WO2015033653A1 - 圧縮機および冷凍サイクル装置 - Google Patents

圧縮機および冷凍サイクル装置 Download PDF

Info

Publication number
WO2015033653A1
WO2015033653A1 PCT/JP2014/067553 JP2014067553W WO2015033653A1 WO 2015033653 A1 WO2015033653 A1 WO 2015033653A1 JP 2014067553 W JP2014067553 W JP 2014067553W WO 2015033653 A1 WO2015033653 A1 WO 2015033653A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
compressor
refrigerating machine
machine oil
oil
Prior art date
Application number
PCT/JP2014/067553
Other languages
English (en)
French (fr)
Inventor
哲永 渡辺
鈴木 秀明
Original Assignee
東芝キヤリア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝キヤリア株式会社 filed Critical 東芝キヤリア株式会社
Priority to AU2014316467A priority Critical patent/AU2014316467B2/en
Priority to CN201480045231.2A priority patent/CN105473953B/zh
Priority to KR1020167003647A priority patent/KR20160030998A/ko
Priority to EP14841687.8A priority patent/EP3043124A4/en
Priority to JP2015535356A priority patent/JP6012878B2/ja
Publication of WO2015033653A1 publication Critical patent/WO2015033653A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/041Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
    • C09K5/044Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds
    • C09K5/045Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds containing only fluorine as halogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/08Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing oxygen
    • C10M105/32Esters
    • C10M105/38Esters of polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M171/00Lubricating compositions characterised by purely physical criteria, e.g. containing as base-material, thickener or additive, ingredients which are characterised exclusively by their numerically specified physical properties, i.e. containing ingredients which are physically well-defined but for which the chemical nature is either unspecified or only very vaguely indicated
    • C10M171/008Lubricant compositions compatible with refrigerants
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/24Only one single fluoro component present
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/283Esters of polyhydroxy compounds
    • C10M2207/2835Esters of polyhydroxy compounds used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/09Characteristics associated with water
    • C10N2020/097Refrigerants
    • C10N2020/101Containing Hydrofluorocarbons
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/30Refrigerators lubricants or compressors lubricants

