いて50回攪拌する。
2.アクリル系バインダー(U-245B 綜研化学(株)製)を2g加え攪拌棒を用いて50回攪拌する。
3.ポリイソシアネート系硬化剤を0.88g加え、攪拌棒を用いて50回攪拌し、塗工液を得た。
4.実施例4、比較例3、7および8、参考例1で得られた樹脂粒子についても同様にして、それぞれの塗工液を得た。
 (塗工)
上記塗工液を自動塗工機を用いて下記条件にて塗工を行った。
塗工機:Rkプリントコートインスツルメンツ社
塗工機名:Kコントロールコーター101
バー:No3(ウエット膜厚24μm)
塗工速度:5cm/ sec
乾燥条件:80℃、3分(温度調節可能な熱循環式乾燥機)
基材:100μmPET
 (輝度測定)
上記塗工した試料を、輝度計を用いて下記条件にて測定を行った。バックライトは1200cd/m2に設定し、シートを1枚載せて測定を行った。
輝度計(高機能・汎用輝度・色ずれ計測システム):RISA-COLOR/CD8  HI-LAND社
輝度測定条件:分割方式で計測、縦10ブロック横10ブロックの計100ブロック、サンプルサイズ6cm×4.5cmとし、測定範囲はサンプル枠内に5.5cm×4cmを設定。カメラからサンプルまでの距離は152cmとした。
 <評価7:樹脂粒子の溶剤再分散性>
 実施例で得られた樹脂粒子1.5gに溶剤メチルエチルケトン3.5gを添加して10mlねじ口沈殿管(外径16.5mm、高さ105mm)に分散後、24時間静置する。
ATR社製、転倒回転型攪拌器ロータミックスに前記沈殿管をセットして回転数10rpmで攪拌する。
粒子が完全に再分散するまでの回転数を測定する。
 <評価8:無機分散剤の平均一次粒子径>
 測定試料調整:無機分散剤を、分散媒として精製水を用いて無機分散剤の粒子径が100nm未満の場合は1重量%の濃度に調整し、粒子径が100nm以上の場合は0.1重量%の濃度に調整した。測定試料の体積平均粒子径を、下記測定装置を用いて下記測定条件で測定した。
測定装置:ゼータサイザー3000HSA(Malvern Instruments  Ltd 製)、ディスポーザブルPPセル使用。
測定条件:測定条件Auto、解析モードContin、測定回数2回の平均値。該条件で得られたZ平均径を無機分散剤の平均一次粒子径とする。
<評価9:無機分散剤の分散時の平均粒子径>
測定試料調整:分散媒として精製水を用い乳化剤を実施例、比較例の濃度に調整した後、無機分散剤を添加して、無機分散剤の平均一次粒子径が100nm未満の場合は濃度が1重量%になるように、無機分散剤の平均一次粒子径が100nm未満の場合は濃度が0.1重量%になるように調整し、試料とした。測定試料の体積平均粒子径を、下記測定装置を用いて下記測定条件で測定した。
測定装置:ゼータサイザー3000HSA(Malvern Instruments  Ltd 製)
測定条件:測定条件Auto、解析モードContin、測定回数2回の平均値。該条件で得られたZ平均径を無機分散剤の分散時の平均粒子径とする。
<評価10:無機分散剤の再分散性>
測定試料調整:分散媒として精製水を用い乳化剤を実施例、比較例の濃度に調整した後、無機分散剤を添加して、無機分散剤の濃度が1重量%になるように調整し、分散状態とした後、精製水を用い2倍に希釈し、再分散確認試料とした。
測定試料の体積平均粒子径を、評価9と同様にして測定した。
 [実施例1]
温度計と窒素導入管とを装着した、容量1リットルの四つ口フラスコに、メチルメタクリレート(MMA)140g、トリメチロールプロパントリアクリレート(TMPTA)60g、開始剤としてラウロイルパーオキサイド(LPO)1.0g投入して溶解させた。次に水200g、コロイダルシリカ(平均一次粒子径9nm)0.4g、ポリオキシエチレンラウリルエーテル0.02gを計量し、ホモミキサー(T.K.ホモミクサーMARKII2.5 型プライミクス(株)社製)にて室温で8000rpm(11.7m/s)で3分乳化した。この乳化液に分散安定剤としてポリビニルアルコール(商品名PVA-420(株)クラレ製) 1.0gを水200gに溶解した溶解液を添加した。攪拌羽根は直径75mmのタービン羽根を使用し、室温で100rpm(0.39m/s)にて攪拌した。
