WO2018008775A1 - 기준가스를 사용하는 전기화학식 센서 모듈 - Google Patents

기준가스를 사용하는 전기화학식 센서 모듈 Download PDF

Info

Publication number
WO2018008775A1
WO2018008775A1 PCT/KR2016/007286 KR2016007286W WO2018008775A1 WO 2018008775 A1 WO2018008775 A1 WO 2018008775A1 KR 2016007286 W KR2016007286 W KR 2016007286W WO 2018008775 A1 WO2018008775 A1 WO 2018008775A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor module
gas environment
electrochemical sensor
communication hole
measurement gas
Prior art date
Application number
PCT/KR2016/007286
Other languages
English (en)
French (fr)
Inventor
김세빈
Original Assignee
프리시젼센서시스템 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 프리시젼센서시스템 주식회사 filed Critical 프리시젼센서시스템 주식회사
Publication of WO2018008775A1 publication Critical patent/WO2018008775A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/411Cells and probes with solid electrolytes for investigating or analysing of liquid metals
    • G01N27/4112Composition or fabrication of the solid electrolyte
    • G01N27/4114Composition or fabrication of the solid electrolyte for detection of gases other than oxygen
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • G01N27/68Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode using electric discharge to ionise a gas
    • G01N27/70Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode using electric discharge to ionise a gas and measuring current or voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/301Reference electrodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036General constructional details of gas analysers, e.g. portable test equipment concerning the detector specially adapted to detect a particular component
    • G01N33/005H2

