WO2015033833A1 - 硬化性組成物及び接続構造体 - Google Patents

硬化性組成物及び接続構造体 Download PDF

Info

Publication number
WO2015033833A1
WO2015033833A1 PCT/JP2014/072421 JP2014072421W WO2015033833A1 WO 2015033833 A1 WO2015033833 A1 WO 2015033833A1 JP 2014072421 W JP2014072421 W JP 2014072421W WO 2015033833 A1 WO2015033833 A1 WO 2015033833A1
Authority
WO
WIPO (PCT)
Prior art keywords
curable composition
group
particles
meth
less
Prior art date
Application number
PCT/JP2014/072421
Other languages
English (en)
French (fr)
Inventor
石澤 英亮
敬士 久保田
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to KR1020157022403A priority Critical patent/KR101596655B1/ko
Priority to JP2014543030A priority patent/JP5746797B1/ja
Priority to CN201480027694.6A priority patent/CN105209515B/zh
Publication of WO2015033833A1 publication Critical patent/WO2015033833A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/14Polycondensates modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08L71/12Polyphenylene oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys

Definitions

  • the present invention relates to a curable composition containing a curable compound and a connection structure.
  • a curable composition containing a curable compound is widely used in various applications such as electricity, electronics, architecture, and vehicles.
  • Patent Document 1 includes (A) a phenoxy resin having a structure represented by the following general formula (X), (B) an inorganic filler, and (C) a silane cup.
  • a curable composition comprising a ring agent is disclosed.
  • the content of the (C) silane coupling agent is 1% by mass or more and 10% by mass or less with respect to the entire curable composition.
  • n and m are integers of 1 or more and 20 or less independent of each other.
  • R1 to R19 are a hydrogen atom, a hydrocarbon group having 1 to 10 carbon atoms, or a halogen atom, and may be the same or different.
  • X is a single bond, a hydrocarbon group having 1 to 20 carbon atoms, —O—, —S—, —SO 2 — or —CO—.
  • conductive particles may be blended with the curable composition.
  • a curable composition containing conductive particles is called an anisotropic conductive material.
  • the anisotropic conductive material may be connected between a flexible printed circuit board and a glass substrate (FOG (Film on Glass)), or connected between a semiconductor chip and a flexible printed circuit board (COF ( (Chip on Film)), connection between a semiconductor chip and a glass substrate (COG (Chip on Glass)), connection between a flexible printed circuit board and a glass epoxy substrate (FOB (Film on Board)), and the like.
  • FOG Glass
  • COF Chip on Film
  • Patent Document 2 discloses a curing agent that generates free radicals by heating, a hydroxyl group-containing resin having a molecular weight of 10,000 or more, a phosphate ester, a radical polymerizable substance, a conductive material.
  • An anisotropic conductive material (curable composition) containing conductive particles is disclosed.
  • Specific examples of the hydroxyl group-containing resin include polymers such as polyvinyl butyral resin, polyvinyl formal, polyamide, polyester, phenol resin, epoxy resin, and phenoxy resin.
  • the storage stability of the curable composition may be low, or the curable composition may not be rapidly cured at a low temperature. .
  • An object of the present invention is to provide a curable composition which can improve storage stability and can improve fast curability at low temperatures. Moreover, the objective of this invention is providing the connection structure using the said curable composition.
  • the composition includes a radical polymerizable compound having a radical polymerizable group and a morpholine group, an organic peroxide, and a pH adjuster, and has a pH of 4 or more and 9 or less.
  • a composition is provided.
  • the pH of the pH adjuster is preferably less than 7, more preferably 4 or less.
  • the curable composition includes a phenoxy resin having a hydrolyzable group.
  • the phenoxy resin has the hydrolyzable group in a side chain.
  • the pH adjuster is a moisture curing accelerator that promotes moisture curing of the phenoxy resin.
  • the pH adjuster has reactivity with the hydrolyzable group in the phenoxy resin.
  • the curable composition is selected from the group consisting of an imide (meth) acrylate, a phenoxy resin having a (meth) acryloyl group, and a caprolactone-modified epoxy (meth) acrylate. At least one selected from the group consisting of
  • the curable composition is used for connection of an electronic component.
  • the curable composition includes conductive particles.
  • the conductive particles are conductive particles having at least an outer surface of solder.
  • the curable composition is used for electrical connection between electrodes.
  • a first connection target member a second connection target member, the first connection target member, and a connection portion connecting the second connection target members.
  • the first connection target member has a first electrode on the surface
  • the second connection target member has a second electrode on the surface
  • the curable composition contains conductive particles, and the first electrode and the second electrode are electrically connected by the conductive particles.
  • the curable composition according to the present invention includes a radical polymerizable compound having a radical polymerizable group and a morpholine group, an organic peroxide, and a pH adjuster, and the pH of the curable composition is 4 or more, 9 Since it is below, storage stability can be made favorable and quick curability at low temperature can be made good.
  • FIG. 1 is a front cross-sectional view schematically showing a connection structure using a curable composition according to an embodiment of the present invention.
  • FIG. 2 is a front cross-sectional view schematically showing an enlarged connection portion between conductive particles and electrodes in the connection structure shown in FIG. 1.
  • FIG. 3 is a cross-sectional view showing an example of conductive particles that can be used in the curable composition according to an embodiment of the present invention.
  • FIG. 4 is a cross-sectional view showing a modification of the conductive particles.
  • FIG. 5 is a cross-sectional view showing another modified example of conductive particles.
  • the curable composition according to the present invention includes a radical polymerizable compound having a radical polymerizable group and a morpholine group (hereinafter sometimes referred to as a radical polymerizable compound (A)), an organic peroxide, and a pH. And a regulator.
  • the pH of the curable composition according to the present invention is 4 or more and 9 or less.
  • the pH of the radically polymerizable compound (A) having a morpholine group is relatively high due to the morpholine group, the pH of the curable composition can be relatively lowered by using a pH adjuster. It can be:
  • the curable composition according to the present invention has the above-described configuration, so that the storage stability can be improved, and the quick curability at low temperature can be improved.
  • the pH of the curable composition according to the present invention is preferably 5 or more, more preferably 6 or more, preferably less than 9, more preferably 8 or less.
  • the pH of the curable composition is not less than the above lower limit and not more than the above upper limit, the low temperature curability and storage stability of the curable composition are further improved.
  • the pH of the curable composition is measured by dissolving 1 g of the curable composition in 10 g of pure water and then using a pH meter (“D-72” manufactured by HORIBA) and an electrode TopH electrode 9615-10D. Can do.
  • the above radical polymerizable compound (A) can be addition-polymerized by radicals and has a radical polymerizable group.
  • the radical polymerizable compound (A) is a thermosetting compound.
  • radical polymerizable group examples include a group containing an unsaturated double bond.
  • Specific examples of the radical polymerizable group include allyl group, isopropenyl group, maleoyl group, styryl group, vinylbenzyl group, (meth) acryloyl group and vinyl group.
  • the (meth) acryloyl group means an acryloyl group and a methacryloyl group.
  • the radical polymerizable group preferably has a vinyl group, and more preferably a (meth) acryloyl group.
  • the radical polymerizable group is a (meth) acryloyl group
  • the radical polymerizable group has a vinyl group.
  • the compound (A) is preferably a radical polymerizable compound having a (meth) acryloyl group and a morpholine group.
  • the morpholine group is a group represented by the following formula (1a).
  • the radical polymerizable compound (A) is a radical polymerizable compound represented by the following formula (1). It is preferable.
  • R represents a hydrogen atom or a methyl group.
  • the pH of the radical polymerizable compound (A) is preferably 9 or more, more preferably 10 or more, preferably 13 or less, more preferably 12 or less.
  • the pH of the radical polymerizable compound (A) was determined by dissolving 1 g of the radical polymerizable compound (A) in 10 g of pure water, then measuring a pH meter (“D-72” manufactured by HORIBA), electrode TopH electrode 9615-10D. Can be measured.
  • the organic peroxide acts as a thermal radical polymerization initiator for thermosetting the radical polymerizable compound (A).
  • A radical polymerizable compound
  • the said organic peroxide only 1 type may be used and 2 or more types may be used together.
  • organic peroxide examples include diacyl peroxide compounds, peroxy ester compounds, hydroperoxide compounds, peroxydicarbonate compounds, peroxyketal compounds, dialkyl peroxide compounds, and ketone peroxide compounds.
  • diacyl peroxide compound examples include benzoyl peroxide, diisobutyryl peroxide, di (3,5,5-trimethylhexanoyl) peroxide, dilauroyl peroxide, and disuccinic acid peroxide.
  • peroxyester compounds include cumyl peroxyneodecanoate, 1,1,3,3-tetramethylbutylperoxyneodecanoate, tert-hexylperoxyneodecanoate, and tert-butylperoxyneo.
  • hydroperoxide compound examples include cumene hydroperoxide and p-menthane hydroperoxide.
  • peroxydicarbonate compound examples include di-sec-butyl peroxydicarbonate, di (4-t-butylcyclohexyl) peroxydicarbonate, di-n-propyl peroxydicarbonate, diisopropyl peroxycarbonate, and di- (2-ethylhexyl) peroxycarbonate and the like.
  • Other examples of the peroxide include methyl ethyl ketone peroxide, potassium persulfate, and 1,1-bis (tert-butylperoxy) -3,3,5-trimethylcyclohexane.
  • the decomposition temperature for obtaining the 10-hour half-life of the organic peroxide is preferably 30 ° C. or higher, more preferably 40 ° C. or higher, preferably 90 ° C. or lower, more preferably 80 ° C. or lower.
  • the decomposition temperature is 30 ° C. or higher, the storage stability of the curable composition is further enhanced.
  • the decomposition temperature is not more than the upper limit, the curable composition is effectively thermally cured.
  • the content of the organic peroxide is preferably 0.1 parts by weight or more, more preferably 1 part by weight or more, preferably 10 parts by weight or less, more preferably 100 parts by weight of the radical polymerizable compound (A). Is 5 parts by weight or less.
  • the content of the organic peroxide is not less than the above lower limit and not more than the above upper limit, the low temperature curability and storage stability of the curable composition are further improved.
  • the pH adjusting agent is not particularly limited, and an appropriate type is selected so that the pH of the curable composition is 4 or more and 9 or less.
  • an appropriate type is selected so that the pH of the curable composition is 4 or more and 9 or less.
  • the said pH adjuster only 1 type may be used and 2 or more types may be used together.
  • the pH of the pH adjuster is preferably less than 7, more preferably 5 or less, even more preferably 4 or less, and still more preferably 3 or less.
  • the pH of the pH adjusting agent is not more than the above upper limit, the low temperature curability of the curable composition can be further improved, and radical reaction during storage (before thermosetting) of the curable composition can be achieved. It can suppress, and the storage stability of the said curable composition can be improved further.
  • the pH of the said pH adjuster is below the said upper limit, when using the phenoxy resin (A) mentioned later, the moisture hardening of the said curable composition can be accelerated
  • the lower limit of the pH of the pH adjuster is not particularly limited, but the pH of the pH adjuster is preferably 1 or more, more preferably 2 or more.
  • the pH of the pH adjuster is preferably lower than the pH of the radical polymerizable compound (A), more preferably 1 or more, and even more preferably 3 or more.
  • the pH of the pH adjusting agent can be measured by dissolving 1 g of the pH adjusting agent in 10 g of pure water, and then using a pH meter (“D-72” manufactured by HORIBA) and an electrode TopH electrode 9615-10D. .
  • the pH adjuster is preferably a phosphoric acid compound, and preferably has a (meth) acryloyl group.
  • the phosphoric acid compound examples include phosphoric acid (meth) acrylate, phosphoric acid ester compound, and phosphorous acid ester compound.
  • Phosphoric acid (meth) acrylate is preferable from the viewpoint of effectively promoting moisture curing and from the viewpoint of further rapidly curing at low temperature and further enhancing the storage stability of the curable composition.
  • the pH adjuster is preferably a moisture curing accelerator that promotes moisture curing of the phenoxy resin (A) described later.
  • the curable composition according to the present invention is preferably curable by moisture.
  • the pH adjuster include “EBECRYL168” manufactured by Daicel Ornex, and “Light Acrylate P-1A (N)”, “Light Ester P-1M”, and “Light Ester P-2M” manufactured by Kyoeisha Chemical Co., Ltd. Is mentioned.
  • the pH adjuster preferably promotes the moisture curing of the phenoxy resin (A) by promoting hydrolysis of the phenoxy resin (A) described later.
  • the pH adjuster preferably has reactivity with the hydrolyzable group in the phenoxy resin (A).
  • the content of the pH adjusting agent is appropriately adjusted in consideration of the pH of the curable composition.
  • the content of the pH adjuster is preferably 0.1 parts by weight or more, more preferably 1 part by weight or more, preferably 10 parts by weight or less, more preferably 100 parts by weight of the radical polymerizable compound (A). 5 parts by weight or less.
  • the content of the pH adjusting agent is not less than the above lower limit and not more than the above upper limit, the low temperature curability and storage stability of the curable composition are further improved.
  • the content of the pH adjuster is preferably 0.1 parts by weight or more, more preferably 1 part by weight or more, preferably 15 parts by weight or less, more preferably 100 parts by weight of the phenoxy resin (A) described later. Is 5 parts by weight or less.
  • the content of the pH adjusting agent is not less than the above lower limit and not more than the above upper limit, the curable composition is effectively moisture-cured.
  • the curable composition contains a phenoxy resin having a hydrolyzable group (hereinafter sometimes referred to as a phenoxy resin (A)). It is preferable to include. From the viewpoint of further improving the adhesiveness of the cured product under high temperature and high humidity, the phenoxy resin (A) preferably has a hydrolyzable group in the side chain. By using the phenoxy resin (A), it is possible to obtain a curable composition that gives a cured product having higher adhesion under high temperature and high humidity.
  • a phenoxy resin (A) preferably has a hydrolyzable group in the side chain.
  • phenoxy resin includes both a phenoxy resin obtained by a one-step method and a phenoxy resin obtained by a multi-step method.
  • examples of the phenoxy resin (A) include polyhydroxy ethers synthesized from bisphenols and epichlorohydrin, and polyhydroxy ethers synthesized from an epoxy compound and a diol.
  • examples of the phenoxy resin (A) include a resin obtained by reacting epichlorohydrin with a divalent phenol compound, and a resin obtained by reacting a divalent epoxy compound with a divalent phenol compound.
  • the hydrolyzable group is preferably reactive with a hydroxyl group.
  • Specific examples of the hydrolyzable group include an alkoxysilyl group and an alkoxy titanate group. From the viewpoint of effectively increasing the adhesiveness under high temperature and high humidity, the hydrolyzable group is preferably an alkoxysilyl group.
  • the alkoxysilyl group is preferably a group represented by the following formula (11).
  • R1 and R2 each represent an alkyl group having 1 to 5 carbon atoms, n represents 2 or 3, m represents 0 or 1, and m + n represents 3.
  • R1 and R2 are each preferably a methyl group or an ethyl group.
  • the phenoxy resin (A) preferably has an epoxy group or a (meth) acryloyl group at the terminal.
  • high temperature and high humidity resistance can be expressed by reacting the functional groups at the ends or reacting with the reactive compound added to the phenoxy resin (A).
  • the phenoxy resin (A) preferably has an epoxy group at the end, and preferably has a (meth) acryloyl group at the end.
  • the phenoxy resin (A) has a reactive functional group that reacts with a silane coupling agent and does not have a hydrolyzable group in the side chain (hereinafter, referred to as a phenoxy resin (a)).
  • a silane coupling agent are preferably obtained by introducing a hydrolyzable group derived from the silane coupling agent into the side chain.
  • the reactive functional group in the phenoxy resin (a) include an epoxy group and a hydroxyl group.