Definitions

  • Embodiments of the present invention generally relate to a compressor and a refrigeration cycle apparatus.
  • Refrigerant compressors are incorporated in refrigerators and refrigerators.
  • CFC-12 (R12) and HCFC-22 (R22) were once used as refrigerants for this compressor, but these refrigerants have a high ozone depletion potential (ODP) and are currently used. Is regulated. Therefore, the use of R-404A, R-410A, and HFC-134a (R-134a), which are said to have zero ODP, is currently mainstream.
  • GWP global warming potential
  • GWP global warming potential
  • R32 which is a hydrofluorocarbon compound having zero ODP and relatively low GWP (GWP: about 650), has recently been attracting attention.
  • the refrigerant compressor incorporates refrigerating machine oil, for example, in order to impart lubricity to the sliding portion and to improve the sealing performance of the seal portion.
  • Refrigerating machine oil is required to have good compatibility with refrigerants.
  • a compressor using R32 as a refrigerant and incorporating refrigeration oil is provided.
  • the liquid mixture of the refrigerating machine oil and the refrigerant is separated into two layers at a refrigerating machine oil content of 10 to 40% by mass and a temperature range of ⁇ 40 ° C. to 60 ° C., and the refrigerating machine oil content of 5% by mass or less.
  • a temperature range of 20 ° C to 40 ° C a content of refrigeration oil of 55% by mass or more, and a temperature range of 20 ° C to 50 ° C.
  • the graph which shows the compatible behavior of refrigerant
  • Schematic which illustrates the refrigerating-cycle apparatus provided with the liquid injection circuit.
  • the (refrigerant) compressor according to the embodiment uses R32 as a refrigerant and incorporates specific refrigeration oil.
  • R32 used as a refrigerant is difluoromethane, its ODP is zero, and its GWP is about 650.
  • the refrigerating machine oil incorporated in the compressor using R32 as the refrigerant has two layers at a temperature of ⁇ 40 ° C. to 60 ° C. when the liquid mixture of the refrigerant and the refrigerant R32 has a content (oil content) of the refrigerating machine oil of 10 to 40 mass%. Is to be separated.
  • FIG. 1 shows the compatibility behavior exhibited by the liquid mixture of refrigerant R32 and the refrigerating machine oil. This compatibility behavior is measured in accordance with the “Compatibility Test Method with Refrigerant” defined in Annex D of Japanese Industrial Standard (JIS) K2211-2009.
  • JIS Japanese Industrial Standard
  • the liquid mixture of the refrigerant R32 and the refrigerating machine oil is separated into two layers in the region indicated by diagonal lines in FIG. 1, that is, in the entire region where the oil content is 10 to 40% by mass and the temperature is ⁇ 40 ° C. to + 60 ° C. .
  • the separated two layers have different oil fractions.
  • the refrigerant R32 and the refrigerating machine oil are separated into two layers in the entire range of the oil fraction a to b mass%, and the other oil fractions are compatible with each other, the separated two layers are separated into the oil fraction a It is comprised by the layer of a mass%, and the layer of an oil fraction b mass%.
  • the oil content is 50% by mass or more, since the ratio of the refrigerating machine oil is higher than that of the refrigerant, the lubricity of the liquid mixture is ensured by the refrigerating machine oil.
  • the oil content is less than 50% by mass, the ratio of the refrigerant becomes high, and the refrigerating machine oil is highly diluted, and sufficient lubrication performance cannot be obtained.
  • refrigerant-dissolving oil a mixture of the refrigerating machine oil and the refrigerant dissolved in the refrigerant; hereinafter simply referred to as “refrigerant-dissolving oil”
  • refrigerant-dissolving oil a mixture of the refrigerating machine oil and the refrigerant dissolved in the refrigerant
  • the refrigeration oil circulates in the refrigeration cycle together with the refrigerant. At that time, about several percent of the refrigeration oil circulates with respect to the circulation amount of the refrigerant. Therefore, it is necessary from the viewpoint of ensuring reliability that the refrigeration oil is compatible with the refrigerant at a ratio of about several percent. Therefore, when the oil content is 5% by mass or less, the liquid mixture of the refrigerant R32 and the refrigerating machine oil needs not to be separated into layers.
  • the liquid mixture of the refrigerating machine oil and the refrigerant R32 according to the embodiment is separated into two layers in the oil fraction and the temperature range, but is compatible in the temperature range of 20 ° C. to 40 ° C. with an oil fraction of 5% by mass or less.
  • the oil content of 55% by mass or more is compatible even in the temperature range of 20 ° C to 50 ° C.
  • the refrigerating machine oil of the embodiment satisfies all the above requirements.
  • the refrigerating machine oil that is partially compatible with the refrigerant R32 exhibits a kinematic viscosity of 7.5 mm 2 / s or more at 100 ° C.
  • Refrigerant R32 has a characteristic that the discharge temperature from the compressor is higher than that of the prior art refrigerant such as refrigerant R410A (under the conditions specified by the American Society for Heating, Refrigerating and Air Conditioning (ASHRAE), the prior art like refrigerant R410A
  • the discharge gas temperature is 15 ° C. or more higher than that of the refrigerant.
  • the refrigerating machine oil has the above kinematic viscosity characteristics even at a high temperature of 100 ° C.
  • the washing action of the refrigerating machine oil by the liquid refrigerant R32 can be achieved even when the compressor is inhaled with wet gas in order to suppress an increase in the discharge temperature. Therefore, the lubricity of the compressor sliding portion can be ensured over a long period, that is, high reliability can be ensured.
  • coolant R32 and the said refrigerating machine oil shows kinematic viscosity of 1.0 mm ⁇ 2 > / s or more in 60 mass% of oil fractions, and the temperature of 40 degreeC.
  • Refrigerant R32 has a molecular weight smaller than that of a conventional refrigerant, and the viscosity of refrigerant-dissolved oil is greatly reduced when refrigeration oil having high compatibility with the refrigerant is applied as in the case of using a conventional refrigerant. .
  • the refrigerating machine oil of the present embodiment is partially compatible with the refrigerant R32, and the liquid mixture (refrigerant dissolved oil) with the refrigerant R32 exhibits the kinematic viscosity at an oil content of 60% by mass and a temperature of 40 ° C. High reliability can be ensured.
  • the refrigerating machine oil that shows partial compatibility with the refrigerant R32 and that exhibits the above-mentioned various characteristics usually contains a synthetic ester oil, consists essentially of a synthetic ester oil, or consists of a synthetic ester oil.
  • This synthetic ester oil may preferably be an esterification reaction product of a polyol (polyhydric alcohol) and a monocarboxylic acid.
  • polyhydric alcohols examples include neopentyl glycol, trimethylol propane, and pentaerythritol.
  • monocarboxylic acids include saturated fatty acids having 7 to 9 carbon atoms. Such saturated fatty acids include branched monocarboxylic acids such as 2-ethylhexanoic acid, 3,5,5-trimethylhexanoic acid. In one embodiment, two or more monocarboxylic acids are used to produce an ester (oil) with a hindered polyol.
  • the refrigerating machine oil is an esterification reaction product of pentaerythritol with 2-ethylhexanoic acid and 3,5,5-trimethylhexanoic acid.
  • 2-ethylhexanoic acid and 3,5,5-trimethylhexanoic acid are esterified in a total of 4 moles per mole of pentaerythritol.
  • the proportion of 2-ethylhexanoic acid in the total of 2-ethylhexanoic acid and 3,5,5-trimethylhexanoic acid can be 40 to 50 mol% (3,5,5-trimethylhexanoic acid). Ratio: 60 to 50 mol%).
  • the refrigerating machine oil (the synthetic ester oil and the esterification reaction product) according to the embodiment may have a saturated water content of less than 2000 ppm at a temperature of 30 ° C. and a relative humidity of 90%.
  • the refrigerant R32 has a high discharge temperature, and the lubricity is easily affected by moisture under such a high temperature environment.
  • the refrigerating machine oil having a low saturated moisture content and thus low hygroscopicity (low hygroscopic speed) can provide lubricity stably for a long time.
  • an additive selected from an antioxidant, a stabilizer and a copper deactivator can be blended.
  • antioxidants examples include dibutyl paracresol (DBPC).
  • DBPC dibutyl paracresol
  • the antioxidant can be blended at a ratio of 0.05 to 1.0 mass% with respect to the refrigerating machine oil.
  • the amount of the antioxidant is less than 0.05% by mass, the effect is poor.
  • the amount is more than 0.5% by mass, the effect approaches a saturated state, so it is not necessary to add more than 1.0% by mass. I found nothing.
  • the addition amount of the antioxidant is preferably 0.1 to 0.5% by mass.
  • the stabilizer examples include an epoxy compound (for example, glycidyl ester, glycidyl ether).
  • the stabilizer can be blended at a ratio of 0.2 to 1.5 mass% with respect to the refrigerating machine oil. It has been found that if the amount of stabilizer is less than 0.2% by weight, the effect is poor, whereas if the amount exceeds 1.5% by weight, the electrical insulation resistance can be adversely affected.
  • the addition amount of the stabilizer is preferably 0.25 to 1.5% by mass.
  • copper deactivators examples include benzotriazole (BTA).
  • BTA benzotriazole
  • the copper deactivator can be added at a ratio of 25 ppm or less with respect to the refrigerating machine oil.
  • a refrigeration cycle apparatus includes a compressor according to the above embodiment, a condenser connected to the compressor, an expansion device connected to the condenser, the expansion device and the compressor. And an evaporator connected between the two.
  • FIG. 2 illustrates a refrigeration cycle apparatus including a compressor according to a more specific embodiment.
  • R32 is used as the refrigerant
  • the refrigerating machine oil according to the embodiment is used as the refrigerating machine oil.
  • a refrigeration cycle apparatus 1 illustrated in FIG. 2 includes a compressor main body 2 and an accumulator 3, and compresses a low-pressure gas refrigerant that is a working fluid into a high-pressure gas refrigerant, and a compression A condenser 5 connected to the discharge side of the machine main body 2 to condense the high-pressure gas refrigerant into a liquid refrigerant, an expansion device 6 connected to the condenser 5 to decompress the liquid refrigerant, an expansion device 6 and an accumulator 3 And an evaporator 7 for evaporating the liquid refrigerant.
  • the compressor main body 2 has a sealed container 8 formed in a cylindrical shape, and refrigerating machine oil 9 is stored at the bottom of the sealed container 8. Furthermore, in the sealed container 8, an electric motor unit 10 located on the upper side and a compression mechanism unit 11 located on the lower side are accommodated. The electric motor unit 10 and the compression mechanism unit 11 are connected via a rotating shaft 12 having a vertical center line and rotating around the center line.