 次いで、上記攪拌装置と攪拌速度条件を維持した状態で、この混合物を60℃まで加温して2時間反応させ、続いて90℃で1時間反応させた。この重合体粒子の体積平均粒子径は15.4μmの粒子であった。次にこのエマルジョンを吸引濾過により脱水したのち、棚段乾燥機にて100℃で5時間乾燥を行った。次いで、粉砕を行い、樹脂粒子を得た。
 [実施例2、3、6~8、11~17]
重合性単量体、分散剤および乳化剤の量を表1に記載の配合とした以外は、実施例1と同様にして樹脂粒子を得た。
 [実施例4]
重合性単量体、分散剤および乳化剤の量を表1に記載の配合とし、ホモミキサーの回転数を4000rpm(5.9m/s)とした以外は、実施例1と同様にして樹脂粒子を得た。
 [実施例5]
重合性単量体、分散剤および乳化剤の量を表1に記載の配合とし、ホモミキサーの回転数を2000rpm(2.9m/s)とした以外は、実施例1と同様にして樹脂粒子を得た。
 [実施例9]
ポリオキシエチレンラウリルエーテルの代わりにラウリルトリメチルアンモニウムクロライド 0.004gに変えた以外は実施例1と同様にして樹脂粒子を得た。
 [実施例10]
ポリオキシエチレンラウリルエーテルの代わりにステアリルベタイン 0.04gに変えた以外は実施例1と同様にして樹脂粒子を得た。
  [実施例18]
 1,4-ブタンジオールを2.5g、イソシアネート成分としてヘキサメチレンジイソシアネートのイソシアヌレート型ポリイソシアネートを47.5g、触媒としてジブチル錫ジラウリレート(商品名 促進剤S 綜研化学(株)製)を0.0015g、希釈溶剤としてメチルエチルケトン(MEK)32.5gを混合してプレポリマーを調製した。水酸基に対するイシソアネートのモル比は5.0であった。
 上記プレポリマー50gを重合性単量体とし、分散剤および乳化剤を表1の配合とし、ホモミキサーの回転数を4000rpm(5.9m/s)とし、分散安定剤をポリビニルアルコールに変えてヒドロキシメチルセルロース(商品名;メトローズ60SH-50 信越化学工業(株)製)6gを水200gに溶解した溶解液を使用し、反応温度を60℃、反応時間を4時間とした以外は、実施例1と同様にして樹脂粒子を得た。
 [比較例1,2、4]
重合性単量体、分散剤および乳化剤の量を表2に記載の配合とし、実施例1と同様のホモミサー操作を行ったところ、すぐにモノマーと水相での分離がおき、乳化が崩れた。そのため、樹脂粒子を得られなかった。
[比較例3、5、7,8]
重合性単量体、分散剤および乳化剤の量を表2に記載の配合量とした以外は、実施例1と同様にして樹脂粒子を得た。
 [比較例6]
温度計と窒素導入管とを装着した、容量1リットルの四つ口フラスコに、メチルメタクリレート(MMA)140g、トリメチロールプロパントリアクリレート(TMPTA)60g、開始剤としてラウロイルパーオキサイド(LPO)1.0g投入して溶解させた。次に分散安定剤としてポリビニルアルコール(商品名PVA-420(株)クラレ製)3gを水400gに溶解した溶解液403gを混合し、ホモミキサー(T.K.ホモミクサーMARKII2.5型プライミクス(株)社製)にて4500rpm(6.6m/s)で室温で3分乳化した。攪拌羽根は直径75mmのタービン羽根を使用し、室温で100rpm(0.39m/s)にて攪拌した。
 次いで、上記攪拌装置と攪拌速度条件を維持した状態で、この混合物を60℃まで加温して2時間反応させ、続いて90℃で1時間反応させた。この重合体粒子の平均粒子径は15.5μmの粒子であった。次にこのエマルジョンを吸引濾過により脱水したのち、棚段乾燥機にて100で5時間乾燥を行った。次いで、粉砕を行い、樹脂粒子を得た。得られた粒子はCV値が58.3%であり、粒度分布の広いものであった。
 [比較例9]