  • the reactive functional group is preferably a hydroxyl group.
  • silane coupling agent examples include silane coupling agents having an isocyanate group, silane coupling agents having an epoxy group, and silane coupling agents having an amino group. Among these, a silane coupling agent having an isocyanate group is preferable.
  • the weight average molecular weight of the phenoxy resin (A) is preferably 5000 or more, more preferably 8000 or more, preferably 150,000 or less, more preferably 50,000 or less,
  • the number average molecular weight of the phenoxy resin (A) is preferably 2000 or more, more preferably 3000 or more, preferably 50,000 or less, more preferably 20,000 or less.
  • the phenoxy resin (A) preferably has a skeleton derived from an aliphatic diol such as 1,6-hexanediol. Thereby, peeling adhesive force can be improved further.
  • the content of the phenoxy resin (A) is preferably 10 parts by weight or more, more preferably 50 parts by weight or more, preferably 300 parts by weight or less, more preferably 100 parts by weight of the radical polymerizable compound (A). 200 parts by weight or less.
  • the content of the phenoxy resin (A) is not less than the above lower limit and not more than the above upper limit, the balance between moisture curing and heat curing of the curable composition is further improved.
  • the curable composition includes an imide (meth) acrylate, a phenoxy resin having a (meth) acryloyl group, a caprolactone-modified epoxy (meth) acrylate, and an aliphatic urethane (meth). It is preferable to include at least one selected from the group consisting of acrylates, and at least one selected from the group consisting of imide (meth) acrylates, phenoxy resins having (meth) acryloyl groups and caprolactone-modified epoxy (meth) acrylates It is more preferable to contain. These are included in the radical polymerizable compound.
  • the total content of the imide (meth) acrylate, the phenoxy resin having the (meth) acryloyl group, and the caprolactone-modified epoxy (meth) acrylate is preferably 5 parts by weight or more.
  • the amount is preferably 10 parts by weight or more, more preferably 20 parts by weight or more, preferably 80 parts by weight or less, more preferably 60 parts by weight or less.
  • a phenoxy resin having a (meth) acryloyl group and a caprolactone-modified epoxy (meth) acrylate it is preferable to use at least one of a phenoxy resin having a (meth) acryloyl group and a caprolactone-modified epoxy (meth) acrylate.
  • the said curable composition may contain the phenoxy resin which has a (meth) acryloyl group, and may contain the caprolactone modified epoxy (meth) acrylate.
  • the said phenoxy resin which has the said (meth) acryloyl group, and the said caprolactone modified epoxy (meth) acrylate only 1 type may be used, respectively, and 2 or more types may be used together.
  • the content of the phenoxy resin having the (meth) acryloyl group is preferably 0 parts by weight (unused) or more, more preferably 20 parts by weight or more, and still more preferably with respect to 100 parts by weight of the radical polymerizable compound (A). Is 30 parts by weight or more, preferably 150 parts by weight or less, more preferably 100 parts by weight or less.
  • the content of the caprolactone-modified epoxy (meth) acrylate is preferably 0 part by weight (unused) or more, more preferably 10 parts by weight or more, and further preferably 20 parts by weight or more with respect to 100 parts by weight of the radical polymerizable compound. , Preferably 100 parts by weight or less, more preferably 60 parts by weight or less.
  • the adhesiveness of the cured product and the high temperature and high humidity of the cured product is further increased.
  • the above cured product may be adhered to polyimide.
  • the curable composition preferably contains an imide (meth) acrylate.
  • the said imide (meth) acrylate only 1 type may be used and 2 or more types may be used together.
  • the content of the imide (meth) acrylate is preferably 0 part by weight (unused) or more, more preferably 15 parts by weight or more, and still more preferably 30 parts by weight with respect to 100 parts by weight of the radical polymerizable compound (A). Above, preferably 100 parts by weight or less, more preferably 70 parts by weight or less.
  • the content of the imide (meth) acrylate is not less than the above lower limit and not more than the above upper limit, the adhesiveness of the cured product and the adhesiveness of the cured product under high temperature and high humidity are further increased, and particularly the cured product against polyimide. The adhesiveness is further increased.
  • the curable composition preferably contains conductive particles.
  • the conductive particles include conductive particles formed entirely of a conductive material, and conductive particles having base material particles and a conductive layer disposed on the surface of the base material particles. It is done.
  • the conductive particles are preferably conductive particles having an outer surface that is solder.
  • the adhesion between the connection part derived from the solder and formed by curing the curable composition and the connection target member connected by the connection part is further enhanced.
  • solder particles particles including a base particle and a solder layer disposed on the surface of the base particle can be used.
  • solder particles it is preferable to use solder particles.
  • FIG. 3 is a cross-sectional view showing an example of conductive particles that can be used in the curable composition according to one embodiment of the present invention.
  • the solder particles are preferably conductive particles 21 that are solder particles.
  • the conductive particles 21 are formed only by solder.
  • the conductive particles 21 do not have base particles in the core and are not core-shell particles.
  • both a center part and an outer surface are formed with the solder.
  • particles including base particles and a solder layer disposed on the surface of the base particles may be used.
  • the conductive particle 1 includes a base particle 2 and a conductive layer 3 disposed on the surface of the base particle 2.
  • the conductive layer 3 covers the surface of the base particle 2.
  • the conductive particle 1 is a coated particle in which the surface of the base particle 2 is coated with the conductive layer 3.
  • the conductive layer 3 has a second conductive layer 3A and a solder layer 3B (first conductive layer) disposed on the surface of the second conductive layer 3A.
  • the conductive particle 1 includes a second conductive layer 3A between the base particle 2 and the solder layer 3B. Therefore, the conductive particles 1 include the base particle 2, the second conductive layer 3A disposed on the surface of the base particle 2, and the solder layer 3B disposed on the surface of the second conductive layer 3A. Is provided.
  • the conductive layer 3 may have a multilayer structure, or may have a laminated structure of two or more layers.
  • the conductive layer 3 in the conductive particle 1 has a two-layer structure.
  • the conductive particles 11 may have a solder layer 12 as a single conductive layer.
  • the conductive particles 11 include base material particles 2 and a solder layer 12 disposed on the surface of the base material particles 2.
  • the solder layer 12 may be disposed on the surface of the base particle 2 so as to contact the base particle 2.
  • the conductive particles 1 and 11 are more preferable among the conductive particles 1, 11 and 21 because the thermal conductivity of the conductive material tends to be further lowered.
  • conductive particles including base particles and a solder layer disposed on the surface of the base particles it is easy to further reduce the thermal conductivity of the conductive material.
  • the substrate particles include resin particles, inorganic particles excluding metal particles, organic-inorganic hybrid particles, and metal particles.
  • the base particles are preferably base particles excluding metal, and are resin particles, inorganic particles excluding metal particles, or organic-inorganic hybrid particles.
  • the substrate particles may be copper particles.
  • the base material particles are preferably resin particles formed of a resin.
  • electroconductive particle is compressed by crimping
  • the substrate particles are resin particles, the conductive particles are easily deformed during the pressure bonding, and the contact area between the conductive particles and the electrode is increased. For this reason, the conduction
  • the resin for forming the resin particles include polyolefin resins such as polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyvinylidene chloride, polyisobutylene, and polybutadiene; acrylic resins such as polymethyl methacrylate and polymethyl acrylate; Alkylene terephthalate, polycarbonate, polyamide, phenol formaldehyde resin, melamine formaldehyde resin, benzoguanamine formaldehyde resin, urea formaldehyde resin, phenol resin, melamine resin, benzoguanamine resin, urea resin, epoxy resin, unsaturated polyester resin, saturated polyester resin, polyethylene terephthalate, Polysulfone, polyphenylene oxide, polyacetal, polyimide, polyamide Bromide, polyether ether ketone, polyether sulfone, divinyl benzene polymer, and diviny
  • polyolefin resins such as polyethylene, polypropylene,
  • the divinylbenzene copolymer examples include divinylbenzene-styrene copolymer and divinylbenzene- (meth) acrylic acid ester copolymer. Since the hardness of the resin particles can be easily controlled within a suitable range, the resin for forming the resin particles is a polymer obtained by polymerizing one or more polymerizable monomers having an ethylenically unsaturated group. It is preferably a coalescence.
  • the monomer having the ethylenically unsaturated group may be a non-crosslinkable monomer or a crosslinkable monomer. And a polymer.
  • non-crosslinkable monomer examples include styrene monomers such as styrene and ⁇ -methylstyrene; carboxyl group-containing monomers such as (meth) acrylic acid, maleic acid, and maleic anhydride; (Meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, cetyl (meth) acrylate, stearyl (meth) acrylate, cyclohexyl ( Alkyl (meth) acrylates such as meth) acrylate and isobornyl (meth) acrylate; acids such as 2-hydroxyethyl (meth) acrylate, glycerol (meth) acrylate, polyoxyethylene (meth) acrylate and glycidyl (meth) acrylate Atom
  • crosslinkable monomer examples include tetramethylolmethane tetra (meth) acrylate, tetramethylolmethane tri (meth) acrylate, tetramethylolmethane di (meth) acrylate, trimethylolpropane tri (meth) acrylate, and dipenta Erythritol hexa (meth) acrylate, dipentaerythritol penta (meth) acrylate, glycerol tri (meth) acrylate, glycerol di (meth) acrylate, (poly) ethylene glycol di (meth) acrylate, (poly) propylene glycol di (meth) Polyfunctional (meth) acrylates such as acrylate, (poly) tetramethylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate; triallyl (iso) cyanure And silane
  • examples of inorganic substances for forming the substrate particles include silica and carbon black.
  • the inorganic substance is preferably not a metal.
  • the particles formed from the silica are not particularly limited. For example, after forming a crosslinked polymer particle by hydrolyzing a silicon compound having two or more hydrolyzable alkoxysilyl groups, firing may be performed as necessary. The particle
  • examples of the organic / inorganic hybrid particles include organic / inorganic hybrid particles formed of a crosslinked alkoxysilyl polymer and an acrylic resin.
  • the substrate particles are metal particles
  • examples of the metal for forming the metal particles include silver, copper, nickel, silicon, gold, and titanium.
  • the metal particles are preferably copper particles.
  • the substrate particles are preferably not metal particles.
  • the melting point of the substrate particles is preferably higher than the melting point of the solder layer.
  • the melting point of the substrate particles is preferably higher than 160 ° C, more preferably higher than 300 ° C, still more preferably higher than 400 ° C, and particularly preferably higher than 450 ° C.
  • the melting point of the substrate particles may be less than 400 ° C.
  • the melting point of the substrate particles may be 160 ° C. or less.
  • the softening point of the substrate particles is preferably 260 ° C. or higher.
  • the softening point of the substrate particles may be less than 260 ° C.
  • the conductive particles may have a single solder layer.
  • the conductive particles may have a plurality of conductive layers (solder layer, second conductive layer). That is, in the conductive particles, two or more conductive layers may be stacked.
  • the solder particles may be particles formed of a plurality of layers.
  • the solder for forming the solder layer and the solder for forming solder particles are preferably low melting point metals having a melting point of 450 ° C. or lower.
  • the solder layer is preferably a low melting point metal layer having a melting point of 450 ° C. or lower.
  • the low melting point metal layer is a layer containing a low melting point metal.
  • the solder particles are preferably low melting point metal particles having a melting point of 450 ° C. or lower.
  • the low melting point metal particles are particles containing a low melting point metal.
  • the low melting point metal is a metal having a melting point of 450 ° C. or lower.
  • the melting point of the low melting point metal is preferably 300 ° C. or lower, more preferably 160 ° C. or lower.
  • the solder layer and the solder particles preferably contain tin.
  • the tin content is preferably 30% by weight or more, more preferably 40% by weight or more, and even more preferably 70% by weight. Above, particularly preferably 90% by weight or more.
  • the content of tin in the solder layer and the solder particles is equal to or higher than the lower limit, the connection reliability between the conductive particles and the electrodes is further enhanced.
  • the tin content is determined using a high-frequency inductively coupled plasma emission spectrometer (“ICP-AES” manufactured by Horiba, Ltd.) or a fluorescent X-ray analyzer (“EDX-800HS” manufactured by Shimadzu). It can be measured.
  • ICP-AES high-frequency inductively coupled plasma emission spectrometer
  • EDX-800HS fluorescent X-ray analyzer
  • solder particles and the conductive particles having the solder on the conductive surface are used, so that the solder is melted and joined to the electrodes, and the solder conducts between the electrodes. For example, since the solder and the electrode are not in point contact but in surface contact, the connection resistance is lowered.
  • the use of conductive particles having solder on the conductive surface increases the bonding strength between the solder and the electrode. As a result, peeling between the solder and the electrode is further less likely to occur, and conduction reliability and connection reliability are improved. Effectively high.
  • the low melting point metal constituting the solder layer and the solder particles is not particularly limited.
  • the low melting point metal is preferably tin or an alloy containing tin.
  • the alloy include a tin-silver alloy, a tin-copper alloy, a tin-silver-copper alloy, a tin-bismuth alloy, a tin-zinc alloy, and a tin-indium alloy.
  • the low melting point metal is preferably tin, a tin-silver alloy, a tin-silver-copper alloy, a tin-bismuth alloy, or a tin-indium alloy because of its excellent wettability with respect to the electrode. More preferred are a tin-bismuth alloy and a tin-indium alloy.
  • the material constituting the solder is preferably a filler material having a liquidus of 450 ° C. or lower based on JIS Z3001: welding terms.
  • the composition of the solder include a metal composition containing zinc, gold, silver, lead, copper, tin, bismuth, indium and the like. Of these, a tin-indium system (117 ° C. eutectic) or a tin-bismuth system (139 ° C. eutectic) which is low-melting and lead-free is preferable. That is, the solder preferably does not contain lead, and is preferably a solder containing tin and indium or a solder containing tin and bismuth.
  • the solder layer and the solder particles are nickel, copper, antimony, aluminum, zinc, iron, gold, titanium, phosphorus, germanium, tellurium, cobalt, bismuth, Metals such as manganese, chromium, molybdenum, and palladium may be included.
  • the solder layer and the solder particles preferably contain nickel, copper, antimony, aluminum, or zinc.
  • the content of these metals for increasing the bonding strength is 100% by weight of solder (100% by weight of solder layer or 100% by weight of solder particles). %), Preferably 0.0001% by weight or more, preferably 1% by weight or less.
  • the melting point of the second conductive layer is preferably higher than the melting point of the solder layer.
  • the melting point of the second conductive layer is preferably above 160 ° C, more preferably above 300 ° C, even more preferably above 400 ° C, even more preferably above 450 ° C, particularly preferably above 500 ° C, most preferably Preferably it exceeds 600 degreeC. Since the solder layer has a low melting point, it melts during conductive connection.
  • the second conductive layer is preferably not melted at the time of conductive connection.
  • the conductive particles are preferably used after melting solder, preferably used after melting the solder layer, and used without melting the second conductive layer while melting the solder layer. It is preferred that Since the melting point of the second conductive layer is higher than the melting point of the solder layer, only the solder layer can be melted without melting the second conductive layer at the time of conductive connection.
