WO2015037910A1 - 액체 내 용존 수소가스 농도 측정용 수소센서소자 및 이를 이용한 수소가스 농도 측정방법 - Google Patents

액체 내 용존 수소가스 농도 측정용 수소센서소자 및 이를 이용한 수소가스 농도 측정방법 Download PDF

Info

Publication number
WO2015037910A1
WO2015037910A1 PCT/KR2014/008461 KR2014008461W WO2015037910A1 WO 2015037910 A1 WO2015037910 A1 WO 2015037910A1 KR 2014008461 W KR2014008461 W KR 2014008461W WO 2015037910 A1 WO2015037910 A1 WO 2015037910A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
pumping
electrode
unit
measuring
Prior art date
Application number
PCT/KR2014/008461
Other languages
English (en)
French (fr)
Inventor
박종욱
김성완
이대로
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR20130109828A external-priority patent/KR101512189B1/ko
Priority claimed from KR1020140006159A external-priority patent/KR101581941B1/ko
Priority claimed from KR1020140092371A external-priority patent/KR20160011722A/ko
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Priority to JP2016542633A priority Critical patent/JP6165343B2/ja
Priority to US15/021,609 priority patent/US9977006B2/en
Priority to EP14844519.0A priority patent/EP3045900B1/en
Priority to CN201480062090.5A priority patent/CN105723211B/zh
Publication of WO2015037910A1 publication Critical patent/WO2015037910A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/26Oils; Viscous liquids; Paints; Inks
    • G01N33/28Oils, i.e. hydrocarbon liquids
    • G01N33/2835Specific substances contained in the oils or fuels
    • G01N33/2841Gas in oils, e.g. hydrogen in insulating oils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/404Cells with anode, cathode and cell electrolyte on the same side of a permeable membrane which separates them from the sample fluid, e.g. Clark-type oxygen sensors
    • G01N27/4045Cells with anode, cathode and cell electrolyte on the same side of a permeable membrane which separates them from the sample fluid, e.g. Clark-type oxygen sensors for gases other than oxygen
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4073Composition or fabrication of the solid electrolyte
    • G01N27/4074Composition or fabrication of the solid electrolyte for detection of gases other than oxygen
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/411Cells and probes with solid electrolytes for investigating or analysing of liquid metals
    • G01N27/4112Composition or fabrication of the solid electrolyte
    • G01N27/4114Composition or fabrication of the solid electrolyte for detection of gases other than oxygen
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036General constructional details of gas analysers, e.g. portable test equipment concerning the detector specially adapted to detect a particular component
    • G01N33/005H2