温度計と窒素導入管とを装着した、容量1リットルの四つ口フラスコに、メチルメタクリレート(MMA)180g、エチレングリコールジメタクリレート(EGDMA)20g、メチルポリシリケート4g、開始剤として2,2’-アゾビス(2,4-ジメチルバレロニトリル)1g投入して溶解させた。次に水160g、コロイダルシリカ(16nm)8.0g、塩化ナトリウム2gを混合し、ホモミキサー(T.K.ホモミクサーMARKII2.5型プライミクス(株)製)にて7000rpm(10.3m/s)で室温で3分乳化した。この乳化液に分散安定剤としてポリビニルアルコール(商品名PVA-420(株)クラレ製)2gを水140gに溶解した溶解液を添加した。攪拌羽根は直径75mmのタービン羽根を使用し、室温で100rpm(0.39m/s)にて攪拌した。
 次いで、上記攪拌装置と攪拌速度条件を維持した状態で、この混合物を65℃まで加温して2時間反応させた。続いて、水酸化ナトリウムを0.4g投入し、95℃で3時間反応させた。この重合体粒子の平均粒子径は15.4μmの粒子であった。次にこのエマルジョンを吸引濾過により脱水し、得られたケーキを300gのイオン交換水にて再分散して、再度、吸引濾過により脱水した。その後、棚段乾燥機にて100℃で5時間乾燥を行った。次いで粉砕を行い、樹脂粒子を得た。
 [参考例1]
表2に記載の配合にて実施例1と同様の操作を行い、重合を行った。シリカを除去する操作として、重合液に水酸化ナトリウム2重量部を添加し、攪拌しながら90℃で2時間保持した。その後、重合液を冷却しエマルションを吸引濾過により脱水し、得られたケーキを300gのイオン交換水にて再分散して、再度、吸引濾過により脱水した。その後、棚段乾燥機にて100℃で5時間乾燥を行った。次いで、粉砕を行い、樹脂粒子を得た。得られた樹脂粒子のシリカ量を測定したところ、除去前のシリカ重量を100%として5%未満であった。
[参考例2]
表2に記載の配合にて、実施例1と同様の操作を行い、樹脂粒子を得た。得られた重合体粒子は平均粒子径が15.2であり、表面積当たりのシリカの被覆量は0.0041g/m2であるが、CV値が61.3%と広く微小・粗大粒子を多く含む結果となった。この時の無機分散剤は、精製水を加えて再分散を試みても一次粒子径を示さず、500nm以上の二次凝集状態であり、凝集体の沈殿物が確認された。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表4は、無機分散剤の分散状態を示すものである。
 表4中、分散時は、重合系中の無機分散剤の状態を想定したものであり、再分散後は、重合系を水で希釈した状態を表わしている。
 無機分散剤の粒子径が、再分散後一次粒子径に戻っている例および分散時と再分散後で変化している例は、本願発明の粒子製造における重合系中の無機分散剤の凝集状態が、擬似凝集状態であると考えられる。そのため、擬似凝集状態の無機分散剤は、一次粒子と二次凝集との間で可逆的に変化しており、容易に一次粒子に戻る場合もあると考えられる。そのような実施例および参考例では、粒子径が揃い、表面の無機分散剤の被覆率の低い樹脂粒子が得られている。
 一方、無機分散剤の粒子径が、再分散後一次粒子径に戻っていない例または分散時と再分散後で変化していない例は、本願発明の粒子製造における重合系中の無機分散剤の凝集状態が、二次凝集であると考えられる。尚、この場合の分散液を目視で確認すると、沈殿物が確認出来る。そのような実施例および参考例では、粒子径が揃わず、表面の無機分散剤の被覆率の高い樹脂粒子が得られている。
表中の略号は、以下の通りである。
MMA:メタクリル酸メチル、
TMPAT:トリメチロールプロパントリアクリレート、
BA:アクリル酸ブチル、
EGDMA:エチレングリコールジメタクリレート、
St:スチレン、
DVB:ジビニルベンゼン、
MAA:メタクリル酸、
HEMA:2-ヒドロキシエチルメタクリレート、
HDDA:1,6-ヘキサンジオールジアクリレート。
 本発明の樹脂粒子は、化粧品、光学材料、成型用樹脂、フィルムのブロッキング防止、塗料等に用いることができる。