  • the absolute value of the difference between the melting point of the solder layer and the melting point of the second conductive layer is preferably more than 0 ° C, more preferably 5 ° C or more, still more preferably 10 ° C or more, and further preferably 30 ° C. Above, particularly preferably 50 ° C. or higher, most preferably 100 ° C. or higher.
  • the second conductive layer preferably contains a metal.
  • the metal constituting the second conductive layer is not particularly limited. Examples of the metal include gold, silver, copper, platinum, palladium, zinc, lead, aluminum, cobalt, indium, nickel, chromium, titanium, antimony, bismuth, germanium, tungsten, molybdenum and cadmium, and alloys thereof. Is mentioned. Further, tin-doped indium oxide (ITO) may be used as the metal. As for the said metal, only 1 type may be used and 2 or more types may be used together.
  • ITO tin-doped indium oxide
  • the second conductive layer is preferably a nickel layer, a palladium layer, a copper layer or a gold layer, more preferably a nickel layer or a gold layer, and even more preferably a copper layer.
  • the conductive particles preferably have a nickel layer, a palladium layer, a copper layer, or a gold layer, more preferably have a nickel layer or a gold layer, and still more preferably have a copper layer.
  • the average particle diameter of the conductive particles is preferably 0.1 ⁇ m or more, more preferably 1 ⁇ m or more, preferably 100 ⁇ m or less, more preferably 80 ⁇ m or less, still more preferably 50 ⁇ m or less, and particularly preferably 40 ⁇ m or less.
  • the average particle diameter of the conductive particles is not less than the above lower limit and not more than the above upper limit, the contact area between the conductive particles and the electrode is sufficiently large, and aggregated conductive particles are formed when the conductive layer is formed. It becomes difficult. Moreover, it becomes a size suitable for the conductive particles in the conductive material, the distance between the electrodes connected via the conductive particles does not become too large, and the conductive layer is difficult to peel from the surface of the base particle.
  • the particle diameter of the conductive particles indicates a number average particle diameter.
  • the average particle diameter of the conductive particles is determined by observing 50 arbitrary conductive particles with an electron microscope or an optical microscope and calculating an average value.
  • the thickness of the solder layer is preferably 0.005 ⁇ m or more, more preferably 0.01 ⁇ m or more, preferably 10 ⁇ m or less, more preferably 1 ⁇ m or less, and even more preferably 0.3 ⁇ m or less.
  • the thickness of the solder layer is not less than the above lower limit and not more than the above upper limit, sufficient conductivity is obtained, and the conductive particles do not become too hard, and the conductive particles are sufficiently deformed at the time of connection between the electrodes. .
  • the thinner the solder layer is the easier it is to lower the thermal conductivity of the conductive material.
  • the thickness of the solder layer is preferably 4 ⁇ m or less, more preferably 2 ⁇ m or less.
  • the thickness of the second conductive layer is preferably 0.005 ⁇ m or more, more preferably 0.01 ⁇ m or more, preferably 10 ⁇ m or less, more preferably 1 ⁇ m or less, and still more preferably 0.3 ⁇ m or less.
  • the thickness of the second conductive layer is not less than the above lower limit and not more than the above upper limit, the connection resistance between the electrodes is further reduced.
  • the thinner the second conductive layer is, the easier it is to reduce the thermal conductivity of the conductive material. From the viewpoint of sufficiently reducing the thermal conductivity of the conductive material, the thickness of the second conductive layer is preferably 3 ⁇ m or less, more preferably 1 ⁇ m or less.
  • the thickness of the solder layer is preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less.
  • the conductive particles have a conductive layer different from the solder layer and the other conductive layer (such as the second conductive layer) as the conductive layer, the solder layer and the other conductive layer different from the solder layer
  • the total thickness is preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less.
  • the curable composition preferably includes a conductive material and includes the conductive particles.
  • the conductive material is preferably an anisotropic conductive material.
  • the conductive material is preferably used for electrical connection of electrodes.
  • the conductive material is preferably a conductive material for circuit connection.
  • the conductive material can be used as a conductive paste and a conductive film.
  • the conductive material is a conductive film
  • a film that does not include conductive particles may be laminated on a conductive film that includes conductive particles.
  • the content of the conductive particles is preferably 0.1% by weight or more, more preferably 1% by weight or more, still more preferably 2% by weight or more, and further preferably 10% by weight. More preferably, 20% by weight or more, particularly preferably 25% by weight or more, most preferably 30% by weight or more, preferably 80% by weight or less, more preferably 60% by weight or less, still more preferably 50% by weight or less, Particularly preferred is 45% by weight or less, and most preferred is 35% by weight or less.
  • the content of the conductive particles is not less than the above lower limit and not more than the above upper limit, it is easy to arrange many conductive particles between the electrodes, and the conduction reliability is further enhanced. Moreover, since content of a sclerosing
  • the curable composition preferably contains a flux.
  • the flux is not particularly limited.
  • a flux generally used for soldering or the like can be used.
  • the flux include zinc chloride, a mixture of zinc chloride and an inorganic halide, a mixture of zinc chloride and an inorganic acid, a molten salt, phosphoric acid, a derivative of phosphoric acid, an organic halide, hydrazine, an organic acid, and pine resin. Is mentioned.
  • As for the said flux only 1 type may be used and 2 or more types may be used together.
  • Examples of the molten salt include ammonium chloride.
  • Examples of the organic acid include lactic acid, citric acid, stearic acid, glutamic acid, and glutaric acid.
  • Examples of the pine resin include activated pine resin and non-activated pine resin.
  • the flux is preferably an organic acid having two or more carboxyl groups, pine resin.
  • the flux may be an organic acid having two or more carboxyl groups, or pine resin.
  • the above rosins are rosins whose main component is abietic acid.
  • the flux is preferably rosins, and more preferably abietic acid. By using this preferable flux, the conduction reliability between the electrodes is further enhanced.
  • the flux may be dispersed in the curable composition or may adhere to the surface of conductive particles or solder particles.
  • the content of the flux is 0% by weight (unused) or more, preferably 0.5% by weight or more, preferably 30% by weight or less, more preferably 25% by weight or less.
  • the curable composition may not contain a flux. When the flux content is not less than the above lower limit and not more than the above upper limit, it becomes more difficult to form an oxide film on the surface of the solder and the electrode, and the oxide film formed on the surface of the solder and the electrode is more effective. Can be removed.
  • the curable composition may be, for example, a filler, an extender, a softener, a plasticizer, a polymerization catalyst, a curing catalyst, a colorant, an antioxidant, a heat stabilizer, a light stabilizer, and an ultraviolet absorber as necessary.
  • various additives such as a lubricant, an antistatic agent and a flame retardant may be included.
  • connection structure can be obtained by connecting a connection object member using the curable composition mentioned above.
  • connection structure includes a first connection target member, a second connection target member, and a connection portion connecting the first connection target member and the second connection target member, and the connection The part is formed by curing the curable composition described above.
  • FIG. 1 is a front sectional view schematically showing a connection structure using a curable composition according to an embodiment of the present invention.
  • the curable composition used here includes conductive particles 1. Instead of the conductive particles 1, the conductive particles 11 or the conductive particles 21 may be used. Moreover, you may use electroconductive particle other than electroconductive particle 1,11,21.
  • a connection structure 51 shown in FIG. 1 is a connection that connects a first connection target member 52, a second connection target member 53, and the first connection target member 52 and the second connection target member 53. Part 54.
  • the first connection target member 52 has a plurality of first electrodes 52a on the surface (upper surface).
  • the second connection target member 53 has a plurality of second electrodes 53a on the surface (lower surface).
  • the first electrode 52 a and the second electrode 53 a are electrically connected by one or a plurality of conductive particles 1. Therefore, the first and second connection target members 52 and 53 are electrically connected by the conductive particles 1.
  • FIG. 2 is an enlarged front sectional view showing a connection portion between the conductive particle 1 and the first and second electrodes 52a and 53a in the connection structure 51 shown in FIG.
  • the connection structure 51 after the solder layer 3 ⁇ / b> B in the conductive particles 1 is melted, the melted solder layer portion 3 ⁇ / b> Ba is in sufficient contact with the first and second electrodes 52 a and 53 a. That is, by using the conductive particles 1 whose surface layer is the solder layer 3B, compared to the case where the conductive particles whose surface layer is a metal such as nickel, gold or copper are used, the conductive particles The contact area between 1 and the first and second electrodes 52a and 53a is increased.
  • electrical_connection reliability and connection reliability of the connection structure 51 can be improved.
  • the flux generally deactivates gradually due to heating. Further, from the viewpoint of further improving the conduction reliability, it is preferable to bring the second conductive layer 3A into contact with the first electrode 52a, and it is preferable to bring the second conductive layer 3A into contact with the second electrode 53a. .
  • the manufacturing method of the connection structure is not particularly limited. As an example of the manufacturing method of this connection structure, after arrange
  • the method of heating and pressurizing is mentioned.
  • the pressurizing pressure is about 9.8 ⁇ 10 4 to 4.9 ⁇ 10 6 Pa.
  • the heating temperature is about 120 to 220 ° C.
  • the first and second connection target members are not particularly limited.
  • the first and second connection target members include electronic components such as semiconductor chips, capacitors, and diodes, and circuit boards such as printed boards, flexible printed boards, glass epoxy boards, and glass boards. Examples include parts.
  • the conductive curable composition is preferably a conductive material used for connecting electronic components.
  • the curable composition is preferably a conductive material that is liquid and is applied to the upper surface of the connection target member in a liquid state.
  • the curable composition is preferably used for electrical connection between electrodes.
  • the electrode provided on the connection target member examples include metal electrodes such as a gold electrode, a nickel electrode, a tin electrode, an aluminum electrode, a copper electrode, a silver electrode, a molybdenum electrode, and a tungsten electrode.
  • the electrode is preferably a gold electrode, a nickel electrode, a tin electrode, or a copper electrode.
  • the electrode is preferably an aluminum electrode, a copper electrode, a molybdenum electrode, or a tungsten electrode.
  • the electrode formed only with aluminum may be sufficient and the electrode by which the aluminum layer was laminated
  • the material for the metal oxide layer include indium oxide doped with a trivalent metal element and zinc oxide doped with a trivalent metal element.
  • the trivalent metal element include Sn, Al, and Ga.
  • the first reaction product contains a hydroxyl group derived from bisphenol F, 1,6-hexanediol diglycidyl ether, and an epoxy group of bisphenol F type epoxy resin. It was confirmed that the unit had a bonded structural unit in the main chain and an epoxy group at both ends.
  • the weight average molecular weight of the second reactant obtained by GPC was 15000, and the number average molecular weight was 5000.
  • R represents a group or a hydroxyl group represented by the following formula.
  • the weight average molecular weight of the phenoxy resin (A1) obtained by GPC was 16000, and the number average molecular weight was 5,500.
  • Synthesis Example 2 100 parts by weight of the first reaction product obtained in Synthesis Example 1 was placed in a three-necked flask and dissolved at 120 ° C. under a nitrogen flow. Thereafter, 2 parts by weight of “KBE-9007” (3-isocyanatepropyltriethoxysilane) manufactured by Shin-Etsu Silicone Co., Ltd. was added to react the side chain hydroxyl group of the first reactant with the isocyanate group of 3-isocyanatepropyltriethoxysilane. 0.002 part by weight of dibutyltin dilaurate as a catalyst was added and reacted at 120 ° C. for 4 hours under a nitrogen flow. Thereafter, it was vacuum-dried at 110 ° C. for 5 hours to remove unreacted KBE-9007.
  • KBE-9007 3-isocyanatepropyltriethoxysilane
  • R represents a group or a hydroxyl group represented by the following formula.
  • Thermosetting compound (epoxy resin, “EPICLON EAX-4850-150” manufactured by DIC)
  • Thermosetting agent (Thermosetting agent) Thermosetting agent ("HXA3922HP" manufactured by Asahi Kasei E-Materials, microencapsulated amine type curing agent)
  • Solder particles (“DS-10” manufactured by Mitsui Kinzoku Co., Ltd., average particle size 10 ⁇ m)
  • Example 1 Preparation of curable composition The components shown in Table 1 below are blended in the blending amounts shown in Table 1 below, and the temperature of the paste is 30 ° C. or less at 2000 rpm using a planetary stirrer. And anisotropic stirring paste was obtained by stirring for 10 minutes.
  • connection structure Glass epoxy substrate (FR-4 substrate) having an electrode pattern (width: 3 mm, number of electrodes: 70) on the upper surface of a copper electrode having L / S of 100 ⁇ m / 100 ⁇ m plated with Ni / Au Prepared.
  • a flexible printed circuit board having an electrode pattern (width: 3 mm, number of electrodes: 70) obtained by performing Ni / Au plating on a copper electrode having an L / S of 100 ⁇ m / 100 ⁇ m was prepared.
  • the curable composition was applied on the upper surface of the glass epoxy substrate so as to have a thickness of 150 ⁇ m and a width of 0.8 mm, thereby forming a curable composition layer.
  • the flexible printed circuit board was laminated on the upper surface of the curable composition layer so that the electrodes face each other.
  • the pressure of 1.0 MPa was adjusted by adjusting the temperature of the heater head so that the temperature of the curable composition layer located on the electrode was 140 ° C. by a crimping machine (“BD-03” manufactured by Ohashi Seisakusho). For 10 seconds. As a result, the solder was melted and the curable composition layer was cured to obtain a connection structure.
  • BD-03 manufactured by Ohashi Seisakusho
  • Example 2 to 10 and Comparative Examples 1 and 2 A curable composition was prepared in the same manner as in Example 1 except that the types and amounts of the ingredients were changed as shown in Table 1 below. A connection structure was obtained in the same manner as in Example 1 except that the obtained curable composition was used.
  • Viscosity after standing for 48 hours / initial viscosity is less than 1.2 times
  • Viscosity after standing for 48 hours / initial viscosity is 1.2 times or more and less than 1.5 times
  • After standing for 48 hours Viscosity / initial viscosity is 1.5 times or more and less than 2 times
  • Viscosity after standing for 48 hours / initial viscosity is 2 times or more
  • the conductivity between the upper and lower electrodes was determined according to the following criteria (the obtained resistance value is the total value of connection resistance between upper and lower electrodes of electrode area 3 mm ⁇ 100 ⁇ m ⁇ 70).
  • Average value of connection resistance is 8.0 ⁇ or less ⁇ : Average value of connection resistance exceeds 8.0 ⁇ and 10.0 ⁇ or less ⁇ : Average value of connection resistance exceeds 10.0 ⁇ and 15.0 ⁇ or less ⁇ : Average connection resistance exceeds 15.0 ⁇
  • Adhesiveness under high temperature and high humidity Using the obtained connection structure, “Micro Autograph MST-I” manufactured by Shimadzu Corporation was used and a 90 ° peel strength C was obtained at a pulling speed of 50 mm / min. The measurement was performed in an atmosphere of ° C. After leaving it to stand at 85 ° C. and a humidity of 85% for 500 hours, the 90 ° peel strength D was measured in the same manner.
  • the adhesiveness under high temperature and high humidity was determined according to the following criteria.
  • composition and evaluation results of the curable composition are shown in Table 1 below.
  • “-” indicates no evaluation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Conductive Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Epoxy Resins (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