Definitions

  • the present invention relates to a hydrogen sensor element capable of measuring the concentration of dissolved hydrogen gas in a liquid and a method of measuring the concentration of dissolved hydrogen gas in a liquid using the same.
  • the characteristic or change in the characteristics of the liquid is carried out by measuring the concentration of dissolved gas dissolved in the liquid.
  • concentration of hydrogen gas increases as the deterioration progresses. Therefore, by measuring the concentration of hydrogen gas in the oil, it is possible to detect whether the oil is deteriorated. .
  • transformers it is reported that there is a risk of explosion when more than 1000 ppm of dissolved hydrogen is generated.
  • an optical method To measure the concentration of dissolved hydrogen gas dissolved in the liquid, an optical method, a viscosity measuring method, an electrochemical method, a gas chromatograph method, or a gas separation method may be used. Since it is not a method that can be measured, it is not necessary to determine whether or not deterioration in real time in the field, for example, it is not a suitable method for applying to the determination of degradation of oil.
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide a hydrogen sensor element capable of simply measuring the dissolved hydrogen gas concentration in a liquid in real time without expensive and complicated equipment.
  • another object of the present invention is to provide a hydrogen sensor element that prevents the hydrogen sensor, in particular, the sensing electrode of the hydrogen sensor is exposed to the liquid does not deteriorate.
  • Another object of the present invention is to provide a hydrogen sensor element capable of minimizing the influence of the accuracy of the measurement by the presence of gases other than hydrogen in measuring the concentration of dissolved hydrogen gas.
  • another object of the present invention is to provide a hydrogen sensor element and a hydrogen gas concentration measuring method which can ensure the accuracy and reproducibility of the measurement and allow the user to know the measurement result even at a distance.
  • Hydrogen sensor element for achieving the above object, as a hydrogen sensor element for measuring the concentration of dissolved hydrogen gas in the liquid, a sensor unit for measuring the concentration of hydrogen gas, coupled to the sensor unit and at least A housing including a housing body having an opening formed in a portion thereof, and a gas separation membrane configured to seal the gas and liquid in the opening portion, wherein the housing body and the gas separation membrane are separated from the liquid and external air in the housing. A sealed space is formed, and the gas separation membrane transmits dissolved hydrogen gas in the liquid into the sealed space.
  • it may further include a pumping unit coupled to the housing.
  • the sensor unit may be a heterojunction of an oxygen ion conductor and a hydrogen ion conductor, a sensing electrode formed on the surface of the hydrogen ion conductor, a reference electrode formed on the surface of the oxygen ion conductor, and an electromotive force between the reference electrode and the sensing electrode.
  • an electromotive force measuring unit for measuring wherein the sensing electrode is exposed to the enclosed space, and the reference electrode is in communication with external air or is covered with a reference material which fixes the oxygen partial pressure on the reference electrode side. As the gas concentration changes, the electromotive force may change.
  • the sensor unit may include a hydrogen ion conductor, a sensing electrode and a reference electrode formed on a surface of the hydrogen ion conductor, and an electromotive force measuring unit configured to measure an electromotive force between the reference electrode and the sensing electrode, wherein the sensing electrode is the enclosed space.
  • the reference electrode is covered with a reference material for fixing the hydrogen partial pressure on the reference electrode side, and the electromotive force may change as the dissolved hydrogen gas concentration changes.
  • the gas separation membrane may be a metal membrane, and the metal membrane may include palladium (Pd), and a thickness thereof may be 100 ⁇ m or less.
  • the hydrogen sensor device may further include a fixing cap for coupling the gas separation membrane to the housing, the sealed space inside the housing may be filled with a filler.
  • the hydrogen sensor element according to the present invention may include a heater for heating the sensor to a sensing temperature.
  • the pumping unit for pumping oxygen in the closed space to the outside, the oxygen ion conductor, the oxygen ion conductor and the spacer is spaced apart by a predetermined interval, the spaced interval is provided heater heater substrate, the oxygen ion conductor A voltage applied to a first pumping electrode formed on one surface of the sealed space side, a second pumping electrode formed on one surface of the external air side of the oxygen ion conductor, the first pumping electrode and the second pumping electrode; And a pumping power source, wherein the oxygen in the sealed space side is pumped to the outside air side by applying a voltage or a current between the first pumping electrode and the second pumping electrode by the pumping power source.
  • the pumping part may be formed integrally with the sensor part, wherein the sensor part is spaced apart by a predetermined interval by an oxygen ion conductor, the oxygen ion conductor and a spacer, and the spaced interval is provided to communicate with outside air.
  • a heater substrate a hydrogen ion conductor bonded to at least a portion of the oxygen ion conductor exposed to the sealed space side, a sensing electrode formed on a surface exposed to the sealed space of the hydrogen ion conductor, the outside air of the oxygen ion conductor
  • a reference electrode formed on a side surface
  • an electromotive force measuring unit for measuring an electromotive force between the reference electrode and the sensing electrode, and a first pumping formed on the surface of the closed space that is not bonded to the hydrogen ion conductor of the oxygen ion conductor
  • the oxygen of the sealed space is pumped to the outside air by applying a voltage or a current
  • the hydrogen sensor element according to the invention may be coupled to the opening of the container containing the liquid to measure the dissolved hydrogen gas concentration in the liquid contained in the container, wherein the gas separation membrane and the inside of the container through the opening Communicate with each other to allow dissolved hydrogen gas in the liquid to permeate into the confined space.
  • the hydrogen sensor element may be coupled to the opening with the sealing member inserted between the gas separation membrane and the opening, and between the housing body and the gas separation membrane, and a temperature sensor for measuring the temperature of the sensor unit. At least one of the liquid inflow sensor for detecting the inflow of the liquid may be further provided.
  • dissolved hydrogen measuring device for measuring the concentration of dissolved hydrogen gas in the liquid contained in the container, comprising a hydrogen sensor element coupled to the opening provided on one side of the container,
  • the hydrogen sensor element includes a sensor unit for measuring hydrogen gas concentration and a housing coupled to the sensor unit, wherein the housing is coupled to the housing body with an opening formed at least in part and gas and liquid sealable to the opening.
  • a sealed space separated from the liquid and the outside air is formed inside the gas separation membrane, and the gas separation membrane communicates with the inside of the container through the opening to pass dissolved hydrogen gas in the liquid into the sealed space. It is done.
  • the hydrogen sensor element may be detachably coupled to the opening.
  • the dissolved hydrogen measuring device may further include a control device electrically connected to a sensor unit to control the operation of the sensor unit, the temperature sensor for measuring the temperature of the sensor unit or detects the inflow of the liquid.
  • the liquid inlet sensor is further provided, and the control device may be configured to receive the sensing result from the temperature sensor or the liquid inlet sensor.
  • the opening and closing valve is installed in the opening, the control device may be configured to control the operation of the opening and closing valve.
  • the control device may include a measurement unit for receiving a measurement result from the sensor unit, a controller for controlling the operation of the hydrogen sensor element, a display unit for displaying the measured dissolved hydrogen gas concentration, and the dissolved hydrogen gas concentration measurement result in a wired or It may include a transmitting unit for transmitting wirelessly.
  • the hydrogen sensor element further comprises a pumping unit for pumping out the oxygen in the sealed space to the outside, the pumping unit is an oxygen ion conductor, the first pumping electrode formed on the side of the sealed space of the oxygen ion conductor And a second pumping electrode formed on the outer side surface of the oxygen ion conductor, and the control unit may be configured to control an operation of the pumping unit.
  • the pumping unit may also perform an oxygen sensor function for measuring the partial pressure of oxygen gas in the closed space by measuring an electromotive force between the first pumping electrode and the second pumping electrode, wherein the controller performs the oxygen sensor function. After receiving the oxygen gas partial pressure measurement result in the sealed space from the pumping unit, it may be configured to control the pumping operation of the pumping unit based on the result.
  • Method for measuring the dissolved hydrogen gas concentration in the liquid using the dissolved hydrogen measuring device the step of measuring the temperature of the sensor unit using the temperature sensor, based on the temperature measurement results And controlling the temperature of the sensor unit to be the measured temperature, and measuring the partial pressure of hydrogen gas in the closed space using the sensor unit, and calculating the dissolved hydrogen gas concentration using the result.
  • the hydrogen sensor element further comprises a pumping unit for pumping out the oxygen in the sealed space to the outside, the pumping unit is an oxygen ion conductor, the first pumping electrode formed on the side of the sealed space of the oxygen ion conductor And a second pumping electrode formed on the outer side of the oxygen ion conductor, wherein the pumping part measures the electromotive force between the first pumping electrode and the second pumping electrode to reduce the partial pressure of oxygen gas in the sealed space.
  • the pumping unit is an oxygen ion conductor
  • the first pumping electrode formed on the side of the sealed space of the oxygen ion conductor
  • a second pumping electrode formed on the outer side of the oxygen ion conductor
  • the pumping unit performing the oxygen sensor function to measure the oxygen gas partial pressure in the sealed space, it is determined whether the measured oxygen gas partial pressure is more than the reference value, and when the determination result is more than the reference value Controlling the pumping operation of the pumping unit to discharge the oxygen gas in the closed space to the outside; If the specified oxygen gas partial pressure is not more than the reference value it may be to perform the step of measuring the hydrogen gas partial pressure.
  • the method may further include transmitting the measured and calculated dissolved hydrogen gas concentration in a wired or wireless manner, wherein the hydrogen sensor element is further provided with a liquid inflow sensor for detecting whether the liquid is introduced. Receiving the sensing result from the inflow sensor may be further included if it is determined that the liquid is introduced.
  • a hydrogen sensor element is a hydrogen sensor element for measuring the concentration of dissolved hydrogen gas in a liquid, wherein at least a portion of the region is open in the shape of a cylinder, and the liquid does not penetrate the open portion.
  • the gas is a sensor unit having a gas permeable membrane is coupled to the permeation, at least a first electrode and a second electrode, the sensor unit is coupled to the housing such that the first electrode is inserted into the housing, the housing through the gas separation membrane It is characterized in that the concentration of hydrogen gas coming into the contact with the first electrode.
  • the hydrogen sensor device is a hydrogen sensor device for measuring the concentration of dissolved hydrogen gas in the liquid at least partly inserted into the liquid, the sensing unit having a reference electrode and a sensing electrode on both sides of the solid electrolyte
  • a reference gas passage for supplying a reference gas to the reference electrode in isolation from the liquid, a heater unit for heating the sensing unit to a sensing temperature, and an electromotive force measurement for measuring an electromotive force between the reference electrode and the sensing electrode
  • the sensing electrode is exposed to the dissolved hydrogen gas in the liquid, characterized in that the electromotive force changes as the concentration of the dissolved hydrogen gas changes.
  • the reference gas partial pressure fixing reference material for fixing the reference gas partial pressure on the reference electrode side by covering the reference electrode may be provided.
  • the solid electrolyte is composed of a heterojunction of an oxygen ion conductor and a hydrogen ion conductor, or a hydrogen ion conductor, and the sensing electrode may be formed on the surface of the hydrogen ion conductor.
  • the protective material may be formed of a porous material or glass ceramic through which hydrogen gas can pass.
  • the hydrogen sensor element according to the present invention there is an effect that the dissolved hydrogen gas concentration in the liquid can be simply measured in real time without expensive equipment.
  • a housing for exposing at least the sensing electrode of the hydrogen sensor to the dissolved hydrogen gas while isolating it from the liquid, whereby the hydrogen electrode, in particular the sensing electrode of the hydrogen sensor is degraded by the liquid The effect is to reduce the problem.
  • the hydrogen sensor device by providing a pumping unit for discharging the interference gas existing in the housing to the outside, the effect of the other gases, such as oxygen gas in minimizing the concentration of dissolved hydrogen gas can be minimized There is.
  • the accuracy and reproducibility of the measurement can be ensured, and there is an effect that the user can know the measurement result even at a long distance.
  • FIG. 1 is a schematic cross-sectional view of a hydrogen sensor element according to a first embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of a sensor unit according to a first embodiment of the present invention.
  • FIG. 3 is an exploded perspective view of the sensor unit of FIG. 2, FIG. 3 (a) is a perspective view from below, and FIG. 3 (b) is a perspective view from above.
  • FIG. 4 is a view for explaining the principle of sensing the hydrogen gas concentration sensor unit of FIG.
  • FIG. 5 is a schematic cross-sectional view of a sensor unit of another structure that can be used in the hydrogen sensor element according to the first embodiment of the present invention.
  • FIG. 6 is a schematic cross-sectional view of a sensor unit of another structure that can be used in the hydrogen sensor element according to the first embodiment of the present invention.
  • FIG. 10 is a view illustrating an example of a coupling method of a gas separation membrane.
  • FIG. 11 is a schematic cross-sectional view of a pumping unit capable of discharging oxygen gas in a closed space to the outside.
  • FIG. 12 is a schematic cross-sectional view of a hydrogen sensor element according to a second embodiment of the present invention.
  • FIG. 13 is a schematic cross-sectional view of a sensor unit according to a second embodiment of the present invention.
  • FIG. 14 is a graph showing the results of measuring the dissolved hydrogen gas concentration in oil using the hydrogen sensor device according to the present invention.
  • FIG. 15 is a view schematically showing a state in which the hydrogen sensor element according to the second embodiment of the present invention is installed in a container containing a liquid to be measured.
  • FIG. 16 is a view illustrating an example of a method of coupling a hydrogen sensor element to a container containing liquid.
  • 17 is an exemplary functional block diagram of a control device.
  • 19 is a schematic cross-sectional view of a hydrogen sensor element according to a fourth embodiment of the present invention.
  • the hydrogen sensor element 100 according to a first embodiment of the present invention includes a sensor unit 110 and a housing 130, and optionally further includes a pumping unit 120. It can be configured to include.
  • the sensor unit 110 is a configuration corresponding to the hydrogen sensor for measuring the concentration of hydrogen gas surrounding
  • the housing 130 is a closed space 140 to isolate one end of the sensor unit 110 from the liquid and the outside air It is a structure for forming.
  • the sensor unit 110 Even when the hydrogen sensor element 100 is inserted into the liquid, the sensor unit 110 is separated from the liquid by the housing 130, but the gas separation membrane 132 provided in at least a portion of the hydrogen sensor element 100 is inserted into the liquid of the housing 130. Since the dissolved hydrogen gas is permeated into the closed space 140, the sensor unit 110 may measure the dissolved hydrogen gas concentration without directly contacting the liquid.
  • each configuration of the hydrogen sensor device 100 according to the first embodiment of the present invention will be described in more detail.
  • Sensor unit 110 is a configuration corresponding to a hydrogen sensor for measuring the concentration of hydrogen gas in the closed space 140, if the hydrogen sensor capable of measuring the concentration of hydrogen gas is not particularly limited, but is a solid electrolyte hydrogen sensor desirable.
  • the structure of the preferred sensor unit according to the first embodiment of the present invention will be described with reference to the schematic cross-sectional view of FIG.
  • the sensor unit 110 includes the oxygen ion conductor 211 and the other surface of the hydrogen ion conductor 212 and the oxygen ion conductor 211 that are bonded to one surface of the oxygen ion conductor 211. That is, the sensing unit 210 and the sensing unit 210 including the reference electrode 213 formed on the reference gas passage 250 and the sensing electrode 214 formed on the surface of the hydrogen ion conductor 212.
  • the reference electrode 213 and the sensing electrode 214 are electrically connected to the electromotive force measuring unit 240 through the lead wire 241, the hydrogen gas concentration can be measured according to the principle described later by the electromotive force measurement.
  • a stabilized zirconia made by adding various materials to zirconia (ZrO 2 ), for example, a solid electrolyte such as Yttria stabilized zirconia (YSZ), calcium stabilized zirconia (CSZ), magnesium stabilized zirconia (MSZ) or CeO 2 compound, such as Gd 2 O 3 and the like can be used
  • the hydrogen ion conductor 212 is a substance in which a number of substances are substituted in place B of the material having a perovskite structure of the ABO 3 form , for example, CaZr 0.9 In 0.1 O 3-x CaZrO 3 series, including, SrZr 0.95 Y 0.05 O 3- x SrZrO 3 based, such as, SrCe 0.95 Yb 0.05 O 3- x SrCeO 3 series, including, BaCe 0.9 Nd 0.1 BaCeO 3 series, such as O 3-x, may be used Ti-based
  • the reference electrode 213 and the sensing electrode 214 is preferably formed of a precious metal such as platinum (Pt).
  • the spacer 220 is formed between the sensing unit 210 and the heater 230 to form the reference gas passage 250 so that the reference electrode 213 communicates with the reference gas, and is formed of alumina. Can be.
  • the reference gas is not particularly limited as long as the oxygen partial pressure is maintained substantially constant, but is preferably external air.
  • the heater 230 is configured to heat the sensing unit 210 to a sensing temperature, and may have a form in which a heater wire 232 is formed on a heater substrate 231 made of an insulating material such as alumina.
  • the heater wire 232 may be a platinum (Pt) line, although not shown may further include a power source for flowing a current to the heater wire 232.
  • the heater wire 232 is preferably embedded in the heater substrate 231 to be cut off from the outside.
  • FIG. 3 is an exploded perspective view of the sensor unit 110 of FIG. 2, FIG. 3 (a) is a perspective view from below, and FIG. 3 (b) is a perspective view from above.
  • the oxygen ion conductor 211 is formed in a rectangular thin plate shape, and a hydrogen ion conductor 212 is joined to an upper surface of one end portion which is located in the sealed space 140 inside the housing 130.
  • a sensing electrode 214 is formed on an upper surface thereof, and a reference electrode 213 is formed on a lower surface of the sensing electrode 214 opposite to the hydrogen ion conductor 212 and the sensing electrode 214.
  • a pair of sensor terminals 244 and 245 are formed in each of the reference electrode 213 and the sensing electrode 214 so that the lead wire 241 extends to the other end thereof to which the electromotive force measuring unit 240 is connected.
  • the reference electrode 213 and the lead wire 241 extending from the reference electrode 213 are formed on the lower surface of the oxygen ion conductor 211, but form through holes in the oxygen ion conductor 211 and fill the conductive material.
  • the sensor terminal 244 connected to the lead wire 241 extending from the reference electrode 213 may be formed on the upper surface of the oxygen ion conductor 211, and the electromotive force measuring unit ( The connection with 240 can be made easier.
  • the oxygen ion conductor 211 is illustrated as one plate member in the drawing, a plurality of thin plate members may be stacked.
  • the spacer 220 is formed in a 'c' shape so that the reference gas passage 250 having one side open between the sensing unit 210 and the heater unit 230 is formed. Since the reference gas passage 250 is a portion communicating with external air even when the hydrogen sensor element 100 is inserted into the liquid as shown in FIG. 1, the reference electrode 213 is isolated from the hydrogen gas in the sealed space 140. In a state in which the reference gas passage 250 is in contact with the reference gas, that is, outside air.
  • the heater unit 230 may include the heater upper substrate 231-1, the heater wire 232 formed on the lower surface of the heater upper substrate 231-1, and the heater upper substrate 231 so that the heater wire 232 is not exposed to the outside.
  • the heater wire 232 may be formed on the upper surface of the heater lower substrate 231-2 instead of the lower surface of the heater upper substrate 231-1.
  • the heater wire 232 may be formed by printing platinum Pt on a heater upper substrate 231-1 or a heater lower substrate 231-2 in a predetermined pattern. In the well-known because it is detailed description thereof will be omitted.
  • a pair of heaters connected to the heater wires 232 by forming a through hole in the heater lower substrate 231-2 and filling a conductive material for easy connection of a power supply for supplying current to the heater wires 232.
  • the terminals 234 and 235 are formed on the lower surface of the heater lower substrate 231-2.
  • the sensor unit 110 illustrated in FIGS. 2 and 3 has a rectangular cylindrical shape when the sensing unit 210, the spacer 220, and the heater unit 230 are integrally combined with each other. It can manufacture.
  • the sensing unit 210, the spacer 220, and the heater unit 230 have been described in separate configurations, but the packaging body shape in which the respective components are integrally combined using a manufacturing technique such as ceramic extrusion.
  • the sensor unit 110 may be manufactured.
  • the spacer 220 and the heater unit 230 are also formed of an oxygen ion conductive material such as YSZ, the heater wire 232 is embedded in the heater unit 230.
  • the substrate be embedded after the surface insulating film treatment so as to be insulated from the oxygen ion conductor.
  • a separate heater unit may be installed to be inserted into the reference gas passage 250 or installed close to the outer surface of the sensor unit 110.
  • FIG. 4 is an enlarged view of a portion in which the sensing electrode 214 and the reference electrode 213 of the sensing unit 210 are formed among the sensor unit 110 of FIGS. 2 and 3, and the oxygen ion conductor 211 as shown in FIG. )
  • a hydrogen ion conductor 212 is a structure of a solid electrochemical cell (Solid Electro-chemical cell) is heterojunction.
  • the electromotive force E measured between the reference electrode 213 and the sensing electrode 214 is the oxygen partial pressure P O2 of the reference electrode 213 and hydrogen of the sensing electrode 214.
  • the partial pressure (P H2 ) and the following relationship are established.
  • the oxygen partial pressure (P O2 ) of the reference electrode 213 side Is fixed at 0.21 atmospheres, the partial pressure of oxygen in the air. Therefore, by measuring the electromotive force E in Equation (1), it is possible to calculate the hydrogen partial pressure (P H2 ) on the sensing electrode 214 side.
  • the partial pressure of hydrogen P H2 on the side of the sensing electrode 214 is the partial pressure of hydrogen gas present in the closed space 140 through the gas separation membrane 132, and the partial pressure of hydrogen gas in the closed space 140 in the thermodynamic equilibrium state. Since the dissolved hydrogen gas concentrations in the liquid and the liquid are in proportional relationship with each other, when the proportional expression or data is experimentally derived and databased in advance, the dissolved hydrogen gas concentration in the liquid is measured by measuring the partial pressure of hydrogen gas in the closed space 140. Can be calculated. In addition, the proportional relation between the partial pressure of hydrogen gas in the confined space 140 and the concentration of dissolved hydrogen gas in the liquid may be theoretically derived.
  • the amount of hydrogen dissolved in the liquid is proportional to the square root of the vaporized hydrogen partial pressure. Therefore, it is also possible to calculate the dissolved hydrogen gas concentration in the liquid from the hydrogen gas concentration measured by the hydrogen sensor element 100 using this law.
  • the temperature of the sensing unit 210 is preferably about 500 ° C. or more when measuring the hydrogen gas concentration, an electromotive force measuring unit is applied to the heater wire 232 so that the sensing unit 110 is heated to a corresponding temperature. It is preferable to measure the electromotive force between the reference electrode 213 and the sensing electrode 214 at 240.
  • FIG. 5 is a schematic cross-sectional view for explaining another structure of the sensor unit that can be used in the hydrogen sensor element 100 according to the first embodiment of the present invention.
  • descriptions common to those described with reference to FIGS. 1 to 4 will be omitted, but it should be understood that the contents may be equally applied to the sensor unit of FIG. 5 and the hydrogen sensor element 100 including the same.
  • the sensor unit 510 of another structure that can be used in the first embodiment of the present invention exposes the reference electrode 213 to the reference gas passage so that the reference electrode 213 is in direct contact with the outside air. Is different from the sensor unit 110 of FIGS. 2 and 3 in that the structure is covered with the oxygen partial pressure fixing reference material 261 and the sealing cover 270 is sealed thereon.
  • the reference material for fixing the oxygen partial pressure 261 As the reference material for fixing the oxygen partial pressure 261, a mixture of metal and metal oxide such as Cu / CuO, Ni / NiO, Ti / TiO 2 , Fe / FeO, Cr / Cr 2 O 3 , Mo / MoO, or Cu 2 O / Mixtures of metal oxides with different oxidation levels, such as CuO and FeO / Fe 2 O 3 , may be used.
  • oxygen at the reference electrode 213 side may be used.
  • the partial pressure can be thermodynamically fixed.
  • the partial pressure of oxygen on the side of the reference electrode 213 is determined by the oxygen partial pressure fixing reference material 261 instead of the external air, and the reference electrode 213 and the sensing electrode are similar to those described with reference to FIG. 4.
  • the electromotive force between (214) can be measured to determine the dissolved hydrogen gas concentration in the oil by equation (1).
  • the sealing cover 270 is configured to prevent external air from affecting the reference electrode 213 through the oxygen partial pressure fixing reference material 261, and is formed of a dense ceramic material or the like that can prevent the penetration of air. can do.
  • the sealing cover 270 may be omitted if the influence of the outside air is insignificant.
  • FIG. 6 is a schematic cross-sectional view for explaining another structure of a sensor unit that can be used in the hydrogen sensor element 100 according to the first embodiment of the present invention.
  • descriptions common to those described with reference to FIGS. 1 to 5 will be omitted, but it should be understood that the contents may be equally applied to the sensor unit of FIG. 6 and the hydrogen sensor element 100 including the same.