Definitions

  • the present invention relates to an electrochemical sensor module using a reference gas to maintain a constant reference gas concentration around the reference electrode.
  • the electrochemical sensor module that detects the measurement gas concentration included in the measurement gas environment by measuring the electromotive force between the reference electrode and the sensing electrode has been widely used because of its excellent reliability and stability.
  • the electrochemical sensor module measures the electromotive force between the reference electrode and the sensing electrode while forming a reference material on the reference electrode side or supplying a reference gas to maintain a constant electrochemical potential. The concentration can be calculated.
  • sensing electrodes 22 and reference electrodes 23 are formed on both sides of the sensor body 21, and sensing electrodes 22 and reference electrodes 23 are respectively formed. It is exposed to the measurement gas environment (2) and reference gas environment (1).
  • the sensor body 21 includes at least one solid electrolyte determined according to the type of measurement gas.
  • the sensor body 21 is a Yittria-Stabilized Zirconia (YSZ) solid electrolyte, which is an oxygen ion conductor, and the reference gas environment 1 is air.
  • the concentration of oxygen (P RG ) which is a reference gas (RG) in air, is kept constant at 0.21
  • the oxygen concentration (P MG ) in the measurement gas environment (2) is calculated through the electromotive force (E) measurement. can do.
  • the measurement gas environment 2 may be inside a pipe in which a flow of the measurement gas exists, or may be a liquid such as oil or molten metal in which the measurement gas is dissolved.
  • the sensor module 100 may be formed in a long tube shape.
  • the sensor unit 20 including the sensor body 21, the sensing electrode 22, and the reference electrode 23 is inserted into the measurement gas environment 2, but one end thereof is connected to the sensor unit.
  • the handle portion 30 having an opening 40 formed at the other end and communicating with the reference gas environment 1, the reference electrode 21 is not exposed to the measurement gas environment 2 and is not exposed to the reference gas environment 1.
  • the handle part 30 may be made of the same material as the sensor body 21, or a separate frame (not shown) for protecting the sensor part 20 may serve as the handle part 30.
  • One problem with the overall long tube-shaped sensor module 100 is that there is a difference between the average concentration of the reference gas present in the reference gas environment 1 and the concentration of the reference gas at a position close to the reference electrode 23. It can be. That is, a concentration gradient of the reference gas may occur at the positions of the opening 40 and the reference electrode 23, which may affect the reliability of the sensor module 100 using the reference gas. In particular, the longer and narrower the shape of the tube of the sensor module 100 may be a big problem. The cause of the concentration difference is not clear, but the disturbance of the gas concentration generated near the reference electrode 23 may not be easily resolved by the diffusion of the gas on the sensing electrode 22 side to the reference electrode 23. Because of this, it is absolutely required to make the gas flow between the reference gas environment 1 and the reference electrode 23 smoother.
  • the present invention is to solve the above problems, it is an object to improve the reliability of the electrochemical sensor module using a reference gas.
  • an object of the present invention is to minimize the difference between the reference gas concentration in the vicinity of the reference electrode and the reference gas concentration of the reference gas environment.
  • An electrochemical sensor module for achieving the above object is an electrochemical sensor module for detecting the measurement gas contained in the measurement gas environment using the reference gas included in the reference gas environment, the sensor body and the A sensor unit including sensing electrodes and reference electrodes respectively formed on both sides of the sensor body, and one end of which includes a handle part which is directly or indirectly connected to the sensor part so as to be gas-sealed, and an opening part is formed at the other end thereof, And at least one communication hole disposed closer to the reference gas environment to communicate the reference electrode with the reference electrode.
  • the communication hole may further include an extension tube connecting the reference gas environment, the communication hole may be formed with a gas permeable filter.
  • the electrochemical sensor module is inserted into the measurement gas environment to detect the measurement gas, and when inserted into the measurement gas environment, the detection electrode is exposed to the measurement gas environment and the opening is exposed to the reference gas environment. Can be.
  • the communication hole may be formed at a position not inserted into the measurement gas environment when inserted into the measurement gas environment, or the communication hole is formed at a position inserted into the measurement gas environment and is referred to through an extension tube. It may be in communication with the gaseous environment.
  • the sensor body may include an oxygen ion conductor, or may include a junction of an oxygen ion conductor and a hydrogen ion conductor.
  • the sensor body may be a hydrogen sensor module for measuring the concentration of dissolved hydrogen in the molten metal.
  • a gas permeable filter may be formed in the communication hole.
  • the extension tube When the extension tube is connected to the communication hole, the extension tube is formed of an opening whose one end is connected to the communication hole and the other end is connected to the reference gas environment, and the opening is formed at a height between the communication hole and the opening. Can be.
  • the reference gas environment may be air, and the reference gas may be oxygen.
  • the difference between the reference gas concentration near the reference electrode and the reference gas concentration in the reference gas environment is minimized by including one or more communication holes disposed closer to the reference electrode than the opening to communicate the reference gas environment with the reference electrode.
  • FIG. 1 is a conceptual diagram illustrating the principle of an electrochemical sensor module using a reference gas.
  • FIG. 2 is a schematic cross-sectional view of a conventional electrochemical sensor module in the form of a tube.
  • FIG 3 is a schematic cross-sectional view of an electrochemical sensor module according to a first embodiment of the present invention.
  • FIG. 4 is a schematic cross-sectional view of an electrochemical sensor module according to a second embodiment of the present invention.
  • FIG. 5 is a schematic cross-sectional view of an electrochemical sensor module according to a third embodiment of the present invention.
  • Figure 6 is an exemplary view of the kind of sensor unit that can be used, (a) is the sensor body is an oxygen ion conductor, (b) is a case where the sensor body is made of a junction of the oxygen ion conductor and hydrogen ion conductor.
  • FIG. 7 is a test result of the electrochemical hydrogen sensor module, (a) is a structure without a communication hole, (b) is a result of measuring the change in electromotive force with time of the structure forming the communication hole.
  • the electrochemical sensor module 100 according to the first embodiment of the present invention includes a sensor unit 20 and a handle unit 30.
  • the sensor unit 20 includes a sensor body 21 and a sensing electrode 22 and a reference electrode 23 formed on both surfaces of the sensor body 21, respectively.
  • the sensing electrode 22 is located on the surface of the measurement gas environment 2 side in the sensor body 21, and the reference electrode 23 is located on the surface of the reference gas environment 1 side.
  • the sensor body 21 may be formed of a solid electrolyte appropriately selected according to the use, and may include two or more solid electrolytes.
  • the sensor body 21 may include Yttria stabilized zirconia (YSZ), calcium stabilized zirconia (CSZ), magnesium stabilized zirconia (MSZ), or Gd 2 O 3 , which is an oxygen ion conductor. Added CeO 2 compounds;
  • the measurement gas is hydrogen gas
  • the sensor body 21 may be a junction of an oxygen ion conductor and a hydrogen ion conductor, wherein the hydrogen ion conductor is made of a material having a perovskite structure of ABO 3 type.
  • Substances substituted in place of several substances for example CaZr 0 . 9 In 0 .
  • CaZrO 3 system such as 1 O 3 -x etc., SrZr 0.95 Y 0.05 SrZrO 3 system such as O 3-x , SrCe 0 . 95 Yb 0 . 05 O 3 SrCeO 3 series such as -x, may be a Ti-based compound such as BaCe 0.9 Nd 0.1 O 3-x BaCeO 3 system, BaTiO 3, SrTiO 3, PbTiO 3 , such as.
  • the sensing electrode 22 and the reference electrode 23 may be formed of a noble metal such as platinum (Pt).
  • Pt platinum
  • each of the electrodes 22 and 23 may be exposed as shown in FIG. 2 or may be covered with a protective cap formed of a material such as porous graphite.
  • the sensor unit 20 may be in the form of a flat pellet or a tube form as shown in FIG. 3. That is, the present invention is not limited to the sensor module to which the sensor unit 20 of a specific shape is applied.
  • the handle part 30 communicates with the reference gas environment 1 in a state where the reference electrode 23 is separated from the measurement gas environment 2 even when the sensor unit 20 is inserted into the measurement gas environment 2. It is a configuration including an opening 40 to enable.
  • the handle portion 30 may be in the form of an elongated tube, and the opening 40 may be formed at one end of the tube.
  • the other end of the handle part 30 may be directly or indirectly connected to the sensor part 20 so that the reference electrode 23 may not be exposed to the measurement gas environment 2.
  • directly or indirectly connected means that the handle portion 30 may be directly connected to the sensor portion 20, or may be indirectly connected with another configuration interposed therebetween.
  • the handle part 30 may be made of the same material as that of the sensor body 21, or a separate frame formed of stainless steel or the like may serve as the handle part 30.