 保存安定性を良好にすることができ、かつ低温での速硬化性を良好にすることができる硬化性組成物を提供する。 本発明に係る硬化性組成物は、ラジカル重合性基とモルホリン基とを有するラジカル重合性化合物と、有機過酸化物と、pH調整剤とを含み、pHが4以上、9以下である。

Description

硬化性組成物及び接続構造体
 本発明は、硬化性化合物を含む硬化性組成物及び接続構造体に関する。
 硬化性化合物を含む硬化性組成物は、電気、電子、建築及び車両等の各種用途に広く用いられている。
 上記硬化性組成物の一例として、下記の特許文献1には、(A)下記一般式(X)で表される構造を有するフェノキシ樹脂と、(B)無機充填剤と、(C)シランカップリング剤とを含む硬化性組成物が開示されている。該硬化性組成物全体に対して、上記(C)シランカップリング剤の含有量は1質量%以上、10質量%以下である。
Figure JPOXMLDOC01-appb-C000001
 上記一般式(X)において、n及びmは互いに独立した1以上、20以下の整数である。R1~19は、水素原子、炭素数1~10の炭化水素基、又はハロゲン原子であり、互いに同一であってもよく、異なっていてもよい。Xは、単結合、炭素数1~20の炭化水素基、-O-、-S-、-SO-又は-CO-である。
 また、様々な接続対象部材を電気的に接続するために、上記硬化性組成物に、導電性粒子が配合されることがある。導電性粒子を含む硬化性組成物は、異方性導電材料と呼ばれている。
 上記異方性導電材料は、各種の接続構造体を得るために、例えば、フレキシブルプリント基板とガラス基板との接続(FOG(Film on Glass))、半導体チップとフレキシブルプリント基板との接続(COF(Chip on Film))、半導体チップとガラス基板との接続(COG(Chip on Glass))、並びにフレキシブルプリント基板とガラスエポキシ基板との接続(FOB(Film on Board))等に使用されている。
 上記異方性導電材料の一例として、下記の特許文献2には、加熱により遊離ラジカルを発生する硬化剤と、分子量10000以上の水酸基含有樹脂と、リン酸エステルと、ラジカル重合性物質と、導電性粒子とを含む異方性導電材料(硬化性組成物)が開示されている。上記水酸基含有樹脂としては、具体的には、ポリビニルブチラール樹脂、ポリビニルホルマール、ポリアミド、ポリエステル、フェノール樹脂、エポキシ樹脂及びフェノキシ樹脂などのポリマーが挙げられている。
特開2013-23503号公報 特開2005-314696号公報
 特許文献1,2に記載のような従来の硬化性組成物では、硬化性組成物の保存安定性が低かったり、硬化性組成物を低温で速やかに硬化させることができなかったりすることがある。
 本発明の目的は、保存安定性を良好にすることができ、かつ低温での速硬化性を良好にすることができる硬化性組成物を提供することである。また、本発明の目的は、上記硬化性組成物を用いた接続構造体を提供することである。
 本発明の広い局面によれば、ラジカル重合性基とモルホリン基とを有するラジカル重合性化合物と、有機過酸化物と、pH調整剤とを含み、pHが4以上、9以下である、硬化性組成物が提供される。
 前記pH調整剤のpHは好ましくは7未満、より好ましくは4以下である。
 本発明に係る硬化性組成物のある特定の局面では、前記硬化性組成物は、加水分解性基を有するフェノキシ樹脂を含む。
 本発明に係る硬化性組成物のある特定の局面では、前記フェノキシ樹脂が、前記加水分解性基を側鎖に有する。
 本発明に係る硬化性組成物のある特定の局面では、前記pH調整剤が、前記フェノキシ樹脂の湿気硬化を促進させる湿気硬化促進剤である。
 本発明に係る硬化性組成物のある特定の局面では、前記pH調整剤が、前記フェノキシ樹脂における前記加水分解性基と反応性を有する。
 本発明に係る硬化性組成物のある特定の局面では、前記硬化性組成物は、イミド(メタ)アクリレート、(メタ)アクリロイル基を有するフェノキシ樹脂及びカプロラクトン変性エポキシ(メタ)アクリレートからなる群から選択された少なくとも1種を含む。
 本発明に係る硬化性組成物のある特定の局面では、前記硬化性組成物は、電子部品の接続に用いられる。
 本発明に係る硬化性組成物のある特定の局面では、前記硬化性組成物は、導電性粒子を含む。
 本発明に係る硬化性組成物のある特定の局面では、前記導電性粒子が、少なくとも外表面がはんだである導電性粒子である。
 本発明に係る硬化性組成物のある特定の局面では、前記硬化性組成物は、電極間の電気的な接続に用いられる。
 本発明の広い局面によれば、第1の接続対象部材と、第2の接続対象部材と、前記第1の接続対象部材と、前記第2の接続対象部材を接続している接続部とを備え、前記接続部が、上述した硬化性組成物を硬化させることにより形成されている、接続構造体が提供される。
 本発明に係る接続構造体のある特定の局面では、前記第1の接続対象部材が表面に第1の電極を有し、前記第2の接続対象部材が表面に第2の電極を有し、前記硬化性組成物が、導電性粒子を含み、前記第1の電極と前記第2の電極とが、前記導電性粒子により電気的に接続されている。
 本発明に係る硬化性組成物は、ラジカル重合性基とモルホリン基とを有するラジカル重合性化合物と、有機過酸化物と、pH調整剤とを含み、硬化性組成物のpHが4以上、9以下であるので、保存安定性を良好にすることができ、かつ低温での速硬化性を良好にすることができる。
図1は、本発明の一実施形態に係る硬化性組成物を用いた接続構造体を模式的に示す正面断面図である。 図2は、図1に示す接続構造体における導電性粒子と電極との接続部分を拡大して模式的に示す正面断面図である。 図3は、本発明の一実施形態に係る硬化性組成物に使用可能な導電性粒子の一例を示す断面図である。 図4は、導電性粒子の変形例を示す断面図である。 図5は、導電性粒子の他の変形例を示す断面図である。
 以下、本発明の詳細を説明する。
 (硬化性組成物)
 本発明に係る硬化性組成物は、ラジカル重合性基とモルホリン基とを有するラジカル重合性化合物(以下、ラジカル重合性化合物(A)と記載することがある)と、有機過酸化物と、pH調整剤とを含む。本発明に係る硬化性組成物のpHは4以上、9以下である。モルホリン基を有するラジカル重合性化合物(A)のpHは、モルホリン基に由来して比較的高いが、pH調整剤を用いることで、硬化性組成物のpHを比較的低くすることができ、9以下にすることができる。
 本発明に係る硬化性組成物では、上述した構成が備えられているので、保存安定性を良好にすることができ、かつ低温での速硬化性を良好にすることができる。
 本発明に係る硬化性組成物のpHは、好ましくは5以上、より好ましくは6以上、好ましくは9未満、より好ましくは8以下である。硬化性組成物のpHが上記下限以上及び上記上限以下であると、上記硬化性組成物の低温硬化性及び保存安定性がより一層良好になる。
 上記硬化性組成物のpHは、上記硬化性組成物1gを純水10gに溶解させた後、pH計(HORIBA社製「D-72」)、電極ToupH 電極 9615-10Dを用いて測定することができる。
 上記ラジカル重合性化合物(A)はラジカルによって付加重合することが可能であり、ラジカル重合性基を有する。上記ラジカル重合性化合物(A)は熱硬化性化合物である。上記ラジカル重合性化合物(A)は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記ラジカル重合性基としては、不飽和二重結合を含む基等が挙げられる。上記ラジカル重合性基の具体例としては、アリル基、イソプロペニル基、マレオイル基、スチリル基、ビニルベンジル基、(メタ)アクリロイル基及びビニル基などが挙げられる。なお、(メタ)アクリロイル基とは、アクリロイル基とメタクリロイル基とを意味する。
 上記硬化性組成物の熱硬化性をより一層高める観点からは、上記ラジカル重合性基は、ビニル基を有することが好ましく、(メタ)アクリロイル基であることがより好ましい。上記ラジカル重合性基が(メタ)アクリロイル基である場合に、上記ラジカル重合性基はビニル基を有する。
 硬化物における架橋密度を高くし、硬化物の接着性をより一層高める観点、並びに低温で速やかに熱硬化させ、かつ硬化性組成物の保存安定性をより一層高める観点からは、上記ラジカル重合性化合物(A)は、(メタ)アクリロイル基とモルホリン基とを有するラジカル重合性化合物であることが好ましい。
 上記モルホリン基は、下記式(1a)で表される基である。
 低温で速やかに熱硬化させ、かつ硬化性組成物の保存安定性をより一層高める観点からは、上記ラジカル重合性化合物(A)は、下記式(1)で表されるラジカル重合性化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000003
 上記式(1)中、Rは水素原子又はメチル基を表す。
 上記ラジカル重合性化合物(A)のpHは、好ましくは9以上、より好ましくは10以上、好ましくは13以下、より好ましくは12以下である。
 上記ラジカル重合性化合物(A)のpHは、上記ラジカル重合性化合物(A)1gを純水10gに溶解させた後、pH計(HORIBA社製「D-72」)、電極ToupH 電極 9615-10Dを用いて測定することができる。
 上記有機過酸化物は、上記ラジカル重合性化合物(A)を熱硬化させるための熱ラジカル重合開始剤として作用する。上記有機過酸化物は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記有機過酸化物としては、ジアシルパーオキサイド化合物、パーオキシエステル化合物、ハイドロパーオキサイド化合物、パーオキシジカーボネート化合物、パーオキシケタール化合物、ジアルキルパーオキサイド化合物、及びケトンパーオキサイド化合物等が挙げられる。
 上記ジアシルパーオキサイド化合物としては、過酸化ベンゾイル、ジイソブチリルパーオキサイド、ジ(3,5,5-トリメチルヘキサノイル)パーオキサイド、ジラウロイルパーオキサイド、及びDisuccinic acid peroxide等が挙げられる。上記パーオキシエステル化合物としては、クミルパーオキシネオデカノエート、1,1,3,3-テトラメチルブチルパーオキシネオデカノエート、tert-ヘキシルパーオキシネオデカノエート、tert-ブチルパーオキシネオデカノエート、tert-ブチルパーオキシネオヘプタノエート、tert-ヘキシルパーオキシピバレート、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノエート、2,5-ジメチル-2,5―ジ(2-エチルヘキサノイルパーオキシ)ヘキサン、tert-ヘキシルパーオキシ-2-エチルヘキサノエート、tert-ブチルパーオキシピバレート、tert-ブチルパーオキシ-2-エチルヘキサノエート、tert-ブチルパーオキシイソブチレート、tert-ブチルパーオキシラウレート、tert-ブチルパーオキシイソフタレート、tert-ブチルパーオキシアセテート、tert-ブチルパーオキシオクトエート及びtert-ブチルパーオキシベンゾエート等が挙げられる。上記ハイドロパーオキサイド化合物としては、キュメンハイドロパーオキサイド、p-メンタンハイドロパーオキサイド等が挙げられる。上記パーオキシジカーボネート化合物としては、ジ-sec-ブチルパーオキシジカーボネート、ジ(4-t-ブチルシクロヘキシル)パーオキシジカーボネート、ジ-n-プロピルパーオキシジカーボネート、ジイソプロピルパーオキシカーボネート、及びジ(2-エチルヘキシル)パーオキシカーボネート等が挙げられる。また、上記過酸化物の他の例としては、メチルエチルケトンパーオキサイド、カリウムパーサルフェイト、及び1,1-ビス(tert-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン等が挙げられる。
 上記有機過酸化物の10時間半減期を得るための分解温度は、好ましくは30℃以上、より好ましくは40℃以上、好ましくは90℃以下、より好ましくは80℃以下である。上記分解温度が、30℃以上であると、上記硬化性組成物の保存安定性がより一層高くなる。上記分解温度が上記上限以下であると、上記硬化性組成物が効果的に熱硬化する。
 上記ラジカル重合性化合物(A)100重量部に対して、上記有機過酸化物の含有量は好ましくは0.1重量部以上、より好ましくは1重量部以上、好ましくは10重量部以下、より好ましくは5重量部以下である。上記有機過酸化物の含有量が上記下限以上及び上記上限以下であると、上記硬化性組成物の低温硬化性及び保存安定性がより一層良好になる。 
 上記pH調整剤は、硬化性組成物のpHが4以上、9以下になるように適宜の種類が選ばれ、特に限定されない。上記pH調整剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記pH調整剤のpHは、好ましくは7未満、より好ましくは5以下、より一層好ましくは4以下、更に好ましくは3以下である。上記pH調整剤のpHが上記上限以下であると、上記硬化性組成物の低温硬化性をより一層良好にすることができ、上記硬化性組成物の保管時(熱硬化前)のラジカル反応を抑えることができ、上記硬化性組成物の保存安定性をより一層高めることができる。また、上記pH調整剤のpHが上記上限以下であると、後述するフェノキシ樹脂(A)を用いる場合に、上記硬化性組成物の湿気硬化を促進することができる。上記pH調整剤のpHの下限は特に限定されないが、上記pH調整剤のpHは、好ましくは1以上、より好ましくは2以上である。上記pH調整剤のpHは、上記ラジカル重合性化合物(A)のpHよりも低いことが好ましく、1以上低いことがより好ましく、3以上低いことが更に好ましい。
 上記pH調整剤のpHは、上記pH調整剤1gを純水10gに溶解させた後、pH計(HORIBA社製「D-72」)、電極ToupH 電極 9615-10Dを用いて測定することができる。
上記pH調整剤は、リン酸化合物であることが好ましく、(メタ)アクリロイル基を有することが好ましい。
 上記リン酸化合物の具体例としては、リン酸(メタ)アクリレート、リン酸エステル化合物及び亜リン酸エステル化合物等が挙げられる。湿気硬化を効果的に進行させる観点、並びに低温で速やかに熱硬化させ、かつ硬化性組成物の保存安定性をより一層高める観点からは、リン酸(メタ)アクリレートが好ましい。
 湿気硬化を効果的に進行させるために、上記pH調整剤が、後述するフェノキシ樹脂(A)の湿気硬化を促進させる湿気硬化促進剤であることが好ましい。本発明に係る硬化性組成物は、湿気により硬化可能であることが好ましい。上記pH調整剤としては、例えば、ダイセル・オルネクス社製「EBECRYL168」、並びに共栄社化学社製「ライトアクリレートP-1A(N)」、「ライトエステルP-1M」及び「ライトエステルP-2M」等が挙げられる。
 上記pH調整剤(湿気硬化促進剤)は、後述するフェノキシ樹脂(A)の加水分解を促進することで、上記フェノキシ樹脂(A)の湿気硬化を促進させることが好ましい。湿気硬化を効果的に進行させるために、上記pH調整剤(湿気硬化促進剤)は、上記フェノキシ樹脂(A)における上記加水分解性基と反応性を有することが好ましい。
 上記pH調整剤の含有量は、上記硬化性組成物のpHを考慮して、適宜調整される。上記ラジカル重合性化合物(A)100重量部に対して、上記pH調整剤の含有量は好ましくは0.1重量部以上、より好ましくは1重量部以上、好ましくは10重量部以下、より好ましくは5重量部以下である。上記pH調整剤の含有量が上記下限以上及び上記上限以下であると、上記硬化性組成物の低温硬化性及び保存安定性がより一層良好になる。
