WO2015055136A1 - 用于烯烃聚合催化剂的球形载体、催化剂组分、催化剂及它们的制备方法 - Google Patents

用于烯烃聚合催化剂的球形载体、催化剂组分、催化剂及它们的制备方法 Download PDF

Info

Publication number
WO2015055136A1
WO2015055136A1 PCT/CN2014/088806 CN2014088806W WO2015055136A1 WO 2015055136 A1 WO2015055136 A1 WO 2015055136A1 CN 2014088806 W CN2014088806 W CN 2014088806W WO 2015055136 A1 WO2015055136 A1 WO 2015055136A1
Authority
WO
WIPO (PCT)
Prior art keywords
dibenzoate
pentanediol
methyl
dimethoxypropane
formula
Prior art date
Application number
PCT/CN2014/088806
Other languages
English (en)
French (fr)
Inventor
李威莅
夏先知
刘月祥
凌永泰
赵瑾
张纪贵
高富堂
高平
谭扬
彭人琪
张志会
林洁
段瑞林
马长友
Original Assignee
中国石油化工股份有限公司
中国石油化工股份有限公司北京化工研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201310491648.9A external-priority patent/CN104558284B/zh
Priority claimed from CN201310491641.7A external-priority patent/CN104558283B/zh
Priority claimed from CN201310491393.6A external-priority patent/CN104558281B/zh
Application filed by 中国石油化工股份有限公司, 中国石油化工股份有限公司北京化工研究院 filed Critical 中国石油化工股份有限公司
Priority to KR1020167012712A priority Critical patent/KR102019727B1/ko
Priority to SG11201603004RA priority patent/SG11201603004RA/en
Priority to JP2016524132A priority patent/JP6397908B2/ja
Priority to US15/030,000 priority patent/US9951157B2/en
Priority to BR112016008605-8A priority patent/BR112016008605B1/pt
Priority to RU2016118406A priority patent/RU2668082C2/ru
Priority to EP14854726.8A priority patent/EP3059263B1/en
Publication of WO2015055136A1 publication Critical patent/WO2015055136A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/04Monomers containing three or four carbon atoms
    • C08F10/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/04Monomers containing three or four carbon atoms
    • C08F110/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/02Carriers therefor
    • C08F4/022Magnesium halide as support anhydrous or hydrated or complexed by means of a Lewis base for Ziegler-type catalysts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/647Catalysts containing a specific non-metal or metal-free compound
    • C08F4/649Catalysts containing a specific non-metal or metal-free compound organic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/65Pretreating the metal or compound covered by group C08F4/64 before the final contacting with the metal or compound covered by group C08F4/44
    • C08F4/652Pretreating with metals or metal-containing compounds
    • C08F4/654Pretreating with metals or metal-containing compounds with magnesium or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65916Component covered by group C08F4/64 containing a transition metal-carbon bond supported on a carrier, e.g. silica, MgCl2, polymer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2410/00Features related to the catalyst preparation, the catalyst use or to the deactivation of the catalyst
    • C08F2410/01Additive used together with the catalyst, excluding compounds containing Al or B
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2410/00Features related to the catalyst preparation, the catalyst use or to the deactivation of the catalyst
    • C08F2410/06Catalyst characterized by its size