  • the handle part 30 and the sensor body 21 may be a tube-shaped solid electrolyte formed integrally.
  • the handle part 30 includes at least one communication hole 50 communicating with the reference gas environment 1 in addition to the opening 40.
  • the position where the communication hole 50 is formed is closer to the reference electrode 23 than the opening 40, and when the sensor unit 20 is inserted into the measurement gas environment 2, the reference gas environment 1 is still present.
  • a filter (not shown) may be formed to prevent other contaminants from penetrating toward the reference electrode 23 while the reference gas passes therethrough.
  • the communication hole 50 may serve to help the reference electrode 23 to be exposed to a reference gas having the same concentration as that of the reference gas environment 1.
  • the reference gas concentration near the reference electrode 23 may be different from the reference gas concentration of the reference gas environment 1. This may be because it takes time for the gas to be balanced by the distance between the opening 40 and the reference electrode 23, and there is no gas passage other than the opening 40, so that the nonuniformity of the gas concentration is difficult to be resolved by the gas circulation. This may be because.
  • the communication hole 50 is formed at a position closer to the reference electrode 23 than the opening 40 as shown in FIG. 3, since the reference gas is smoothly supplied through the communication hole 50 in addition to the opening 40.
  • the reference gas concentration near the reference electrode 23 may be maintained as close as possible to the reference gas concentration in the reference gas environment 1.
  • the electrochemical sensor module 100 according to the second embodiment of the present invention further includes an extension tube 60 connecting between the communication hole 50 and the reference gas environment 1. It is different from the electrochemical sensor module according to the first embodiment of the present invention in that it includes.
  • the electrochemical sensor module 100 according to the second embodiment of the present invention is in a non-steady state or at a temporary and predictable state at the interface between the reference gas environment 1 and the measurement gas environment 2. This may be particularly useful where gas concentration disturbances are difficult to occur.
  • the electrochemical sensor module 100 according to the second embodiment of the present invention can be usefully used to measure the dissolved hydrogen concentration in the molten metal.
  • the measurement gas environment 2 may be inside the molten metal, and the reference gas environment 1 may be outside air.
  • molten metal is very high temperature, various foreign substances are oxidized and reducing gas such as carbon monoxide (CO) may be generated. This is in the reference gas environment (1) but disturbs the reference gas concentration in the region close to the measurement gas environment (2). May cause That is, as the generated reducing gas flows into the reference electrode 23 through the communication hole 50, the reference gas concentration near the reference electrode 23 may be different from the concentration in the reference gas environment 1. This may interfere with the reliable detection of the measured gas concentration.
  • CO carbon monoxide
  • the sensor module 100 connects the extension tube 60 to the communication hole 50, thereby disturbing the gas in the vicinity of the interface between the reference gas environment 1 and the measurement gas environment 2. Even if this occurs, it is possible to prevent the gas concentration near the reference electrode 23 from being affected.
  • the extension tube 60 may have an opening formed at a position higher than the communication hole 50, and the height of the opening may be lower than that of the opening 40 formed in the handle part 30.
  • FIG. 5 is a schematic cross-sectional view of an electrochemical sensor module 100 according to a third embodiment of the present invention.
  • the electrochemical sensor module 100 according to the third embodiment of the present invention has a communication hole 50 formed at a position at which the measurement gas environment 2 is inserted. There is a difference from the electrochemical sensor module according to the second embodiment of the.
  • the communication hole 50 can be formed at a position closer to the reference electrode 23, which causes the reference near the reference electrode 23 to be formed.
  • the gas concentration can be made closer to the reference gas concentration in the reference gas environment 1.
  • the communication hole 50 is formed at the position where the sensor module 100 is inserted into the measurement gas environment 2 when the sensor module 100 is inserted into the measurement gas environment 2, the communication hole 50 is extended by the extension tube 60 so that the reference gas environment ( Since the opening is 1), the reference electrode 23 is not exposed to the measurement gas environment 2.
  • Such a structure may be usefully used when the depth of the sensor unit 20 inserted into the measurement gas environment 2 is relatively large.
  • Figure 6 illustrates a sensor unit 20 that can be used in the present invention
  • Figure 6 (a) is a case where the sensor body 21 is made of an oxygen ion conductor
  • Figure 6 (b) is a sensor body 21 Is a case where the oxygen ion conductor 21a and the hydrogen ion conductor 21b are joined together.
  • the sensor unit 20 of FIG. 6 (a) may be used in an oxygen sensor module, and measures the electromotive force between the sensing electrode 22 and the reference electrode 23 to measure the measurement gas environment by the Nernst equation of Equation (1).
  • the oxygen concentration in 2) can be detected.
  • the sensor unit 20 of FIG. 6 (b) may be used in a hydrogen sensor module.
  • the measurement gas environment 2 may be obtained by the following equation (2).
  • the hydrogen concentration in) can be detected.
  • Eo and A are constants that depend only on temperature
  • P H2 (MG) is the hydrogen gas concentration in the measurement gas environment (2)
  • P O2 ( RG ) is the oxygen concentration in the reference gas environment (1).
  • the reference gas environment (1) the concentration of hydrogen P H2 (MG) of the outer case the air is, the P O2 (RG), the oxygen concentration in the air is fixed at 0.21 electromotive force (E) measuring the gas environment (2) over the measurement Can be detected.
  • the hydrogen sensor module of Figure 6 (b) can be usefully used to measure the hydrogen concentration in the molten metal, such as lead, aluminum, magnesium alloy.
  • a structure in which the sensing electrode 22 is covered with a gas-permeable protective cap (not shown) may be used so that the sensing electrode 22 does not directly contact the molten metal.
  • the concentration of hydrogen gas in the sensing electrode 22 and the concentration of dissolved hydrogen gas in the molten metal are proportional to each other.
  • the concentration of hydrogen gas at the sensing electrode 22 side the dissolved hydrogen gas concentration in the molten metal can be calculated.
  • the amount of hydrogen dissolved in the liquid is proportional to the square root of the vaporized hydrogen partial pressure. Therefore, theoretically calculate the dissolved hydrogen gas concentration in the molten metal from the hydrogen gas concentration measured by the hydrogen sensor module using this law. It is also possible.
  • FIG. 7 is a result of testing the effect of the electrochemical hydrogen sensor module 100 according to the first embodiment of the present invention.
  • 7 (a) shows the sensor module of FIG. 2 without the communication hole 50
  • FIG. 7 (b) shows the change in electromotive force with time of the sensor module of the FIG. 3 structure forming the communication hole 50. to be.
  • the sensor unit 20 used the junction structure of the oxygen ion conductor 21a and the hydrogen ion conductor 21b as shown in FIG. 6 (b), and measured the electromotive force after inserting the hydrogen sensor module 100 into the aluminum molten metal. . That is, the measurement gas environment 2 was molten aluminum, and the reference gas environment 1 was external air. At this time, the communication hole 50 was formed at a position not inserted into the molten aluminum.
  • This difference depending on the presence or absence of the communication hole 50 is due to the fact that the oxygen concentration on the reference electrode 23 side is lower than the reference gas environment (1), that is, the oxygen concentration in the air when there is no communication hole 50. Judging.
  • the reason why the oxygen concentration changes in the vicinity of the reference electrode 23 is that the hydrogen on the sensing electrode 22 side may cause a defect in the sensor body 21 itself or a path between the sensor unit 20 and the handle unit 30. It may be considered to be diffused through and react with oxygen on the reference electrode 23 side, or a combustion material is present in the reference electrode 23 to consume oxygen.
  • FIG. 8 is a result of testing the effect of the electrochemical hydrogen sensor module according to a second embodiment of the present invention
  • Figure 8 (b) is a result of measuring the electromotive force of the structure formed only the communication hole 50 as shown in Figure 8 (a)
  • 8 (d) is an electromotive force measurement result of a structure in which the extension tube 60 is connected to the communication hole 50 as shown in FIG. 8 (c).
  • the sensor unit 20 used a junction structure of the oxygen ion conductor 21a and the hydrogen ion conductor 21b, and measured the electromotive force after inserting the hydrogen sensor module 100 into the aluminum molten metal. That is, the measurement gas environment 2 was molten aluminum, and the reference gas environment 1 was external air.
  • the measurement gas was described as oxygen or hydrogen, but the present invention can be used for detecting various measurement gases that can be measured by an electrochemical method using a solid electrolyte. Therefore, the protection scope of the present invention should be defined by the description of the claims and their equivalents.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Combustion & Propulsion (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

