WO2015056645A1 - 無アルカリガラス - Google Patents

無アルカリガラス Download PDF

Info

Publication number
WO2015056645A1
WO2015056645A1 PCT/JP2014/077191 JP2014077191W WO2015056645A1 WO 2015056645 A1 WO2015056645 A1 WO 2015056645A1 JP 2014077191 W JP2014077191 W JP 2014077191W WO 2015056645 A1 WO2015056645 A1 WO 2015056645A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
alkali
content
less
free glass
Prior art date
Application number
PCT/JP2014/077191
Other languages
English (en)
French (fr)
Inventor
哲哉 村田
三和 晋吉
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to KR1020157032882A priority Critical patent/KR102248364B1/ko
Priority to CN201911111485.0A priority patent/CN110668694B/zh
Priority to KR1020217012837A priority patent/KR102306475B1/ko
Priority to CN201480037002.6A priority patent/CN105452182B/zh
Publication of WO2015056645A1 publication Critical patent/WO2015056645A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to an alkali-free glass, and more particularly to an alkali-free glass suitable for an organic EL display.
  • Organic EL displays are thin and excellent in displaying moving images and have low power consumption, so they are used for applications such as mobile phone displays.
  • Glass plates are widely used as substrates for organic EL displays.
  • the glass plate for this application is mainly required to have the following characteristics.
  • the following required characteristic (2) is regarded as important.
  • (1) In order to prevent a situation in which alkali ions are diffused into the semiconductor material formed in the heat treatment step, substantially no alkali metal oxide is contained.
  • (2) In the manufacturing process of p-Si • TFT, the strain point is high in order to reduce the thermal shrinkage of the glass plate.
  • the cost of the glass plate it is excellent in productivity, particularly in devitrification resistance and meltability.
  • the Young's modulus, Young's modulus / density are used to reduce the amount of deflection of the glass plate during the display manufacturing process. ) Is high.
  • a panel manufacturer of an organic EL display manufactures a plurality of devices on a large glass plate formed by a glass manufacturer, and then cuts and cuts each device in order to reduce costs (so-called multi-surface processing). ).
  • multi-surface processing After the glass plate is cut, the two glass plates are bonded together or cut after bonding to complete the organic EL display.
  • a post-process flows or a final product with the cut surface remains as it is without being applied. From such circumstances, it is important to improve crack resistance when performing multi-chamfering.
  • the present invention has been made in view of the above circumstances, and the technical problem is that even when the content of B 2 O 3 in the glass composition is small, it can have both crack resistance and chemical resistance.
  • the idea is to create an alkali-free glass.
  • the alkali-free glass of the present invention has a glass composition of mol%, SiO 2 66 to 78%, Al 2 O 3 8 to 15%, B 2 O 3 0 to 1.8%, MgO 0 to 8%. , CaO 1 to 15%, SrO 0 to 8%, BaO 1 to 8%, substantially no alkali metal oxide, and a strain point higher than 725 ° C.
  • substantially no alkali metal oxide means that the content of alkali metal oxides (Li 2 O, Na 2 O, K 2 O) in the glass composition is 0.5 mol% or less.
  • strain point refers to a value measured based on the method of ASTM C336.
  • the alkali-free glass of the present invention preferably has a B 2 O 3 content of less than 0.1 mol%.
  • the alkali-free glass of the present invention preferably has a B 2 O 3 content of 0.1 mol% or more and less than 1 mol%.
  • the alkali-free glass of the present invention preferably further contains 0.001 to 1 mol% of SnO 2 as a glass composition.
  • the alkali-free glass of the present invention preferably has a Young's modulus greater than 78 GPa.
  • the “Young's modulus” can be measured by a bending resonance method.
  • the alkali-free glass of the present invention specific Young's modulus is preferably greater than 29.5GPa / g ⁇ cm -3.
  • the “density” can be measured by the Archimedes method.
  • the alkali-free glass of the present invention preferably has a liquidus temperature lower than 1260 ° C.
  • the “liquid phase temperature” is obtained by passing the standard sieve 30 mesh (500 ⁇ m) and putting the glass powder remaining on the 50 mesh (300 ⁇ m) in a platinum boat, and holding it in a temperature gradient furnace for 24 hours. It can be calculated by measuring the temperature at which precipitation occurs.
  • the alkali-free glass of the present invention preferably has a temperature at a viscosity of 10 2.5 poise of 1720 ° C. or lower.
  • the “temperature at a viscosity of 10 2.5 poise” can be measured by a platinum ball pulling method.
  • the alkali-free glass of the present invention preferably has a viscosity at the liquidus temperature (liquidus viscosity) of 10 4.8 poise or more.
  • the “viscosity at the liquidus temperature” can be measured by a platinum ball pulling method.
  • the alkali-free glass of the present invention is preferably formed by an overflow downdraw method.
  • the alkali-free glass of the present invention is preferably used for an organic EL device, particularly an organic EL display.
  • SiO 2 is a component that forms a glass skeleton.
  • the content of SiO 2 is 66 to 78%, preferably 69 to 76%, 70 to 75% or 71 to 74%, particularly preferably 72 to 73%.
  • the content of SiO 2 is too small, it becomes difficult to increase the strain point, also the density is too high.
  • the content of SiO 2 is too large, the high-temperature viscosity is increased, the meltability is liable to be lowered, and devitrified crystals such as cristobalite are precipitated, and the liquidus temperature is likely to be increased.
  • Al 2 O 3 is a component that forms a glass skeleton, a component that increases the strain point, and a component that further suppresses phase separation.
  • the content of Al 2 O 3 is 8 to 15%, preferably 9 to 14%, 9.5 to 13% or 10 to 12%, particularly preferably 10.5 to 11.5%.
  • Al 2 content of O 3 is too small, easily strain point is lowered, also tends to glass phase separation.
  • the content of Al 2 O 3 is too large, devitrification crystals such mullite and anorthite is precipitated easily increased liquidus temperature.
  • the content of B 2 O 3 is 1.8% or less, preferably 1.5% or less, 1% or less, less than 1% or 0.7% or less, particularly preferably 0.6% or less. .
  • the content of B 2 O 3 is preferably 0.01% or more, 0.1% or more, 0.2% or more, 0.3% or more, or 0.4% or more, particularly preferably 0.5%. That's it.
  • MgO is a component that lowers the high temperature viscosity and increases the meltability.
  • the content of MgO is 0-8%, preferably 0-5%, 0-4%, 0.01-3.5%, 0.1-3.2% or 0.5-3%, especially Preferably it is 1 to 2.7%. When there is too much content of MgO, a strain point will fall easily.
  • the content of B 2 O 3 + MgO (total amount of B 2 O 3 and MgO) is preferably 6% or less, 0.1 to 5%, or 1 to 4.5%, particularly preferably, from the viewpoint of increasing the strain point. Is 2 to 4%. Incidentally, the content of B 2 O 3 + MgO is too small, melt resistance, crack resistance, chemical resistance tends to decrease.
  • the molar ratio B 2 O 3 / MgO is preferably 0.3 or less, 0.25 or less, 0.22 or less, 0.01 to 0.2 or 0.05 to 0.18, particularly preferably 0.1 to 0.17. This makes it easy to control the devitrification resistance within an appropriate range.
  • CaO is a component that lowers the high-temperature viscosity without lowering the strain point and significantly increases the meltability.
  • CaO is a component that lowers the raw material cost because the introduced raw material is relatively inexpensive among alkaline earth metal oxides.
  • the content of CaO is 1 to 15%, preferably 3 to 12%, 4 to 10%, or 4.7 to 8.9%, particularly preferably 5.8 to 8.5%.
  • When there is too little content of CaO it will become difficult to receive the said effect.