  • the sensor unit 610 of another structure which can be used in the first embodiment of the present invention is formed of only a hydrogen ion conductor instead of a sensing unit formed by heterojunction of an oxygen ion conductor and a hydrogen ion conductor. That is, the sensing electrode 214 is formed on one side of the hydrogen ion conductor 212 and the reference electrode 213 is formed on the other side, and the reference electrode 213 is covered with the reference material 262 for fixing the hydrogen partial pressure, and the upper side thereof.
  • the sealing cover 270 is a structure.
  • a mixed phase of metal and metal hydrate such as Ti / TiH 2 , Zr / ZrH 2 , Ca / CaH 2 , and Nd / NdH 2 may be used.
  • Hydrogen partial pressure (P 2 H 2 ) can be thermodynamically fixed.
  • the sensing electrode 214 Since the sensing electrode 214 is in contact with the hydrogen gas in the sealed space 140 formed by the housing 130, it is well known if the electromotive force E between the sensing electrode 214 and the reference electrode 213 is measured.
  • the partial pressure of hydrogen gas in the enclosed space 140 can be measured by the Nernst equation, and the partial pressure of dissolved hydrogen gas P 1 H 2 in the liquid can be calculated therefrom.
  • R is by the gas constant
  • F Faraday's constant
  • T is a constant both as measured temperature
  • the reference electrode 213 side hydrogen partial pressure (P 2 H2) is also a reference substance (262) for fixing the hydrogen partial pressure Since the value is determined, it is possible to determine the dissolved hydrogen gas partial pressure (P 1 H 2 ) in the liquid from the measured electromotive force (E) value.
  • the reference electrode 213 is isolated from the hydrogen gas in the sealed space 140 by the sensing unit 210, the spacer 220, and the heater 230.
  • the sensor portion of this structure is not necessarily used, and various sensor portion structures may be used. .
  • it may be provided with a separate handle portion connected to the oxygen ion conductor or the hydrogen ion conductor in a gas sealable manner, these modifications will be briefly described with reference to FIGS.
  • FIG. 7 is a modified example of the sensor unit 110 of FIG. 2, wherein the oxygen ion conductor 211 and the hydrogen ion conductor 212 are formed in a circular or polygonal pellet form, and are bonded to each other.
  • the electrode 213 and the sensing electrode 214 are formed.
  • a separate handle part 280 is provided and coupled to the oxygen ion conductor 211 to be gas-sealed.
  • the handle part 280 may have a hollow tube shape in communication with external air.
  • the heater unit is not illustrated in FIG. 7, the heater unit may be installed at an appropriate position adjacent to the oxygen ion conductor or the hydrogen ion conductor such as the reference gas passage 250.
  • FIG. 8 is a modified example of the sensor unit 510 of FIG. 5.
  • the reference electrode 213 is exposed to the reference gas passage so that the reference electrode is directly contacted with external air.
  • 213 is covered with an oxygen partial pressure fixing reference material 261 and a structure is sealed thereon with a sealing cover 270. Covering the reference electrode 213 with the oxygen partial pressure fixing reference material 261 can thermodynamically fix the oxygen partial pressure on the reference electrode 213 side, and thus, between the reference electrode 213 and the sensing electrode 214.
  • the heater unit is not illustrated in FIG. 8, the heater unit may be installed at a suitable position adjacent to the oxygen ion conductor or the hydrogen ion conductor, such as the handle unit 280.
  • FIG. 9 is a modified example of the sensor unit 610 of FIG. 6, in which a reference electrode 213 and a sensing electrode 214 are formed on both surfaces of a hydrogen ion conductor 212 in the form of a circular or polygonal pellet.
  • the reference electrode 213 is covered with a hydrogen partial pressure fixing reference material 262 and sealed thereon with a sealing cover 270, where a separate handle part 280 seals the gas to the hydrogen ion conductor 212. Possibly combined.
  • the hydrogen sensor element having such a configuration, since the hydrogen partial pressure on the reference electrode 213 side is fixed by the hydrogen partial pressure fixing reference material 262, the sealed space by the equation (2) similarly to the sensor part 610 of FIG.
  • the hydrogen gas concentration in 140 can be measured.
  • the heater unit is not illustrated in FIG. 9, the heater unit may be installed at a suitable position adjacent to the hydrogen ion conductor such as inside the handle unit 280.
  • the housing 130 is configured to form a sealed space 140 that isolates one end of the sensor unit 110 from liquid and external air.
  • the housing 130 has an empty interior and at least a portion of both ends thereof is opened.
  • a gas separation membrane 132 coupled to one end of the housing body 131 in the direction in which the liquid is inserted into the liquid to prevent the liquid from penetrating into the sealed space 140 and to selectively permeate the dissolved hydrogen gas in the liquid. It is configured by.
  • the housing body 131 is not particularly limited as long as the material does not pass through the liquid and gas, and may be, for example, a glass material. Although glass is a material through which hydrogen gas can penetrate through diffusion, gas is penetrated into the enclosed space 140 through the housing body 131 because the housing body is very thick as compared with the gas separation membrane 132. .
  • the gas separation membrane 132 is coupled to an open area of one end of the housing body 131 to transmit dissolved hydrogen gas in the liquid into the sealed space 140.
  • the material does not pass through the liquid and the dissolved gas molecules may pass therethrough.
  • polymer materials such as PTFE (Poly Tetra Fluoro Ethylene) membranes or polydimethylsiloxane (PDMS) membranes, porous ceramic materials, or metal foils may be used.
  • the gas separation membrane 132 has a large diffusion coefficient of hydrogen and a thin thickness. It is preferably made of a material that can be made in the form of a foil.
  • the diffusion distance x of hydrogen through the gas separation membrane 132 is expressed by the following equation (3).
  • D is the diffusion coefficient of hydrogen in the gas separation membrane 132
  • t is the diffusion time. That is, according to equation (3), the larger the diffusion coefficient (D), the longer the diffusion time (t), the longer the distance (x) at which the hydrogen gas is diffused, and the partial pressure of hydrogen gas in the sealed space 140 becomes liquid.
  • a metal foil is more preferable as the gas separation membrane 132 of the present invention than a material such as glass or plastic, which is difficult to make the thickness thin.
  • the hydrogen diffusion coefficient is large at a level of 10 ⁇ 6 cm / s 2 , and may be manufactured in the form of a thin foil of 100 ⁇ m or less, and thus, the hydrogen sensor element 100 according to the present invention. It is suitable as the gas separation membrane 132 to be applied to.
  • the gas separation membrane 132 is coupled to the bottom surface of the housing body 131, but the coupling position may be changed, for example, may be coupled to the side surface of the housing body 131.
  • the gas separation membrane 132 is coupled to the housing body 131 with the gas separation membrane 132 interposed therebetween.
  • the method using the fixing cap 135 may be used.
  • the openings 136 and 137 are formed at both the housing body 131 and the fixing cap 135 at the portion where the gas separation membrane 132 is fixed, so that dissolved hydrogen gas can be permeated into the sealed space 140.
  • the sealing member 134 such as an O-ring is inserted between the housing body 131 and the gas separation membrane 132 and between the fixing cap 135 and the gas separation membrane 132 so that the gas separation membrane 132 is provided only. It can be sealed to allow hydrogen gas to pass through.
  • the fixing cap 135 and the packaging body 131 may be screwed to form a screw thread, in addition, various coupling methods may be used.
  • the sensor unit 110 of the hydrogen sensor element 100 is such that the reference gas passage 250 communicates with the outside air, or even when the reference materials 261 and 262 are used instead of the reference gas passage 250.
  • a part may be drawn out of the housing 130 to be electrically connected to the electromotive force measuring unit 240 or a power source for the heater.
  • the sealing member 133 is disposed between the sensor unit 110 and the housing body 131. It is preferred that the entire housing 130 is gas sealed except for the gas separation membrane 132.
  • the glass member 133 may be a glass frit.
  • the hydrogen sensor element 100 may optionally include a pumping unit 120 capable of discharging the disturbing gas existing in the closed space 140 to the outside.
  • FIG. 11 is a schematic cross-sectional view for explaining a preferred structure of the pumping unit 120 that can discharge the oxygen gas in the closed space 140 to the outside.
  • the structure of the pumping unit 120 will be described with reference to FIG. 11, but the structure of the pumping unit 120 according to the present invention is not limited thereto.
  • the pumping unit 120 includes a pumping cell 310, a spacer 320, and a pumping cell heating unit 330.
  • the pumping cell 310 has a structure in which a first pumping electrode 312 and a second pumping electrode 313 are formed at both ends of the oxygen ion conductor 311, and the second pumping electrode 313 is a positive electrode.
  • a predetermined voltage or current is applied from the pumping power source 340 between the first and second pumping electrodes 312 and 313, the oxygen gas toward the first pumping electrode 312 moves through the oxygen ion conductor 311 to be formed. 2 is moved toward the pumping electrode 313.
  • the pumping cell heating unit 330 is configured for such heating.
  • the pumping cell heating unit 330 is spaced apart from the pumping cell 310 by a spacer 320 to form an oxygen discharge space 350 in communication with the outside air, and the pumping cell heating unit 330 and the spacer.
  • the same configuration as that of the heating unit 230 and the spacer 220 provided in the sensor unit 110 of FIG. 2 may be used.
  • the pumping unit 120 of FIG. 11 has a structure in which the first pumping electrode 312 is located in the sealed space 140 and the second pumping electrode 313 communicates with the outside air through the oxygen discharge space 350. It is coupled to the housing body 131, the coupling portion may be sealed with a sealing member 133.
  • the pumping power source 340 When a predetermined voltage or current is applied from the pumping power source 340 between the first and second pumping electrodes 312 and 313 such that the second pumping electrode 313 becomes a positive electrode in the coupled state, The oxygen gas existing in the first pumping electrode 312, that is, in the closed space 140 is discharged to the outside through the oxygen discharge space 350.
  • the oxygen partial pressure in the closed space 140 can be predicted by the Nernst equation, for example, fixing 1 V between the first and second pumping electrodes 312 and 313 while the pumping cell 310 is heated to 700 ° C.
  • the voltage applied to the oxygen partial pressure in the sealed space 140 is dropped to about 2.15X10 -10 atm. It can be said that the state is virtually free of oxygen at a pressure corresponding to about 2 ppb, so that the hydrogen sensor element 100 according to the present invention having such a pumping unit 120 can provide an accurate hydrogen gas concentration without interference of oxygen gas. You can measure it. In order to accurately measure the hydrogen gas concentration, it is preferable to operate the pumping unit 120 such that the oxygen concentration in the closed space 140 is about several hundred to several thousand ppm.
  • the pumping unit 120 may also be used for measuring the oxygen gas concentration in the closed space 140. That is, instead of applying a voltage or a current from the pumping power source 340 between the first and second pumping electrodes 312 and 313 of the oxygen ion conductor 311, the first and second electromotive force measuring units (not shown) are used. When the electromotive force between the two pumping electrodes 312 and 313 is measured, the oxygen gas partial pressure Po 2 in the closed space 140 may be calculated by the following equation (4).
  • Equation (4) since R is a gas constant, F is a Faraday constant, and T is a constant as a measurement temperature, the electromotive force E between the first and second pumping electrodes 312 and 313 measured using the electromotive force measuring unit is The partial pressure of oxygen gas in the closed space 140 may be calculated.
  • the oxygen gas concentration sensing characteristic of the pumping unit 120 may be used to measure the hydrogen gas concentration using the sensor unit 110 when the oxygen gas partial pressure in the closed space 140 is reduced to a predetermined value or less. The measuring method will be described later with reference to FIG. 18.
  • a filler may be filled in the housing 130 of the hydrogen gas sensor 100 according to the present invention.
  • the filling is filled in the housing 130 as described above, high heat generated from the heating units 230 and 330 is blocked from being transferred to other components such as the housing body 131 or the gas separation membrane 132, and the sensor unit 110.
  • 510, 610, 710, 810, 910 and the temperature of the pumping unit 120 is kept constant, in particular the effective volume in the closed space 140 is reduced effect of the reaction time of the hydrogen sensor element 100 is shortened There is.
  • the filler ceramic powder such as alumina or metal powder may be used.
  • a hydrogen sensor element 200 according to a second embodiment of the present invention will be described with reference to FIGS. 12 and 13.
  • the hydrogen sensor device 200 according to the second embodiment of the present invention is different from the first embodiment in that the sensor unit and the pumping unit are integrally formed.
  • the hydrogen sensor device 200 according to the second embodiment of the present invention includes a sensor unit 400. And a housing 130.
  • the sensor unit 400 is a hydrogen sensor function for measuring the concentration of hydrogen gas around, that is, the same function as the sensor unit 110 of the first embodiment, the function to discharge the oxygen gas in the closed space 140 to the outside That is, the configuration of performing the function of the pumping unit 120 of the first embodiment at the same time, as described above may also perform the oxygen sensor function for measuring the oxygen gas concentration in the closed space 140.
  • the housing 130 is configured to form a sealed space 140 that isolates one end of the sensor unit 400 from the liquid and the outside air, and the sensor unit 400 is isolated from the liquid by the housing 130.
  • dissolved hydrogen gas is permeated into the sealed space 140 through the gas separation membrane 132 provided in at least a portion of the housing 130.
  • the sensor unit 400 may measure the dissolved hydrogen gas concentration without directly contacting the liquid.
  • Other configurations except for the sensor unit 400 are identical to those of the hydrogen sensor element 100 according to the first embodiment, and thus, a preferred structure of the sensor unit 400 according to the second embodiment will be described with reference to FIG. 13. It explains in detail.
  • the sensor unit 400 includes the oxygen ion conductor 411 and the other surface of the hydrogen ion conductor 412 and the oxygen ion conductor 411 bonded to one surface of the oxygen ion conductor 411. That is, the sensing unit 410 and the sensing unit 410 including the reference electrode 413 formed on the reference gas passage 460 and the sensing electrode 414 formed on the surface of the hydrogen ion conductor 412.
  • the heater unit 430 for heating the temperature to a predetermined temperature, and the spacer 420 for forming the reference gas passage 460 between the sensing unit 410 and the heater unit 430 by a predetermined interval therebetween; Can be.
  • the reference electrode 413 and the sensing electrode 414 are electrically connected to the electromotive force measuring unit 440 through the lead wire 441, so that the hydrogen gas concentration can be measured by electromotive force measurement. Same as described in
  • the spacer 420 is inserted between the sensing unit 410 and the heater unit 430 to be formed of alumina as a configuration for forming the reference gas passage 460 so that the reference electrode 413 communicates with the reference gas.
  • the reference gas is preferably outside air.
  • the heater unit 430 is configured to heat the sensing unit 410 to a sensing temperature.
  • the heater unit 430 may have a heater wire 432 formed on a heater substrate 431 made of an insulating material such as alumina. The same as the heater unit 230 of the embodiment.
  • the sensor unit 400 is configured to perform the function of the pumping unit for discharging oxygen gas in the closed space 140 to the outside through the reference gas passage 460. That is, the first pumping electrode 415 is formed on one surface (that is, one surface exposed to the closed space) in the direction in which the hydrogen ion conductor 412 of the oxygen ion conductor 411 is formed, and the reference of the oxygen ion conductor 411 is provided.
  • the second pumping electrode 416 is formed on the other surface exposed to the gas passage 460, and the first and second pumping electrodes 415 and 416 are connected to the pumping power 450 by the lead wire 451. In this case, the second pumping electrode 416 may not be separately formed, and the reference electrode 413 may be used as the second puncture electrode 416.
  • the sensor unit 400 having such a structure is coupled to the housing 130 in a sealed state by the sealing member 133, as shown in FIG. 12, wherein the hydrogen ion conductor 412 and the sensing electrode 414, The first pumping electrode 415 is included in the sealed space 140.
  • the pumping power supply is such that the second pumping electrode 416 becomes positive between the first and second pumping electrodes 415 and 416.
  • the oxygen gas existing in the closed space 140 is discharged to the outside through the reference gas passage 460.
  • the discharge of the oxygen gas is preferably performed until the oxygen concentration in the closed space 140 is about several hundred to several thousand ppm.
  • the reference electrode 413 is moved by the electromotive force measuring unit 440.
  • the concentration of dissolved hydrogen gas in the liquid is calculated therefrom.
  • the hydrogen sensor device 200 according to the second embodiment described above does not need to include a separate pumping unit by providing a pumping electrode and a pumping power to the sensor unit 400, the hydrogen sensor device 100 according to the first embodiment 100. Compared to), the structure is simpler.
  • the partial pressure of oxygen gas in the sealed space 140 can be measured by Equation (4).
  • the oxygen gas in the sealed space 140 is applied to the outside by applying a voltage or a current between the first and second pumping electrodes 415 and 416 using the pumping power source 450. Can be discharged.
  • the hydrogen sensor elements 100 and 200 according to the present invention can be used in a wide range of applications for measuring the concentration of dissolved hydrogen gas in a liquid, and in particular, by measuring the concentration of dissolved hydrogen gas in oil, it is possible to simply measure the degradation of oil in real time. It can be usefully used.
  • 14 is a graph showing the results of measuring the dissolved hydrogen gas concentration in oil using the hydrogen sensor device according to the present invention.
  • Figure 14 (a) is a graph of the result of measuring the electromotive force (EMF) value over time while changing the hydrogen gas concentration in the oil
  • Figure 14 (b) is a graph showing the electromotive force value as a function of the hydrogen gas concentration.
  • the hydrogen sensor elements 100 and 200 according to the present invention may be inserted and used in a liquid each time to measure the concentration of dissolved hydrogen gas in a liquid, but may be installed in a container containing the liquid.
  • FIG. 15 is a view schematically showing a state in which the hydrogen sensor element 200 according to the second embodiment of the present invention is installed in a container containing a liquid to be measured.
  • an opening 520 is formed at one side of the container 510 in which the liquid is accommodated.
  • the gas separation membrane 132 is formed in the opening 520. It is installed in the container 510 to be in contact. At this time, since the hydrogen sensor element 200 may need to be detached for the purpose of repair or replacement, the hydrogen sensor element 200 is preferably installed to be detachable to the container 510. In this case, the liquid does not flow out through the opening 520. It is preferable that an opening / closing valve 550 capable of opening and closing the opening 520 is provided in the opening.
  • the opening and closing valve 550 may be used after the liquid is in contact with the gas separation membrane 132, and may be used only when the measurement is performed to prevent deterioration of the gas separation membrane 132. 550 may be opened manually or automatically.
  • FIG. 16 is a diagram illustrating an example of such a coupling method.
  • a stepped portion 521 is formed in the opening 520, and an O-ring is formed between the housing body 131 and the gas separation membrane 132 and between the stepped portion 521 and the gas separation membrane 132.
  • a sealing material 134 such as may be inserted. Comparing FIG. 16 with FIG. 10, in the coupling structure of FIG. 16, the opening 520 serves as the fixing cap 135 of FIG.
  • the opening 520 and the housing body 131 may be screwed to form a screw line.
  • the hydrogen sensor element 200 mounting structure as shown in FIG. 15 is particularly useful when the hydrogen sensor element 200 is to be measured periodically or aperiodically in a state in which the hydrogen sensor element 200 is installed in a container containing liquid.
  • oils of various mechanical devices for example, transformer oil, etc.
  • the measurement can proceed easily without the need to insert the device 200 into the transformer oil.
  • the hydrogen sensor device 200 according to the second embodiment is described as an example.
  • the hydrogen sensor device 100 according to the first embodiment may be used in the same manner.
  • the opening 520 is illustrated as being formed on the side of the container 510, but the present invention is not limited thereto, and the opening 520 may be formed on the top or bottom surface of the container 510.
  • the gas separation membrane 132 may not directly contact the liquid, but according to Sievert's law, the amount of hydrogen dissolved in the liquid is proportional to the square root of the vaporized hydrogen partial pressure. Therefore, the dissolved hydrogen gas concentration can be calculated according to the same principle by measuring the partial pressure of hydrogen introduced through the gas separation membrane 132.
  • the opening and closing valve 550 may be omitted.
  • the hydrogen sensor element 200 when the hydrogen sensor element 200 is installed in the container 510, it is preferable to provide a control device 600 for controlling the overall operation of the hydrogen sensor element 200 as shown in FIG. .
  • the control device 600 is connected to the sensor unit 400 of the hydrogen sensor element 200 to control the overall operation of the sensor unit 400, and optionally for measuring the temperature near the sensor unit 400.
  • a liquid inflow sensor 540 is additionally provided in the hydrogen sensor element 200 to detect whether or not the liquid flows in the vicinity of the temperature sensor 530 and the gas separation membrane 132, and the sensors 530 and 540 are provided with a control device ( 600).
  • control device 600 may be connected to the on / off valve 550 installed in the opening 520 of the container 510 to control the opening / closing operation of the on / off valve 550.
  • the temperature sensor 530 a thermistor, thermocouple, platinum resistance temperature sensor, or the like may be used.
  • FIG. 17 is an exemplary functional block of the control device 600.
  • the control device 600 may include a measurement unit 610, a control unit 620, a display unit 630, and a transmitter 640.
  • the measuring unit 610 is electrically connected to the sensor unit 400, the temperature sensor 530, the liquid inflow sensor 540, and the like, and receives the measurement results of the respective sensors and provides them to the control unit 620.
  • the control unit 620 is configured to control the operation of the hydrogen sensor element 200 based on the measurement result of the measuring unit 610, for example, the sensor unit 400 after receiving the temperature measured by the temperature sensor 530.
  • the control device 600 receives the sensing result of the liquid inlet sensor 540 through the measuring unit 610, and determines that the liquid has flowed into the closed space 140.
  • the controller 620 may operate the hydrogen gas sensors 100 and 200. It is desirable to stop.
  • the method for measuring dissolved hydrogen gas concentration according to the present invention includes measuring the temperature of the sensor unit 400 using the temperature sensor 530 (S10), based on the measured temperature value. Controlling the heater unit 430 to be a set measurement temperature (S20), measuring the oxygen gas concentration in the sealed space 140 (S30), and whether the measured oxygen gas concentration is a set value, for example, 1000 ppm or less.
  • the determination result in step S40 is more than 1000ppm when the oxygen gas in the closed space 140 by pumping oxygen gas to the outside (S50)
  • the determination result in step S40 when the oxygen gas concentration is less than 1000ppm It may include the step of measuring the hydrogen gas concentration (S60) and the step of transmitting the measured hydrogen gas concentration by wire or wirelessly through the transmitter (S70).
  • the measurement can be started after reaching the preset measurement conditions, that is, the desired measurement temperature and the oxygen gas concentration in the closed space, it is possible to secure the accuracy and reproducibility of the measurement.
  • the preset measurement conditions that is, the desired measurement temperature and the oxygen gas concentration in the closed space
  • Dissolved hydrogen gas measuring method can be performed periodically. That is, when the control device 600 is provided with a timer and it is determined that the measurement period has arrived, the steps of FIG. 18 may be programmed to proceed sequentially. In this case, since the measurement result is transmitted to a remote user by wire or wirelessly, for example, whether or not the oil is deteriorated can be managed more systematically.
  • the housing coupled to the sensor unit while including the gas separation membrane is described as an essential configuration of the hydrogen sensor element.
  • the sensor unit does not have a housing depending on the liquid to be measured or the purpose of the measurement.
  • the hydrogen sensor element according to the third embodiment of the present invention is characterized in that the housing is omitted from the hydrogen sensor elements of the first and second embodiments.
  • the hydrogen sensor element according to the third embodiment since the sensing electrode is inserted into a liquid such as oil and comes into direct contact with the dissolved hydrogen gas in the liquid, it is necessary to wait until the partial pressure of hydrogen in the sealed space inside the housing becomes equilibrium. There is no advantage in that the reaction time is improved.
  • the hydrogen sensor element according to the fourth embodiment of the present invention like the third embodiment, omits the housing in the first and second embodiments, and instead, a protective material covering at least the sensing electrode to prevent the sensing electrode from directly contacting the liquid. 710 is provided. 19 illustrates a hydrogen sensor device 700 according to the fourth embodiment in which the sensing electrode 214 of the sensor unit 110 according to the first embodiment illustrated in FIG. 2 is covered with a protective material 710.
  • the protective material 710 is formed to cover the sensing electrode 214 as shown in FIG. 19, the sensing unit 210 heated by the heater unit 230 is prevented from being deprived of heat to the outside to at least the temperature of the sensing unit 230. It is advantageous to keep the constant, and a side effect of preventing the deterioration from being promoted by directly contacting the sensing electrode 214 with the liquid can be expected.
  • the protective material 710 is at least hydrogen.
  • the gas must pass through, and for this purpose, a porous structure including a plurality of pores, for example, a polymer material having a porous structure, a porous ceramic, a porous graphite or a metal powder, or a glass membrane layer having selective permeability to hydrogen gas Or the like.
  • the protection material 710 is a part inserted into the liquid, it should be formed of a material capable of maintaining its shape with sufficient strength, and should not be dissolved or reacted with the liquid to be measured, so an appropriate material should be selected and formed according to the type of liquid. .
  • the protective member 710 is formed in the sensor unit 110 according to the first embodiment of the present invention.
  • this is illustrative and the protective material in the sensor unit 400 according to the second embodiment of the present invention.
  • the protective material 710 may be formed to cover the sensing electrode 414 and the first pumping electrode 415 together.
  • the hydrogen sensor element according to the present invention can be usefully used to detect the oil deterioration of various mechanical devices such as transformer oil.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Electrochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