본 발명은 기준가스환경에 포함된 기준가스를 이용하여 측정가스환경에 포함된 측정가스를 감지하기 위한 전기화학식 센서모듈로서, 센서 몸체 및 상기 센서 몸체 양면에 각각 형성되는 감지전극 및 기준전극을 포함하는 센서부와, 일단부가 상기 센서부에 가스 밀봉 가능하게 직간접적으로 연결되고 타단부에 개구부가 형성된 핸들부를 포함하고, 상기 개구부보다 상기 기준전극에 더 근접 배치되어 상기 기준가스환경과 상기 기준전극을 연통시키는 하나 이상의 연통홀을 포함함으로써, 기준전극 부근의 기준가스 농도를 기준가스환경 내 기준가스 농도와 동일하게 유지할 수 있는 효과가 있다.

Description

기준가스를 사용하는 전기화학식 센서 모듈
본 발명은 기준전극 주위에 일정한 기준가스 농도가 유지되도록 하는 기준가스를 사용하는 전기화학식 센서 모듈에 관한 것이다.
기준전극과 감지전극 사이의 기전력을 측정함으로써 측정가스환경에 포함된 측정가스 농도를 검출하는 전기화학식 센서 모듈은 신뢰성, 안정성 등이 우수하여 많이 활용되고 있다. 전기화학식 센서 모듈은 기준전극 측에 기준물질을 형성하거나 기준가스를 공급하여 일정한 전기화학포텐셜(electrochemical potential)이 유지되도록 한 상태에서 기준전극과 감지전극 사이의 기전력을 측정함으로써 측정전극 측의 측정가스 농도를 산출할 수 있다.
도 1은 기준가스를 사용하는 센서모듈의 개념도이다. 도 1을 참조하여 설명하면, 센서 모듈(100)은 센서 몸체(21) 양측에 감지전극(22) 및 기준전극(23)이 각각 형성되고, 감지전극(22) 및 기준전극(23)은 각각 측정가스환경(2) 및 기준가스환경(1)에 노출되어 있다. 센서 몸체(21)는 측정 가스의 종류에 따라 정해지는 적어도 하나의 고체전해질(Solid Electrolyte)을 포함한다.
도 1의 센서 모듈(100)에서 센서 몸체(21)가 산소이온전도체(oxygen ion conductor)인 이트리아-안정화 지르코니아(YSZ: Yittria-Stabilized Zirconia) 고체전해질이고 기준가스환경(1)이 공기라고 가정하면, 공기 중 기준가스(RG: Reference Gas)인 산소의 농도(PRG)는 0.21로 일정하게 유지되므로 기전력(E) 측정을 통해 측정가스환경(2)에서의 산소 농도(PMG)를 산출할 수 있다. 즉, 네른스트(Nernst) 식에 의해 기전력(E)과 측정가스환경(2)에서의 산소 농도(PMG) 사이에는 다음의 식 (1)의 관계가 있고, 이때 a, b, c 및 PRG는 일정 온도 하에서는 모두 상수이므로 측정된 기전력(E) 값으로부터 측정가스환경(2)에서의 산소 농도(PMG)를 검출할 수 있다.
E = a + b lnPRG + c lnPMG ----------- (1)
한편, 센서 모듈(100)을 이용한 측정가스 검출이 이루어지는 공간에서는 적어도 측정가스환경(2)과 기준가스환경(1)은 서로 분리된 공간이다. 예를 들어, 측정가스환경(2)은 측정가스의 흐름(flow)이 존재하는 파이프 내부일 수 있고, 또는 측정가스가 녹아있는 오일이나 용탕 등의 액체일 수 있다.
기준가스환경(1)과 분리된 측정가스환경(2) 내에 삽입되어 사용되기 위해, 도 2에 개략적으로 도시한 바와 같이 센서 모듈(100)은 긴 튜브 형태로 형성될 수 있다. 도 2에 의하면, 센서 몸체(21), 감지전극(22) 및 기준전극(23)을 포함하는 센서부(20)는 측정가스환경(2) 내부로 삽입되어 있으나, 일단이 센서부와 연결되어 있고 타단에 기준가스환경(1)과 연통되는 개구부(40)가 형성된 핸들부(30)를 포함함으로써, 기준전극(21)은 측정가스환경(2)에 노출되지 않고 기준가스환경(1)에 노출된 상태가 된다. 여기서 핸들부(30)는 센서 몸체(21)와 동일한 물질일 수도 있고, 또는 센서부(20)를 보호하기 위한 별도의 프레임(미도시)이 핸들부(30)의 역할을 하도록 할 수도 있다.
이처럼 전체적으로 긴 튜브 형상의 센서 모듈(100)이 가지는 하나의 문제점은 기준가스환경(1) 내에 존재하는 기준가스의 평균적인 농도와 기준전극(23)에 근접한 위치에서의 기준가스의 농도에 차이가 있을 수 있다는 것이다. 즉, 개구부(40)와 기준전극(23) 위치에 기준가스의 농도 구배가 생길 수 있으며, 이는 기준가스를 이용한 센서 모듈(100)의 신뢰성에 영향을 미칠 수 있다. 특히 센서 모듈(100)의 튜브 형상이 길고 좁을수록 이러한 현상은 큰 문제가 될 수 있다. 이러한 농도 차이의 원인은 명확하지 않으나, 감지전극(22) 측 가스가 기준전극(23) 측으로 확산되는 등에 의해 기준전극(23) 부근에서 발생된 가스 농도의 교란(disturbance)이 쉽게 해소되지 못하기 때문일 수 있으므로, 기준가스환경(1)과 기준전극(23) 사이의 가스 흐름을 보다 원활하게 하는 것이 절대적으로 요구된다.
본 발명은 상기와 같은 문제점을 해결하기 위한 것으로서, 기준가스를 사용하는 전기화학식 센서 모듈의 신뢰성을 향상시키는 것을 목적으로 한다.
또한 본 발명은 기준전극 부근의 기준가스 농도와 기준가스환경의 기준가스 농도의 차이를 최소화하는 것을 목적으로 한다.
상기한 목적을 달성하기 위한 본 발명에 따른 전기화학식 센서 모듈은, 기준가스환경에 포함된 기준가스를 이용하여 측정가스환경에 포함된 측정가스를 감지하기 위한 전기화학식 센서모듈로서, 센서 몸체 및 상기 센서 몸체 양면에 각각 형성되는 감지전극 및 기준전극을 포함하는 센서부, 일단부가 상기 센서부에 가스 밀봉 가능하게 직간접적으로 연결되고 타단부에 개구부가 형성된 핸들부를 포함하고, 상기 개구부보다 상기 기준전극에 더 근접 배치되어 상기 기준가스환경과 상기 기준전극을 연통시키는 하나 이상의 연통홀을 포함하는 것을 특징으로 한다.
이때, 상기 연통홀과 상기 기준가스환경을 연결하는 연장튜브를 더 포함할 수 있으며, 상기 연통홀에는 가스 투과성 필터가 형성될 수 있다.
상기 전기화학식 센서모듈은 상기 측정가스환경에 삽입되어 상기 측정가스를 감지하기 위한 것이고, 상기 측정가스환경에 삽입될 때 상기 감지전극은 상기 측정가스환경에 노출되고 상기 개구부는 상기 기준가스환경에 노출될 수 있다.
또한, 상기 측정가스환경에 삽입될 때 상기 연통홀은 상기 측정가스환경에 삽입되지 않는 위치에 형성될 수 있으며, 또는 상기 연통홀은 상기 측정가스환경에 삽입되는 위치에 형성되고 연장튜브를 통해 기준가스환경과 연통되는 것일 수 있다.
본 발명에 따른 전기화학식 센서 모듈에서, 상기 센서 몸체는 산소이온전도체를 포함할 수 있고, 또는 산소이온전도체 및 수소이온전도체의 접합을 포함할 수 있다. 센서 몸체가 산소이온전도체 및 수소이온전도체의 접합으로 이루어지는 경우, 용융금속 내의 용존 수소의 농도를 측정하기 위한 수소센서 모듈일 수 있다.
또한, 상기 연통홀에는 가스 투과성 필터가 형성되는 것일 수 있다.
연통홀에 연장튜브가 연결되는 경우, 연장튜브는 일단이 상기 연통홀에 연결되고 타단이 상기 기준가스환경에 연결되는 개구로 형성되며, 상기 개구는 상기 연통홀과 상기 개구부 사이의 높이에 형성될 수 있다.
본 발명에 있어서, 기준가스환경은 공기일 수 있고, 기준가스는 산소일 수 있다.
본 발명에 의하면, 신뢰성이 향상된 기준가스를 사용하는 전기화학식 센서 모듈을 제공할 수 있는 효과가 있다.
또한 본 발명의 의하면, 개구부보다 기준전극에 더 근접 배치되어 기준가스환경과 기준전극을 연통시키는 하나 이상의 연통홀을 포함함으로써 기준전극 부근의 기준가스 농도와 기준가스환경의 기준가스 농도의 차이가 최소화된 전기화학식 센서 모듈을 제공할 수 있는 효과가 있다.
도 1은 기준가스를 사용하는 전기화학식 센서모듈의 원리를 설명하기 위한 개념도이다.