  • there is too much content of CaO while a thermal expansion coefficient will become high too much, the component balance of a glass composition will be impaired and it will become easy to devitrify glass.
  • SrO is a component that suppresses phase separation and increases devitrification resistance. Furthermore, it is a component that lowers the high-temperature viscosity and increases the meltability without lowering the strain point, and is a component that suppresses an increase in the liquidus temperature.
  • the content of SrO is 0 to 8%, preferably 0.1 to 6%, 0.5 to 5% or 0.8 to 4%, particularly preferably 1 to 3%. When there is too little content of SrO, it will become difficult to enjoy the effect which suppresses phase separation, and the effect which improves devitrification resistance. On the other hand, if the SrO content is too high, the component balance of the glass composition is impaired, and strontium silicate devitrified crystals are likely to precipitate.
  • BaO is a component that remarkably increases devitrification resistance among alkaline earth metal oxides.
  • the content of BaO is 1 to 8%, preferably 2 to 7%, 3 to 6%, or 3.5 to 5.5%, particularly preferably 4 to 5%.
  • liquidus temperature will become high and devitrification resistance will fall easily.
  • the component balance of a glass composition will be impaired and the devitrification crystal
  • RO total amount of MgO, CaO, SrO and BaO
  • total amount of MgO, CaO, SrO and BaO is preferably 12 to 18%, 13 to 17.5% or 13.5 to 17%, particularly preferably 14 to 16.8%.
  • the molar ratio MgO / RO is preferably 0.3 or less, 0.25 or less, 0.22 or less, 0.01 to 0.2 or 0.05 to 0.18, particularly preferably 0.1 to 0.17. It is. If it does in this way, it will become easy to control a strain point, crack resistance, and a chemical-resistant fall.
  • the molar ratio CaO / RO is preferably 0.8 or less, 0.7 or less, 0.1 to 0.7, 0.2 to 0.65 or 0.3 to 0.6, particularly preferably 0.45 to 0.55. In this way, it becomes easy to optimize devitrification resistance and meltability.
  • the molar ratio SrO / RO is preferably 0.4 or less, 0.35 or less, 0.3 or less, 0.01 to 0.2 or 0.03 to 0.18, particularly preferably 0.05 to 0.15. It is. This makes it easier to suppress the precipitation of strontium silicate devitrified crystals.
  • the molar ratio BaO / RO is preferably 0.5 or less, 0.4 or less, 0.1 to 0.37 or less, 0.2 to 0.35 or 0.24 to 0.32, particularly preferably 0.27. ⁇ 0.3. If it does in this way, it will become easy to improve devitrification resistance, improving meltability.
  • the following components may be added to the glass composition.
  • the content of other components other than the above components is preferably 10% or less, particularly preferably 5% or less in total, from the viewpoint of accurately enjoying the effects of the present invention.
  • ZnO is a component that enhances the meltability. However, when ZnO is contained in a large amount, the glass tends to devitrify and the strain point tends to decrease.
  • the content of ZnO is preferably 0 to 5%, 0 to 3% or 0 to 0.5%, particularly preferably 0 to 0.3%, and it is desirable that the ZnO content is not substantially contained.
  • substantially does not contain ZnO refers to a case where the content of ZnO in the glass composition is 0.2% or less.
  • P 2 O 5 is a component that increases the strain point. However, when P 2 O 5 is contained in a large amount, the glass is likely to be phase-separated.
  • the content of P 2 O 5 is preferably 0 to 1.5% or 0 to 1.2%, particularly preferably 0 to 1%.
  • TiO 2 is a component that lowers the viscosity at high temperature and increases the meltability, and is a component that suppresses solarization. However, when TiO 2 is contained in a large amount, the glass is colored and the transmittance tends to decrease. . Therefore, the content of TiO 2 is preferably 0 to 3%, 0 to 1% or 0 to 0.1%, particularly 0 to 0.02%.
  • Y 2 O 3 , Nb 2 O 5 , and La 2 O 3 have a function of increasing the strain point, Young's modulus, and the like. However, when there is too much content of these components, a density and raw material cost will increase easily. Therefore, the contents of Y 2 O 3 , Nb 2 O 5 and La 2 O 3 are each preferably 0 to 3% or 0 to 1%, particularly preferably 0 to 0.1%.
  • SnO 2 is a component that has a good clarification action in a high temperature range, a component that increases the strain point, and a component that decreases high temperature viscosity.
  • the SnO 2 content is preferably 0 to 1%, 0.001 to 1% or 0.05 to 0.5%, particularly preferably 0.1 to 0.3%.
  • the content of SnO 2 is too large, the devitrification crystal SnO 2 is likely to precipitate.
  • the content of SnO 2 is less than 0.001%, it becomes difficult to enjoy the above-mentioned effects.
  • SnO 2 is suitable as a fining agent, but a fining agent other than SnO 2 may be used as long as the glass properties are not significantly impaired.
  • a fining agent other than SnO 2 may be used as long as the glass properties are not significantly impaired.
  • As 2 O 3 , Sb 2 O 3 , CeO 2 , F 2 , Cl 2 , SO 3 , and C may be added in a total amount of, for example, 1%, and metal powder such as Al and Si may be added. For example, the total amount may be added up to 1%.
  • As 2 O 3 and Sb 2 O 3 are excellent in clarity, but it is preferable not to introduce them as much as possible from an environmental viewpoint. Further, As 2 O 3 tends to lower the resistance to solarization when it is contained in a large amount in the glass. Therefore, its content is preferably 0.5% or less, particularly preferably 0.1% or less. It is desirable not to contain it.
  • “substantially does not contain As 2 O 3 ” refers to the case where the content of As 2 O 3 in the glass composition is less than 0.05%. Further, the content of Sb 2 O 3 is preferably 1% or less, particularly preferably 0.5% or less, and it is desirable that the Sb 2 O 3 content is not substantially contained.
  • “substantially does not contain Sb 2 O 3 ” refers to a case where the content of Sb 2 O 3 in the glass composition is less than 0.05%.
  • Cl 2 has an effect of accelerating the melting of the alkali-free glass. If Cl 2 is added, the melting temperature can be lowered and the action of the fining agent is promoted. As a result, the melting cost is reduced while reducing the glass. The life of the production kiln can be extended. However, when the content of Cl 2 is too large, the strain point is lowered. Therefore, the Cl 2 content is preferably 0.5% or less, particularly preferably 0.1% or less.
  • a chloride of an alkaline earth metal oxide such as strontium chloride or aluminum chloride can be used as an introduction source of Cl 2 .
  • the strain point is over 725 ° C., preferably 730 ° C. or higher, more preferably 735 ° C. or higher, and further preferably 740 ° C. or higher. In this way, thermal contraction of the glass plate can be suppressed in the manufacturing process of the p-Si • TFT.
  • the Young's modulus is preferably more than 78 GPa, 78.5 GPa or more, 79 GPa or more, or 79.5 GPa or more, particularly 79.7 Pa or more. If it does in this way, since the bending of a glass plate can be suppressed, handling of a glass plate becomes easy in the manufacturing process etc. of a display.
  • Young's modulus / density 9.5 GPa / g ⁇ cm -3 greater, 29.8GPa / g ⁇ cm -3 or more, 30.1GPa / g ⁇ cm -3 or more or 30.3GPa / g ⁇ cm -3 or more, In particular, 30.5 GPa / g ⁇ cm ⁇ 3 or more is preferable.
  • Young's modulus / density is increased, the amount of bending of the glass plate can be significantly suppressed.
  • the liquidus temperature is preferably less than 1260 ° C or 1250 ° C or less, particularly 1240 ° C or less. If it does in this way, it will become easy to prevent the situation where devitrification crystal occurs at the time of glass manufacture, and productivity falls. Furthermore, since it becomes easy to shape
  • the liquidus temperature is an index of devitrification resistance. The lower the liquidus temperature, the better the devitrification resistance.
  • the temperature at 10 2.5 poise is preferably 1720 ° C. or lower, 1700 ° C. or lower, or 1690 ° C. or lower, particularly 1680 ° C. or lower.