  • the electric motor unit 10 includes a rotor 13 fixed to the rotary shaft 12 and a stator 14 fixed to the sealed container 8 and disposed at a position surrounding the rotor 13.
  • the rotor 13 is provided with a permanent magnet (not shown), and the stator 14 is wound with a coil (not shown).
  • the compression mechanism unit 11 has a first cylinder 15a located on the upper side and a second cylinder 15b located on the lower side.
  • a partition plate 17 is provided between the first cylinder 15a and the second cylinder 15b.
  • a main bearing 16a that rotatably supports the rotary shaft 12 is fixed to the upper end surface of the first cylinder 15a, and a sub bearing 16b that rotatably supports the rotary shaft 12 to the lower end surface of the second cylinder 15b. Is fixed.
  • the rotary shaft 12 is disposed through the first and second cylinders 15a and 15b.
  • the rotary shaft 12 includes a first eccentric portion 18a and a second eccentric portion 18b having the same diameter with a phase difference of 180 °. Is provided.
  • a first roller 19a is fitted to the first eccentric portion 18a, and a second roller 19b is fitted to the second eccentric portion 18b.
  • a first cylinder chamber 20a is formed in which both ends of the first cylinder 15a are closed by the main bearing 16a and the partition plate 17.
  • a second cylinder chamber 20b is formed in which both ends of the second cylinder 15b are closed by the partition plate 17 and the auxiliary bearing 16b.
  • a first roller 19a fitted in the first eccentric portion 18a is accommodated in the first cylinder chamber 20a
  • a second roller 19b fitted in the second eccentric portion 18b is accommodated in the second cylinder chamber 20b. Is housed.
  • These first and second rollers 19a and 19b move eccentrically (eccentric rotation) while the outer peripheral surface thereof is in line contact with the inner peripheral surfaces of the first and second cylinders 15a and 15b when the rotary shaft 12 rotates. Has been placed.
  • the tip portions are brought into contact with the outer peripheral surfaces of the first and second rollers 19a and 19b, and the first and second rollers 19a and 19b are rotated.
  • a blade (not shown) that divides the first and second cylinder chambers 20a and 20b into two spaces in which the volume and pressure change is accommodated.
  • the main bearing 16a is provided with a first discharge valve mechanism 21a.
  • the first discharge valve mechanism 21a includes a first discharge port 22a formed in the main bearing 16a and a first reed valve 23a that is a first discharge valve that is screwed to the main bearing 16a to open and close the first discharge port 22a. And a first valve stopper 24a that is screwed to the main bearing 16a together with the first reed valve 23a to restrict the maximum opening of the first reed valve 23a.
  • the first discharge valve mechanism 21a is covered with a first muffler 25a attached to the main bearing 16a.
  • the first muffler 25a is formed with a discharge hole 26 that communicates the inside and outside of the first muffler 25a.
  • the second discharge valve mechanism 21b is provided in the auxiliary bearing 16b.
  • the second discharge valve mechanism 21b has the same configuration as the first discharge valve mechanism 21a described above.
  • the second discharge port 22b formed in the sub bearing 16b and the second discharge port 22b are screwed to the sub bearing 16b.
  • the second discharge valve mechanism 21b is covered with a second muffler 25b attached to the auxiliary bearing 16b.
  • the inside of the second muffler 25b and the inside of the first muffler 25a are gas refrigerant guide passages (not shown) formed through the auxiliary bearing 16b, the second cylinder 15b, the partition plate 17, the first cylinder 15a, and the main bearing 16a. )).
  • the accumulator 3 has a cylindrical sealed case 27, and the accumulator 3 and the evaporator are arranged so that the gas refrigerant evaporated by the evaporator 7 or the liquid refrigerant not evaporated by the evaporator 7 flows into the sealed case 27. 7 is connected.
  • the sealed case 27 there are provided two suction pipes 28, one end of which opens at the upper side in the sealed case 27 and is arranged so that only the gas refrigerant in the sealed case 27 flows.
  • the other ends of these suction pipes 28 extend from the lower end side of the sealed case 27 to the outside of the sealed case 27 and communicate with the first and second cylinder chambers 20 a and 20 b of the compression mechanism section 11.
  • An oil return hole 29 into which the refrigerating machine oil accumulated at the bottom of the airtight case 27 flows is formed in a portion of the suction pipe 28 located on the lower side in the airtight case 27.
  • the volume and pressure of the two spaces in the first and second cylinder chambers 20a and 20b change with the eccentric rotation of the first and second rollers 19a and 19b. .
  • the low-pressure gas refrigerant is sucked from the accumulator 3 through the suction pipe 25 into the first and second cylinder chambers 20a and 20b, and the sucked-in low-pressure gas refrigerant is the first. 1.
  • the first reed valve 23a is opened at the timing when the pressure of the gas refrigerant in the first cylinder chamber 20a rises to a predetermined value, and the high-pressure gas refrigerant in the first cylinder chamber 20a is discharged to the first cylinder 15a. It passes through the port 22a and is discharged into the first muffler 25a. The gas refrigerant discharged into the first muffler 25a is discharged into the sealed container 8 through the discharge hole 26 of the first muffler 25a.
  • the second reed valve 23b is opened at the timing when the pressure of the gas refrigerant in the second cylinder chamber 20b rises to a predetermined value, and the high-pressure gas refrigerant in the second cylinder chamber 20b is the first. It passes through the two discharge ports 22b and is discharged into the second muffler 25b. The gas refrigerant discharged into the second muffler 25b flows into the first muffler 25a through the gas refrigerant guide passage, and is discharged from the first muffler 25a through the discharge hole 26 into the sealed case 8.
  • the high-pressure gas refrigerant compressed in the first and second cylinder chambers 20a and 20b and discharged into the sealed container 8 flows into the condenser 5 and is dissipated in the condenser 5 to become liquid refrigerant. .
  • the liquid refrigerant flows into the expansion device 6 and is depressurized. After being depressurized, the liquid refrigerant flows into the evaporator 7 and absorbs heat to evaporate to become a gas refrigerant.
  • the gas refrigerant evaporated in the evaporator 7 flows into the accumulator 3 to perform gas-liquid separation (separation of liquid components contained in the gas refrigerant), and only the gas refrigerant is compressed through the suction pipe 28 of the accumulator 3. It is supplied into the first and second cylinder chambers 20a and 20b of the mechanism unit 11 and compressed again.
  • the refrigeration cycle apparatus 1 ′ shown in FIG. 3 compresses part of the liquid refrigerant in the liquid tank 31 and the liquid tank 31 that stores the liquid refrigerant condensed in the condenser 5 in the refrigeration cycle apparatus 1 shown in FIG.
  • a liquid injection line 32 leading to the compression mechanism of the machine main body 2 is provided.
  • the liquid injection into the compression mechanism section of the compressor body 2 is effective as a means for suppressing overheating of the sliding section of the compressor body 2, but in general, the refrigeration oil is washed away or diluted by the introduced liquid refrigerant. Increases and reduces reliability.
  • the refrigerating machine oil partially compatible with the refrigerant R32 high reliability can be ensured even when liquid injection is performed.
  • Example 1 Using 2-ethylhexanoic acid and 3,5,5-trimethylhexanoic acid in a slightly more excess than 4 moles per mole of pentaerythritol (ratio of both: 50 mole%: 50 mole%), both were reacted.
  • the desired esterification reaction product hindered polyol fatty acid ester oil was synthesized.
  • this esterification reaction product (ester oil) is esterified with 2 moles of 2-ethylhexanoic acid and 3,5,5-trimethylhexanoic acid for each mole of pentaerythritol. Is contained as a main component (36%).
  • This liquid mixture of ester oil and refrigerant R32 was measured in accordance with “Testing of compatibility with refrigerant” defined in JIS K2211, and the oil content was 10 to 40% by mass and the temperature was ⁇ 40 ° C. to 60 ° C. While separating into two layers, it was confirmed that the oil content was 5% by mass or less and a temperature range of 20 ° C. to 40 ° C. and an oil content of 55% by mass or more and a temperature range of 20 ° C. to 50 ° C. were compatible.
  • Example 2 A desired esterification reaction product was obtained in the same manner as in Example 1 except that the molar ratio of 2-ethylhexanoic acid to 3,5,5-trimethylhexanoic acid was 40 mol%: 60 mol%. .
  • esterification reaction product (ester oil) was composed of esters in the ratios (area ratios) shown in Table 2 below.
  • esterification reaction product (ester oil) had a total of 4 moles of 2-ethylhexanoic acid and 3,5,5-trimethylhexanoic acid per mole of pentaerythritol and a molar ratio of 50.
  • This liquid mixture of ester oil and refrigerant R32 was measured in accordance with “Testing of compatibility with refrigerant” defined in JIS K2211, and the oil content was 10 to 40% by mass and the temperature was ⁇ 40 ° C. to 60 ° C. While separating into two layers, it was confirmed that the oil content was 5% by mass or less and a temperature range of 20 ° C. to 40 ° C. and an oil content of 55% by mass or more and a temperature range of 20 ° C. to 50 ° C. were compatible.
  • Example 3 The ester oil synthesized in Example 1 or 2 was sealed as a refrigerating machine oil in a hermetic compressor having the structure shown in FIG. 2 and incorporated in an air conditioner. First, when the suction gas was operated for 1000 hours in a humid gas (liquid back state), the amount of wear of each blade, each roller, shaft, and bearing was the same as when the suction gas was operated as a dry gas, which was good. It was confirmed that there was.
  • Example 4 When the air conditioner manufactured in Example 3 was operated continuously for 1000 hours under a high temperature condition with a discharge gas temperature of 125 ° C., there was no problem in the amount of wear of the blade and each roller, and sufficient lubricity was achieved even under high temperature conditions. Admitted.
  • Example 5 Except for adding 0.1% by mass of dibutylparacresol as an antioxidant to the refrigerating machine oil, the same operation as in Example 4 was performed, but the operation was performed under high temperature conditions. It was not recognized, and sufficient oxidation / thermal stability was recognized.
  • Example 6 Except for adding 0.5% by mass of glycidyl ester as a stabilizer to the refrigerating machine oil, the same operation as in Example 3 was performed. As a result, the acid value was not increased by hydrolysis of the refrigerating machine oil, and sufficient chemical stability was obtained. Sex was recognized.
  • Example 7 Except for adding 10 ppm of benzotriazole as a copper deactivator to the refrigerating machine oil, the same operation as in Example 3 was performed. Was not formed and sufficient chemical stability was observed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Emergency Medicine (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Lubricants (AREA)