Claims (9)

  1. 無機分散剤が表面に付着し、体積平均粒子径が1~1000μmである樹脂粒子であって、
    下記式(I)
    樹脂粒子表面の無機分散剤の被覆量=
    (無機分散剤の量(重量部)/重合性単量体の量(重量部))/Malvern Instruments  Ltd 製マスターサイザー2000で測定した樹脂粒子比表面積・・・(I)
    (ただし式(I)右辺の無機分散剤および重合性単量体の量は、樹脂粒子製造時の仕込み量であり、重合性単量体の量を100重量部とする)
    で求められる前記樹脂粒子表面の前記無機分散剤の被覆量が、0.0001~0.02g/m2であることを特徴とする樹脂粒子。
  2. CV値が10~50%である請求項1に記載の樹脂粒子。
  3. 樹脂粒子に対する溶出ハロゲン濃度が、24ppm未満であることを特徴とする請求項1または2に記載の樹脂粒子。
  4. 樹脂粒子に対する溶出金属濃度が、20ppm未満であることを特徴とする請求項1~3のいずれかに記載の樹脂粒子。
  5. 前記無機分散剤がシリカであることを特徴とする請求項1~4のいずれかに記載の樹脂粒子。
  6.  [工程1]水系媒体、重合性単量体、重合開始剤、無機分散剤および乳化剤を含む組成物を攪拌して、水系媒体中に油滴が分散した液を形成する工程と、
     [工程2]前記分散液を攪拌しながら加熱し、前記重合性単量体を重合する工程とを
    有することを特徴とする樹脂粒子の製造方法。
  7. 前記[工程1]において、前記重合性単量体100重量部に対して前記無機分散剤を0.01~2.0重量部の量で用いることを特徴とする請求項6に記載の樹脂粒子の製造方法。
  8. 前記[工程1]において、前記無機分散剤の系への添加前の平均一次粒子径が1~500nmであることを特徴とする請求項6または7に記載の樹脂粒子の製造方法。
  9. 前記無機分散剤が、コロイダルシリカであることを特徴とする請求項6~8のいずれかに記載の樹脂粒子の製造方法。
PCT/JP2010/070429 2009-11-18 2010-11-17 樹脂粒子およびその製造方法 WO2011062173A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA2779893A CA2779893A1 (en) 2009-11-18 2010-11-17 Resin particles and process for producing the same
US13/505,748 US20120238705A1 (en) 2009-11-18 2010-11-17 Resin Particles and Process for Producing the Same
CN201080050945.4A CN102597012B (zh) 2009-11-18 2010-11-17 树脂粒子及其制造方法
EP20100831567 EP2502940A4 (en) 2009-11-18 2010-11-17 RESIN PARTICLES AND MANUFACTURING METHOD THEREFOR
JP2011541931A JPWO2011062173A1 (ja) 2009-11-18 2010-11-17 樹脂粒子およびその製造方法
IN4969DEN2012 IN2012DN04969A (ja) 2009-11-18 2012-06-06