본 발명은 수소가스 농도를 검출할 수 있는 센서부에 가스분리막을 포함한 하우징을 결합하여 하우징 내부의 밀폐공간으로는 액체가 투과하지 못하고 가스분리막을 통해 용존 수소가스만이 투과될 수 있도록 구성하고, 이러한 수소센서소자를 액체가 수용된 용기의 개구부에 탈착 가능하게 결합함으로써, 용존 수소가스 농도를 간단한 방법으로 측정할 수 있는 효과가 있다.

Description

액체 내 용존 수소가스 농도 측정용 수소센서소자 및 이를 이용한 수소가스 농도 측정방법
본 발명은 액체 내의 용존 수소가스 농도를 측정할 수 있는 수소센서소자 및 이를 이용한 액체 내 용존 수소가스 농도 측정 방법에 관한 것이다.
액체의 특성 또는 특성 변화를 액체 내에 용해되어 있는 용존 가스 농도를 측정함으로써 수행하는 경우가 있다. 예를 들어 자동차의 엔진오일, 변압기나 각종 기계장치에 사용되는 오일의 경우 열화가 진행됨에 따라 수소 가스의 농도가 증가하게 되므로, 오일 내의 수소 가스 농도를 측정하면 오일의 열화 여부를 감지할 수 있다. 실제로 변압기의 경우 1000ppm이상의 용존 수소가 발생되면 폭발의 위험이 있다고 보고되고 있다.
액체 내에 용해되어 있는 용존 수소가스 농도를 측정하기 위해서는 광학적인 방식, 점도 측정 방식, 전기화학적 방법, 가스 크로마토그래프 방식, 기체분리법 등과 같은 방법이 사용될 수 있으나, 이러한 방식들은 측정 대상인 액체의 상태를 실시간으로 측정할 수 있는 방법이 아니어서, 현장에서 실시간으로 열화 여부를 판단하는 것이 필요한 경우, 예를 들어 오일의 열화 여부 판단 등에 적용하기에 적합한 방법이라고 할 수 없다.
뿐만 아니라, 이러한 방식들은 측정장치 및 측정과정이 복잡하며, 그 외에도 장시간의 측정시간이 요구되고 고가의 장비가 필요한 측정방식이라는 점 등 많은 문제점이 있다.
따라서 오일과 같은 액체 내의 용존 수소가스 농도를 실시간으로 간단하게 측정하여 열화 여부를 감지할 수 있는 장치 및 방법이 요구된다.
본 발명은 상기와 같은 문제점을 해결하기 위한 것으로서, 고가의 복잡한 장비 없이도 액체 내의 용존 수소가스 농도를 실시간으로 간단하게 측정할 수 있도록 하는 수소센서소자를 제공하는 것을 목적으로 한다.
또한, 본 발명은 수소센서, 특히 수소센서의 감지전극이 액체에 노출되어 열화되지 않도록 하는 수소센서소자를 제공하는 것을 다른 목적으로 한다.
또한, 본 발명은 용존 수소가스의 농도를 측정함에 있어서 수소 이외의 다른 가스들의 존재에 의해 측정의 정확성이 영향받는 것을 최소화할 수 있는 수소센서소자를 제공하는 것을 또 다른 목적으로 한다.
또한, 본 발명은 측정의 정확성 및 재현성을 확보할 수 있고 원거리에서도 측정 결과를 사용자가 알 수 있도록 하는 수소센서소자 및 수소가스농도 측정방법을 제공하는 것을 또 다른 목적으로 한다.
상기한 목적을 달성하기 위한 본 발명의 일 측면에 따른 수소센서소자는, 액체 내의 용존 수소가스 농도를 측정하기 위한 수소센서소자로서, 수소가스 농도를 측정하는 센서부, 상기 센서부에 결합되고 적어도 일부에 개방부가 형성되는 하우징 몸체 및 상기 개방부에 기체 및 액체 밀봉 가능하게 결합되는 가스분리막을 포함하는 하우징을 포함하고, 상기 하우징 몸체 및 가스분리막에 의해 상기 하우징 내부에는 상기 액체 및 외부 공기와 격리된 밀폐공간이 형성되며, 상기 가스분리막은 상기 액체 내의 용존 수소가스를 상기 밀폐공간 내로 투과시키는 것을 특징으로 한다. 이때, 상기 밀폐공간 내의 산소를 외부로 펌핑하여 제거하기 위하여, 상기 하우징에 결합되는 펌핑부를 더 포함할 수 있다.
상기 센서부는, 산소이온전도체와 수소이온전도체의 이종 접합체, 상기 수소이온전도체의 표면에 형성되는 감지전극, 상기 산소이온전도체의 표면에 형성되는 기준전극, 상기 기준전극과 상기 감지전극 사이의 기전력을 측정하는 기전력측정부를 포함하며, 상기 감지전극은 상기 밀폐공간에 노출되고, 상기 기준전극은 외부 공기와 연통되거나, 또는 상기 기준전극 측의 산소 분압을 고정시켜주는 기준물질로 덮여 있으며, 상기 용존 수소가스 농도가 변화함에 따라 상기 기전력이 변화하는 것일 수 있다. 또는, 상기 센서부는, 수소이온전도체, 상기 수소이온전도체 표면에 형성되는 감지전극 및 기준전극, 상기 기준전극과 상기 감지전극 사이의 기전력을 측정하는 기전력측정부를 포함하며, 상기 감지전극은 상기 밀폐공간에 노출되고, 상기 기준전극은 상기 기준전극 측의 수소 분압을 고정시켜주는 기준물질로 덮여 있으며, 상기 용존 수소가스 농도가 변화함에 따라 상기 기전력이 변화하는 것일 수도 있다.
상기 가스분리막은 금속막일 수 있으며, 상기 금속막은 팔라듐(Pd)을 포함할 수 있고, 그 두께는 100 ㎛ 이하일 수 있다.
또한, 본 발명에 일 측면에 따른 수소센서소자는 상기 가스분리막을 상기 하우징에 결합하기 위한 고정캡을 더 포함할 수 있고, 상기 하우징 내부의 밀폐공간은 충진물로 채워질 수 있다.
또한, 본 발명에 따른 수소센서소자는 상기 센서부를 센싱 온도까지 가열하기 위한 히터를 포함할 수 있다.
밀폐공간 내의 산소를 외부로 펌핑하기 위한 상기 펌핑부는, 산소이온전도체, 상기 산소이온전도체와 스페이서에 의해 소정 간격 이격되고, 상기 이격된 간격은 외부 공기와 연통되도록 구비되는 히터기판, 상기 산소이온전도체의 상기 밀폐공간측 일면에 형성되는 제1 펌핑전극, 상기 산소이온전도체의 상기 외부 공기측 일면에 형성되는 제2 펌핑전극, 상기 제1 펌핑전극 및 상기 제2 펌핑전극 사이에 전압 또는 전류를 인가하는 펌핑전원을 포함하며, 상기 펌핑전원에 의해 상기 제1 펌핑전극 및 상기 제2 펌핑전극 사이에 전압 또는 전류를 인가함으로써 상기 밀폐공간 측의 산소가 상기 외부 공기 측으로 펌핑되는 것일 수 있다.
상기 펌핑부는 상기 센서부와 일체로 형성되어 있는 것일 수도 있는데, 이때 상기 센서부는, 산소이온전도체, 상기 산소이온전도체와 스페이서에 의해 소정 간격 이격되고, 상기 이격된 간격은 외부 공기와 연통되도록 구비되는 히터기판, 상기 밀폐공간 측에 노출되는 상기 산소이온전도체의 적어도 일부분에 접합되는 수소이온전도체, 상기 수소이온전도체의 상기 밀폐공간에 노출되는 표면에 형성되는 감지전극, 상기 산소이온전도체의 상기 외부 공기 측 표면에 형성되는 기준전극, 상기 기준전극과 상기 감지전극 사이의 기전력을 측정하는 기전력측정부, 상기 산소이온전도체의 상기 수소이온전도체와 접합되어 있지 않은 상기 밀폐공간 측 표면에 형성되는 제1 펌핑전극, 상기 산소이온전도체의 상기 외부 공기측 표면에 형성되는 제2 펌핑전극, 상기 제1 펌핑전극 및 상기 제2 펌핑전극 사이에 전압을 인가하는 펌핑전원을 포함하며, 상기 용존 수소가스 농도가 변화함에 따라 상기 기전력이 변화하고, 상기 펌핑전원에 의해 상기 제1 펌핑전극 및 상기 제2 펌핑전극 사이에 전압 또는 전류를 인가함으로써 상기 밀폐공간 측의 산소가 상기 외부 공기 측으로 펌핑되는 것을 특징으로 하며, 여기서 상기 기준전극과 상기 제2 펌핑전극은 하나의 전극일 수 있다.
한편, 본 발명에 따른 수소센서소자는 액체가 수용된 용기의 개구부에 결합되어 상기 용기에 수용된 액체 내의 용존 수소가스 농도를 측정하기 위한 것일 수 있는데, 이때 상기 가스분리막은 상기 개구부를 통해 상기 용기 내부와 연통되어 상기 액체 내의 용존 수소가스를 상기 밀폐공간 내로 투과시킬 수 있다. 이러한 경우 수소센서소자는 상기 가스분리막과 상기 개구부 사이 및 상기 하우징 몸체와 상기 가스분리막 사이에 밀봉부재가 삽입된 상태로 상기 개구부에 결합될 수 있으며, 상기 센서부의 온도를 측정하기 위한 온도센서 및 상기 액체의 유입 여부를 감지하기 위한 액체 유입 센서 중 적어도 하나가 더 구비될 수 있다.
본 발명의 다른 측면에 따른 용존 수소측정장치는, 용기에 수용된 액체 내의 용존 수소가스 농도를 측정하기 위한 용존 수소측정장치로서, 상기 용기의 일측에 구비된 개구부에 결합된 수소센서소자를 포함하고, 상기 수소센서소자는 수소가스 농도를 측정하는 센서부 및 상기 센서부에 결합되는 하우징을 포함하며, 상기 하우징은 적어도 일부에 개방부가 형성되는 하우징 몸체 및 상기 개방부에 기체 및 액체 밀봉 가능하게 결합되는 가스분리막을 포함하여 내부에 상기 액체 및 외부 공기와 격리된 밀폐공간이 형성되고, 상기 가스분리막은 상기 개구부를 통해 상기 용기 내부와 연통되어 상기 액체 내의 용존 수소가스를 상기 밀폐공간 내로 투과시키는 것을 특징으로 한다. 이때, 상기 수소센서소자는 상기 개구부에 탈착 가능하게 결합되는 것일 수 있다.
또한, 상기 용존 수소측정장치는, 센서부에 전기적으로 연결되어 상기 센서부의 동작을 제어하는 제어장치를 더 포함할 수 있으며, 상기 센서부의 온도를 측정하기 위한 온도센서 또는 상기 액체의 유입 여부를 감지하기 위한 액체 유입 센서가 더 구비되고, 상기 제어장치는 상기 온도센서 또는 액체 유입 센서로부터 그 센싱 결과를 전달받도록 구성될 수 있다. 또한, 상기 개구부에는 개폐 밸브가 설치되고, 상기 제어장치는 상기 개폐 밸브의 동작을 제어하도록 구성될 수 있다.
상기 제어장치는, 상기 센서부로부터 측정 결과를 입력받는 측정부, 상기 수소센서소자의 동작을 제어하는 제어부, 상기 측정된 용존 수소가스 농도를 표시하는 표시부 및 상기 용존 수소가스 농도 측정 결과를 유선 또는 무선으로 송신하는 송신부를 포함할 수 있다. 여기서, 상기 수소센서소자는 상기 밀폐공간 내의 산소를 외부로 펌핑하여 제거하기 위한 펌핑부를 더 포함하고, 상기 펌핑부는 산소이온전도체, 상기 산소이온전도체의 상기 밀폐공간측 면에 형성되는 제1 펌핑전극 및 상기 산소이온전도체의 상기 외부측 면에 형성되는 제2 펌핑전극을 포함하여 이루어지며, 상기 제어부는 상기 펌핑부의 동작을 제어하도록 구성될 수 있다.
또한, 상기 펌핑부는 상기 제1 펌핑전극 및 제2 펌핑전극 사이의 기전력을 측정함으로써 상기 밀폐공간 내의 산소가스 분압을 측정하는 산소센서 기능도 수행할 수 있는데, 상기 제어부는 상기 산소센서 기능을 수행하는 펌핑부로부터 상기 밀폐공간 내의 산소가스 분압 측정 결과를 전달 받은 후, 그 결과에 기초하여 상기 펌핑부의 펌핑 동작을 제어하도록 구성될 수 있다.
이러한 구성의 본 발명의 다른 측면에 따른 용존 수소측정장치를 이용하여 액체 내 용존 수소가스 농도를 측정하는 방법은, 상기 온도센서를 이용하여 상기 센서부의 온도를 측정하는 단계, 상기 온도 측정 결과에 기초하여 상기 센서부의 온도를 측정온도가 되도록 제어하는 단계 및 상기 센서부를 이용하여 상기 밀폐공간 내 수소가스 분압을 측정하고 그 결과를 이용하여 용존 수소가스 농도를 연산하는 단계를 포함하는 것을 특징으로 한다. 이때, 상기 수소센서소자는 상기 밀폐공간 내의 산소를 외부로 펌핑하여 제거하기 위한 펌핑부를 더 포함하며, 상기 펌핑부는 산소이온전도체, 상기 산소이온전도체의 상기 밀폐공간측 면에 형성되는 제1 펌핑전극 및 상기 산소이온전도체의 상기 외부측 면에 형성되는 제2 펌핑전극을 포함하여 이루어지고, 상기 펌핑부는 상기 제1 펌핑전극 및 제2 펌핑전극 사이의 기전력을 측정함으로써 상기 밀폐공간 내의 산소가스 분압을 측정하는 산소센서 기능도 수행하며, 상기 산소센서 기능을 수행하는 펌핑부가 상기 밀폐공간 내의 산소가스 분압을 측정하여, 상기 측정된 산소가스 분압이 기준치 이상인지 여부를 판단하고, 상기 판단 결과 기준치 이상인 경우 상기 밀폐공간 내의 산소가스를 외부로 배출하도록 상기 펌핑부의 펌핑 동작을 제어하며, 상기 측정된 산소가스 분압이 기준치 이하인 경우 상기 수소가스 분압을 측정하는 단계를 수행하는 것일 수 있다.
또한, 상기 측정 및 연산된 용존 수소가스 농도를 유선 또는 무선으로 송신하는 단계를 더 포함할 수 있으며, 상기 수소센서소자에는 상기 액체의 유입 여부를 감지하기 위한 액체 유입 센서가 더 구비되고, 상기 액체 유입 센서로부터 그 센싱 결과를 전달받아 액체가 유입된 것으로 판단되는 경우 이를 알리는 단계가 더 포함될 수 있다.
본 발명의 또 다른 측면에 따른 수소센서소자는, 액체 내의 용존 수소가스 농도를 측정하기 위한 수소센서소자로서, 적어도 일부 영역이 개방된 통 형상으로서 상기 개방된 일부 영역에 액체는 투과하지 못 하고 수소가스는 투과하는 가스분리막이 결합되는 하우징, 적어도 제1 전극 및 제2 전극을 구비하는 센서부, 상기 센서부는 상기 제1 전극이 상기 하우징 내에 삽입되도록 상기 하우징에 결합되어, 상기 가스분리막을 통해 하우징 내로 들어와 상기 제1 전극에 접하는 수소가스의 농도를 측정하는 것을 특징으로 한다.
본 발명의 또 다른 측면에 따른 수소센서소자는, 액체 내에 적어도 일부가 삽입되어 액체 내의 용존 수소가스 농도를 측정하기 위한 수소센서소자로서, 고체전해질의 양쪽에 기준전극 및 감지전극을 구비한 센싱부, 상기 액체와는 격리된 상태로 상기 기준전극에 기준가스를 공급하기 위한 기준가스통로, 상기 센싱부를 센싱 온도까지 가열하기 위한 히터부, 상기 기준전극과 상기 감지전극 사이의 기전력을 측정하는 기전력측정부를 포함하며, 상기 감지전극은 액체 내의 용존 수소가스에 노출되어 상기 용존 수소가스 농도가 변화함에 따라 상기 기전력이 변화하는 것을 특징으로 한다. 여기서, 기준전극에 기준가스를 공급하기 위한 상기 기준가스통로 대신, 상기 기준전극을 덮어 기준전극 측의 기준가스 분압을 고정시켜주는 기준가스 분압 고정용 기준물질을 구비하는 것일 수 있다.
상기 고체전해질은 산소이온전도체와 수소이온전도체의 이종접합, 또는 수소이온전도체로 이루어지며, 상기 감지전극은 수소이온전도체의 표면에 형성될 수 있다.
또한, 적어도 상기 감지전극을 덮도록 형성된 보호재를 더 포함하며, 상기 보호재는 수소가스가 통과할 수 있는 다공성 물질 또는 글래스세라믹으로 형성될 수 있다.
본 발명에 의한 수소센서소자에 의하면, 고가의 장비 없이도 액체 내의 용존 수소가스 농도를 실시간으로 간단하게 측정할 수 있는 효과가 있다.
또한, 본 발명에 의한 수소센서소자에 의하면, 수소센서의 적어도 감지전극을 액체로부터 격리시키면서 용존 수소가스에는 노출되도록 하는 하우징을 구비함으로써, 수소센서, 특히 수소센서의 감지전극이 액체에 의해 열화되는 문제가 감소하는 효과가 있다.
또한, 본 발명에 의한 수소센서소자에 의하면, 하우징 내에 존재하는 방해가스를 외부로 배출하는 펌핑부를 구비함으로써, 용존 수소가스의 농도를 측정함에 있어서 산소가스 등 다른 가스들의 영향을 최소화할 수 있는 효과가 있다.
또한, 본 발명에 의한 수소센서소자 및 수소가스농도 측정방법에 의하면, 측정의 정확성 및 재현성을 확보할 수 있고 원거리에서도 측정 결과를 사용자가 알 수 있는 효과가 있다.
도 1은 본 발명의 제1 실시예에 따른 수소센서소자의 개략적인 단면도이다.
도 2는 본 발명의 제1 실시예에 따른 센서부의 개략적인 단면도이다.
도 3는 도 2의 센서부의 분해사시도로서, 도 3(a)는 하측에서 바라본 사시도, 도 3(b)는 상측에서 바라본 사시도이다.
도 4는 도 2 및 도 3의 센서부가 수소가스농도를 감지하는 원리를 설명하기 위한 도면이다.
도 5는 본 발명의 제1 실시예에 따른 수소센서소자에서 사용할 수 있는 다른 구조의 센서부의 개략적인 단면도이다.
도 6은 본 발명의 제1 실시예에 따른 수소센서소자에서 사용할 수 있는 또 다른 구조의 센서부의 개략적인 단면도이다.
도 7은 도 2에 도시된 센서부의 변형예이다.
도 8은 도 5에 도시된 센서부의 변형예이다.
도 9는 도 6에 도시된 센서부의 변형예이다.
도 10은 가스분리막의 결합방식의 일 예를 나타내는 도면이다.
도 11은 밀폐공간 내의 산소가스를 외부로 배출시킬 수 있는 펌핑부의 개략적인 단면도이다.
도 12는 본 발명의 제2 실시예에 따른 수소센서소자의 개략적인 단면도이다.
도 13은 본 발명의 제2 실시예에 따른 센서부의 개략적인 단면도이다.
도 14는 본 발명에 따른 수소센서소자를 이용하여 오일 내 용존 수소가스 농도를 측정한 결과 그래프이다.
도 15는 본 발명의 제2 실시예에 따른 수소센서소자를 측정 대상인 액체가 수용된 용기에 설치한 상태를 개략적으로 나타낸 도면이다.
도 16은 액체가 수용된 용기에 수소센서소자를 결합하는 방식의 일 예를 나타내는 도면이다.
도 17은 제어장치의 예시적인 기능블럭도이다.
도 18은 본 발명에 따른 수소가스 농도 측정방법의 예시적인 흐름도이다.
도 19는 본 발명의 제4 실시예에 따른 수소센서소자의 개략적인 단면도이다.
이하 첨부된 도면들을 참조하여 본 발명의 바람직한 실시예들을 상세하게 설명하지만, 본 발명이 실시예들에 의해 한정되거나 제한되는 것은 아니다. 본 발명의 다양한 실시예들을 설명함에 있어, 대응되는 구성요소에 대해서는 동일한 명칭 및 동일한 참조부호를 부여하여 설명하도록 한다.
도 1은 본 발명의 제1 실시예에 따른 수소센서소자(100)의 개략적인 단면도이다. 도 1을 참조하여 설명하면, 본 발명의 제1 실시예에 따른 수소센서소자(100)는, 센서부(110) 및 하우징(130)을 포함하여 구성되며, 선택적으로 펌핑부(120)를 더 포함하여 구성될 수 있다. 여기서 센서부(110)는 주위의 수소가스 농도를 측정하기 위한 수소센서에 해당하는 구성이고, 하우징(130)은 센서부(110)의 일단을 액체 및 외부 공기와 격리시키는 밀폐공간(140)을 형성하도록 하기 위한 구성이다. 수소센서소자(100)가 액체에 삽입되는 경우에도 하우징(130)에 의해 센서부(110)는 액체로부터 격리되지만, 하우징(130)의 액체 내에 삽입되는 적어도 일부분에 구비된 가스분리막(132)을 통해 용존 수소가스가 밀폐공간(140) 내로 투과되므로, 센서부(110)는 액체에 직접 접촉하지 않고도 용존 수소가스 농도를 측정할 수 있게 된다. 이하 본 발명의 제1 실시예에 따른 수소센서소자(100)의 각 구성을 보다 상세히 설명한다.
센서부(110)는 밀폐공간(140) 내의 수소가스 농도를 측정하기 위한 수소센서에 해당하는 구성으로서, 수소가스의 농도를 측정할 수 있는 수소센서라면 특별히 한정하는 것은 아니지만 고체전해질 수소센서인 것이 바람직하다. 본 발명의 제1 실시예에 따른 바람직한 센서부의 구조를 도 2의 개략적인 단면도를 참조하여 설명한다.
도 2에 도시된 바와 같이, 센서부(110)는, 산소이온전도체(211), 산소이온전도체(211)의 일면에 접합되어 있는 수소이온전도체(212), 산소이온전도체(211)의 타면, 즉 기준가스통로(250) 측에 형성되어 있는 기준전극(213) 및 수소이온전도체(212)의 표면에 형성되어 있는 감지전극(214)을 포함하는 센싱부(210)와, 센싱부(210)를 소정 온도로 가열하기 위한 히터부(230), 그리고 센싱부(210)와 히터부(230)를 소정 간격 이격시켜 그 사이에 기준가스통로(250)를 형성하기 위한 스페이서(220)를 포함할 수 있다. 기준전극(213)과 감지전극(214)은 리드선(241)을 통해 기전력측정부(240)에 전기적으로 연결되어, 기전력 측정에 의해 후술하는 원리에 따라 수소가스농도가 측정될 수 있다.
산소이온전도체(211)로는 지르코니아(ZrO2)에 여러 물질을 첨가하여 만든 안정화 지르코니아, 예를 들어 YSZ(Yttria stabilized zirconia), CSZ(calcium stabilized zirconia), MSZ(Magnesium stabilized zirconia)와 같은 고체전해질 또는 Gd2O3 등을 첨가한 CeO2계 화합물 등을 사용할 수 있으며, 수소이온전도체(212)로는 ABO3형태의 페로브스카이트(perovskite) 구조를 갖는 물질의 B자리에 여러 물질을 치환한 물질, 예를 들어 CaZr0.9In0.1O3-x 등과 같은 CaZrO3계, SrZr0.95Y0.05O3-x 등과 같은 SrZrO3계, SrCe0.95Yb0.05O3-x 등과 같은 SrCeO3계, BaCe0.9Nd0.1O3-x 등과 같은 BaCeO3계, BaTiO3, SrTiO3, PbTiO3 등과 같은 Ti계 화합물을 사용할 수 있다.
또한, 기준전극(213) 및 감지전극(214)은 백금(Pt) 등의 귀금속으로 형성하는 것이 바람직하다.
스페이서(220)는 센싱부(210)와 히터부(230) 사이에 삽입되어 기준전극(213)이 기준가스와 연통되도록 기준가스통로(250)를 형성하기 위한 구성으로서 알루미나(Alumina)로 형성될 수 있다. 이때 기준가스는 산소 분압이 실질적으로 일정하게 유지되는 가스이면 특별히 한정하는 것은 아니지만, 외부 공기인 것이 바람직하다.
히터부(230)는 센싱부(210)를 센싱 온도까지 가열하기 위한 구성으로서, 알루미나 등 절연물질로 이루어지는 히터기판(231)에 히터선(232)이 형성된 형태일 수 있다. 여기서 히터선(232)은 백금(Pt)선일 수 있으며, 도시하지는 않았지만 히터선(232)에 전류를 흘려주기 위한 전원부가 더 포함될 수 있다. 또한, 히터선(232)이 외부에 노출되면 전기저항이 변하여 온도 재현성이 떨어지므로, 히터선(232)은 히터기판(231) 내에 내장하여 외부와 차단되도록 하는 것이 바람직하다.
도 3은 도 2의 센서부(110)의 분해사시도로서, 도 3(a)는 하측에서 바라본 사시도, 도 3(b)는 상측에서 바라본 사시도이다.
