WO2015059885A1 - 車両用空調ユニット - Google Patents

車両用空調ユニット Download PDF

Info

Publication number
WO2015059885A1
WO2015059885A1 PCT/JP2014/005139 JP2014005139W WO2015059885A1 WO 2015059885 A1 WO2015059885 A1 WO 2015059885A1 JP 2014005139 W JP2014005139 W JP 2014005139W WO 2015059885 A1 WO2015059885 A1 WO 2015059885A1
Authority
WO
WIPO (PCT)
Prior art keywords
opening
air
partition plate
passage
door
Prior art date
Application number
PCT/JP2014/005139
Other languages
English (en)
French (fr)
Inventor
明規 桑山
伸一郎 平井
康裕 関戸
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to US15/030,342 priority Critical patent/US10144265B2/en
Priority to CN201480048912.4A priority patent/CN105517819B/zh
Priority to DE112014004822.4T priority patent/DE112014004822B4/de
Publication of WO2015059885A1 publication Critical patent/WO2015059885A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00007Combined heating, ventilating, or cooling devices
    • B60H1/00021Air flow details of HVAC devices
    • B60H1/00064Air flow details of HVAC devices for sending air streams of different temperatures into the passenger compartment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00007Combined heating, ventilating, or cooling devices
    • B60H1/00021Air flow details of HVAC devices
    • B60H1/00028Constructional lay-out of the devices in the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00664Construction or arrangement of damper doors
    • B60H1/00671Damper doors moved by rotation; Grilles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00664Construction or arrangement of damper doors
    • B60H1/00671Damper doors moved by rotation; Grilles
    • B60H1/00678Damper doors moved by rotation; Grilles the axis of rotation being in the door plane, e.g. butterfly doors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00664Construction or arrangement of damper doors
    • B60H1/00692Damper doors moved by translation, e.g. curtain doors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/02Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant
    • B60H1/04Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant from cooling liquid of the plant
    • B60H1/08Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant from cooling liquid of the plant from other radiator than main radiator
    • B60H1/10Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant from cooling liquid of the plant from other radiator than main radiator the other radiator being situated in a duct capable of being connected to atmosphere outside vehicle
    • B60H1/12Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant from cooling liquid of the plant from other radiator than main radiator the other radiator being situated in a duct capable of being connected to atmosphere outside vehicle using an air blower
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00007Combined heating, ventilating, or cooling devices
    • B60H1/00021Air flow details of HVAC devices
    • B60H2001/00114Heating or cooling details
    • B60H2001/00121More than one heat exchanger in parallel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00007Combined heating, ventilating, or cooling devices
    • B60H1/00021Air flow details of HVAC devices
    • B60H2001/00114Heating or cooling details
    • B60H2001/00135Deviding walls for separate air flows
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00007Combined heating, ventilating, or cooling devices
    • B60H1/00021Air flow details of HVAC devices
    • B60H2001/0015Temperature regulation
    • B60H2001/00164Temperature regulation with more than one by-pass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00007Combined heating, ventilating, or cooling devices
    • B60H1/00021Air flow details of HVAC devices
    • B60H2001/00185Distribution of conditionned air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00664Construction or arrangement of damper doors
    • B60H2001/00714Details of seals of damper doors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00664Construction or arrangement of damper doors
    • B60H2001/00721Air deflecting or air directing means