 また、後述するフェノキシ樹脂(A)100重量部に対して、上記pH調整剤の含有量は好ましくは0.1重量部以上、より好ましくは1重量部以上、好ましくは15重量部以下、より好ましくは5重量部以下である。上記pH調整剤の含有量が上記下限以上及び上記上限以下であると、上記硬化性組成物が効果的に湿気硬化する。
 硬化物の高温高湿下での接着性をより一層高める観点からは、上記硬化性組成物は、加水分解性基を有するフェノキシ樹脂(以下、フェノキシ樹脂(A)と記載することがある)を含むことが好ましい。硬化物の高温高湿下での接着性をより一層高める観点からは、上記フェノキシ樹脂(A)は、加水分解性基を側鎖に有することが好ましい。フェノキシ樹脂(A)の使用により、高温高湿下での接着性がより一層高い硬化物を与える硬化性組成物を得ることができる。
 本明細書において、「フェノキシ樹脂」の用語には、1段法により得られるフェノキシ樹脂と多段法により得られるフェノキシ樹脂との双方が含まれる。具体的には、フェノキシ樹脂(A)としては、ビスフェノール類とエピクロルヒドリンとから合成されるポリヒドロキシエーテルや、エポキシ化合物とジオールとから合成されるポリヒドロキシエーテルが挙げられる。フェノキシ樹脂(A)の一例としては、エピクロルヒドリンと2価のフェノール化合物とを反応させて得られる樹脂、及び2価のエポキシ化合物と2価のフェノール化合物とを反応させて得られる樹脂が挙げられる。
 高温高湿下での接着性を効果的に高める観点からは、上記加水分解性基は、水酸基と反応性を有することが好ましい。上記加水分解性基の具体例としては、アルコキシシリル基及びアルコキシチタネート基等が挙げられる。高温高湿下での接着性を効果的に高める観点からは、上記加水分解性基は、アルコキシシリル基であることが好ましい。
 上記アルコキシシリル基は、下記式(11)で表される基であることが好ましい。
 -Si(OR1)R2 …式(11)
 上記式(11)中、R1及びR2はそれぞれ炭素数1~5のアルキル基を表し、nは2又は3を表し、mは0又は1を表し、m+nは3を表す。R1及びR2はそれぞれ、メチル基又はエチル基であることが好ましい。
 上記フェノキシ樹脂(A)は、エポキシ基又は(メタ)アクリロイル基を末端に有することが好ましい。この場合には、末端の官能基同士が反応することで、又はフェノキシ樹脂(A)が他に添加した反応性化合物と反応することで、高い耐高温高湿性を発現させることができる。上記フェノキシ樹脂(A)は、エポキシ基を末端に有することが好ましく、(メタ)アクリロイル基を末端に有することも好ましい。
 上記フェノキシ樹脂(A)は、シランカップリング剤と反応する反応性官能基を有しかつ加水分解性基を側鎖に有さないフェノキシ樹脂(以下、フェノキシ樹脂(a)と記載することがある)と、シランカップリング剤とを反応させることで、上記シランカップリング剤に由来する加水分解性基を側鎖に導入することで得られることが好ましい。
 上記フェノキシ樹脂(a)における反応性官能基の具体例としては、エポキシ基及び水酸基等が挙げられる。上記反応性官能基は、水酸基であることが好ましい。
 上記シランカップリング剤としては、イソシアネート基を有するシランカップリング剤、エポキシ基を有するシランカップリング剤、及びアミノ基を有するシランカップリング剤等が挙げられる。中でも、イソシアネート基を有するシランカップリング剤が好ましい。
 上記フェノキシ樹脂(A)の他の詳細に関しては、上記フェノキシ樹脂(A)の重量平均分子量は好ましくは5000以上、より好ましくは8000以上、好ましくは15万以下、より好ましくは5万以下であり、上記フェノキシ樹脂(A)の数平均分子量は好ましくは2000以上、より好ましくは3000以上、好ましくは5万以下、より好ましくは2万以下である。上記重量平均分子量が上記下限以上又は上記上限以下であったり、上記数平均分子量が上記下限以上及び上記上限以下であったりすると、末端の官能基による速硬化性と、高い接着強度との両立がより一層容易である。上記フェノキシ樹脂(A)は、1,6-ヘキサンジオール等の脂肪族ジオールに由来する骨格を有することが好ましい。これにより、剥離接着力をより一層向上させることができる。
 上記ラジカル重合性化合物(A)100重量部に対して、上記フェノキシ樹脂(A)の含有量は好ましくは10重量部以上、より好ましくは50重量部以上、好ましくは300重量部以下、より好ましくは200重量部以下である。上記フェノキシ樹脂(A)の含有量が上記下限以上及び上記上限以下であると、上記硬化性組成物の湿気硬化と熱硬化とのバランスにより一層優れる。
 硬化物の接着性をより一層高める観点からは、上記硬化性組成物は、イミド(メタ)アクリレート、(メタ)アクリロイル基を有するフェノキシ樹脂、カプロラクトン変性エポキシ(メタ)アクリレート及び脂肪族ウレタン(メタ)アクレートからなる群から選択された少なくとも1種を含むことが好ましく、イミド(メタ)アクリレート、(メタ)アクリロイル基を有するフェノキシ樹脂及びカプロラクトン変性エポキシ(メタ)アクリレートからなる群から選択された少なくとも1種を含むことがより好ましい。これらはラジカル重合性化合物に含まれる。
 上記硬化性組成物100重量%中、上記イミド(メタ)アクリレート、上記(メタ)アクリロイル基を有するフェノキシ樹脂及びカプロラクトン変性エポキシ(メタ)アクリレートの合計の含有量は、好ましくは5重量部以上、より好ましくは10重量部以上、更に好ましくは20重量部以上、好ましくは80重量部以下、より好ましくは60重量部以下である。
 硬化物の架橋密度を高め、硬化物の接着性をより一層高める観点からは、(メタ)アクリロイル基を有するフェノキシ樹脂及びカプロラクトン変性エポキシ(メタ)アクリレートの内の少なくとも1種を用いることが好ましい。上記(メタ)アクリロイル基を有するフェノキシ樹脂及び上記カプロラクトン変性エポキシ(メタ)アクリレートの使用により、硬化物の接着性及び硬化物の高温高湿下での接着性がより一層高くなる。上記硬化性組成物は、(メタ)アクリロイル基を有するフェノキシ樹脂を含んでいてもよく、カプロラクトン変性エポキシ(メタ)アクリレートを含んでいてもよい。上記(メタ)アクリロイル基を有するフェノキシ樹脂及び上記カプロラクトン変性エポキシ(メタ)アクリレートはそれぞれ、1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記ラジカル重合性化合物(A)100重量部に対して、上記(メタ)アクリロイル基を有するフェノキシ樹脂の含有量は好ましくは0重量部(未使用)以上、より好ましくは20重量部以上、更に好ましくは30重量部以上、好ましくは150重量部以下、より好ましくは100重量部以下である。上記ラジカル重合性化合物100重量部に対して、上記カプロラクトン変性エポキシ(メタ)アクリレートの含有量は好ましくは0重量部(未使用)以上、より好ましくは10重量部以上、更に好ましくは20重量部以上、好ましくは100重量部以下、より好ましくは60重量部以下である。上記(メタ)アクリロイル基を有するフェノキシ樹脂及び上記カプロラクトン変性エポキシ(メタ)アクリレートの含有量がそれぞれ上記下限以上及び上記上限以下であると、硬化物の接着性及び硬化物の高温高湿下での接着性がより一層高くなる。
 上記硬化物は、ポリイミドに対して接着されることがある。ポリイミドに対する接着性をより一層高める観点からは、上記硬化性組成物は、イミド(メタ)アクリレートを含むことが好ましい。上記イミド(メタ)アクリレートは、1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記ラジカル重合性化合物(A)100重量部に対して、上記イミド(メタ)アクリレートの含有量は好ましくは0重量部(未使用)以上、より好ましくは15重量部以上、更に好ましくは30重量部以上、好ましくは100重量部以下、より好ましくは70重量部以下である。上記イミド(メタ)アクリレートの含有量が上記下限以上及び上記上限以下であると、硬化物の接着性及び硬化物の高温高湿下での接着性がより一層高くなり、特に硬化物のポリイミドに対する接着性がより一層高くなる。
 上記硬化性組成物は、導電性粒子を含むことが好ましい。上記導電性粒子としては、全体が導電性を有する材料により形成されている導電性粒子、並びに、基材粒子と該基材粒子の表面上に配置された導電層とを有する導電性粒子が挙げられる。
 また、上記導電性粒子は、少なくとも外表面がはんだである導電性粒子であることが好ましい。この場合には、はんだに由来して、硬化性組成物を硬化させることにより形成された接続部と、該接続部により接続された接続対象部材との接着性がより一層高くなる。
 上記少なくとも外表面がはんだである導電性粒子として、はんだ粒子や、基材粒子と該基材粒子の表面上に配置されたはんだ層とを備える粒子等を用いることができる。中でも、はんだ粒子を用いることが好ましい。はんだ粒子を用いることにより、高速伝送や金属接合強度をより一層向上させることができる。
 図3は、本発明の一実施形態に係る硬化性組成物に使用可能な導電性粒子の一例を示す断面図である。上記はんだ粒子は、図3に示すように、はんだ粒子である導電性粒子21であることが好ましい。導電性粒子21は、はんだのみにより形成されている。導電性粒子21は、基材粒子をコアに有さず、コア-シェル粒子ではない。導電性粒子21は、中心部分及び外表面のいずれも、はんだにより形成されている。
 接続対象部材間の接続距離をより一層均一に保持する観点からは、基材粒子と、該基材粒子の表面上に配置されたはんだ層とを備える粒子を用いてもよい。
 図4に示す変形例では、導電性粒子1は、基材粒子2と、基材粒子2の表面上に配置された導電層3とを備える。導電層3は、基材粒子2の表面を被覆している。導電性粒子1は、基材粒子2の表面が導電層3により被覆された被覆粒子である。
 導電層3は、第2の導電層3Aと、第2の導電層3Aの表面上に配置されたはんだ層3B(第1の導電層)とを有する。導電性粒子1は、基材粒子2と、はんだ層3Bとの間に、第2の導電層3Aを備える。従って、導電性粒子1は、基材粒子2と、基材粒子2の表面上に配置された第2の導電層3Aと、第2の導電層3Aの表面上に配置されたはんだ層3Bとを備える。このように、導電層3は、多層構造を有していてもよく、2層以上の積層構造を有していてもよい。
 上記のように、導電性粒子1における導電層3は2層構造を有する。図5に示す他の変形例のように、導電性粒子11は、単層の導電層として、はんだ層12を有していてもよい。導電性粒子11は、基材粒子2と、基材粒子2の表面上に配置されたはんだ層12とを備える。基材粒子2に接触するように、基材粒子2の表面上にはんだ層12が配置されていてもよい。
 導電材料の熱伝導率がより一層低くなりやすいことから、導電性粒子1,11,21のうち、導電性粒子1,11がより好ましい。基材粒子と、該基材粒子の表面上に配置されたはんだ層とを備える導電性粒子の使用により、導電材料の熱伝導率をより一層低くすることが容易である。
 上記基材粒子としては、樹脂粒子、金属粒子を除く無機粒子、有機無機ハイブリッド粒子及び金属粒子等が挙げられる。導電性粒子を電極上により一層効率的に配置する観点からは、上記基材粒子は、金属を除く基材粒子であることが好ましく、樹脂粒子、金属粒子を除く無機粒子又は有機無機ハイブリッド粒子であることが好ましい。上記基材粒子は、銅粒子であってもよい。
 上記基材粒子は、樹脂により形成された樹脂粒子であることが好ましい。導電性粒子を用いて電極間を接続する際には、導電性粒子を電極間に配置した後、圧着することにより導電性粒子を圧縮させる。上記基材粒子が樹脂粒子であると、上記圧着の際に導電性粒子が変形しやすく、導電性粒子と電極との接触面積が大きくなる。このため、電極間の導通信頼性がより一層高くなる。
 上記樹脂粒子を形成するための樹脂として、種々の有機物が好適に用いられる。上記樹脂粒子を形成するための樹脂としては、例えば、ポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリイソブチレン、ポリブタジエン等のポリオレフィン樹脂;ポリメチルメタクリレート、ポリメチルアクリレート等のアクリル樹脂;ポリアルキレンテレフタレート、ポリカーボネート、ポリアミド、フェノールホルムアルデヒド樹脂、メラミンホルムアルデヒド樹脂、ベンゾグアナミンホルムアルデヒド樹脂、尿素ホルムアルデヒド樹脂、フェノール樹脂、メラミン樹脂、ベンゾグアナミン樹脂、尿素樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、飽和ポリエステル樹脂、ポリエチレンテレフタレート、ポリスルホン、ポリフェニレンオキサイド、ポリアセタール、ポリイミド、ポリアミドイミド、ポリエーテルエーテルケトン、ポリエーテルスルホン、ジビニルベンゼン重合体、並びにジビニルベンゼン系共重合体等が挙げられる。上記ジビニルベンゼン系共重合体等としては、ジビニルベンゼン-スチレン共重合体及びジビニルベンゼン-(メタ)アクリル酸エステル共重合体等が挙げられる。上記樹脂粒子の硬度を好適な範囲に容易に制御できるので、上記樹脂粒子を形成するための樹脂は、エチレン性不飽和基を有する重合性単量体を1種又は2種以上重合させた重合体であることが好ましい。
 上記樹脂粒子を、エチレン性不飽和基を有する単量体を重合させて得る場合には、該エチレン性不飽和基を有する単量体としては、非架橋性の単量体と架橋性の単量体とが挙げられる。
 上記非架橋性の単量体としては、例えば、スチレン、α-メチルスチレン等のスチレン系単量体;(メタ)アクリル酸、マレイン酸、無水マレイン酸等のカルボキシル基含有単量体;メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、セチル(メタ)アクリレート、ステアリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート等のアルキル(メタ)アクリレート類;2-ヒドロキシエチル(メタ)アクリレート、グリセロール(メタ)アクリレート、ポリオキシエチレン(メタ)アクリレート、グリシジル(メタ)アクリレート等の酸素原子含有(メタ)アクリレート類;(メタ)アクリロニトリル等のニトリル含有単量体;メチルビニルエーテル、エチルビニルエーテル、プロピルビニルエーテル等のビニルエーテル類;酢酸ビニル、酪酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル等の酸ビニルエステル類;エチレン、プロピレン、イソプレン、ブタジエン等の不飽和炭化水素;トリフルオロメチル(メタ)アクリレート、ペンタフルオロエチル(メタ)アクリレート、塩化ビニル、フッ化ビニル、クロルスチレン等のハロゲン含有単量体等が挙げられる。
 上記架橋性の単量体としては、例えば、テトラメチロールメタンテトラ(メタ)アクリレート、テトラメチロールメタントリ(メタ)アクリレート、テトラメチロールメタンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、グリセロールトリ(メタ)アクリレート、グリセロールジ(メタ)アクリレート、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、(ポリ)テトラメチレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート等の多官能(メタ)アクリレート類;トリアリル(イソ)シアヌレート、トリアリルトリメリテート、ジビニルベンゼン、ジアリルフタレート、ジアリルアクリルアミド、ジアリルエーテル、γ-(メタ)アクリロキシプロピルトリメトキシシラン、トリメトキシシリルスチレン、ビニルトリメトキシシラン等のシラン含有単量体等が挙げられる。