도 3을 참조하여 설명하면, 산소이온전도체(211)는 장방형의 얇은 판상으로 형성되어 하우징(130) 내부 밀폐공간(140)에 위치하게 되는 일측 단부의 상면에는 수소이온전도체(212)가 접합되고 그 상면에는 감지전극(214)이 형성되어 있으며, 하면에는 수소이온전도체(212) 및 감지전극(214)과 대향하는 위치에 기준전극(213)이 형성되어 있다. 또한, 기준전극(213)과 감지전극(214)에서 각각 리드선(241)이 타측 단부로 연장되어 기전력측정부(240)가 연결되는 한 쌍의 센서단자(244, 245)가 형성된다. 이때, 기준전극(213) 및 기준전극(213)으로부터 연장된 리드선(241)은 산소이온전도체(211)의 하면에 형성되어 있지만, 산소이온전도체(211)에 관통홀을 형성하고 전도성 물질을 채움으로써 도시한 바와 같이 기준전극(213)으로부터 연장된 리드선(241)과 연결되는 센서단자(244)가 산소이온전도체(211)의 상면에 형성되도록 할 수 있으며, 이러한 구성을 적용하여 기전력측정부(240)와의 연결을 보다 용이하게 할 수 있다. 또한, 도면에는 산소이온전도체(211)를 하나의 판상부재로 도시하였으나, 복수의 얇은 판상부재가 겹쳐진 형태일 수도 있다.
스페이서(220)는 'ㄷ'자 형상으로 이루어져 센싱부(210)와 히터부(230) 사이에 일측이 개방된 기준가스통로(250)가 형성되도록 한다. 기준가스통로(250)는 도 1에 도시된 바와 같이 수소센서소자(100)가 액체 내에 삽입되더라도 외부 공기와 연통되는 부분이므로, 기준전극(213)은 밀폐공간(140) 내의 수소가스와는 격리된 상태에서 기준가스통로(250)를 통해 기준가스, 즉 외부 공기와 접하게 된다.
히터부(230)는 히터 상부 기판(231-1), 히터 상부 기판(231-1)의 하면에 형성된 히터선(232), 상기 히터선(232)이 외부로 노출되지 않도록 히터 상부 기판(231-1)을 덮는 히터 하부 기판(231-2)으로 구성되며, 히터선(232)은 히터 상부 기판(231-1)의 하면이 아니라 히터 하부 기판(231-2)의 상면에 형성되어도 무방하다. 히터선(232)은 히터 상부 기판(231-1) 또는 히터 하부 기판(231-2) 상에 백금(Pt)을 소정 패턴으로 프린팅하여 형성할 수 있으며, 백금 패턴을 이용한 히터 구조는 가스센서 분야에서는 잘 알려져 있으므로 이에 대한 상세한 설명은 생략한다. 한편, 히터선(232)에 전류를 공급하는 전원의 연결 용이성을 위하여, 히터 하부 기판(231-2)에 관통홀을 형성하고 전도성 물질을 채움으로써 히터선(232)과 연결되는 한 쌍의 히터단자(234, 235)가 히터 하부 기판(231-2)의 하면에 형성되도록 하는 것이 바람직하다.
도 2 및 도 3에 예시한 센서부(110)는 센싱부(210), 스페이서(220), 히터부(230)를 일체로 결합시 사각의 통 형상을 갖게 되는데, 이는 테이프 캐스팅 기술을 이용하여 제조할 수 있다. 또한, 도 2, 3에서는 센싱부(210), 스페이서(220), 히터부(230)를 별개의 구성으로 설명하였으나, 세라믹 압출 등의 제조기술을 사용하여 각 구성이 일체로 결합된 패키징 몸체 형상의 센서부(110)로 제조할 수도 있으며, 이 경우에는 스페이서(220) 및 히터부(230)도 YSZ 등의 산소이온전도체 물질로 형성되게 되므로 히터선(232)을 히터부(230)에 내장할 때에는 산소이온전도체와 전기적으로 절연 상태가 되도록 표면 절연막 처리 후 내장시키는 것이 바람직하다. 또는 별도의 히터부를 구비하여 기준가스통로(250)에 삽입 설치하거나 센서부(110)의 외부 표면에 근접 설치하는 구조도 사용할 수 있다.
도 2 및 도 3에 예시한 센서부(110)가 수소가스농도를 감지하는 원리를 도 4 를 이용하여 설명한다. 도 4는 도 2 및 도 3의 센서부(110) 중 센싱부(210)의 감지전극(214)과 기준전극(213)이 형성된 부분만을 확대한 도면으로, 도시된 바와 같이 산소이온전도체(211)와 수소이온전도체(212)가 이종 접합되어 있는 고체전기화학식 셀(Solid Electro-chemical cell)의 구조이다. 이러한 구조의 고체전기화학식 셀에서 기준전극(213)과 감지전극(214) 사이에서 측정되는 기전력(E)은 기준전극(213) 측의 산소분압(PO2) 및 감지전극(214) 측의 수소분압(PH2)과 다음과 같은 관계가 성립한다.
E = Eo +A logPH2 + (A/2) logPO2 ------------ (1)
위 식에서 Eo와 A는 온도에만 의존하는 상수이므로, 결국 기준전극(213) 측의 산소분압(PO2)을 알면 기전력(E) 측정에 의해 감지전극(214) 측의 수소분압(PH2)을 결정할 수 있음을 알 수 있다.
이때 기준전극(213)은 액체 및 밀폐공간(140) 내 수소가스와는 격리되어 기준가스통로(250)을 통해 외부 공기와 연통되도록 되어 있으므로, 기준전극(213) 측의 산소분압(PO2)은 공기 중 산소분압인 0.21기압으로 고정된다. 따라서, 식(1)에서 기전력(E)을 측정하면 감지전극(214) 측의 수소분압(PH2)을 산출할 수 있게 된다.
여기서 감지전극(214) 측의 수소분압(PH2)은 가스분리막(132)을 통과하여 밀폐공간(140) 내에 존재하는 수소가스의 분압이고, 열역학적 평형 상태에서는 밀폐공간(140) 내의 수소가스 분압과 액체 내의 용존 수소가스 농도가 서로 비례관계에 있게 되므로, 그 비례 관계 식이나 데이터를 미리 실험적으로 도출하여 데이터베이스화하게 되면 밀폐공간(140) 내의 수소가스 분압을 측정함으로써 액체 내의 용존 수소가스 농도를 산출할 수 있게 된다. 또한, 밀폐공간(140) 내의 수소가스 분압과 액체 내의 용존 수소가스 농도 사이의 비례 관계식은 이론적으로 도출하는 것도 가능한데, 가령 Sievert 법칙에 의하면 액체에 녹아있는 수소의 양은 기화된 수소분압의 제곱근에 비례하므로, 이러한 법칙을 이용하여 수소센서소자(100)로 측정한 수소가스 농도로부터 액체 내의 용존 수소가스 농도를 계산하는 것도 가능하다.
수소가스 농도 측정 시 센싱부(210)의 온도는 약 500oC 이상인 것이 바람직하므로, 히터선(232)에 소정의 전류를 인가하여 센싱부(110)가 해당 온도로 가열되도록 한 후 기전력측정부(240)에서 기준전극(213)과 감지전극(214) 사이의 기전력을 측정하는 것이 바람직하다.
도 5는 본 발명의 제1 실시예에 따른 수소센서소자(100)에서 사용할 수 있는 센서부의 다른 구조를 설명하기 위한 개략적인 단면도이다. 이때 도 1 내지 도 4를 참조하여 설명한 것과 공통되는 내용에 대해서는 설명을 생략하나, 이러한 내용들이 도 5의 센서부 및 이를 포함하는 수소센서소자(100)에도 동일하게 적용될 수 있음을 이해하여야 한다.
도 5에 의하면, 본 발명의 제1 실시예에 사용 가능한 다른 구조의 센서부(510)는, 기준전극(213)을 기준가스통로에 노출하여 외부 공기와 직접 접하도록 하는 대신 기준전극(213)을 산소분압 고정용 기준물질(261)로 덮고 그 위를 밀봉덮개(270)로 밀봉한 구조라는 점에서 도 2 및 도 3의 센서부(110)와 차이가 있다.
산소분압 고정용 기준물질(261)로는 Cu/CuO, Ni/NiO, Ti/TiO2, Fe/FeO, Cr/Cr2O3, Mo/MoO 등 금속과 금속산화물의 혼합체, 또는 Cu2O/CuO, FeO/Fe2O3 등 산화 정도가 다른 금속 산화물의 혼합체를 사용할 수 있으며, 이러한 산소분압 고정용 기준물질(261)로 기준전극(213)을 덮어주게 되면 기준전극(213) 측의 산소 분압을 열역학적으로 고정시켜 줄 수 있다. 즉, 기준전극(213) 측의 산소 분압이 외부 공기에 의해 결정되는 대신 산소분압 고정용 기준물질(261)에 의해 결정되게 되며, 도 4를 참조하여 설명한 것과 마찬가지로 기준전극(213)과 감지전극(214) 사이의 기전력을 측정하여 식 (1)에 의해 오일 내 용존 수소 가스 농도를 결정할 수 있다.
밀봉덮개(270)는 외부 공기가 산소분압 고정용 기준물질(261)을 통해 기준전극(213)에 영향을 미치는 것을 방지하기 위한 구성으로, 공기의 침투를 방지할 수 있는 치밀한 세라믹 물질 등으로 형성할 수 있다. 밀봉덮개(270)는 외부 공기의 영향이 미미하다면 생략할 수 있다.
도 6은 본 발명의 제1 실시예에 따른 수소센서소자(100)에서 사용 가능한 센서부의 또 다른 구조를 설명하기 위한 개략적인 단면도이다. 이때 도 1 내지 도 5를 참조하여 설명한 것과 공통되는 내용에 대해서는 설명을 생략하나, 이러한 내용들이 도 6의 센서부 및 이를 포함하는 수소센서소자(100)에도 동일하게 적용될 수 있음을 이해하여야 한다.
도 6에 의하면, 본 발명의 제1 실시예에 사용 가능한 또 다른 구조의 센서부(610)는, 센싱부가 산소이온전도체와 수소이온전도체의 이종접합에 의해 형성되는 대신 수소이온전도체만으로 형성된다. 즉, 수소이온전도체(212)의 일측에 감지전극(214)을 형성하고 타측에 기준전극(213)을 형성하며, 기준전극(213)을 수소분압 고정용 기준물질(262)로 덮고 그 위를 밀봉덮개(270)로 밀봉하는 구조이다.
수소분압 고정용 기준물질(262)로는 Ti/TiH2, Zr/ZrH2, Ca/CaH2, Nd/NdH2 등 금속과 금속수화물의 혼합상을 사용할 수 있으며, 이에 의해 기준전극(213) 측 수소분압(P2 H2 )을 열역학적으로 고정시킬 수 있다.
감지전극(214)은 하우징(130)에 의해 형성되는 밀폐공간(140) 내의 수소가스와 접하게 되므로, 감지전극(214)과 기준전극(213) 사이의 기전력(E)을 측정하게 되면 잘 알려진 다음의 네른스트(Nernst) 식에 의해 밀폐공간(140) 내의 수소가스 분압을 측정할 수 있고, 이로부터 액체 내 용존 수소가스 분압(P1 H2 )을 산출할 수 있다.
Figure PCTKR2014008461-appb-I000001
----- (2)
위 식 (2)에서 R은 기체상수, F는 패러데이 상수, T는 측정온도로서 모두 상수이며, 기준전극(213) 측 수소분압(P2 H2)도 수소분압 고정용 기준물질(262)에 의해 결정되는 값이므로, 측정된 기전력(E) 값으로부터 액체 내 용존 수소가스 분압(P1 H2)을 결정할 수 있게 된다.
이상 예시적으로 설명한 센서부(110, 510, 610)는 센싱부(210), 스페이서(220) 및 히터부(230)에 의해 기준전극(213)이 밀폐공간(140) 내의 수소가스와 격리되어 기준가스통로(250) 또는 기준물질(261, 262)과 접하는 구조로 설명하였으나, 본 발명의 기술사상을 구현하기 위하여 반드시 이러한 구조의 센서부가 사용되어야 하는 것은 아니며, 다양한 센서부 구조가 사용될 수 있다. 가령 산소이온전도체 또는 수소이온전도체에 기체 밀봉 가능하게 연결된 별도의 핸들부를 구비할 수도 있는데, 도 7 내지 도 9를 참조하여 이러한 변형예들을 간략히 설명한다.
도 7은 도 2의 센서부(110)의 변형예로서, 산소이온전도체(211) 및 수소이온전도체(212)가 각각 원형 또는 다각형의 펠렛(pellet) 형태로 형성되어 접합되고, 각 표면에 기준전극(213) 및 감지전극(214)이 형성된다. 그리고 별도의 핸들부(280)가 제공되어 산소이온전도체(211)에 기체 밀봉 가능하게 결합되는데, 핸들부(280)는 외부공기와 연통된 중공의 튜브 형상일 수 있다. 이러한 구성의 센서부(710)에 적어도 감지전극(214)이 밀폐공간(140) 내에 포함되도록 하우징(130)을 결합하게 되면, 도 2에 따른 센서부(110)가 사용되는 경우와 마찬가지로 감지전극(214)은 밀폐공간(140) 내의 수소가스에 접하고 기준전극(213)은 용존 수소가스와는 격리된 상태로 기준가스통로(250) 내에 위치하여 외부공기와 접하게 되므로, 상술한 원리에 따라 액체 내의 용존 수소가스 농도를 측정할 수 있게 된다. 도 7에는 히터부는 도시하지 않았으나, 히터부는 기준가스통로(250) 등 산소이온전도체 또는 수소이온전도체에 인접한 적당한 위치에 설치할 수 있다.
도 8은 도 5의 센서부(510)의 변형예로서, 도 7의 센서부(710)와 비교하면 기준전극(213)을 기준가스통로에 노출하여 외부 공기와 직접 접하도록 하는 대신 기준전극(213)을 산소분압 고정용 기준물질(261)로 덮고 그 위를 밀봉덮개(270)로 밀봉한 구조라는 점에서 차이가 있다. 산소분압 고정용 기준물질(261)로 기준전극(213)을 덮어주게 되면 기준전극(213) 측의 산소분압을 열역학적으로 고정시켜 줄 수 있고, 따라서 기준전극(213)과 감지전극(214) 사이의 기전력을 측정하여 액체 내 용존 수소 가스 농도를 결정할 수 있다는 점은 도 5의 센서부(510)와 동일하다. 도 8에는 히터부는 도시하지 않았으나, 히터부는 핸들부(280) 내부 등 산소이온전도체 또는 수소이온전도체에 인접한 적당한 위치에 설치할 수 있다.
도 9는 도 6의 센서부(610)의 변형예로서, 원형 또는 다각형 펠렛(pellet) 형태의 수소이온전도체(212) 양쪽 표면에 각각 기준전극(213) 및 감지전극(214)이 형성되고, 기준전극(213)을 수소분압 고정용 기준물질(262)로 덮고 그 위를 밀봉덮개(270)로 밀봉한 구조이며, 여기에 별도의 핸들부(280)가 수소이온전도체(212)에 기체 밀봉 가능하게 결합된다. 이러한 구성의 수소센서소자에 의하면 기준전극(213) 측의 수소분압이 수소분압 고정용 기준물질(262)에 의해 고정되므로, 도 6의 센서부(610)와 마찬가지로 식 (2)에 의해 밀폐공간(140) 내의 수소가스 농도를 측정할 수 있게 된다. 도 9에는 히터부는 도시하지 않았으나, 히터부는 핸들부(280) 내부 등 수소이온전도체에 인접한 적당한 위치에 설치할 수 있다.
다시 도 1로 돌아가 본 발명의 제1 실시예에 따른 하우징(130)을 상세하게 설명한다. 하우징(130)은 센서부(110)의 일단을 액체 및 외부 공기와 격리시키는 밀폐공간(140)을 형성하도록 하기 위한 구성으로서, 내부가 비어 있으며 양 끝단의 적어도 일부분이 개방되어 있는 하우징 몸체(131), 하우징 몸체(131)의 액체에 삽입되는 방향의 일단에 결합되어 액체가 밀폐공간(140) 내로 침입하는 것을 방지함과 동시에 액체 내 용존 수소가스를 선택적으로 투과시키는 가스분리막(132)을 포함하여 구성된다. 하우징 몸체(131)는 액체 및 기체가 통과하지 못하는 재질이면 특별히 한정하지 않으며, 예를 들어 글래스 재질일 수 있다. 글래스도 수소가스가 확산을 통해 투과할 수 있는 재질이긴 하지만 하우징 몸체는 가스분리막(132)에 비하면 매우 두꺼우므로 하우징 몸체(131)를 통한 밀폐공간(140)으로의 가스 투과는 실질적으로 무시 가능하다.
가스분리막(132)은 하우징 몸체(131) 일단의 개방된 영역에 결합되어 액체 내의 용존 수소가스를 밀폐공간(140) 내로 투과시키는 구성으로서, 액체는 통과하지 못하고 용존 가스분자는 통과할 수 있는 재질이면 특별히 한정하는 것은 아니나 PTFE(Poly Tetra Fluoro Ethylene) 멤브레인 또는 PDMS(Polydimethylsiloxane) 멤브레인 등의 폴리머 재료, 다공성 세라믹 재료 혹은 금속 포일 등이 사용될 수 있다.
특히 수소센서소자(100)의 빠른 반응시간을 위해서는 밀폐공간(140) 내의 수소가스 분압이 빠른 시간 내에 평형상태에 도달하는 것이 필요하므로, 가스분리막(132)은 수소의 확산계수가 크고 얇은 두께의 포일 형태로 만들 수 있는 재질로 이루어지는 것이 바람직하다. 즉, 가스분리막(132)을 통한 수소의 확산속도가 느릴 경우 밀폐공간(140) 내의 수소가스 농도가 액체 내 용존 수소가스 농도와 평형을 이룰 때까지 소요되는 시간이 길어지므로, 본 발명에 따른 수소센서소자(100)를 사용하여 액체 내 용존 수소가스 농도를 정확하게 측정하기 위해서는 수십 분 이상이 소요될 수 있는데, 이는 액체 내 용존 수소가스 농도를 실시간으로 간편하게 측정한다는 본 발명의 목적에 완전히 부합한다고는 할 수 없다.
가스분리막(132)을 통한 수소의 확산거리(x)는 다음의 식 (3)으로 표현된다.
x = 2(Dt)1/2 ------ (3)
여기서 D는 가스분리막(132) 내에서의 수소의 확산계수, t는 확산시간이다. 즉 식 (3)에 의하면 확산계수(D)가 클수록, 확산시간(t)이 길수록 수소가스가 확산되는 거리(x)는 길어짐을 알 수 있으며, 밀폐공간(140) 내부의 수소가스 분압이 액체 내의 용존 수소가스 농도와 빠른 시간 내에 평형에 도달할 수 있도록 확산시간(t)를 감소시키기 위해서는 가스분리막(132)의 두께를 줄이고 확산계수(D)가 큰 재질로 가스분리막을 형성하는 것이 바람직함을 알 수 있다.
이와 같은 원리에 기초할 경우 두께를 얇게 만드는 것이 어려운 유리나 플라스틱 등의 재질보다는, 금속 포일이 본 발명의 가스분리막(132)으로 더 바람직하다. 금속포일, 특히 팔라듐(Pd) 합금의 경우 수소 확산계수가 10-6 cm/s2 수준으로 큰 편이고, 100 ㎛ 이하의 얇은 포일 형태로 제조가 가능하므로, 본 발명에 따른 수소센서소자(100)에 적용할 가스분리막(132)으로 적당하다.
도 1에서는 가스분리막(132)이 하우징 몸체(131)의 하면에서 결합되는 것으로 도시하였으나, 그 결합 위치는 변경될 수 있으며, 예를 들어 하우징 몸체(131)의 측면에 결합될 수 있다.
가스분리막(132)을 하우징 몸체(131)에 결합하는 방식으로는 다양한 방식이 사용될 수 있는데, 예를 들어 도 10에 도시한 바와 같이 하우징 몸체(131)와의 사이에 가스분리막(132)을 두고 결합되는 고정캡(135)을 사용하는 방식이 사용될 수 있다. 이때 가스분리막(132)이 고정되는 부분에는 하우징 몸체(131) 및 고정캡(135) 모두에 개방부(136, 137)가 형성되어 용존 수소가스가 밀폐공간(140) 내부로 투과될 수 있도록 구성되며, 하우징 몸체(131)와 가스분리막(132) 사이, 고정캡(135)과 가스분리막(132) 사이에는 오링(O-ring) 등의 밀봉재(134)가 삽입되어 가스분리막(132)을 통해서만 수소가스가 통과할 수 있도록 밀봉할 수 있다. 또한, 고정캡(135)과 패키징 몸체(131)에는 나사선이 형성되어 나사 결합될 수 있으나, 이외에 다양한 결합 방식이 사용될 수 있다.
본 발명에 따른 수소센서소자(100)의 센서부(110)는 기준가스통로(250)가 외부 공기와 연통되도록, 또는 기준가스통로(250) 대신 기준물질(261, 262)을 사용하는 경우에도 기전력측정부(240)나 히터용 전원과의 전기적 연결을 위하여 일부분이 하우징(130) 외부로 인출될 수 있는데, 이때 센서부(110)와 하우징 몸체(131)의 사이에는 실링부재(133)가 구비됨으로써 가스분리막(132) 부분을 제외하고는 하우징(130) 전체가 가스 밀봉된 상태인 것이 바람직하다. 이때 실링부재(133)로는 글래스 프릿(Glass frit)을 사용할 수 있다.
한편, 밀폐공간(140) 내에 수소가스 외에 수소가스 농도 측정에 영향을 주는 방해가스가 존재하는 경우 측정의 정확성을 보장하기 어려운 경우가 있다. 특히 수소가스와 반응성이 있는 가스, 예를 들어 산소가스가 존재하는 경우, 가스분리막(132)을 통해 밀폐공간(140) 내로 들어오는 수소가스와 반응하여 수증기를 만들면서 수소 분압을 낮춤으로써, 액체 내 용존 수소가스 농도를 정확히 측정하는 것을 방해할 수 있다. 따라서, 본 발명에 따른 수소센서소자(100)는 선택적으로 밀폐공간(140) 내에 존재하는 방해가스를 외부로 배출시킬 수 있는 펌핑부(120)를 포함할 수 있다.
도 11은 밀폐공간(140) 내의 산소가스를 외부로 배출시킬 수 있는 펌핑부(120)의 바람직한 구조를 설명하기 위한 개략적인 단면도이다. 이하 도 11을 참조하여 펌핑부(120)의 구조를 설명하지만, 본 발명에 따른 펌핑부(120)의 구조가 이에 한정되는 것은 아니다.
펌핑부(120)는, 펌핑셀(310), 스페이서(320), 펌핑셀 히팅부(330)를 포함하여 구성된다. 펌핑셀(310)은 산소이온전도체(311)의 양단에 제1 펌핑전극(312) 및 제2 펌핑전극(313)이 형성된 구조로서, 제2 펌핑전극(313)이 양(+)의 전극이 되도록 제1, 2 펌핑전극(312, 313) 사이에 펌핑전원(340)으로부터 일정 전압 또는 전류를 인가하면 제1 펌핑전극(312) 쪽의 산소가스가 산소이온전도체(311)를 통해 이동하여 제2 펌핑전극(313) 쪽으로 이동하게 된다.
이때 펌핑셀(310)의 원활한 동작을 위해서는 소정 온도로 가열해줄 필요가 있는데, 펌핑셀 히팅부(330)는 이러한 가열을 위한 구성이다. 펌핑셀 히팅부(330)는 스페이서(320)에 의해 펌핑셀(310)과 소정 거리 이격되어 외부 공기와 연통되는 산소 배출 공간(350)을 형성하도록 되어 있으며, 펌핑셀 히팅부(330)와 스페이서(320)는 도 2의 센서부(110)에 구비된 히팅부(230) 및 스페이서(220)와 동일한 구성을 사용할 수 있다.