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-263240 2009-11-18
JP2009263240 2009-11-18

Publications (1)

Publication Number Publication Date
WO2011062173A1 true WO2011062173A1 (ja) 2011-05-26

Family

ID=44059651

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/070429 WO2011062173A1 (ja) 2009-11-18 2010-11-17 樹脂粒子およびその製造方法

Country Status (9)

Country Link
US (1) US20120238705A1 (ja)
EP (1) EP2502940A4 (ja)
JP (2) JPWO2011062173A1 (ja)
KR (1) KR20120116393A (ja)
CN (1) CN102597012B (ja)
CA (1) CA2779893A1 (ja)
IN (1) IN2012DN04969A (ja)
TW (1) TW201124432A (ja)
WO (1) WO2011062173A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140080484A (ko) * 2011-09-29 2014-06-30 가부시기가이샤 닛뽕쇼꾸바이 비닐 중합체 미립자, 그 제조방법, 수지 조성물 및 광학용 재료
JP2014198797A (ja) * 2013-03-29 2014-10-23 積水化成品工業株式会社 アクリル系樹脂粒子、塗料組成物及び光学材料
WO2015071984A1 (ja) 2013-11-13 2015-05-21 積水化成品工業株式会社 複合粒子、複合粒子の製造方法、及び、その用途
JP2017016150A (ja) * 2016-09-28 2017-01-19 積水化成品工業株式会社 アクリル系樹脂粒子、塗料組成物及び光学材料
TWI579325B (zh) * 2013-11-18 2017-04-21 積水化成品工業股份有限公司 複合粒子、複合粒子的製造方法及其用途
KR20170128379A (ko) * 2015-02-26 2017-11-22 폴린트 컴포지츠 유에스에이 인코포레이티드 충전제
US10174190B2 (en) 2014-04-25 2019-01-08 Sekisui Plastics Co., Ltd. Composite particles, method for producing composite particles, and use thereof
US11098167B2 (en) 2015-09-30 2021-08-24 Sekisui Plastics Co., Ltd. Polymer particles and use thereof

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6018582B2 (ja) 2011-12-16 2016-11-02 綜研化学株式会社 樹脂粒子群およびその製造方法ならびに樹脂粒子群の粒子の粒度調整方法
JP6645944B2 (ja) * 2016-09-30 2020-02-14 積水化成品工業株式会社 複合粒子及びその製造方法並びにその用途
KR102640613B1 (ko) * 2016-12-28 2024-02-26 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 금속-수지 복합체 및 그 이용
WO2018211626A1 (ja) * 2017-05-17 2018-11-22 株式会社アドマテックス 複合粒子材料及びその製造方法
KR102451914B1 (ko) * 2018-03-29 2022-10-06 현대자동차 주식회사 전도성 수지 조성물, 전도성 필름 및 그 제조 방법
WO2022030368A1 (ja) * 2020-08-07 2022-02-10 株式会社クラレ 組成物、樹脂組成物及びそれらを含む成形体

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6011503A (ja) * 1983-06-30 1985-01-21 Nippon Paint Co Ltd 水分散型樹脂組成物
JPH0616707A (ja) 1992-05-07 1994-01-25 Hitachi Chem Co Ltd 3次元重合体微粒子、その製造法、低収縮剤及び不飽和ポリエステル樹脂組成物
JP2000355639A (ja) 1999-06-15 2000-12-26 Nippon Shokubai Co Ltd 分散安定剤およびそれを用いた樹脂粒子の製法
JP2002523534A (ja) * 1998-08-24 2002-07-30 グリーン テクノロジー アイエヌシー. 製紙工程における微粒子の歩留り向上助剤として用いられるコロイダルシリカ含有親水性ポリマー分散体組成物およびその製造方法
JP2005281470A (ja) * 2004-03-29 2005-10-13 Sekisui Plastics Co Ltd 多孔質樹脂粒子の製造方法
JP2006096971A (ja) * 2004-08-31 2006-04-13 Sanyo Chem Ind Ltd 中空樹脂粒子の製造方法
JP2007217645A (ja) 2006-02-20 2007-08-30 Sekisui Plastics Co Ltd 重合体粒子及びその製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS559631A (en) * 1978-07-07 1980-01-23 Shinroihi Kk Fine polymer particle with uniform particle size distribution and its production
JPS5953856A (ja) * 1982-09-21 1984-03-28 Canon Inc トナ−の製造方法
JPS62266561A (ja) 1986-05-15 1987-11-19 Canon Inc 重合トナ−の製造方法
EP0649858B1 (en) * 1993-10-25 1997-04-16 Eastman Kodak Company Method for preparing polymeric particles
JPH09302263A (ja) * 1996-05-13 1997-11-25 Toyo Ink Mfg Co Ltd 水性感光性コーティング組成物
JP3789373B2 (ja) * 2002-03-12 2006-06-21 積水化成品工業株式会社 ポリメタクリル酸エステル系樹脂粒子の製造法
CA2525626A1 (en) * 2003-05-16 2004-11-25 Basf Aktiengesellschaft Packaging material consisting of an at least double-layered composite material for producing containers for packing liquids
CN100344692C (zh) * 2005-12-27 2007-10-24 上海大学 水性纳米SiO2复合丙烯酸乳液的制备方法
JP5126929B2 (ja) * 2006-01-26 2013-01-23 積水化成品工業株式会社 光拡散樹脂粒子及びその製造方法
WO2008071686A1 (de) * 2006-12-15 2008-06-19 Basf Se Herstellung von polymerdispersionen in gegenwart von anorganischen polymerteilchen
CN101475658A (zh) * 2008-01-04 2009-07-08 西北师范大学 一种以纳米SiO2为种子的核壳结构叔碳酸乙烯酯-含氟丙烯酸酯共聚乳液及其制备方法
CN101497729A (zh) * 2009-02-20 2009-08-05 上海三瑞化学有限公司 纳米硅溶胶/丙烯酸酯复合乳液及其制备方法
CA2755464A1 (en) * 2009-04-15 2010-10-21 Basf Se Process for preparing an aqueous composite-particle dispersion