도 2는 튜브 형태의 종래의 전기화학식 센서모듈의 개략적인 단면도이다.
도 3은 본 발명의 제1 실시예에 따른 전기화학식 센서 모듈의 개략적인 단면도이다.
도 4는 본 발명의 제2 실시예에 따른 전기화학식 센서 모듈의 개략적인 단면도이다.
도 5는 본 발명의 제3 실시예에 따른 전기화학식 센서 모듈의 개략적인 단면도이다.
도 6은 사용 가능한 센서부 종류의 예시도로, (a)는 센서 몸체가 산소이온전도체, (b)는 센서 몸체가 산소이온전도체 및 수소이온전도체의 접합으로 이루어진 경우이다.
도 7은 전기화학식 수소센서 모듈 테스트 결과로, (a)는 연통홀이 없는 구조, (b)는 연통홀을 형성한 구조의 시간에 따른 기전력 변화를 측정한 결과이다.
도 8은 연장튜브의 효과를 테스트한 결과로, (a), (b)는 연장튜브가 없는 구조, (c), (d)는 연장튜브를 형성한 구조의 결과이다.
이하 첨부된 도면들을 참조하여 본 발명의 바람직한 실시예들을 상세하게 설명하지만, 본 발명이 실시예들에 의해 한정되거나 제한되는 것은 아니다. 본 발명의 다양한 실시예들을 설명함에 있어, 대응되는 구성요소에 대해서는 동일한 명칭 및 동일한 참조부호를 부여하여 설명하도록 한다.
도 3은 본 발명의 제1 실시예에 따른 전기화학식 센서 모듈(100)의 개략적인 단면도이다. 도 3을 참조하여 설명하면, 본 발명의 제1 실시예에 따른 전기화학식 센서 모듈(100)은, 센서부(20)와 핸들부(30)를 포함하여 이루어진다.
센서부(20)는 센서 몸체(21) 및 센서 몸체(21)의 양면에 각각 형성된 감지전극(22) 및 기준전극(23)을 포함한다. 이때 감지전극(22)은 센서 몸체(21)에서 측정가스환경(2) 측의 면에 위치하고, 기준전극(23)은 기준가스환경(1) 측의 면에 위치한다.
센서 몸체(21)는 용도에 따라 적절히 선택된 고체전해질로 형성될 수 있으며, 2 이상의 고체전해질을 포함할 수 있다. 예를 들어, 측정가스가 산소 가스인 경우, 센서 몸체(21)는 산소이온전도체인 YSZ(Yttria stabilized zirconia), CSZ(calcium stabilized zirconia), MSZ(Magnesium stabilized zirconia), 또는 Gd2O3 등을 첨가한 CeO2계 화합물 등일 수 있다. 또는, 측정가스가 수소 가스인 경우, 센서 몸체(21)는 산소이온전도체와 수소이온전도체의 접합일 수 있으며, 이때 수소이온전도체는 ABO3형태의 페로브스카이트(perovskite) 구조를 갖는 물질의 B자리에 여러 물질을 치환한 물질, 예를 들어 CaZr0 . 9In0 . 1O3 -x 등과 같은 CaZrO3계, SrZr0.95Y0.05O3-x 등과 같은 SrZrO3계, SrCe0 . 95Yb0 . 05O3 -x 등과 같은 SrCeO3계, BaCe0.9Nd0.1O3-x 등과 같은 BaCeO3계, BaTiO3, SrTiO3, PbTiO3 등과 같은 Ti계 화합물일 수 있다.
감지전극(22) 및 기준전극(23)은 백금(Pt) 등의 귀금속으로 형성할 수 있다. 이때, 각 전극(22, 23)은 도 2와 같이 노출되어 있을 수도 있고, 다공질 그라파이트(graphite) 등의 물질로 형성된 보호캡으로 덮여있을 수도 있다.
센서부(20)는 도 3과 같이 평평한 펠렛(pellet) 형태일 수도 있고, 튜브 형태일 수도 있다. 즉, 본 발명은 특정 형상의 센서부(20)가 적용된 센서 모듈로 제한되지 않는다.
핸들부(30)는 센서부(20)가 측정가스환경(2)에 삽입된 상태에서도 기준전극(23)이 측정가스환경(2)과는 분리된 상태에서 기준가스환경(1)과 연통될 수 있도록 하는 개구부(40)를 포함하는 구성이다. 핸들부(30)는 긴 튜브 형태일 수 있고, 개구부(40)는 튜브의 일단부에 형성되어 있을 수 있다. 기준전극(23)이 측정가스환경(2)에는 노출되지 않도록, 핸들부(30)의 타단부는 센서부(20)에 가스 밀봉 가능하게 직간접적으로 연결될 수 있다. 여기서 "직간접적으로 연결된다"는 의미는 핸들부(30)가 센서부(20)와 직접 연결될 수도 있고, 다른 구성이 사이에 개재된 상태로 간접적으로 연결될 수도 있다는 의미이다.
핸들부(30)는 센서 몸체(21)와 동일한 물질일 수도 있고, 또는 스테인레스 등으로 형성되는 별도의 프레임이 핸들부(30)의 역할을 하도록 할 수도 있다. 핸들부(30)와 센서 몸체(21)가 동일한 물질인 경우, 핸들부(30)와 센서 몸체(21)는 일체로 형성된 튜브 형상의 고체전해질일 수 있다.
핸들부(30)는 개구부(40) 외에도 기준가스환경(1)과 연통되는 연통홀(50)을 하나 이상 포함한다. 이때, 연통홀(50)이 형성되는 위치는 개구부(40)에 비해 기준전극(23)에 더 가깝고, 센서부(20)가 측정가스환경(2)에 삽입되었을 때 여전히 기준가스환경(1)에 노출되는 위치이다. 연통홀(50)에는 기준가스는 통과하면서 다른 오염물질들이 기준전극(23) 쪽으로 침투하는 것은 방지할 수 있는 필터(미도시)가 형성될 수 있다.
연통홀(50)은 기준전극(23)이 기준가스환경(1)과 동일한 농도의 기준가스에 노출되도록 돕는 역할을 할 수 있다. 도 2와 같이 개구부(40)를 통해서만 기준가스환경(1)과 연통되는 경우, 기준전극(23) 부근의 기준가스 농도는 기준가스환경(1)의 기준가스 농도와 다를 수 있다. 이는 개구부(40)와 기준전극(23) 사이의 거리에 의해 가스 평형이 이루어지는데 시간이 걸리기 때문일 수 있으며, 개구부(40) 외에는 다른 가스 통로가 없어 가스 순환에 의해 가스 농도의 불균일성이 해소되기 어렵기 때문일 수 있다. 반면, 도 3과 같이 개구부(40)보다 기준전극(23)에 가까운 위치에 연통홀(50)이 형성되는 경우 개구부(40) 외에도 연통홀(50)을 통해 기준가스의 공급이 원활하게 이루어지므로, 기준전극(23) 부근의 기준가스 농도가 기준가스환경(1)의 기준가스 농도와 최대한 가깝게 유지될 수 있다.
도 4는 본 발명의 제2 실시예에 따른 전기화학식 센서 모듈(100)의 개략적인 단면도이다. 도 4를 도 3과 함께 참조하면, 본 발명의 제2 실시예에 따른 전기화학식 센서 모듈(100)은 연통홀(50)과 기준가스환경(1) 사이를 연결하는 연장튜브(60)를 더 포함하는 점에서 본 발명의 제1 실시예에 따른 전기화학식 센서 모듈과 차이가 있다.
본 발명의 제2 실시예에 따른 전기화학식 센서 모듈(100)은 기준가스환경(1)과 측정가스환경(2) 사이의 계면에서 가스 농도가 불안정한 상태(non-steady state)에 있거나 일시적이고 예측하기 어려운 가스 농도 교란(disturbance)이 발생하기 쉬운 경우에 특히 유용할 수 있다. 예를 들어, 본 발명의 제2 실시예에 따른 전기화학식 센서 모듈(100)은 용융 금속 내의 용존 수소 농도를 측정하는데 유용하게 사용될 수 있다. 이 경우 측정가스환경(2)은 용융 금속 내부가 될 수 있고, 기준가스환경(1)은 외부 공기가 될 수 있다.
용융 금속의 경우 매우 고온이므로 각종 이물질이 산화되면서 일산화탄소(CO) 등의 환원성 가스가 발생할 수 있고, 이는 기준가스환경(1)에 속하지만 측정가스환경(2)에 가까운 영역에서 기준가스 농도의 교란을 일으킬 수 있다. 즉, 발생된 환원성 가스가 연통홀(50)을 통해 기준전극(23) 측으로 유입되면서 기준전극(23) 부근의 기준가스 농도가 기준가스환경(1)에서의 농도와 달라질 수 있다. 이는 측정가스 농도의 신뢰성 있는 검출을 방해할 수 있다.