Abstract

 実施形態によると、圧縮機は、冷媒としてR32を用いると共に、冷凍機油を内蔵する。前記冷凍機油と前記冷媒との液状混合物は、10~40質量%の範囲の冷凍機油含有率および-40℃~60℃の温度範囲において二層分離し、かつ5質量%以下の冷凍機油含有率および20℃~40℃の温度範囲並びに55質量%以上の冷凍機油の含有率および20℃~50℃の温度範囲で相溶する。

Description

圧縮機および冷凍サイクル装置
 本発明の実施形態は、一般に、圧縮機および冷凍サイクル装置に関する。
 冷蔵庫や冷凍機には、冷媒圧縮機が組み込まれている。この圧縮機に使用される冷媒として、かつてはCFC-12(R12)やHCFC-22(R22)が用いられていたが、これら冷媒は、オゾン層破壊係数(ODP)が高く、現在ではその使用が規制されている。そこで、ODPがゼロ(0)といわれているR-404A、R-410A、HFC-134a(R-134a)の使用が現在主流となっている。しかし、これら冷媒は、ODPがゼロである反面、地球温暖化係数(GWP)が比較的高い(GWP:約1300~3300)点が指摘されている。
 このような事情から、ODPがゼロであると共に、GWPも比較的低い(GWP:約650)ヒドロフルオロカーボン化合物であるR32が、最近、注目されてきている。
 ところで、冷媒圧縮機には、例えばその摺動部に潤滑性を付与し、またシール部のシール性を向上させるために、冷凍機油が内蔵される。冷凍機油は、冷媒との良好な適合性を有することが求められる。冷媒としてR32を用いる圧縮機の冷凍機油として、いくつかの油が検討されているが、冷媒R32との組み合わせにおいて長時間にわたって安定して潤滑性を圧縮機に提供し得る冷凍機油がなお必要とされている。
特開2011-184536号公報
 すなわち、冷媒としてR32を使用した圧縮機であって長時間にわたって摺動部その他の部位における潤滑性が有意に低下しない圧縮機についてのニーズがなお存在する。
 実施形態によれば、冷媒としてR32を用いると共に、冷凍機油を内蔵した圧縮機が提供される。前記冷凍機油と前記冷媒との液状混合物は、10~40質量%の範囲の冷凍機油含有率および-40℃~60℃の温度範囲において二層分離し、かつ5質量%以下の冷凍機油含有率および20℃~40℃の温度範囲並びに55質量%以上の冷凍機油の含有率および20℃~50℃の温度範囲で相溶する。
実施形態の冷媒R32と冷凍機油との相溶性挙動を示すグラフ。 実施形態に係る、圧縮機を備える冷凍サイクル装置を示す部分断面図。 液インジェクション回路を備えた冷凍サイクル装置を例示する概略図。
 以下、いくつかの実施形態について説明する。
 実施形態に係る(冷媒)圧縮機は、冷媒としてR32を用いると共に、特定の冷凍機油を内蔵する。冷媒として用いるR32は、ジフルオロメタンであり、そのODPはゼロであり、そのGWPは約650であるとされている。
 冷媒としてR32を用いる上記圧縮機に内蔵される冷凍機油は、それと冷媒R32との液状混合物が当該冷凍機油の含有率(油分率)10~40質量%で温度-40℃~60℃において二層に分離するものである。
 図1は、冷媒R32と本冷凍機油との液状混合物が示す相溶性挙動を示す。この相溶性挙動は、日本工業規格(JIS) K2211-2009の附属書Dに規定される「冷媒との相溶性試験方法」に準じて測定されるものである。実施形態に係る、冷媒R32と冷凍機油との液状混合物は、図1において斜線で示す領域、すなわち、油分率10~40質量%で温度-40℃~+60℃の全領域において、二層分離する。分離した二層は、油分率が異なる。一般的には、油分率a~b質量%の全範囲で冷媒R32と冷凍機油が二層分離し、それ以外の油分率では両者が相溶する場合、その分離した二層は、油分率a質量%の層と、油分率b質量%の層とにより構成される。
 ここで、油分率が50質量%以上の場合は、冷凍機油が冷媒よりも比率が高くなるため、液状混合物の潤滑性は冷凍機油により確保される。他方、油分率が50質量%未満では、冷媒の比率が高くなり、冷凍機油が高希釈された状態となり、十分な潤滑性能を得ることができない。高希釈による、冷媒が溶解した冷凍機油(冷凍機油とそれに溶解した冷媒との混合物;以下単に、「冷媒溶解油」という)の粘度の低下を防止するためには、冷媒R32と冷凍機油との液状混合物は、油分率が40質量%以下では二層分離し、それ以上の冷媒の冷凍機油中への溶込みが生じにくくなることが望ましいことが見いだされた。このことは、圧縮機の摺動部に冷媒の一部が液相状態で吸い込まれる液バック運転時における信頼性(長時間にわたる安定した潤滑性)の確保に有効である。また、冷凍機油は、冷媒と共に冷凍サイクル内を循環するが、その際冷媒の循環量に対し数%程度の冷凍機油が循環する。そのため、数%程度の比率で冷凍機油が冷媒と相溶することが信頼性の確保の観点から必要となる。従って、油分率5質量%以下では、冷媒R32と冷凍機油との液状混合物は、層分離しないことが必要である。
 実施形態に係る冷凍機油と冷媒R32との液状混合物は、上記油分率および温度範囲において二層に分離するが、5質量%以下の油分率で20℃~40℃の温度範囲では相溶すると共に、55質量%以上の油分率で20℃~50℃の温度範囲においても相溶する。
 冷凍機油が、冷媒R32に対し、このような部分相溶性を示すことにより、長時間にわたって例えば摺動部における潤滑性が有意に低下しない圧縮機が提供できるのである。
 実施形態の冷凍機油は、上記要件をすべて満足する。
 冷媒R32に対して部分相溶性を示す前記冷凍機油は、一つの実施形態において、100℃において7.5mm2/s以上の動粘度を示す。冷媒R32は、冷媒R410Aのような先行技術の冷媒に比べ圧縮機からの吐出温度が上昇するという特性を持つ(米国暖房冷凍空調学会(ASHRAE)の規定する条件では、冷媒R410Aのような先行技術の冷媒に比べ15℃以上も吐出ガス温度が高くなる)。冷凍機油が100℃という高温においても上記動粘度特性を持つことにより、この吐出温度の上昇を抑制するために圧縮機に湿りガスを吸入させた場合においても液冷媒R32による冷凍機油の洗い流し作用が少なくなるため、圧縮機摺動部の潤滑性を長期にわたって確保する、すなわち高い信頼性を確保することができる。
 また、一つの実施形態において、冷媒R32と上記冷凍機油との液状混合物(冷媒溶解油)は、油分率60質量%および温度40℃において1.0mm2/s以上の動粘度を示す。冷媒R32は、従来の冷媒に比べ分子量が小さく、従来の冷媒を用いた場合のように冷媒に対し相溶性の高い冷凍機油を適用した場合には冷媒溶解油の粘度が大幅に低下してしまう。しかしながら、本実施形態の冷凍機油は、冷媒R32に対し部分相溶性であり、しかも油分率60質量%および温度40℃において冷媒R32との液状混合物(冷媒溶解油)が上記動粘度を示すので、高い信頼性を確保することができる。
 冷媒R32に対して部分相溶性を示すとともに上記種々の特性を示す冷凍機油は、通常、合成エステル油を含むか、合成エステル油から実質的になるか、合成エステル油からなる。この合成エステル油は、好ましくは、ポリオール(多価アルコール)とモノカルボン酸とのエステル化反応生成物であり得る。
 多価アルコールの例には、ネオペンチルグリコール、トリメチロールプロパン、ペンタエリスリトールが含まれる。
 モノカルボン酸の例には、7~9個の炭素原子を有する飽和脂肪酸が含まれる。かかる飽和脂肪酸には、分枝鎖モノカルボン酸、例えば2-エチルヘキサン酸、3,5,5-トリメチルヘキサン酸が含まれる。一つの実施形態において、ヒンダード型ポリオールとのエステル(油)を生成するために2種以上のモノカルボン酸が使用される。