  • the temperature at 10 2.5 poise increases, it becomes difficult to ensure solubility and clarity, and the manufacturing cost of the glass plate increases.
  • the viscosity at the liquidus temperature is 10 4.8 poise or more, 10 5.0 poise or more, or 10 5.2 poise or higher, particularly preferably at least 10 5.3 poise. In this way, devitrification is less likely to occur at the time of molding, so it becomes easier to mold the glass plate by the overflow downdraw method, and as a result, the surface quality of the glass plate can be improved, and the production of the glass plate Cost can be reduced.
  • the liquid phase viscosity is an index of moldability. The higher the liquid phase viscosity, the better the moldability.
  • the strain point can be increased by lowering the ⁇ -OH value.
  • the ⁇ -OH value is preferably 0.5 / mm or less, 0.45 / mm or less, 0.4 / mm or less, 0.35 / mm or less, or 0.3 / mm or less, particularly preferably 0.25 / mm or less. mm or less. If the ⁇ -OH value is too large, the strain point tends to decrease. If the ⁇ -OH value is too small, the meltability tends to be lowered. Therefore, the ⁇ -OH value is preferably 0.01 / mm or more, particularly preferably 0.05 / mm or more.
  • the following methods may be mentioned.
  • a component (Cl, SO 3 or the like) that lowers the ⁇ -OH value is added to the glass.
  • (4) N 2 bubbling is performed in molten glass.
  • Adopt a small melting furnace. Increase the flow rate of the molten glass. (7) An electric melting method is adopted.
  • ⁇ -OH value refers to a value obtained by measuring the transmittance of glass using FT-IR and using the following equation.
  • ⁇ -OH value (1 / X) log (T 1 / T 2 )
  • X is the glass thickness (mm)
  • T 1 is the transmittance (%) at the reference wavelength of 3846 cm ⁇ 1
  • T 2 is the minimum transmittance near the hydroxyl group absorption wavelength of 3600 cm ⁇ 1. (%).
  • the alkali-free glass of the present invention is preferably formed by an overflow down draw method.
  • the overflow down draw method molten glass overflows from both sides of a heat-resistant bowl-shaped structure, and the molten glass overflows and joins at the lower end of the bowl-shaped structure to produce a glass plate by drawing downward. Is the method.
  • the surface to be the surface of the glass plate is not in contact with the bowl-shaped refractory, and is formed in a free surface state. For this reason, the glass plate which is unpolished and has a good surface quality can be manufactured at low cost.
  • the structure and material of the bowl-shaped structure used in the overflow downdraw method are not particularly limited as long as desired dimensions and surface accuracy can be realized.
  • the method of applying a force when performing downward stretch molding is not particularly limited.
  • a method may be adopted in which a heat-resistant roll having a sufficiently large width is rotated and stretched in contact with glass, or a plurality of pairs of heat-resistant rolls are contacted only near the end face of the glass. It is also possible to adopt a method of stretching by stretching.
  • a glass plate can be formed by, for example, a downdraw method (slot down method, etc.), a float method, or the like.
  • the alkali-free glass of the present invention is preferably used for an organic EL device, particularly an organic EL display.
  • a panel manufacturer of an organic EL display manufactures a plurality of devices on a large glass plate formed by a glass manufacturer, and then cuts and cuts each device in order to reduce costs (so-called multi-surface processing). ).
  • multi-surface processing the devices themselves are becoming larger, and a large glass plate is required in order to obtain a large number of these devices. Since the alkali-free glass of the present invention has a low liquidus temperature and a high liquidus viscosity, it can easily form a large glass plate and can satisfy such a requirement.
  • the thickness is preferably 0.7 mm or less, 0.5 mm or less, 0.4 mm or less, or 0.3 mm or less, particularly preferably 0.05 to 0.1 mm. The smaller the thickness, the easier it is to make the display lighter, thinner, and more flexible.
  • Tables 1 to 3 show examples of the present invention (Sample Nos. 1 to 14) and comparative examples (Sample Nos. 15 to 17).
  • a glass batch in which glass raw materials were prepared so as to have the glass composition shown in the table was put in a platinum crucible and then melted at 1600 to 1650 ° C. for 24 hours. In melting the glass batch, the mixture was stirred and homogenized using a platinum stirrer. Next, the molten glass was poured onto a carbon plate and formed into a plate shape, and then slowly cooled at a temperature near the annealing point for 30 minutes.
  • the density, the average coefficient of thermal expansion CTE, the Young's modulus in the temperature range of 30 ⁇ 380 ° C., specific Young's modulus, strain point Ps, the temperature in the annealing point Ta, the softening point Ts, the hot viscosity of 10 4 poises The temperature at a high temperature viscosity of 10 3 poise, the temperature at a high temperature viscosity of 10 2.5 poise, the liquid phase temperature TL, and the viscosity at the liquid phase temperature (liquid phase viscosity log 10 ⁇ TL) were evaluated.
  • the density is a value measured by the well-known Archimedes method.
  • the average coefficient of thermal expansion CTE in the temperature range of 30 to 380 ° C. is a value measured with a dilatometer.
  • the Young's modulus is a value measured by a bending resonance method.
  • Young's modulus is a value obtained by dividing the Young's modulus measured by the bending resonance method by the density measured by the Archimedes method.
  • strain point Ps, the annealing point Ta, and the softening point Ts are values measured based on the method of ASTM C336.
  • High temperature viscosity 10 4 poises, 10 3 poise, temperature at 10 2.5 poise is a value measured by a platinum ball pulling method.
  • the liquidus temperature TL is a temperature at which crystals pass through a standard sieve 30 mesh (500 ⁇ m) and the glass powder remaining on 50 mesh (300 ⁇ m) is placed in a platinum boat and then kept in a temperature gradient furnace for 24 hours to precipitate crystals. Is a measured value.
  • the viscosity at the liquidus temperature is a value measured by a platinum ball pulling method.
  • the crack resistance was evaluated as follows. First, in a constant temperature and humidity chamber maintained at a humidity of 30% and a temperature of 25 ° C., each sample was placed on the stage of a Vickers hardness tester, and a Vickers indenter (diamond shaped diamond indenter) was placed on the glass surface (optical polishing surface). Press for 15 seconds with various loads. Next, the number of cracks generated from the four corners of the indentation is counted by 15 seconds after the unloading, and the ratio to the maximum number of cracks (4) is obtained to obtain the crack generation rate. In addition, this crack incidence rate measured 20 times with the same load, and calculated
  • Chemical resistance was evaluated as follows. First, after both surfaces of each sample were optically polished, a part was masked and then immersed in a 63 BHF solution (HF: 6 mass%, NH 4 F: 30 mass%) at 20 ° C. for 30 minutes. After immersion, the mask is removed, the level difference between the mask part and the erosion part is measured with a surface roughness meter, and the value is taken as the erosion amount. If the erosion amount is 8.0 ⁇ m or less, “ ⁇ ”, over 8.0 ⁇ m The case of was evaluated as “ ⁇ ”.
  • the alkali-free glass of the present invention is a cover glass for an image sensor such as a charge coupled device (CCD) and a solid-state proximity type solid-state imaging device (CIS) in addition to a glass plate for a flat panel display such as a liquid crystal display and an organic EL display. It can be suitably used for glass plates for solar cells and cover glasses, glass plates for organic EL lighting, and the like.
  • CCD charge coupled device
  • CIS solid-state proximity type solid-state imaging device