그러나 본 발명의 제2 실시예에 따른 센서 모듈(100)은 연통홀(50)에 연장튜브(60)를 연결함으로써, 기준가스환경(1)과 측정가스환경(2)의 계면 부근에서 가스 교란이 발생하더라도 기준전극(23) 부근의 가스 농도에 영향을 미치지 않도록 할 수 있다. 이를 위해 연장튜브(60)는 연통홀(50)보다 높은 위치에 개구가 형성되어 있을 수 있으며, 그 개구의 높이는 핸들부(30)에 형성된 개구부(40)보다는 낮을 수 있다.
도 5는 본 발명의 제3 실시예에 따른 전기화학식 센서 모듈(100)의 개략적인 단면도이다. 도 5를 도 4와 함께 참조하면, 본 발명의 제3 실시예에 따른 전기화학식 센서 모듈(100)은 연통홀(50)이 측정가스환경(2)에 삽입되는 위치에 형성되는 점에서 본 발명의 제2 실시예에 따른 전기화학식 센서 모듈과 차이가 있다.
본 발명의 제3 실시예에 따르면, 연장튜브(60)가 연결되어 있으므로 연통홀(50)을 기준전극(23)에 보다 가까운 위치에 형성할 수 있으며, 이로 인해 기준전극(23) 부근의 기준가스 농도를 기준가스환경(1)의 기준가스 농도와 더욱 가깝게 할 수 있다. 연통홀(50)이 센서 모듈(100)을 측정가스환경(2)에 삽입하였을 때 측정가스환경(2) 내부에 삽입되는 위치에 형성되더라도, 연장튜브(60)에 의해 연장되어 기준가스환경(1)으로 개구되므로, 기준전극(23)이 측정가스환경(2)에 노출되지 않는다. 이러한 구조는 센서부(20)가 측정가스환경(2)에 삽입되는 깊이가 상대적으로 큰 경우에 유용하게 활용될 수 있다.
도 6은 본 발명에서 사용될 수 있는 센서부(20)를 예시한 것으로, 도 6(a)는 센서 몸체(21)가 산소이온전도체로 이루어진 경우이고, 도 6(b)는 센서 몸체(21)가 산소이온전도체(21a) 및 수소이온전도체(21b)의 접합으로 이루어진 경우이다.
도 6(a)의 센서부(20)는 산소센서 모듈에 사용될 수 있으며, 감지전극(22)과 기준전극(23) 사이의 기전력을 측정하여 식 (1)의 네른스트 식에 의해 측정가스환경(2) 내의 산소 농도를 검출할 수 있다.
도 6(b)의 센서부(20)는 수소센서 모듈에 사용될 수 있으며, 감지전극(22)과 기준전극(23) 사이의 기전력을 측정하면 다음의 식 (2)에 의해 측정가스환경(2) 내의 수소 농도를 검출할 수 있다.
E = Eo +A logPH2 (MG) + (A/2) logPO2(RG) ------------ (2)
위 식에서 Eo와 A는 온도에만 의존하는 상수이고, PH2(MG)는 측정가스환경(2) 내의 수소 가스 농도, PO2( RG )는 기준가스환경(1) 내의 산소 농도이다. 이때 기준가스환경(1)이 외부 공기인 경우, 공기 중의 산소 농도인 PO2( RG )는 0.21로 고정되므로 기전력(E) 측정을 통해 측정가스환경(2)의 수소 농도 PH2(MG)를 검출할 수 있다.
도 6(b)의 수소센서 모듈은 납, 알루미늄, 마그네슘 합금 등 용융금속 내의 수소 농도를 측정하는데 유용하게 활용될 수 있다. 이를 위해 감지전극(22)이 직접 용융금속에 접하지 않도록, 감지전극(22)을 가스투과성 보호캡(미도시)으로 덮은 구조를 사용할 수 있다. 열역학적 평형 상태에서는 감지전극(22) 측 수소가스 농도와 용융금속 내의 용존 수소가스 농도가 서로 비례관계에 있게 되므로, 그 비례 관계 식이나 데이터를 미리 실험적으로 도출하여 데이터베이스화 하게 되면 기전력(E) 측정을 통해 감지전극(22) 측 수소가스 농도를 측정함으로써 용융금속 내의 용존 수소가스 농도를 산출할 수 있게 된다. 또한, Sievert 법칙에 의하면 액체에 녹아있는 수소의 양은 기화된 수소분압의 제곱근에 비례하므로, 이러한 법칙을 이용하여 수소센서 모듈로 측정한 수소가스 농도로부터 용융금속 내의 용존 수소가스 농도를 이론적으로 계산하는 것도 가능하다.
도 7은 본 발명의 제1 실시예에 따른 전기화학식 수소센서 모듈(100)의 효과를 테스트한 결과이다. 도 7(a)는 연통홀(50)이 없는 도 2 구조의 센서 모듈, 도 7(b)는 연통홀(50)을 형성한 도 3 구조의 센서 모듈의 시간에 따른 기전력 변화를 측정한 결과이다. 센서부(20)는 도 6(b)와 같이 산소이온전도체(21a)와 수소이온전도체(21b)의 접합 구조를 사용하였으며, 수소센서 모듈(100)을 알루미늄 용탕에 삽입한 후 기전력을 측정하였다. 즉, 측정가스환경(2)은 알루미늄 용탕이고, 기준가스환경(1)은 외부 공기였다. 이때 연통홀(50)은 알루미늄 용탕에 삽입되지 않는 위치에 형성하였다.
도 7(a)와 같이, 연통홀(50)이 형성되지 않은 경우 기전력 값이 약 0.3V로 상대적으로 작은 수치가 측정되었고, 그 값도 시간에 따라 심하게 변동되었다. 반면, 연통홀(50)을 형성한 경우 도 7(b)와 같이 기전력 값도 1.0V 이상으로 상대적으로 컸으며, 그 값도 비교적 일정하게 유지되었다. 이로부터, 개구부(40)보다 기준전극(23)에 가까운 위치에 연통홀(50)을 형성함으로써 센서 모듈의 감도, 신뢰성 및 안정성이 크게 향상됨을 확인할 수 있다.
연통홀(50)의 유무에 따라 이러한 차이가 나는 것은 연통홀(50)이 없는 경우 기준전극(23) 측의 산소농도가 기준가스환경(1), 즉 공기 중의 산소농도에 비해 낮아진 것이 원인으로 판단된다. 기준전극(23) 부근에서 산소 농도가 변하는 이유로는 감지전극(22) 측의 수소가 센서 몸체(21) 자체의 결함, 또는 센서부(20)와 핸들부(30) 사이에 있을 수 있는 경로를 통해 확산되어 들어와서 기준전극(23) 측의 산소와 반응하거나, 기준전극(23) 내에 연소물질이 존재하여 산소를 소모하는 경우 등을 생각할 수 있다.
도 8은 본 발명의 제2 실시예에 따른 전기화학식 수소센서 모듈의 효과를 테스트한 결과로, 도 8(b)는 도 8(a)과 같이 연통홀(50)만 형성된 구조의 기전력 측정 결과, 도 8(d)는 도 8(c)와 같이 연통홀(50)에 연장튜브(60)를 연결한 구조의 기전력 측정 결과이다. 센서부(20)는 산소이온전도체(21a)와 수소이온전도체(21b)의 접합 구조를 사용하였으며, 수소센서 모듈(100)을 알루미늄 용탕에 삽입한 후 기전력을 측정하였다. 즉, 측정가스환경(2)은 알루미늄 용탕이고, 기준가스환경(1)은 외부 공기였다.
도 8의 테스트는 기준가스환경(1)과 측정가스환경(2) 계면에서의 가스 농도 교란의 효과를 테스트하기 위해, 측정 중간에 건조한 티슈를 알루미늄 용탕에 떨어뜨려 표면에서 환원성 가스가 발생되도록 하였다.
도 8(b)와 같이, 연장튜브(60)가 없이 연통홀(50)만 있는 경우 전체적으로 높은 기전력이 측정되었으나, 티슈를 떨어뜨려 연통홀(50) 부근에서 가스 농도 교란이 발생한 시점에서는 기전력 값이 불안정하게 흔들리는 현상이 발생하였다. 이는 센서 모듈(100) 밖에서 티슈가 연소되면서 발생된 환원성 가스가 연통홀(50)을 통해 기준전극(23) 쪽으로 유입되어 기준전극(23) 부근의 산소 농도를 교란시켰기 때문으로 판단된다. 반면, 연장튜브(60)를 연결한 경우는 도 8(d)와 같이 가스 농도 교란이 발생하여도 기전력 값이 안정적으로 유지됨이 확인되었다. 이러한 결과로부터, 연장튜브(60)를 형성할 경우 측정가스환경(2)과의 계면에서 여러 가지 원인으로 가스 농도 교란이 발생하더라도 센서 모듈의 측정값이 안정적으로 유지되도록 할 수 있음을 알 수 있다.
이상 한정된 실시예 및 도면을 참조하여 설명하였으나, 본 발명의 기술사상의 범위 내에서 다양한 변형 실시가 가능하다는 점은 통상의 기술자에게 자명할 것이다. 실시예에서는 측정가스를 산소 또는 수소로 설명하였으나, 본 발명은 고체전해질을 이용한 전기화학식 방식으로 측정할 수 있는 다양한 측정가스 검출에 활용할 수 있다. 따라서, 본 발명의 보호범위는 특허청구범위의 기재 및 그 균등 범위에 의해 정해져야 한다.