 好ましい実施形態において、冷凍機油は、ペンタエリスリトールと2-エチルヘキサン酸および3,5,5-トリメチルヘキサン酸とのエステル化反応生成物である。かかるエステル化反応生成物において、ペンタエリスリトール1モルに対し、2-エチルヘキサン酸および3,5,5-トリメチルヘキサン酸は、合計で、4モルの割合でエステル化している。その場合、2-エチルヘキサン酸と3,5,5-トリメチルヘキサン酸との合計に占める2-エチルヘキサン酸の割合は、40~50モル%であり得る(3,5,5-トリメチルヘキサン酸の割合:60~50モル%)。エステル化反応により水が副生するが、この水を除去することにより反応がより効率的に進行する。
 実施形態に係る冷凍機油(上記合成エステル油、エステル化反応生成物)は、温度30℃、相対湿度90%における飽和水分量が2000ppm未満であり得る。冷媒R32は、上述したように、吐出温度が高く、このように高い温度環境下では潤滑性が水分の影響を受けやすい。しかしながら、このように飽和水分量が少なく、従って吸湿性の低い(吸湿速度の遅い)冷凍機油は、長時間安定して潤滑性を提供し得る。
 上記冷凍機油には、酸化防止剤、安定剤および銅不活性化剤から選ばれる添加剤を配合することができる。
 酸化防止剤の例には、ジブチルパラクレゾール(DBPC)が含まれる。酸化防止剤は、冷凍機油に対し、0.05~1.0質量%の割合で配合することができる。酸化防止剤の量が0.05質量%未満では効果が乏しい一方、0.5質量%より多い場合、効果が飽和状態に近づいてゆくので、1.0質量%を超える量の添加は必要ではないことが見いだされた。添加効果および経済性の観点から、酸化防止剤の添加量は、0.1~0.5質量%であることが好ましい。
 安定剤の例には、エポキシ化合物(例えば、グリシジルエステル、グリシジルエーテル)が含まれる。安定剤は、冷凍機油に対し、0.2~1.5質量%の割合で配合することができる。安定剤の量が0.2質量%未満では効果が乏しい一方、その量が1.5質量%を超える場合、電気絶縁抵抗に悪影響を及ぼし得ることが見いだされた。安定剤の添加量は、0.25~1.5質量%であることが好ましい。
 銅不活性化剤の例には、ベンゾトリアゾール(BTA)が含まれる。銅不活性化剤は、冷凍機油に対し、25ppm以下の割合で添加することができる。
 一つの実施形態に係る冷凍サイクル装置は、上記実施形態に係る圧縮機と、前記圧縮機に接続された凝縮器と、前記凝縮器に接続された膨張装置と、前記膨張装置と前記圧縮機との間に接続された蒸発器とを備える。
 図2は、より具体的な実施形態に係る圧縮機を備える冷凍サイクル装置を例示する。冷媒としてR32が用いられ、冷凍機油として実施形態に係る冷凍機油が用いられる。
 図2に例示される冷凍サイクル装置1は、圧縮機本体2とアキュムレータ3とを有し、作動流体である低圧のガス冷媒を圧縮して高圧のガス冷媒にする密閉型圧縮機4と、圧縮機本体2の吐出側に接続されて高圧のガス冷媒を凝縮して液冷媒にする凝縮器5と、凝縮器5に接続されて液冷媒を減圧する膨張装置6と、膨張装置6とアキュムレータ3との間に接続されて液冷媒を蒸発させる蒸発器7とを有している。
 圧縮機本体2は、円筒状に形成された密閉容器8を有し、密閉容器8内の底部に冷凍機油9が貯留されている。さらに、密閉容器8内には、上部側に位置する電動機部10と、下部側に位置する圧縮機構部11とが収容されている。これらの電動機部10と圧縮機構部11とは、上下方向の中心線を有してその中心線回りに回転する回転軸12を介して連結されている。
 電動機部10は、回転軸12に固定された回転子13と、密閉容器8に固定されて回転子13を囲む位置に配置された固定子14とを有している。回転子13には永久磁石(図示せず)が設けられ、固定子14にはコイル(図示せず)が巻かれている。
 圧縮機構部11は、上部側に位置する第1シリンダ15aと、下部側に位置する第2シリンダ15bとを有している。これらの第1シリンダ15aと第2シリンダ15bとの間には、仕切板17が設けられている。また、第1シリンダ15aの上端面には回転軸12を回転可能に軸支する主軸受16aが固定され、第2シリンダ15bの下端面には回転軸12を回転可能に軸支する副軸受16bが固定されている。
 回転軸12は、第1・第2シリンダ15a、15bを貫通して配置されており、この回転軸12には180°の位相差で同一直径の第1偏心部18aと第2偏心部18bとが設けられている。第1偏心部18aには第1ローラ19aが嵌合され、第2偏心部18bには第2ローラ19bが嵌合されている。
 第1シリンダ15aの内部には、第1シリンダ15aの両端を主軸受16aと仕切板17とにより閉塞された第1シリンダ室20aが形成されている。第2シリンダ15bの内部には、第2シリンダ15bの両端を仕切板17と副軸受16bとにより閉塞された第2シリンダ室20bが形成されている。第1シリンダ室20a内には、第1偏心部18aに嵌合された第1ローラ19aが収容され、第2シリンダ室20b内には、第2偏心部18bに嵌合された第2ローラ19bが収容されている。これらの第1・第2ローラ19a、19bは、回転軸12の回転時にその外周面を第1・第2シリンダ15a、15bの内周面に線接触させながら偏心移動(偏心回転)するように配置されている。
 また、第1・第2シリンダ室20a、20b内には、先端部を第1・第2ローラ19a、19bの外周面に当接させ、第1・第2ローラ19a、19bの回転に伴って第1・第2シリンダ室20a、20b内を容積と圧力とが変化する二つの空間に仕切るブレード(図示せず)が収容されている。
 主軸受16aには第1吐出弁機構21aが設けられている。この第1吐出弁機構21aは、主軸受16aに形成された第1吐出ポート22aと、主軸受16aにネジ止めされて第1吐出ポート22aを開閉する第1吐出弁である第1リード弁23aと、主軸受16aに第1リード弁23aと共にネジ止めされて第1リード弁23aの最大開度を規制する第1弁ストッパ24aとを有している。この第1吐出弁機構21aは、主軸受16aに取付けられた第1マフラ25aにより覆われている。第1マフラ25aには、第1マフラ25aの内外を連通する吐出孔26が形成されている。
 副軸受16bには第2吐出弁機構21bが設けられている。この第2吐出弁機構21bは上述した第1吐出弁機構21aと同じ構成であり、副軸受16bに形成された第2吐出ポート22bと、副軸受16bにネジ止めされて第2吐出ポート22bを開閉する第2吐出弁である第2リード弁23bと、副軸受16bに第2リード弁23bと共にネジ止めされて第2リード弁23bの最大開度を規制する第2弁ストッパ24bとを有している。この第2吐出弁機構21bは副軸受16bに取付けられた第2マフラ25bにより覆われている。第2マフラ25b内と第1マフラ25a内とは、副軸受16bと第2シリンダ15bと仕切板17と第1シリンダ15aと主軸受16aとを貫通して形成されたガス冷媒案内通路(図示せず)により連通されている。
 アキュムレータ3は円筒状の密閉ケース27を有し、蒸発器7で気化されたガス冷媒、又は、蒸発器7で気化されなかった液冷媒が密閉ケース27内に流入するようにアキュムレータ3と蒸発器7とが接続されている。この密閉ケース27内には、一端が密閉ケース27内の上部側で開口し、密閉ケース27内のガス冷媒のみが流入するように配置された二本の吸込管28が設けられている。これらの吸込管28の他端は、密閉ケース27の下端側から密閉ケース27外に延出し、圧縮機構部11の第1・第2シリンダ室20a、20bに連通されている。これらの吸込管28における密閉ケース27内の下部側に位置する部分には、密閉ケース27内の底部に溜まった冷凍機油が流入する油戻し孔29が形成されている。