Definitions

  • This disclosure relates to a vehicle air conditioning unit.
  • a casing having a partition plate that partitions an upper air passage and a lower air passage, an evaporator disposed so as to straddle the upper air passage and the lower air passage, an upper air passage and a lower air passage
  • Some include a heater unit that is disposed so as to straddle the side air passage and that heats the cool air blown out from the evaporator (see, for example, Patent Document 1 and Patent Document 2).
  • the partition plate on the downstream side of the air flow of the heater unit in the casing is provided with an opening communicating between the upper air passage and the lower air passage and a switching door for opening and closing the opening.
  • the conditioned air is blown out from the foot opening and the face opening while the opening is closed by the switching door.
  • conditioned air is blown from the foot opening and the face opening with the opening being opened by the switching door.
  • Hot air is circulated through the side air passage.
  • JP-A-9-156348 Japanese Patent Laid-Open No. 10-181331
  • the inventors of the present invention have examined the air conditioning units for vehicles of Patent Documents 1 and 2, and no pressure difference is generated between the upper air passage and the lower air passage on the downstream side of the air flow of the heater unit in the casing. Furthermore, even if the opening is opened by the switching door, sufficient warm air does not flow from the upper air passage through the opening to the lower air passage.
  • the temperature difference between the temperature of the air blown from the foot opening in the bi-level mode and the temperature of the air blown from the face opening, and the temperature of the air blown from the foot opening in the foot mode and the air blowing from the face opening becomes the same.
  • the present disclosure aims to provide an air conditioning unit for a vehicle in which warm air from the upper air passage is surely flowed to the foot opening through the opening by the switching door.
  • the vehicle air-conditioning unit of the present disclosure includes a face opening and a foot opening provided below the face opening in the vertical direction, and allows air to flow toward the face opening and the foot opening.
  • a heating heat exchanger disposed in the casing for heating the air, and a downstream side of the air flow of the heating heat exchanger,
  • a first partition plate that is divided into one passage and a second passage located below the first passage; and formed on the downstream side of the air flow of the first partition plate to communicate the first passage and the second passage.
  • a second opening that is disposed above the first partition plate downstream of the first opening to be heated and the air flow downstream of the heating heat exchanger, and forms a third passage between the first partition plate and the first partition plate in the first passage.
  • Partition plate and second partition plate Located in the air flow downstream side, comprises a second opening for communicating the upper and lower sides of the second partition plate, first, the switching door for opening and closing the second opening, the.
  • the foot opening is located below the opening forming portion that forms the first opening in the first partition plate.
  • the air in the third passage flows toward the face opening.
  • the air in the third passage is guided toward the foot opening by the second partition plate and the switching door.
  • the hot air blown from the heat exchanger for heating through the space between the partition plates can be flowed to the foot opening side by the switching door. That is, the warm air from the first passage surely flows through the opening to the foot opening. For this reason, in the 2nd air conditioning mode, the temperature difference of the blowing air temperature of a face opening part and the blowing air temperature of a foot opening part can be enlarged compared with the 1st air conditioning mode.
  • FIG. 10 is a sectional view taken along line XX in FIG. 9.
  • FIG. 1 is a cross-sectional view of the air conditioning unit 10 of the vehicle air conditioner in the first embodiment, and shows a state of the bilevel mode.
  • the up, down, front, and rear arrows indicate directions when the vehicle air conditioner is mounted on a vehicle.
  • the ventilation system of the vehicle air conditioner of the present embodiment is roughly divided into two parts, an air conditioning unit 10 and a blower unit (not shown).
  • the blower unit is offset from the center part to the passenger seat side in the lower part of the instrument panel in the passenger compartment.
  • the air conditioning unit 10 is disposed at a substantially central portion in the left-right direction of the vehicle in the lower portion of the instrument panel in the vehicle interior.
  • the blower unit includes an inside / outside air introduction box in which an outside air blowing path (upper air passage) and an inside air blowing path (lower air passage) are separated by a partition wall.
  • the inside / outside air introduction box includes an outside air introduction port for introducing outside air (air outside the passenger compartment) into the outside air blowing passage, an inside air introduction port for introducing inside air (air inside the passenger compartment) into the inside air blowing passage, and an outside air introduction port and inside air introduction.
  • An inside / outside air switching door that opens at least one of the mouths.
  • a first centrifugal multiblade fan that introduces outside air from the outside air introduction port or inside air from the inside air introduction port and blows it out to the upper air passage of the air conditioning unit 10 is disposed on the outside air blowing path side of the inside and outside air introduction box. Yes. Accordingly, one of the outside air and the inside air is introduced to the outside air blowing path side of the blower unit.
  • the upper air passage of the air conditioning unit 10 is referred to as an outside air passage (first passage).
  • the inside air introduction port for introducing inside air into the inside air blowing path is provided in the blower unit.
  • a second centrifugal multiblade fan that introduces the inside air from the inside air introduction port and blows it out to the lower air passage of the air conditioning unit 10 is arranged on the inside air blowing path side in the inside / outside air introduction box. Therefore, the inside air is introduced to the inside air blowing path side of the blower unit.
  • the lower air passage of the air conditioning unit 10 is referred to as an inside air passage (second passage).
  • the first and second centrifugal multiblade fans (sirocco fans) of the present embodiment constitute a blower together with an electric motor that drives the first and second centrifugal multiblade fans.
  • the air conditioning unit 10 constitutes a vehicle air conditioning unit, and is arranged in the form shown in FIG. 1 with respect to the longitudinal direction of the vehicle and the vertical direction of the vehicle at a substantially central portion below the instrument panel in the passenger compartment. Has been.
  • the air conditioning unit 10 includes an evaporator (cooling heat exchanger) 12 and a heater core (heating heat exchanger) 13 in a casing 11.
  • the evaporator 12 has a flat shape in which the length in the front-rear direction is shorter than the length in the vertical direction and the length in the longitudinal direction extends in the left-right direction and the vertical direction.
  • the evaporator 12 is disposed so as to straddle the outside air passage and the inside air passage in the casing 11.
  • the evaporator 12 absorbs the latent heat of evaporation of the refrigerant in the refrigeration cycle from the air and cools the air.
  • the heater core 13 is disposed so as to straddle the outside air passage and the inside air passage in the casing 11 in the lower air flow of the evaporator 12.
  • the heater core 13 has a flat shape in which the length in the front-rear direction is shorter than the length in the vertical direction and the length in the longitudinal direction extends in the left-right direction.
  • the heater core 13 is disposed obliquely with respect to the vertical direction so that the lower end is positioned in front of the upper end.
  • the heater core 13 reheats the cold air that has passed through the evaporator 12.
  • High-temperature engine coolant (hot water) flows inside the heater core 13, and the heater core 13 heats the air using the engine coolant as a heat source.
  • a bypass passage 14 a is provided above the heater core 13 in the outside air passage of the air conditioning unit 10.
  • the bypass passage 14a allows the cool air flowing out of the evaporator 12 to flow through the heater core 13 toward the face opening 15a.
  • an air mix door 16a is provided upstream of the bypass passage 14a and the air flow of the heater core 13.
  • a slide door that is slid by an electric motor is used.
  • the air mix door 16a changes the ratio of the amount of air passing through the bypass passage 14a and the amount of air passing through the heater core 13 by sliding movement in the outside air passage.
  • a bypass passage 14 b is provided below the heater core 13 in the inside air passage of the air conditioning unit 10.
  • the bypass passage 14b is a passage through which the cool air flowing out of the evaporator 12 flows to the foot opening 15b, bypassing the heater core 13.
  • the air mix door 16b of the present embodiment a slide door that is slid by an electric motor is used.
  • the air mix door 16b changes the ratio of the amount of air passing through the bypass passage 14b and the amount of air passing through the heater core 13 in the inside air passage by sliding movement.
  • the casing 11 forms an air passage through which air flows toward the passenger compartment.
  • the casing 11 is made of a resin-molded product, such as polypropylene, having a certain degree of elasticity and excellent strength.
  • An outer airflow inlet (in other words, an upper air inlet) 17 a and an inner airflow inlet (in other words, a lower air inlet) 17 b are provided on the front side of the casing 11.
  • the outside air flow inlet 17a guides outside air blown from the above-described blower unit to an outside air passage described later.
  • the internal air flow inlet 17b guides the internal air blown from the above-described blower unit to an internal air passage which will be described later.
  • the inner airflow inlet 17a and the inner airflow inlet 17b are also collectively referred to as air inlets 17a and 17b.
  • partition plates 20, 21, and 22 are provided in the casing 11.
  • the partition plates 20, 21, and 22 separate the inside of the casing 11 into an outside air passage and an inside air passage.
  • the partition plate 20 is disposed upstream of the air flow of the evaporator 12, and partitions the outer air flow inlet 17a and the inner air flow inlet 17b.
  • the partition plate 21 is disposed between the evaporator 12 and the heater core 13 in the air flow direction.
  • the partition plate 21 includes plate portions 21a and 21b, and is formed in an L shape when viewed from the left-right direction. Specifically, the plate portion 21a is inclined so as to go downward as it goes to the rear side. Thereby, the board part 21a comprises the cold wind guide which guides the air which passed the evaporator 12 below in an inside air channel
  • the plate portion 21b is disposed on the rear side of the plate portion 21a and is orthogonal to the plate portion 21a. That is, the plate part 21b protrudes obliquely upward from the plate part 21a.
  • the plate portion 21b constitutes a cold air guide that guides the air that has passed through the evaporator 12 upward in the outside air passage.
  • the partition plate 22 (first partition plate) is a two-layer partition plate and is disposed on the downstream side of the air flow of the heater core 13.
  • the partition plate 22 divides the casing 11 into an outside air passage and an inside air passage located below the outside air passage, and includes plate portions 22a and 22b.
  • the plate portion 22a is formed in a plate shape that extends in the left-right direction, and is inclined so as to go upward as it goes rearward.
  • the plate portion 22b is formed in a plate shape extending in the left-right direction on the rear side of the plate portion 22a, and is inclined so as to go downward as it goes rearward.
  • An opening (first opening) 30 is formed on the rear side of the partition plate 22 in the casing 11.
  • the opening 30 is located between the partition plate 22 and the rear wall 40 of the casing 11 and communicates the outside air passage and the inside air passage.
  • the rear wall 40 of the casing 11 is formed above the foot opening 30 described later.
  • a partition plate 23 (second partition plate) formed in a plate shape extending in the left-right direction is provided above the partition plate 22.
  • the partition plate 23 further divides the outside air passage into an upper side and a lower side on the downstream side of the air flow of the heater core 13.
  • the partition plate 22 and the partition plate 23 constitute a hot air passage (third passage) 25 through which the hot air blown from the heater core 13 is circulated rearward in the outside air passage.
  • the partition plates 22 and 23 are configured such that the opening area of the hot air inlet 25a of the hot air passage 25 is larger than the opening area of the hot air outlet 25b of the hot air passage 25.
  • the partition plate 23 includes plate portions 23a and 23b formed in a plate shape.
  • the plate part 23a is inclined so as to go downward as it goes backward.
  • the plate portion 23b is disposed on the rear side of the plate portion 23a, and is inclined so as to go downward as it goes rearward.
  • the inclination angle of the plate part 23a is larger than the inclination angle of the plate part 23b.
  • the inclination angle is an angle formed by the plate portions 23a and 23b in the clockwise direction with respect to the front-rear direction.
  • the plate portions 23a and 23b of the partition plate 23 are arranged so that the cross-sectional area of the hot air passage 25 gradually decreases toward the rear.
  • the plate portions 23a and 23b of the partition plate 23 guide the warm air that has passed between the plate portions 23a and 23b downward (that is, on the foot opening 15b side).
  • a guide plate 24 is provided above the partition plate 23 in the casing 11.
  • the guide plate 24 extends in the left-right direction and is formed in a plate shape that extends upward and forward from the rear side of the partition plate 23. That is, the guide plate 24 is disposed so as to be inclined forward with respect to the vertical direction.
  • the guide plate 24 guides the warm air blown from the warm air outlet 25b of the warm air passage 25 toward the face opening 15a.
  • an open end forming portion 26 is provided between the rear side of the partition plate 23 and the rear side of the guide plate 24.
  • the opening end forming portion 26 forms an opening (second opening) 31 with the rear wall 40.
  • the opening end forming portion 26 is provided between the end portion on the opening portion 31 side of the partition plate 23 and the guide plate 24 to form the opening portion 31.
  • the opening end forming portion 26 is formed in an arc shape that is convex forward and upward (see FIG. 2).
  • the opening end forming portion 26 includes a first end portion 26a on the partition plate 23 side and a second end portion 26b on the guide plate 24 side.
  • the door body 50a of the mode door (switching door) 50 rotates to move between the first end portion 26a and the second end portion 26b with the opening 30 opened and the opening 31 closed (see FIG. 2).
  • the opening end forming portion 26 and the door body 50a becomes a constant size.
  • a plate door is used as the mode door 50 of the present embodiment. More specifically, the mode door 50 of the present embodiment is a so-called “butterfly door” in which a rotation shaft 50b is disposed at the center of a door body 50 formed in a plate shape.
  • the mode door 50 is not limited to a butterfly door, and may be a so-called “cantilever door” in which a rotating shaft is provided on one end of a plate-like door body (in other words, a plate door body). Good.
  • the distance L1 between the upper side of the air outflow surface 13a of the heater core 13 and the partition plate 23 is greater than the distance between the partition plate 22 and the partition plate 23 of the air outflow surface 13a of the heater core 13.
  • the distance L2 is longer.
  • the distance L2 between the partition plate 22 and the partition plate 23 is longer than the distance L1 between the upper end of the air outflow surface 13a and the partition plate 23.
  • the air outflow surface 13 a is a surface from which warm air is blown out from the heater core 13.
  • the air outflow surface 13a is a region excluding the portion of the heater core 13 that is covered with the support members 13b and 13c (see FIG. 3) on the downstream surface of the air flow.
  • the support members 13b and 13c are members that support the heater core 13 from above and below.
  • the partition plate 23, the open end forming portion 26, and the guide plate 24 overlap the upper region of the air outflow surface 13a of the heater core 13 in the vertical direction.
  • an air outlet 28 is formed that blows warm air that has passed above the partition plate 23 of the heater core 13 toward the defroster opening 15 c.
  • the warm air blown out from the air outlet 28 is guided forward and upward by the guide plate 24.
  • a defroster opening 15c is provided above the heater core 13 in the casing 11 of FIG.
  • the defroster opening 15 c is opened on the upper side of the air conditioning unit 10.
  • the defroster opening 15c communicates with the defroster outlet through a duct.
  • the defroster outlet blows conditioned air on the inner surface of the windshield.
  • a mode door 52 that is rotatably supported with respect to the casing 11 is provided above the heater core 13 in the casing 11.
  • the mode door 52 opens and closes the defroster opening 15c as it rotates.
  • the mode door 52 of the present embodiment is a so-called “cantilever door” in which a rotating shaft is provided on one end side of a plate-like door body.
  • a cold air guide 27 is provided in the casing 11 above the air mix door 16a.
  • the cold air guide 27 is formed in a plate shape extending rearward from the upper end of the evaporator 12 and extending in the left-right direction.
  • the rear side 27a of the cold air guide 27 protrudes downward and rearward.
  • a face opening 15a is provided on the rear side of the defroster opening 15c.
  • the face opening 15a opens upward.
  • the face opening 15a communicates with the face outlet through a duct.
  • the face outlet blows air conditioned air toward the upper body of the passenger in the front seat.
  • a mode door 51 that is rotatably supported with respect to the casing 11 is provided above the partition plates 22 and 23 in the casing 11.
  • the mode door 51 opens and closes the face opening 15a as it rotates.
  • the mode door 51 of the present embodiment is a so-called “butterfly door” in which a rotation shaft is provided at the center of a plate-like door body.
  • a foot opening 15 b is provided on the rear side of the casing 11.
  • the foot opening 15b opens slightly downward.
  • the foot opening 15b communicates with the foot outlet through a duct.
  • the foot opening 15b blows conditioned air toward the lower half of the passenger in the front seat.
  • the foot opening 15 b is located below the opening forming portion 22 c that forms the opening 30 in the partition plate 22.
  • the opening forming part 22 c is located on the downstream side of the air flow in the partition plate 22.
  • a mode door 50 that is rotatably supported with respect to the casing 11 is provided behind the partition plates 22 and 23 in the casing 11.
  • the mode door 50 closes any one of the openings 30, 31 and the foot opening 15b, and opens the remaining two openings.
  • the mode doors 50, 51, and 52 of the present embodiment are each connected to a servo motor via a link mechanism (not shown).
  • the lower wall 41 formed below the foot opening 15 b in the casing 11 is provided below the heater core 13.
  • the rear wall 40 in the casing 11 is inclined forward as it approaches the face opening 15a from the foot opening 15b. This guides the air that has passed through the opening 31 toward the face opening 15a.
  • outside air flows from the blower unit to the outside air passage of the casing 11 through the outside air inlet 17a.
  • the inside air flows from the blower unit to the inside air passage of the casing 11 through the inside air flow inlet 17b.
  • the outside air flowing through the outside air passage in the casing 11 is cooled by the evaporator 12.
  • cold air is blown out from the evaporator 12 in the outside air passage.
  • the inside air flowing through the inside air passage in the casing 11 is cooled by the evaporator 12. For this reason, cold air is blown out from the evaporator 12 in the inside air passage.
  • the mode doors 50, 51, 52 are driven to perform the face mode, the bi-level mode, and the foot mode.
  • Bi-level mode In the bi-level mode, as shown in FIG. 1, the mode door 52 closes the defroster opening 15c, and the mode door 51 opens the face opening 15a. The mode door 50 closes the opening 31 and opens the opening 30 and the foot opening 15b.
  • the cold air that has flowed out of the evaporator 12 and then passed through the bypass passage 14b flows upward along the lower wall 41 as indicated by an arrow A1.
  • the warm air blown out from the heater core 13 is guided by the partition plate 22 and flows backward and downward as indicated by an arrow A2.
  • the hot air and the cold air are mixed and blown into the vehicle interior through the foot opening 15b as indicated by arrow A3 as conditioned air.