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Glass Compositions (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 ガラス組成中のBの含有量が少ない場合でも、耐クラック性、耐薬品性を兼備し得る無アルカリガラスであって、ガラス組成として、モル%で、SiO 66~78%、Al 8~15%、B 0~1.8%、MgO 0~8%、CaO 1~15%、SrO 0~8%、BaO 1~8%を含有し、実質的にアルカリ金属酸化物を含有せず、歪点が725℃より高いことを特徴とする。

Description

無アルカリガラス
 本発明は、無アルカリガラスに関し、特に有機ELディスプレイに好適な無アルカリガラスに関する。
 有機ELディスプレイ等の電子デバイスは、薄型で動画表示に優れると共に、消費電力も低いため、携帯電話のディスプレイ等の用途に使用されている。
 有機ELディスプレイの基板として、ガラス板が広く使用されている。この用途のガラス板には、主に、以下の特性が要求される。特に、下記の(2)の要求特性が重要視される。
(1)熱処理工程で成膜された半導体物質中にアルカリイオンが拡散する事態を防止するために、実質的にアルカリ金属酸化物を含有しないこと。
(2)p-Si・TFTの製造工程において、ガラス板の熱収縮を低減するために、歪点が高いこと。
(3)ガラス板を低廉化するために、生産性に優れること、特に耐失透性や溶融性に優れること。
(4)フォトエッチング工程で使用される種々の酸、アルカリ等の薬品、特にフッ酸系の薬液によって劣化しないように、耐薬品性が高いこと。
(5)ガラス板が大型化、薄型化した場合に、ディスプレイの製造工程中でガラス板の撓み量(撓みに伴う揺れ幅)を低減するために、ヤング率、ヤング率/密度(比ヤング率)が高いこと。
特許第3804112号公報
  有機ELディスプレイのパネルメーカーでは、ガラスメーカーで成形された大型のガラス板の上に複数個分のデバイスを作製した後、デバイス毎に分割切断して、コストダウンを図っている(所謂、多面取り)。この多面取り工程では、ガラス板を切断した後、2枚のガラス板の貼り合わせを行ったり、貼り合わせた後に切断を行って、有機ELディスプレイを完成させるため、ガラス板の周囲に面取り加工が施されることなく、切断面がそのまま存在する状態で後工程を流れたり、或いは最終製品になることが多い。このような事情から、多面取りを行う場合、耐クラック性を高めることが重要になる。
 また、本発明者の詳細な実験によると、上記(2)の要求特性を満たすためには、ガラス組成中のBの含有量を低減することが有効である。しかし、ガラス組成中のBの含有量を低減すると、耐クラック性が低下し易くなる。更に、ガラス組成中のBの含有量を低減すると、耐薬品性、溶融性も低下し易くなり、上記(3)、(4)の要求特性を満たし難くなる。
 そこで、本発明は、上記事情に鑑み成されたものであり、その技術的課題は、ガラス組成中のBの含有量が少ない場合でも、耐クラック性、耐薬品性を兼備し得る無アルカリガラスを創案することである。
 本発明者等は、種々の実験を繰り返した結果、無アルカリガラスのガラス組成範囲を厳密に規制すると共に、ガラス特性を所定範囲に規制することにより、上記技術的課題を解決できることを見出し、本発明として、提案するものである。すなわち、本発明の無アルカリガラスは、ガラス組成として、モル%で、SiO 66~78%、Al 8~15%、B 0~1.8%、MgO 0~8%、CaO 1~15%、SrO 0~8%、BaO 1~8%を含有し、実質的にアルカリ金属酸化物を含有せず、歪点が725℃より高いことを特徴とする。ここで、「実質的にアルカリ金属酸化物を含有せず」とは、ガラス組成中のアルカリ金属酸化物(LiO、NaO、KO)の含有量が0.5モル%以下の場合を指す。「歪点」は、ASTM C336の方法に基づいて測定した値を指す。
 第二に、本発明の無アルカリガラスは、Bの含有量が0.1モル%未満であることが好ましい。
 第三に、本発明の無アルカリガラスは、Bの含有量が0.1モル%以上で且つ1モル%未満であることが好ましい。
 第四に、本発明の無アルカリガラスは、ガラス組成として、更に、SnOを0.001~1モル%含むことが好ましい。
 第五に、本発明の無アルカリガラスは、ヤング率が78GPaより大きいことが好ましい。ここで、「ヤング率」は、曲げ共振法により測定可能である。
 第六に、本発明の無アルカリガラスは、比ヤング率が29.5GPa/g・cm-3より大きいことが好ましい。ここで、「密度」は、アルキメデス法により測定可能である。
 第七に、本発明の無アルカリガラスは、液相温度が1260℃より低いことが好ましい。ここで、「液相温度」は、標準篩30メッシュ(500μm)を通過し、50メッシュ(300μm)に残るガラス粉末を白金ボートに入れた後、温度勾配炉中に24時間保持して、結晶の析出する温度を測定することにより算出可能である。
 第八に、本発明の無アルカリガラスは、粘度102.5ポアズにおける温度が1720℃以下であることが好ましい。ここで、「粘度102.5ポアズにおける温度」は、白金球引き上げ法で測定可能である。
 第九に、本発明の無アルカリガラスは、液相温度における粘度(液相粘度)が104.8ポアズ以上であることが好ましい。ここで、「液相温度における粘度」は、白金球引き上げ法で測定可能である。
 第十に、本発明の無アルカリガラスは、オーバーフローダウンドロー法で成形されてなることが好ましい。
 第十一に、本発明の無アルカリガラスは、有機ELデバイス、特に有機ELディスプレイに用いることが好ましい。
 本発明の無アルカリガラスにおいて、上記のように各成分の含有量を限定した理由を以下に示す。なお、各成分の含有量の説明において、%表示はモル%を表す。
 SiOは、ガラス骨格を形成する成分である。SiOの含有量は66~78%であり、好ましくは69~76%、70~75%または71~74%、特に好ましくは72~73%である。SiOの含有量が少な過ぎると、歪点を高めることが困難になり、また密度が高くなり過ぎる。一方、SiOの含有量が多過ぎると、高温粘度が高くなり、溶融性が低下し易くなり、またクリストバライト等の失透結晶が析出して、液相温度が高くなり易い。
 Alは、ガラス骨格を形成する成分であり、また歪点を高める成分であり、更に分相を抑制する成分である。Alの含有量は8~15%であり、好ましくは9~14%、9.5~13%または10~12%、特に好ましくは10.5~11.5%である。Alの含有量が少な過ぎると、歪点が低下し易くなり、またガラスが分相し易くなる。一方、Alの含有量が多過ぎると、ムライトやアノーサイト等の失透結晶が析出して、液相温度が高くなり易い。
 Bの含有量が多過ぎると、歪点が大幅に低下することに加えて、耐クラック性、耐薬品性が低下し易くなる。よって、Bの含有量は1.8%以下であり、好ましくは1.5%以下、1%以下、1%未満または0.7%以下、特に好ましくは0.6%以下である。一方、Bを少量導入すれば、耐クラック性が改善し、また溶融性、耐失透性が向上する。よって、Bの含有量は、好ましくは0.01%以上、0.1%以上、0.2%以上、0.3%以上または0.4%以上、特に好ましくは0.5%以上である。
 MgOは、高温粘性を下げて、溶融性を高める成分である。MgOの含有量は0~8%であり、好ましくは0~5%、0~4%、0.01~3.5%、0.1~3.2%または0.5~3%、特に好ましくは1~2.7%である。MgOの含有量が多過ぎると、歪点が低下し易くなる。