Definitions

  • the present invention relates to a spherical support, a catalyst component, a catalyst for use in an olefin polymerization catalyst, and a process for the preparation thereof.
  • catalysts used in the polymerization of olefins are prepared by loading titanium halide on activated magnesium chloride.
  • a common method for preparing active magnesium chloride is to react anhydrous MgCl 2 with an alcohol to form a magnesium chloride-alcohol adduct of the general formula MgCl 2 ⁇ mROH ⁇ nH 2 O, and then load the titanium halide with the adduct.
  • a solid component of the olefin polymerization catalyst is prepared.
  • Such alcoholates can be prepared by spray drying, spray cooling, high pressure extrusion or high speed stirring. See, for example, US Pat. No. 4,421, 674, US Pat. No. 4,469, 648, WO 870, 760, s, WO 931 166, US Pat. No. 5,100,849, US Pat. No. 6,020, 279, US Pat.
  • the compound is prepared by reacting MgX 2 and an alcohol compound represented by the formula R 1 OH at 30-160 ° C in the presence of an inert dispersion medium to form a magnesium halide alcoholate solution;
  • the alkane compound is reacted at 30 to 160 ° C to form the magnesium compound which can be used as a carrier; wherein X is chlorine or bromine, and R 1 is a C 1 - C 12 linear or branched alkyl group.
  • CN102040680A also discloses an olefin polymerization catalyst prepared by using the compound which can be used as a carrier for an olefin polymerization catalyst in the aforementioned patent application.
  • Another object of the invention is to provide a solid composition (typically a spherical carrier) prepared by the above process.
  • Still another object of the present invention is to provide a catalyst component for olefin polymerization prepared using the solid composition as a carrier.
  • Still another object of the present invention is to provide a catalyst for olefin polymerization comprising the catalyst component.
  • Yet another object of the invention is to provide the use of the catalyst in the polymerization of olefins.
  • the present invention provides a process for the preparation of a spherical support for the preparation of an olefin polymerization catalyst, the process comprising: reacting at least the following components directly in the presence of at least one polymeric dispersion stabilizer The solid particulate product is precipitated: (a) a magnesium halide; (b) an organic compound containing an active hydrogen; and (c) an alkylene oxide compound.
  • the invention provides a spherical carrier prepared by the above method.
  • the present invention provides a method of preparing a solid composition useful for the preparation of an olefin polymerization catalyst component, the method comprising the steps of:
  • X is a halogen and R 1 is a C 1 -C 12 linear or branched alkyl group;
  • R 2 and R 3 are the same or different and are each independently hydrogen or a C 1 -C 5 straight or branched alkyl group which is unsubstituted or substituted by halogen;
  • the organic alcohol is used in an amount of 3 to 30 moles per mole of the magnesium halide, and the alkylene oxide compound represented by the formula (2) is used in an amount of 1 to 10 moles; and the amount of the polymer dispersion stabilizer is used. It is 0.1 to 10% by weight based on the total amount of the magnesium halide and the organic alcohol.
  • the invention provides solids prepared by the above methods combination.
  • the solid composition contains the magnesium compound represented by the formula (1) and the alkylene oxide compound represented by the formula (2).
  • R 1 is a linear or branched alkyl group of C 1 -C 12 ;
  • R 2 and R 3 are the same or different and each independently is hydrogen or a C 1 -C 5 linear chain which is unsubstituted or substituted by halogen Or branched alkyl;
  • X is halogen;
  • the content of the alkylene oxide compound represented by the formula (2) is from 0.01 to 0.8 mol per mol of the magnesium compound represented by the formula (1).
  • the present invention provides a catalyst component for the polymerization of olefins comprising a reaction product of the following components:
  • At least one internal electron donor is provided.
  • the present invention provides a method of preparing a catalyst component, the method comprising the steps of:
  • the present invention provides a catalyst for the polymerization of olefins comprising:
  • the present invention provides the use of the above catalyst for olefin polymerization in the polymerization of olefins.
  • the present invention has the following advantages:
  • a solid particle having a good particle morphology and a narrow particle size distribution can be obtained without adding an inert dispersion medium during the preparation of the solid composition or the spherical carrier, thereby improving the unit volume reactor of the solid composition or the spherical carrier. productivity;
  • the catalyst for olefin polymerization of the present invention has a high stereoregularity in the polymerization of an olefin (particularly propylene polymerization or copolymerization);
  • the catalyst for olefin polymerization of the present invention shows high activity.
  • Example 1 is a 1 H-NMR chart of a spherical carrier prepared in Example 1;
  • Figure 2 is a 1 H-NMR chart of the spherical support prepared in Example 2;
  • Figure 3 is a 1 H-NMR chart of the spherical support prepared in Example 13;
  • Figure 4 is a 1 H-NMR chart of the spherical support prepared in Example 16.
  • Figure 5 is an optical micrograph of a spherical support prepared in Example 1;
  • Figure 6 is an optical micrograph of a bulk carrier prepared in Comparative Example 3.
  • spherical carrier means that the carrier has a spheroidal particle morphology without requiring the carrier to have a perfect spherical morphology.
  • carrier refers to a material that does not have olefin polymerization activity, i.e., does not contain an active component, such as a titanium compound, that catalyzes the polymerization of an olefin.
  • the solid product is precipitated by a chemical reaction, that is, the solid product is directly precipitated in the original system by a chemical reaction during the preparation process, without passing the volatile solvent or changing the temperature of the system (such as spray drying, lowering the temperature of the system) And other means to precipitate the reactants to obtain solid particles;
  • the shape of the solid product (typically spherical) can be obtained without adding an inert carrier material (e.g., SiO 2 , metal oxide, etc.) having a good particle morphology during the preparation.
  • an inert carrier material e.g., SiO 2 , metal oxide, etc.
  • the present invention provides a process for the preparation of a solid composition which can be used as a support in the preparation of an olefin polymerization catalyst component, and which is typically spherical, the process comprising: at least one In the presence of a polymeric dispersion stabilizer, at least the following components are reacted and the solid product is directly precipitated: (a) a magnesium halide; (b) an organic compound containing an active hydrogen; and (c) an alkylene oxide compound.
  • the method of the present invention for preparing a solid composition comprises:
  • the active hydrogen-containing organic compound may be used in an amount of 3 to 30 moles, preferably 4 to 20 moles per mole of the magnesium halide.
  • the polymer dispersion stabilizer may be used in an amount of 0.1 to 10% by weight, preferably 0.2 to 5% by weight based on the total amount of the magnesium halide and the active hydrogen-containing organic compound.
  • the reaction conditions in the step (1) may include a reaction temperature of 30 to 160 ° C, preferably 40 to 120 ° C; and a reaction time of 0.1 to 5 hours, preferably 0.5 to 2 hours.
  • the reaction in the step (1) can be carried out in a conventional reactor or vessel.
  • the reaction in the step (1) is carried out in a closed vessel, for example, in a reactor.
  • the magnesium halide used in the process of the invention has the formula MgX 2 wherein X is a halogen, preferably bromine, chlorine or iodine. More preferably, the magnesium halide is selected from at least one of magnesium dichloride, magnesium dibromide and magnesium diiodide, most preferably magnesium dichloride.
  • the organic compound containing active hydrogen used in the process of the present invention is preferably an organic alcohol R 1 OH, wherein R 1 is preferably a C 1 - C 8 linear or branched alkyl group, more preferably C 2 - C 5 A linear or branched alkyl group such as an ethyl group, a propyl group, a butyl group or a pentyl group.
  • the organic alcohol may, for example, be selected from the group consisting of methanol, ethanol, propanol, isopropanol, n-butanol, isobutanol, pentanol, isoamyl alcohol, n-hexanol, n-octanol and 2-ethyl-1- At least one of the alcohols.
  • the molecular weight of the polymer dispersion stabilizer is not particularly limited, but the weight average molecular weight of the polymer dispersion stabilizer is preferably more than 1,000, more preferably more than 3,000, still more preferably 6,000 to 2,000,000.
  • the polymer dispersion stabilizer may be selected from the group consisting of polyacrylates, styrene-maleic anhydride copolymers, polystyrene sulfonates, naphthalenesulfonic acid formaldehyde condensates, condensed alkylphenyl ether sulfates, and condensation.
  • the magnesium halide, the active hydrogen-containing organic compound, and the polymer dispersion stabilizer may participate in a process of forming a magnesium halide alcoholate solution in a form containing a trace amount of water.
  • trace amounts of water refer to water that is inevitably introduced during industrial production or during storage or transportation, rather than artificially added water.
  • the magnesium halide, the active hydrogen-containing organic compound, and the polymer dispersion stabilizer may be added in any order of addition.
  • the alkylene oxide compound may be used in an amount of 1 to 10 moles, preferably 2 to 6 moles per mole of the magnesium halide.
  • the reaction conditions in the step (2) may include a reaction temperature of 30 to 160 ° C, preferably 40 to 120 ° C; and a reaction time of 0.1 to 5 hours, preferably 0.2 to 1 hour.
  • the alkylene oxide compound used in the method of the present invention is preferably a compound represented by the formula (2).
  • R 2 and R 3 are the same or different and are each independently hydrogen or a C 1 -C 5 straight or branched alkyl group which is unsubstituted or substituted by halogen, more preferably R 2 and R 3 are each independently hydrogen or an unsubstituted or halogen-substituted straight-chain or branched C 1- C 3 alkyl group is still more preferably R 2 and R 3 are each independently hydrogen, methyl, ethyl, propyl, chloromethyl, Chloroethyl, chloropropyl, bromomethyl, bromoethyl or bromopropyl.
  • the alkylene oxide compound may be selected from the group consisting of ethylene oxide, propylene oxide, butylene oxide, epichlorohydrin, epichlorohydrin, epibromohydrin, and butyl bromide. At least one.
  • an inert dispersion medium may or may not be added in steps (1) and/or (2).
  • the inert dispersion medium is an inert dispersion medium conventionally used in the art, and may be, for example, at least one selected from the group consisting of liquid aliphatic, aromatic or cycloaliphatic hydrocarbons, and silicone oil.
  • the carbon chain length may be greater than At least one of 6 carbon linear or branched liquid alkanes, aromatic hydrocarbons such as toluene, kerosene, paraffin oil, petroleum jelly, white oil and methyl silicone oil.
  • the volume ratio of the inert dispersion medium to the active hydrogen-containing organic compound may be 1:0.2-20, preferably It is 1:0.5-10. In a preferred embodiment, no inert dispersion medium is added to either of steps (1) and (2).
  • a conventional additive component such as an electron donor.
  • the electron donor may be an electron donor compound conventionally used in the art, such as an ether, an ester, a ketone, an aldehyde, an amine, an amide, an alkoxysilane, etc., preferably at least one of an ether, an ester and an alkoxysilane.
  • titanium tetrachloride is not added during the reaction of the raw material including at least the component (a), the component (b) and the component (c).
  • the method of preparing the solid composition comprises:
  • magnesium halide MgX 2 and organic alcohol R 1 OH reacting magnesium halide MgX 2 and organic alcohol R 1 OH at 30-160 ° C in the presence of at least one polymer dispersion stabilizer to form a magnesium halide alcoholate solution;
  • X is a halogen and R 1 is a C 1 -C 12 linear or branched alkyl group;
  • the organic alcohol is used in an amount of 3 to 30 moles per mole of the magnesium halide, and the alkylene oxide compound represented by the formula (2) is used in an amount of 1 to 10 moles; and the amount of the polymer dispersion stabilizer is used. It is 0.1 to 10% by weight based on the total amount of the magnesium halide and the organic alcohol.
  • the organic alcohol is used in an amount of 4 to 20 moles per mole of the magnesium halide, and the alkylene oxide compound represented by the formula (2) is used in an amount of 2 to 6 moles; the polymer dispersion stabilizer is used.
  • the amount is from 0.2 to 5% by weight based on the total amount of the magnesium halide and the organic alcohol.
  • the reaction time in the step (1) may be from 0.1 to 5 hours, preferably from 0.5 to 2 hours; and the reaction time in the step (2) may be from 0.1 to 5 hours, preferably from 0.2 to 1. hour.
  • the method of preparing the solid composition comprises:
  • the method of preparing the solid composition comprises:
  • the solid particles are directly precipitated in an amount of from 0.2 to 1 hour, more preferably from 0.3 to 1 hour, wherein the alkylene oxide compound is used in an amount of from 1 to 10 moles, preferably from 2 to 6 moles per mole of the magnesium halide;
  • the process of recovering solid particles can be carried out according to conventional solid-liquid separation techniques in the art, for example, by filtration, decantation, centrifugation, and the like.
  • the step (3) may further comprise washing and drying the obtained solid composition particles with an inert hydrocarbon solvent.
  • the inert hydrocarbon solvent is preferably a linear or linear liquid alkane or an aromatic hydrocarbon having a carbon chain length of more than 4 carbons, and may be, for example, hexane, heptane, octane, decane, toluene or the like.
  • the invention provides a solid composition prepared by the above process.
  • the solid composition is typically spherical and can be used as a carrier in the preparation of the olefin polymerization catalyst component.
  • the solid composition contains the magnesium compound represented by the formula (1) and the alkylene oxide compound represented by the formula (2).
  • R 1 is a C 1 - C 12 linear or branched alkyl group, preferably a C 1 - C 8 linear or branched alkyl group, more preferably a C 2 - C 5 linear or branched alkyl group, Such as ethyl, propyl, butyl or pentyl;
  • R 2 and R 3 are the same or different and are each independently hydrogen or a C 1 -C 5 linear or branched alkyl group which is unsubstituted or substituted by halogen, Preference is given to hydrogen or a linear or branched alkyl group of C 1 -C 3 which is unsubstituted or substituted by halogen, more preferably hydrogen, methyl, ethyl, propyl, chloromethyl, chloroethyl or chloropropane a bromomethyl, bromoethyl or bromopropyl group;
  • X is a halogen, preferably bromine, chlorine or iod
  • the content of the alkylene oxide compound represented by the formula (2) is from 0.01 to 0.8 mol, preferably from 0.02 to 0.5 mol, more preferably from 0.02 to 0.3 mol, per mol of the magnesium compound represented by the formula (1). .
  • the alkylene oxide compound represented by the formula (2) is as described above.
  • the solid composition consists essentially of the magnesium compound represented by the formula (1) and the alkylene oxide compound represented by the formula (2), and optionally further contains a trace amount of the polymer Dispersion stabilizer.
  • the solid composition preferably exists in the form of spherical particles.
  • the solid composition preferably has an average particle diameter (D50) of from 30 to 125 ⁇ m, more preferably from 40 to 85 ⁇ m.
  • the average particle size and particle size distribution value of the solid composition were measured using a Masters Sizer 2000 particle size analyzer (manufactured by Malvern Instruments Ltd).
  • the present invention provides a catalyst component for the polymerization of olefins comprising a reaction product of the following components:
  • At least one internal electron donor is provided.
  • the catalyst component of the present invention is characterized in that the solid composition contains the magnesium compound represented by the formula (1) and the alkylene oxide compound represented by the formula (2).
  • R 1 is a C 1 -C 12 linear or branched alkyl group, preferably a C 1 -C 8 linear or branched alkyl group, more preferably a C 2 -C 5 linear or branched alkyl group a group such as an ethyl group, a propyl group, a butyl group or a pentyl group;
  • R 2 and R 3 are the same or different and are each independently hydrogen or a C 1 -C 5 straight or branched alkyl group which is unsubstituted or substituted by halogen, preferably hydrogen or C 1 - unsubstituted or substituted by halogen a linear or branched alkyl group of C 3 , more preferably hydrogen, methyl, ethyl, propyl, chloromethyl, chloroethyl, chloropropyl, bromomethyl, bromoethyl or bromine Propyl group
  • X is a halogen, preferably bromine, chlorine or iodine, more preferably chlorine;
  • n is from 0.1 to 1.9, preferably from 0.5 to 1.5
  • n is from 0.1 to 1.9, preferably from 0.5 to 1.5
  • m + n 2; preferably m is 1 and n is 1;
  • the content of the alkylene oxide compound represented by the formula (2) is from 0.01 to 0.8 mol, preferably from 0.02 to 0.5 mol, more preferably from 0.02 to 0.3 mol, per mol of the magnesium compound represented by the formula (1). .
  • the alkylene oxide compound represented by the formula (2) is ethylene oxide, propylene oxide, butylene oxide, epichlorohydrin, epichlorohydrin, epibromohydrin and epoxy bromide. At least one of the alkane.
  • relative The titanium compound in the reaction to form the catalyst component, may be used in an amount of 5 to 200 moles, preferably 10 to 100 moles per mole of the magnesium compound represented by the formula (1) in the solid composition; the amount of the internal electron donor may be 0-0.5 moles, preferably 0.08-0.4 moles.
  • the titanium compound may be various titanium compounds conventionally used in the art.
  • the titanium compound may be selected from a titanium compound of the formula Ti(OR 4 ) 4-a X a , wherein R 4 may be C 1 An aliphatic hydrocarbon group of -C 14 , preferably a C 1 -C 8 alkyl group such as methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl or the like; X may be a halogen such as F, Cl, Br, I or any combination thereof; a is an integer from 0-4.