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6011503A (ja) * 1983-06-30 1985-01-21 Nippon Paint Co Ltd 水分散型樹脂組成物
JPH0616707A (ja) 1992-05-07 1994-01-25 Hitachi Chem Co Ltd 3次元重合体微粒子、その製造法、低収縮剤及び不飽和ポリエステル樹脂組成物
JP2002523534A (ja) * 1998-08-24 2002-07-30 グリーン テクノロジー アイエヌシー. 製紙工程における微粒子の歩留り向上助剤として用いられるコロイダルシリカ含有親水性ポリマー分散体組成物およびその製造方法
JP2000355639A (ja) 1999-06-15 2000-12-26 Nippon Shokubai Co Ltd 分散安定剤およびそれを用いた樹脂粒子の製法
JP2005281470A (ja) * 2004-03-29 2005-10-13 Sekisui Plastics Co Ltd 多孔質樹脂粒子の製造方法
JP2006096971A (ja) * 2004-08-31 2006-04-13 Sanyo Chem Ind Ltd 中空樹脂粒子の製造方法
JP2007217645A (ja) 2006-02-20 2007-08-30 Sekisui Plastics Co Ltd 重合体粒子及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2502940A4 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102133923B1 (ko) 2011-09-29 2020-07-14 가부시기가이샤 닛뽕쇼꾸바이 비닐 중합체 미립자, 그 제조방법, 수지 조성물 및 광학용 재료
KR102141982B1 (ko) * 2011-09-29 2020-08-06 가부시기가이샤 닛뽕쇼꾸바이 비닐 중합체 미립자, 그 제조방법, 수지 조성물 및 광학용 재료
KR20140080484A (ko) * 2011-09-29 2014-06-30 가부시기가이샤 닛뽕쇼꾸바이 비닐 중합체 미립자, 그 제조방법, 수지 조성물 및 광학용 재료
KR20190099540A (ko) * 2011-09-29 2019-08-27 가부시기가이샤 닛뽕쇼꾸바이 비닐 중합체 미립자, 그 제조방법, 수지 조성물 및 광학용 재료
JP2014198797A (ja) * 2013-03-29 2014-10-23 積水化成品工業株式会社 アクリル系樹脂粒子、塗料組成物及び光学材料
WO2015071984A1 (ja) 2013-11-13 2015-05-21 積水化成品工業株式会社 複合粒子、複合粒子の製造方法、及び、その用途
KR20160071443A (ko) 2013-11-13 2016-06-21 세키스이가세이힝코교가부시키가이샤 복합 입자, 복합 입자의 제조 방법 및 그 용도
US10876010B2 (en) 2013-11-13 2020-12-29 Sekisui Kasei Co., Ltd. Composite particles, method for producing composite particles, and use thereof
JPWO2015071984A1 (ja) * 2013-11-13 2017-03-09 積水化成品工業株式会社 複合粒子、複合粒子の製造方法、及び、その用途
TWI579325B (zh) * 2013-11-18 2017-04-21 積水化成品工業股份有限公司 複合粒子、複合粒子的製造方法及其用途
US10174190B2 (en) 2014-04-25 2019-01-08 Sekisui Plastics Co., Ltd. Composite particles, method for producing composite particles, and use thereof
JP2018514638A (ja) * 2015-02-26 2018-06-07 ポリント コンポジッツ ユーエスエイ インコーポレイテッド 充填剤
KR20170128379A (ko) * 2015-02-26 2017-11-22 폴린트 컴포지츠 유에스에이 인코포레이티드 충전제
KR102400413B1 (ko) * 2015-02-26 2022-05-19 폴린트 컴포지츠 유에스에이 인코포레이티드 충전제
US11098167B2 (en) 2015-09-30 2021-08-24 Sekisui Plastics Co., Ltd. Polymer particles and use thereof
JP2017016150A (ja) * 2016-09-28 2017-01-19 積水化成品工業株式会社 アクリル系樹脂粒子、塗料組成物及び光学材料