 B+MgOの含有量(BとMgOの合量)は、歪点を高める観点から、好ましくは6%以下、0.1~5%または1~4.5%、特に好ましくは2~4%である。なお、B+MgOの含有量が少な過ぎると、溶融性、耐クラック性、耐薬品性が低下し易くなる。
 モル比B/MgOは、好ましくは0.3以下、0.25以下、0.22以下、0.01~0.2または0.05~0.18、特に好ましくは0.1~0.17である。このようにすれば、耐失透性を適正な範囲に制御し易くなる。
 CaOは、歪点を低下させずに、高温粘性を下げて、溶融性を顕著に高める成分である。また、CaOは、アルカリ土類金属酸化物の中では、導入原料が比較的安価であるため、原料コストを低廉化する成分である。CaOの含有量は1~15%であり、好ましくは3~12%、4~10%または4.7~8.9%、特に好ましくは5.8~8.5%である。CaOの含有量が少な過ぎると、上記効果を享受し難くなる。一方、CaOの含有量が多過ぎると、熱膨張係数が高くなり過ぎると共に、ガラス組成の成分バランスが損なわれて、ガラスが失透し易くなる。
 SrOは、分相を抑制し、また耐失透性を高める成分である。更に歪点を低下させずに、高温粘性を下げて、溶融性を高める成分であると共に、液相温度の上昇を抑制する成分である。SrOの含有量は0~8%であり、好ましくは0.1~6%、0.5~5%または0.8~4%、特に好ましくは1~3%である。SrOの含有量が少な過ぎると、分相を抑制する効果や耐失透性を高める効果を享受し難くなる。一方、SrOの含有量が多過ぎると、ガラス組成の成分バランスが損なわれて、ストロンチウムシリケート系の失透結晶が析出し易くなる。
 BaOは、アルカリ土類金属酸化物の中では、耐失透性を顕著に高める成分である。BaOの含有量は1~8%であり、好ましくは2~7%、3~6%または3.5~5.5%、特に好ましくは4~5%である。BaOの含有量が少な過ぎると、液相温度が高くなり、耐失透性が低下し易くなる。一方、BaOの含有量が多過ぎると、ガラス組成の成分バランスが損なわれて、BaOを含む失透結晶が析出し易くなる。
 RO(MgO、CaO、SrO及びBaOの合量)は、好ましくは12~18%、13~17.5%または13.5~17%、特に好ましくは14~16.8%である。ROの含有量が少な過ぎると、溶融性が低下し易くなる。一方、ROの含有量が多過ぎると、ガラス組成の成分バランスが損なわれて、耐失透性が低下し易くなる。
 モル比MgO/ROは、好ましくは0.3以下、0.25以下、0.22以下、0.01~0.2または0.05~0.18、特に好ましくは0.1~0.17である。このようにすれば、歪点、耐クラック性、耐薬品性の低下を抑制し易くなる。
 モル比CaO/ROは、好ましくは0.8以下、0.7以下、0.1~0.7、0.2~0.65または0.3~0.6、特に好ましくは0.45~0.55である。このようにすれば、耐失透性と溶融性を最適化し易くなる。
 モル比SrO/ROは、好ましくは0.4以下、0.35以下、0.3以下、0.01~0.2または0.03~0.18、特に好ましくは0.05~0.15である。このようにすれば、ストロンチウムシリケート系の失透結晶の析出を抑制し易くなる。
 モル比BaO/ROは、好ましくは0.5以下、0.4以下、0.1~0.37以下、0.2~0.35または0.24~0.32、特に好ましくは0.27~0.3である。このようにすれば、溶融性を高めつつ、耐失透性を高め易くなる。
 上記成分以外にも、例えば、以下の成分をガラス組成中に添加してもよい。なお、上記成分以外の他成分の含有量は、本発明の効果を的確に享受する観点から、合量で10%以下、特に5%以下が好ましい。
 ZnOは、溶融性を高める成分であるが、ZnOを多量に含有させると、ガラスが失透し易くなり、また歪点が低下し易くなる。ZnOの含有量は0~5%、0~3%または0~0.5%、特に0~0.3%が好ましく、実質的に含有しないことが望ましい。ここで、「実質的にZnOを含有しない」とは、ガラス組成中のZnOの含有量が0.2%以下の場合を指す。
 Pは、歪点を高める成分であるが、Pを多量に含有させると、ガラスが分相し易くなる。Pの含有量は0~1.5%または0~1.2%、特に0~1%が好ましい。
 TiOは、高温粘性を下げて、溶融性を高める成分であると共に、ソラリゼーションを抑制する成分であるが、TiOを多量に含有させると、ガラスが着色して、透過率が低下し易くなる。よって、TiOの含有量は0~3%、0~1%または0~0.1%、特に0~0.02%が好ましい。
 Y、Nb、Laには、歪点、ヤング率等を高める働きがある。しかし、これらの成分の含有量が多過ぎると、密度、原料コストが増加し易くなる。よって、Y、Nb、Laの含有量は、各々0~3%または0~1%、特に0~0.1%が好ましい。
 SnOは、高温域で良好な清澄作用を有する成分であると共に、歪点を高める成分であり、また高温粘性を低下させる成分である。SnOの含有量は0~1%、0.001~1%または0.05~0.5%、特に0.1~0.3%が好ましい。SnOの含有量が多過ぎると、SnOの失透結晶が析出し易くなる。なお、SnOの含有量が0.001%より少ないと、上記効果を享受し難くなる。
 SnOは、清澄剤として好適であるが、ガラス特性を著しく損なわない限り、SnO以外の清澄剤を使用してもよい。具体的には、As、Sb、CeO、F、Cl、SO、Cを合量で例えば1%まで添加してもよく、Al、Si等の金属粉末を合量で例えば1%まで添加してもよい。
 As、Sbは、清澄性に優れるが、環境的観点から、極力導入しないことが好ましい。更に、Asは、ガラス中に多量に含有させると、耐ソラリゼーション性が低下する傾向にあるため、その含有量は0.5%以下、特に0.1%以下が好ましく、実質的に含有させないことが望ましい。ここで、「実質的にAsを含有しない」とは、ガラス組成中のAsの含有量が0.05%未満の場合を指す。また、Sbの含有量は1%以下、特に0.5%以下が好ましく、実質的に含有させないことが望ましい。ここで、「実質的にSbを含有しない」とは、ガラス組成中のSbの含有量が0.05%未満の場合を指す。
 Clは、無アルカリガラスの溶融を促進する効果があり、Clを添加すれば、溶融温度を低温化し得ると共に、清澄剤の作用を促進し、結果として、溶融コストを低廉化しつつ、ガラス製造窯の長寿命化を図ることができる。しかし、Clの含有量が多過ぎると、歪点が低下する。よって、Clの含有量は0.5%以下、特に0.1%以下が好ましい。なお、Clの導入原料として、塩化ストロンチウム等のアルカリ土類金属酸化物の塩化物、或いは塩化アルミニウム等を使用することができる。
 本発明の無アルカリガラスにおいて、歪点は725℃超であり、好ましくは730℃以上、より好ましくは735℃以上、更に好ましくは740℃以上である。このようにすれば、p-Si・TFTの製造工程において、ガラス板の熱収縮を抑制することができる。
 ヤング率は、78GPa超、78.5GPa以上、79GPa以上または79.5GPa以上、特に79.7Pa以上が好ましい。このようにすれば、ガラス板の撓みを抑制できるため、ディスプレイの製造工程等において、ガラス板の取扱いが容易になる。
 ヤング率/密度は、9.5GPa/g・cm-3超、29.8GPa/g・cm-3以上、30.1GPa/g・cm-3以上または30.3GPa/g・cm-3以上、特に30.5GPa/g・cm-3以上が好ましい。ヤング率/密度の値を大きくすると、ガラス板の撓み量を大幅に抑制することができる。
 液相温度は、1260℃未満または1250℃以下、特に1240℃以下が好ましい。このようにすれば、ガラス製造時に失透結晶が発生して、生産性が低下する事態を防止し易くなる。更に、オーバーフローダウンドロー法でガラス板を成形し易くなるため、ガラス板の表面品位を高めることが可能になると共に、ガラス板の製造コストを低廉化することができる。なお、液相温度は、耐失透性の指標であり、液相温度が低い程、耐失透性に優れる。