  • the titanium compound is selected from the group consisting of titanium tetrachloride, titanium tetrabromide, titanium tetraiodide, titanium tetrabutoxide, titanium tetraethoxide, titanium monochlorobutoxide, dichlorodibutoxy Titanium, titanium trichloro-butoxide, titanium monochlorotriethoxy, titanium dichlorodiethoxylate and titanium trichloride monoethoxylate.
  • the internal electron donor may be various internal electron donor compounds conventionally used in the art, and may be selected, for example, from esters, ethers, ketones, amines, and silanes.
  • the internal electron donor is selected from a mono- or poly-aliphatic carboxylic acid ester or an aromatic carboxylic acid ester, a glycol ester compound, and a diether compound.
  • the mono- or poly-aliphatic carboxylic acid ester or aromatic carboxylic acid ester is selected from the group consisting of benzoate, phthalate, malonate, succinate, adipate, glutaric acid Esters, sebacates, maleates, naphthalene dicarboxylates, trimellitates, trimellitic acid esters and pyromellitic acid esters. More preferably, the mono- or polyhydric aliphatic carboxylic acid ester or aromatic carboxylic acid ester is selected from the group consisting of ethyl benzoate, diethyl phthalate, diisobutyl phthalate, ortho-benzene.
  • glycol ester compound is selected from the group consisting of compounds represented by formula (IV),
  • R I -R VI may be the same or different and each independently may be selected from hydrogen, C 1 -C 10 linear or branched alkyl, C 3 -C 10 cycloalkyl, C 6 -C 10 aryl And a C 7 -C 10 alkaryl or aralkyl group; two or more groups of R I -R VI may be bonded to each other to form one or more fused ring structures;
  • R VII and R VIII may be the same or Different, and each independently may be selected from a C 1 -C 10 linear or branched alkyl group, a C 3 -C 20 cycloalkyl group, a C 6 -C 20 aryl group, a C 7 -C 20 alkaryl group, and a C 7 group.
  • a -C 20 arene group in which a hydrogen on the phenyl ring in the aryl group, the alkaryl group and the arene group may be optionally substituted by a halogen atom.
  • R I , R II , R V and R VI are not hydrogen at all; more preferably, at least one of R I , R II , R V and R VI is hydrogen; further preferably One, between R I and R II and between R V and R VI respectively, one group is hydrogen, and the other group is methyl, ethyl, propyl, isopropyl, butyl. , tert-butyl, phenyl or halogenated phenyl and the like.
  • the glycol ester compound is selected from the group consisting of 1,3-propanediol dibenzoate, 2-methyl-1,3-propanediol dibenzoate, 2-ethyl-1,3-propanediol II Benzoate, 2,2-dimethyl-1,3-propanediol dibenzoate, (R)-1-phenyl-1,3-propanediol dibenzoate, 1,3-diphenyl 1,3-1,3-propanediol dibenzoate, 1,3-diphenyl-1,3-propanediol di-n-propionate, 1,3-diphenyl-2-methyl-1,3-propanediol Dipropionate, 1,3-diphenyl-2-methyl-1,3-propanediol diacetate, 1,3-diphenyl-2,2-dimethyl-1,3-propanediol Dibenzoate, 1,3-dipheny
  • the diether compound is selected from the group consisting of 1,3-diether compounds represented by formula (V),
  • R I , R II , R III , R IV , R V and R VI may be the same or different and each independently may be selected from hydrogen, halogen, linear or branched C 1 -C 20 alkyl, C 3 -C 20 cycloalkyl, C 6 -C 20 aryl and C 7 -C 20 aralkyl;
  • R VII and R VIII may also be the same or different and each independently may be selected from linear or branched C 1 -C 20 alkyl, C 3 -C 20 cycloalkyl, C 6 -C 20 aryl, C 7 -C 20 alkaryl and C 7 -C 20 aralkyl; group of R I -R VI It can be keyed into a ring.
  • the diether compound is selected from the group consisting of 2-(2-ethylhexyl)-1,3-dimethoxypropane, 2-isopropyl-1,3-dimethoxypropane, 2-butyl -1,3-dimethoxypropane, 2-sec-butyl-1,3-dimethoxypropane, 2-cyclohexyl-1,3-dimethoxypropane, 2-phenyl-1, 3-dimethoxypropane, 2-(2-phenylethyl)-1,3-dimethoxypropane, 2-(2-cyclohexylethyl)-1,3-dimethoxypropane, 2-(p-chlorophenyl)-1,3-dimethoxypropane, 2-(diphenylmethyl)-1,3-dimethoxypropane, 2,2-dicyclohexyl-1, 3-dimethoxypropane, 2,2-dicyclopentyl-1,3-dimethoxypropane,
  • the present invention provides a method of preparing a catalyst component, the method comprising the steps of:
  • the titanium compound and the internal electron donor are as described in the above third aspect.
  • the inert solvent may be selected from aliphatic hydrocarbons and aromatic hydrocarbons such as hexane, heptane, octane, decane, toluene, and the like.
  • the method of preparing a catalyst component comprises the steps of:
  • a solid composition is prepared, the process comprising:
  • X is a halogen and R 1 is a C 1 -C 12 linear or branched alkyl group;
  • R 2 and R 3 are the same or different and are each independently hydrogen or a linear or branched alkyl group of C 1 -C 5 which is unsubstituted or substituted by halogen;
  • the organic alcohol is used in an amount of 3 to 30 moles per mole of the magnesium halide, and the alkylene oxide compound represented by the formula (2) is used in an amount of 1 to 10 moles; and the amount of the polymer dispersion stabilizer is used. Is 0.1-10% by weight of the total amount of the magnesium halide and the organic alcohol;
  • the step (2) of the method for preparing a catalyst component of the present invention is carried out by suspending the solid composition in a titanium compound raw material at -30 ° C to 0 ° C and then raising the temperature to 40-130 ° C. The reaction is carried out for 0.1 to 5 hours. More preferably, the step (2) is carried out by suspending the solid composition in a titanium compound raw material at -20 ° C to 0 ° C, and then raising the temperature to 50-130 ° C to carry out a reaction for 0.5 to 2 hours.
  • the titanium compound raw material may be a pure titanium compound or a mixture of a titanium compound and an inert solvent.
  • step (2) preferably comprises before, during and/or after the solid composition is reacted with the titanium compound.
  • the at least one internal electron donor is added during one or more time periods. More preferably, the at least one internal electron donor is added during the temperature rise of the mixture of the solid composition and the titanium compound.
  • the method of preparing a catalyst component further comprises: after reacting the solid composition with the titanium compound, filtering the liquid and recovering the solid, and then using a liquid titanium compound (such as titanium tetrachloride)
  • a liquid titanium compound such as titanium tetrachloride
  • the recovered solid is treated one or more times, preferably 2-4 times; and then the obtained solid catalyst component is washed a plurality of times with a hydrocarbon solvent.
  • the hydrocarbon solvent may be selected from aliphatic hydrocarbons, aromatic or alicyclic hydrocarbons such as hexane, heptane, octane, decane, toluene, and the like.
  • the step (2) of the method of preparing the catalyst component is carried out as follows: in the presence of a hydrocarbon solvent, the solid The composition is contacted with at least one titanium alkoxide, and the obtained intermediate reaction product is contacted with titanium tetrachloride and an internal electron donor compound, and then the obtained reaction product is washed with a hydrocarbon solvent.
  • the alkoxytitanium may be represented by the general formula Ti(OR4) 4-a X a wherein R 4 is a C 1 - C 14 aliphatic hydrocarbon group, X is a halogen, and a is an integer of 0-3.
  • the titanium alkoxide is selected from the group consisting of titanium tetrabutoxide, titanium tetraethoxide, titanium monochlorobutoxide, titanium dichlorodibutoxide, titanium trichlorobutoxide, and monochloro 3
  • the ethoxytitanium, the dichlorodiethoxytitanium and the trichloromonoethoxytitanium are most preferably tetraethoxytitanium and/or tetrabutoxytitanium.
  • the hydrocarbon solvent may be a liquid aliphatic, aromatic or alicyclic hydrocarbon such as hexane, heptane, octane, decane, toluene or the like.
  • the alkoxide titanium may be used in an amount of from 0.05 to 1.5 moles, preferably from 0.1 to 1.2 moles, per mole of the magnesium in the solid composition.
  • the titanium compound in the step (2) of the method for preparing a catalyst component, may be used in an amount of 5 to 200 moles per mole of magnesium in the solid composition, preferably The internal electron donor may be used in an amount of from 0 to 0.5 mol, preferably from 0.08 to 0.4 mol.
  • the amount of the titanium compound refers to the total amount of the titanium alkoxide and titanium tetrachloride.
  • the present invention provides a catalyst for the polymerization of an olefin comprising:
  • the alkyl aluminum compound may be present various alkylaluminum compound conventionally used in the art, such as 'those represented by wherein R 3' group is independently halogen, unsubstituted or substituted with halogen or by the general formula AlR A C 1 -C 8 alkyl group, and wherein at least one R' group is not a halogen.
  • R 3' group is independently halogen, unsubstituted or substituted with halogen or by the general formula AlR A C 1 -C 8 alkyl group, and wherein at least one R' group is not a halogen.
  • Examples of the C 1 -C 8 alkyl group may include, but are not limited to, methyl, ethyl, propyl, n-butyl, isobutyl, pentyl, hexyl, n-heptyl, n-octyl,
  • the halogen may be fluorine, chlorine, bromine or iodine
  • the alkyl aluminum compound may be, for example, selected from the group consisting of triethyl aluminum, triisobutyl aluminum, tri-n-butyl aluminum, tri-n-hexyl aluminum, monochlorodiethylaluminum, and dichlorodiisobutylaluminum.
  • the alkyl aluminum compound may be, for example, selected from the group consisting of triethyl aluminum, triisobutyl aluminum, tri-n-butyl aluminum, tri-n-hexyl aluminum, monochlorodiethylaluminum, and dichlorodiisobutylaluminum.
  • dichloro-n-butylaluminum monochlorodi-n-hexyl aluminum
  • dichloro-ethylaluminum dichloro-isobutylaluminum
  • dichloro-n-butylaluminum dichloro-n-hexylaluminum
  • the external electron donor may be various external electron donors commonly used in the art.
  • the external electron donor may be selected from the group consisting of a carboxylic acid, a carboxylic anhydride, a carboxylic acid ester, a ketone, an ether, an alcohol, a lactone, and an organic Phosphorus compounds and organosilicon compounds.
  • the external electron donor is a silicon compound of the formula (R 17 ) x (R 18 ) y Si(OR 19 ) z , wherein R 17 , R 18 and R 19 are independently C 1 -C 18
  • the hydrocarbon group optionally containing a hetero atom
  • each of x and y is independently an integer from 0 to 2
  • z is an integer from 1 to 3
  • the sum of x, y and z is 4.
  • R 17 and R 18 are independently C 3 -C 10 alkyl or cycloalkyl, optionally containing a hetero atom
  • R 19 is a C 1 -C 10 alkyl group, optionally containing a hetero atom.
  • the external electron donor may be selected, for example, from cyclohexylmethyldimethoxysilane, diisopropyldimethoxysilane, di-n-butyldimethoxysilane, diisobutyldimethoxy Silane, diphenyldimethoxysilane, methyl tert-butyldimethoxysilane, dicyclopentyldimethoxysilane, 2-ethylpiperidinyl-2-tert-butyldimethoxy Silane, (1,1,1-trifluoro-2-propyl)-2-ethylpiperidinyldimethoxysilane and (1,1,1-,trifluoro-2-propyl)-methyl Dimethoxysilane.
  • the molar ratio of the catalyst component for olefin polymerization and the aluminum alkyl based on aluminum element in terms of titanium element may be from 1:1 to 10,000. Preferably, it is 1:20-500; the molar ratio of the external electron donor to the alkyl aluminum based on the aluminum element may be from 1:2 to 200, preferably from 1:2.5 to 100.
  • the aluminum alkyl and the optional external electron donor compound may be separately reacted with the catalyst component for olefin polymerization, or the aluminum alkyl may be used.
  • the optional external electron donor is mixed with the catalyst component for olefin polymerization and reacted.
  • the catalyst component for olefin polymerization, an alkyl aluminum, and an optional external electron donor may be separately added to the polymerization reactor, or may be added to the polymerization reactor after mixing, or the olefin may be prepolymerized by a prepolymerization method known in the art and then added to the polymerization reactor.
  • the invention provides the use of the above catalyst in the polymerization of olefins.
  • the improvement of the present invention is that a new catalyst for olefin polymerization is employed, and the specific kind of the olefin to be polymerized, the polymerization method and conditions of the olefin can be the same as in the prior art.
  • the polymerization of the olefin can be carried out according to a conventional method, specifically, under the protection of an inert gas, in a liquid monomer or an inert solvent containing a polymerizable monomer, or in a gas phase, or through The polymerization is carried out in a combined polymerization process in the gas phase.
  • the temperature of the polymerization reaction may generally be from 0 to 150 ° C, preferably from 60 to 90 ° C.
  • the pressure of the polymerization reaction may be atmospheric pressure or higher; for example, it may be 0.01 to 10 MPa (gauge pressure), preferably 0.01 to 2 MPa (gauge pressure), and more preferably 0.1 to 2 MPa (gauge pressure).
  • hydrogen can be used as a polymer molecular weight regulator to be added to the reaction system to adjust the molecular weight and melt index of the polymer.
  • the type and amount of the inert gas and solvent are well known to those skilled in the art during the polymerization of olefins, and will not be described herein.
  • the olefin polymerization is propylene homopolymerization or copolymerization of propylene with a comonomer.
  • the comonomer copolymerizable with propylene include ethylene, a C 4-12 ⁇ -olefin, and a C 4-20 diolefin.
  • composition of spherical carrier/solid composition The spherical carrier was dissolved with tri-n-butyl phosphate and deuterated toluene, and the 1 H-NMR spectrum was measured by a nuclear magnetic resonance spectrometer.
  • Polymer isotactic index determined by heptane extraction method (heptane boiling extraction for 6 hours), that is, 2 g of dried polymer sample was taken and placed in an extractor and extracted with boiling heptane for 6 hours. Thereafter, the residue is dried to constant weight, and the ratio of the obtained polymer weight (g) to 2 is an isotactic index.
  • the spherical carriers A1 to A22 were prepared under the preparation conditions shown in Table 1, and their respective average particle diameters (D50) and particle size distribution values (SPAN) are shown in Table 1.
  • the 1 H-NMR spectrum of the spherical carrier A1 is shown in Fig. 1
  • the 1 H-NMR spectrum of the spherical carrier A2 is shown in Fig. 2
  • the 1 H-NMR spectrum of the spherical carrier A13 is shown in Fig. 3
  • the spherical carrier is shown.
  • the 1 H-NMR spectrum of A16 is shown in Fig. 4
  • an optical microscope photograph of the spherical carrier A1 is shown in Fig. 5.
  • the spherical support particles prepared according to the method of the present invention are substantially spherical and have a relatively narrow particle size distribution.
  • the spherical carrier A1 is mainly composed of the compound represented by the formula (V) and the formula (VI), and the molar ratio of the compound represented by the formula (V) and the formula (VI) is 1:0.04.
  • the spherical carrier A1 also contains traces of PVP as evidenced by its infrared spectrum.
  • the spherical carrier A2 is mainly composed of the compound represented by the formula (V) and the formula (VI), and the molar ratio of the compound represented by the formula (V) and the formula (VI) is 1:0.07.
  • the spherical carrier A13 is mainly composed of the compound represented by the formula (VII) and the formula (VI), and the molar ratio of the compound represented by the formula (VII) and the formula (VI) is 1:0.02.
  • the spherical carrier A16 is mainly composed of a compound represented by the formula (V), the formula (VI) and the formula (VII), and the compound represented by the formula (VI) is represented by the formula (V) and the formula (VII).
  • the molar ratio of the sum of the compounds was 0.24:1, and the molar ratio of the compound represented by the formula (VI) to the compound represented by the formula (VII) was 1:1.74.
  • a spherical carrier was prepared according to the method of Comparative Example 1, except that the inert dispersion medium white oil was not added, and as a result, solid particles were not obtained.
  • the carrier was prepared according to the method of Example 1, except that the same weight of the nonionic surfactant disc 80 was used instead of the PVP added in Example 1, thereby producing a bulk carrier D3, the optical of the block carrier
  • the microscope photo is shown in Figure 6.
  • the carrier was prepared according to the method of Example 1, except that the polymer dispersion stabilizer PVP was not added, thereby producing a block carrier D4.
  • the liquid phase bulk polymerization of propylene was carried out in a 5 L stainless steel autoclave. Under a nitrogen atmosphere, 5 ml of a hexane solution of triethylaluminum (concentration: 0.5 mmol/ml) and 1 ml of a hexane solution of cyclohexylmethyldimethoxysilane (CHMMS) were added to the reaction vessel at a concentration of 0.1 mmol. /ml) and 9 mg of the above solid catalyst Cat-1. The autoclave was closed and a certain amount of hydrogen (standard volume) and 2.3 L of liquid propylene were added. The temperature was raised to 70 ° C, and after reacting for 1 hour, the temperature was lowered, the pressure was released, and the discharge was discharged. The obtained propylene homopolymer was dried, weighed, and analyzed. The results are shown in Table 6.
  • the solid catalyst was prepared according to the method of Working Example 1 and the liquid phase bulk polymerization of propylene was carried out, but the spherical carrier, internal electron donor and hydrogenation amount used were as shown in Table 6, respectively. Further, the polymerization activity and the isotacticity and melt index of the prepared propylene homopolymer are shown in Table 6.
  • a solid catalyst was prepared according to the method of Working Example 1 and a liquid phase bulk polymerization of propylene was carried out, except that the spherical carrier A1 prepared in Comparative Example 1 was used instead of the spherical carrier A1.
  • the results are shown in Table 6.
  • the liquid phase bulk polymerization of propylene was carried out in the same manner as in Working Example 1, except that the solid catalyst component Cat-13 was used instead of the solid catalyst component Cat-1.
  • the polymerization activity and the isotacticity and melt index of the prepared propylene homopolymer are shown in Table 6.
  • the catalyst of the present invention can be used in the polymerization of propylene to obtain higher polymerization activity and higher stereospecific ability; and at the same time, the catalyst for olefin polymerization of the present invention.
  • the hydrogen sensitivity is better.
  • the propylene polymerization is carried out using the catalyst of the present invention, and the polymer still has a high isotactic index at a high melt index.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyethers (AREA)
  • Polymerization Catalysts (AREA)

