WO2015029933A1 - エアバッグ用コート布 - Google Patents

エアバッグ用コート布 Download PDF

Info

Publication number
WO2015029933A1
WO2015029933A1 PCT/JP2014/072115 JP2014072115W WO2015029933A1 WO 2015029933 A1 WO2015029933 A1 WO 2015029933A1 JP 2014072115 W JP2014072115 W JP 2014072115W WO 2015029933 A1 WO2015029933 A1 WO 2015029933A1
Authority
WO
WIPO (PCT)
Prior art keywords
fabric
coated
coated fabric
resin
warp
Prior art date
Application number
PCT/JP2014/072115
Other languages
English (en)
French (fr)
Inventor
務 明智
倉本 隆宏
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to US14/914,101 priority Critical patent/US11377064B2/en
Priority to PL14839740T priority patent/PL3040246T3/pl
Priority to EP14839740.9A priority patent/EP3040246B1/en
Priority to CN201480046894.6A priority patent/CN105473389B/zh
Priority to ES14839740.9T priority patent/ES2676299T3/es
Priority to JP2014549232A priority patent/JP6634677B2/ja
Priority to BR112016004222-0A priority patent/BR112016004222B1/pt
Publication of WO2015029933A1 publication Critical patent/WO2015029933A1/ja
Priority to US17/138,718 priority patent/US20210122323A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/02Occupant safety arrangements or fittings, e.g. crash pads
    • B60R21/16Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags
    • B60R21/23Inflatable members
    • B60R21/235Inflatable members characterised by their material
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0002Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate
    • D06N3/0006Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate using woven fabrics
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/12Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins
    • D06N3/128Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins with silicon polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/02Occupant safety arrangements or fittings, e.g. crash pads
    • B60R21/16Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags
    • B60R21/23Inflatable members
    • B60R21/235Inflatable members characterised by their material
    • B60R2021/23504Inflatable members characterised by their material characterised by material
    • B60R2021/23509Fabric
    • B60R2021/23514Fabric coated fabric
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2211/00Specially adapted uses
    • D06N2211/12Decorative or sun protection articles
    • D06N2211/26Vehicles, transportation
    • D06N2211/268Airbags