 102.5ポアズにおける温度は、1720℃以下、1700℃以下または1690℃以下、特に1680℃以下が好ましい。102.5ポアズにおける温度が高くなると、溶解性、清澄性を確保し難くなり、ガラス板の製造コストが高騰する。
 液相温度における粘度は、104.8ポアズ以上、105.0ポアズ以上または105.2ポアズ以上、特に105.3ポアズ以上が好ましい。このようにすれば、成形時に失透が生じ難くなるため、オーバーフローダウンドロー法でガラス板を成形し易くなり、結果として、ガラス板の表面品位を高めることが可能になり、またガラス板の製造コストを低廉化することができる。なお、液相粘度は、成形性の指標であり、液相粘度が高い程、成形性に優れる。
 本発明の無アルカリガラスにおいて、β-OH値を低下させると、歪点を高めることができる。β-OH値は、好ましくは0.5/mm以下、0.45/mm以下、0.4/mm以下、0.35/mm以下または0.3/mm以下、特に好ましくは0.25/mm以下である。β-OH値が大き過ぎると、歪点が低下し易くなる。なお、β-OH値が小さ過ぎると、溶融性が低下し易くなる。よって、β-OH値は、好ましくは0.01/mm以上、特に好ましくは0.05/mm以上である。
 β-OH値を低下させる方法として、以下の方法が挙げられる。(1)含水量の低い原料を選択する。(2)ガラス中にβ-OH値を低下させる成分(Cl、SO等)を添加する。(3)炉内雰囲気中の水分量を低下させる。(4)溶融ガラス中でNバブリングを行う。(5)小型溶融炉を採用する。(6)溶融ガラスの流量を多くする。(7)電気溶融法を採用する。
 ここで、「β-OH値」は、FT-IRを用いてガラスの透過率を測定し、下記の式を用いて求めた値を指す。
β-OH値=(1/X)log(T/T
 上記の式中、Xは、ガラス肉厚(mm)であり、Tは、参照波長3846cm-1における透過率(%)であり、Tは、水酸基吸収波長3600cm-1付近における最小透過率(%)である。
 本発明の無アルカリガラスは、オーバーフローダウンドロー法で成形されてなることが好ましい。オーバーフローダウンドロー法は、耐熱性の樋状構造物の両側から溶融ガラスを溢れさせて、溢れた溶融ガラスを樋状構造物の下端で合流させながら、下方に延伸成形してガラス板を製造する方法である。オーバーフローダウンドロー法では、ガラス板の表面になるべき面は樋状耐火物に接触せず、自由表面の状態で成形される。このため、未研磨で表面品位が良好なガラス板を安価に製造することができる。なお、オーバーフローダウンドロー法で用いる樋状構造物の構造や材質は、所望の寸法や表面精度を実現できるものであれば、特に限定されない。また、下方への延伸成形を行う際に、力を印加する方法も特に限定されない。例えば、充分に大きい幅を有する耐熱性ロールをガラスに接触させた状態で回転させて延伸する方法を採用してもよいし、複数の対になった耐熱性ロールをガラスの端面近傍のみに接触させて延伸する方法を採用してもよい。
 オーバーフローダウンドロー法以外にも、例えば、ダウンドロー法(スロットダウン法等)、フロート法等でガラス板を成形することも可能である。
 本発明の無アルカリガラスは、有機ELデバイス、特に有機ELディスプレイに用いることが好ましい。有機ELディスプレイのパネルメーカーでは、ガラスメーカーで成形された大型のガラス板の上に複数個分のデバイスを作製した後、デバイス毎に分割切断して、コストダウンを図っている(所謂、多面取り)。特にTV用途では、デバイス自体が大型化しており、これらのデバイスを多面取りするために、大型のガラス板が要求されている。本発明の無アルカリガラスは、液相温度が低く、また液相粘度が高いため、大型のガラス板を成形し易く、このような要求を満たすことができる。
 本発明の無アルカリガラスにおいて、厚み(板厚)は0.7mm以下、0.5mm以下、0.4mm以下または0.3mm以下、特に0.05~0.1mmが好ましい。厚みが小さい程、ディスプレイの軽量・薄型化、更にはフレキシブル化を図り易くなる。
 以下、実施例に基づいて、本発明を説明する。但し、以下の実施例は、単なる例示である。本発明は、以下の実施例に何ら限定されない。
 表1~3は、本発明の実施例(試料No.1~14)と比較例(試料No.15~17)を示している。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 まず表中のガラス組成になるように、ガラス原料を調合したガラスバッチを白金坩堝に入れた後、1600~1650℃で24時間溶融した。ガラスバッチの溶解に際しては、白金スターラーを用いて攪拌し、均質化を行った。次いで、溶融ガラスをカーボン板上に流し出して、板状に成形した後、徐冷点付近の温度で30分間徐冷した。得られた各試料について、密度、30~380℃の温度範囲における平均熱膨張係数CTE、ヤング率、比ヤング率、歪点Ps、徐冷点Ta、軟化点Ts、高温粘度10ポアズにおける温度、高温粘度10ポアズにおける温度、高温粘度102.5ポアズにおける温度、液相温度TL、及び液相温度における粘度(液相粘度log10ηTL)を評価した。
 密度は、周知のアルキメデス法で測定した値である。
 30~380℃の温度範囲における平均熱膨張係数CTEは、ディラトメーターで測定した値である。
 ヤング率は、曲げ共振法により測定した値である。
 比ヤング率(ヤング率/密度)は、曲げ共振法により測定したヤング率をアルキメデス法で測定した密度で除した値である。
 歪点Ps、徐冷点Ta、軟化点Tsは、ASTM C336の方法に基づいて測定した値である。
 高温粘度10ポアズ、10ポアズ、102.5ポアズにおける温度は、白金球引き上げ法で測定した値である。
 液相温度TLは、標準篩30メッシュ(500μm)を通過し、50メッシュ(300μm)に残るガラス粉末を白金ボートに入れた後、温度勾配炉中に24時間保持して、結晶の析出する温度を測定した値である。また、液相温度における粘度は、白金球引き上げ法で測定した値である。
 以下のようにして耐クラック性を評価した。まず湿度30%、温度25℃に保持された恒温恒湿槽内において、ビッカース硬度計のステージに各試料を載置し、ガラス表面(光学研磨面)にビッカース圧子(菱形状のダイヤモンド圧子)を種々の荷重で15秒間押し付ける。次に、徐荷後15秒までに圧痕の四隅から発生するクラック数をカウントし、最大のクラック数(4ヶ)に対する割合を求め、クラック発生率とする。なお、このクラック発生率は、同一荷重で20回測定し、その平均値を求めたものである。最後に、クラック発生率が50%になる時の荷重をクラック抵抗値とし、そのクラック抵抗値が140gf以上のものを「○」、140gf未満のものを「×」として評価した。
  以下のようにして耐薬品性を評価した。まず各試料の両面を光学研磨した後、一部をマスキングしてから63BHF溶液(HF:6質量%,NHF:30質量%)中に20℃で30分間浸漬した。浸漬後、マスクを除去し、マスク部分と浸食部分の段差を表面粗さ計で測定し、その値を浸食量とし、その侵食量が8.0μm以下のものを「○」、8.0μm超の場合を「×」として評価した。
 本発明の無アルカリガラスは、液晶ディスプレイ、有機ELディスプレイ等のフラットパネルディスプレイ用ガラス板以外にも、電荷結合素子(CCD)、等倍近接型固体撮像素子(CIS)等のイメージセンサー用カバーガラス、太陽電池用ガラス板及びカバーガラス、有機EL照明用ガラス板等に好適に使用可能である。