Abstract

本发明公开了用于烯烃聚合催化剂的球形载体、催化剂组分、催化剂及它们的制备方法。所述制备球形载体的方法包括以下步骤:(1)在至少一种高分子分散稳定剂的存在下,将卤化镁与含有活泼氢的有机化合物反应以形成配合物溶液;(2)将所述配合物溶液与环氧烷类化合物反应,直接析出固体颗粒;(3)回收所述固体颗粒得到球形载体。由本发明的球形载体制备的催化剂用于丙烯聚合时具有较高聚合活性和较高的立体定向能力。

Description

用于烯烃聚合催化剂的球形载体、催化剂组分、催化剂及它们的制备方法
相关申请的交叉参考
本申请要求2013年10月18日提交的CN201310491393.6、CN201310491641.7和CN201310491648.9的优先权,通过引用并且为了所有的目的将所述文件整体结合在本申请中。
技术领域
本发明涉及用于烯烃聚合催化剂的球形载体、催化剂组分、催化剂及它们的制备方法。
背景技术
用于烯烃聚合的催化剂大多是通过将卤化钛载于活性氯化镁上制得的。用来制备活性氯化镁的一种常用方法是将无水MgCl2与醇反应形成通式为MgCl2·mROH·nH2O的氯化镁-醇加合物,然后再用这种加合物负载卤化钛制备烯烃聚合催化剂固体组分。此类醇合物可通过喷雾干燥、喷雾冷却、高压挤出或高速搅拌等方法制备。参见例如US4421674、US4469648、WO8707620、WO9311166、US5100849、US6020279、US4399054、EP0395383、US6127304和US6323152。
可用于制备烯烃聚合催化剂的其它镁复合物载体也是本领域中已知的。例如,CN102040681A公开了一种可用作烯烃聚合催化剂用载体的化合物,其具有如下结构:
Figure PCTCN2014088806-appb-000001
其中R1为C1-C12的直链或支链烷基;R2和R3相同或不相同,为氢或未取代或被卤原子取代的C1-C5直链或支链烷基;X为氯或溴,也可其中一个X被C1-C14烷基或烷氧基、C6-C14芳基或芳氧基取代;m为0.1-1.9,n为0.1-1.9,p+m+n=2。该化合物如下制备:在惰性分散介质的存在下,使MgX2和通式R1OH所示的醇类化合物在30-160℃反应,形成卤化镁醇合物溶液;之后将其与环氧乙烷类化合物在30-160℃进行反应,形成可用作载体的所述镁化合物;其中X为氯或溴,R1为C1-C12的直链或支链烷基。CN102040680A还公开了采用前述专利申请中的可用作烯烃聚合催化剂用载体的化合物制备的烯烃聚合催化剂。
仍然需要能够被用于制备烯烃聚合催化剂组分的镁复合物或球型载体以及能够简单、有效、低成本地制备这样的镁复合物或球型载体的方法。也仍然需要显示希望的性能如高活性和高的立体定向能力的用于烯烃聚合的催化剂组分。
发明概述
本发明的一个目的是提供一种用于制备烯烃聚合催化剂的固体组合物(典型地球形载体)的制备方法。
本发明的另一个目的是提供由上述方法制备的固体组合物(典型地球形载体)。
本发明的又一个目的是提供使用所述固体组合物作为载体制备的烯烃聚合用催化剂组分。
本发明的又一个目的是提供包含所述催化剂组分的烯烃聚合用催化剂。
本发明的又一个目的是提供所述催化剂在烯烃聚合中的应用。
在一些实施方案中,本发明提供了一种用于制备烯烃聚合催化剂的球形载体的制备方法,该方法包括:在至少一种高分子分散稳定剂的存在下,使至少下列组分反应以直接析出固体颗粒产物:(a)卤化镁;(b)含有活泼氢的有机化合物;以及(c)环氧烷类化合物。
在一些实施方案中,本发明提供了通过上述方法制备的球形载体。
在一些实施方案中,本发明提供了一种制备可用于烯烃聚合催化剂组分制备的固体组合物的方法,该方法包括以下步骤:
(a)在至少一种高分子分散稳定剂的存在下,使卤化镁MgX2和有机醇R1OH在30-160℃下反应,形成卤化镁醇合物溶液;
(b)将所述卤化镁醇合物溶液与式(2)所示的环氧烷类化合物在30-160℃下反应,直接析出固体组合物颗粒;
其中,X为卤素,R1为C1-C12的直链或支链烷基;
Figure PCTCN2014088806-appb-000002
其中,R2和R3相同或不同,且各自独立地为氢或者未取代或被卤素取代的C1-C5的直链或支链烷基;
其中,以每摩尔卤化镁计,所述有机醇的用量为3-30摩尔,式(2)所示的环氧烷类化合物的用量为1-10摩尔;所述高分子分散稳定剂的用量为所述卤化镁和所述有机醇的总用量的0.1-10重量%。
在一些实施方案中,本发明提供了通过上述方法制备的固体 组合物。
在一些实施方案中,所述固体组合物含有式(1)所示的镁化合物和式(2)所示的环氧烷类化合物,
Figure PCTCN2014088806-appb-000003
其中,R1为C1-C12的直链或支链烷基;R2和R3相同或不同,且各自独立地为氢或者未取代或被卤素取代的C1-C5的直链或支链烷基;X为卤素;m为0.1-1.9,n为0.1-1.9,且m+n=2;
其中,相对于每摩尔式(1)所示的镁化合物,式(2)所示的环氧烷类化合物的含量为0.01-0.8摩尔。
在一些实施方案中,本发明提供了一种用于烯烃聚合的催化剂组分,该催化剂组分含有以下组分的反应产物:
(1)固体组合物,其是本发明的所述球形载体或固体组合物;
(2)至少一种钛化合物;以及
(3)任选地,至少一种内给电子体。
在一些实施方案中,本发明提供了一种制备催化剂组分的方法,该方法包括以下步骤:
(1)提供本发明的球形载体/固体组合物;和
(2)在有或无惰性溶剂存在下,使所述球形载体/固体组合物与钛化合物接触反应,并且任选地,在反应之前、期间和/或之后的一个或多个时间段内加入至少一种内给电子体。
在一些实施方案中,本发明提供了一种用于烯烃聚合的催化剂,该催化剂含有:
(i)上述本发明的用于烯烃聚合的催化剂组分;
(ii)至少一种烷基铝化合物;以及
(iii)任选地,至少一种外给电子体。
在一些实施方案中,本发明提供了上述用于烯烃聚合的催化剂在烯烃聚合反应中的应用。
通过以上技术方案,本发明具有以下优点:
(1)所述固体组合物或球形载体的制备过程中无需加入惰性分散介质即可获得颗粒形态良好、粒径分布较窄的固体颗粒,从而提高了固体组合物或球形载体的单位体积反应器生产率;
(2)所述固体组合物或球形载体的制备过程中使用的高分子分散稳定剂相对于以现有技术中使用的惰性分散介质更易于回收,从而相对降低了回收成本;
(3)本发明的用于烯烃聚合的催化剂在烯烃聚合(特别是丙烯聚合或共聚)时所得聚合物具有较高的立构规整性;
(4)本发明的用于烯烃聚合的催化剂显示了高活性。
本发明的这些以及其他特征和优点在阅读了随后的详细说明后将是显而易见的。
附图说明
附图是用来提供对本发明的进一步理解,并且构成说明书的一部分,与下面的详细描述一起用于解释本发明,但并不构成对本发明的限制。在附图中:
图1是实施例1制备的球形载体的1H-NMR谱图;
图2是实施例2制备的球形载体的1H-NMR谱图;
图3是实施例13制备的球形载体的1H-NMR谱图;
图4是实施例16制备的球形载体的1H-NMR谱图;
图5是实施例1制备的球形载体的光学显微镜照片;
图6是对比例3制备的块状载体的光学显微镜照片。
优选实施方案的详细描述
本文中使用的术语“球形载体”是指所述载体具有类球形的颗粒形态,而不要求所述载体具有完美的球形形态。
本文中所述的“载体”是指不具有烯烃聚合活性的物质,即在载体中不含有可催化烯烃聚合的活性组分,如钛化合物。
本发明中所述的“直接析出固体产物”具有如下含义:
(1)所述固体产物是通过化学反应析出得到的,即固体产物制备过程中通过化学反应在原有体系中直接析出,而不需通过挥发溶剂或改变体系温度(如喷雾干燥、降低体系温度)等手段使反应物析出得到固体颗粒;
(2)所述固体产物的形状(典型地球形)的获得无需在制备过程中加入具有良好颗粒形态的惰性载体材料(如SiO2、金属氧化物等)就可以实现。
在第一方面,本发明提供了一种固体组合物的制备方法,所述固体组合物可在烯烃聚合催化剂组分的制备中用作载体,并且典型地呈球形,该方法包括:在至少一种高分子分散稳定剂的存在下,使至少下列组分反应并直接析出固体产物:(a)卤化镁;(b)含有活泼氢的有机化合物;以及(c)环氧烷类化合物。
在一个优选的实施方案中,本发明的制备固体组合物的方法包括:
(1)在至少一种高分子分散稳定剂的存在下,将卤化镁与含有活泼氢的有机化合物反应以形成配合物溶液;
(2)将所述配合物溶液与环氧烷类化合物反应,以直接析出固体颗粒。
在步骤(1)中,相对于每摩尔卤化镁,所述含有活泼氢的有机化合物的用量可以为3-30摩尔,优选为4-20摩尔。
在本发明中,所述高分子分散稳定剂的用量可以为所述卤化镁和所述含有活泼氢的有机化合物的总用量的0.1-10重量%,优选为0.2-5重量%。
步骤(1)中的反应条件可以包括:反应温度为30-160℃,优选40-120℃;反应时间为0.1-5小时,优选为0.5-2小时。步骤(1)中的反应可以在常规的反应器或容器中进行,优选地,步骤(1)中的反应在密闭的容器中进行,例如可以在反应釜中进行。
在本发明方法中使用的卤化镁的通式为MgX2,其中,X为卤素,优选为溴、氯或碘。更优选地,所述卤化镁选自二氯化镁、二溴化镁和二碘化镁中的至少一种,最优选为二氯化镁。
在本发明方法中使用的含有活泼氢的有机化合物优选为有机醇R1OH,其中,R1优选为C1-C8的直链或支链烷基,更优选为C2-C5的直链或支链烷基,如乙基、丙基、丁基或戊基。具体地,所述有机醇例如可以选自甲醇、乙醇、丙醇、异丙醇、正丁醇、异丁醇、戊醇、异戊醇、正己醇、正辛醇和2-乙基-1-已醇中的至少一种。
在发明中,对高分子分散稳定剂的分子量无特别限定,但是所述高分子分散稳定剂的重均分子量优选大于1000,更优选大于3000,进一步优选为6,000-2,000,000。具体地,所述高分子分散稳定剂可以选自聚丙烯酸盐、苯乙烯-马来酸酐共聚物、聚苯乙烯磺酸盐、萘磺酸甲醛缩合物、缩合烷基苯基醚硫酸酯、缩合烷基苯酚聚氧乙烯醚磷酸酯、氧基烷基丙烯酸酯共聚物改性聚乙撑亚 胺、1-十二-4-乙烯吡啶溴化物的聚合物、聚乙烯基苄基三甲胺盐、聚乙烯醇、聚丙烯酰胺、环氧乙烷环氧丙烷嵌段共聚物、聚乙烯吡咯烷酮(PVP)、聚乙烯吡咯烷酮醋酸乙烯酯共聚物、聚乙二醇(PEG)、烷基苯基聚氧乙烯醚和聚甲基丙烯酸烷基酯类化合物中的至少一种,优选为聚乙烯吡咯烷酮、聚乙烯吡咯烷酮醋酸乙烯酯共聚物和聚乙二醇中的至少一种。
在本发明中,所述卤化镁、所述含有活泼氢的有机化合物和所述高分子分散稳定剂可以以含有微量水的形式参与形成卤化镁醇合物溶液的过程中。这些微量水是指工业生产中或者储存或运输过程中不可避免地引入的水,而不是人为加入的水。
在步骤(1)中,所述卤化镁、所述含有活泼氢的有机化合物和所述高分子分散稳定剂可以以任意的加料顺序加入。
在本发明方法中,相对于每摩尔所述卤化镁,所述环氧烷类化合物的用量可以为1-10摩尔,优选为2-6摩尔。
步骤(2)中的反应条件可以包括:反应温度为30-160℃,优选40-120℃;反应时间为0.1-5小时,优选为0.2-1小时。
在本发明方法中使用的环氧烷类化合物优选为式(2)所示的化合物,
Figure PCTCN2014088806-appb-000004
其中,R2和R3相同或不同,且各自独立地为氢或者未取代或被卤素取代的C1-C5的直链或支链烷基,更优选R2和R3各自独立地为氢或者未取代或被卤素取代的C1-C3的直链或支链烷基仍更优选R2和R3各自独立地为氢、甲基、乙基、丙基、氯代甲基、氯代乙基、氯代丙基、溴代甲基、溴代乙基或溴代丙基。具体地,所述环氧烷类化合物可以选自环氧乙烷、环氧丙烷、环氧丁烷、 环氧氯丙烷、环氧氯丁烷、环氧溴丙烷和环氧溴丁烷中的至少一种。
在本发明的方法中,在步骤(1)和/或(2)中可以加入或不加入惰性分散介质。所述惰性分散介质为本领域常规使用的惰性分散介质,例如可以选自液态的脂族、芳族或环脂族烃类以及硅油中的至少一种,具体地,例如可以为碳链长度大于6个碳的直链或支链液态烷烃、芳烃(如甲苯)、煤油、石蜡油、凡士林油、白油和甲基硅油中的至少一种。当在步骤(1)/或(2)中加入所述惰性分散介质时,所述惰性分散介质的用量与所述含有活泼氢的有机化合物的用量的体积比可以为1∶0.2-20,优选为1∶0.5-10。在优选的实施方式中,在步骤(1)和(2)中均不加入惰性分散介质。
在本发明的方法中,在将至少包括组分(a)、组分(b)和组分(c)的原料进行反应的过程中,除了组分(a)、组分(b)和组分(c),还可以加入常规的添加剂组分,如给电子体。所述给电子体可以为本领域常规使用的给电子体化合物,如醚、酯、酮、醛、胺、氨化物、烷氧基硅烷等,优选醚、酯和烷氧基硅烷中的至少一种。
在本发明的方法中,优选地,在将至少包括组分(a)、组分(b)和组分(c)的原料进行反应的过程中不加入四氯化钛。
在一些优选的实施方案中,所述固体组合物的制备方法包括:
(1)在至少一种高分子分散稳定剂的存在下,使卤化镁MgX2和有机醇R1OH在30-160℃下反应,形成卤化镁醇合物溶液;
(2)将所述卤化镁醇合物溶液与上述式(2)所示的环氧烷类化合物在30-160℃下反应,直接析出固体组合物颗粒;
其中,X为卤素,R1为C1-C12的直链或支链烷基;
其中,以每摩尔卤化镁计,所述有机醇的用量为3-30摩尔,式(2)所示的环氧烷类化合物的用量为1-10摩尔;所述高分子分散稳定剂的用量为所述卤化镁和所述有机醇的总用量的0.1-10重量%。优选地,以每摩尔卤化镁计,所述有机醇的用量为4-20摩尔,式(2)所示的环氧烷类化合物的用量为2-6摩尔;所述高分子分散稳定剂的用量为所述卤化镁和所述有机醇的总用量的0.2-5重量%。
在这些优选的实施方案中,步骤(1)中的反应时间可以为0.1-5小时,优选为0.5-2小时;步骤(2)中的反应时间可以为0.1-5小时,优选为0.2-1小时。
在一些具体的实施方案中,所述固体组合物的制备方法包括:
(1)在密闭的容器中,在至少一种高分子分散稳定剂的存在下,使卤化镁MgX2和有机醇R1OH在30-160℃(优选40-120℃)下反应0.1-5小时(优选0.5-2小时),形成卤化镁醇合物溶液,即配合物溶液;
(2)将所述卤化镁醇合物溶液与上述式(2)所示的环氧烷类化合物在30-160℃(优选40-120℃)下反应0.1-5小时(优选0.2-1小时),直接析出固体颗粒;
(3)通过固液分离技术回收所述固体颗粒得到固体组合物产物。
在另一些具体的实施方案中,所述固体组合物的制备方法包括:
(1)在密闭的容器中,在搅拌下将卤化镁、有机醇和至少一种高分子分散稳定剂的混合物加热升温到30-160℃,优选40-120℃,反应0.1-5小时,优选0.5-2小时,形成卤化镁醇合物溶液,其中,以每摩尔卤化镁计,所述有机醇的用量为3-30摩尔, 优选为4-25摩尔;所述高分子分散稳定剂的用量为所述卤化镁和所述有机醇总用量的0.1-10重量%,优选为0.2-5重量%。
(2)在搅拌下,向上述卤化镁醇合物溶液中加入上述式(2)所示的环氧烷类化合物,在30-160℃(优选40-120℃)下反应0.1-5小时,优选0.2-1小时,更优选0.3-1小时,直接析出固体颗粒,其中,以每摩尔卤化镁计,所述环氧烷类化合物的用量为1-10摩尔,优选2-6摩尔;
(3)通过固液分离技术回收所述固体颗粒得到固体组合物产物。
在本发明方法中,回收固体颗粒的过程可以根据本领域的常规固液分离技术实施,例如可以采用过滤、滗析、离心分离等方式实施。而且,步骤(3)还可以包括将得到的固体组合物颗粒用惰性烃类溶剂进行洗涤和干燥。所述惰性烃类溶剂优选为碳链长度大于4个碳的直链或直链液态烷烃、芳烃,例如可以为己烷、庚烷、辛烷、癸烷、甲苯等。
在第二方面,本发明提供了由上述方法制备的固体组合物。所述固体组合物典型地为球形的,并且可以在烯烃聚合催化剂组分的制备中用作载体。
在一些实施方案中,所述固体组合物含有式(1)所示的镁化合物和式(2)所示的环氧烷类化合物,
Figure PCTCN2014088806-appb-000005