  • the warm air flowing in the warm air passage 25 formed between the partition plates 22 and 23 is directed toward the foot opening 15b as indicated by an arrow A4. Flowing. The warm air is guided into the foot opening 15b by the partition plate 23 and the mode door 30, mixed with the mixed air, and then blown out from the foot opening 15b as conditioned air.
  • the warm air that passes through the evaporator 12 and the heater core 13 and is blown out from the upper side of the partition plate 23 through the air outlet 28 is guided by the guide plate 24 and flows upward as indicated by an arrow A5.
  • the cold air that has flowed out of the evaporator 12 and then passed through the bypass passage 14a flows backward and slightly downward by the cold air guide 27 as indicated by an arrow A6.
  • the cold air is mixed with warm air that is guided by the partition plate 23 and flows upward, and is blown into the vehicle interior through the face opening 15a as indicated by an arrow A7 as conditioned air.
  • the conditioned air is blown out from the face opening 15a and the foot opening 15b.
  • the mode door 52 slightly opens the defroster opening 15c, and the mode door 51 slightly opens the face opening 15a.
  • the mode door 50 closes the opening 30 and opens the opening 31 and the foot opening 15b.
  • the warm air that has passed through the evaporator 12 and the heater core 13 flows in the warm air passage 25 formed between the partition plate 22 and the partition plate 23.
  • the warm air is guided by the rear wall 40 and the guide plate 24 and flows toward the face opening 15a and the defroster opening 15c as indicated by an arrow A4a.
  • the cold air that has flowed out of the evaporator 12 and then passed through the bypass passage 14a flows backward and slightly downward by the cold air guide 27 as indicated by an arrow A6.
  • the cold air is mixed with the hot air that is guided by the rear wall 40 and the guide plate 24 and flows upward, and becomes air-conditioned air.
  • a part of this conditioned air flows to the face opening 15a as indicated by an arrow A7a.
  • the remainder of the conditioned air flows to the defroster opening 15c as shown by arrow A7b.
  • the conditioned air is blown out from the face opening 15a, the foot opening 15b, and the defroster opening 15c.
  • the mode door 52 closes the defroster opening 15c, and the mode door 51 opens the face opening 15a.
  • the mode door 50 opens the openings 30 and 31 and closes the foot opening 15b.
  • the cold air that has flowed out of the evaporator 12 and then passed through the bypass passage 14b is guided by the lower wall 41, the rear wall 40, and the guide plate 24 and is directed toward the face opening 15a as indicated by an arrow A1a. Flowing.
  • the hot air flowing through the hot air passage 25 as indicated by the arrow A4a merges with the cold air flowing as indicated by the arrow A1a.
  • the warm air blown out from the outlet 28 is guided by the guide plate 24 and flows upward as indicated by the arrow A5a, and flows into the cold air flowing as indicated by the arrow A1a.
  • the cold air flowing out of the evaporator 12 in the outside air passage is guided by the cold air guide 27 after passing through the bypass passage 14a, flows as shown by an arrow A6, and merges with the cold air flowing as shown by an arrow A1a.
  • the cool air and the warm air merge and flow toward the face opening 15a as the conditioned air.
  • the conditioned air is blown out from the face opening 15a into the vehicle interior.
  • the casing 11 has the face opening 15a and the foot opening 15b provided below the face opening 15a.
  • the casing 11 forms a passage for circulating air toward the face opening 15a and the foot opening 15b.
  • the heater core 13 is disposed in the casing 11 and heats the cold air from the evaporator 12.
  • the partition plate 22 is disposed below the face opening 15 a in the casing 11, and partitions the downstream side of the air flow of the heater core 13 into an outside air passage and an inside air passage.
  • the opening 30 is arranged on the downstream side of the partition plate 22 in the air flow, and communicates the upper side and the lower side of the partition plate 22.
  • the foot opening 15b is disposed below the opening forming portion 22c that forms the opening 30 in the partition plate 22.
  • the partition plate 23 is disposed above the partition plate 22 in the casing 11, and forms a warm air passage 25 between the partition plate 22 and the partition plate 22 on the downstream side of the air flow of the heater core 13.
  • the opening 31 is located on the downstream side of the air flow of the partition plate 23 and communicates the warm air passage 25 and the inside air passage.
  • the mode door 50 In the foot mode (that is, the first air conditioning mode) in which the mode door 50 closes the opening 30 and opens the opening 31, the hot air flowing through the hot air passage 25 is guided toward the face opening 15a.
  • the mode door 50 flows through the hot air passage 25 formed between the partition plate 22 and the partition plate 23. Hot air is guided to the foot opening 15 b by the partition plate 23 and the mode door 50. Therefore, the mode door 50 allows a sufficient amount of warm air flowing out of the heater core 13 to flow from the outside air passage through the opening 30 to the foot opening 15b.
  • the temperature difference between the temperature of the air blown from the face opening 15a and the temperature of the air blown from the foot opening 15b can be increased compared to the foot mode.
  • the temperature of the air blown to the upper body can be lowered, and the temperature of the air blown to the lower half can be increased. That is, head cold foot fever can be implemented.
  • controllability of the temperature difference between the temperature of the air blown from the face opening 15a and the temperature of the air blown from the foot opening 15b can be improved in the bi-level mode and the foot mode.
  • the air conditioning unit 10 of the present embodiment and the air conditioning unit 10A as a comparative example will be compared with respect to the controllability of the temperature difference.
  • 6A and 6B are graphs showing the relationship between the temperature of the air blown into the passenger compartment and the positions of the air mix doors 16a and 16b according to the air conditioning unit 10 of the present embodiment.
  • the chain line indicates the relationship between the temperature of the air blown from the face opening 15a and the positions of the air mix doors 16a and 16b.
  • a solid line shows the relationship between the temperature of the air blown out from the foot opening 15b and the positions of the air mix doors 16a and 16b.
  • FIG. 6A shows the relationship in the bi-level mode
  • FIG. 6B shows the relationship in the foot mode.
  • FIG. 7A and 7B are graphs showing the relationship between the temperature of the air blown into the vehicle compartment and the positions of the air mix doors 16a and 16b in the air conditioning unit 10A as a comparative example.
  • the chain line indicates the relationship between the temperature of the air blown from the face opening 15a and the positions of the air mix doors 16a and 16b.
  • a solid line shows the relationship between the temperature of the air blown out from the foot opening 15b and the positions of the air mix doors 16a and 16b.
  • FIG. 7A shows the relationship in the bi-level mode
  • FIG. 7B shows the relationship in the foot mode.
  • the air conditioning unit 10A as a comparative example is obtained by removing the partition plates 21 and 22, the guide plate 24, and the opening end forming portion 26 from the air conditioning unit 10 of the present embodiment.
  • the temperature difference between the temperature of the air blown from the face opening 15a and the temperature of the air blown from the foot opening 15b is larger in the bilevel mode than the air conditioning unit 10A.
  • the cold air that has passed through the bypass passage 14b in the inside air passage is guided by the lower wall 41 and the mode door 50 and flows upward and forward as indicated by an arrow A1a.
  • a part of the cold air may flow toward the heater core 13 above the partition plate 22 and be reheated as indicated by an arrow E1.
  • the upper side of the partition plate 22 of the heater core 13 overlaps the partition plates 21 and 22, the guide plate 24, and the open end forming portion 26 in the vertical direction. For this reason, it is possible to suppress the cool air flowing from the bypass passage 14 b from flowing toward the heater core 13 on the upper side of the partition plate 22.
  • the partition plate 23 is formed between the partition plate 22 and the partition plate 23 so that the cross-sectional area of the hot air passage 25 decreases as the distance from the heater core 13 increases. For this reason, the wind speed of the warm air passing through the warm air passage 25 can be increased. Therefore, the warm air from the warm air passage 25 can be reliably passed through the opening 30 to the foot opening 15b.
  • the partition plate 23 is formed so as to approach the foot opening 15b as the distance from the heater core 13 increases. Therefore, the warm air flowing through the warm air passage 25 can be more reliably guided to the foot opening 15b.
  • the dimension L2 between the partition plate 22 and the partition plate 23 of the air outflow surface 13a is larger than the dimension L1 between the upper side of the air outflow surface 13a of the heater core 13 and the partition plate 23. It is getting bigger. Therefore, the amount of warm air passing between the partition plate 22 and the partition plate 23 in the air outflow surface 13a is larger than the amount of warm air passing between the upper side of the air outflow surface 13a and the partition plate 23. . For this reason, a lot of warm air can be flowed from the warm air passage 25 to the foot opening 15b. Therefore, the temperature difference between the temperature of the air blown from the face opening 15a and the temperature of the air blown from the foot opening 15b can be further increased.
  • the opening end forming portion 26 has a first end portion 26 a connected to the partition plate 23 and a second end portion 26 b connected to the guide plate 24.
  • the clearance between the door main body 50a and the open end forming portion 26 becomes a constant size. Therefore, even if the position of the door body 50a on the opening end forming portion 26 side changes between the first end portion 26a and the second end portion 26b in a state where the mode door 50 closes the opening 31, A clearance becomes a fixed magnitude
  • the guide plate 24 is inclined upward as it goes from the rear to the front. For this reason, the warm air which passed the upper side of the partition plate 23 among the heater cores 13 is guided so that it may flow upwards. Therefore, it becomes easy to join the said warm air with the cold wind which flows through the bypass channel
  • the cool air that has passed through the bypass passage 14b merges with the warm air at three locations indicated by reference numerals C1, C2, and C3. For this reason, the mixability of the cold air and the hot air can be improved.
  • C1 is a point where the hot air blown out from the blower outlet 28 and the cold air are mixed as shown by an arrow A5a.
  • C2 is a point where hot air and cold air blown out from between the partition plates 22 and 23 in the heater core 13 are mixed as indicated by an arrow A4a.
  • C3 is a point where hot air blown from the lower side of the partition plate 22 in the heater core 13 and cold air are mixed as indicated by an arrow A2a.
  • the cold air that has passed through the bypass passage 14b in a state where the mode door 50 closes the opening 31 bypasses the mode door 50 and faces the face opening 15a. An example in which the flow is performed will be described.
  • FIG. 9 shows a cross-sectional view of the air conditioning unit 10 of the second embodiment.
  • FIG. 10 is a sectional view taken along line XX in FIG.
  • the air conditioning unit 10 of the present embodiment is provided with cold air bypass passages 60a and 60b and guide plates 61a and 61b.
  • the cold air bypass passages 60 a and 60 b are passages for allowing the cold air that has passed through the bypass passage 14 b to flow upward by bypassing the mode door 50 with the mode door 50 closing the opening 31.
  • the cold air bypass passage 60 a is configured between the right wall 11 a and the mode door 50.
  • the cold air bypass passage 60 b is configured between the left wall 11 a and the mode door 50.
  • the right wall 11 a forms the right wall of the casing 11.
  • the left wall 11 b forms the left wall of the casing 11.
  • the guide plates 61 a and 61 b are arranged on the upstream side of the air flow of the mode door 50 in the casing 11.
  • the guide plate 61a is disposed on the right side in the casing 11 and forms a cold air passage 62a with the right wall 11a.
  • the cold air passage 62a guides a part of the cold air blown from the evaporator 12 to the cold air bypass passage 60a.
  • the guide plate 61b is disposed on the left side in the casing 11, and forms a cold air passage 62b between the guide plate 61b and the left wall 11b.
  • the cold air passage 62b guides a part of the cold air blown from the evaporator 12 to the cold air bypass passage 60b.
  • the cool air blown from the evaporator 12 flows toward the face opening 15a through the cold air passages 62a and 62b. be able to. Therefore, the temperature of the air blown out from the face opening 15a can be lowered. Thereby, the temperature difference in the bi-level mode and the temperature difference in the foot mode can be increased.
  • the temperature difference is a temperature difference between the temperature of air blown from the face opening 15a and the temperature of air blown from the foot opening 15b.
  • the clearance between the opening end forming portion 26 and the mode door 50 (door body 50a) is constant even when the position of the mode door 50 changes with the mode door 50 closing the opening 31.
  • the example in which the opening end forming portion 26 is formed so as to become is described.
  • the clearance between the open end forming portion 26 and the mode door 50 varies depending on the stop position of the mode door 50. Specifically, in the present embodiment, when a plurality of stop positions at which the door body 50a stops are set between the first end portion 26a and the second end portion 26b of the opening end forming portion 26, a plurality of stop positions are set. The clearances between the door body 50a and the open end forming portion 26 are different.
  • FIG. 11 is a cross-sectional view of the air conditioning unit 10 of the present embodiment and is a diagram showing a bi-level mode.
  • the shape of the opening end forming portion 26 is different between the air conditioning unit 10 of the present embodiment and the air conditioning unit 10 of the first embodiment.
  • the open end forming portion 26 of this embodiment includes step portions 260 and 261.
  • the step portion 260 is connected to the partition plate 23, and the step portion 261 is connected to the guide plate 24.
  • the clearance C2 between the stepped portion 260 and the door main body 50a is smaller than the clearance C3 between the stepped portion 261 and the door main body 50a.
  • the mode door 50 closes the opening 31 with the door body 50a of the mode door 50 facing the stepped portion 260 of the opening end forming portion 26.
  • the mode door 50 closes the opening 31 with the door body 50a of the mode door 50 facing the step 261 of the opening end forming portion 26.
  • the open end forming portion 26 includes the step portions 260 and 261.
  • the mode door 50 has first and second stop positions corresponding to the step portions 260 and 261. Then, the clearance C3 in the second bilevel mode is larger than the clearance C2 in the first bilevel mode. Therefore, in the second bilevel mode, the amount of hot air that flows out of the hot air passage 25 and passes between the open end forming portion 26 and the mode door 50 is increased as compared with the first bilevel mode.
  • the temperature difference is a temperature difference between the temperature of air blown from the face opening 15a and the temperature of air blown from the foot opening 15b.
  • a new partition plate is disposed between the partition plate 22 and the partition plate 23 in the first embodiment.
  • FIG. 12 shows a cross-sectional view of the air conditioning unit 10 of the fourth embodiment.
  • the air conditioning unit 10 of the present embodiment is obtained by adding a partition plate 29 (third partition plate) to the air conditioning unit 10 of FIG.
  • the partition plate 29 is a two-layer partition plate that forms an opening (third opening) 32 with the rear wall 40.
  • the partition plate 29 is disposed between the partition plate 22 and the partition plate 23 and is formed in a plate shape that extends in the left-right direction.
  • a lower hot air passage (lower passage) 25a is formed between the partition plate 29 and the partition plate 22 to flow the hot air blown from the heater core 13 to the foot opening 15b.
  • an upper hot air passage (upper passage) 25b for flowing the hot air blown from the heater core 13 to the foot opening 15b is formed.
  • the partition plate 29 is disposed between the partition plate 22 and the partition plate 23, and divides the hot air passage 25 above and below the lower passage 25a and the upper passage 25b.
  • the partition plate 29 includes plate portions 29a and 29b.
  • the plate portion 29a is inclined so as to go downward as it goes backward.
  • the plate portion 29b is disposed on the rear side of the plate portion 29a.
  • the plate part 29b is inclined so as to go downward as it goes backward.
  • the inclination angle of the plate portion 29b is larger than the inclination angle of the plate portion 29a.
  • the inclination angle is an angle formed by the plate portions 29a and 29b in the clockwise direction with respect to the front-rear direction.
  • the protruding portion 29c is disposed on the rear side of the plate portion 29b and protrudes toward the partition plate 23.
  • the protrusion 29c constitutes an opening forming portion that forms the opening 32, and restricts the air outlet of the upper hot air passage 25b between the partition plate 23 and the partition plate 29. For this reason, the warm air inlet is larger than the warm air outlet in the upper warm air passage 25b. Further, in the lower hot air passage 25a between the partition plate 22 and the partition plate 29, the hot air inlet is larger than the hot air outlet.
  • the guide plate 24 of the present embodiment includes plate portions 24a and 24b as shown in FIG.
  • the plate part 24a is inclined upward from the opening 31 side toward the front side.
  • the plate part 24b is inclined upward from the plate part 24a side toward the front side.
  • the inclination angle of the plate portion 24b is larger than the inclination angle of the plate portion 24a.
  • the inclination angle is an angle formed by the plate portions 24a and 24b in the clockwise direction with respect to the front-rear direction.
  • the mode door 50 of the present embodiment opens and closes the openings 30, 31, 32, and the foot opening 15b, respectively.
  • the mode door 50 closes the opening 31, and opens the openings 30, 32 and the foot opening 15b.
  • the warm air that has passed through the upper warm air passage 25b is guided by the partition plate 23 and the mode door 50 and flows to the foot opening 15b.
  • the warm air flowing out of the heater core 13 and passing through the lower warm air passage 25a is guided by the partition plate 29 and the mode door 50 and flows to the foot opening 15b.
  • Hot air from the lower hot air passage 25a and hot air from the upper hot air passage 25b flow to the foot opening 15b.
  • the mode door 50 closes the opening 32 and opens the openings 30 and 31 and the foot opening 15b.
  • the warm air that has flowed out of the heater core 13 and passed through the upper warm air passage 25b is guided by the rear plate 40 and the guide plate 24 and flows toward the face opening 15a.
  • the hot air that has flowed out of the heater core 13 and passed through the lower hot air passage 25a is guided by the partition plate 29 and the mode door 50 and flows to the foot opening 15b.
  • the partition plate 29 is disposed between the partition plate 22 and the partition plate 23. Therefore, the temperature difference can be changed between the third bi-level mode in which the mode door 50 closes the opening 31 and the fourth bi-level mode in which the mode door 50 closes the opening 32.
  • the temperature difference is a temperature difference between the temperature of air blown from the face opening 15a and the temperature of air blown from the foot opening 15b.
  • the openings 30, 31 and the foot opening 15b are opened and closed by the single mode door 50.
  • the openings 30, 31 and the foot opening 15b are opened and closed by separate doors.
  • FIG. 15 shows a cross-sectional view of the air conditioning unit 10 of the fifth embodiment.
  • mode doors 50a and 50b are provided instead of the mode door 50 of FIG.
  • the mode door 50a opens one of the openings 30 and 31 and closes one of them.
  • the mode door 50b opens and closes the foot opening 15b.
  • the mode door 50a is a so-called “cantilever door”, and the mode door 50b is a so-called “butterfly door”.
  • the configuration other than the mode doors 50a and 50b is the same as that of the first embodiment, and thus the description thereof is omitted.
  • one partition plate 29 is used as the third partition plate in the air conditioning unit 10, but two or more partition plates 29 may be used.
  • blower unit either the outside air or the inside air is blown into the outside air passage of the air conditioning unit 10 and the inside air is blown into the inside air passage of the air conditioning unit 10.
  • a blower unit that blows outside air or inside air to the air conditioning unit 10 may be used without distinguishing between the outside air passage and the inside air passage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