Claims (11)

  1.  ガラス組成として、モル%で、SiO 66~78%、Al 8~15%、B 0~1.8%、MgO 0~8%、CaO 1~15%、SrO 0~8%、BaO 1~8%を含有し、実質的にアルカリ金属酸化物を含有せず、歪点が725℃より高いことを特徴とする無アルカリガラス。
  2.  Bの含有量が0.1モル%未満であることを特徴とする請求項1に記載の無アルカリガラス。
  3.  Bの含有量が0.1モル%以上で且つ1モル%未満であることを特徴とする請求項1に記載の無アルカリガラス。
  4.  ガラス組成として、更に、SnOを0.001~1モル%含むことを特徴とする請求項1~3の何れかに記載の無アルカリガラス。
  5.  ヤング率が78GPaより大きいことを特徴とする請求項1~4の何れかに記載の無アルカリガラス。
  6.  ヤング率/密度が29.5GPa/g・cm-3より大きいことを特徴とする請求項1~5の何れかに記載の無アルカリガラス。
  7.  液相温度が1260℃より低いことを特徴とする請求項1~6の何れかに記載の無アルカリガラス。
  8.  粘度102.5ポアズにおける温度が1720℃以下であることを特徴とする請求項1~7のいずれかに記載の無アルカリガラス。
  9.  液相温度における粘度が104.8ポアズ以上であることを特徴とする請求項1~8の何れかに記載の無アルカリガラス。
  10.  オーバーフローダウンドロー法で成形されてなることを特徴とする請求項1~9の何れかに記載の無アルカリガラス。
  11.  有機ELデバイスに用いることを特徴とする請求項1~10の何れかに記載の無アルカリガラス。
PCT/JP2014/077191 2013-10-17 2014-10-10 無アルカリガラス WO2015056645A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020157032882A KR102248364B1 (ko) 2013-10-17 2014-10-10 무알칼리 유리
CN201911111485.0A CN110668694B (zh) 2013-10-17 2014-10-10 无碱玻璃板
KR1020217012837A KR102306475B1 (ko) 2013-10-17 2014-10-10 무알칼리 유리
CN201480037002.6A CN105452182B (zh) 2013-10-17 2014-10-10 无碱玻璃

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013216016A JP6256744B2 (ja) 2013-10-17 2013-10-17 無アルカリガラス板
JP2013-216016 2013-10-17

Publications (1)

Publication Number Publication Date
WO2015056645A1 true WO2015056645A1 (ja) 2015-04-23

Family

ID=52828090

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/077191 WO2015056645A1 (ja) 2013-10-17 2014-10-10 無アルカリガラス

Country Status (4)

Country Link
JP (1) JP6256744B2 (ja)
KR (2) KR102306475B1 (ja)
CN (3) CN108840563B (ja)
WO (1) WO2015056645A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016159345A1 (ja) * 2015-04-03 2016-10-06 日本電気硝子株式会社 ガラス
WO2016185976A1 (ja) * 2015-05-18 2016-11-24 日本電気硝子株式会社 無アルカリガラス基板
CN108290772A (zh) * 2016-01-12 2018-07-17 日本电气硝子株式会社 玻璃
WO2018198804A1 (ja) * 2017-04-27 2018-11-01 日本電気硝子株式会社 ガラス基板
JP2018184332A (ja) * 2017-04-27 2018-11-22 日本電気硝子株式会社 ガラス基板
CN110431119A (zh) * 2017-03-22 2019-11-08 日本电气硝子株式会社 玻璃板及其制造方法
EP3383809A4 (en) * 2015-12-01 2019-12-11 Kornerstone Materials Technology Co., Ltd ALKALINO-EARTHOUS ALUMINOSILICATE GLASS WITH LOW BORON CONTENT AND BARIUM FREE AND ITS APPLICATIONS
EP3613710A4 (en) * 2017-04-18 2020-04-29 Tunghsu Technology Group Co., Ltd. GLASS COMPOSITION, ALKALIN ALUMINOSILICATE GLASS, METHOD OF PREPARATION AND APPLICATIONS THEREOF

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7060915B2 (ja) * 2014-12-12 2022-04-27 日本電気硝子株式会社 無アルカリガラス
DE102017102900A1 (de) * 2016-05-04 2017-11-09 Schott Ag Pharmapackmittel mit einem chemisch beständigen Glas
CN109843817B (zh) * 2016-12-20 2021-11-02 日本电气硝子株式会社 玻璃
KR20230165866A (ko) * 2016-12-28 2023-12-05 니폰 덴키 가라스 가부시키가이샤 유리
MX2020006064A (es) 2017-12-19 2020-08-24 Ocv Intellectual Capital Llc Composicion de fibra de vidrio de alto rendimiento.
CN111132942A (zh) * 2017-12-26 2020-05-08 日本电气硝子株式会社 盖玻璃
US20210347679A1 (en) * 2018-09-25 2021-11-11 Corning Incorporated Dimensionally stable glasses
KR20210070295A (ko) * 2018-10-05 2021-06-14 니폰 덴키 가라스 가부시키가이샤 무알칼리 유리판
JP7389400B2 (ja) * 2018-10-15 2023-11-30 日本電気硝子株式会社 無アルカリガラス板
KR20230028715A (ko) * 2020-06-23 2023-03-02 니폰 덴키 가라스 가부시키가이샤 무알칼리 유리판