 上記基材粒子が金属を除く無機粒子又は有機無機ハイブリッド粒子である場合には、基材粒子を形成するための無機物としては、シリカ及びカーボンブラック等が挙げられる。上記無機物は金属ではないことが好ましい。上記シリカにより形成された粒子としては特に限定されないが、例えば、加水分解性のアルコキシシリル基を2つ以上有するケイ素化合物を加水分解して架橋重合体粒子を形成した後に、必要に応じて焼成を行うことにより得られる粒子が挙げられる。上記有機無機ハイブリッド粒子としては、例えば、架橋したアルコキシシリルポリマーとアクリル樹脂とにより形成された有機無機ハイブリッド粒子等が挙げられる。
 上記基材粒子が金属粒子である場合に、該金属粒子を形成するための金属としては、銀、銅、ニッケル、ケイ素、金及びチタン等が挙げられる。上記基材粒子が金属粒子である場合に、該金属粒子は銅粒子であることが好ましい。但し、上記基材粒子は金属粒子ではないことが好ましい。
 上記基材粒子の融点は、上記はんだ層の融点よりも高いことが好ましい。上記基材粒子の融点は、好ましくは160℃を超え、より好ましくは300℃を超え、更に好ましくは400℃を超え、特に好ましくは450℃を超える。なお、上記基材粒子の融点は、400℃未満であってもよい。上記基材粒子の融点は、160℃以下であってもよい。上記基材粒子の軟化点は260℃以上であることが好ましい。上記基材粒子の軟化点は260℃未満であってもよい。
 上記導電性粒子は、単層のはんだ層を有していてもよい。上記導電性粒子は、複数の層の導電層(はんだ層,第2の導電層)を有していてもよい。すなわち、上記導電性粒子では、導電層を2層以上積層してもよい。場合によっては、はんだ粒子も、複数の層により形成されている粒子であってもよい。
 上記はんだ層を形成するはんだ、並びに、はんだ粒子を形成するはんだは、融点が450℃以下である低融点金属であることが好ましい。上記はんだ層は、融点が450℃以下である低融点金属層であることが好ましい。上記低融点金属層は、低融点金属を含む層である。上記はんだ粒子は、融点が450℃以下である低融点金属粒子であることが好ましい。上記低融点金属粒子は、低融点金属を含む粒子である。該低融点金属とは、融点が450℃以下の金属を示す。低融点金属の融点は好ましくは300℃以下、より好ましくは160℃以下である。また、上記はんだ層及び上記はんだ粒子は錫を含むことが好ましい。上記はんだ層に含まれる金属100重量%中及び上記はんだ粒子に含まれる金属100重量%中、錫の含有量は好ましくは30重量%以上、より好ましくは40重量%以上、更に好ましくは70重量%以上、特に好ましくは90重量%以上である。上記はんだ層及び上記はんだ粒子における錫の含有量が上記下限以上であると、導電性粒子と電極との接続信頼性がより一層高くなる。
 なお、上記錫の含有量は、高周波誘導結合プラズマ発光分光分析装置(堀場製作所社製「ICP-AES」)、又は蛍光X線分析装置(島津製作所社製「EDX-800HS」)等を用いて測定可能である。
 上記はんだ粒子及びはんだを導電性の表面に有する導電性粒子を用いることで、はんだが溶融して電極に接合し、はんだが電極間を導通させる。例えば、はんだと電極とが点接触ではなく面接触しやすいため、接続抵抗が低くなる。また、はんだを導電性の表面に有する導電性粒子の使用により、はんだと電極との接合強度が高くなる結果、はんだと電極との剥離がより一層生じ難くなり、導通信頼性及び接続信頼性が効果的に高くなる。
 上記はんだ層及び上記はんだ粒子を構成する低融点金属は特に限定されない。該低融点金属は、錫、又は錫を含む合金であることが好ましい。該合金は、錫-銀合金、錫-銅合金、錫-銀-銅合金、錫-ビスマス合金、錫-亜鉛合金、錫-インジウム合金等が挙げられる。なかでも、電極に対する濡れ性に優れることから、上記低融点金属は、錫、錫-銀合金、錫-銀-銅合金、錫-ビスマス合金、錫-インジウム合金であることが好ましい。錫-ビスマス合金、錫-インジウム合金であることがより好ましい。
 上記はんだ(はんだ層及び上記はんだ粒子)を構成する材料は、JIS Z3001:溶接用語に基づき、液相線が450℃以下である溶加材であることが好ましい。上記はんだの組成としては、例えば亜鉛、金、銀、鉛、銅、錫、ビスマス、インジウムなどを含む金属組成が挙げられる。なかでも低融点で鉛フリーである錫-インジウム系(117℃共晶)、又は錫-ビスマス系(139℃共晶)が好ましい。すなわち、上記はんだは、鉛を含まないことが好ましく、錫とインジウムとを含むはんだ、又は錫とビスマスとを含むはんだであることが好ましい。
 上記はんだと電極との接合強度をより一層高めるために、上記はんだ層及び上記はんだ粒子は、ニッケル、銅、アンチモン、アルミニウム、亜鉛、鉄、金、チタン、リン、ゲルマニウム、テルル、コバルト、ビスマス、マンガン、クロム、モリブデン、パラジウム等の金属を含んでいてもよい。また、はんだと電極との接合強度をさらに一層高める観点からは、上記はんだ層及び上記はんだ粒子は、ニッケル、銅、アンチモン、アルミニウム又は亜鉛を含むことが好ましい。はんだ層又ははんだ粒子と電極との接合強度をより一層高める観点からは、接合強度を高めるためのこれらの金属の含有量は、はんだ100重量%中(はんだ層100重量%中又ははんだ粒子100重量%中)、好ましくは0.0001重量%以上、好ましくは1重量%以下である。
 上記第2の導電層の融点は、上記はんだ層の融点よりも高いことが好ましい。上記第2の導電層の融点は好ましくは160℃を超え、より好ましくは300℃を超え、更に好ましくは400℃を超え、更に一層好ましくは450℃を超え、特に好ましくは500℃を超え、最も好ましくは600℃を超える。上記はんだ層は融点が低いために導電接続時に溶融する。上記第2の導電層は導電接続時に溶融しないことが好ましい。上記導電性粒子は、はんだを溶融させて用いられることが好ましく、上記はんだ層を溶融させて用いられることが好ましく、上記はんだ層を溶融させてかつ上記第2の導電層を溶融させずに用いられることが好ましい。上記第2の導電層の融点が上記はんだ層の融点をよりも高いことによって、導電接続時に、上記第2の導電層を溶融させずに、上記はんだ層のみを溶融させることができる。
 上記はんだ層の融点と上記第2の導電層との融点との差の絶対値は、好ましくは0℃を超え、より好ましくは5℃以上、より一層好ましくは10℃以上、更に好ましくは30℃以上、特に好ましくは50℃以上、最も好ましくは100℃以上である。
 上記第2の導電層は、金属を含むことが好ましい。上記第2の導電層を構成する金属は、特に限定されない。該金属としては、例えば、金、銀、銅、白金、パラジウム、亜鉛、鉛、アルミニウム、コバルト、インジウム、ニッケル、クロム、チタン、アンチモン、ビスマス、ゲルマニウム、タングステン、モリブデン及びカドミウム、並びにこれらの合金等が挙げられる。また、上記金属として、錫ドープ酸化インジウム(ITO)を用いてもよい。上記金属は1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記第2の導電層は、ニッケル層、パラジウム層、銅層又は金層であることが好ましく、ニッケル層又は金層であることがより好ましく、銅層であることが更に好ましい。導電性粒子は、ニッケル層、パラジウム層、銅層又は金層を有することが好ましく、ニッケル層又は金層を有することがより好ましく、銅層を有することが更に好ましい。これらの好ましい導電層を有する導電性粒子を電極間の接続に用いることにより、電極間の接続抵抗がより一層低くなる。また、これらの好ましい導電層の表面には、はんだ層をより一層容易に形成できる。
 上記導電性粒子の平均粒子径は、好ましくは0.1μm以上、より好ましくは1μm以上、好ましくは100μm以下、より好ましくは80μm以下、更に好ましくは50μm以下、特に好ましくは40μm以下である。導電性粒子の平均粒子径が上記下限以上及び上記上限以下であると、導電性粒子と電極との接触面積が充分に大きくなり、かつ導電層を形成する際に凝集した導電性粒子が形成されにくくなる。また、導電材料における導電性粒子に適した大きさとなり、導電性粒子を介して接続された電極間の間隔が大きくなりすぎず、かつ導電層が基材粒子の表面から剥離し難くなる。
 上記導電性粒子の粒子径は、数平均粒子径を示す。上記導電性粒子の平均粒子径は、任意の導電性粒子50個を電子顕微鏡又は光学顕微鏡にて観察し、平均値を算出することにより求められる。
 上記はんだ層の厚みは、好ましくは0.005μm以上、より好ましくは0.01μm以上、好ましくは10μm以下、より好ましくは1μm以下、更に好ましくは0.3μm以下である。はんだ層の厚みが上記下限以上及び上記上限以下であると、充分な導電性が得られ、かつ導電性粒子が硬くなりすぎずに、電極間の接続の際に導電性粒子を充分に変形する。また、上記はんだ層の厚みが薄いほど、導電材料の熱伝導率を低くすることが容易である。導電材料の熱伝導率を十分に低くする観点からは、上記はんだ層の厚みは、好ましくは4μm以下、より好ましくは2μm以下である。
 上記第2の導電層の厚みは、好ましくは0.005μm以上、より好ましくは0.01μm以上、好ましくは10μm以下、より好ましくは1μm以下、更に好ましくは0.3μm以下である。上記第2の導電層の厚みが上記下限以上及び上記上限以下であると、電極間の接続抵抗がより一層低くなる。また、上記第2の導電層の厚みが薄いほど、導電材料の熱伝導率を低くすることが容易である。導電材料の熱伝導率を十分に低くする観点からは、上記第2の導電層の厚みは、好ましくは3μm以下、より好ましくは1μm以下である。
 上記導電性粒子が導電層として、はんだ層のみを有する場合には、上記はんだ層の厚みは、好ましくは10μm以下、より好ましくは5μm以下である。上記導電性粒子が導電層として、はんだ層とはんだ層とは異なる他の導電層(第2の導電層など)とを有する場合には、はんだ層とはんだ層とは異なる他の導電層との合計の厚みは、好ましくは10μm以下、より好ましくは5μm以下である。
 上記硬化性組成物は、上記導電性粒子を含み、導電材料であることが好ましい。上記導電材料は、異方性導電材料であることが好ましい。上記導電材料は、電極の電気的な接続に好適に用いられる。上記導電材料は、回路接続用導電材料であることが好ましい。
 上記硬化性組成物が導電材料である場合に、上記導電材料は、導電ペースト及び導電フィルム等として使用され得る。上記導電材料が、導電フィルムである場合には、導電性粒子を含む導電フィルムに、導電性粒子を含まないフィルムが積層されていてもよい。
 上記硬化性組成物100重量%中、上記導電性粒子の含有量は好ましくは0.1重量%以上、より好ましくは1重量%以上、より一層好ましくは2重量%以上、更に好ましくは10重量%以上、更に一層好ましくは20重量%以上、特に好ましくは25重量%以上、最も好ましくは30重量%以上、好ましくは80重量%以下、より好ましくは60重量%以下、更に好ましくは50重量%以下、特に好ましくは45重量%以下、最も好ましくは35重量%以下である。上記導電性粒子の含有量が上記下限以上及び上記上限以下であると、電極間に導電性粒子を多く配置することが容易であり、導通信頼性がより一層高くなる。また、硬化性化合物などの含有量が適度になることから、電極間の導通信頼性がより一層高くなる。
 上記硬化性組成物は、フラックスを含むことが好ましい。該フラックスは特に限定されない。フラックスとして、はんだ接合等に一般的に用いられているフラックスを使用できる。フラックスとしては、例えば、塩化亜鉛、塩化亜鉛と無機ハロゲン化物との混合物、塩化亜鉛と無機酸との混合物、溶融塩、リン酸、リン酸の誘導体、有機ハロゲン化物、ヒドラジン、有機酸及び松脂等が挙げられる。上記フラックスは1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記溶融塩としては、塩化アンモニウム等が挙げられる。上記有機酸としては、乳酸、クエン酸、ステアリン酸、グルタミン酸及びグルタル酸等が挙げられる。上記松脂としては、活性化松脂及び非活性化松脂等が挙げられる。上記フラックスは、カルボキシル基を2個以上有する有機酸、松脂であることが好ましい。上記フラックスは、カルボキシル基を2個以上有する有機酸であってもよく、松脂であってもよい。カルボキシル基を2個以上有する有機酸、松脂の使用により、電極間の導通信頼性がより一層高くなる。
 上記松脂はアビエチン酸を主成分とするロジン類である。フラックスは、ロジン類であることが好ましく、アビエチン酸であることがより好ましい。この好ましいフラックスの使用により、電極間の導通信頼性がより一層高くなる。
 上記フラックスは、上記硬化性組成物中に分散されていてもよく、導電性粒子又ははんだ粒子の表面上に付着していてもよい。
 上記硬化性組成物100重量%中、上記フラックスの含有量は0重量%(未使用)以上、好ましくは0.5重量%以上、好ましくは30重量%以下、より好ましくは25重量%以下である。上記硬化性組成物は、フラックスを含んでいなくてもよい。フラックスの含有量が上記下限以上及び上記上限以下であると、はんだ及び電極の表面に酸化被膜がより一層形成され難くなり、さらに、はんだ及び電極の表面に形成された酸化被膜をより一層効果的に除去できる。
 上記硬化性組成物は、必要に応じて、例えば、充填剤、増量剤、軟化剤、可塑剤、重合触媒、硬化触媒、着色剤、酸化防止剤、熱安定剤、光安定剤、紫外線吸収剤、滑剤、帯電防止剤及び難燃剤等の各種添加剤を含んでいてもよい。
 (接続構造体)
 上述した硬化性組成物を用いて、接続対象部材を接続することにより、接続構造体を得ることができる。
 上記接続構造体は、第1の接続対象部材と、第2の接続対象部材と、上記第1の接続対象部材と上記第2の接続対象部材を接続している接続部とを備え、上記接続部が、上述した硬化性組成物を硬化させることにより形成されている。
 図1は、本発明の一実施形態に係る硬化性組成物を用いた接続構造体を模式的に示す正面断面図である。ここで用いた硬化性組成物は、導電性粒子1を含む。導電性粒子1にかえて、導電性粒子11又は導電性粒子21を用いてもよい。また、導電性粒子1,11,21以外の導電性粒子を用いてもよい。
 図1に示す接続構造体51は、第1の接続対象部材52と、第2の接続対象部材53と、第1の接続対象部材52と第2の接続対象部材53とを接続している接続部54とを備える。
 第1の接続対象部材52は表面(上面)に、複数の第1の電極52aを有する。第2の接続対象部材53は表面(下面)に、複数の第2の電極53aを有する。第1の電極52aと第2の電極53aとが、1つ又は複数の導電性粒子1により電気的に接続されている。従って、第1,第2の接続対象部材52,53が導電性粒子1により電気的に接続されている。
 図2に、図1に示す接続構造体51における導電性粒子1と第1,第2の電極52a,53aとの接続部分を拡大して正面断面図で示す。図2に示すように、接続構造体51では、導電性粒子1におけるはんだ層3Bが溶融した後、溶融したはんだ層部分3Baが第1,第2の電極52a,53aと十分に接触する。すなわち、表面層がはんだ層3Bである導電性粒子1を用いることにより、導電層の表面層がニッケル、金又は銅等の金属である導電性粒子を用いた場合と比較して、導電性粒子1と第1,第2の電極52a,53aとの接触面積が大きくなる。このため、接続構造体51の導通信頼性及び接続信頼性を高めることができる。なお、フラックスを用いた場合には、加熱により、一般にフラックスは次第に失活する。また、導通信頼性をより一層高める観点からは、第2の導電層3Aを第1の電極52aに接触させることが好ましく、第2の導電層3Aを第2の電極53aに接触させることが好ましい。