 このような構成において、この密閉型圧縮機4においては、電動機部10に通電されることにより第1ローラ19aと第2ローラ19bとが回転軸12の中心線回りに偏心回転し、圧縮機構部11が駆動される。
 圧縮機構部11が駆動された場合には、第1・第2ローラ19a、19bの偏心回転に伴って第1・第2シリンダ室20a、20b内の二つの空間の容積と圧力とが変化する。この容積と圧力とが変化することにより、アキュムレータ3内から低圧のガス冷媒が吸込管25を通って第1・第2シリンダ室20a、20b内に吸込まれ、吸込まれた低圧のガス冷媒が第1・第2シリンダ室20a、20b内で圧縮され、高圧のガス冷媒になる。
 第1シリンダ15aでは、第1シリンダ室20a内のガス冷媒の圧力が所定値に上昇したタイミングで第1リード弁23aが開弁され、第1シリンダ室20a内の高圧のガス冷媒が第1吐出ポート22aを通過して第1マフラ25a内に吐出される。第1マフラ25a内に吐出されたガス冷媒は、第1マフラ25aの吐出孔26を通って密閉容器8内に吐出される。
 また、第2シリンダ15bでは、第2シリンダ室20b内のガス冷媒の圧力が所定値に上昇したタイミングで第2リード弁23bが開弁され、第2シリンダ室20b内の高圧のガス冷媒が第2吐出ポート22bを通過して第2マフラ25b内に吐出される。第2マフラ25b内に吐出されたガス冷媒は、ガス冷媒案内通路を通って第1マフラ25a内に流入し、第1マフラ25a内から吐出孔26を通って密閉ケース8内に吐出される。
 第1・第2シリンダ室20a、20b内で圧縮されて密閉容器8内に吐出された高圧のガス冷媒は、凝縮器5内に流入し、凝縮器5において放熱されることにより液冷媒となる。この液冷媒は、膨張装置6に流入して減圧され、減圧された後に蒸発器7内に流入して吸熱することにより蒸発してガス冷媒となる。蒸発器7内で蒸発したガス冷媒はアキュムレータ3内に流入して気液分離(ガス冷媒に含まれる液体成分の分離)が行われ、ガス冷媒のみがアキュムレータ3の吸込管28内を通って圧縮機構部11の第1・第2シリンダ室20a、20b内に供給され、再び圧縮される。
 図3に示す冷凍サイクル装置1’は、図2に示す冷凍サイクル装置1に、凝縮器5で凝縮された液冷媒を貯留するリキッドタンク31と、リキッドタンク31内の液冷媒の一部を圧縮機本体2の圧縮機構部へ導く液インジェクションライン32を付設したものである。圧縮機本体2の圧縮機構部への液インジェクションは、圧縮機本体2の摺動部の過熱を抑える手段としては有効であるが、一般に、導入された液冷媒によって冷凍機油の洗い流しや希釈度の上昇が生じ信頼性が低下する。しかしながら、実施形態に従い、冷媒R32に対し部分相溶性の冷凍機油を用いることにより、液インジェクションを行った場合でも、高い信頼性を確保することができる。
 実施例1
 ペンタエリスリトール1モルに対し、2-エチルヘキサン酸および3,5,5-トリメチルヘキサン酸を合計で4モルよりやや過剰に用い(両者の比率50モル%:50モル%)、両者を反応させて、所望のエステル化反応生成物(ヒンダード型ポリオール脂肪酸エステル油)を合成した。
 得られたエステル化反応生成物は、ガスクロマトグラフィーにより、以下の表1に示す比率(面積比率)のエステルからなることを確認した。
Figure JPOXMLDOC01-appb-T000001
 上記表1に示すように、このエステル化反応生成物(エステル油)は、ペンタエリスリトール1モルに対し、2-エチルヘキサン酸および3,5,5-トリメチルヘキサン酸がそれぞれ2モルずつエステル化されたものを主成分(36%)として含んでいる。
 得られたエステル油の100℃における動粘度をJIS K2283に準拠して測定したところ、8.2mm2/sであった。また、このエステル油を冷媒R32と混合し、その液状混合物(油分率60質量%)の40℃における動粘度をJIS K2283に準拠して測定したところ、1.1mm2/sであった。
 このエステル油と冷媒R32との液状混合物は、JIS K2211に規定される「冷媒との相溶性試験方法」に準じて測定したところ、油分率10~40質量%で温度-40℃~60℃において二層分離すると共に、5質量%以下の油分率および20℃~40℃の温度範囲並びに55質量%以上の油分率および20℃~50℃の温度範囲で相溶することを確認した。
 実施例2
 2-エチルヘキサン酸と3,5,5-トリメチルヘキサン酸とのモル比率を、40モル%:60モル%とした以外は、実施例1と同様にして所望のエステル化反応生成物を得た。
 得られたエステル化反応生成物(エステル油)は、ガスクロマトグラフィーにより、以下の表2に示す比率(面積比率)のエステルからなることを確認した。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、このエステル化反応生成物(エステル油)は、ペンタエリスリトール1モルに対し、2-エチルヘキサン酸および3,5,5-トリメチルヘキサン酸が合計4モルでモル比が50%:50%でエステル化したもの、25%:75%でエステル化したものを主成分(32%+35%=67%)として含んでいる。
 得られたエステル油の100℃における動粘度を測定したところ、8.7mm2/sであった。また、このエステル油を冷媒R32と混合し、その液状混合物(油分率60質量%)の40℃における動粘度をJIS K2283に準拠して測定したところ、1.2mm2/sであった。
 このエステル油と冷媒R32との液状混合物は、JIS K2211に規定される「冷媒との相溶性試験方法」に準じて測定したところ、油分率10~40質量%で温度-40℃~60℃において二層分離すると共に、5質量%以下の油分率および20℃~40℃の温度範囲並びに55質量%以上の油分率および20℃~50℃の温度範囲で相溶することを確認した。
 実施例3
 実施例1または2で合成したエステル油を冷凍機油として、図2に示す構造の密閉型圧縮機に封入し、これを空気調和機に組み込んだ。まず、吸入ガスを湿りガス(液バック状態)にて1000時間運転したところ、各ブレード、各ローラ、軸、軸受けの磨耗量は、吸入ガスを乾きガスとして運転した場合と同等であり、良好であることが確認できた。
 また、配管長75mの長配管や、室内機と室外機との落差を50mの高落差に設定した上記空気調和機の油戻り性を確認したところ、いずれも圧縮機内での油面低下は見られず、油戻り性は十分であることが確認できた。
 実施例4
 実施例3で作製した空気調和機を、吐出ガス温度125℃とした高温条件下で連続1000時間運転したところ、ブレードおよび各ローラの磨耗量に問題はなく、高温条件下でも十分な潤滑性が認められた。
 実施例5
 冷凍機油に酸化防止剤としてジブチルパラクレゾールを0.1質量%添加した以外は、実施例4と同様の操作を行ったところ、高温条件下での操作であったが、冷凍機油の酸化劣化は認められず、十分な酸化・熱安定性が認められた。
 実施例6
 冷凍機油に安定剤としてグリシジルエステルを0.5質量%添加した以外は、実施例3と同様の操作を行ったところ、冷凍機油の加水分解による酸価の上昇は見られず、十分な化学安定性が認められた。
 実施例7
 冷凍機油に銅不活性化剤としてベンゾトリアゾールを10ppm添加した以外は、実施例3と同様の操作を行ったところ、配管等に使用された銅の腐食並びに溶出による銅メッキ現象や銅主体のスラッジは生成せず、十分な化学安定性が認められた。
 以上述べた実施形態、実施例によれば、長時間にわたって摺動部その他の部位における潤滑性が有意に低下しない圧縮機およびそれを備えた冷凍サイクル装置を提供することができる。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。