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08109037A (ja) * 1994-03-14 1996-04-30 Corning Inc アルミノケイ酸塩ガラス
JPH11217235A (ja) * 1997-10-27 1999-08-10 Carl Zeiss:Fa 高温耐性のあるランプバルブ用アルミノケイ酸塩ガラス及びその使用
JP2010006649A (ja) * 2008-06-27 2010-01-14 Nippon Electric Glass Co Ltd 無アルカリガラス
JP2011522767A (ja) * 2008-05-13 2011-08-04 コーニング インコーポレイテッド 希土類含有ガラス材料および基板ならびにこれら基板を含む装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3804112B2 (ja) * 1996-07-29 2006-08-02 旭硝子株式会社 無アルカリガラス、無アルカリガラスの製造方法およびフラットディスプレイパネル
US7833919B2 (en) * 2006-02-10 2010-11-16 Corning Incorporated Glass compositions having high thermal and chemical stability and methods of making thereof
JP5751439B2 (ja) * 2010-08-17 2015-07-22 日本電気硝子株式会社 無アルカリガラス
CN102417298A (zh) * 2010-09-27 2012-04-18 旭硝子株式会社 无碱玻璃
WO2012063643A1 (ja) * 2010-11-08 2012-05-18 日本電気硝子株式会社 無アルカリガラス
KR101927555B1 (ko) * 2011-01-25 2018-12-10 코닝 인코포레이티드 높은 열적 및 화학적 안정성을 갖는 유리 조성물
JP6202297B2 (ja) * 2011-12-29 2017-09-27 日本電気硝子株式会社 無アルカリガラス

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08109037A (ja) * 1994-03-14 1996-04-30 Corning Inc アルミノケイ酸塩ガラス
JPH11217235A (ja) * 1997-10-27 1999-08-10 Carl Zeiss:Fa 高温耐性のあるランプバルブ用アルミノケイ酸塩ガラス及びその使用
JP2011522767A (ja) * 2008-05-13 2011-08-04 コーニング インコーポレイテッド 希土類含有ガラス材料および基板ならびにこれら基板を含む装置
JP2010006649A (ja) * 2008-06-27 2010-01-14 Nippon Electric Glass Co Ltd 無アルカリガラス

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016159345A1 (ja) * 2015-04-03 2018-02-01 日本電気硝子株式会社 ガラス
WO2016159345A1 (ja) * 2015-04-03 2016-10-06 日本電気硝子株式会社 ガラス
JP2021063010A (ja) * 2015-04-03 2021-04-22 日本電気硝子株式会社 ガラス
JP7036168B2 (ja) 2015-05-18 2022-03-15 日本電気硝子株式会社 無アルカリガラス基板
JPWO2016185976A1 (ja) * 2015-05-18 2018-03-08 日本電気硝子株式会社 無アルカリガラス基板
US20180141849A1 (en) * 2015-05-18 2018-05-24 Nippon Electric Glass Co., Ltd. Non-alkali glass substrate
JP2022008627A (ja) * 2015-05-18 2022-01-13 日本電気硝子株式会社 無アルカリガラス基板
JP7177412B2 (ja) 2015-05-18 2022-11-24 日本電気硝子株式会社 無アルカリガラス基板
WO2016185976A1 (ja) * 2015-05-18 2016-11-24 日本電気硝子株式会社 無アルカリガラス基板
TWI667217B (zh) * 2015-05-18 2019-08-01 日商日本電氣硝子股份有限公司 無鹼玻璃基板及其製造方法
CN113929298A (zh) * 2015-05-18 2022-01-14 日本电气硝子株式会社 无碱玻璃基板
CN107406302A (zh) * 2015-05-18 2017-11-28 日本电气硝子株式会社 无碱玻璃基板
US10590026B2 (en) 2015-05-18 2020-03-17 Nippon Electric Glass Co., Ltd. Non-alkali glass substrate
CN114014537A (zh) * 2015-05-18 2022-02-08 日本电气硝子株式会社 无碱玻璃基板
JP2020189786A (ja) * 2015-05-18 2020-11-26 日本電気硝子株式会社 無アルカリガラス基板
EP3383809A4 (en) * 2015-12-01 2019-12-11 Kornerstone Materials Technology Co., Ltd ALKALINO-EARTHOUS ALUMINOSILICATE GLASS WITH LOW BORON CONTENT AND BARIUM FREE AND ITS APPLICATIONS
CN108290772A (zh) * 2016-01-12 2018-07-17 日本电气硝子株式会社 玻璃
CN110431119A (zh) * 2017-03-22 2019-11-08 日本电气硝子株式会社 玻璃板及其制造方法
US11753329B2 (en) * 2017-03-22 2023-09-12 Nippon Electric Glass Co., Ltd. Glass plate and method for manufacturing same
EP3613710A4 (en) * 2017-04-18 2020-04-29 Tunghsu Technology Group Co., Ltd. GLASS COMPOSITION, ALKALIN ALUMINOSILICATE GLASS, METHOD OF PREPARATION AND APPLICATIONS THEREOF
US11407674B2 (en) 2017-04-18 2022-08-09 Tunghsu Technology Group Co., Ltd. Composition for glass, alkaline-earth aluminosilicate glass, and preparation method and application thereof
JP2022010144A (ja) * 2017-04-27 2022-01-14 日本電気硝子株式会社 ガラス基板
JP7001987B2 (ja) 2017-04-27 2022-01-20 日本電気硝子株式会社 ガラス基板
JP2018184332A (ja) * 2017-04-27 2018-11-22 日本電気硝子株式会社 ガラス基板
US11427496B2 (en) 2017-04-27 2022-08-30 Nippon Electric Glass Co., Ltd. Glass substrate
US20220363585A1 (en) * 2017-04-27 2022-11-17 Nippon Electric Glass Co., Ltd. Glass substrate
WO2018198804A1 (ja) * 2017-04-27 2018-11-01 日本電気硝子株式会社 ガラス基板
JP7226508B2 (ja) 2017-04-27 2023-02-21 日本電気硝子株式会社 ガラス基板

Also Published As

Publication number Publication date
JP2015078092A (ja) 2015-04-23
JP6256744B2 (ja) 2018-01-10
CN105452182B (zh) 2019-11-15
CN108840563A (zh) 2018-11-20
KR102248364B1 (ko) 2021-05-06
KR20210049982A (ko) 2021-05-06
CN108840563B (zh) 2020-11-10
CN110668694A (zh) 2020-01-10
CN110668694B (zh) 2023-06-13
CN105452182A (zh) 2016-03-30
KR20160071356A (ko) 2016-06-21
KR102306475B1 (ko) 2021-09-29

Similar Documents

Publication Publication Date Title
JP6256744B2 (ja) 無アルカリガラス板
JP6202353B2 (ja) 無アルカリガラス
JP5874316B2 (ja) 無アルカリガラス
KR101413549B1 (ko) 무알칼리 유리
JP5831838B2 (ja) 無アルカリガラス
US8785336B2 (en) Alkali-free glass
JP5757451B2 (ja) 無アルカリガラス
JP5751439B2 (ja) 無アルカリガラス
JP7307407B2 (ja) 無アルカリガラス
WO2020080163A1 (ja) 無アルカリガラス板
JP7389400B2 (ja) 無アルカリガラス板
JP6787872B2 (ja) 無アルカリガラス板
JP6631942B2 (ja) 無アルカリガラス板
WO2021256466A1 (ja) 無アルカリガラス板
WO2021261445A1 (ja) 無アルカリガラス板
KR20160023699A (ko) 무알칼리 유리

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480037002.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14854148

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157032882

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14854148

Country of ref document: EP

Kind code of ref document: A1