 上記接続構造体の製造方法は特に限定されない。該接続構造体の製造方法の一例としては、上記第1の接続対象部材と上記第2の接続対象部材との間に上記硬化性組成物を配置し、積層体を得た後、該積層体を加熱及び加圧する方法等が挙げられる。上記加圧の圧力は9.8×10~4.9×10Pa程度である。上記加熱の温度は、120~220℃程度である。
 上記第1,第2の接続対象部材は、特に限定されない。上記第1,第2の接続対象部材としては、具体的には、半導体チップ、コンデンサ及びダイオード等の電子部品、並びにプリント基板、フレキシブルプリント基板、ガラスエポキシ基板及びガラス基板等の回路基板などの電子部品等が挙げられる。上記導硬化性組成物は、電子部品の接続に用いられる導電材料であることが好ましい。上記硬化性組成物は、液状であって、かつ液状の状態で接続対象部材の上面に塗工される導電材料であることが好ましい。上記硬化性組成物は電極間の電気的な接続に用いられることが好ましい。
 上記接続対象部材に設けられている電極としては、金電極、ニッケル電極、錫電極、アルミニウム電極、銅電極、銀電極、モリブデン電極及びタングステン電極等の金属電極が挙げられる。上記接続対象部材がフレキシブルプリント基板である場合には、上記電極は金電極、ニッケル電極、錫電極又は銅電極であることが好ましい。上記接続対象部材がガラス基板である場合には、上記電極はアルミニウム電極、銅電極、モリブデン電極又はタングステン電極であることが好ましい。なお、上記電極がアルミニウム電極である場合には、アルミニウムのみで形成された電極であってもよく、金属酸化物層の表面にアルミニウム層が積層された電極であってもよい。上記金属酸化物層の材料としては、3価の金属元素がドープされた酸化インジウム及び3価の金属元素がドープされた酸化亜鉛等が挙げられる。上記3価の金属元素としては、Sn、Al及びGa等が挙げられる。
 以下、本発明について、実施例及び比較例を挙げて具体的に説明する。本発明は、以下の実施例のみに限定されない。
硬化性組成物の配合成分として、以下の材料を用意した。
 (フェノキシ樹脂(A))
 以下のフェノキシ樹脂(A1),(A2),(A3)を合成した。
 (合成例1)
 (1)ビスフェノールFと1,6-ヘキサンジオールジグリシジルエーテル、及びビスフェノールF型エポキシ樹脂との第1の反応物の合成:
 ビスフェノールF(4,4’-メチレンビスフェノールと2,4’-メチレンビスフェノールと2,2’-メチレンビスフェノールとを重量比で2:3:1で含む)72重量部、1,6-ヘキサンジオールジグリシジルエーテル70重量部、ビスフェノールF型エポキシ樹脂(DIC社製「EPICLON EXA-830CRP」)30重量部を、3つ口フラスコに入れ、窒素フロー下にて、150℃で溶解させた。その後、水酸基とエポキシ基との付加反応触媒であるテトラーn-ブチルスルホニウムブロミド0.1重量部を添加し、窒素フロー下にて、150℃で6時間、付加重合反応させることにより第1の反応物を得た。
 NMRにより、付加重合反応が進行したことを確認して、第1の反応物が、ビスフェノールFに由来する水酸基と1,6-ヘキサンジオールジグリシジルエーテル、及びビスフェノールF型エポキシ樹脂のエポキシ基とが結合した構造単位を主鎖に有し、かつエポキシ基を両末端に有することを確認した。
Figure JPOXMLDOC01-appb-C000004
 上記第1の反応物172重量部を3つ口フラスコに入れ、窒素フロー下にて、150℃で溶解させた。その後アクリル酸4重量部、及びアクリル酸のカルボキシル基と、第1の反応物の両末端エポキシ基との反応触媒であるブチルトリフェニルスルホニウムブロミド0.1重量部を添加し、窒素フロー下にて、150℃で8時間反応させた。その後、130℃にて5時間真空乾燥し、未反応のアクリル酸を除去した。これにより第2の反応物を得た。
 NMRにて、アクリル酸のカルボキシル基と、第1の反応物の両末端エポキシ基との反応が進行したことを確認し、得られた化合物が、ビスフェノールFに由来する水酸基と1,6-ヘキサンジオールジグリシジルエーテル、及びビスフェノールF型エポキシ樹脂のエポキシ基とが結合した構造単位を主鎖に有し、かつ両末端のエポキシ基とアクリル酸のカルボキシル基が反応し、両末端にアクリロイル基を有することを確認した。
 GPCにより得られた第2の反応物の重量平均分子量は15000、数平均分子量は5000であった。
Figure JPOXMLDOC01-appb-C000005
 上記第2の反応物100重量部を、3つ口フラスコに入れ、窒素フロー下にて、120℃で溶解させた。その後、信越シリコーン社製「KBE-9007」(3-イソシアネートプロピルトリエトキシシラン)2重量部を添加し、第2の反応物の側鎖水酸基と3-イソシアネートプロピルトリエトキシシランのイソシアネート基との反応触媒であるジラウリン酸ジブチルすず0.002重量部を添加し、窒素フロー下にて、120℃で4時間反応させた。その後、110℃にて5時間真空乾燥し、未反応のKBE-9007を除去した。
 NMRにて、第2の反応物の側鎖水酸基と、3-イソシアネートプロピルトリエトキシシランのイソシアネート基との反応が進行したことを確認し、得られた化合物が、ビスフェノールFに由来する水酸基と1,6-ヘキサンジオールジグリシジルエーテル、及びビスフェノールF型エポキシ樹脂のエポキシ基とが結合した構造単位を主鎖に有し、かつ、両末端にアクリロイル基を、側鎖にプロピルトリエトキシシラン基を有することを確認した。これによりフェノキシ樹脂(A1)を得た。
Figure JPOXMLDOC01-appb-C000006
 上記式において、Rは下記式で表される基又は水酸基を表す。
Figure JPOXMLDOC01-appb-C000007
 GPCにより得られたフェノキシ樹脂(A1)の重量平均分子量は16000、数平均分子量は5500であった。
 (合成例2)
 合成例1で得られた上記第1の反応物100重量部を、3つ口フラスコに入れ、窒素フロー下にて、120℃で溶解させた。その後、信越シリコーン社製「KBE-9007」(3-イソシアネートプロピルトリエトキシシラン)2重量部を添加し、第1の反応物の側鎖水酸基と3-イソシアネートプロピルトリエトキシシランのイソシアネート基との反応触媒であるジラウリン酸ジブチルすず0.002重量部を添加し、窒素フロー下にて、120℃で4時間反応させた。その後、110℃にて5時間真空乾燥し、未反応のKBE-9007を除去した。
 NMRにて、第1の反応物の側鎖水酸基と、3-イソシアネートプロピルトリエトキシシランのイソシアネート基との反応が進行したことを確認し、得られた化合物が、ビスフェノールFに由来する水酸基と1,6-ヘキサンジオールジグリシジルエーテル、及びビスフェノールF型エポキシ樹脂のエポキシ基とが結合した構造単位を主鎖に有し、かつ、両末端にエポキシ基を、側鎖にプロピルトリエトキシシラン基を有することを確認した。これによりフェノキシ樹脂(A2)を得た。
Figure JPOXMLDOC01-appb-C000008
 上記式において、Rは下記式で表される基又は水酸基を表す。
Figure JPOXMLDOC01-appb-C000009
 (合成例3)
 合成例1で得られた上記第1の反応物100重量部を、3つ口フラスコに入れ、窒素フロー下にて、120℃で溶解させた。その後、信越シリコーン社製「KBE-403」(3-グリシドキシプロピルトリエトキシシラン)3重量部を添加し、第1の反応物の側鎖水酸基と3-グリシドキシプロピルトリエトキシシランのエポキシ基との反応触媒であるテトラーn-ブチルスルホニウムブロミド0.1重量部を添加し、窒素フロー下にて、120℃で4時間反応させた。その後、110℃にて5時間真空乾燥し、未反応のKBE-403を除去した。
 NMRにて、第1の反応物の側鎖水酸基と、3-グリシドキシプロピルトリエトキシシランのエポキシ基との反応が進行したことを確認し、得られた化合物が、ビスフェノールFに由来する水酸基と1,6-ヘキサンジオールジグリシジルエーテル、及びビスフェノールF型エポキシ樹脂のエポキシ基とが結合した構造単位を主鎖に有し、かつ、両末端にエポキシ基を、側鎖にプロピルトリエトキシシラン基を有することを確認した。これによりフェノキシ樹脂(A3)を得た。
 また、硬化性組成物の配合成分として、以下の材料を用意した。
 (フェノキシ樹脂(A)に相当しない他のフェノキシ樹脂)
 他のフェノキシ樹脂(新日鐵住金化学社製「YP-50S」)
 (pH調整剤)
 リン酸アクリレート(ダイセル・オルネクス社製「EBECRYL168」、pH=2.8)
 リン酸メタクリレート:2-メタクロイロキシエチルアシッドホスフェート(共栄社化学社製「ライトエステルP-1M」、pH=3)
リン酸アクリレート2:2-アクリロイルオキシエチルアシッドフォスフェート(共栄社化学社製「ライトアクリレートP-1A(N)」、pH=3)
 (ラジカル重合性化合物(A))
 ラジカル重合性化合物(A1)(アクリロイルモルフォリン、KOHJIN社製「ACMO」、pH=11.5、上記式(1)で表される化合物、Rは水素原子)
 (熱硬化性化合物)
 熱硬化性化合物(エポキシ樹脂、DIC社製「EPICLON EAX-4850-150」)
 (熱ラジカル重合開始剤)
 有機過酸化物(日油社製「パーオクタO」)
 (熱硬化剤)
 熱硬化剤(旭化成イーマテリアルズ社製「HXA3922HP」、マイクロカプセル化されたアミン系型硬化剤)
 (導電性粒子)
 はんだ粒子(三井金属社製「DS-10」、平均粒子径10μm)
 (他の化合物)
 (メタ)アクリル変性フェノキシ樹脂(上記第2の反応物)
 カプロラクトン変性エポキシ(メタ)アクリレート1(ダイセル・オルネクス社製「EBECRYL3708」)
 脂肪族ウレタンアクリレート(ダイセル・オルネクス社製「EBECRYL8413」)
 イミドアクリレート(東亜合成社製「M-140」)
 シランカップリング剤(信越シリコーン社製「KBE-9007」、3-イソシアネートプロピルトリエトキシシラン)
 (実施例1)
 (1)硬化性組成物の調製
 下記の表1に示す成分を下記の表1に示す配合量で配合して、遊星式攪拌機を用いて2000rpmにて、ペーストの温度が30℃以下になるように管理し、10分間攪拌することにより、異方性導電ペーストを得た。
 (2)接続構造体の作製
 L/Sが100μm/100μmの銅電極にNi/Auメッキを行った電極パターン(幅3mm、電極数70本)を上面に有するガラスエポキシ基板(FR-4基板)を用意した。また、L/Sが100μm/100μmの銅電極にNi/Auメッキを行った電極パターン(幅3mm、電極数70本)を下面に有するフレキシブルプリント基板を用意した。
 上記ガラスエポキシ基板の上面に、硬化性組成物を厚さ150μm、幅0.8mmとなるように塗工し、硬化性組成物層を形成した。次に、硬化性組成物層の上面に上記フレキシブルプリント基板を、電極同士が対向するように積層した。
 その後、圧着機(大橋製作所社製「BD-03」)により、電極上に位置する硬化性組成物層の温度が140℃となるようにヒーターヘッドの温度を調整しながら、1.0MPaの圧力をかけて、10秒間圧着した。これにより、はんだを溶融させ、かつ硬化性組成物層を硬化させ、接続構造体を得た。
 (実施例2~10及び比較例1,2)
 配合成分の種類及び配合量を下記の表1に示すように変更したこと以外は実施例1と同様にして、硬化性組成物を調製した。得られた硬化性組成物を用いたこと以外は実施例1と同様にして、接続構造体を得た。
 (評価)
 (1)pH
 得られた硬化性組成物のpHを、硬化性組成物1gを純水10gに溶解させた後、pH計(HORIBA社製「D-72」)、電極ToupH 電極 9615-10Dを用いて測定した。
 (2)保存安定性
 硬化性組成物の初期粘度を測定した。さらに硬化性組成物を23℃にて48時間静置した後、48時間静置後の粘度を測定した。粘度の測定は、E型粘度計 TV-33(東機産業社製)を用いて行い、硬化性組成物の保存安定性を評価した。保存安定性を下記の基準で判定した。
 [保存安定性の判定基準]
 ○○:48時間静置後の粘度/初期粘度が1.2倍未満
 ○:48時間静置後の粘度/初期粘度が1.2倍以上、1.5倍未満
 △:48時間静置後の粘度/初期粘度が1.5倍以上、2倍未満
 ×:48時間静置後の粘度/初期粘度が2倍以上
 (3)低温硬化性
 示差走査熱測定装置SII社製「DSC200」を用い、硬化性組成物を2mg採取し、窒素フロー下、昇温速度10℃/分にて、30℃~300℃まで測定し、発熱ピーク面積Aを求めた。
 上記接続構造体の作製時に、電極上に位置する硬化性組成物層の温度が130℃、140℃、150℃となるようにヒーターヘッドの温度を調整しながら、1.0MPaの圧力をかけて、10秒間圧着した。その後、接続構造体を120℃に加熱し、フレキシブルプリント基板を180°ピールすることで剥離した。ガラスエポキシ基板上の硬化性組成物を2mg採取し、DSCにて発熱ピーク面積Bを求めた。「反応率(%)=(1-(130℃、140℃又は150℃加熱したときの硬化性組成物の発熱ピーク面積B/加熱前の硬化性組成物の発熱ピーク面積A))×100」を求めることで、低温硬化性を評価した。低温硬化性を下記の基準で判定した。
 [低温硬化性の判定基準]
 ○○:130℃で圧着した際の、反応率が80%以上
 ○:○○に相当せず、かつ140℃で圧着した際の、反応率が80%以上
 △:○○及び○に相当せず、かつ150℃で圧着した際の、反応率が80%以上
 ×:○○及び○に相当せず、かつ150℃で圧着した際の、反応率が80%未満
 (4)導通性
 得られた接続構造体の上下の電極間の接続抵抗をそれぞれ、4端子法により測定した。2つの接続抵抗の平均値を算出した。なお、電圧=電流×抵抗の関係から、一定の電流を流した時の電圧を測定することにより接続抵抗を求めることができる。上下の電極間の導通性を下記の基準で判定した(得られた抵抗値は、電極面積3mm×100μmの上下電極間の接続抵抗×70本分の合計値)。
 [導通性の判定基準]
 ○○:接続抵抗の平均値が8.0Ω以下
 ○:接続抵抗の平均値が8.0Ωを超え、10.0Ω以下
 △:接続抵抗の平均値が10.0Ωを超え、15.0Ω以下
 ×:接続抵抗の平均値が15.0Ωを超える
 (5)高温高湿下での接着性
 得られた接続構造体を用いて、島津製作所社製「マイクロオートグラフMST-I」を用い、90°ピール強度Cを引っ張り速度50mm/分にて23℃雰囲気下で測定した。85℃及び湿度85%雰囲気下で500時間静置した後、同様にして90°ピール強度Dを測定した。高温高湿下での接着性を下記の基準で判定した。
 [高温高湿下での接着性の判定基準]
 ○○:90°ピール強度D20N/cm以上であり、D/C×100が80%以上
 ○:90°ピール強度D15N/cm以上、20N/cm未満であり、D/C×100が80%以上
 △:90°ピール強度D10N/cm以上、15N/cm未満であり、D/C×100が80%以上
 ×:90°ピール強度D10N/cm未満
 硬化性組成物の組成及び評価結果を下記の表1に示す。なお、下記の表1において、「-」は評価していないことを示す。
Figure JPOXMLDOC01-appb-T000010
 1…導電性粒子
 2…基材粒子
 3…導電層
 3A…第2の導電層
 3B…はんだ層
 3Ba…溶融したはんだ層部分
 11…導電性粒子
 12…はんだ層
 21…導電性粒子
 51…接続構造体
 52…第1の接続対象部材
 52a…第1の電極
 53…第2の接続対象部材
 53a…第2の電極
 54…接続部