 車両用空調ユニットは、フェイス開口部(15a)とフット開口部(15b)とを有するケーシング(11)と、ケーシング内に配置される加熱用熱交換器(13)と、加熱用熱交換器の空気流れ下流側を、第1通路と、第1通路の下方に位置する第2通路とに区画する第1仕切り板(22)と、第1仕切り板の空気流れ下流側に形成されて、第1通路と前記第2通路とを連通させる第1の開口部(30)と、加熱用熱交換器の空気流れ下流かつ第1通路内において前記第1仕切り板との間に第3通路(25)を形成する第2仕切り板(23)と、第2仕切り板の空気流れ下流側に位置して、第2仕切り板の上側と下側とを連通させる第2の開口部(31)と、第1、第2の開口部を開閉する切替ドア(50)と、を備える。切替ドアが第1の開口部を開けて第2の開口部を閉じた空調モードでは、第3通路内の空気が、第2仕切り板および切替ドアによってフット開口部に向けて案内される。 上記構成により、切替ドアによって、加熱用熱交換器から仕切り板の間を通して吹き出される温風をフット開口部側に流すことができるので、フェイス開口部の吹き出し空気温度とフット開口部の吹き出し空気温度との温度差を大きくすることができる。

Description

車両用空調ユニット 関連出願の相互参照
 本出願は、当該開示内容が参照によって本出願に組み込まれた、2013年10月21日に出願された日本出願番号2013-218406号を基にしている。
 本開示は、車両用空調ユニットに関するものである。
 従来、車両用空調ユニットにおいて、上側空気通路と下側空気通路とを仕切る仕切板を有するケーシングと、上側空気通路および下側空気通路を跨ぐように配置されているエバポレータと、上側空気通路および下側空気通路を跨ぐように配置されてエバポレータから吹き出される冷風を加熱するヒータユニットとを備えるものがある(例えば、特許文献1および特許文献2参照)。
 ケーシングのうちヒータユニットの空気流れ下流側の仕切板には、上側空気通路および下側空気通路の間を連通する開口部と、開口部を開閉する切替ドアとが設けられている。
 このため、フットモードでは、切替ドアによって開口部を閉じた状態でフット開口部およびフェイス開口部からそれぞれ空調風を吹き出させる。バイレベルモードでは、切替ドアによって開口部を開けた状態でフット開口部およびフェイス開口部からそれぞれ空調風を吹き出させる。つまり、バイレベルモードでは、フットモードに比べて、フット開口部から吹き出す空気の温度とフェイス開口部から吹き出す空気の温度との間の温度差を大きくするために、上側空気通路から開口部を通して下側空気通路に温風が流通させるようにしている。
特開平9-156348号公報 特開平10-181331号公報
 本願発明者が特許文献1、2の車両用空調ユニットについて検討したところ、ケーシングのうちヒータユニットの空気流れ下流側において、上側空気通路と下側空気通路との間に圧力差が生じない。さらに、切替ドアによって開口部を開けても、上側空気通路から開口部を通して十分な温風が下側空気通路に流れない。
 したがって、バイレベルモードにおけるフット開口部から吹き出す空気の温度とフェイス開口部から吹き出す空気の温度との間の温度差と、フットモードにおけるフット開口部から吹き出す空気の温度とフェイス開口部から吹き出す空気の温度との間の温度差とが同一になってしまう。
 本開示は上記点に鑑みて、切替ドアによって、上側空気通路からの温風が確実に開口部を通してフット開口部に流れるようにようにした車両用空調ユニットを提供することを目的とする。
 本開示の車両用空調ユニットは、フェイス開口部と、フェイス開口部よりも上下方向における下方に設けられるフット開口部とを有して、フェイス開口部およびフット開口部に向けて空気を流通させる通路をその内部に形成するケーシングと、ケーシング内に配置されて前記空気を加熱する加熱用熱交換器と、フェイス開口部の下方に位置して、加熱用熱交換器の空気流れ下流側を、第1通路と、第1通路の下方に位置する第2通路とに区画する第1仕切り板と、第1仕切り板の空気流れ下流側に形成されて、第1通路と前記第2通路とを連通させる第1の開口部と、加熱用熱交換器の空気流れ下流において第1仕切り板の上方に配置され、第1通路内において前記第1仕切り板との間に第3通路を形成する第2仕切り板と、第2仕切り板の空気流れ下流側に位置して、第2仕切り板の上側と下側とを連通させる第2の開口部と、第1、第2の開口部を開閉する切替ドアと、を備える。
 第1仕切り板のうち第1の開口部を形成する開口形成部よりも下方にフット開口部が位置している。切替ドアが第1の開口部を閉じて第2の開口部を開けた第1の空調モードでは、第3通路内の空気は、フェイス開口部に向けて流れるようになっている。切替ドアが第1の開口部を開けて第2の開口部を閉じた第2の空調モードでは、第3通路内の空気が、第2仕切り板および切替ドアによってフット開口部に向けて案内される。
 第2の空調モードでは、切替ドアによって、加熱用熱交換器から仕切り板の間を通して吹き出される温風をフット開口部側に流すことができる。つまり、第1通路からの温風が確実に開口部を通してフット開口部に流れるようになる。このため、第2の空調モードでは、第1の空調モードに比べて、フェイス開口部の吹き出し空気温度とフット開口部の吹き出し空気温度との温度差を大きくすることができる。
第1実施形態に係る、バイレベルモードにおける車両空調装置の空調ユニットの断面図である。 図1のモードドアおよびその周辺を示す部分断面図である。 図1のヒータコアおよび仕切り板、およびガイド板を示す部分断面図である。 第1実施形態に係る、フットモードにおける空調ユニットの断面図である。 第1実施形態に係る、フェイスモードにおける空調ユニットの断面図である。 第1実施形態に係るフェイスモードにおける、吹き出される空気の温度およびエアミックスドア位置の関係を示すグラフである。 第1実施形態に係るフットモードにおける、吹き出される空気の温度およびエアミックスドア位置の関係を示すグラフである。 比較例のフェイスモードにおける、吹き出される空気の温度およびエアミックスドア位置の関係を示すグラフである。 比較例のフットモードにおける、吹き出される空気の温度およびエアミックスドア位置の関係を示すグラフである。 比較例における空調ユニットの断面図である。 第2実施形態に係る、バイレベルモードにおける車両空調装置の空調ユニットの断面図である。 図9中X-X断面図である。 第3実施形態に係る、バイレベルモードにおける車両空調装置の空調ユニットの断面図である。 第4実施形態に係る、第1のバイレベルモードにおける車両空調装置の空調ユニットの断面図である。 第4実施形態における空調ユニットの仕切り板およびガイド板周辺を示す断面図である。 第4実施形態に係る、第2のバイレベルモードにおける空調ユニットの断面図である。 第5実施形態に係る、バイレベルモードにおける車両空調装置の空調ユニットの断面図である。
 以下、本開示の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、説明の簡略化を図るべく、図中、同一符号を付してある。
(第1実施形態)
 図1は、第1実施形態における車両空調装置の空調ユニット10の断面図で、バイレベルモードの状態を示す。図1において上、下、前、後の各矢印は、当該車両空調装置を車両に搭載した際の方向を示している。
 本実施形態の車両用空調装置の通風系は、大別して、空調ユニット10と図示しない送風機ユニットとの2つの部分に分かれている。送風機ユニットは、車室内のインストルメントパネル下方部のうち、中央部から助手席側へオフセット配置されている。これに対し、空調ユニット10は車室内のインストルメントパネル下方部のうち、車両の左右方向の略中央部に配置されている。
 送風機ユニットは、外気送風路(上側空気通路)と内気送風路(下側空気通路)とを仕切り壁で区分けしてなる内外気導入箱を備える。内外気導入箱は、外気送風路に外気(車室外の空気)を導入する外気導入口と、内気送風路に内気(車室内の空気)を導入する内気導入口と、外気導入口および内気導入口のうち少なくとも一方を開ける内外気切替ドアとを備える。内外気導入箱のうち外気送風路側には、外気導入口からの外気、或いは内気導入口からの内気を導入して空調ユニット10の上側空気通路に吹き出す第1の遠心多翼ファンが配置されている。したがって、送風機ユニットの外気送風路側には、外気および内気のうち一方が導入されることになる。以下、空調ユニット10の上側空気通路を外気通路(第1通路)と言う。
 送風機ユニットのうち内気送風路に内気を導入する内気導入口が設けられている。内外気導入箱のうち内気送風路側には、内気導入口からの内気を導入して空調ユニット10の下側空気通路に吹き出す第2の遠心多翼ファンが配置されている。したがって、送風機ユニットの内気送風路側には、内気が導入されることになる。以下、空調ユニット10の下側空気通路を内気通路(第2通路)と言う。
 本実施形態の第1、第2の遠心多翼ファン(シロッコファン)は、第1、第2の遠心多翼ファンを駆動する電動モータとともに、送風機を構成している。
 また、空調ユニット10は、車両用空調ユニットを構成するもので、車室内のインストルメントパネル下方部の略中央部に、車両の前後方向および車両の上下方向に対して図1に示す形態で配置されている。空調ユニット10は、ケーシング11内にエバポレータ(冷却用熱交換器)12、ヒータコア(加熱用熱交換器)13を備える。
 エバポレータ12は図1に示すように、前後方向の長さが上下方向の長さよりも短く、左右方向および上下方向に長手方向長さが延びる扁平形状になっている。エバポレータ12は、ケーシング11内の外気通路と内気通路とを跨ぐように配置されている。エバポレータ12は、周知の如く、冷凍サイクルの冷媒の蒸発潜熱を空気から吸収してこの空気を冷却する。
 ヒータコア13は、エバポレータ12の空気流れ下側流にて、ケーシング11内の外気通路と内気通路とを跨ぐように配置されている。ヒータコア13は、前後方向の長さが上下方向の長さよりも短く、左右方向に長手方向長さが延びる扁平形状になっている。ヒータコア13は、下端が上端よりも前側に位置するように上下方向に対して斜めに配置されている。ヒータコア13はエバポレータ12を通過した冷風を再加熱する。ヒータコア13の内部には高温のエンジン冷却水(温水)が流れ、ヒータコア13はこのエンジン冷却水を熱源として空気を加熱する。
 空調ユニット10の外気通路のうちヒータコア13の上側には、バイパス通路14aが設けられている。バイパス通路14aは、エバポレータ12から流出する冷風をヒータコア13をバイパスしてフェイス開口部15aに向けて流す。
 外気通路においてバイパス通路14aおよびヒータコア13の空気流れ上流には、エアミックスドア16aが設けられている。本実施形態のエアミックスドア16aは、電動モータによってスライド移動するスライドドアが用いられる。エアミックスドア16aは、外気通路において、スライド移動によって、バイパス通路14aを通過する空気量とヒータコア13を通過する空気量との比率を変える。
 空調ユニット10の内気通路のうちヒータコア13の下側には、バイパス通路14bが設けられている。バイパス通路14bは、エバポレータ12から流出する冷風を、ヒータコア13をバイパスしてフット開口部15bに向けて流す通路である。
 本実施形態のエアミックスドア16bは、電動モータによってスライド移動するスライドドアが用いられる。エアミックスドア16bは、スライド移動によって、内気通路において、バイパス通路14bを通過する空気量とヒータコア13を通過する空気量との比率を変える。
 ケーシング11は、車室内に向けて空気が流れる空気通路を形成するものである。ケーシング11は、ポリプロピレンのような、ある程度弾性を有し、強度的にも優れた樹脂の成型品からなる。
 ケーシング11の前側には、外気流入口(換言すれば、上側空気流入口)17aおよび内気流入口(換言すれば、下側空気流入口)17bが設けられている。外気流入口17aは、上述の送風機ユニットから送風される外気を後述する外気通路へ導く。内気流入口17bは、上述の送風機ユニットから送風される内気を後述する内気通路へ導く。なお、以下、内気流入口17aおよび内気流入口17bを総称して空気流入口17a、17bともいう。
 ケーシング11内には、仕切り板20、21、22が設けられている。仕切り板20、21、22は、ケーシング11内を外気通路と内気通路とに分離する。
 仕切り板20は、エバポレータ12の空気流れ上流に配置され、外気流入口17aと内気流入口17bとを区画する。仕切り板21は、空気流れ方向においてエバポレータ12とヒータコア13との間に配置されている。
 仕切り板21は、板部21a、21bを備え、左右方向から視てL字状に形成されている。具体的には、板部21aは、後側に向かうほど下側に向かうように傾斜している。これにより、板部21aは、内気通路にて、エバポレータ12を通過した空気を下方に案内する冷風ガイドを構成する。板部21bは、板部21aの後側に配置されて板部21aと直交している。つまり、板部21bは、板部21aから斜め上に向けて突起する。板部21bは、外気通路にて、エバポレータ12を通過した空気を上方に案内する冷風ガイドを構成する。
 仕切り板22(第1仕切り板)は2層仕切り板であり、ヒータコア13の空気流れ下流側に配置されている。仕切り板22は、ケーシング11内において、外気通路と、当該外気通路の下方に位置する内気通路とに区画するものであって、板部22a、22bを備える。板部22aは、左右方向に広がる板状に形成されて、かつ後方に進むほど上方に向かうように傾斜している。板部22bは、板部22aの後側において左右方向に広がる板状に形成されて、後方に進むほど下方に向かうように傾斜している。
 ケーシング11内のうち仕切り板22の後側には、開口部(第1の開口部)30が形成されている。開口部30は、仕切り板22とケーシング11の後壁40との間に位置し、外気通路と内気通路とを連通させる。ケーシング11の後壁40は、後述するフット開口部30よりも上側に形成されている。
 ケーシング11内のうち仕切り板22の上側には、左右方向に広がる板状に形成されている仕切り板23(第2仕切り板)が設けられている。仕切り板23は、ヒータコア13の空気流れ下流側において、外気通路を更に上側と下側に区分けする。
 具体的に、仕切り板22と仕切り板23とは、外気通路においてヒータコア13から吹き出される温風を後方に流通させる温風通路(第3通路)25を構成する。温風通路25の温風入口25aの開口面積が温風通路25の温風出口25bの開口面積よりも大きくなるように仕切り板22、23が構成されている。
 具体的には、仕切り板23のうち空気流れ上流側(前側)は、仕切り板23のうち空気流れ下流側(後側)に比べて上側に位置する。仕切り板23は、板状に形成されている板部23a、23bを備える。板部23aは、後方に進むほど下方に向かうように傾斜している。板部23bは、板部23aの後側に配置されて、後方に進むほど下方に向かうように傾斜している。板部23aの傾斜角度は、板部23bの傾斜角度よりも大きくなっている。傾斜角度とは、板部23a、23bが前後方向に対して時計回り方向に成す角度のことである。
 仕切り板23の板部23a、23bは、後方に向かうほど温風通路25の断面積を徐々に小さくするように配置されている。仕切り板23の板部23a、23bは、板部23a、23bの間を通過した温風を下方(すなわち、フット開口部15b側)にガイドする。