Also Published As

Publication number Publication date
KR20120116393A (ko) 2012-10-22
CN102597012B (zh) 2015-09-23
IN2012DN04969A (ja) 2015-09-25
EP2502940A4 (en) 2013-05-29
JP2015193861A (ja) 2015-11-05
CA2779893A1 (en) 2011-05-26
TW201124432A (en) 2011-07-16
EP2502940A1 (en) 2012-09-26
JPWO2011062173A1 (ja) 2013-04-04
CN102597012A (zh) 2012-07-18
US20120238705A1 (en) 2012-09-20

Similar Documents

Publication Publication Date Title
WO2011062173A1 (ja) 樹脂粒子およびその製造方法
JP2001064537A (ja) ポリマー顔料複合体
TW201428063A (zh) 顏料分散劑,顏料分散劑之製造方法及顏料分散液
WO2006093179A1 (ja) 多孔性単分散粒子およびその製造方法ならびにその用途
EP2343344A1 (en) Encapsulation of pigments with polymer latex prepared by mini-emulsion polymerization
JP2008138218A (ja) 水性樹脂分散体、水性樹脂組成物および水性樹脂組成物の製造方法
JP2016121237A (ja) インクジェット記録用水系顔料分散体の製造方法
JP2010018760A (ja) コロイド結晶、その製造方法及び固定化コロイド結晶
JP6018582B2 (ja) 樹脂粒子群およびその製造方法ならびに樹脂粒子群の粒子の粒度調整方法
JP5352104B2 (ja) 単分散性樹脂粒子、その製造方法及び塗布物
WO2018055786A1 (ja) 重合体粒子分散液及びそれに用いる重合体粒子、分散剤及び分散媒体、並びにそれらの用途
JP7001222B2 (ja) 樹脂粒子分散体
KR20140127236A (ko) 복합 응집 수지 입자 및 이 입자를 함유하는 조성물
KR100983110B1 (ko) Ritp 유화중합법에 의한 저분자량의 비닐계 고분자입자의 제조방법
EP3172268A1 (de) Beschichtungsformulierung
JP3784292B2 (ja) 樹脂粒子の製造方法およびその方法により得られる樹脂粒子
JP7304276B2 (ja) 樹脂粒子分散体
JP2001089689A (ja) 印刷インキ用艶消し剤およびそれよりなる印刷インキ組成物、並びにその用途
JP5255363B2 (ja) カラーフィルター用顔料分散体の製造方法
JP4528178B2 (ja) 表面被覆架橋ポリマー粒子の製造方法
JP3696081B2 (ja) 樹脂微粒子ならびにその製造方法および用途
EP3130617B1 (en) Polymer nanoparticle preparation by miniemulsion polymerization
JP4771328B2 (ja) 有機ナノ粒子水性分散体、その製造方法及びその用途
WO2024048175A1 (ja) 樹脂微粒子及びその製造方法
JP6091114B2 (ja) 合成樹脂エマルジョン組成物の製造方法、及びこの製造方法により得られた合成樹脂エマルジョン組成物を用いてなるコーティング剤の製造方法、塗膜の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080050945.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10831567

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011541931

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127011430

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2779893

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13505748

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 4969/DELNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2010831567

Country of ref document: EP