Claims (14)

  1.  ラジカル重合性基とモルホリン基とを有するラジカル重合性化合物と、
     有機過酸化物と、
     pH調整剤とを含み、
     pHが4以上、9以下である、硬化性組成物。
  2.  前記pH調整剤のpHが7未満である、請求項1に記載の硬化性組成物。
  3.  前記pH調整剤のpHが4以下である、請求項2に記載の硬化性組成物。
  4.  加水分解性基を有するフェノキシ樹脂を含む、請求項1~3のいずれか1項に記載の硬化性組成物。
  5.  前記フェノキシ樹脂が、前記加水分解性基を側鎖に有する、請求項4に記載の硬化性組成物。
  6.  前記pH調整剤が、前記フェノキシ樹脂の湿気硬化を促進させる湿気硬化促進剤である、請求項4又は5に記載の硬化性組成物。
  7.  前記pH調整剤が、前記フェノキシ樹脂における前記加水分解性基と反応性を有する、請求項4~6のいずれか1項に記載の硬化性組成物。
  8.  イミド(メタ)アクリレート、(メタ)アクリロイル基を有するフェノキシ樹脂及びカプロラクトン変性エポキシ(メタ)アクリレートからなる群から選択された少なくとも1種を含む、請求項1~7のいずれか1項に記載の硬化性組成物。
  9.  電子部品の接続に用いられる、請求項1~8のいずれか1項に記載の硬化性組成物。
  10.  導電性粒子を含む、請求項1~9のいずれか1項に記載の硬化性組成物。
  11.  前記導電性粒子が、少なくとも外表面がはんだである導電性粒子である、請求項10に記載の硬化性組成物。
  12.  導電材料であり、電極間の電気的な接続に用いられる、請求項1~11のいずれか1項に記載の硬化性組成物。
  13.  第1の接続対象部材と、
     第2の接続対象部材と、
     前記第1の接続対象部材と、前記第2の接続対象部材を接続している接続部とを備え、
     前記接続部が、請求項1~12のいずれか1項に記載の硬化性組成物を硬化させることにより形成されている、接続構造体。
  14.  前記第1の接続対象部材が表面に第1の電極を有し、
     前記第2の接続対象部材が表面に第2の電極を有し、
     前記硬化性組成物が、導電性粒子を含み、
     前記第1の電極と前記第2の電極とが、前記導電性粒子により電気的に接続されている、請求項13に記載の接続構造体。
PCT/JP2014/072421 2013-09-05 2014-08-27 硬化性組成物及び接続構造体 WO2015033833A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020157022403A KR101596655B1 (ko) 2013-09-05 2014-08-27 경화성 조성물 및 접속 구조체
JP2014543030A JP5746797B1 (ja) 2013-09-05 2014-08-27 硬化性組成物及び接続構造体
CN201480027694.6A CN105209515B (zh) 2013-09-05 2014-08-27 固化性组合物及连接结构体

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013184418 2013-09-05
JP2013-184418 2013-09-05
JP2013184417 2013-09-05
JP2013-184417 2013-09-05

Publications (1)

Publication Number Publication Date
WO2015033833A1 true WO2015033833A1 (ja) 2015-03-12

Family

ID=52628309

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2014/072422 WO2015033834A1 (ja) 2013-09-05 2014-08-27 硬化性組成物及び接続構造体
PCT/JP2014/072421 WO2015033833A1 (ja) 2013-09-05 2014-08-27 硬化性組成物及び接続構造体

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/072422 WO2015033834A1 (ja) 2013-09-05 2014-08-27 硬化性組成物及び接続構造体

Country Status (5)

Country Link
JP (3) JP5746797B1 (ja)
KR (2) KR102167312B1 (ja)
CN (2) CN105189655B (ja)
TW (2) TWI596150B (ja)
WO (2) WO2015033834A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017530227A (ja) * 2014-09-25 2017-10-12 ヘキシオン・インコーポレイテッド シラン官能化化合物およびこれの組成物
WO2018181421A1 (ja) * 2017-03-29 2018-10-04 味の素株式会社 硬化性組成物および構造物

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102605942B1 (ko) * 2015-08-24 2023-11-27 세키스이가가쿠 고교가부시키가이샤 도전 재료 및 접속 구조체
JPWO2017033932A1 (ja) * 2015-08-24 2018-06-07 積水化学工業株式会社 導電材料及び接続構造体
JP6551794B2 (ja) * 2016-05-30 2019-07-31 パナソニックIpマネジメント株式会社 導電粒子、ならびに回路部材の接続材料、接続構造、および接続方法
KR102428039B1 (ko) * 2016-10-06 2022-08-03 세키스이가가쿠 고교가부시키가이샤 도전 재료, 접속 구조체 및 접속 구조체의 제조 방법
KR102064379B1 (ko) * 2018-05-08 2020-01-10 한국생산기술연구원 알콕시실릴기를 갖는 에폭시 화합물의 제조방법
JP2020132716A (ja) * 2019-02-15 2020-08-31 旭化成株式会社 ポリフェニレンエーテル含有樹脂組成物
WO2021044631A1 (ja) * 2019-09-06 2021-03-11 昭和電工マテリアルズ株式会社 樹脂ペースト組成物、半導体装置及び半導体装置の製造方法
JP2022019451A (ja) * 2020-07-17 2022-01-27 京都エレックス株式会社 導電性接着剤組成物

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003089771A (ja) * 2001-09-18 2003-03-28 Hitachi Chem Co Ltd 回路接続用接着剤組成物、接続体及び半導体装置
JP2013032417A (ja) * 2011-08-01 2013-02-14 Sekisui Chem Co Ltd 熱硬化性樹脂材料及び多層基板

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4289319B2 (ja) 1997-03-31 2009-07-01 日立化成工業株式会社 回路接続材料並びに回路端子の接続構造及び接続方法
JP3769966B2 (ja) * 1999-02-18 2006-04-26 中央理化工業株式会社 水系樹脂組成物の製造方法
JP2001089420A (ja) * 1999-09-16 2001-04-03 Idemitsu Kosan Co Ltd アクリレート化合物とそれを用いた接着剤及び液晶素子
JP2002212262A (ja) * 2001-01-17 2002-07-31 Arakawa Chem Ind Co Ltd 電気絶縁用樹脂組成物、電子材料用絶縁材料およびその製造方法
JP4526715B2 (ja) * 2001-02-05 2010-08-18 新日鐵化学株式会社 シロキサン変性アクリル樹脂、感光性樹脂組成物及び硬化物
JP2002244327A (ja) * 2001-02-14 2002-08-30 Konica Corp 電子写真感光体、電子写真感光体の製造方法、画像形成方法、画像形成装置、及びプロセスカートリッジ
JP2003055435A (ja) * 2001-08-16 2003-02-26 Arakawa Chem Ind Co Ltd 電気絶縁用樹脂組成物、電子材料用絶縁材料およびその製造方法
JP5821355B2 (ja) 2011-07-15 2015-11-24 住友ベークライト株式会社 金属ベース回路基板、積層板、インバータ装置及びパワー半導体装置
KR102152474B1 (ko) * 2011-12-16 2020-09-04 히타치가세이가부시끼가이샤 접착제 조성물, 필름상 접착제, 접착 시트, 접속 구조체 및 접속 구조체의 제조 방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003089771A (ja) * 2001-09-18 2003-03-28 Hitachi Chem Co Ltd 回路接続用接着剤組成物、接続体及び半導体装置
JP2013032417A (ja) * 2011-08-01 2013-02-14 Sekisui Chem Co Ltd 熱硬化性樹脂材料及び多層基板

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017530227A (ja) * 2014-09-25 2017-10-12 ヘキシオン・インコーポレイテッド シラン官能化化合物およびこれの組成物
WO2018181421A1 (ja) * 2017-03-29 2018-10-04 味の素株式会社 硬化性組成物および構造物
JPWO2018181421A1 (ja) * 2017-03-29 2020-02-06 味の素株式会社 硬化性組成物および構造物
JP7070552B2 (ja) 2017-03-29 2022-05-18 味の素株式会社 硬化性組成物および構造物

Also Published As

Publication number Publication date
JP5820536B2 (ja) 2015-11-24
CN105209515B (zh) 2017-03-08
KR20150103300A (ko) 2015-09-09
CN105189655B (zh) 2017-03-08
KR101596655B1 (ko) 2016-02-22
JPWO2015033834A1 (ja) 2017-03-02
JP5897189B2 (ja) 2016-03-30
CN105189655A (zh) 2015-12-23
KR102167312B1 (ko) 2020-10-19
JP2015180749A (ja) 2015-10-15
TW201515014A (zh) 2015-04-16
TW201514241A (zh) 2015-04-16
JPWO2015033833A1 (ja) 2017-03-02
KR20160053841A (ko) 2016-05-13
TWI596150B (zh) 2017-08-21
TWI598890B (zh) 2017-09-11
WO2015033834A1 (ja) 2015-03-12
CN105209515A (zh) 2015-12-30
JP5746797B1 (ja) 2015-07-08

Similar Documents

Publication Publication Date Title
JP5897189B2 (ja) 硬化性組成物及び接続構造体
JP5735716B2 (ja) 導電材料及び接続構造体
JP7425824B2 (ja) 導電材料、接続構造体及び接続構造体の製造方法
JPWO2017033930A1 (ja) 導電材料及び接続構造体
JP2014017248A (ja) 導電材料、導電材料の製造方法及び接続構造体
JP6049879B2 (ja) 硬化性組成物、導電材料及び接続構造体
JP6581434B2 (ja) 導電材料及び接続構造体
JPWO2017033932A1 (ja) 導電材料及び接続構造体
JP2017045607A (ja) 導電材料、接続構造体及び接続構造体の製造方法
WO2017033931A1 (ja) 導電材料及び接続構造体
WO2017033933A1 (ja) 導電材料及び接続構造体
JP2017045606A (ja) 導電材料、接続構造体及び接続構造体の製造方法
JP2017188327A (ja) 導電材料、接続構造体及び接続構造体の製造方法
KR102605910B1 (ko) 도전 재료 및 접속 구조체
JP2017191685A (ja) 導電材料及び接続構造体
JP6533369B2 (ja) 導電材料及び接続構造体
JP2020170592A (ja) 導電材料及び接続構造体
JP2017045543A (ja) 導電材料及び接続構造体
JP2017045542A (ja) 導電材料及び接続構造体
JP2017022045A (ja) 導電材料及び接続構造体

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014543030

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14843066

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157022403

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14843066

Country of ref document: EP

Kind code of ref document: A1