其中,R1为C1-C12的直链或支链烷基,优选C1-C8的直链或 支链烷基,更优选C2-C5的直链或支链烷基,如乙基、丙基、丁基或戊基;R2和R3相同或不同,且各自独立地为氢或者未取代或被卤素取代的C1-C5的直链或支链烷基,优选氢或者未取代或被卤素取代的C1-C3的直链或支链烷基,更优选氢、甲基、乙基、丙基、氯代甲基、氯代乙基、氯代丙基、溴代甲基、溴代乙基或溴代丙基;X为卤素,优选溴、氯或碘,更优选氯;m为0.1-1.9,优选0.5-1.5,n为0.1-1.9,优选0.5-1.5,且m+n=2,最优选m为1和n为1;
其中,相对于每摩尔式(1)所示的镁化合物,式(2)所示的环氧烷类化合物的含量为0.01-0.8摩尔,优选为0.02-0.5摩尔,更优选为0.02-0.3摩尔。
式(2)所示的环氧烷类化合物如前所述。
在一些实施方案中,所述固体组合物基本上式(1)所示的镁化合物和式(2)所示的环氧烷类化合物组成,并且其任选还含有痕量的所述高分子分散稳定剂。
所述固体组合物优选以球形颗粒的形式存在。所述固体组合物的平均粒径(D50)优选为30-125μm,更优选为40-85μm。所述固体组合物的粒径分布值(SPAN=(D90-D10)/D50)优选为0.6-2.5,更优选为0.6-0.85。固体组合物的平均粒径和粒径分布值采用Masters Sizer 2000粒度仪(由Malvern Instruments Ltd制造)测定。
在第三方面,本发明提供了一种用于烯烃聚合的催化剂组分,该催化剂组分含有以下组分的反应产物:
(1)上述本发明的固体组合物;
(2)至少一种钛化合物;以及
(3)任选地,至少一种内给电子体。
在一些实施方案中,本发明的催化剂组分的特征在于,所述固体组合物含有式(1)所示的镁化合物和式(2)所示的环氧烷类化合物,
Figure PCTCN2014088806-appb-000006
其中,R1为C1-C12的直链或支链烷基,优选为C1-C8的直链或支链烷基,更优选为C2-C5的直链或支链烷基,如乙基、丙基、丁基或戊基;
R2和R3相同或不同,且各自独立地为氢或者未取代或被卤素取代的C1-C5的直链或支链烷基,优选氢或者未取代或被卤素取代的C1-C3的直链或支链烷基,更优选氢、甲基、乙基、丙基、氯代甲基、氯代乙基、氯代丙基、溴代甲基、溴代乙基或溴代丙基;
X为卤素,优选溴、氯或碘,更优选氯;
m为0.1-1.9,优选0.5-1.5,n为0.1-1.9,优选0.5-1.5,且m+n=2;优选m为1且n为1;
其中,相对于每摩尔式(1)所示的镁化合物,式(2)所示的环氧烷类化合物的含量为0.01-0.8摩尔,优选为0.02-0.5摩尔,更优选为0.02-0.3摩尔。
优选地,式(2)所示的环氧烷类化合物为环氧乙烷、环氧丙烷、环氧丁烷、环氧氯丙烷、环氧氯丁烷、环氧溴丙烷和环氧溴丁烷中的至少一种。
在一些实施方案中,在形成所述催化剂组分的反应中,相对 于所述固体组合物中的每摩尔式(1)所示的镁化合物,所述钛化合物的用量可以为5-200摩尔,优选为10-100摩尔;所述内给电子体的用量可以为0-0.5摩尔,优选为0.08-0.4摩尔。
所述钛化合物可以为本领域常规使用的各种钛化合物,例如,所述钛化合物可以选自通式为Ti(OR4)4-aXa的钛化合物,其中,R4可以为C1-C14的脂肪烃基,优选为C1-C8的烷基,如甲基、乙基、丙基、丁基、戊基、己基、庚基等;X可以为卤素,如F、Cl、Br、I或它们的任意组合;a为0-4的整数。优选地,所述钛化合物选自四氯化钛、四溴化钛、四碘化钛、四丁氧基钛、四乙氧基钛、一氯三丁氧基钛、二氯二丁氧基钛、三氯一丁氧基钛、一氯三乙氧基钛、二氯二乙氧基钛和三氯一乙氧基钛。
所述内给电子体可以为本领域常规使用的各种内给电子体化合物,例如可以选自酯、醚、酮、胺和硅烷。优选地,所述内给电子体选自一元或多元脂肪族羧酸酯或芳香族羧酸酯、二醇酯类化合物和二醚类化合物。
优选地,所述一元或多元脂肪族羧酸酯或芳香族羧酸酯选自苯甲酸酯、邻苯二甲酸酯、丙二酸酯、琥珀酸酯、己二酸酯、戊二酸酯、癸二酸酯、顺丁烯二酸酯、萘二羧酸酯、偏苯三酸酯、联苯三酸酯和均苯四酸酯。更优选地,所述一元或多元脂肪族羧酸酯或芳香族羧酸酯选自苯甲酸乙酯、邻苯二甲酸酯二乙酯、邻苯二甲酸酯二异丁酯、邻苯二甲酸酯二正丁酯、邻苯二甲酸酯二异辛酯、邻苯二甲酸酯二正辛酯、丙二酸二乙酯、丙二酸二丁酯、2,3-二异丙基琥珀酸二乙酯、2,3-二异丙基琥珀酸二异丁酯、2,3-二异丙基琥珀酸二正丁酯、2,3-二异丙基琥珀酸二甲基酯、2,2-二甲基琥珀酸二异丁酯、2-乙基-2-甲基琥珀酸二异丁酯、2-乙基-2-甲基琥珀酸二乙酯、己二酸二乙酯、己二酸二丁酯、癸二酸二乙 酯、癸二酸二丁酯、顺丁烯二酸二乙酯、顺丁烯二酸二正丁酯、萘二羧酸二乙酯、萘二羧酸二丁酯、偏苯三酸三乙酯、偏苯三酸三丁酯、联苯三酸三乙酯、联苯三酸三丁酯、均苯四酸四乙酯和均苯四酸四丁酯。
优选地,所述二醇酯类化合物选自式(IV)所示的化合物,
Figure PCTCN2014088806-appb-000007
其中,RI-RVI可以相同或不同,且各自独立地可以选自氢、C1-C10直链或支链烷基、C3-C10环烷基、C6-C10芳基以及C7-C10烷芳基或芳烷基;RI-RVI中两个或两个以上的基团可以互相键合生成一个或几个稠环结构;RVII和RVIII可以相同或不同,且各自独立地可以选自C1-C10直链或支链烷基、C3-C20环烷基、C6-C20芳基、C7-C20烷芳基和C7-C20芳烃基,其中,芳基、烷芳基和芳烃基中苯环上的氢可以任选地被卤原子取代。
在式(IV)中,优选地,RI、RII、RV和RVI不同时为氢;更优选地,RI、RII、RV和RVI中的至少一个为氢;进一步优选地,RI和RII二者之间以及RV和RVI二者之间分别有一个基团是氢,而另一个基团是甲基、乙基、丙基、异丙基、丁基、叔丁基、苯基或卤代的苯基等。
优选地,所述二醇酯类化合物选自1,3-丙二醇二苯甲酸酯、2-甲基-1,3-丙二醇二苯甲酸酯、2-乙基-1,3-丙二醇二苯甲酸酯、2,2-二甲基-1,3-丙二醇二苯甲酸酯、(R)-1-苯基-1,3-丙二醇二苯甲酸酯、1,3-二苯基-1,3-丙二醇二苯甲酸酯、1,3-二苯基-1,3-丙二醇二正丙酸酯、1,3-二苯基-2-甲基-1,3-丙二醇二丙酸酯、1,3-二苯基-2-甲基-1,3-丙二醇二乙酸酯、1,3-二苯基-2,2-二甲基-1,3-丙二醇 二苯甲酸酯、1,3-二苯基-2,2-二甲基-1,3-丙二醇二丙酸酯、1,3-二叔丁基-2-乙基-1,3-丙二醇二苯甲酸酯、1,3-二苯基-1,3-丙二醇二乙酸酯、1,3-二异丙基-1,3-丙醇二(4-丁基苯甲酸)酯、1-苯基-2-氨基-1,3丙二醇二苯甲酸酯、1-苯基-2-甲基-1,3-丁二醇二苯甲酸酯、苯基-2-甲基-1,3-丁二醇二新戊酸酯、3-丁基-2,4-戊二醇二苯甲酸酯、3,3-二甲基-2,4-戊二醇二苯甲酸酯、(2S,4S)-(+)-2,4-戊二醇二苯甲酸酯、(2R,4R)-(+)-2,4-戊二醇二苯甲酸酯、2,4-戊二醇二(对氯苯甲酸)酯、2,4-戊二醇二(间氯苯甲酸)酯、2,4-戊二醇二(对溴苯甲酸)酯、2,4-戊二醇二(邻溴苯甲酸)酯、2,4-戊二醇二(对甲基苯甲酸)酯、2,4-戊二醇二(对叔丁基苯甲酸)酯、2,4-戊二醇二(对丁基苯甲酸)酯、2-甲基-1,3-戊二醇二(对氯苯甲酸)酯、2-甲基-1,3-戊二醇二(对甲基苯甲酸)酯、2-丁基-1,3-戊二醇二(对甲基苯甲酸)酯、2-甲基-1,3-戊二醇二(对叔丁基苯甲酸)酯、2-甲基-1,3-戊二醇新戊酸酯、2-甲基-1,3-戊二醇苯甲酸肉桂酸酯、2,2-二甲基-1,3-戊二醇二苯甲酸酯、2,2-二甲基-1,3-戊二醇苯甲酸肉桂酸酯、2-乙基-1,3-戊二醇二苯甲酸酯、2-丁基-1,3-戊二醇二苯甲酸酯、2-烯丙基-1,3-戊二醇二苯甲酸酯、2-甲基-1,3-戊二醇二苯甲酸酯、2-乙基-1,3-戊二醇二苯甲酸酯、2-丙基-1,3-戊二醇二苯甲酸酯、2-丁基-1,3-戊二醇二苯甲酸酯、2,2-二甲基-1,3-戊二醇二苯甲酸酯、1,3-戊二醇二(对氯苯甲酸)酯、1,3-戊二醇二(间氯苯甲酸)酯、1,3-戊二醇二(对溴苯甲酸)酯、1,3-戊二醇二(邻溴苯甲酸)酯、1,3-戊二醇二(对甲基苯甲酸)酯、1,3-戊二醇二(对叔丁基苯甲酸)酯、1,3-戊二醇二(对丁基苯甲酸)酯、1,3-戊二醇苯甲酸肉桂酸酯、1,3-戊二醇二肉桂酸酯、1,3-戊二醇二丙酸酯、2-甲基-1,3-戊二醇苯甲酸肉桂酸酯、2,2-二甲基-1,3-戊二醇二苯甲酸酯、2,2-二甲基-1,3-戊二醇苯甲酸肉桂酸酯、2-乙基-1,3-戊二醇二苯甲酸酯、2-丁基-1,3-戊二醇二苯 甲酸酯、2-烯丙基-1,3-戊二醇二苯甲酸酯、2-甲基-1,3-戊二醇苯甲酸肉桂酸酯、2,2,4-三甲基-1,3-戊二醇二异丙基甲酸酯、1-三氟甲基-3-甲基-2,4-戊二醇二苯甲酸酯、2,4-戊二醇二对氟代甲基苯甲酸酯、2,4-戊二醇二(2-呋喃甲酸)酯、2-甲基-6-庚烯-2,4-庚二醇二苯甲酸酯、3-甲基-6-庚烯-2,4-庚二醇二苯甲酸酯、4-甲基-6-庚烯-2,4-庚二醇二苯甲酸酯、5-甲基-6-庚烯-2,4-庚二醇二苯甲酸酯、6-甲基-6-庚烯-2,4-庚二醇二苯甲酸酯、3-乙基-6-庚烯-2,4-庚二醇二苯甲酸酯、4-乙基-6-庚烯-2,4-庚二醇二苯甲酸酯、5-乙基-6-庚烯-2,4-庚二醇二苯甲酸酯、6-乙基-6-庚烯-2,4-庚二醇二苯甲酸酯、3-丙基-6-庚烯-2,4-庚二醇二苯甲酸酯、4-丙基-6-庚烯-2,4-庚二醇二苯甲酸酯、5-丙基-6-庚烯-2,4-庚二醇二苯甲酸酯、6-丙基-6-庚烯-2,4-庚二醇二苯甲酸酯、3-丁基-6-庚烯-2,4-庚二醇二苯甲酸酯、4-丁基-6-庚烯-2,4-庚二醇二苯甲酸酯、5-丁基-6-庚烯-2,4-庚二醇二苯甲酸酯、6-丁基-6-庚烯-2,4-庚二醇二苯甲酸酯、3,5-二甲基-6-庚烯-2,4-庚二醇二苯甲酸酯、3,5-二乙基-6-庚烯-2,4-庚二醇二苯甲酸酯、3,5-二丙基-6-庚烯-2,4-庚二醇二苯甲酸酯、3,5-二丁基-6-庚烯-2,4-庚二醇二苯甲酸酯、3,3-二甲基-6-庚烯-2,4-庚二醇二苯甲酸酯、3,3-二乙基-6-庚烯-2,4-庚二醇二苯甲酸酯、3,3-二丙基-6-庚烯-2,4-庚二醇二苯甲酸酯、3,3-二丁基-6-庚烯-2,4-庚二醇二苯甲酸酯、3-乙基-3,5-庚二醇二苯甲酸酯、4-乙基-3,5-庚二醇二苯甲酸酯、5-乙基-3,5-庚二醇二苯甲酸酯、3-丙基-3,5-庚二醇二苯甲酸酯、4-丙基-3,5-庚二醇二苯甲酸酯、3-丁基-3,5-庚二醇二苯甲酸酯、2,3-二甲基-3,5-庚二醇二苯甲酸酯、2,4-二甲基-3,5-庚二醇二苯甲酸酯、2,5-二甲基-3,5-庚二醇二苯甲酸酯、2,6-二甲基-3,5-庚二醇二苯甲酸酯、3,3-二甲基-3,5-庚二醇二苯甲酸酯、4,4-二甲基-3,5-庚二醇二苯甲酸酯、4,5-二甲基-3,5-庚二醇二苯甲酸酯、 4,6-二甲基-3,5-庚二醇二苯甲酸酯、4,4-二甲基-3,5-庚二醇二苯甲酸酯、6,6-二甲基-3,5-庚二醇二苯甲酸酯、2-甲基-3-乙基-3,5-庚二醇二苯甲酸酯、2-甲基-4-乙基-3,5-庚二醇二苯甲酸酯、2-甲基-5-乙基-3,5-庚二醇二苯甲酸酯、3-甲基-3-乙基-3,5-庚二醇二苯甲酸酯、3-甲基-4-乙基-3,5-庚二醇二苯甲酸酯、3-甲基-5-乙基-3,5-庚二醇二苯甲酸酯、4-甲基-3-乙基-3,5-庚二醇二苯甲酸酯、4-甲基-4-乙基-3,5-庚二醇二苯甲酸酯、9,9-双(苯甲羧基甲基)芴、9,9-双((间甲氧基苯甲羧基)甲基)芴、9,9-双((间氯苯甲羧基)甲基)芴、9,9-双((对氯苯甲羧基)甲基)芴、9,9-双(肉桂羧基甲基)芴、9-(苯甲羧基甲基)-9-(丙羧基甲基)芴、9,9-双(丙羧基甲基)芴、9,9-双(丙烯羧基甲基)芴和9,9-双(新戊基羧基甲基)芴。
上述的二醇酯类化合物公开于专利申请CN1453298A和CN1436796A中,其相关内容在此引入本申请作为参考。
优选地,所述二醚类化合物选自式(V)所示的1,3-二醚类化合物,
Figure PCTCN2014088806-appb-000008
其中,RI、RII、RIII、RIV、RV和RVI可以相同或不同,且各自独立地可以选自氢、卤素、直链或支链的C1-C20烷基、C3-C20环烷基、C6-C20芳基和C7-C20芳烷基;RVII和RVIII也可以相同或不同,且各自独立地可以选自直链或支链的C1-C20烷基、C3-C20环 烷基、C6-C20芳基、C7-C20烷芳基和C7-C20芳烷基;RI-RVI的基团间可键接成环。
优选地,所述二醚类化合物选自2-(2-乙基己基)-1,3-二甲氧基丙烷、2-异丙基-1,3-二甲氧基丙烷、2-丁基-1,3-二甲氧基丙烷、2-仲丁基-1,3-二甲氧基丙烷、2-环己基-1,3-二甲氧基丙烷、2-苯基-1,3-二甲氧基丙烷、2-(2-苯基乙基)-1,3-二甲氧基丙烷、2-(2-环己基乙基)-1,3-二甲氧基丙烷、2-(对-氯苯基)-1,3-二甲氧基丙烷、2-(二苯基甲基)-1,3-二甲氧基丙烷、2,2-二环己基-1,3-二甲氧基丙烷、2,2-二环戊基-1,3-二甲氧基丙烷、2,2-二乙基-1,3-二甲氧基丙烷、2,2-二丙基-1,3-二甲氧基丙烷、2,2-二异丙基-1,3-二甲氧基丙烷、2,2-二丁基-1,3-二甲氧基丙烷、2-甲基-2-丙基-1,3-二甲氧基丙烷、2-甲基-2-苄基-1,3-二甲氧基丙烷、2-甲基-2-乙基-1,3-二甲氧基丙烷、2-甲基-2-异丙基-1,3-二甲氧基丙烷、2-甲基-2-苯基-1,3-二甲氧基丙烷、2-甲基-2-环己基-1,3-二甲氧基丙烷、2,2-双(2-环己基乙基)-1,3-二甲氧基丙烷、2-甲基-2-异丁基-1,3-二甲氧基丙烷、2-甲基-2-(2-乙基己基)-1,3-二甲氧基丙烷、2,2-二异丁基-1,3-二甲氧基丙烷、2,2-二苯基-1,3-二甲氧基丙烷、2,2-二苄基-1,3-二甲氧基丙烷、2,2-双(环己基甲基)-1,3-二甲氧基丙烷、2-异丁基-2-异丙基-1,3-二甲氧基丙烷、2-(1-甲基丁基)-2-异丙基-1,3-二甲氧基丙烷、2-异丙基-2-异戊基-1,3-二甲氧基丙烷、2-苯基-2-异丙基-1,3-二甲氧基丙烷、2-苯基-2-仲-丁基-1,3-二甲氧基丙烷、2-苄基-2-异丙基-1,3-二甲氧基丙烷、2-环戊基-2-异丙基-1,3-二甲氧基丙烷、2-环戊基-2-仲-丁基-1,3-二甲氧基丙烷、2-环己基-2-异丙基-1,3-二甲氧基丙烷、2-环己基-2-仲-丁基-1,3-二甲氧基丙烷、2-异丙基-2-仲-丁基-1,3-二甲氧基丙烷和2-环己基-2-环己基甲基-1,3-二甲氧基丙烷。
在第四方面,本发明提供了一种制备催化剂组分的方法,该方法包括以下步骤:
(1)提供上述本发明的固体组合物;和
(2)在有或无惰性溶剂存在下,使所述球形载体或固体组合物与钛化合物接触反应,并且任选地,在反应之前、期间和/或之后的一个或多个时间段内加入至少一种内给电子体。
所述钛化合物和内给电子体如上面第三方面中所述。所述惰性溶剂可以选自脂肪烃和芳烃,例如,己烷、庚烷、辛烷、癸烷、甲苯等。
在一些具体的实施方案中,所述制备催化剂组分的方法包括以下步骤:
(1)制备固体组合物,其过程包括:
(a)在至少一种高分子分散稳定剂的存在下,使卤化镁MgX2和有机醇R1OH在30-160℃下反应,形成卤化镁醇合物溶液;
(b)将所述卤化镁醇合物溶液与上述式(2)所示的环氧烷类化合物在30-160℃下反应,生成固体组合物;
其中,X为卤素,R1为C1-C12的直链或支链烷基;
Figure PCTCN2014088806-appb-000009
其中,R2和R3相同或不同,且各自独立地为氢或者未取代或被卤素取代的C1-C5的直链或支链烷基;
其中,以每摩尔卤化镁计,所述有机醇的用量为3-30摩尔,式(2)所示的环氧烷类化合物的用量为1-10摩尔;所述高分子分散稳定剂的用量为所述卤化镁和所述有机醇的总用量的0.1-10重量%;
(2)在有或无惰性溶剂存在下,使步骤(1)制备的固体组合物与钛化合物接触反应,并且任选地,在反应之前、期间和/ 或之后的一个或多个时间段内加入至少一种内给电子体。