도 11의 펌핑부(120)는 제1 펌핑전극(312)이 밀폐공간(140) 내에 위치하고 제2 펌핑전극(313)이 산소 배출 공간(350)을 통해 외부 공기와 연통되도록 하우징(130)의 하우징 몸체(131)에 결합되며, 이때 그 결합 부위에는 실링부재(133)로 실링될 수 있다. 이렇게 결합된 상태에서 제2 펌핑전극(313)이 양(+)의 전극이 되도록 제1, 2 펌핑전극(312, 313) 사이에 펌핑전원(340)으로부터 일정 전압 또는 전류를 인가하게 되면, 제1 펌핑전극(312) 측, 즉 밀폐공간(140) 내에 존재하는 산소가스가 산소 배출 공간(350)을 통해 외부로 배출되게 된다. 이때 밀폐공간(140) 내의 산소 분압은 네른스트 식에 의해 예측이 가능한데, 예를 들어 펌핑셀(310)을 700℃로 가열한 상태에서 제1, 2 펌핑전극(312, 313) 사이에 1V의 고정 전압을 인가하게 되면 밀폐공간(140) 내의 산소 분압은 약 2.15X10-10 기압으로 떨어지게 된다. 이는 약 2 ppb에 해당하는 기압으로 산소가 사실상 없는 상태라고 할 수 있으므로, 이와 같은 펌핑부(120)를 구비한 본 발명에 따른 수소센서소자(100)는 산소가스의 방해 없이 정확한 수소가스 농도를 측정할 수 있게 된다. 수소가스 농도의 정확한 측정을 위해서는 밀폐공간(140) 내의 산소 농도가 약 수백 내지 수천 ppm이 되도록 펌핑부(120)를 작동시키는 것이 바람직하다.
한편 도 11의 펌핑셀(310)은 일종의 고체전기화학식 산소센서이므로, 펌핑부(120)는 밀폐공간(140) 내의 산소가스 농도를 측정하는 용도로도 사용될 수 있다. 즉, 산소이온전도체(311)의 제1, 2 펌핑전극(312, 313) 사이에 펌핑전원(340)으로부터 전압 또는 전류를 인가하는 대신, 별도로 마련된 기전력 측정부(미도시)를 이용하여 제1, 2 펌핑전극(312, 313) 사이의 기전력을 측정하게 되면 다음의 식 (4)에 의해 밀폐공간(140) 내의 산소가스 분압(Po2)을 산출할 수 있다.
Po2 = 0.21 x exp(4FE/RT) --- (4)
식 (4)에서 R은 기체상수, F는 패러데이 상수, T는 측정온도로서 모두 상수이므로, 기전력 측정부를 이용하여 측정된 제1, 2 펌핑전극(312, 313) 사이의 기전력(E) 값으로부터 밀폐공간(140) 내의 산소가스 분압을 계산할 수 있다. 이러한 펌핑부(120)의 산소가스 농도 센싱 특성은 밀폐공간(140) 내의 산소가스 분압이 소정치 이하로 감소된 경우에 센서부(110)를 이용한 수소가스 농도를 측정하도록 하는데 이용할 수 있는데, 이러한 측정방법에 대해서는 도 18을 이용하여 후술한다.
또한, 도 1에는 도시하지 않았으나, 본 발명에 따른 수소가스센서(100)의 하우징(130) 내부에는 충진물이 채워질 수 있다. 이처럼 하우징(130) 내부에 충진물이 채워지게 되면, 히팅부(230, 330)에서 발생하는 고열이 하우징 몸체(131)나 가스분리막(132) 등 다른 구성으로 전달되는 것이 차단되고, 센서부(110, 510, 610, 710, 810, 910) 및 펌핑부(120)의 온도가 일정하게 유지되며, 특히 밀폐공간(140) 내의 유효 부피가 감소하여 수소센서소자(100)의 반응시간이 단축되는 효과가 있다. 충진물로는 알루미나 등의 세라믹 파우더나 금속 파우더를 사용할 수 있다.
도 12 및 도 13을 참조하여 본 발명의 제2 실시예에 따른 수소센서소자(200)을 설명한다. 본 발명의 제2 실시예에 따른 수소센서소자(200)는 센서부와 펌핑부가 일체로 형성되어 있다는 점에서 제1 실시예와 차이가 있다.
도 12는 본 발명의 제2 실시예에 따른 수소센서소자의 개략적인 단면도로서, 도 12를 참조하여 설명하면, 본 발명의 제2 실시예에 따른 수소센서소자(200)는 센서부(400) 및 하우징(130)를 포함하여 구성된다. 여기서 센서부(400)는 주위의 수소가스 농도를 측정하기 위한 수소센서 기능, 즉 제1 실시예의 센서부(110)과 동일한 기능과 함께, 밀폐공간(140) 내의 산소가스를 외부로 배출하는 기능, 즉 제1 실시예의 펌핑부(120)의 기능을 동시에 수행하는 구성이고, 전술한 바와 같이 밀폐공간(140) 내의 산소가스 농도를 측정하기 위한 산소센서 기능도 수행할 수 있다.
또한, 하우징(130)은 센서부(400)의 일단을 액체 및 외부 공기와 격리시키는 밀폐공간(140)을 형성하도록 하기 위한 구성으로, 하우징(130)에 의해 센서부(400)는 액체로부터 격리되지만 하우징(130)의 액체 내에 삽입되는 적어도 일부분에 구비된 가스분리막(132)을 통해 용존 수소가스가 밀폐공간(140) 내로 투과된다. 이로 인해, 센서부(400)는 액체에 직접 접촉하지 않고도 용존 수소가스 농도를 측정할 수 있게 된다. 센서부(400)를 제외한 다른 구성들은 제1 실시예에 따른 수소센서소자(100)와 그 구성이 동일하므로, 이하 도 13를 참조하여 제2 실시예에 따른 센서부(400)의 바람직한 구조를 상세히 설명한다.
도 13에 도시된 바와 같이, 센서부(400)는, 산소이온전도체(411), 산소이온전도체(411)의 일면에 접합되어 있는 수소이온전도체(412), 산소이온전도체(411)의 타면, 즉 기준가스통로(460) 측에 형성되어 있는 기준전극(413) 및 수소이온전도체(412)의 표면에 형성되어 있는 감지전극(414)을 포함하는 센싱부(410)와, 센싱부(410)를 소정 온도로 가열하기 위한 히터부(430), 그리고 센싱부(410)와 히터부(430)를 소정 간격 이격시켜 그 사이에 기준가스통로(460)를 형성하기 위한 스페이서(420)를 포함할 수 있다. 기준전극(413)과 감지전극(414)은 리드선(441)을 통해 기전력측정부(440)에 전기적으로 연결되어, 기전력 측정에 의해 수소가스농도가 측정될 수 있으며, 그 원리는 제1 실시예에서 설명한 것과 동일하다.
스페이서(420)는 센싱부(410)와 히터부(430) 사이에 삽입되어 기준전극(413)이 기준가스와 연통되도록 기준가스통로(460)를 형성하기 위한 구성으로서 알루미나(Alumina)로 형성될 수 있다. 이때 기준가스는 외부 공기인 것이 바람직하다.
히터부(430)는 센싱부(410)를 센싱 온도까지 가열하기 위한 구성으로서, 알루미나 등 절연물질로 이루어지는 히터기판(431)에 히터선(432)이 형성된 형태일 수 있으며, 그 구성은 제1 실시예의 히터부(230)와 동일하다.
본 발명의 제2 실시예에 따른 센서부(400)는 밀폐공간(140) 내의 산소가스를 기준가스통로(460)를 통해 외부로 배출하는 펌핑부의 기능도 함께 수행할 수 있도록 구성되어 있다. 즉, 산소이온전도체(411)의 수소이온전도체(412)가 형성된 방향의 일면(즉, 밀폐공간에 노출되는 일면)에는 제1 펌핑전극(415)이 형성되고, 산소이온전도체(411)의 기준가스통로(460)에 노출되는 타면에는 제2 펌핑전극(416)이 형성되며, 제1, 2 펌핑전극(415, 416)은 리드선(451)에 의해 펌핑전원(450)에 연결되어 있다. 이때 제2 펌핑전극(416)은 별도로 형성하지 않고, 기준전극(413)을 제2 펑핌전극(416)으로 사용할 수도 있다.
이와 같은 구조의 센서부(400)는 도 12에 도시한 바와 같이 실링부재(133)에 의해 실링된 상태로 하우징(130)에 결합되며, 이때 수소이온전도체(412) 및 감지전극(414), 그리고 제1 펌핑전극(415)은 밀폐공간(140) 내에 포함된다. 이러한 구성의 수소센서소자(200)를 도 12와 같이 액체에 삽입한 상태에서, 제1, 2 펌핑전극(415, 416) 사이에 제2 펌핑전극(416)이 양(+)이 되도록 펌핑전원(450)에 의해 전압 또는 전류를 인가하게 되면, 밀폐공간(140) 내에 존재하는 산소가스가 기준가스통로(460)를 통해 외부로 배출된다. 이러한 산소가스의 배출은 밀폐공간(140) 내의 산소 농도가 약 수백 내지 수천 ppm이 될 때까지 수행하는 것이 바람직하다.
이러한 펌핑 동작에 의해 밀폐공간(140) 내의 산소가스를 배출시키고 밀폐공간(140) 내의 수소가스 분압이 안정화될 정도의 시간이 경과한 후에는, 기전력 측정부(440)에 의해 기준전극(413)과 감지전극(414) 사이의 기전력을 측정함으로써 밀폐공간(140) 내의 수소가스 분압을 측정하며, 이로부터 액체 내 용존 수소가스 농도를 산출한다.
이상 설명한 제2 실시예에 따른 수소센서소자(200)는 센서부(400)에 펌핑전극 및 펌핑전원을 구비함으로써 별도의 펌핑부를 구비할 필요가 없으므로, 제1 실시예에 따른 수소센서소자(100)에 비해 그 구조가 간단해지는 장점이 있다. 또한 제1 실시예에서 설명한 것과 마찬가지로, 제1 펌핑전극(415)과 제2 펌핑전극(416) 사이의 기전력을 측정함으로써 식 (4)에 의해 밀폐공간(140) 내의 산소가스 분압을 측정할 수 있으며, 그 측정값이 미리 설정된 기준치보다 높을 경우 제1, 2 펌핑전극(415, 416) 사이에 펌핑전원(450)을 이용하여 전압 또는 전류를 인가함으로써 밀폐공간(140) 내의 산소가스를 외부로 배출시킬 수 있다.
본 발명에 따른 수소센서소자(100, 200)는 액체 내의 용존 수소가스 농도를 측정하는 광범위한 용도로 사용될 수 있으며, 특히 오일 내의 용존 수소가스 농도를 측정하여 오일의 열화 여부를 실시간으로 간단하게 측정하는 데에 유용하게 사용될 수 있다. 도 14는 본 발명에 따른 수소센서소자를 이용하여 오일 내 용존 수소가스 농도를 측정한 결과 그래프이다. 도 14(a)는 오일 내 수소가스 농도를 변화시켜 가면서 시간에 따른 기전력(EMF) 값을 측정한 결과 그래프이고, 도 14(b)는 기전력 값을 수소가스 농도의 함수로 나타낸 그래프이다.
도 14로부터 오일 내의 용존 수소가스 농도가 증가할수록 본 발명에 따른 수소센서소자에서 측정되는 기전력 값이 증가하는 것이 확인되었다.
본 발명에 따른 수소센서소자(100, 200)는 액체 내 용존 수소가스 농도를 측정하고자 할 때마다 액체 내에 삽입하여 사용할 수도 있지만 액체를 수용하고 있는 용기에 설치해 놓고 사용할 수도 있다. 도 15는 본 발명의 제2 실시예에 따른 수소센서소자(200)를 측정 대상인 액체가 수용된 용기에 설치한 상태를 개략적으로 나타낸 도면이다.
도 15를 참조하여 설명하면, 액체가 수용된 용기(510)의 일 측면에는 개구부(520)가 형성되어 있고, 본 발명에 따른 수소센서소자(200)는 가스분리막(132)이 개구부(520)에 접하도록 용기(510)에 설치된다. 이때 수소센서소자(200)는 수리나 교체 등의 목적으로 탈착되어야 할 경우가 있을 수 있으므로 용기(510)에 탈부착 가능하도록 설치되는 것이 바람직하며, 이 경우 액체가 개구부(520)를 통해 유출되지 않도록 개구부(520)를 개폐할 수 있는 개폐 밸브(550)가 개구부에 설치되는 것이 바람직하다. 수소센서소자(200)가 개구부에 설치된 후에는 액체가 가스분리막(132)에 접하도록 개폐밸브(550)를 오픈한 후 사용할 수 있으며, 가스분리막(132)의 열화 방지를 위해 측정 시에만 개폐밸브(550)를 수동 또는 자동으로 오픈하여도 좋다.
도 15와 같이 수소센서소자(200)를 용기(510)에 설치하는 경우 개구부(520)와 수소센서소자(200)의 결합 부위로 외부 공기가 유입되거나 액체가 유출되는 것은 바람직하지 않으므로, 수소센서소자(200)와 개구부(520)는 기체 및 액체 밀봉 가능하도록 결합되는 것이 좋으며, 도 16은 이러한 결합방식의 일 예를 나타내는 도면이다. 도 16과 같이 개구부(520)에는 단턱부(521)가 형성되고, 하우징 몸체(131)와 가스분리막(132) 사이, 단턱부(521)와 가스분리막(132) 사이에는 오링(O-ring) 등의 밀봉재(134)가 삽입될 수 있다. 도 16을 도 10과 비교하면, 도 16의 결합구조의 경우 개구부(520)가 도 10의 고정캡(135)의 역할을 한다고 할 수 있다. 이때, 개구부(520)와 하우징 몸체(131)에는 나사선이 형성되어 나사 결합될 수 있다. 그러나 이는 예시적인 것일 뿐이며, 하우징 몸체(131)와 개구부(520)의 외부에 별도의 체결부재(미도시)를 구비하는 등 다양한 결합 방식이 사용될 수 있다.
도 15와 같은 수소센서소자(200) 설치 구조는 수소센서소자(200)를 액체가 수용되어 있는 용기에 설치해놓은 상태에서 주기적 또는 비주기적으로 용존 수소가스 농도를 측정하고자 할 때에 특히 유용하다. 예를 들어, 각종 기계장치의 오일류, 예를 들어 변압기 오일 등은 주기적으로 열화 여부를 체크하는 것이 바람직한데, 도 15와 같은 방식으로 수소센서소자(200)를 변압기에 설치해 놓는 경우 측정 시마다 수소센서소자(200)를 변압기 오일에 삽입할 필요 없이 간편하게 측정을 진행할 수 있는 장점이 있다. 도 15에서는 제2 실시예에 따른 수소센서소자(200)가 설치된 경우를 예로 들어 설명하였으나, 제1 실시예에 따른 수소센서소자(100)도 동일한 방식으로 사용될 수 있음은 자명하다.
도 15에서는 개구부(520)가 용기(510)의 측면에 형성된 것으로 도시하였으나, 본 발명은 이에 한정하는 것은 아니며, 개구부(520)는 용기(510)의 상면 또는 하면에 형성될 수도 있다. 개구부(520)가 용기(510)의 상면에 형성되는 경우에는 가스분리막(132)이 액체와 직접 접하지 않을 수 있으나, Sievert 법칙에 의하면 액체에 녹아있는 수소의 양은 기화된 수소분압의 제곱근에 비례하므로, 가스분리막(132)을 투과해 들어온 수소분압을 측정함으로써 동일한 원리에 의해 용존 수소가스 농도를 산출할 수 있다. 개구부(520)가 용기(510)의 상부에 있는 경우에는 개폐 밸브(550)를 생략할 수 있다는 장점이 있다.
한편 수소센서소자(200)가 용기(510)에 설치되어 있는 경우, 도 15에 도시한 것처럼 수소센서소자(200)의 동작을 전반적으로 제어하기 위한 제어장치(600)를 함께 설치하는 것이 바람직하다. 제어장치(600)는 수소센서소자(200)의 센서부(400)에 연결되어 센서부(400)의 전반적인 동작을 제어하는 구성으로, 선택적으로는 센서부(400) 부근의 온도를 측정하기 위한 온도센서(530), 가스분리막(132) 부근의 액체 유입 여부를 감지하기 위한 액체 유입 센서(540)를 수소센서소자(200)에 추가로 구비하고 이들 센서들(530, 540)을 제어장치(600)에 연결할 수도 있다. 또한, 제어장치(600)는 용기(510)의 개구부(520)에 설치되는 개폐밸브(550)에도 연결되어, 개폐밸브(550)의 개폐동작을 제어하도록 할 수도 있다. 온도센서(530)로는 써미스터, 열전대, 백금저항 온도센서 등을 사용할 수 있다.
도 17은 제어장치(600)의 예시적인 기능블럭도로, 제어장치(600)는 측정부(610), 제어부(620), 표시부(630) 및 송신부(640)를 포함할 수 있다. 측정부(610)는 센서부(400), 온도센서(530), 액체 유입 센서(540) 등에 전기적으로 연결되어 각 센서들의 측정 결과를 입력받아 제어부(620)로 제공하는 구성이다. 제어부(620)는 측정부(610)의 측정 결과를 기초로 수소센서소자(200)의 동작을 제어하는 구성으로, 예를 들어 온도센서(530)가 측정한 온도를 전달받은 후 센서부(400)가 미리 정해진 측정 온도에 도달할 수 있도록 수소센서소자(200)의 히터부(430)를 제어하거나, 제1, 2 펌핑전극(415, 416) 사이의 기전력 측정을 통한 밀폐공간(140) 내의 산소가스 분압 측정 결과를 전달받은 후 밀폐공간(140) 내의 산소가스 배출 여부 또는 수소농도 측정 개시 여부를 결정하여 제어하거나, 또는 수소가스 분압 측정 결과를 전달받아 용존 수소가스 농도를 연산한 후 표시부(630)에 표시하거나 송신부(640)를 통해 유무선 송신하도록 제어할 수 있다. 또한 액체 유입 센서(540)가 구비된 경우, 제어장치(600)는 측정부(610)를 통해 액체 유입 센서(540)의 센싱 결과를 전달받고, 액체가 밀폐 공간(140) 내로 유입된 것으로 판단되는 경우 이를 표시부(630)에 표시해주거나 송신부(640)를 이용해 유무선 송신해주도록 할 수 있다. 또한, 표시부(630) 외에 별도의 경보부(미도시)를 구비하여 액체가 유입되었음을 알리는 경보음 등을 발생시키도록 할 수도 있으며, 이때 제어부(620)는 수소가스센서(100, 200)의 동작을 중단시키는 것이 바람직하다.
도 18은 본 발명에 따른 용존 수소가스 농도 측정방법의 예시적인 흐름도이다. 도 18을 참조하여 설명하면 본 발명에 따른 용존 수소가스 농도 측정방법은, 온도센서(530)를 이용하여 센서부(400)의 온도를 측정하는 단계(S10), 측정된 온도 값에 기초하여 미리 설정된 측정 온도가 되도록 히터부(430)를 제어하는 단계(S20), 밀폐 공간(140) 내의 산소가스 농도를 측정하는 단계(S30), 측정된 산소가스 농도가 설정치, 예를 들어 1000ppm 이하인지를 판단하는 단계(S40), S40 단계에서 판단 결과 1000ppm 이상인 경우 산소가스를 펌핑하여 밀폐공간(140) 내의 산소가스를 외부로 배출하는 단계(S50), S40 단계에서 판단 결과 산소가스 농도가 1000ppm 이하인 경우 수소가스 농도를 측정하는 단계(S60) 및 측정된 수소가스 농도를 송신부를 통해 유선 또는 무선으로 송신하는 단계(S70)를 포함할 수 있다.
이러한 측정방법에 의하면 미리 설정된 측정조건, 즉 바람직한 측정온도 및 밀폐공간 내 산소가스 농도에 도달한 후 측정이 시작될 수 있으므로, 측정의 정확성 및 재현성을 확보할 수 있다. 물론 본 발명에 따른 용존 수소가스 농도 측정을 위해 도 18의 모든 단계들이 동일하게 수행되어야 하는 것은 아니며, 일부 단계가 생략되거나 변경될 수 있다.
본 발명에 따른 용존 수소가스 측정방법은 주기적으로 수행되도록 할 수 있다. 즉, 제어장치(600)에 타이머가 구비되어 측정 주기가 도래한 것으로 판단되는 경우 도 18의 단계들이 순차적으로 진행되도록 프로그래밍되어 있을 수 있다. 이 경우 측정 결과가 원거리에 있는 사용자에게 유선 또는 무선으로 송신되므로, 예를 들어 오일의 열화 여부가 보다 체계적으로 관리될 수 있는 장점이 있다.
이상 설명한 실시예들에서는 가스분리막을 포함하면서 센서부와 결합되는 하우징을 수소센서소자의 필수구성으로 설명하였으나, 측정 대상인 액체, 측정 목적 등에 따라서는 하우징을 구비하지 않고 센서부가 직접 액체에 접하도록 사용하는 것도 가능하다. 즉, 본 발명의 제3 실시예에 따른 수소센서소자는 제1, 2 실시예의 수소센서소자에서 하우징이 생략된 것을 특징으로 한다. 이러한 제3 실시예에 따른 수소센서소자에 의하면, 감지전극이 오일 등의 액체에 삽입되어 액체 내의 용존 수소가스와 직접 접촉하게 되므로, 하우징 내부 밀폐공간의 수소 분압이 평형이 될 때까지 기다릴 필요가 없어 반응시간이 향상되는 장점이 있다.
본 발명의 제4 실시예에 따른 수소센서소자는 제3 실시예와 마찬가지로 제1, 2 실시예에서 하우징을 생략하고, 대신 감지전극이 액체에 직접 접촉하는 것을 방지하기 위해 적어도 감지전극을 덮는 보호재(710)를 구비하는 것을 특징으로 한다. 도 2에 도시된 제1 실시예에 따른 센서부(110)의 감지전극(214)을 보호재(710)로 덮은 제4 실시예에 따른 수소센서소자(700)을 도 19에 도시하였다.
도 19와 같이 감지전극(214)을 덮도록 보호재(710)를 형성하면, 히터부(230)에 의해 가열된 센싱부(210)가 외부로 열을 빼앗기는 것을 막아 적어도 센싱부(230)의 온도를 일정하게 유지하는데 유리하며, 감지전극(214)이 액체와 직접 접촉함으로써 열화가 촉진되는 것을 방지하는 부수적인 효과도 기대할 수 있다.
본 발명의 제4 실시예에 따른 수소센서소자(700)에 의해 액체 내 수소가스 농도를 측정할 수 있기 위해서는 액체 내의 수소가스가 감지전극(214)까지 도달하여야 하므로, 보호재(710)는 적어도 수소가스가 통과할 수 있는 구성이어야 하며, 이를 위해 다수의 기공들이 포함된 다공성 구조, 가령 다공성 구조를 가진 고분자재료, 다공성 세라믹, 다공성 흑연 또는 금속분말체, 또는 수소가스에 선택적 투과성을 가지는 글래스 멤브레인층 등으로 형성할 수 있다. 보호재(710)는 액체 내에 삽입되는 부분이므로 충분한 강도를 가져 그 형태를 유지할 수 있는 물질로 형성하여야 하며, 측정하고자 하는 액체에 녹거나 반응하여서는 안되므로 액체의 종류에 따라 적절한 물질을 선택하여 형성하여야 한다.
도 19에서는 본 발명의 제1 실시예에 따른 센서부(110)에 보호재(710)를 형성하는 것으로 설명하였으나, 이는 예시적인 것으로, 본 발명의 제2 실시예에 따른 센서부(400)에 보호재(710)를 형성할 수 있음은 물론이다. 이 경우에는 보호재(710)가 감지전극(414)과 제1 펌핑전극(415)를 함께 덮도록 형성하는 것이 바람직하다.
이상 한정된 실시예 및 도면을 참조하여 설명하였으나, 본 발명의 기술사상의 범위 내에서 다양한 변형 실시가 가능하다는 점은 통상의 기술자에게 자명할 것이다. 따라서, 본 발명의 보호범위는 특허청구범위의 기재 및 그 균등 범위에 의해 정해져야 한다.
본 발명에 따른 수소센서소자는 변압기 오일 등 각종 기계장치의 오일 열화 여부를 감지하는데 유용하게 이용될 수 있다.