Claims (8)

  1.  冷媒としてR32を用いると共に、冷凍機油を内蔵した圧縮機であって、前記冷凍機油と前記冷媒との液状混合物は、10~40質量%の範囲の冷凍機油含有率および-40℃~60℃の温度範囲において二層分離し、かつ5質量%以下の冷凍機油含有率および20℃~40℃の温度範囲並びに55質量%以上の冷凍機油の含有率および20℃~50℃の温度範囲で相溶することを特徴とする圧縮機。
  2.  前記冷凍機油が、多価アルコールと、7~9個の炭素原子を有する飽和脂肪酸から選ばれる2種またはそれ以上のモノカルボン酸とのエステル化反応生成物であることを特徴とする請求項1に記載の圧縮機。
  3.  前記多価アルコールが、ネオペンチルグリコール、トリメチロールプロパン、およびペンタエリスリトールからなる群の中から選ばれることを特徴とする請求項2に記載の圧縮機。
  4.  前記2種またはそれ以上のモノカルボン酸が、2-エチルヘキサン酸および3,5,5-トリメチルヘキサン酸を含むことを特徴とする請求項2または3に記載の圧縮機。
  5.  前記冷凍機油が、100℃において7.5mm2/s以上の動粘度を示すことを特徴とする請求項1ないし4のいずれか一項に記載の圧縮機。
  6.  前記液状混合物が、60質量%の冷凍機油の含有率および40℃の温度において1.0mm2/s以上の動粘度を示すことを特徴とする請求項1ないし5のいずれか一項に記載の圧縮機。
  7.  前記冷凍機油に、酸化防止剤、安定剤および銅不活性化剤からなる群の中から選ばれる添加剤が配合されていることを特徴とする請求項1~6のいずれか1項に記載の圧縮機。
  8.  請求項1ないし7のいずれか一項に記載の圧縮機と、前記圧縮機に接続された凝縮器と、前記凝縮器に接続された膨張装置と、前記膨張装置と前記圧縮機との間に接続された蒸発器とを備えることを特徴とする冷凍サイクル装置。
PCT/JP2014/067553 2013-09-05 2014-07-01 圧縮機および冷凍サイクル装置 WO2015033653A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU2014316467A AU2014316467B2 (en) 2013-09-05 2014-07-01 Compressor and refrigeration cycle device
CN201480045231.2A CN105473953B (zh) 2013-09-05 2014-07-01 压缩机和制冷循环装置
KR1020167003647A KR20160030998A (ko) 2013-09-05 2014-07-01 압축기 및 냉동 사이클 장치
EP14841687.8A EP3043124A4 (en) 2013-09-05 2014-07-01 Compressor and refrigeration cycle device
JP2015535356A JP6012878B2 (ja) 2013-09-05 2014-07-01 圧縮機および冷凍サイクル装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013183838 2013-09-05
JP2013-183838 2013-09-05

Publications (1)

Publication Number Publication Date
WO2015033653A1 true WO2015033653A1 (ja) 2015-03-12

Family

ID=52628142

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/067553 WO2015033653A1 (ja) 2013-09-05 2014-07-01 圧縮機および冷凍サイクル装置

Country Status (6)

Country Link
EP (1) EP3043124A4 (ja)
JP (1) JP6012878B2 (ja)
KR (1) KR20160030998A (ja)
CN (1) CN105473953B (ja)
AU (1) AU2014316467B2 (ja)
WO (1) WO2015033653A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016052338A1 (ja) * 2014-10-03 2016-04-07 Jx日鉱日石エネルギー株式会社 潤滑油基油及び冷凍機油
WO2017199733A1 (ja) * 2016-05-20 2017-11-23 東芝キヤリア株式会社 密閉型圧縮機および冷凍サイクル装置
WO2019194195A1 (ja) 2018-04-02 2019-10-10 Jxtgエネルギー株式会社 冷凍機、冷凍機油及び冷凍機用作動流体組成物