Claims (11)

  1. 기준가스환경에 포함된 기준가스를 이용하여 측정가스환경에 포함된 측정가스를 감지하기 위한 전기화학식 센서모듈로서,
    센서 몸체 및 상기 센서 몸체 양면에 각각 형성되는 감지전극 및 기준전극을 포함하는 센서부;
    일단부가 상기 센서부에 가스 밀봉 가능하게 직간접적으로 연결되고, 타단부에 개구부가 형성된 핸들부;
    를 포함하고,
    상기 개구부보다 상기 기준전극에 더 근접 배치되어 상기 기준가스환경과 상기 기준전극을 연통시키는 하나 이상의 연통홀;
    을 포함하는 것을 특징으로 하는 전기화학식 센서모듈.
  2. 제1항에 있어서,
    상기 연통홀과 상기 기준가스환경을 연결하는 연장튜브를 더 포함하는 것을 특징으로 하는 전기화학식 센서모듈.
  3. 제1항 또는 제2항에 있어서,
    상기 전기화학식 센서모듈은 상기 측정가스환경에 삽입되어 상기 측정가스를 감지하기 위한 것이고,
    상기 측정가스환경에 삽입될 때 상기 감지전극은 상기 측정가스환경에 노출되고 상기 개구부는 상기 기준가스환경에 노출되는 것을 특징으로 하는 전기화학식 센서모듈.
  4. 제3항에 있어서,
    상기 측정가스환경에 삽입될 때 상기 연통홀은 상기 측정가스환경에 삽입되지 않는 위치에 형성되는 것을 특징으로 하는 전기화학식 센서모듈.
  5. 제2항에 있어서,
    상기 전기화학식 센서모듈은 상기 측정가스환경에 삽입되어 상기 측정가스를 감지하기 위한 것이고,
    상기 측정가스환경에 삽입될 때, 상기 감지전극은 상기 측정가스환경에 노출되고 상기 개구부는 상기 기준가스환경에 노출되며 상기 연통홀은 상기 측정가스환경에 삽입되는 위치에 형성되는 것을 특징으로 하는 전기화학식 센서모듈.
  6. 제1항 또는 제2항에 있어서,
    상기 센서 몸체는 산소이온전도체를 포함하는 것을 특징으로 하는 전기화학식 센서 모듈.
  7. 제1항 또는 제2항에 있어서
    상기 센서 몸체는 산소이온전도체 및 수소이온전도체의 접합을 포함하는 것을 특징으로 하는 전기화학식 센서 모듈.
  8. 제7항에 있어서,
    용융금속 내의 용존 수소의 농도를 측정하기 위한 수소센서 모듈인 것을 특징으로 하는 전기화학식 센서 모듈.
  9. 제1항 또는 제2항에 있어서,
    상기 연통홀에는 가스 투과성 필터가 형성되는 것을 특징으로 하는 전기화학식 센서 모듈.
  10. 제2항에 있어서,
    상기 연장튜브는 일단이 상기 연통홀에 연결되고 타단이 상기 기준가스환경에 연결되는 개구로 형성되며,
    상기 개구는 상기 연통홀과 상기 개구부 사이의 높이에 형성되는 것을 특징으로 하는 전기화학식 센서 모듈.
  11. 제1항 또는 제2항에 있어서,
    상기 기준가스환경은 공기이고, 상기 기준가스는 산소 가스인 것을 특징으로 하는 전기화학식 센서 모듈.
PCT/KR2016/007286 2016-07-04 2016-07-06 기준가스를 사용하는 전기화학식 센서 모듈 WO2018008775A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160084098A KR20180004490A (ko) 2016-07-04 2016-07-04 기준가스를 사용하는 전기화학식 센서 모듈
KR10-2016-0084098 2016-07-04