Claims (31)

  1. 액체 내의 용존 수소가스 농도를 측정하기 위한 수소센서소자로서,
    수소가스 농도를 측정하는 센서부;
    상기 센서부에 결합되고, 적어도 일부에 개방부가 형성되는 하우징 몸체 및 상기 개방부에 기체 및 액체 밀봉 가능하게 결합되는 가스분리막을 포함하는 하우징;
    을 포함하고,
    상기 하우징 몸체 및 가스분리막에 의해 상기 하우징 내부에는 상기 액체 및 외부 공기와 격리된 밀폐공간이 형성되며,
    상기 가스분리막은 상기 액체 내의 용존 수소가스를 상기 밀폐공간 내로 투과시키는 것을 특징으로 하는 수소센서소자.
  2. 제1항에 있어서,
    상기 밀폐공간 내의 산소를 외부로 펌핑하여 제거하기 위한 펌핑부를 더 포함하며,
    상기 펌핑부는 상기 하우징에 결합되는 것을 특징으로 하는 수소센서소자.
  3. 제2항에 있어서,
    상기 펌핑부는 상기 센서부와 일체로 형성되어 있는 것을 특징으로 하는 수소센서소자.
  4. 제1항 또는 제2항에 있어서,
    상기 센서부는,
    산소이온전도체와 수소이온전도체의 이종 접합체;
    상기 수소이온전도체의 표면에 형성되는 감지전극;
    상기 산소이온전도체의 표면에 형성되는 기준전극;
    상기 기준전극과 상기 감지전극 사이의 기전력을 측정하는 기전력측정부;
    를 포함하며,
    상기 감지전극은 상기 밀폐공간에 노출되고,
    상기 기준전극은 외부 공기와 연통되거나, 또는 상기 기준전극 측의 산소 분압을 고정시켜주는 기준물질로 덮여 있으며,
    상기 용존 수소가스 농도가 변화함에 따라 상기 기전력이 변화하는 것을 특징으로 하는 수소센서소자.
  5. 제1항 또는 제2항에 있어서,
    상기 센서부는,
    수소이온전도체;
    상기 수소이온전도체 표면에 형성되는 감지전극 및 기준전극;
    상기 기준전극과 상기 감지전극 사이의 기전력을 측정하는 기전력측정부;
    를 포함하며,
    상기 감지전극은 상기 밀폐공간에 노출되고,
    상기 기준전극은 상기 기준전극 측의 수소 분압을 고정시켜주는 기준물질로 덮여 있으며,
    상기 용존 수소가스 농도가 변화함에 따라 상기 기전력이 변화하는 것을 특징으로 하는 수소센서소자.
  6. 제1항 또는 제2항에 있어서,
    상기 가스분리막을 상기 하우징에 결합하기 위한 고정캡을 더 포함하는 것을 특징으로 하는 수소센서소자.
  7. 제1항 또는 제2항에 있어서,
    상기 하우징 내부의 밀폐공간은 충진물로 채워지는 것을 특징으로 하는 수소센서소자.
  8. 제1항 또는 제2항에 있어서,
    상기 센서부를 센싱 온도까지 가열하기 위한 히터가 포함되는 것을 특징으로 하는 수소센서소자.
  9. 제2항에 있어서,
    상기 펌핑부는,
    산소이온전도체;
    상기 산소이온전도체와 스페이서에 의해 소정 간격 이격되고, 상기 이격된 간격은 외부 공기와 연통되도록 구비되는 히터기판;
    상기 산소이온전도체의 상기 밀폐공간측 일면에 형성되는 제1 펌핑전극;
    상기 산소이온전도체의 상기 외부 공기측 일면에 형성되는 제2 펌핑전극;
    상기 제1 펌핑전극 및 상기 제2 펌핑전극 사이에 전압 또는 전류를 인가하는 펌핑전원;
    을 포함하며,
    상기 펌핑전원에 의해 상기 제1 펌핑전극 및 상기 제2 펌핑전극 사이에 전압 또는 전류를 인가함으로써 상기 밀폐공간 측의 산소가 상기 외부 공기 측으로 펌핑되는 것을 특징으로 하는 수소센서소자.
  10. 제3항에 있어서,
    상기 센서부는,
    산소이온전도체;
    상기 산소이온전도체와 스페이서에 의해 소정 간격 이격되고, 상기 이격된 간격은 외부 공기와 연통되도록 구비되는 히터기판;
    상기 밀폐공간 측에 노출되는 상기 산소이온전도체의 적어도 일부분에 접합되는 수소이온전도체;
    상기 수소이온전도체의 상기 밀폐공간에 노출되는 표면에 형성되는 감지전극;
    상기 산소이온전도체의 상기 외부 공기 측 표면에 형성되는 기준전극;
    상기 기준전극과 상기 감지전극 사이의 기전력을 측정하는 기전력측정부;
    상기 산소이온전도체의 상기 수소이온전도체와 접합되어 있지 않은 상기 밀폐공간 측 표면에 형성되는 제1 펌핑전극;
    상기 산소이온전도체의 상기 외부 공기측 표면에 형성되는 제2 펌핑전극;
    상기 제1 펌핑전극 및 상기 제2 펌핑전극 사이에 전압을 인가하는 펌핑전원;
    을 포함하며,
    상기 용존 수소가스 농도가 변화함에 따라 상기 기전력이 변화하고,
    상기 펌핑전원에 의해 상기 제1 펌핑전극 및 상기 제2 펌핑전극 사이에 전압을 인가함으로써 상기 밀폐공간 측의 산소가 상기 외부 공기 측으로 펌핑되는 것을 특징으로 하는 수소센서소자.
  11. 제10항에 있어서,
    상기 기준전극과 상기 제2 펌핑전극은 하나의 전극인 것을 특징으로 하는 수소센서소자.
  12. 제1항 또는 제2항에 있어서,
    상기 수소센서소자는 상기 액체가 수용된 용기의 개구부에 결합되어 상기 용기에 수용된 액체 내의 용존 수소가스 농도를 측정하기 위한 수소센서소자이고,
    상기 가스분리막은 상기 개구부를 통해 상기 용기 내부와 연통되어 상기 액체 내의 용존 수소가스를 상기 밀폐공간 내로 투과시키는 것을 특징으로 하는 수소센서소자.
  13. 제12항에 있어서,
    상기 가스분리막과 상기 개구부 사이 및 상기 하우징 몸체와 상기 가스분리막 사이에 밀봉부재가 삽입된 상태로, 상기 개구부에 결합되는 것을 특징으로 하는 수소센서소자.
  14. 제12항에 있어서,
    상기 센서부의 온도를 측정하기 위한 온도센서 및 상기 액체의 유입 여부를 감지하기 위한 액체 유입 센서 중 적어도 하나가 더 구비되는 것을 특징으로 하는 수소센서소자.
  15. 용기에 수용된 액체 내의 용존 수소가스 농도를 측정하기 위한 용존 수소측정장치로서,
    상기 용기의 일측에 구비된 개구부에 결합된 수소센서소자를 포함하고,
    상기 수소센서소자는 수소가스 농도를 측정하는 센서부 및 상기 센서부에 결합되는 하우징을 포함하며, 상기 하우징은 적어도 일부에 개방부가 형성되는 하우징 몸체 및 상기 개방부에 기체 및 액체 밀봉 가능하게 결합되는 가스분리막을 포함하여 내부에 상기 액체 및 외부 공기와 격리된 밀폐공간이 형성되고,
    상기 가스분리막은 상기 개구부를 통해 상기 용기 내부와 연통되어 상기 액체 내의 용존 수소가스를 상기 밀폐공간 내로 투과시키는 것을 특징으로 하는 용존 수소측정장치.
  16. 제15항에 있어서,
    상기 수소센서소자는 상기 개구부에 탈착 가능하게 결합되는 것을 특징으로 하는 용존 수소측정장치.
  17. 제15항에 있어서,
    상기 센서부에 전기적으로 연결되어 상기 센서부의 동작을 제어하는 제어장치를 더 포함하는 것을 특징으로 하는 용존 수소측정장치.
  18. 제17항에 있어서,
    상기 센서부의 온도를 측정하기 위한 온도센서가 더 구비되고,
    상기 제어장치는 상기 온도센서로부터 그 온도 센싱 결과를 전달받는 것을 특징으로 하는 용존 수소측정장치.
  19. 제17항에 있어서,
    상기 액체의 유입 여부를 감지하기 위한 액체 유입 센서가 더 구비되고,
    상기 제어장치는 상기 액체 유입 센서로부터 그 센싱 결과를 전달받는 것을 특징으로 하는 용존 수소측정장치.
  20. 제17항에 있어서,
    상기 개구부에는 개폐 밸브가 설치되고,
    상기 제어장치는 상기 개폐 밸브의 동작을 제어하는 것을 특징으로 하는 용존 수소측정장치.
  21. 제17항에 있어서,
    상기 제어장치는,
    상기 센서부로부터 측정 결과를 입력받는 측정부;
    상기 수소센서소자의 동작을 제어하는 제어부;
    상기 측정된 용존 수소가스 농도를 표시하는 표시부; 및
    상기 용존 수소가스 농도 측정 결과를 유선 또는 무선으로 송신하는 송신부;
    를 포함하는 것을 특징으로 하는 용존 수소측정장치.
  22. 제21항에 있어서,
    상기 수소센서소자는 상기 밀폐공간 내의 산소를 외부로 펌핑하여 제거하기 위한 펌핑부를 더 포함하며,
    상기 펌핑부는 산소이온전도체, 상기 산소이온전도체의 상기 밀폐공간측 면에 형성되는 제1 펌핑전극 및 상기 산소이온전도체의 상기 외부측 면에 형성되는 제2 펌핑전극을 포함하여 이루어지고,
    상기 제어부는 상기 펌핑부의 동작을 제어하는 것을 특징으로 하는 용존 수소측정장치.
  23. 제22항에 있어서,
    상기 펌핑부는 상기 제1 펌핑전극 및 제2 펌핑전극 사이의 기전력을 측정함으로써 상기 밀폐공간 내의 산소가스 분압을 측정하는 산소센서 기능도 수행하고,
    상기 제어부는 상기 산소센서 기능을 수행하는 펌핑부로부터 상기 밀폐공간 내의 산소가스 분압 측정 결과를 전달 받은 후, 그 결과에 기초하여 상기 펌핑부의 펌핑 동작을 제어하는 것을 특징으로 하는 용존 수소측정장치.
  24. 제18항의 용존 수소측정장치를 이용하여 액체 내 용존 수소가스 농도를 측정하는 방법으로서,
    상기 온도센서를 이용하여 상기 센서부의 온도를 측정하는 단계;
    상기 온도 측정 결과에 기초하여 상기 센서부의 온도를 측정온도가 되도록 제어하는 단계; 및
    상기 센서부를 이용하여 상기 밀폐공간 내 수소가스 분압을 측정하고 그 결과를 이용하여 용존 수소가스 농도를 연산하는 단계;
    를 포함하는 것을 특징으로 하는 용존 수소가스 농도 측정방법.
  25. 제24항에 있어서,
    상기 수소센서소자는 상기 밀폐공간 내의 산소를 외부로 펌핑하여 제거하기 위한 펌핑부를 더 포함하며,
    상기 펌핑부는 산소이온전도체, 상기 산소이온전도체의 상기 밀폐공간측 면에 형성되는 제1 펌핑전극 및 상기 산소이온전도체의 상기 외부측 면에 형성되는 제2 펌핑전극을 포함하여 이루어지고,
    상기 펌핑부는 상기 제1 펌핑전극 및 제2 펌핑전극 사이의 기전력을 측정함으로써 상기 밀폐공간 내의 산소가스 분압을 측정하는 산소센서 기능도 수행하며,
    상기 산소센서 기능을 수행하는 펌핑부가 상기 밀폐공간 내의 산소가스 분압을 측정하여, 상기 측정된 산소가스 분압이 기준치 이상인지 여부를 판단하고, 상기 판단 결과 기준치 이상인 경우 상기 밀폐공간 내의 산소가스를 외부로 배출하도록 상기 펌핑부의 펌핑 동작을 제어하며, 상기 측정된 산소가스 분압이 기준치 이하인 경우 상기 수소가스 분압을 측정하는 단계를 수행하는 것을 특징으로 하는 용존 수소가스 농도 측정방법.
  26. 제24항 또는 제25항에 있어서,
    상기 측정 및 연산된 용존 수소가스 농도를 유선 또는 무선으로 송신하는 단계를 더 포함하는 것을 특징으로 하는 용존 수소가스 농도 측정방법.
  27. 액체 내의 용존 수소가스 농도를 측정하기 위한 수소센서소자로서,
    적어도 일부 영역이 개방된 통 형상으로서 상기 개방된 일부 영역에 가스분리막이 결합되는 하우징 - 상기 가스분리막은 액체는 투과하지 못 하고 수소가스는 투과함;
    적어도 제1 전극 및 제2 전극을 구비하는 센서부;
    상기 센서부는 상기 제1 전극이 상기 하우징 내에 삽입되도록 상기 하우징에 결합되어, 상기 가스분리막을 통해 하우징 내로 들어와 상기 제1 전극에 접하는 수소가스의 농도를 측정하는 것을 특징으로 하는 수소센서소자.
  28. 액체 내에 적어도 일부가 삽입되어 액체 내의 용존 수소가스 농도를 측정하기 위한 수소센서소자로서,
    고체전해질의 양쪽에 기준전극 및 감지전극을 구비한 센싱부;
    상기 액체와는 격리된 상태로 상기 기준전극에 기준가스를 공급하기 위한 기준가스통로;
    상기 센싱부를 센싱 온도까지 가열하기 위한 히터부;
    상기 기준전극과 상기 감지전극 사이의 기전력을 측정하는 기전력측정부;
    를 포함하며,
    상기 감지전극은 액체 내의 용존 수소가스에 노출되어 상기 용존 수소가스 농도가 변화함에 따라 상기 기전력이 변화하는 것을 특징으로 하는 수소센서소자.
  29. 액체 내에 적어도 일부가 삽입되어 액체 내의 용존 수소가스 농도를 측정하기 위한 수소센서소자로서,
    고체전해질의 양쪽에 기준전극 및 감지전극을 구비한 센싱부;
    상기 기준전극을 덮어 기준전극 측의 기준가스 분압을 고정시켜주는 기준가스 분압 고정용 기준물질;
    상기 센싱부를 센싱 온도까지 가열하기 위한 히터부;
    상기 기준전극과 상기 감지전극 사이의 기전력을 측정하는 기전력측정부;
    를 포함하며,
    상기 감지전극은 액체 내의 용존 수소가스에 노출되어 상기 용존 수소가스 농도가 변화함에 따라 상기 기전력이 변화하는 것을 특징으로 하는 수소센서소자.
  30. 제28항 또는 제29항에 있어서,
    상기 고체전해질은 산소이온전도체와 수소이온전도체의 이종접합, 또는 수소이온전도체로 이루어지며,
    상기 감지전극은 수소이온전도체의 표면에 형성되는 것을 특징으로 하는 수소센서소자.
  31. 제28항 또는 제29항에 있어서,
    적어도 상기 감지전극을 덮도록 형성된 보호재를 더 포함하며,
    상기 보호재는 수소가스가 통과할 수 있는 다공성 물질 또는 글래스세라믹으로 형성되는 것을 특징으로 하는 수소센서소자.
PCT/KR2014/008461 2013-09-12 2014-09-11 액체 내 용존 수소가스 농도 측정용 수소센서소자 및 이를 이용한 수소가스 농도 측정방법 WO2015037910A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016542633A JP6165343B2 (ja) 2013-09-12 2014-09-11 液体内の溶存水素ガス濃度測定用水素センサ素子およびこれを用いた水素ガス濃度測定方法
US15/021,609 US9977006B2 (en) 2013-09-12 2014-09-11 Hydrogen sensor element for measuring concentration of hydrogen gas dissolved in liquid and method for measuring concentration of hydrogen gas using same
EP14844519.0A EP3045900B1 (en) 2013-09-12 2014-09-11 Hydrogen sensor element for measuring concentration of hydrogen gas dissolved in liquid and method for measuring concentration of hydrogen gas using same
CN201480062090.5A CN105723211B (zh) 2013-09-12 2014-09-11 用于测量溶解在液体中的氢气浓度的氢传感器元件以及使用氢传感器元件测量氢气浓度的方法