所述固体组合物的制备过程、所采用的原料和用量以及所采用的条件的细节和优先选择如前面第一方面中所述。
在一些实施方案中,本发明的制备催化剂组分的方法的步骤(2)如下进行:将所述固体组合物悬浮于-30℃至0℃的钛化合物原料中,然后升温至40-130℃进行反应0.1-5小时。更优选地,所述步骤(2)如下进行:将所述固体组合物悬浮于-20℃至0℃的钛化合物原料中,然后升温至50-130℃进行反应0.5-2小时。所述钛化合物原料可以为纯的钛化合物或者钛化合物与惰性溶剂的混合物。
在一些实施方案中,为了在使用所述催化剂组分的丙烯聚合中可以获得高等规度的烯烃聚合物,步骤(2)优选包括在固体组合物与钛化合物反应之前、期间和/或之后的一个或多个时间段内加入所述至少一种内给电子体。更优选地,在将固体组合物和钛化合物的混合物进行升温的过程中加入所述至少一种内给电子体。
在一些优选的实施方案中,所述制备催化剂组分的方法还包括:在将固体组合物与钛化合物反应之后,将液体滤掉并回收固体,再用液态的钛化合物(如四氯化钛)对回收的固体处理一次或多次,优选为2-4次;然后再用烃类溶剂多次洗涤得到的固体催化剂组分。所述烃类溶剂可以选自脂肪烃、芳香族或脂环族烃类,例如,己烷、庚烷、辛烷、癸烷、甲苯等。
在一个优选的实施方案中,为了有效减少含所述催化剂组分的催化剂的破碎,所述制备催化剂组分的方法的步骤(2)如下进行:在烃类溶剂的存在下,将所述固体组合物与至少一种烷氧基钛接触反应,将得到的中间反应产物与四氯化钛和内给电子体化合物接触反应,然后用烃类溶剂对得到的反应产物进行洗涤。所 述烷氧基钛可以由通式Ti(OR4)4-aXa表示,其中,R4为C1-C14的脂肪烃基,X为卤素,a为0-3的整数。优选地,所述烷氧基钛选自四丁氧基钛、四乙氧基钛、一氯三丁氧基钛、二氯二丁氧基钛、三氯一丁氧基钛、一氯三乙氧基钛、二氯二乙氧基钛和三氯一乙氧基钛,最优选为四乙氧基钛和/或四丁氧基钛。所述烃类溶剂可以为液体脂肪族、芳香族或脂环族烃类,例如己烷、庚烷、辛烷、癸烷、甲苯等。以所述固体组合物中的每摩尔镁计,所述烷氧基钛的用量可以为0.05-1.5摩尔,优选为0.1-1.2摩尔。
在一些实施方案中,在所述制备催化剂组分的方法的步骤(2)中,以所述固体组合物中的每摩尔镁计,所述钛化合物的用量可以为5-200摩尔,优选为10-100摩尔;所述内给电子体的用量可以为0-0.5摩尔,优选为0.08-0.4摩尔。当步骤(2)按照上述优选实施方案进行时,所述钛化合物的用量是指烷氧基钛和四氯化钛的总用量。
在第五方面,本发明提供了一种用于烯烃聚合的催化剂,该催化剂含有:
(i)本发明的催化剂组分;
(ii)至少一种烷基铝化合物;以及
(iii)任选地,至少一种外给电子体。
所述烷基铝化合物可以为本领域常规使用的各种烷基铝化合物,例如由通式AlR′3表示的那些,其中R′基团各自独立地为卤素,或未取代或被卤素取代的C1-C8的烷基,且其中至少一个R′基团不是卤素。所述C1-C8的烷基的实例可以包括但不限于:甲基、乙基、丙基、正丁基、异丁基、戊基、己基、正庚基、正辛基,所述卤素可以为氟、氯、溴、碘。具体地,所述烷基铝化合物例如可以选自三乙基铝、三异丁基铝、三正丁基铝、三正己基 铝、一氯二乙基铝、一氯二异丁基铝、一氯二正丁基铝、一氯二正己基铝、二氯一乙基铝、二氯一异丁基铝、二氯一正丁基铝和二氯一正己基铝中的一种或多种。
所述外给电子体可以为本领域常用的各种外给电子体,例如,所述外给电子体可以选自羧酸、羧酸酐、羧酸酯、酮、醚、醇、内酯、有机磷化合物和有机硅化合物。优选地,所述外给电子体是通式为(R17)x(R18)ySi(OR19)z的硅化合物,其中R17、R18和R19独立地为C1-C18的烃基,任选地含有杂原子,x和y各自独立为0-2的整数,z为1-3的整数,且x、y和z的和为4。优选地,R17和R18独立地为C3-C10的烷基或环烷基,任选地含有杂原子;R19为C1-C10的烷基,任选地含有杂原子。具体地,所述外给电子体例如可以选自环己基甲基二甲氧基硅烷、二异丙基二甲氧基硅烷、二正丁基二甲氧基硅烷、二异丁基二甲氧基硅烷、二苯基二甲氧基硅烷、甲基叔丁基二甲氧基硅烷、二环戊基二甲氧基硅烷、2-乙基哌啶基-2-叔丁基二甲氧基硅烷、(1,1,1-三氟-2-丙基)-2-乙基哌啶基二甲氧基硅烷和(1,1,1-,三氟-2-丙基)-甲基二甲氧基硅烷。
一般地,在所述用于烯烃聚合的催化剂中,以钛元素计的所述用于烯烃聚合的催化剂组分和以铝元素计的所述烷基铝的摩尔比可以为1∶1-1000,优选为1∶20-500;所述外给电子体和以铝元素计的所述烷基铝的摩尔比可以为1∶2-200,优选为1∶2.5-100。
根据本发明,在用于烯烃聚合的催化剂的制备过程中,烷基铝和任选的外给电子体化合物可以分别与用于烯烃聚合的催化剂组分混合后反应,或者也可以将烷基铝和任选的外给电子体事先混合后再与用于烯烃聚合的催化剂组分混合并反应。
根据本发明,在将用于烯烃聚合的催化剂用于烯烃聚合时,所述用于烯烃聚合的催化剂组分、烷基铝以及任选的外给电子体 可分别加入聚合反应器中,也可混合后加入聚合反应器中,也可采用本行业公知的预聚合方法将烯烃预聚后加入到聚合反应器中。
在第六方面,本发明提供了上述催化剂在烯烃聚合反应中的应用。
本发明的改进之处在于采用了一种新的用于烯烃聚合的催化剂,而将被聚合的烯烃的具体种类、烯烃的聚合反应方法和条件均可以与现有技术相同。
根据本发明,上述催化剂特别适用于通式为CH2=CHR(其中,R是氢、C1-C6的烷基或C6-C12芳基)的烯烃的均聚和共聚反应。
根据本发明,所述烯烃的聚合反应可以按照现有的方法进行,具体地,在惰性气体的保护下,在液相单体或含聚合单体的惰性溶剂中,或在气相中,或通过在气液相中的组合聚合工艺进行聚合反应。所述聚合反应的温度一般可以为0-150℃、优选为60-90℃。所述聚合反应的压力可以为常压或更高;例如可以为0.01-10MPa(表压),优选为0.01-2MPa(表压),更优选为0.1-2MPa(表压)。在聚合过程中,氢气可用作聚合物分子量调节剂加入到反应体系中以调节聚合物的分子量和熔融指数。此外,在烯烃的聚合反应过程中,所述惰性气体、溶剂的种类和用量为本领域技术人员公知,在此将不再赘述。
因此,按照本发明的该方面,本发明还提供了一种烯烃聚合方法,包括在聚合条件下,使式CH2=CHR的烯烃,其中R是氢、C1-C6的烷基或C6-C12芳基,和任选的共聚单体与本发明的催化剂接触,以形成烯烃聚合物;和回收产生的烯烃聚合物。
在一个优选的实施方案中,所述烯烃聚合是丙烯均聚或丙烯与共聚单体的共聚合。可与丙烯共聚合的共聚单体的实例包括乙 烯、C4-12α-烯烃和C4-20二烯烃。
具体实施方式
下面的例子用来说明本发明,并不是用来限制本发明的范围。
测试方法:
(1)球形载体/固体组合物的组成:用磷酸三正丁酯和氘代甲苯溶解球形载体,并用核磁共振波谱仪测试1H-NMR谱图。
(2)聚合物熔融指数:根据ASTM D1238-99的方法测定。
(3)聚合物等规指数:采用庚烷抽提法测定(庚烷沸腾抽提6小时),即取2g干燥的聚合物样品,置于抽提器中用沸腾庚烷抽提6小时,之后,将剩余物干燥至恒重,所得聚合物重量(g)与2的比值即为等规指数。
(4)粒径分布测试:球形载体/固体组合物颗粒的平均粒径和粒度分布用Masters Sizer 2000粒度仪(由Malvern Instruments Ltd制造)测定,其中,粒径分布值SPAN=(D90-D10)/D50。
实施例1-22
这些实施例用于说明本发明的球形载体/固体组合物及其制备。
在500mL的反应釜中,依次加入氯化镁、有机醇(R1OH)和高分子分散稳定剂,并且在实施例19-22中分别额外加入甲苯作为惰性分散介质(其中,对于加入的甲苯与有机醇的体积比,实施例19为1∶10,实施例20为1∶3,实施例21为1∶1,实施例22为1∶2),在搅拌下升温至反应温度(T),恒温反应1小时后,加入环氧烷类化合物(E),维持温度反应0.5小时,滤去液体,将残余固体物用已烷洗涤5次,真空干燥,得到球形载体颗粒。采 用表1所示的制备条件,分别制得球形载体A1-A22,它们各自的平均粒径(D50)和粒径分布值(SPAN)如表1所示。球形载体A1的1H-NMR谱图如图1所示,球形载体A2的1H-NMR谱图如图2所示,球形载体A13的1H-NMR谱图如图3所示,球形载体A16的1H-NMR谱图如图4所示,球形载体A1的光学显微镜照片如图5所示。
表1
Figure PCTCN2014088806-appb-000010
Figure PCTCN2014088806-appb-000011
由表1和图5可以看出,根据本发明的方法制备的球形载体颗粒基本上为球形,且颗粒尺寸分布比较窄。
球形载体A1的1H-NMR谱图中,谱峰归属及积分面积如下表2所示。
表2
基团所属 化学位移ppm 积分面积
CH3(V) 1.40 3.01
CH2(V) 3.93 7.10-5.10=2
CH(V) 4.29 1.00
CH2Cl(V) 3.79 4.00
CH2Cl(VI) 2.87 0.08
C-CH-C(VI) 2.60 0.04
C-CH-O(VI) 2.16 0.04
C-CH-O(VI) 1.95 0.04
注:图1中未标注峰位者为溶剂峰
由此可知,球形载体A1主要由式(V)和式(VI)所示的化合物组成,且式(V)和式(VI)所示的化合物的摩尔比为1∶0.04。
Figure PCTCN2014088806-appb-000012
所述球形载体A1还含有痕量的PVP,这由其红外光谱证实。
球形载体A2的1H-NMR谱图中,谱峰归属及积分面积如下表3所示。
表3
基团所属 化学位移ppm 积分面积
CH3(V) 1.41 3.03
CH2(V) 3.94 7.26-5.23=2.03
CH(V) 4.31 1.00
CH2Cl(V) 3.81 3.99
CH2Cl(VI) 2.88 0.13
C-CH-C(VI) 2.61 0.06
C-CH-O(VI) 2.17 0.07
C-CH-O(VI) 1.95 0.07
注:图2中未标注峰位者为溶剂峰
由此可知,球形载体A2主要由式(V)和式(VI)所示的化合物组成,且式(V)和式(VI)所示的化合物的摩尔比为1∶0.07。
球形载体A13的1H-NMR谱图中,谱峰归属及积分面积如下表4所示。
表4
基团所属 化学位移ppm 积分面积
CH3(VII) 1.09 3.00
CH2(VII) 3.87 2.00
CH2(VII) 1.76 2.00
CH2(VII) 1.48 8.60-6.60=2.00
CH(VII) 4.28 1.00
CH2Cl(VII) 3.78 6.00-2.00=4.00
CH2Cl(VI) 2.87 0.04
C-CH-C(VI) 2.60 0.02
C-CH-O(VI) 2.14 0.02
C-CH-O(VI) 1.94 0.02
注:图3中未标注峰位者为溶剂峰
由此可知,球形载体A13主要由式(VII)和式(VI)所示的化合物组成,且式(VII)和式(VI)所示的化合物的摩尔比为1∶0.02。
Figure PCTCN2014088806-appb-000013
球形载体A16的1H-NMR谱图中,谱峰归属及积分面积如下表5所示。
表5
基团所属 化学位移ppm 积分面积
CH3(V) 1.40 9.08-6.88-1.18=1.02
CH2(V) 3.95 5.86-4-1.18=0.68
CH3(VII) 1.06 1.77
CH2(VII) 3.86 1.18
CH2(VII) 1.74 1.18
CH2(VII) 1.51 1.18
CH(VII) 4.34 1.00
CH2Cl(VII) 3.84 4.00
CH2Cl(VI) 2.86 0.49
C-CH-C(VI) 2.60 0.23
C-CH-O(VI) 2.15 0.24
C-CH-O(VI) 1.94 0.24
注:图4中未标注峰位者为溶剂峰
由此可知,球形载体A16主要由式(V)、式(VI)和式(VII)所示的化合物组成,且式(VI)所示的化合物与式(V)和式(VII)所示的化合物之和的摩尔比为0.24∶1,式(VI)所示的化合物与式(VII)所示的化合物的摩尔比为1∶1.74。
对比例1
在500mL的反应釜中,依次加入7.2g氯化镁、180ml白油和82ml乙醇,并将内容物在搅拌下升温至90℃,并在该温度下反应1小时后,向反应器中加入24ml环氧氯丙烷,并使反应在该温度下继续进行0.5小时,之后滤去液体,将残余固体用已烷洗涤5次,然后真空干燥,得到球形载体D1。
对比例2
根据对比例1的方法制备球形载体,所不同的是,不加入惰性分散介质白油,结果未得到固体颗粒。
对比例3
根据实施例1的方法制备载体,所不同的是,用相同重量的非离子型表面活性剂司盘80代替实施例1中加入的PVP,从而制得块状载体D3,该块状载体的光学显微镜照片如图6所示。
对比例4
根据实施例1的方法制备载体,所不同的是,不加入高分子分散稳定剂PVP,从而制得块载体D4。
对比例5
在500mL的密闭反应釜中,依次加入氯化镁22g、乙醇188ml、PVP2.7g(Mw=10000),在搅拌下升温至80℃,恒温反应1小时后,向溶液中缓慢滴加4ml TiCl4,维持0.5小时后,向上述溶液中加入环氧氯丙烷57ml,维持温度反应0.5小时,滤去液体,仅得到少量无定形粉末状固体。
以下工作实施例用于说明本发明的催化剂组分、其制备方法、催化剂和催化剂的应用。
工作实施例1(1)制备固体催化剂
在300mL的玻璃反应瓶中,加入100ml四氯化钛,冷却至-20。C,然后加入8g上述实施例1制备的球形载体A1,并将内容 物升温至110℃。在升温过程中加入邻苯二甲酸二异丁酯1.5ml,滤去液体,将残余物用四氯化钛洗涤二次,用己烷洗涤三次,真空干燥后得到固体催化剂Cat-1。
(2)丙烯液相本体聚合
丙烯液相本体聚合是在5L的不锈钢高压反应釜中进行。在氮气保护下向反应釜中依次加入5ml三乙基铝的己烷溶液(浓度为0.5mmol/ml)、1ml环己基甲基二甲氧基硅烷(CHMMS)的己烷溶液(浓度为0.1mmol/ml)和9mg上述固体催化剂Cat-1。关闭高压釜,加入一定量氢气(标准体积)和2.3L的液体丙烯。升温至70℃,反应1小时后,降温,卸压,出料,将所得丙烯均聚物干燥后称重并分析,结果如表6所示。
工作实施例2-12
根据工作实施例1的方法制备固体催化剂和实施丙烯液相本体聚合,但是所使用的球形载体、内给电子体和加氢量分别如表6所示。而且,聚合活性以及制备的丙烯均聚物的等规度和熔融指数示于表6中。
对比工作实施例1
根据工作实施例1的方法制备固体催化剂和实施丙烯液相本体聚合,所不同的是,用对比例1制备的球形载体D1代替所述球形载体A1。结果如表6所示。
工作实施例13
(1)制备催化剂组分
在300mL带有机械搅拌的玻璃反应瓶中,氮气气氛下,将10g 上述球形载体A1分散在100ml己烷中,冷却至-10℃,维持0.5小时。加入四乙氧基钛(TET)2.5ml(TET/Mg摩尔比=0.2),缓慢升温至60℃,维持0.5小时,滤去液体,残余物用己烷洗涤三次,真空干燥后得到中间产物。
在300mL带有机械搅拌的玻璃反应瓶中,氮气气氛下,加入100ml四氯化钛,冷却至-20℃。加入上述中间产物8g,升温至110℃,在升温过程中加入邻苯二甲酸二异丁酯1.5ml,在110℃下反应0.5小时后,滤去液体,残余物用四氯化钛洗涤二次,用己烷洗涤三次,真空干燥后得球形的固体催化剂组分Cat-13。
(2)丙烯液相本体聚合
按照工作实施例1的方法进行丙烯液相本体聚合,所不同的是用固体催化剂组分Cat-13代替固体催化剂组分Cat-1。聚合活性以及制备的丙烯均聚物的等规度和熔融指数示于表6中。
表6
Figure PCTCN2014088806-appb-000014
Figure PCTCN2014088806-appb-000015
从表6中的数据可以看出,在丙烯聚合过程中采用本发明的所述催化剂可以获得较高的聚合活性和较高的立体定向能力;同时,本发明的所述用于烯烃聚合的催化剂的氢调敏感性较好。特 别地,采用本发明的催化剂进行丙烯聚合,在高的熔体指数下,聚合物仍有较高的等规指数。