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113173849B (zh) * 2021-04-25 2023-03-07 中国石油化工股份有限公司 一种季戊四醇酯基础油及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08210712A (ja) * 1994-11-30 1996-08-20 Daikin Ind Ltd 冷凍装置
JP2002060770A (ja) * 2000-08-23 2002-02-26 Idemitsu Kosan Co Ltd 冷凍機用潤滑油組成物及びそれを用いた冷凍機用作動流体組成物
JP2011184536A (ja) 2010-03-08 2011-09-22 Jx Nippon Oil & Energy Corp 冷媒r32用冷凍機油
WO2013100100A1 (ja) * 2011-12-27 2013-07-04 日本サン石油株式会社 冷凍機油組成物

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2613526B2 (ja) * 1992-07-04 1997-05-28 花王株式会社 冷凍機作動流体用組成物
GB9221217D0 (en) * 1992-10-09 1992-11-25 Ici Plc Working fluid composition
CN1119316C (zh) * 1995-09-25 2003-08-27 花王株式会社 酯化合物作为润滑油基础油的应用
JPH09324755A (ja) * 1996-06-06 1997-12-16 Matsushita Refrig Co Ltd 圧縮機
US6374629B1 (en) * 1999-01-25 2002-04-23 The Lubrizol Corporation Lubricant refrigerant composition for hydrofluorocarbon (HFC) refrigerants
EP2314665A3 (en) * 2000-07-26 2011-05-11 Idemitsu Kosan Co., Ltd. Lubricating oil for refrigerator and refrigerator fluid composition for refrigerator using the same
JP4295530B2 (ja) * 2003-03-04 2009-07-15 東芝キヤリア株式会社 空気調和装置
WO2005012469A1 (ja) * 2003-08-01 2005-02-10 Nippon Oil Corporation 冷凍機油組成物
CN100453627C (zh) * 2003-08-01 2009-01-21 新日本石油株式会社 冷冻机油组合物
JP2011195630A (ja) * 2010-03-17 2011-10-06 Jx Nippon Oil & Energy Corp 冷凍機油および冷凍機用作動流体組成物
JP5537317B2 (ja) * 2010-07-26 2014-07-02 Jx日鉱日石エネルギー株式会社 冷凍機油
JP5763648B2 (ja) * 2010-08-24 2015-08-12 Jx日鉱日石エネルギー株式会社 冷凍機油および冷凍機用作動流体組成物
CN103261689B (zh) * 2010-12-20 2016-05-25 日立空调·家用电器株式会社 冷冻空调用压缩机及冷冻空调装置
JP2015096470A (ja) * 2012-02-23 2015-05-21 Khネオケム株式会社 混合エステル
BR112015009821B1 (pt) * 2012-10-31 2021-01-05 Daikin Industries, Ltd. aparelho de refrigeração
JP5927633B2 (ja) * 2012-11-06 2016-06-01 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド 空気調和機

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08210712A (ja) * 1994-11-30 1996-08-20 Daikin Ind Ltd 冷凍装置
JP2002060770A (ja) * 2000-08-23 2002-02-26 Idemitsu Kosan Co Ltd 冷凍機用潤滑油組成物及びそれを用いた冷凍機用作動流体組成物
JP2011184536A (ja) 2010-03-08 2011-09-22 Jx Nippon Oil & Energy Corp 冷媒r32用冷凍機油
WO2013100100A1 (ja) * 2011-12-27 2013-07-04 日本サン石油株式会社 冷凍機油組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3043124A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016052338A1 (ja) * 2014-10-03 2016-04-07 Jx日鉱日石エネルギー株式会社 潤滑油基油及び冷凍機油
JPWO2016052338A1 (ja) * 2014-10-03 2017-07-13 Jxtgエネルギー株式会社 潤滑油基油及び冷凍機油
WO2017199733A1 (ja) * 2016-05-20 2017-11-23 東芝キヤリア株式会社 密閉型圧縮機および冷凍サイクル装置
CN109154297A (zh) * 2016-05-20 2019-01-04 东芝开利株式会社 密闭型压缩机以及冷冻循环装置
JPWO2017199733A1 (ja) * 2016-05-20 2019-02-14 東芝キヤリア株式会社 密閉型圧縮機および冷凍サイクル装置
CN109154297B (zh) * 2016-05-20 2020-03-10 东芝开利株式会社 密闭型压缩机以及冷冻循环装置
WO2019194195A1 (ja) 2018-04-02 2019-10-10 Jxtgエネルギー株式会社 冷凍機、冷凍機油及び冷凍機用作動流体組成物
KR20200134299A (ko) 2018-04-02 2020-12-01 에네오스 가부시키가이샤 냉동기, 냉동기유 및 냉동기용 작동 유체 조성물
US11384271B2 (en) 2018-04-02 2022-07-12 Eneos Corporation Refrigerator, refrigerator oil, working fluid composition for refrigerator

Also Published As

Publication number Publication date
CN105473953B (zh) 2017-09-05
EP3043124A1 (en) 2016-07-13
AU2014316467B2 (en) 2016-10-27
AU2014316467A1 (en) 2016-02-11
KR20160030998A (ko) 2016-03-21
EP3043124A4 (en) 2017-04-26
JPWO2015033653A1 (ja) 2017-03-02
CN105473953A (zh) 2016-04-06
JP6012878B2 (ja) 2016-10-25

Similar Documents

Publication Publication Date Title
JP6545338B1 (ja) 冷凍サイクル装置
US20120024007A1 (en) Compressor for refrigeration and air-conditioning and refrigerating and air-conditioning apparatus
TWI712683B (zh) 電動壓縮機及冷凍空調裝置
JP5260168B2 (ja) 冷媒圧縮機
JP5339788B2 (ja) 圧縮機および冷凍サイクル装置
JP6012878B2 (ja) 圧縮機および冷凍サイクル装置
JP2010139171A (ja) 冷媒圧縮機及び冷凍サイクル装置
JP5086782B2 (ja) 冷媒圧縮機および冷凍サイクル
JPWO2019239528A1 (ja) 冷媒組成物及びこれを用いた冷凍サイクル装置
WO2017199516A1 (ja) 冷凍サイクル装置
JP2011094039A (ja) 冷媒圧縮機,冷凍サイクル装置
JP2012057812A (ja) 冷媒圧縮機及び冷凍サイクル
JP2015014395A (ja) 空気調和機
JP6522345B2 (ja) 冷凍装置及び密閉型電動圧縮機
JP2005248773A (ja) 冷凍装置及び冷媒圧縮機
JP2010031134A (ja) 冷媒圧縮機
WO2011093249A1 (ja) レシプロ式圧縮機及びこれを用いた冷蔵庫
JP4046932B2 (ja) 冷蔵庫用作動媒体および冷蔵庫
JP3208335B2 (ja) 密閉型圧縮機およびそれを用いた冷凍装置
JP2002194375A (ja) 冷凍・空調用作動媒体組成物及び該組成物を用いた冷凍・空調装置
JP2002194369A (ja) 空調用作動媒体組成物及び該組成物を用いた空調機
JP2016023902A (ja) 空気調和機
JP2015017730A (ja) 空気調和機
JPH10103241A (ja) 密閉型圧縮機およびそれを用いた冷凍装置
JP2014228255A (ja) ロータリー圧縮機

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480045231.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14841687

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015535356

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014841687

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014841687

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014316467

Country of ref document: AU

Date of ref document: 20140701

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167003647

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: IDP00201600955

Country of ref document: ID

NENP Non-entry into the national phase

Ref country code: DE