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR10-2013-0109828 2013-09-12
KR20130109828A KR101512189B1 (ko) 2013-09-12 2013-09-12 오일 내 수소가스농도 측정용 수소센서소자 및 이를 이용한 오일 열화 감지방법
KR1020140006159A KR101581941B1 (ko) 2014-01-17 2014-01-17 액체 내 용존 수소가스 농도 측정용 수소센서소자
KR10-2014-0006159 2014-01-17
KR10-2014-0092371 2014-07-22
KR1020140092371A KR20160011722A (ko) 2014-07-22 2014-07-22 액체 내 용존 수소가스 농도 측정용 수소센서소자 및 이를 이용한 수소가스 농도 측정방법

Publications (1)

Publication Number Publication Date
WO2015037910A1 true WO2015037910A1 (ko) 2015-03-19

Family

ID=52665944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/008461 WO2015037910A1 (ko) 2013-09-12 2014-09-11 액체 내 용존 수소가스 농도 측정용 수소센서소자 및 이를 이용한 수소가스 농도 측정방법

Country Status (5)

Country Link
US (1) US9977006B2 (ko)
EP (1) EP3045900B1 (ko)
JP (1) JP6165343B2 (ko)
CN (1) CN105723211B (ko)
WO (1) WO2015037910A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017096659A (ja) * 2015-11-18 2017-06-01 三菱重工業株式会社 水素濃度計測装置
CN109507253A (zh) * 2018-11-16 2019-03-22 郑州炜盛电子科技有限公司 氧化铱复合电极及其制备方法和使用该电极的pH传感器
CN115561123A (zh) * 2022-09-19 2023-01-03 北京科技大学 气相氢环境下金属管材的氢渗透实验装置及实验方法

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10024836B2 (en) * 2015-03-26 2018-07-17 General Electric Company Trace gas measurement apparatus for electrical equipment
US9874497B2 (en) 2015-04-02 2018-01-23 General Electric Company Trace gas measurement apparatus for electrical equipment
US9884269B2 (en) * 2015-12-10 2018-02-06 General Electric Company Methods and systems for selective hydrogen gas extraction for dissolved gas analysis applications
US10784104B2 (en) * 2017-06-09 2020-09-22 Uchicago Argonne, Llc Interfacial control of oxygen vacancy doping and electrical conduction in thin film oxide heterostructures
KR101944278B1 (ko) * 2017-07-28 2019-01-31 주식회사 신우전자 평판형 외형의 전기화학식 가스 센서
US11054406B2 (en) 2017-08-18 2021-07-06 Vaisala Oyj Analyzing fault gas concentration in liquid
JP6611140B1 (ja) * 2018-07-12 2019-11-27 株式会社ピュアロンジャパン 溶存気体測定装置
US10656047B2 (en) * 2018-09-25 2020-05-19 Dong Ecn KIM Liquid leakage sensing device using electrolysis
US10732164B2 (en) 2018-12-12 2020-08-04 ZTZ Service International, Inc. System and method for headspace monitoring in transformers
JP7084886B2 (ja) * 2019-01-31 2022-06-15 日本特殊陶業株式会社 ガスセンサ
JP6954405B2 (ja) * 2019-05-16 2021-10-27 ダイキン工業株式会社 液体センサ及び油圧ユニット
JP7265007B2 (ja) * 2019-07-01 2023-04-25 東京窯業株式会社 固体基準物質及び水素ガスセンサ
CN110937894B (zh) * 2019-12-24 2022-02-15 红河学院 一种a、b位共掺杂锆酸钙导体材料及其制备方法
JP7477096B2 (ja) * 2020-02-19 2024-05-01 国立大学法人東海国立大学機構 水素センサ及び水素利用装置
CN113563925B (zh) * 2020-04-28 2023-03-10 中国石油化工股份有限公司 一种生产喷气燃料的方法
EP4113096A4 (en) * 2020-05-12 2024-04-03 PSS Inc. GAS DETECTION DEVICE WITH HOUSING WITH CONNECTION PASSAGE
CN112382423B (zh) * 2020-12-03 2024-04-09 深圳中广核工程设计有限公司 耐高温高压高湿辐射的氢气浓度测量装置及氢气测量探头
CN118348053B (zh) * 2024-06-14 2024-08-30 四川拓景科技有限公司 一种热导式氢传感器结构及芯片

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002139468A (ja) * 2000-11-06 2002-05-17 Nippon Soken Inc ガスセンサ
KR20040067752A (ko) * 2003-01-23 2004-07-30 황정숙 고체 기준물질을 이용한 알루미늄(합금) 용탕 관리용전기화학식 수소센서
JP2006090812A (ja) * 2004-09-22 2006-04-06 Ngk Spark Plug Co Ltd ガスセンサ及びガス濃度測定方法
KR101014010B1 (ko) * 2010-12-30 2011-02-14 주식회사 한국에너지관리 기체방울 수중 분산장치
KR101221881B1 (ko) * 2012-10-08 2013-01-14 주식회사 과학기술분석센타 변압기용 절연유 내 용존 가스 측정 시스템

Family Cites Families (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3325378A (en) * 1964-04-10 1967-06-13 Beckman Instruments Inc Electrochemical method and apparatus for measuring hydrogen content
CA1112474A (fr) * 1978-09-18 1981-11-17 Guy Belanger Appareil de detection et de mesure de la concentration d'hydrogene dans un liquide
CA1122274A (fr) * 1979-06-22 1982-04-20 Guy Belanger Dispositif perfectionne pour detecter et mesurer la concentration d'hydrogene gazeux dissous dans un fluide
JPS56164459A (en) 1980-05-22 1981-12-17 Canon Inc Electronic device
JPH023163Y2 (ko) * 1981-04-09 1990-01-25
JPS59174748A (ja) * 1983-03-25 1984-10-03 Hitachi Ltd 溶存ガス濃度測定装置
US4661211A (en) * 1985-07-10 1987-04-28 Uop Inc. Gas detection with three-component membrane and sensor using said membrane
JPH0664002B2 (ja) * 1988-06-09 1994-08-22 鳥取大学長 水素または水蒸気の濃度測定装置
JPH0721481B2 (ja) * 1989-08-21 1995-03-08 東京窯業株式会社 高温排ガス用センサ
JPH03276059A (ja) * 1990-03-27 1991-12-06 Tokyo Yogyo Co Ltd 挿入式センサプローブ
JPH03276061A (ja) * 1990-03-27 1991-12-06 Tokyo Yogyo Co Ltd 挿入式センサプローブ
JPH04175639A (ja) * 1990-11-08 1992-06-23 Daihen Corp 油中溶存ガス監視装置及び監視方法
JPH0496045U (ko) * 1991-01-14 1992-08-20
JP2578544B2 (ja) * 1991-12-27 1997-02-05 東京窯業株式会社 溶融金属中の水素溶解量測定用センサプローブ
JPH05307014A (ja) * 1992-04-28 1993-11-19 Riken Corp 水素ガスセンサー
JPH08201331A (ja) * 1995-01-23 1996-08-09 Mitsubishi Electric Corp ガスセンサ
CA2235021C (en) * 1998-04-14 2007-06-26 Jean-Pierre Gibeault A method and apparatus for monitoring gas(es) in a dielectric fluid
JP2000019152A (ja) * 1998-07-01 2000-01-21 Tokyo Yogyo Co Ltd 水素ガスセンサ
JP4155632B2 (ja) * 1998-09-08 2008-09-24 東京窯業株式会社 溶融金属中の溶存水素センサ
JP2000121601A (ja) * 1998-10-13 2000-04-28 Riken Corp 2素子一体型の加熱型限界電流式酸素センサ
US6277329B1 (en) * 1999-03-22 2001-08-21 Camp Dresser & Mckee Inc. Dissolved hydrogen analyzer
JP2001215214A (ja) * 1999-11-24 2001-08-10 Ngk Spark Plug Co Ltd 水素ガスセンサ
JP2002202281A (ja) * 2000-10-25 2002-07-19 National Institute Of Advanced Industrial & Technology ガスセンサ及び炭化水素ガスセンサ
US20040112743A1 (en) 2001-03-04 2004-06-17 Norihiko Fukatsu Concentration cell type hydrogen sensor and method for preparing solid electrolyte capable od conducting proton
CA2385816A1 (en) * 2001-05-15 2002-11-15 Ngk Spark Plug Co., Ltd. Gas sensor and method for measuring gas concentration using the same
DE10247144A1 (de) * 2001-10-09 2003-05-22 Riken Tokio Tokyo Kk Gasdetektorelement und diese enthaltendes Gasdetektorgerät
JP3993122B2 (ja) * 2002-05-29 2007-10-17 株式会社デンソー ガスセンサ素子及び含水素ガスの測定方法
GB0221393D0 (en) * 2002-09-14 2002-10-23 Univ Cambridge Tech Hydrogen sensing apparatus and method
US7396443B2 (en) * 2003-02-17 2008-07-08 Dongsub Park Solid-state electrochemical hydrogen probe for the measurement of hydrogen content in the molten aluminum
US20070125153A1 (en) * 2005-10-21 2007-06-07 Thomas Visel Palladium-Nickel Hydrogen Sensor
US20070240491A1 (en) * 2003-06-03 2007-10-18 Nano-Proprietary, Inc. Hydrogen Sensor
GB0421868D0 (en) * 2004-10-01 2004-11-03 Environmental Monitoring And C Apparatus and method for measuring hydrogen concentration
JP4585333B2 (ja) * 2005-02-28 2010-11-24 三菱重工業株式会社 水素濃度計
JP4035848B2 (ja) * 2005-08-12 2008-01-23 株式会社新潟Tlo 水素ガス漏洩警報システム
JP4061556B2 (ja) * 2005-08-12 2008-03-19 株式会社新潟Tlo 水素量センサーおよび水素貯蔵装置
JP5155168B2 (ja) * 2005-09-22 2013-02-27 アプライド・ナノテック・ホールディングス・インコーポレーテッド 水素センサ
KR20070070346A (ko) 2005-12-29 2007-07-04 한국전기연구원 복합형 수소가스센서와 멤브레인을 이용한 유중수소가스검출센서 장치
JP4928865B2 (ja) 2006-08-11 2012-05-09 株式会社アツミテック 水素ガス濃度センサ及び水素ガス濃度測定装置
US8028561B2 (en) 2008-09-30 2011-10-04 Qualitrol Company, Llc Hydrogen sensor with air access
JP4784670B2 (ja) * 2009-03-11 2011-10-05 トヨタ自動車株式会社 ガス濃度検出装置
KR101115050B1 (ko) 2009-08-11 2012-02-24 이태원 보일러수 중 용존수소 측정방법
US20120125770A1 (en) * 2010-05-21 2012-05-24 National University Corporation Niigata University Hydrogen gas sensor
JP5623819B2 (ja) * 2010-08-02 2014-11-12 日本特殊陶業株式会社 ガスシール複合体及び該ガスシール複合体を備えた装置
US8836523B2 (en) * 2011-05-20 2014-09-16 General Electric Company Fault gas alarm system
GB2507042B (en) * 2012-10-16 2018-07-11 Schlumberger Holdings Electrochemical hydrogen sensor
KR101581941B1 (ko) 2014-01-17 2016-01-04 한국과학기술원 액체 내 용존 수소가스 농도 측정용 수소센서소자

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002139468A (ja) * 2000-11-06 2002-05-17 Nippon Soken Inc ガスセンサ
KR20040067752A (ko) * 2003-01-23 2004-07-30 황정숙 고체 기준물질을 이용한 알루미늄(합금) 용탕 관리용전기화학식 수소센서
JP2006090812A (ja) * 2004-09-22 2006-04-06 Ngk Spark Plug Co Ltd ガスセンサ及びガス濃度測定方法
KR101014010B1 (ko) * 2010-12-30 2011-02-14 주식회사 한국에너지관리 기체방울 수중 분산장치
KR101221881B1 (ko) * 2012-10-08 2013-01-14 주식회사 과학기술분석센타 변압기용 절연유 내 용존 가스 측정 시스템

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017096659A (ja) * 2015-11-18 2017-06-01 三菱重工業株式会社 水素濃度計測装置
CN109507253A (zh) * 2018-11-16 2019-03-22 郑州炜盛电子科技有限公司 氧化铱复合电极及其制备方法和使用该电极的pH传感器
CN115561123A (zh) * 2022-09-19 2023-01-03 北京科技大学 气相氢环境下金属管材的氢渗透实验装置及实验方法
CN115561123B (zh) * 2022-09-19 2024-05-14 北京科技大学 气相氢环境下金属管材的氢渗透实验装置及实验方法

Also Published As

Publication number Publication date
US9977006B2 (en) 2018-05-22
US20160231303A1 (en) 2016-08-11
EP3045900A1 (en) 2016-07-20
CN105723211A (zh) 2016-06-29
JP6165343B2 (ja) 2017-07-19
EP3045900A4 (en) 2017-08-30
CN105723211B (zh) 2019-04-02
JP2016530544A (ja) 2016-09-29
EP3045900B1 (en) 2022-01-19

Similar Documents

Publication Publication Date Title
WO2015037910A1 (ko) 액체 내 용존 수소가스 농도 측정용 수소센서소자 및 이를 이용한 수소가스 농도 측정방법
KR101512189B1 (ko) 오일 내 수소가스농도 측정용 수소센서소자 및 이를 이용한 오일 열화 감지방법
JPH0513261B2 (ko)
SU1142783A1 (ru) Устройство дл анализа газа с гальваническими чейками на твердом электролите
KR101325508B1 (ko) 고체 산소이온 전도체와 고체 수소이온 전도체의 접합구조를 가진 용융금속 내 수소 측정 센서
JP2009507225A (ja) 窒素酸化物ガスセンサおよび方法
KR101581941B1 (ko) 액체 내 용존 수소가스 농도 측정용 수소센서소자
WO2004025289A1 (en) Hydrogen sensing apparatus and method
EP0168938B1 (en) Electrochemical element
KR20160011722A (ko) 액체 내 용존 수소가스 농도 측정용 수소센서소자 및 이를 이용한 수소가스 농도 측정방법
KR101646183B1 (ko) 액체 내 용존 일산화탄소 측정용 센서소자 및 센싱방법
JP2000065783A (ja) 防爆型ガスセンサ
WO2021230484A1 (ko) 연결 통로가 형성된 하우징을 포함하는 가스 감지 장치
Porat et al. Double‐Solid Electrochemical Cell for Controlling Oxygen Concentration in Oxides
WO2018008775A1 (ko) 기준가스를 사용하는 전기화학식 센서 모듈
JPS60243558A (ja) 酸素ガス濃度分析装置
JPH0679007B2 (ja) 固体基準物質を備えたセンサプローブ
JPH01206255A (ja) 酸素濃度分析方法およびその装置
CN217385290U (zh) 隔膜检测装置
JPH0720082A (ja) 溶融金属中の水素溶解量測定用センサプローブ
KR20160122466A (ko) 수소 가스센서
WO2022173096A1 (ko) 금 기준전극을 포함하는 이종접합 구조의 고체전해질 수소센서
JP7165035B2 (ja) ガスセンサおよびその製造方法
US20050199497A1 (en) Sensor for an electrochemical detecting element
JP2530076B2 (ja) 溶融金属中の水素溶解量測定用センサプロ―ブ及びその使用方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14844519

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016542633

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014844519

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014844519

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15021609

Country of ref document: US