Claims (24)

  1. 一种用于烯烃聚合催化剂的球形载体的制备方法,该方法包括:在至少一种高分子分散稳定剂的存在下,使至少下列组分反应以直接析出固体颗粒产物:(a)卤化镁;(b)含有活泼氢的有机化合物;以及(c)环氧烷类化合物。
  2. 根据权利要求1所述的方法,其中,所述反应的过程包括:
    (1)在至少一种高分子分散稳定剂的存在下,将卤化镁与含有活泼氢的有机化合物反应以形成配合物溶液;
    (2)将所述配合物溶液与环氧烷类化合物反应以直接析出所述球形载体。
  3. 根据权利要求2所述的方法,其特征在于以下中至少之一:
    -在步骤(1)中,相对于每摩尔卤化镁,所述含有活泼氢的有机化合物的用量为3-30摩尔,或者4-20摩尔;所述高分子分散稳定剂的用量为所述卤化镁和所述含有活泼氢的有机化合物的总用量的0.1-10重量%,或者0.2-5重量%;
    -步骤(1)的反应条件包括:反应温度为30-160℃,或者40-120℃;反应时间为0.1-5小时,或者0.5-2小时;
    在步骤(2)中,相对于每摩尔所述卤化镁,所述环氧烷类化合物的用量为1-10摩尔,或者2-6摩尔;
    -步骤(2)的反应条件包括:反应温度为30-160℃,或者40-120℃;反应时间为0.1-5小时,或者0.2-1小时。
  4. 根据权利要求1-3中任意一项所述的方法,其特征在于以下中至少之一:
    -所述高分子分散稳定剂的重均分子量大于1000,或者大于3000,或者为6,000-2,000,000;
    -所述高分子分散稳定剂选自聚丙烯酸盐、苯乙烯-马来酸酐共聚物、聚苯乙烯磺酸盐、萘磺酸甲醛缩合物、缩合烷基苯基醚硫酸酯、缩合烷基苯酚聚氧乙烯醚磷酸酯、氧基烷基丙烯酸酯共聚物改性聚乙撑亚胺、1-十二-4-乙烯吡啶溴化物的聚合物、聚乙烯基苄基三甲胺盐、聚乙烯醇、聚丙烯酰胺、环氧乙烷环氧丙烷嵌段共聚物、聚乙烯吡咯烷酮、聚乙烯吡咯烷酮醋酸乙烯酯共聚物、聚乙二醇、烷基苯基聚氧乙烯醚和聚甲基丙烯酸烷基酯类化合物中的至少一种;
    -所述卤化镁选自二氯化镁、二溴化镁和二碘化镁中的至少一种;
    -所述含有活泼氢的有机化合物为至少一种有机醇R1OH,其中,R1为C1-C12的直链或支链烷基;优选地,所述至少一种有机醇选自甲醇、乙醇、丙醇、异丙醇、正丁醇、异丁醇、戊醇、异戊醇、正己醇、正辛醇和2-乙基-1-己醇;
    -在步骤(1)和(2)中均不加入惰性分散介质。
  5. 根据权利要求1-4中任意一项所述的方法,其中,所述环氧烷类化合物的结构式如式(2)所示,
    Figure PCTCN2014088806-appb-100001
      式(2)
    其中,R2和R3相同或不同,且各自独立地为氢或者未取代或 被卤素取代的C1-C5的直链或支链烷基;
    或者所述环氧烷类化合物是选自环氧乙烷、环氧丙烷、环氧丁烷、环氧氯丙烷、环氧氯丁烷、环氧溴丙烷和环氧溴丁烷中的至少一种。
  6. 根据权利要求1或2所述的方法,其中,在将所述组分反应的过程中不加入四氯化钛。
  7. 由权利要求1-6中任意一项所述的方法制备的球形载体。
  8. 一种制备固体组合物的方法,该方法包括以下步骤:
    (a)在至少一种高分子分散稳定剂的存在下,使卤化镁MgX2和有机醇R1OH在30-160℃下反应,形成卤化镁醇合物溶液;
    (b)将所述卤化镁醇合物溶液与式(2)所示的环氧烷类化合物在30-160℃下反应,直接析出固体组合物颗粒;
    其中,X为卤素,R1为C1-C12的直链或支链烷基;
    Figure PCTCN2014088806-appb-100002
      式(2)
    其中,R2和R3相同或不同,且各自独立地为氢或者未取代或被卤素取代的C1-C5的直链或支链烷基;
    其中,以每摩尔卤化镁计,所述有机醇的用量为3-30摩尔,式(2)所示的环氧烷类化合物的用量为1-10摩尔;所述高分子分散稳定剂的用量为所述卤化镁和所述有机醇的总用量的0.1-10重量%。
  9. 根据权利要求8所述的方法,其特征在于以下中至少之 一:
    -步骤(a)在密闭容器中进行;
    -R1为C1-C8的直链或支链烷基;
    -R2和R3各自独立地为氢或者未取代或被卤素取代的C1-C3的直链或支链烷基;
    -以每摩尔卤化镁计,所述有机醇的用量为4-20摩尔,式(2)所示的环氧烷类化合物的用量为2-6摩尔;
    -所述高分子分散稳定剂的用量为所述卤化镁和所述有机醇的总用量的0.2-5重量%;
    -所述卤化镁选自二氯化镁、二溴化镁和二碘化镁中的至少一种;
    -所述有机醇是选自甲醇、乙醇、丙醇、异丙醇、正丁醇、异丁醇、戊醇、异戊醇、正己醇、正辛醇和2-乙基-1-己醇中的至少一种;
    -所述环氧烷类化合物是选自环氧乙烷、环氧丙烷、环氧丁烷、环氧氯丙烷、环氧氯丁烷、环氧溴丙烷和环氧溴丁烷中的至少一种;
    -所述高分子分散稳定剂的重均分子量大于1000,或者大于3000,或者为6,000-2,000,000;
    -所述高分子分散稳定剂是选自聚丙烯酸盐、苯乙烯-马来酸酐共聚物、聚苯乙烯磺酸盐、萘磺酸甲醛缩合物、缩合烷基苯基醚硫酸酯、缩合烷基苯酚聚氧乙烯醚磷酸酯、氧基烷基丙烯酸酯共聚物改性聚乙撑亚胺、1-十二-4-乙烯吡啶溴化物的聚合物、聚乙烯基苄基三甲胺盐、聚乙烯醇、聚丙烯酰胺、环氧乙烷环氧丙烷嵌段共聚物、聚乙烯吡咯烷酮、聚乙烯吡咯烷酮醋酸乙烯酯共聚物、聚乙二醇、烷基苯基聚氧乙烯醚和聚甲基丙烯酸烷基酯类化 合物中的至少一种;
    -在步骤(a)和(b)中均不加入惰性分散介质。
  10. 由权利要求8或9所述的方法制备的固体组合物。
  11. 权利要求10所述的固体组合物,该固体组合物含有式(1)所示的镁化合物和式(2)所示的环氧烷类化合物,
    Figure PCTCN2014088806-appb-100003
     式(1)
    Figure PCTCN2014088806-appb-100004
     式(2)
    其中,R1为C1-C12的直链或支链烷基;R2和R3相同或不同,且各自独立地为氢或者未取代或被卤素取代的C1-C5的直链或支链烷基;X为卤素;m为0.1-1.9,n为0.1-1.9,且m+n=2;
    其中,相对于每摩尔式(1)所示的镁化合物,式(2)所示的环氧烷类化合物的含量为0.01-0.8摩尔。
  12. 权利要求11所述的固体组合物,其特征在于以下中至少之一:
    -R1为C1-C8的直链或支链烷基;
    -R2和R3各自独立地为氢或者未取代或被卤素取代的C1-C3的直链或支链烷基;
    -X为氯;
    -m为0.5-1.5,n为0.5-1.5,且m+n=2;
    -相对于每摩尔式(1)所示的镁化合物,式(2)所示的环氧 烷类化合物的含量为0.02-0.5摩尔,或者0.02-0.3摩尔。
  13. 一种用于烯烃聚合的催化剂组分,该催化剂组分含有以下组分的反应产物:
    (1)固体组合物,其是权利要求7的球形载体或者权利要求10的固体组合物;
    (2)至少一种钛化合物;以及
    (3)任选地,至少一种内给电子体。
  14. 权利要求13的催化剂组分,其特征在于,所述固体组合物含有式(1)所示的镁化合物和式(2)所示的环氧烷类化合物,
    Figure PCTCN2014088806-appb-100005
     式(1)
    Figure PCTCN2014088806-appb-100006
     式(2)
    其中,R1为C1-C12的直链或支链烷基;R2和R3相同或不同,且各自独立地为氢或者未取代或被卤素取代的C1-C5的直链或支链烷基;X为卤素;m为0.1-1.9,n为0.1-1.9,且m+n=2;
    其中,相对于每摩尔式(1)所示的镁化合物,式(2)所示的环氧烷类化合物的含量为0.01-0.8摩尔。
  15. 权利要求14所述的催化剂组分,其特征在于以下中至少之一:
    -R1为C1-C8的直链或支链烷基;
    -R2和R3各自独立地为氢或者未取代或被卤素取代的C1-C3 的直链或支链烷基;
    -X为氯;
    -m为0.5-1.5,n为0.5-1.5,且m+n=2;
    -在所述固体组合物中,相对于每摩尔式(1)所示的镁化合物,式(2)所示的环氧烷类化合物的含量为0.02-0.5摩尔,或者0.02-0.3摩尔;
    -相对于所述固体组合物中的每摩尔式(1)所示的镁化合物,所述钛化合物的用量为5-200摩尔,或者10-100摩尔,所述内给电子体的用量为0-0.5摩尔,或者0.08-0.4摩尔;
    -所述钛化合物选自通式为Ti(OR4)4-aXa的钛化合物,其中,R4为C1-C14的脂肪烃基,X为卤素,a为0-4的整数;或者,所述钛化合物选自四氯化钛、四溴化钛、四碘化钛、四丁氧基钛、四乙氧基钛、一氯三丁氧基钛、二氯二丁氧基钛、三氯一丁氧基钛、一氯三乙氧基钛、二氯二乙氧基钛和三氯一乙氧基钛。
  16. 权利要求14所述的催化剂组分,其中,所述内给电子体选自酯、醚、酮、胺和硅烷;或者选自一元或多元脂肪族羧酸酯或芳香族羧酸酯、二醇酯类化合物和二醚类化合物;更优选地,所述一元或多元脂肪族羧酸酯或芳香族羧酸酯选自苯甲酸乙酯、邻苯二甲酸酯二乙酯、邻苯二甲酸酯二异丁酯、邻苯二甲酸酯二正丁酯、邻苯二甲酸酯二异辛酯、邻苯二甲酸酯二正辛酯、丙二酸二乙酯、丙二酸二丁酯、2,3-二异丙基琥珀酸二乙酯、2,3-二异丙基琥珀酸二异丁酯、2,3-二异丙基琥珀酸二正丁酯、2,3-二异丙基琥珀酸二甲基酯、2,2-二甲基琥珀酸二异丁酯、2-乙基-2-甲基琥珀酸二异丁酯、2-乙基-2-甲基琥珀酸二乙酯、己二酸二乙酯、己二酸二丁酯、癸二酸二乙酯、癸二酸二丁酯、顺丁烯二酸二乙 酯、顺丁烯二酸二正丁酯、萘二羧酸二乙酯、萘二羧酸二丁酯、偏苯三酸三乙酯、偏苯三酸三丁酯、联苯三酸三乙酯、联苯三酸三丁酯、均苯四酸四乙酯和均苯四酸四丁酯,所述二醇酯类化合物选自1,3-丙二醇二苯甲酸酯、2-甲基-1,3-丙二醇二苯甲酸酯、2-乙基-1,3-丙二醇二苯甲酸酯、2,2-二甲基-1,3-丙二醇二苯甲酸酯、(R)-1-苯基-1,3-丙二醇二苯甲酸酯、1,3-二苯基-1,3-丙二醇二苯甲酸酯、1,3-二苯基-1,3-丙二醇二正丙酸酯、1,3-二苯基-2-甲基-1,3-丙二醇二丙酸酯、1,3-二苯基-2-甲基-1,3-丙二醇二乙酸酯、1,3-二苯基-2,2-二甲基-1,3-丙二醇二苯甲酸酯、1,3-二苯基-2,2-二甲基-1,3-丙二醇二丙酸酯、1,3-二叔丁基-2-乙基-1,3-丙二醇二苯甲酸酯、1,3-二苯基-1,3-丙二醇二乙酸酯、1,3-二异丙基-1,3-丙醇二(4-丁基苯甲酸)酯、1-苯基-2-氨基-1,3丙二醇二苯甲酸酯、1-苯基-2-甲基-1,3-丁二醇二苯甲酸酯、苯基-2-甲基-1,3-丁二醇二新戊酸酯、3-丁基-2,4-戊二醇二苯甲酸酯、3,3-二甲基-2,4-戊二醇二苯甲酸酯、(2S,4S)-(+)-2,4-戊二醇二苯甲酸酯、(2R,4R)-(+)-2,4-戊二醇二苯甲酸酯、2,4-戊二醇二(对氯苯甲酸)酯、2,4-戊二醇二(间氯苯甲酸)酯、2,4-戊二醇二(对溴苯甲酸)酯、2,4-戊二醇二(邻溴苯甲酸)酯、2,4-戊二醇二(对甲基苯甲酸)酯、2,4-戊二醇二(对叔丁基苯甲酸)酯、2,4-戊二醇二(对丁基苯甲酸)酯、2-甲基-1,3-戊二醇二(对氯苯甲酸)酯、2-甲基-1,3-戊二醇二(对甲基苯甲酸)酯、2-丁基-1,3-戊二醇二(对甲基苯甲酸)酯、2-甲基-1,3-戊二醇二(对叔丁基苯甲酸)酯、2-甲基-1,3-戊二醇新戊酸酯、2-甲基-1,3-戊二醇苯甲酸肉桂酸酯、2,2-二甲基-1,3-戊二醇二苯甲酸酯、2,2-二甲基-1,3-戊二醇苯甲酸肉桂酸酯、2-乙基-1,3-戊二醇二苯甲酸酯、2-丁基-1,3-戊二醇二苯甲酸酯、2-烯丙基-1,3-戊二醇二苯甲酸酯、2-甲基-1,3-戊二醇二苯甲酸酯、2-乙基-1,3-戊二醇二苯甲酸酯、2-丙基-1,3-戊二醇二苯甲 酸酯、2-丁基-1,3-戊二醇二苯甲酸酯、2,2-二甲基-1,3-戊二醇二苯甲酸酯、1,3-戊二醇二(对氯苯甲酸)酯、1,3-戊二醇二(间氯苯甲酸)酯、1,3-戊二醇二(对溴苯甲酸)酯、1,3-戊二醇二(邻溴苯甲酸)酯、1,3-戊二醇二(对甲基苯甲酸)酯、1,3-戊二醇二(对叔丁基苯甲酸)酯、1,3-戊二醇二(对丁基苯甲酸)酯、1,3-戊二醇苯甲酸肉桂酸酯、1,3-戊二醇二肉桂酸酯、1,3-戊二醇二丙酸酯、2-甲基-1,3-戊二醇苯甲酸肉桂酸酯、2,2-二甲基-1,3-戊二醇二苯甲酸酯、2,2-二甲基-1,3-戊二醇苯甲酸肉桂酸酯、2-乙基-1,3-戊二醇二苯甲酸酯、2-丁基-1,3-戊二醇二苯甲酸酯、2-烯丙基-1,3-戊二醇二苯甲酸酯、2-甲基-1,3-戊二醇苯甲酸肉桂酸酯、2,2,4-三甲基-1,3-戊二醇二异丙基甲酸酯、1-三氟甲基-3-甲基-2,4-戊二醇二苯甲酸酯、2,4-戊二醇二对氟代甲基苯甲酸酯、2,4-戊二醇二(2-呋喃甲酸)酯、2-甲基-6-庚烯-2,4-庚二醇二苯甲酸酯、3-甲基-6-庚烯-2,4-庚二醇二苯甲酸酯、4-甲基-6-庚烯-2,4-庚二醇二苯甲酸酯、5-甲基-6-庚烯-2,4-庚二醇二苯甲酸酯、6-甲基-6-庚烯-2,4-庚二醇二苯甲酸酯、3-乙基-6-庚烯-2,4-庚二醇二苯甲酸酯、4-乙基-6-庚烯-2,4-庚二醇二苯甲酸酯、5-乙基-6-庚烯-2,4-庚二醇二苯甲酸酯、6-乙基-6-庚烯-2,4-庚二醇二苯甲酸酯、3-丙基-6-庚烯-2,4-庚二醇二苯甲酸酯、4-丙基-6-庚烯-2,4-庚二醇二苯甲酸酯、5-丙基-6-庚烯-2,4-庚二醇二苯甲酸酯、6-丙基-6-庚烯-2,4-庚二醇二苯甲酸酯、3-丁基-6-庚烯-2,4-庚二醇二苯甲酸酯、4-丁基-6-庚烯-2,4-庚二醇二苯甲酸酯、5-丁基-6-庚烯-2,4-庚二醇二苯甲酸酯、6-丁基-6-庚烯-2,4-庚二醇二苯甲酸酯、3,5-二甲基-6-庚烯-2,4-庚二醇二苯甲酸酯、3,5-二乙基-6-庚烯-2,4-庚二醇二苯甲酸酯、3,5-二丙基-6-庚烯-2,4-庚二醇二苯甲酸酯、3,5-二丁基-6-庚烯-2,4-庚二醇二苯甲酸酯、3,3-二甲基-6-庚烯-2,4-庚二醇二苯甲酸酯、3,3-二乙基-6-庚烯-2,4-庚二醇 二苯甲酸酯、3,3-二丙基-6-庚烯-2,4-庚二醇二苯甲酸酯、3,3-二丁基-6-庚烯-2,4-庚二醇二苯甲酸酯、3-乙基-3,5-庚二醇二苯甲酸酯、4-乙基-3,5-庚二醇二苯甲酸酯、5-乙基-3,5-庚二醇二苯甲酸酯、3-丙基-3,5-庚二醇二苯甲酸酯、4-丙基-3,5-庚二醇二苯甲酸酯、3-丁基-3,5-庚二醇二苯甲酸酯、2,3-二甲基-3,5-庚二醇二苯甲酸酯、2,4-二甲基-3,5-庚二醇二苯甲酸酯、2,5-二甲基-3,5-庚二醇二苯甲酸酯、2,6-二甲基-3,5-庚二醇二苯甲酸酯、3,3-二甲基-3,5-庚二醇二苯甲酸酯、4,4-二甲基-3,5-庚二醇二苯甲酸酯、4,5-二甲基-3,5-庚二醇二苯甲酸酯、4,6-二甲基-3,5-庚二醇二苯甲酸酯、4,4-二甲基-3,5-庚二醇二苯甲酸酯、6,6-二甲基-3,5-庚二醇二苯甲酸酯、2-甲基-3-乙基-3,5-庚二醇二苯甲酸酯、2-甲基-4-乙基-3,5-庚二醇二苯甲酸酯、2-甲基-5-乙基-3,5-庚二醇二苯甲酸酯、3-甲基-3-乙基-3,5-庚二醇二苯甲酸酯、3-甲基-4-乙基-3,5-庚二醇二苯甲酸酯、3-甲基-5-乙基-3,5-庚二醇二苯甲酸酯、4-甲基-3-乙基-3,5-庚二醇二苯甲酸酯、4-甲基-4-乙基-3,5-庚二醇二苯甲酸酯、9,9-双(苯甲羧基甲基)芴、9,9-双((间甲氧基苯甲羧基)甲基)芴、9,9-双((间氯苯甲羧基)甲基)芴、9,9-双((对氯苯甲羧基)甲基)芴、9,9-双(肉桂羧基甲基)芴、9-(苯甲羧基甲基)-9-(丙羧基甲基)芴、9,9-双(丙羧基甲基)芴、9,9-双(丙烯羧基甲基)芴和9,9-双(新戊基羧基甲基)芴,所述二醚类化合物选自2-(2-乙基己基)-1,3-二甲氧基丙烷、2-异丙基-1,3-二甲氧基丙烷、2-丁基-1,3-二甲氧基丙烷、2-仲丁基-1,3-二甲氧基丙烷、2-环己基-1,3-二甲氧基丙烷、2-苯基-1,3-二甲氧基丙烷、2-(2-苯基乙基)-1,3-二甲氧基丙烷、2-(2-环己基乙基)-1,3-二甲氧基丙烷、2-(对-氯苯基)-1,3-二甲氧基丙烷、2-(二苯基甲基)-1,3-二甲氧基丙烷、2,2-二环己基-1,3-二甲氧基丙烷、2,2-二环戊基-1,3-二甲氧基丙烷、2,2-二乙基-1,3-二甲氧基丙烷、2,2-二丙基-1,3-二 甲氧基丙烷、2,2-二异丙基-1,3-二甲氧基丙烷、2,2-二丁基-1,3-二甲氧基丙烷、2-甲基-2-丙基-1,3-二甲氧基丙烷、2-甲基-2-苄基-1,3-二甲氧基丙烷、2-甲基-2-乙基-1,3-二甲氧基丙烷、2-甲基-2-异丙基-1,3-二甲氧基丙烷、2-甲基-2-苯基-1,3-二甲氧基丙烷、2-甲基-2-环己基-1,3-二甲氧基丙烷、2,2-双(2-环己基乙基)-1,3-二甲氧基丙烷、2-甲基-2-异丁基-1,3-二甲氧基丙烷、2-甲基-2-(2-乙基己基)-1,3-二甲氧基丙烷、2,2-二异丁基-1,3-二甲氧基丙烷、2,2-二苯基-1,3-二甲氧基丙烷、2,2-二苄基-1,3-二甲氧基丙烷、2,2-双(环己基甲基)-1,3-二甲氧基丙烷、2-异丁基-2-异丙基-1,3-二甲氧基丙烷、2-(1-甲基丁基)-2-异丙基-1,3-二甲氧基丙烷、2-异丙基-2-异戊基-1,3-二甲氧基丙烷、2-苯基-2-异丙基-1,3-二甲氧基丙烷、2-苯基-2-仲-丁基-1,3-二甲氧基丙烷、2-苄基-2-异丙基-1,3-二甲氧基丙烷、2-环戊基-2-异丙基-1,3-二甲氧基丙烷、2-环戊基-2-仲-丁基-1,3-二甲氧基丙烷、2-环己基-2-异丙基-1,3-二甲氧基丙烷、2-环己基-2-仲-丁基-1,3-二甲氧基丙烷、2-异丙基-2-仲-丁基-1,3-二甲氧基丙烷和2-环己基-2-环己基甲基-1,3-二甲氧基丙烷。
  17. 一种制备催化剂组分的方法,该方法包括以下步骤:
    (1)提供权利要求7的球形载体或者权利要求10的固体组合物;和
    (2)在有或无惰性溶剂存在下,使所述球形载体或固体组合物与钛化合物接触反应,并且任选地,在反应之前、期间和/或之后的一个或多个时间段内加入至少一种内给电子体。
  18. 权利要求17的方法,该方法包括以下步骤:
    (1)制备固体组合物,其过程包括:
    (a)在至少一种高分子分散稳定剂的存在下,使卤化镁MgX2和有机醇R1OH在30-160℃下反应,形成卤化镁醇合物溶液;
    (b)将所述卤化镁醇合物溶液与式(2)所示的环氧烷类化合物在30-160℃下反应,生成固体组合物;
    其中,X为卤素,R1为C1-C12的直链或支链烷基;
    Figure PCTCN2014088806-appb-100007
      式(2)
    其中,R2和R3相同或不同,且各自独立地为氢或者未取代或被卤素取代的C1-C5的直链或支链烷基;
    其中,以每摩尔卤化镁计,所述有机醇的用量为3-30摩尔,式(2)所示的环氧烷类化合物的用量为1-10摩尔;所述高分子分散稳定剂的用量为所述卤化镁和所述有机醇的总用量的0.1-10重量%;
    (2)在有或无惰性溶剂存在下,将步骤(1)制备的固体组合物与钛化合物接触反应,并且任选地,在反应之前、期间和/或之后的一个或多个时间段内加入至少一种内给电子体。
  19. 权利要求18所述的方法,其特征在于以下中至少之一:
    -以每摩尔卤化镁计,所述有机醇的用量为4-20摩尔,式(2)所示的环氧烷类化合物的用量为2-6摩尔,所述高分子分散稳定剂的用量为所述卤化镁和所述有机醇的总用量的0.2-5重量%;
    -所述卤化镁选自二氯化镁、二溴化镁和二碘化镁中的至少一种;
    -所述有机醇选自甲醇、乙醇、丙醇、异丙醇、正丁醇、异丁醇、戊醇、异戊醇、正己醇、正辛醇和2-乙基-1-己醇中的至少一种;
    -所述环氧烷类化合物选自环氧乙烷、环氧丙烷、环氧丁烷、 环氧氯丙烷、环氧氯丁烷、环氧溴丙烷和环氧溴丁烷中的至少一种;
    -所述高分子分散稳定剂的重均分子量大于1000,或者大于3000,或者为6,000-2,000,000;
    -所述高分子分散稳定剂选自聚丙烯酸盐、苯乙烯-马来酸酐共聚物、聚苯乙烯磺酸盐、萘磺酸甲醛缩合物、缩合烷基苯基醚硫酸酯、缩合烷基苯酚聚氧乙烯醚磷酸酯、氧基烷基丙烯酸酯共聚物改性聚乙撑亚胺、1-十二-4-乙烯吡啶溴化物的聚合物、聚乙烯基苄基三甲胺盐、聚乙烯醇、聚丙烯酰胺、环氧乙烷环氧丙烷嵌段共聚物、聚乙烯吡咯烷酮、聚乙烯吡咯烷酮醋酸乙烯酯共聚物、聚乙二醇、烷基苯基聚氧乙烯醚和聚甲基丙烯酸烷基酯类化合物中的至少一种;
    -在步骤(a)和(b)中均不加入惰性分散介质。
  20. 权利要求18所述的方法,其中步骤(2)如下进行:在烃类溶剂的存在下,将步骤(1)制备的固体组合物与烷氧基钛接触反应,将得到的中间反应产物与四氯化钛和内给电子体化合物接触反应,然后用烃类溶剂对得到的反应产物进行洗涤,所述烷氧基钛的通式为Ti(OR4)4-aXa,其中,R4为C1-C14的脂肪烃基,X为卤素,a为0-3的整数;优选地,所述烷氧基钛选自四丁氧基钛、四乙氧基钛、一氯三丁氧基钛、二氯二丁氧基钛、三氯一丁氧基钛、一氯三乙氧基钛、二氯二乙氧基钛和三氯一乙氧基钛。
  21. 权利要求20所述的方法,其中,以每摩尔镁计,所述烷氧基钛的用量为0.05-1.5摩尔,或者0.1-1.2摩尔。
  22. 一种用于烯烃聚合的催化剂,该催化剂含有:
    (i)权利要求13-16中任意一项所述的用于烯烃聚合的催化剂组分;
    (ii)至少一种烷基铝化合物;以及
    (iii)任选地,至少一种外给电子体。
  23. 权利要求22所述的用于烯烃聚合的催化剂在烯烃聚合反应中的应用。
  24. 烯烃聚合方法,该方法包括:在聚合条件下,使式CH2=CHR的烯烃,其中R是氢、C1-C6的烷基或C6-C12芳基,和任选的共聚单体与权利要求22的催化剂接触,以形成烯烃聚合物;和回收产生的烯烃聚合物。
PCT/CN2014/088806 2013-10-18 2014-10-17 用于烯烃聚合催化剂的球形载体、催化剂组分、催化剂及它们的制备方法 WO2015055136A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020167012712A KR102019727B1 (ko) 2013-10-18 2014-10-17 올레핀 중합 촉매용 구형 담체, 촉매 구성 성분, 촉매 및 이의 제조 방법
SG11201603004RA SG11201603004RA (en) 2013-10-18 2014-10-17 Spherical carriers for olefin polymerization catalyst, catalyst components, catalyst, and preparation methods therefor
JP2016524132A JP6397908B2 (ja) 2013-10-18 2014-10-17 オレフィン重合触媒用球状担体、触媒成分、触媒、及びそれらの調製方法
US15/030,000 US9951157B2 (en) 2013-10-18 2014-10-17 Spherical carriers for olefin polymerization catalyst, catalyst components, catalyst, and preparation methods therefor
BR112016008605-8A BR112016008605B1 (pt) 2013-10-18 2014-10-17 Método para preparar um transportador esférico de um catalisador de polimerização deolefinas, transportador esférico, processo para preparar uma composição sólida, composiçãosólida, componente de catalisador para polimerização de olefinas, método para preparar umcomponente de catalisador, catalisador para polimerização de olefinas, uso do catalisador parapolimerização de olefinas e método para polimerizar olefinas
RU2016118406A RU2668082C2 (ru) 2013-10-18 2014-10-17 Сферические носители для катализатора полимеризации олефинов, компоненты катализатора, катализатор и методы их получения
EP14854726.8A EP3059263B1 (en) 2013-10-18 2014-10-17 Spherical carriers for olefin polymerization catalyst, catalyst components, catalyst, and preparation methods therefor