 ケーシング11内のうち仕切り板23の上側には、ガイド板24が設けられている。ガイド板24は、左右方向に広がるとともに、仕切り板23の後方側から上方かつ前方に延びる板状に形成されている。すなわち、ガイド板24は、上下方向に対して前方に傾くように配置されている。ガイド板24は、温風通路25の温風出口25bから吹き出される温風をフェイス開口部15aに向けてガイドする。
 ケーシング11内のうち仕切り板23の後方側とガイド板24の後方側との間には、開口端形成部26が設けられている。開口端形成部26は、後壁40との間で開口部(第2の開口部)31を形成している。換言すれば、開口端形成部26は、仕切り板23のうち開口部31側の端部とガイド板24との間に設けられて、開口部31を形成している。開口端形成部26は、前方で、かつ上側に凸になる円弧状に形成されている(図2参照)。開口端形成部26は、仕切り板23側の第1端部26aと、ガイド板24側の第2端部26bとを有する。モードドア(切替ドア)50のドア本体50aは、開口部30を開けて開口部31を閉じた状態で、第1端部26aと第2端部26bとの間を移動するよう回転する(図2参照)。図2に示すように、モードドア50の回転に伴って第1端部26aと第2端部26bとの間をドア本体50aが移動する際に、開口端形成部26とドア本体50aとの間のクリアランスC1が一定の大きさになる。
 本実施形態のモードドア50としては、板ドアが用いられている。より具体的には、本実施形態のモードドア50は、板状に形成されているドア本体50の中央部に回転軸50bが配置されている、いわゆる“バタフライドア”である。なお、モードドア50としては、バタフライドアに限らず、板状のドア本体(換言すれば、板ドア本体)の一端側に回転軸が設けられている、いわゆる“片持ちドア”を用いてもよい。
 図3に示すように、ヒータコア13の空気流出面13aのうちその上側と仕切り板23との間の距離L1よりも、ヒータコア13の空気流出面13aのうち仕切り板22と仕切り板23との間の距離L2の方が、長くなっている。換言すれば、空気流出面13aの上端と仕切り板23との間の距離L1よりも、仕切り板22と仕切り板23との間の距離L2の方が長い。空気流出面13aは、ヒータコア13から温風が吹き出される面である。
 具体的には、空気流出面13aは、ヒータコア13のうち空気流れ下流側の面のうち支持部材13b、13c(図3参照)によって覆われる部分を除いた領域である。支持部材13b、13cはヒータコア13を上下方向から支える部材である。
 ここで、仕切り板23、開口端形成部26、およびガイド板24は、ヒータコア13の空気流出面13aのうち上側領域と上下方向にオーバーラップする。ガイド板24のうち上側端部とヒータコア13との間には、ヒータコア13のうち仕切り板23よりも上側を通過した温風をデフロスタ開口部15cに向けて吹き出す吹出口28が形成されている。吹出口28から吹き出される温風は、ガイド板24によって、前方かつ上方に案内される。
 図1のケーシング11内のうちヒータコア13の上側には、デフロスタ開口部15cが設けられている。デフロスタ開口部15cは空調ユニット10の上側において開口している。デフロスタ開口部15cは、ダクトを介してデフロスタ吹き出し口に連通している。デフロスタ吹き出し口は、フロントガラスの内側表面に空調風を吹き出す。
 ケーシング11内のうちヒータコア13の上側には、ケーシング11に対して回転自在に支持されているモードドア52が設けられている。モードドア52は、その回転に伴ってデフロスタ開口部15cを開閉する。本実施形態のモードドア52は、板状のドア本体の一端側に回転軸が設けられている、いわゆる“片持ちドア”である。
 ここで、ケーシング11内のうちエアミックスドア16aの上側には、冷風ガイド27が設けられている。冷風ガイド27は、エバポレータ12の上端から後方に延出し、かつ左右方向に広がる板状に形成されている。冷風ガイド27のうち後方側27aは下方、かつ後方に突起している。このことにより、外気通路のうちエバポレータ12からバイパス通路14aに吹き出される冷風を下方にガイドする。
 ヒータコア13の上側において、デフロスタ開口部15cの後側には、フェイス開口部15aが設けられている。フェイス開口部15aは、上側に開口している。フェイス開口部15aは、ダクトを介してフェイス吹き出し口に連通している。フェイス吹き出し口は、前部座席の乗員の上半身に向けて空調風を吹き出す。
 ケーシング11内のうち仕切り板22、23の上側には、ケーシング11に対して回転自在に支持されているモードドア51が設けられている。モードドア51は、その回転に伴って、フェイス開口部15aを開閉する。本実施形態のモードドア51は、板状のドア本体の中央部に回転軸が設けられている、いわゆる“バタフライドア”である。
 ケーシング11内のうち後側には、フット開口部15bが設けられている。フット開口部15bは、若干下方に向けて開口している。フット開口部15bは、ダクトを介してフット吹き出し口に連通している。フット開口部15bは、前部座席の乗員の下半身に向けて空調風を吹き出す。ここで、フット開口部15bは、仕切り板22のうち開口部30を形成する開口形成部22cよりも下側に位置している。開口形成部22cは、仕切り板22のうち空気流れ下流側に位置する。
 ケーシング11内のうち仕切り板22、23の後方には、ケーシング11に対して回転自在に支持されているモードドア50が設けられている。モードドア50は、開口部30、31、およびフット開口部15bのうちいずれか1つの開口部を閉じて、残りの2つの開口部を開ける。なお、本実施形態のモードドア50、51、52は、それぞれ、図示しないリンク機構を介してサーボモータに接続されている。
 ケーシング11内のうちフット開口部15bの下方に形成されている下壁41は、ヒータコア13の下側に設けられている。ケーシング11内の後壁40は、フット開口部15bからフェイス開口部15aに近づくほど、前方に向かって傾斜している。このことにより、開口部31を通過した空気をフェイス開口部15aに向けてガイドする。
 次に、本実施形態の作動について説明する。
 まず、送風機ユニットから外気を外気流入口17aを通してケーシング11の外気通路に流す。そして、送風機ユニットから内気を内気流入口17bを通してケーシング11の内気通路に流す。このため、ケーシング11のうち外気通路を流れる外気はエバポレータ12により冷却される。このため、外気通路においてエバポレータ12から冷風が吹き出される。そして、ケーシング11のうち内気通路を流れる内気はエバポレータ12により冷却される。このため、内気通路においてエバポレータ12から冷風が吹き出される。
 この状態で、モードドア50、51、52を駆動してフェイスモード、バイレベルモード、フットモードを実施する。
 以下、バイレベルモード、フットモード、フェイスモードについて、それぞれ図1、図4、図5を参照して説明する。
 (バイレベルモード)
 バイレベルモードでは、図1に示すように、モードドア52がデフロスタ開口部15cを閉じて、モードドア51がフェイス開口部15aを開ける。モードドア50が開口部31を閉じて、開口部30およびフット開口部15bを開ける。
 ここで、内気通路において、エバポレータ12から流出した後、バイパス通路14bを通過した冷風は、矢印A1で示すように、下壁41に沿って上向きに流れる。内気通路において、エバポレータ12を流出した後、ヒータコア13から吹き出される温風は、矢印A2で示すように、仕切り板22にガイドされて後方かつ下方に向けて流れる。前記温風と前記冷風とは混合され、空調風として、矢印A3で示すようにフット開口部15bを通過して車室内に吹き出される。
 外気通路において、エバポレータ12およびヒータコア13を通過した後、仕切り板22、23の間に形成された温風通路25内を流れる温風は、矢印A4で示すように、フット開口部15bに向けて流れる。前記温風は、仕切り板23およびモードドア30によってフット開口部15b内にガイドされ、上記混合風に混合された後、空調風としてフット開口部15bから吹き出される。
 外気通路において、エバポレータ12およびヒータコア13を通過して仕切り板23よりも上側から吹出口28を通して吹き出される温風は、ガイド板24によってガイドされて、矢印A5で示すように、上側に流れる。
 外気通路において、エバポレータ12から流出した後、バイパス通路14aを通過した冷風は、矢印A6で示すように、冷風ガイド27によって後方、かつやや下方に流れる。前記冷風は、仕切り板23によってガイドされて上方に流れる温風と混合されて、空調風として矢印A7で示すようにフェイス開口部15aを通過して車室内に吹き出される。
 このように、バイレベルモードではフェイス開口部15aとフット開口部15bとから空調風が吹き出される。
 (フットモード)
 フットモードでは、図4に示すように、モードドア52がデフロスタ開口部15cを若干開き、モードドア51がフェイス開口部15aを若干開く。モードドア50が開口部30を閉じて、開口部31およびフット開口部15bをそれぞれ開く。
 ここで、エバポレータ12から流出した後、バイパス通路14bを通過して矢印A1で示すように流れる冷風と、エバポレータ12およびヒータコア13を通過して仕切り板22にガイドされて矢印A2で示すように流れる温風とは混合されて、矢印A3で示すようにフット開口部15b内に流れる。
 外気通路において、エバポレータ12およびヒータコア13を通過した温風は、仕切り板22と仕切り板23との間に形成される温風通路25内を流れる。前記温風は、後壁40とガイド板24とによってガイドされて、矢印A4aで示すように、フェイス開口部15aとデフロスタ開口部15cとに向けて流れる。
 外気通路において、エバポレータ12から流出した後、バイパス通路14aを通過した冷風は、矢印A6で示すように、冷風ガイド27によって後方、かつやや下方に流れる。前記冷風と、後壁40とガイド板24とによってガイドされて上側に流れる温風とは混合されて空調風となる。この空調風の一部は矢印A7aで示すようにフェイス開口部15aに流れる。空調風の残りは矢印A7bで示すようにデフロスタ開口部15cに流れる。
 このように、フットモードでは、フェイス開口部15a、フット開口部15b、およびデフロスタ開口部15cから空調風が吹き出されることになる。
 (フェイスモード)
 フェイスモードでは、図5に示すように、モードドア52がデフロスタ開口部15cを閉じて、モードドア51がフェイス開口部15aを開ける。モードドア50が開口部30、31を開けて、フット開口部15bを閉じる。
 内気通路において、エバポレータ12から流出した後、バイパス通路14bを通過した冷風は、下壁41、後壁40、およびガイド板24によってガイドされて矢印A1aで示すように、フェイス開口部15aに向けて流れる。
 内気通路において、エバポレータ12およびヒータコア13を通過して矢印A2aで示すようにヒータコア13から吹き出される温風は、前記冷風に合流する。
 外気通路において、エバポレータ12およびヒータコア13を通過した後、温風通路25内を矢印A4aで示すように流れる温風は、矢印A1aで示すように流れる前記冷風に合流する。エバポレータ12およびヒータコア13を通過した後、吹出口28から吹き出される温風は、ガイド板24によってガイドされて矢印A5aで示すように上方に向かって流れ、矢印A1aで示すように流れる前記冷風に合流する。さらに、外気通路のうちエバポレータ12から流出した冷風は、バイパス通路14aを通過した後に冷風ガイド27によってガイドされて矢印A6で示すように流れ、矢印A1aで示すように流れる前記冷風に合流する。
 このように、フェイスモードでは、冷風と温風とが合流し、空調風としてフェイス開口部15aに向けて流れる。これにより、フェイス開口部15aから車室内に空調風が吹き出されることになる。
 以上説明したように、本実施形態によれば、ケーシング11は、フェイス開口部15aと、フェイス開口部15aよりも下側に設けられているフット開口部15bを有する。ケーシング11は、フェイス開口部15aおよびフット開口部15bに向けて空気を流通させる通路を形成する。ヒータコア13は、ケーシング11内に配置されてエバポレータ12からの冷風を加熱する。仕切り板22は、ケーシング11内のうち、フェイス開口部15aよりも下側に配置されて、ヒータコア13の空気流れ下流側を外気通路と内気通路とに区画する。ケーシング内のうち開口部30は、仕切り板22の空気流れ下流側に配置されて、仕切り板22の上側と下側とを連通する。フット開口部15bは、仕切り板22のうち開口部30を形成する開口形成部22cよりも下側に配置されている。仕切り板23は、ケーシング11内のうち仕切り板22よりも上側に配置されて、ヒータコア13の空気流れ下流側にて仕切り板22との間に温風通路25を形成する。開口部31は、仕切り板23の空気流れ下流側に位置して、温風通路25と内気通路とを連通させる。
 モードドア50が開口部30を閉じて開口部31を開けたフットモード(すなわち、第1の空調モード)では、温風通路25を流れる温風が、フェイス開口部15aに向けて案内される。モードドア50が開口部30を開けて開口部31を閉じたバイレベルモード(すなわち、第2の空調モード)では、仕切り板22と仕切り板23との間に形成される温風通路25を流れる温風が、仕切り板23およびモードドア50によってフット開口部15bに案内される。したがって、モードドア50によって、ヒータコア13から流出した十分な量の温風を、外気通路から開口部30を通してフット開口部15bに流すことができる。これにより、バイレベルモードでは、フットモードに比べて、フェイス開口部15aから吹き出される空気の温度と、フット開口部15bから吹き出される空気の温度との温度差を大きくすることができる。これにより、上半身に吹き出される空気温度を低くし、下半身に吹き出される空気温度を高くすることができる。つまり、頭寒足熱を実施することができる。
 以上により、バイレベルモード、フットモードにおいて、フェイス開口部15aから吹き出される空気の温度と、フット開口部15bから吹き出される空気の温度との温度差のコントロール性を向上することができる。
 以下、上記温度差のコントロール性について、本実施形態の空調ユニット10と比較例としての空調ユニット10Aとを比較する。
 図6A、6Bは、本実施形態の空調ユニット10に係る、車室内に吹き出される空気の温度とエアミックスドア16a、16bの位置との関係を示すグラフである。鎖線は、フェイス開口部15aから吹き出される空気の温度とエアミックスドア16a、16bの位置との関係を示す。実線は、フット開口部15bから吹き出される空気の温度とエアミックスドア16a、16bの位置との関係を示す。
 図6Aは、バイレベルモード時の前記関係を示し、図6Bは、フットモード時の前記関係を示している。
 図7A、7Bでは、比較例としての空調ユニット10Aに係る、車室内に吹き出される空気の温度とエアミックスドア16a、16bの位置との関係を示すグラフである。鎖線は、フェイス開口部15aから吹き出される空気の温度とエアミックスドア16a、16bの位置との関係を示す。実線は、フット開口部15bから吹き出される空気の温度とエアミックスドア16a、16bの位置との関係を示す。