Publications (1)

Publication Number Publication Date
WO2018008775A1 true WO2018008775A1 (ko) 2018-01-11

Family

ID=60912906

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/007286 WO2018008775A1 (ko) 2016-07-04 2016-07-06 기준가스를 사용하는 전기화학식 센서 모듈

Country Status (2)

Country Link
KR (1) KR20180004490A (ko)
WO (1) WO2018008775A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4113096A4 (en) * 2020-05-12 2024-04-03 PSS Inc. GAS DETECTION DEVICE WITH HOUSING WITH CONNECTION PASSAGE

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004294330A (ja) * 2003-03-27 2004-10-21 Toho Gas Co Ltd ジルコニア式酸素センサ
KR20060021555A (ko) * 2004-09-03 2006-03-08 한국과학기술연구원 용융탄산염 연료전지의 성능 평가를 위한 개선된 삼전극전지
KR20100122588A (ko) * 2009-05-13 2010-11-23 에스케이 텔레콤주식회사 Ui 제공 방법과 그를 위한 휴대용 단말기 및 컴퓨터로 읽을 수 있는 기록매체
JP5372804B2 (ja) * 2010-02-25 2013-12-18 東京窯業株式会社 水素センサ
KR20140054545A (ko) * 2012-10-29 2014-05-09 한국과학기술원 용탕 내 가스 측정용 가스센서 패키지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004294330A (ja) * 2003-03-27 2004-10-21 Toho Gas Co Ltd ジルコニア式酸素センサ
KR20060021555A (ko) * 2004-09-03 2006-03-08 한국과학기술연구원 용융탄산염 연료전지의 성능 평가를 위한 개선된 삼전극전지
KR20100122588A (ko) * 2009-05-13 2010-11-23 에스케이 텔레콤주식회사 Ui 제공 방법과 그를 위한 휴대용 단말기 및 컴퓨터로 읽을 수 있는 기록매체
JP5372804B2 (ja) * 2010-02-25 2013-12-18 東京窯業株式会社 水素センサ
KR20140054545A (ko) * 2012-10-29 2014-05-09 한국과학기술원 용탕 내 가스 측정용 가스센서 패키지

Also Published As

Publication number Publication date
KR20180004490A (ko) 2018-01-12

Similar Documents

Publication Publication Date Title
EP2833135B1 (en) Gas sensor
US5932079A (en) Electrochemical multigas sensor
WO2013137543A1 (ko) 고체 산소이온 전도체와 고체 수소이온 전도체의 접합구조를 가진 용융금속 내 수소 측정 센서
US4765880A (en) Air/fuel ratio sensor
EP3051282A1 (en) Gas sensor
US8414751B2 (en) Gas sensor with test gas generator
CN102636542B (zh) 气体传感器
SU1142783A1 (ru) Устройство дл анализа газа с гальваническими чейками на твердом электролите
GB2202053A (en) Apparatus for measuring combustible gas concentration in flue gas
US4784728A (en) Oxygen measuring apparatus and method with automatic temperature compensation
JP5174914B2 (ja) 定電位電解式酸素センサ
WO2018008775A1 (ko) 기준가스를 사용하는 전기화학식 센서 모듈
RU90907U1 (ru) Твердоэлектролитный датчик водорода для жидких и газовых сред
US5034107A (en) Method for sensing nitrous oxide
US6309534B1 (en) Apparatus and method for measuring the composition of gases using ionically conducting electrolytes
CN208187963U (zh) 一种用于与光声光谱仪器配套使用的氢气检测组件
US4428817A (en) Sensor cell structure for oxygen-combustibles gas mixture sensor
CN1152860A (zh) 血内气体探针
WO2022225109A1 (ko) Eis 측정 및 알고리즘 방식을 통한 전기화학 전극센서 트랜스듀서의 자동 교정 방법, 수명 진단 방법, 및 양불 진단 방법
US3188854A (en) Gas sampling means
US20020108870A1 (en) Nitrogen oxide sensor and method for detecting nitrogen oxides
WO2021230484A1 (ko) 연결 통로가 형성된 하우징을 포함하는 가스 감지 장치
WO2016072633A1 (ko) 질소 산화물 센서
US4455214A (en) Thin-film sensor apparatus
US20230358703A1 (en) Electrochemical sensor including a measuring cell and an oxidation component and process using such a sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16908217

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16908217

Country of ref document: EP

Kind code of ref document: A1