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201310491641.7 2013-10-18
CN201310491648.9A CN104558284B (zh) 2013-10-18 2013-10-18 用于烯烃聚合的催化剂组分及其制备方法和用于烯烃聚合的催化剂与应用
CN201310491393.6 2013-10-18
CN201310491641.7A CN104558283B (zh) 2013-10-18 2013-10-18 一种固体组合物及其制备方法和应用
CN201310491393.6A CN104558281B (zh) 2013-10-18 2013-10-18 一种用于烯烃聚合催化剂的球形载体及其制备方法
CN201310491648.9 2013-10-18

Publications (1)

Publication Number Publication Date
WO2015055136A1 true WO2015055136A1 (zh) 2015-04-23

Family

ID=52827679

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/088806 WO2015055136A1 (zh) 2013-10-18 2014-10-17 用于烯烃聚合催化剂的球形载体、催化剂组分、催化剂及它们的制备方法

Country Status (12)

Country Link
US (1) US9951157B2 (zh)
EP (1) EP3059263B1 (zh)
JP (1) JP6397908B2 (zh)
KR (1) KR102019727B1 (zh)
BR (1) BR112016008605B1 (zh)
CL (1) CL2016000919A1 (zh)
MY (1) MY172451A (zh)
RU (1) RU2668082C2 (zh)
SA (1) SA516370961B1 (zh)
SG (1) SG11201603004RA (zh)
TW (1) TWI650335B (zh)
WO (1) WO2015055136A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110938160A (zh) * 2018-09-25 2020-03-31 中国石油化工股份有限公司 用于烯烃聚合的催化剂体系和预聚合催化剂组合物及它们的应用
CN114426597A (zh) * 2020-10-15 2022-05-03 中国石油化工股份有限公司 一种烯烃聚合催化剂组分的制备方法及制得的烯烃聚合催化剂组分
CN116041593A (zh) * 2021-10-28 2023-05-02 中国石油化工股份有限公司 一种球形卤化镁加合物的制备方法及其产物和应用

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102650287B1 (ko) * 2018-09-14 2024-03-21 주식회사 엘지화학 유기 화합물의 제조방법
CN110938163A (zh) * 2018-09-25 2020-03-31 中国石油化工股份有限公司 用于烯烃聚合的催化剂体系和预聚合催化剂组合物及它们的应用
CN111057168B (zh) * 2018-10-16 2022-07-12 中国石油化工股份有限公司 一种用于烯烃聚合的催化剂及其制备方法和应用
CN111072809B (zh) * 2018-10-19 2022-05-24 中国石油化工股份有限公司 用于烯烃聚合的催化剂组分和催化剂及其应用与烯烃聚合方法
JP7479361B2 (ja) 2018-10-19 2024-05-08 中国石油化工股▲ふん▼有限公司 オレフィン重合用触媒成分、触媒及びその応用
CN110628393B (zh) * 2019-10-14 2021-02-02 北京工业大学 交联型聚氧乙烯醚制备相变潜热材料的方法
KR102342077B1 (ko) * 2019-12-24 2021-12-21 한화토탈 주식회사 에틸렌 중합용 촉매의 제조 방법
TW202231673A (zh) * 2020-10-15 2022-08-16 大陸商中國石油化工科技開發有限公司 具有多峰孔分佈的鎂基固體物和催化劑組分以及它們的製備方法
CN114478857B (zh) * 2020-10-26 2023-07-21 中国石油化工股份有限公司 烯烃聚合催化剂载体及其制备方法
EP4234590A1 (en) * 2020-10-26 2023-08-30 China Petroleum & Chemical Corporation Solid component for preparing olefin polymerization catalyst, and preparation method therefor and application thereof
KR102487347B1 (ko) * 2020-12-04 2023-01-11 한화토탈에너지스 주식회사 초고분자량 폴리에틸렌의 분자량분포 조절을 위한 지글러-나타 촉매의 제조방법

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4399054A (en) 1978-08-22 1983-08-16 Montedison S.P.A. Catalyst components and catalysts for the polymerization of alpha-olefins
US4421674A (en) 1981-05-21 1983-12-20 Euteco Impianti S.P.A. Supported catalysts for the polymerization of ethylene
US4469648A (en) 1978-06-13 1984-09-04 Montedison S.P.A. Process for preparing spheroidally shaped products, solid at room temperature
WO1987007620A1 (en) 1986-06-09 1987-12-17 Neste Oy Procedure for manufacturing catalyst components for polymerizing olefines
EP0395383A2 (en) 1989-04-25 1990-10-31 Precision Fukuhara Works, Ltd Electromagnetic needle selection device for circular knitting machine
US5100849A (en) 1989-10-02 1992-03-31 Chisso Corporation Process for producing a catalyst for olefin polymerization
WO1993011166A1 (en) 1991-11-29 1993-06-10 Neste Oy Method for the preparation of a particulate carrier for a polymerization catalyst
US6020279A (en) 1994-09-06 2000-02-01 Chisso Corporation Process for producing a solid catalyst component for olefin polymerization and a process for producing an olefin polymer
US6127304A (en) 1997-03-29 2000-10-03 Montell Technology Company Bv Magnesium dischloride-alcohol adducts and catalyst components obtained therefrom
US6323152B1 (en) 1998-03-30 2001-11-27 Basell Technology Company Bv Magnesium dichloride-alcohol adducts process for their preparation and catalyst components obtained therefrom
CN1436796A (zh) 2002-02-07 2003-08-20 中国石油化工股份有限公司 用于烯烃聚合的固体催化剂组分和含该催化剂组分的催化剂及其应用
CN1453298A (zh) 2003-04-21 2003-11-05 中国石油化工股份有限公司 用于烯烃聚合反应的催化剂组分及其催化剂
WO2011044760A1 (zh) * 2009-10-16 2011-04-21 中国石油化工股份有限公司 用于烯烃聚合的催化剂组分及包含其的催化剂
CN102040680A (zh) 2009-10-16 2011-05-04 中国石油化工股份有限公司 用于烯烃聚合的催化剂组分及其催化剂
CN102040681A (zh) 2009-10-16 2011-05-04 中国石油化工股份有限公司 用于制备烯烃聚合催化剂的载体及其制备方法
CN102453128A (zh) * 2010-10-19 2012-05-16 中国石油化工股份有限公司 用于烯烃聚合的催化剂组分及其催化剂

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61138604A (ja) * 1984-12-10 1986-06-26 Idemitsu Petrochem Co Ltd オレフイン重合用触媒担体の製造方法
CN1086191C (zh) 1998-03-17 2002-06-12 中国石油化工集团公司 用于乙烯聚合或共聚合的催化剂及其制法
DE60325706D1 (de) 2002-03-29 2009-02-26 Basell Poliolefine Srl Magnesiumdichlorid-ethanol-addukte und daraus erhaltene katalysatorkomponenten
WO2004074329A1 (fr) 2003-02-24 2004-09-02 China Petroleum & Chemical Corporation Support complexe pour catalyseur de polymerisation du propylene, composant de catalyseur et catalyseur contenant ce composant
CN1310964C (zh) 2003-05-30 2007-04-18 中国石油化工股份有限公司 用于烯烃聚合反应的催化剂组分及其催化剂
CN1267508C (zh) * 2003-08-08 2006-08-02 中国石油化工股份有限公司 一种卤化镁/醇加合物及其制备方法和应用
US7135531B2 (en) 2004-01-28 2006-11-14 Basf Catalysts Llc Spherical catalyst for olefin polymerization
US8344079B2 (en) 2007-12-31 2013-01-01 Basf Corporation Molar ratio modifications to larger polyolefin catalysts
CN101544710B (zh) 2008-03-28 2012-04-18 中国石油化工股份有限公司 一种卤化镁醇合物及其制备方法和应用
CN101724101B (zh) 2008-10-24 2011-12-28 中国石油化工股份有限公司 用于烯烃聚合的催化剂组分及其催化剂
IT1397080B1 (it) 2009-11-23 2012-12-28 Polimeri Europa Spa Catalizzatore di tipo ziegler-natta per la (co)polimerizzazione delle alfa-olefine con elevata produttivita'
CN102234337B (zh) 2010-04-22 2013-08-14 中国石油化工股份有限公司 用于烯烃聚合反应的催化剂组分及其催化剂
CN102276765B (zh) 2010-06-12 2013-02-27 中国石油化工股份有限公司 一种用于烯烃聚合的催化剂组分及催化剂
CN102453127B (zh) * 2010-10-19 2013-06-05 中国石油化工股份有限公司 用于烯烃聚合催化剂的球形载体及其制备方法
US8685879B2 (en) * 2011-04-29 2014-04-01 Basf Corporation Emulsion process for improved large spherical polypropylene catalysts
US8765626B2 (en) * 2011-11-30 2014-07-01 Basf Corporation Internal donor structure for olefin polymerization catalysts and methods of making and using same
TWI644896B (zh) 2013-05-21 2018-12-21 中國石油化工科技開發有限公司 Catalyst component, catalyst and application for olefin polymerization

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4469648A (en) 1978-06-13 1984-09-04 Montedison S.P.A. Process for preparing spheroidally shaped products, solid at room temperature
US4399054A (en) 1978-08-22 1983-08-16 Montedison S.P.A. Catalyst components and catalysts for the polymerization of alpha-olefins
US4421674A (en) 1981-05-21 1983-12-20 Euteco Impianti S.P.A. Supported catalysts for the polymerization of ethylene
WO1987007620A1 (en) 1986-06-09 1987-12-17 Neste Oy Procedure for manufacturing catalyst components for polymerizing olefines
EP0395383A2 (en) 1989-04-25 1990-10-31 Precision Fukuhara Works, Ltd Electromagnetic needle selection device for circular knitting machine
US5100849A (en) 1989-10-02 1992-03-31 Chisso Corporation Process for producing a catalyst for olefin polymerization
WO1993011166A1 (en) 1991-11-29 1993-06-10 Neste Oy Method for the preparation of a particulate carrier for a polymerization catalyst
US6020279A (en) 1994-09-06 2000-02-01 Chisso Corporation Process for producing a solid catalyst component for olefin polymerization and a process for producing an olefin polymer
US6127304A (en) 1997-03-29 2000-10-03 Montell Technology Company Bv Magnesium dischloride-alcohol adducts and catalyst components obtained therefrom
US6323152B1 (en) 1998-03-30 2001-11-27 Basell Technology Company Bv Magnesium dichloride-alcohol adducts process for their preparation and catalyst components obtained therefrom
CN1436796A (zh) 2002-02-07 2003-08-20 中国石油化工股份有限公司 用于烯烃聚合的固体催化剂组分和含该催化剂组分的催化剂及其应用
CN1453298A (zh) 2003-04-21 2003-11-05 中国石油化工股份有限公司 用于烯烃聚合反应的催化剂组分及其催化剂
WO2011044760A1 (zh) * 2009-10-16 2011-04-21 中国石油化工股份有限公司 用于烯烃聚合的催化剂组分及包含其的催化剂
CN102040680A (zh) 2009-10-16 2011-05-04 中国石油化工股份有限公司 用于烯烃聚合的催化剂组分及其催化剂
CN102040681A (zh) 2009-10-16 2011-05-04 中国石油化工股份有限公司 用于制备烯烃聚合催化剂的载体及其制备方法
CN102453128A (zh) * 2010-10-19 2012-05-16 中国石油化工股份有限公司 用于烯烃聚合的催化剂组分及其催化剂

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3059263A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110938160A (zh) * 2018-09-25 2020-03-31 中国石油化工股份有限公司 用于烯烃聚合的催化剂体系和预聚合催化剂组合物及它们的应用
CN114426597A (zh) * 2020-10-15 2022-05-03 中国石油化工股份有限公司 一种烯烃聚合催化剂组分的制备方法及制得的烯烃聚合催化剂组分
CN114426597B (zh) * 2020-10-15 2023-10-13 中国石油化工股份有限公司 一种烯烃聚合催化剂组分的制备方法及制得的烯烃聚合催化剂组分
CN116041593A (zh) * 2021-10-28 2023-05-02 中国石油化工股份有限公司 一种球形卤化镁加合物的制备方法及其产物和应用

Also Published As

Publication number Publication date
TW201522399A (zh) 2015-06-16
RU2668082C2 (ru) 2018-09-27
KR20160073986A (ko) 2016-06-27
SG11201603004RA (en) 2016-05-30
JP6397908B2 (ja) 2018-09-26
EP3059263A1 (en) 2016-08-24
KR102019727B1 (ko) 2019-09-09
EP3059263B1 (en) 2021-07-21
EP3059263A4 (en) 2017-06-07
US9951157B2 (en) 2018-04-24
RU2016118406A3 (zh) 2018-04-26
MY172451A (en) 2019-11-26
TWI650335B (zh) 2019-02-11
RU2016118406A (ru) 2017-11-23
SA516370961B1 (ar) 2018-11-11
JP2016540065A (ja) 2016-12-22
BR112016008605B1 (pt) 2021-01-19
CL2016000919A1 (es) 2016-11-11
US20160251457A1 (en) 2016-09-01

Similar Documents

Publication Publication Date Title
WO2015055136A1 (zh) 用于烯烃聚合催化剂的球形载体、催化剂组分、催化剂及它们的制备方法
WO2015055137A1 (zh) 用于烯烃聚合的催化剂组分、其制备方法和包含它的催化剂
KR101548595B1 (ko) 올레핀 중합용 촉매 성분 및 그것을 포함하는 촉매
CN107629153B (zh) 用于烯烃聚合的催化剂组分及其制备方法和用于烯烃聚合的催化剂及其应用
KR102138986B1 (ko) 올레핀 중합용 촉매 성분들
JP6745366B2 (ja) オレフィン重合用触媒組成物及びその使用
RU2586684C2 (ru) Носитель катализатора полимеризации олефинов, твердый компонент катализатора и катализатор
JP6343561B2 (ja) オレフィン類重合用固体触媒成分の製造方法、オレフィン類重合用触媒の製造方法およびオレフィン類重合体の製造方法
CN104558284A (zh) 用于烯烃聚合的催化剂组分及其制备方法和用于烯烃聚合的催化剂与应用
US9068026B2 (en) Magnesium halide adducts, catalyst components and catalysts comprising the same, and preparation processes thereof
US20210205787A1 (en) Catalyst component for olefin polymerization, preparation method thereof, and catalyst including same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14854726

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016524132

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15030000

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014854726

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016008605

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2014854726

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167012712

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: IDP00201603286

Country of ref document: ID

ENP Entry into the national phase

Ref document number: 2016118406

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112016008605

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160418