 図7Aは、バイレベルモード時の前記関係を示し、図7Bは、フットモード時の前記関係を示している。
 比較例としての空調ユニット10Aは、図8に示すように、本実施形態の空調ユニット10から仕切り板21、22、ガイド板24、および開口端形成部26を外したものである。
 以上により、空調ユニット10では、空調ユニット10Aに比べて、バイレベルモードにおいて、フェイス開口部15aから吹き出される空気の温度と、フット開口部15bから吹き出される空気の温度との温度差が大きくなることが分かる。
 図8に示すように、空調ユニット10Aでは、内気通路においてバイパス通路14bを通過した冷風は、下壁41、およびモードドア50によりガイドされて矢印A1aで示すように、上方、かつ前方に流れる。前記冷風の一部は、矢印E1で示すように、仕切り板22の上側でヒータコア13に向けて流れて再加熱される恐れがある。
 これに対して、本実施形態では、ヒータコア13のうち仕切り板22の上側と、仕切り板21、22、ガイド板24、および開口端形成部26とが上下方向においてオーバーラップする。このため、バイパス通路14bから流れる冷風が仕切り板22の上側でヒータコア13に向けて流れることを抑制することができる。
 本実施形態では、仕切り板22と仕切り板23との間において、温風通路25の断面積がヒータコア13から離れるほど小さくなるように仕切り板23が形成されている。このため、温風通路25を通過する温風の風速を高くすることができる。したがって、温風通路25からの温風を、確実に開口部30を通してフット開口部15bに流すことができる。
 本実施形態では、仕切り板23は、ヒータコア13から離れるほどフット開口部15bに近づくように形成されている。したがって、温風通路25を流れる温風を、より確実にフット開口部15bに案内することができる。
 本実施形態では、ヒータコア13の空気流出面13aのうち上側と仕切り板23との間の寸法L1よりも、空気流出面13aのうち仕切り板22と仕切り板23との間の寸法L2の方が大きくなっている。したがって、空気流出面13aのうち上側と仕切り板23との間を通過する温風量よりも、空気流出面13aのうち仕切り板22と仕切り板23との間を通過する温風量の方が多くなる。このため、温風通路25から、多くの温風をフット開口部15bに流すことができる。よって、フェイス開口部15aから吹き出す空気の温度と、フット開口部15bから吹き出す空気の温度との温度差をより一層大きくすることができる。
 本実施形態では、開口端形成部26は、仕切り板23に接続する第1端部26aと、ガイド板24に接続する第2端部26bとを有する。モードドア50が回転して、第1端部26aと第2端部26bとの間を移動する際に、ドア本体50aと開口端形成部26との間のクリアランスが一定の大きさになる。したがって、モードドア50が開口部31を閉じた状態で、第1端部26aと第2端部26bとの間でドア本体50aのうち開口端形成部26側の位置が変化しても、前記クリアランスが一定の大きさになり、開口端形成部26とモードドア50との間の隙間を通過する温風量が一定量になる。このため、フェイス開口部15aから吹き出す空気の温度とフット開口部15bから吹き出す空気の温度との温度差が変化しない。
 本実施形態では、ガイド板24が後方から前方に向かうほど上方に向かって傾斜されている。このため、ヒータコア13のうち仕切り板23の上側を通過した温風を上方に流れるようにガイドする。したがって、前記温風を、バイパス通路14aを流れる冷風に合流させ易くなり、前記温風と前記冷風との混合性を向上させることができる。
 図5のフェイスモードでは、バイパス通路14bを通過した冷風は、符号C1、C2、C3で示す3つの箇所で温風と合流する。このため、前記冷風と前記温風との混合性を向上させることができる。
 なお、C1は、矢印A5aで示すように吹出口28から吹き出される温風と冷風とが混合するポイントである。C2は、矢印A4aで示すようにヒータコア13のうち仕切り板22、23の間から吹き出される温風と冷風とが混合するポイントである。C3は、矢印A2aの如くヒータコア13のうち仕切り板22の下側から吹き出される温風と冷風とが混合するポイントである。
(第2実施形態)
 本第2実施形態では、上記第1実施形態において、モードドア50が開口部31を閉じた状態で、バイパス通路14bを通過した冷風を、モードドア50をバイパスしてフェイス開口部15aに向けて流すようにした例について説明する。
 図9に第2実施形態の空調ユニット10の断面図を示す。図10は、図9のX-X線における断面図を示す。
 本実施形態の空調ユニット10には、冷風バイパス通路60a、60b、およびガイド板61a、61bが設けられている。冷風バイパス通路60a、60bは、モードドア50が開口部31を閉じた状態で、バイパス通路14bを通過した冷風をモードドア50をバイパスして上方に流すための通路である。
 冷風バイパス通路60aは、右壁11aとモードドア50との間に構成されている。冷風バイパス通路60bは、左壁11aとモードドア50との間に構成されている。右壁11aは、ケーシング11のうち右側の壁を形成している。左壁11bは、ケーシング11のうち左側の壁を形成している。
 図10に示すように、ガイド板61a、61bは、ケーシング11のうちモードドア50の空気流れ上流側に配置されている。ガイド板61aは、ケーシング11内の右側に配置されて、右壁11aとの間に冷風通路62aを形成する。冷風通路62aは、エバポレータ12から吹き出される冷風の一部を冷風バイパス通路60aに導く。ガイド板61bは、ケーシング11内の左側に配置されて、左壁11bとの間に冷風通路62bを形成する。冷風通路62bは、エバポレータ12から吹き出される冷風の一部を冷風バイパス通路60bに導く。
 本実施形態では、バイレベルモードにおいて、モードドア50が開口部31を閉じた状態で、エバポレータ12から吹き出される冷風の一部は、バイパス通路14bおよび冷風通路62aを通過した後に、ガイド板24および後壁40によってガイドされてフェイス開口部15cに流れる。さらに、エバポレータ12からバイパス通路14bおよび冷風通路62bを通過した冷風は、ガイド板24および後壁40によってガイドされてフェイス開口部15cに流れる。
 以上説明した本実施形態によれば、バイレベルモードにおいて、モードドア50が開口部31を閉じた状態で、エバポレータ12から吹き出される冷風を冷風通路62a、62bを通してフェイス開口部15aに向けて流すことができる。したがって、フェイス開口部15aから吹き出す空気の温度を低下させることができる。これにより、バイレベルモードにおける温度差とフットモードにおける温度差を大きくすることができる。温度差とは、フェイス開口部15aから吹き出す空気の温度とフット開口部15bから吹き出す空気の温度との間の温度差である。
(第3実施形態)
 上記第1実施形態では、モードドア50が開口部31を閉じた状態でモードドア50の位置が変化しても開口端形成部26とモードドア50(ドア本体50a)との間のクリアランスが一定になるように開口端形成部26を形成した例について説明した。本第3実施形態では、モードドア50の停止位置によって開口端形成部26とモードドア50との間のクリアランスが変化する。具体的には、本実施形態では、開口端形成部26の第1端部26aと第2端部26bとの間に、ドア本体50aが停止する停止位置を複数設定した時、複数の停止位置におけるドア本体50aと開口端形成部26との間のクリアランスがそれぞれ相違する。
 図11は、本実施形態の空調ユニット10の断面図であって、バイレベルモードを示す図である。
 本実施形態の空調ユニット10と上記第1実施形態の空調ユニット10とでは、開口端形成部26の形状が相違する。本実施形態の開口端形成部26は、段部260、261を備える。段部260は、仕切り板23に接続し、段部261は、ガイド板24に接続する。
 図11に示すように、段部260とドア本体50aとの間のクリアランスC2は、段部261とドア本体50aとの間のクリアランスC3に比べて小さくなっている。
 本実施形態と上記第1実施形態とで、開口端形成部26以外の構成は共通するため、その説明は省略する。
 本実施形態では、第1のバイレベルモードでは、開口端形成部26の段部260にモードドア50のドア本体50aが対向した状態で、モードドア50が開口部31を閉じている。第2のバイレベルモードでは、開口端形成部26の段部261にモードドア50のドア本体50aが対向した状態で、モードドア50が開口部31を閉じている。
 以上説明した本実施形態によれば、開口端形成部26が段部260、261を備える。モードドア50は、段部260、261に対応する第1、第2の停止位置を有する。そして、第1のバイレベルモードのクリアランスC2に比べて、第2のバイレベルモードのクリアランスC3が大きくなる。したがって、第2のバイレベルモードでは、第1のバイレベルモードに比べて、温風通路25から流出して開口端形成部26とモードドア50との間を通過する温風量が増加する。
 したがって、第2のバイレベルモードでは、第1のバイレベルモードに比べて、温風通路25から流出して開口端形成部26を通してフェイス開口部15aに流れる温風量を増やし、フット開口部15bに流れる温風量を減らすことができる。これにより、第1のバイレベルモードと第2のバイレベルモードとで温度差を変えることができる。温度差は、フェイス開口部15aから吹き出す空気の温度と、フット開口部15bから吹き出す空気の温度との間の温度差である。
(第4実施形態)
 本第4実施形態では、上記第1実施形態において、仕切り板22と仕切り板23との間に新たな仕切り板を配置する。
 図12に第4実施形態の空調ユニット10の断面図を示す。
 本実施形態の空調ユニット10は、図1の空調ユニット10に対して仕切り板29(第3仕切り板)が追加されたものである。仕切り板29は、後壁40との間に開口部(第3の開口部)32を形成する2層仕切り板である。仕切り板29は、仕切り板22と仕切り板23との間に配置されて、左右方向に広がる板状に形成されている。仕切り板29と仕切り板22との間には、ヒータコア13から吹き出される温風をフット開口部15bに流す下側温風通路(下側通路)25aが形成されている。仕切り板29と仕切り板23との間には、ヒータコア13から吹き出される温風をフット開口部15bに流す上側温風通路(上側通路)25bが形成されている。換言すれば、仕切り板29は、仕切り板22と仕切り板23との間に配置され、温風通路25を下側通路25aと上側通路25bの上下に区画する。
 具体的には、仕切り板29は、板部29a、29bを備える。板部29aは、後方に進むほど下方に向かうように傾斜している。板部29bは、板部29aの後側に配置されている。板部29bは、後方に進むほど下方に向かうように傾斜している。板部29aの傾斜角度よりも、板部29bの傾斜角度の方が大きくなっている。傾斜角度とは、板部29a、29bが前後方向に対して時計回り方向に成す角度のことである。
 突起部29cは、板部29bの後側に配置されて仕切り板23に向けて突起する。突起部29cは、開口部32を形成する開口形成部を構成するもので、仕切り板23と仕切り板29との間の上側温風通路25bの空気出口を絞ることになる。このため、上側温風通路25bにおいて温風入口が温風出口よりも大きくなっている。さらに、仕切り板22と仕切り板29との間の下側温風通路25aにおいて、温風入口が温風出口よりも大きくなっている。
 本実施形態のガイド板24は、図13に示すように、板部24a、24bを備える。板部24aは、開口部31側から前側に向かって上向きに傾斜している。板部24bは、板部24a側から前側に向かって上向きに傾斜している。板部24aの傾斜角度よりも、板部24bの傾斜角度の方が大きくなっている。傾斜角度とは、板部24a、24bが前後方向に対して時計回り方向に成す角度のことである。
 本実施形態のモードドア50は、開口部30、31、32、フット開口部15bをそれぞれ開閉する。
 本実施形態では、図12に示す第3のバイレベルモードでは、モードドア50が開口部31を閉じて、開口部30、32、およびフット開口部15bを開ける。この場合、上側温風通路25bを通過した温風は、仕切り板23およびモードドア50によってガイドされて、フット開口部15bに流れる。ヒータコア13から流出して、下側温風通路25aを通過した温風は、仕切り板29およびモードドア50によってガイドされて、フット開口部15bに流れる。下側温風通路25aからの温風と上側温風通路25bからの温風とがフット開口部15bに流れる。
 図14に示す第4のバイレベルモードでは、モードドア50が開口部32を閉じて、開口部30、31、およびフット開口部15bを開ける。この場合、ヒータコア13から流出して、上側温風通路25bを通過した温風は、後板40とガイド板24とにガイドされて、フェイス開口部15aに向けて流れる。
 一方、ヒータコア13から流出して、下側温風通路25aを通過した温風は、仕切り板29およびモードドア50によってガイドされて、フット開口部15bに流れる。
 以上説明した本実施形態によれば、仕切り板29が仕切り板22と仕切り板23との間に配置されている。このため、モードドア50が開口部31を閉じる第3のバイレベルモードとモードドア50が開口部32を閉じる第4のバイレベルモードとで、温度差を変えることができる。温度差は、フェイス開口部15aから吹き出す空気の温度とフット開口部15bから吹き出す空気の温度との間の温度差である。
(第5実施形態)
 上第1~第4実施形態では、開口部30、31、およびフット開口部15bを1つのモードドア50によって開閉した。本第5実施形態では、開口部30、31と、フット開口部15bとをそれぞれ別々のドアによって開閉する。
 図15に第5実施形態の空調ユニット10の断面図を示す。
 本実施形態の空調ユニット10では、図1のモードドア50に代えて、モードドア50a、50bが設けられている。モードドア50aは、開口部30、31のうち一方を開けて、片方を閉じる。モードドア50bは、フット開口部15bを開閉する。モードドア50aは、いわゆる“片持ちドア”であり、モードドア50bは、いわゆる“バタフライドア”である。
 なお、本実施形態の空調ユニット10において、モードドア50a、50b以外の構成は、上記第1実施形態と同様であるため、その説明を省略する。
(他の実施形態)
 第4実施形態では、空調ユニット10において、第3仕切り板として仕切り板29を1つ用いたが、仕切り板29を2つ以上用いてもよい。
 第1~第4実施形態では、モードドア15a、15b、15cとして、板ドアを用いた例について説明したが、ロータリドア、スライドドア等の各種のドアを用いてもよい。
 第1~第4実施形態では、送風機ユニットとしては、空調ユニット10の外気通路に外気および内気のいずれか一方を送風し、空調ユニット10の内気通路に内気を送風する。しかしながら、外気通路および内気通路に区別なく、空調ユニット10に外気、或いは内気を送風する送風機ユニットを用いてもよい。
 なお、本開示は上記した実施形態に限定されるものではなく、本開示の趣旨を逸脱しない範囲で適宜変更が可能である。また、上記各実施形態は、互いに無関係なものではなく、組み合わせが明らかに不可な場合を除き、適宜組み合わせが可能である。

Claims (13)

  1.  フェイス開口部(15a)と、前記フェイス開口部(15a)よりも上下方向における下方に設けられるフット開口部(15b)とを有して、前記フェイス開口部(15a)および前記フット開口部(15b)に向けて空気を流通させる通路をその内部に形成するケーシング(11)と、
     前記ケーシング(11)内に配置されて前記空気を加熱する加熱用熱交換器(13)と、
     前記フェイス開口部(15a)の下方に位置して、前記加熱用熱交換器(13)の空気流れ下流側を、第1通路と、第1通路の下方に位置する第2通路とに区画する第1仕切り板(22)と、
     前記第1仕切り板(22)の空気流れ下流側に形成されて、前記第1通路と前記第2通路とを連通させる第1の開口部(30)と、
     前記加熱用熱交換器(13)の空気流れ下流において前記第1仕切り板(22)の上方に配置され、前記第1通路内において前記第1仕切り板(22)との間に第3通路(25)を形成する第2仕切り板(23)と、
     前記第2仕切り板(23)の空気流れ下流側に位置して、前記第2仕切り板(23)の上側と下側とを連通させる第2の開口部(31)と、
     前記第1、第2の開口部(30、31)を開閉する切替ドア(50)と、を備え、
     前記第1仕切り板(22)のうち前記第1の開口部(30)を形成する開口形成部(22c)よりも下方に前記フット開口部(15b)が位置しており、
     前記切替ドア(50)が前記第1の開口部(30)を閉じて前記第2の開口部(31)を開けた第1の空調モードでは、前記第3通路(25)内の空気は、前記フェイス開口部(15a)に向けて流れるようになっており、
     前記切替ドア(50)が前記第1の開口部(30)を開けて前記第2の開口部(31)を閉じた第2の空調モードでは、前記第3通路(25)内の空気が、前記第2仕切り板(23)および前記切替ドア(50)によって前記フット開口部(15b)に向けて案内される
    車両用空調ユニット。
  2.  前記第3通路の断面積が、前記加熱用熱交換器(13)から離れるほど小さくなるように前記第2仕切り板(23)が形成されている請求項1に記載の車両用空調ユニット。
  3.  前記第2仕切り板(23)は、前記加熱用熱交換器(13)から離れるほど前記フット開口部(15b)に近づくように形成されている請求項1または2に記載の車両用空調ユニット。
  4.  前記加熱用熱交換器(13)は空気流れ下流側に空気流出面(13a)を有し、
     前記空気流出面(13a)の上端と前記第2仕切り板(23)との間の距離(L1)よりも、前記第1仕切り板(22)と前記第2仕切り板(23)との間の距離(L2)の方が長くなっている請求項1ないし3のいずれか1つに記載の車両用空調ユニット。
  5.  前記ケーシング(11)内のうち前記第2仕切り板(23)よりも上側で前記第2の開口部(31)を通過した空気を前記フェイス開口部(15a)に向けて案内するガイド板(24)と、
     前記第2仕切り板(23)のうち前記第2の開口部(31)側の端部と前記ガイド板(24)との間に設けられて前記第2の開口部(31)を形成する開口端形成部(26)とをさらに備え、
     前記切替ドア(50)は、
      板状に形成されているドア本体(50a)と、
      前記ドア本体(50a)に設けられて前記ケーシング(11)に対して前記切替ドア(50)を回転自在に支持する軸(50b)とを備えており、
     前記ドア本体(50a)は、前記軸(50b)を中心として回転して前記第1、第2の開口部(30、31)を開閉し、
     前記ドア本体(50a)は、前記第1の開口部(30)を開けて前記第2の開口部(31)を閉じた状態で、前記開口端形成部(26)のうち前記第2仕切り板(23)側の第1端部(26a)と前記ガイド板(24)側の第2端部(26b)との間を移動するように回転する請求項1ないし4のいずれか1つに記載の車両用空調ユニット。
  6.  前記ドア本体(50a)の回転に伴って前記開口端形成部(26)の前記第1端部(26a)と前記第2端部(26b)との間を前記ドア本体(50a)が移動する際に、前記ドア本体(50a)と前記開口端形成部(26)との間のクリアランスが一定の大きさになっている請求項5に記載の車両用空調ユニット。
  7.  前記開口端形成部(26)の前記第1端部(26a)と前記第2端部(26b)との間において、前記ドア本体(50a)が停止する停止位置が複数設定されており、
     前記複数の停止位置における前記ドア本体(50a)と前記開口端形成部(26)との間のクリアランスが、それぞれ相違するように前記開口端形成部(26)が形成されている請求項5に記載の車両用空調ユニット。
  8.  前記開口端形成部(26)は、前記複数の停止位置のそれぞれに対応し、かつ前記ドア本体(50a)との間で前記停止位置毎に相違するクリアランスを形成する複数の段部(260、261)を備える請求項7に記載の車両用空調ユニット。
  9.  前記第1仕切り板(22)と前記第2仕切り板(23)との間に配置され、前記第3通路を上側通路および下側通路の上下に区画する第3仕切り板(29)と、
     前記ケーシング(11)内のうち前記第3仕切り板(29)の空気流れ下流側に形成されて、前記下側通路と上側通路とを連通させる第3の開口部(32)と、をさらに備え、
     前記切替ドア(50)は、前記第1、第2、第3の開口部(30、31、32)を開閉するものであり、
     前記切替ドア(50)が前記第3の開口部(32)を閉じて前記第1、第2の開口部(30、31)を開けたとき、前記上側通路を流れる空気は、前記フェイス開口部(15a)に向けて流れると共に、
     前記下側通路を流れる空気は、前記第1仕切り板(22)および前記切替ドア(50)によってガイドされて前記フット開口部(15b)に向けて流れ、
     前記切替ドア(50)が前記第2の開口部(31)を閉じて前記第1、第3の開口部(30、32)を開けたとき、前記下側通路を流れる空気は、前記第3仕切り板(29)および前記切替ドア(50)によって前記フット開口部(15b)に向けて案内されると共に、前記上側通路を流れる空気は、前記第2仕切り板(23)および前記切替ドア(50)によって前記フット開口部(15b)に向けて案内される請求項1ないし8に記載の車両用空調ユニット。
  10.  前記ケーシング(11)内のうち前記加熱用熱交換器(13)の上方に設けられて前記加熱用熱交換器(13)をバイパスして前記フェイス開口部(15a)に空気を流す第1のバイパス通路(14a)と、
     前記加熱用熱交換器(13)のうち前記第1仕切り板(22)の上側を通過する空気量と前記第1のバイパス通路(14a)を通過する空気量との比率を変える第1エアミックスドア(16a)と、
     前記ケーシング(11)内のうち前記加熱用熱交換器(13)の下方に設けられて前記加熱用熱交換器(13)をバイパスして前記フット開口部(15b)に空気を流す第2のバイパス通路(14b)と、
     前記加熱用熱交換器(13)のうち前記第1仕切り板(22)よりも下側を通過する空気量と前記第2のバイパス通路(14b)を通過する空気量との比率を変える第2エアミックスドア(16b)と、をさらに備える請求項1ないし9のいずれか1つに記載の車両用空調ユニット。
  11.  前記ケーシング(11)のうち前記加熱用熱交換器(13)の空気流れ上流側に配置されて空気を冷却する冷却熱交換器(12)をさらに備える請求項10に記載の車両用空調ユニット。
  12.  前記切替ドア(50)が前記第1の開口部(30)を開けて前記第2の開口部(31)を閉じたとき、前記第2のバイパス通路(14b)から前記切替ドア(50)をバイパスして前記フェイス開口部(15a)に向けて流す第3のバイパス通路(60a、60b)をさらに備える請求項11に記載の車両用空調ユニット。
  13.  前記切替ドア(50)は、前記第1、第2の開口部(30、31)、および前記フット開口部(15b)のうち1つの開口部を閉じて、残りの2つの開口部を開ける請求項1ないし12のいずれか1つに記載の車両用空調ユニット。
PCT/JP2014/005139 2013-10-21 2014-10-09 車両用空調ユニット WO2015059885A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/030,342 US10144265B2 (en) 2013-10-21 2014-10-09 Air conditioning unit for vehicle
CN201480048912.4A CN105517819B (zh) 2013-10-21 2014-10-09 车辆用空调单元
DE112014004822.4T DE112014004822B4 (de) 2013-10-21 2014-10-09 Klimatisierungseinheit für ein Fahrzeug

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-218406 2013-10-21
JP2013218406A JP6201621B2 (ja) 2013-10-21 2013-10-21 車両用空調ユニット

Publications (1)

Publication Number Publication Date
WO2015059885A1 true WO2015059885A1 (ja) 2015-04-30

Family

ID=52992506

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/005139 WO2015059885A1 (ja) 2013-10-21 2014-10-09 車両用空調ユニット

Country Status (5)

Country Link
US (1) US10144265B2 (ja)
JP (1) JP6201621B2 (ja)
CN (1) CN105517819B (ja)
DE (1) DE112014004822B4 (ja)
WO (1) WO2015059885A1 (ja)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10661635B2 (en) * 2015-04-24 2020-05-26 Denso Corporation Vehicle air-conditioning unit
JP2017013704A (ja) * 2015-07-03 2017-01-19 株式会社ヴァレオジャパン 車両用空調装置及びその車両用空調装置を搭載した車両
FR3038547B1 (fr) * 2015-07-10 2017-08-04 Valeo Systemes Thermiques Dispositif de chauffage, ventilation et/ou climatisation pour vehicule automobile, module additionnel et procede d'assemblage correspondants
DE112016004180T5 (de) 2015-09-15 2018-06-14 Denso Corporation Motorcontroller, Klimatisierungssystem und Programm für einen Klimatisierungs-Controller
JP6592466B2 (ja) * 2016-01-18 2019-10-16 ハンオン システムズ 車両用空調システム
JP6632505B2 (ja) 2016-10-05 2020-01-22 株式会社ヴァレオジャパン 車両用空調ユニット
JP6583378B2 (ja) 2016-11-07 2019-10-02 株式会社デンソー 車両用空調ユニット
WO2018083940A1 (ja) 2016-11-07 2018-05-11 株式会社デンソー 車両用空調ユニット
DE102017200563A1 (de) 2017-01-16 2018-07-19 Hanon Systems Luftauslass eines Heizungs-, Lüftungs- und/oder Klimatisierungssystems für ein Fahrzeug, und System mit einem derartigen Luftauslass
WO2018139033A1 (ja) * 2017-01-30 2018-08-02 株式会社デンソー 車両用空調装置
JP2018144532A (ja) * 2017-03-02 2018-09-20 株式会社日本クライメイトシステムズ 車両用空調装置
JP6404994B1 (ja) * 2017-05-30 2018-10-17 三菱重工サーマルシステムズ株式会社 車両用空気調和装置
JP6958221B2 (ja) * 2017-10-20 2021-11-02 株式会社デンソー 車両用空調装置
KR102456849B1 (ko) * 2017-12-15 2022-10-21 한온시스템 주식회사 차량용 공조장치
JP2019156115A (ja) * 2018-03-12 2019-09-19 株式会社ケーヒン 車両用空調装置
JP6965824B2 (ja) * 2018-05-10 2021-11-10 株式会社デンソー 乗り物用空調装置
US11001125B2 (en) * 2018-06-15 2021-05-11 Denso International America, Inc. Vehicle HVAC system including common blower for front and rear airflow
US11541716B2 (en) * 2018-08-30 2023-01-03 Hanon Systems Air conditioner for vehicle
JP7120932B2 (ja) * 2019-01-09 2022-08-17 マーレ インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング 車両用空調装置
JP7051733B2 (ja) * 2019-02-05 2022-04-11 株式会社ヴァレオジャパン 車両用空調装置
US20220134836A1 (en) * 2019-02-07 2022-05-05 Valeo Systemes Thermiques Heating, ventilation and/or air-conditioning device for a motor vehicle
DE112020002446B4 (de) * 2019-05-21 2023-12-14 Hanon Systems Klimaanlage für ein Fahrzeug
KR102698340B1 (ko) * 2019-08-23 2024-08-26 한온시스템 주식회사 차량용 공조장치
DE102019219543A1 (de) * 2019-12-13 2021-06-17 Mahle International Gmbh Belüftungseinrichtung
FR3109333B1 (fr) * 2020-04-15 2023-01-13 Valeo Systemes Thermiques Dispositif de chauffage, ventilation et/ou climatisation pour véhicule automobile
WO2023119445A1 (ja) * 2021-12-21 2023-06-29 サンデン株式会社 車両用空調装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5718516A (en) * 1980-07-07 1982-01-30 Nissan Motor Co Ltd Air conditioner for automobile
JPS58136813U (ja) * 1982-03-12 1983-09-14 日産自動車株式会社 車両用空調装置
JPH10138735A (ja) * 1996-11-08 1998-05-26 Behr Gmbh & Co 自動車用暖房又は空調装置
JPH10329525A (ja) * 1997-06-04 1998-12-15 Calsonic Corp 自動車用空気調和装置
JPH11208240A (ja) * 1998-01-29 1999-08-03 Denso Corp 車両用空調装置
JPH11245652A (ja) * 1998-03-03 1999-09-14 Denso Corp 車両用空調装置
JPH11348534A (ja) * 1998-06-12 1999-12-21 Calsonic Corp 縦置き式自動車用空気調和装置
JP2009113538A (ja) * 2007-11-02 2009-05-28 Denso Corp 車両用空調装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3719278B2 (ja) 1995-12-13 2005-11-24 株式会社デンソー 車両用空気調和装置
JP3893661B2 (ja) 1996-11-07 2007-03-14 株式会社デンソー 車両用空調装置
US6237357B1 (en) * 1999-06-07 2001-05-29 Mitsubishi Heavy Industries, Ltd. Vehicular air conditioner using heat pump
DE19955616C1 (de) * 1999-11-19 2000-11-02 Daimler Chrysler Ag Klimaanlage für Fahrzeuge
US20080200110A1 (en) * 2005-06-27 2008-08-21 Debashis Ghosh Box vane mixing element for automotive heating, ventilating and air conditioning system
FR2950571B1 (fr) * 2009-09-30 2020-04-17 Valeo Systemes Thermiques Systeme de climatisation equipant un vehicule automobile et procede de mise en oeuvre d'un tel systeme selon divers modes de fonctionnement
FR3010660B1 (fr) * 2013-09-19 2016-12-30 Valeo Systemes Thermiques Installation de chauffage, ventilation et/ou climatisation pour habitacle de vehicule automobile
FR3033527B1 (fr) * 2015-03-10 2018-09-14 Valeo Systemes Thermiques Circuits de climatisation pour vehicule automobile

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5718516A (en) * 1980-07-07 1982-01-30 Nissan Motor Co Ltd Air conditioner for automobile
JPS58136813U (ja) * 1982-03-12 1983-09-14 日産自動車株式会社 車両用空調装置
JPH10138735A (ja) * 1996-11-08 1998-05-26 Behr Gmbh & Co 自動車用暖房又は空調装置
JPH10329525A (ja) * 1997-06-04 1998-12-15 Calsonic Corp 自動車用空気調和装置
JPH11208240A (ja) * 1998-01-29 1999-08-03 Denso Corp 車両用空調装置
JPH11245652A (ja) * 1998-03-03 1999-09-14 Denso Corp 車両用空調装置
JPH11348534A (ja) * 1998-06-12 1999-12-21 Calsonic Corp 縦置き式自動車用空気調和装置
JP2009113538A (ja) * 2007-11-02 2009-05-28 Denso Corp 車両用空調装置

Also Published As

Publication number Publication date
JP6201621B2 (ja) 2017-09-27
US10144265B2 (en) 2018-12-04
DE112014004822B4 (de) 2019-05-02
CN105517819B (zh) 2017-09-19
US20160236535A1 (en) 2016-08-18
DE112014004822T5 (de) 2016-07-21
JP2015080959A (ja) 2015-04-27
CN105517819A (zh) 2016-04-20

Similar Documents

Publication Publication Date Title
WO2015059885A1 (ja) 車両用空調ユニット
JP6145092B2 (ja) 車両用空調ユニット
US9446654B2 (en) Vehicle air conditioner
JP5859427B2 (ja) 車両用空調ユニット
JP6101065B2 (ja) 車両用空調装置
CN109803843B (zh) 车辆用空调单元
JP5131141B2 (ja) 車両用空調装置
WO2014058009A1 (ja) 車両用空調装置
JP2017171125A (ja) 車両用空調装置
JP6547656B2 (ja) 車両用空気吹き出し装置
JP2000255247A (ja) 車両用空調装置
WO2011155414A1 (ja) 車両用空気調和装置
JP4178866B2 (ja) 車両用空調装置
JP2006321361A (ja) ベント開口部構成部材及びこれを用いた車両用空調ユニット
JP4059103B2 (ja) 車両用空調装置
JP4985604B2 (ja) 車両用空調装置
JP2006001378A (ja) 車両用空調装置
JP5962499B2 (ja) 車載用空調装置
JP2005306166A (ja) 車両用空調装置
JP5761952B2 (ja) 車両用空調装置
JP2018188070A (ja) 車両用空調装置
JP2020142550A (ja) 車両用空調装置
WO2021079924A1 (ja) 車両用空調装置
WO2020129638A1 (ja) 車両用空調装置
JP4228981B2 (ja) 車両用空調装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14856644

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15030342

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112014004822

Country of ref document: DE

Ref document number: 1120140048224

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14856644

Country of ref document: EP

Kind code of ref document: A1