Definitions

  • the present invention relates to a silicone resin coated fabric used for an automobile airbag, and more particularly to a coated fabric optimal for a rollover curtain airbag.
  • an automobile airbag receives a shock and activates a sensor to generate a high-temperature and high-pressure gas.
  • This gas instantly inflates the airbag, and the passenger's face, frontal head, etc. Used to protect the human body.
  • it has become widespread as one of the safety equipment, and not only the driver's seat and passenger seat but also the practical use of knee bags, side bags, curtain airbags, etc. is doing.
  • the surface of a bag-woven fabric knitted with high density using a loom capable of bag weaving is 50 g / m 2 or less on one side, for example, 70 g / m on both sides in the examples.
  • coated base fabric 2 of silicone resin have been studied (for example, see Patent Document 1).
  • the object of the present invention relates to a coated fabric used for an automotive airbag, and more particularly, an airbag coating that is optimal for a rollover curtain airbag that is sewed with a sealing agent that adheres to a coating resin even after long-term heat aging. To provide a cloth.
  • the coated fabric for an airbag of the present invention that can solve the above-described problems has the following configuration. That is, the present invention is a coated fabric for an air bag in which an addition polymerization type solventless silicone resin is applied to at least one surface of a synthetic fiber fabric, and the coating amount of the silicone resin is 15 to 45 g / m 2.
  • a coated fabric for an airbag characterized by having a weft strain / warp strain amount of 0.30 to 0.65 when the coated fabric is pulled.
  • this is a coated fabric for an airbag in which the background average resin thickness at the top of the coated fabric surface is 4 ⁇ m or more.
  • this is a coated fabric for airbags in which the difference in bending resistance of the coated fabric is 3 to 20 mm.
  • the total fineness of the yarns constituting the woven fabric is 200 to 550 dtex, and the cover factor of the woven fabric is 1,800 to 2,500.
  • the coated fabric for airbags according to the present invention provides an optimum base fabric for a rollover curtain airbag that uses a sealing agent at the sewing portion because the adhesion between the coating agent and the sealing agent is maintained even after long-term heat aging. can do.
  • the synthetic fiber woven fabric means a woven fabric woven using synthetic fiber yarns.
  • the woven fabric is excellent in that it is excellent in mechanical strength and can be reduced in thickness.
  • the structure of the woven fabric is not particularly limited, and plain weave, twill weave, satin weave and their changed weave, multiaxial weave, and the like can be used. Among these, a plain fabric having excellent mechanical strength is particularly preferable.
  • synthetic fibers include aliphatic polyamide fibers such as nylon 66, nylon 6, nylon 46, and nylon 12, aromatic polyamide fibers such as aramid fibers, and polyester fibers such as polyethylene terephthalate, polytrimethylene terephthalate, and polybutylene terephthalate. used.
  • polyester fibers polyparaphenylene / benzobis / oxazole fibers (PBO fibers)
  • ultrahigh molecular weight polyethylene fibers polyphenylene sulfide fibers
  • polyether ketone fibers polyether ketone fibers.
  • polyester fiber and polyamide fiber are preferable, and nylon 66 is particularly preferable. Further, these fibers may be obtained from raw materials that are partially or wholly reused.
  • these synthetic fibers may contain various additives in order to improve process passability in the raw yarn manufacturing process and the post-processing process.
  • the additive include an antioxidant, a heat stabilizer, a smoothing agent, an antistatic agent, a thickener, a flame retardant, and the like.
  • the synthetic fiber may be an original yarn or dyed after yarn production.
  • the cross section of the single yarn may be any irregular cross section other than the normal round cross section.
  • the single fiber fineness of the synthetic fiber is preferably 1 to 8 dtex, more preferably 3 to 7 dtex. By setting it to 1 dtex or more, the strength of the woven fabric can be maintained. On the other hand, by setting it as 8 dtex or less, rigidity can be suppressed low and storage property can be maintained.
  • a water jet room, an air jet room, a rapier room or the like can be used.
  • a water jet loom that is relatively easy to weave at high speed is preferably used.
  • the weaving machine after weaving may be subjected to refining and dry finishing, but it is preferable not to heat set after drying, but to pass through warm water before drying.
  • the yarn shrinks by passing through warm water and fills the gaps in the fabric, so that when the resin is coated, the penetration of the resin into the fabric is suppressed, and a resin film is formed on the surface of the base fabric. Thickness can be increased. In this case, it is desirable to pass warm water at 80 to 95 ° C. for 20 seconds or longer, and if it is less than 20 seconds, the effect of filling the voids in the fabric is reduced.
  • the amount of oil agent attached to the base base fabric before coating of the base fabric of the present invention is less than 0.2% by weight. If the oil agent adhesion amount is 0.2% by weight or more, the adhesiveness with the silicone resin is lowered. More preferably, it is 0.1% by weight or less. There is no problem even if the amount of the oil agent attached to the base base fabric is small, but 0.01% by weight or more is preferable in consideration of process passability.
  • the resin coated on the woven fabric is preferably a silicone resin having heat resistance, cold resistance and flame retardancy.
  • the silicone resin include addition polymerization type silicone resins.
  • dimethyl silicone rubber, methyl vinyl silicone rubber, methyl phenyl silicone rubber, trimethyl silicone rubber, fluoro silicone rubber, methyl silicone resin, methyl phenyl silicone resin, methyl vinyl silicone resin, epoxy modified silicone resin, acrylic modified silicone resin, polyester modified A silicone resin etc. are mentioned.
  • addition polymerization type methyl vinyl silicone rubber is preferable because it has rubber elasticity after curing, is excellent in strength and elongation, and is advantageous in terms of cost.
  • a reaction curing agent may be used.
  • platinum compounds such as platinum powder, chloroplatinic acid and tetrachloroplatinic acid, palladium compounds, rhodium compounds, benzoyl peroxide, parachlor Organic peroxides such as benzoyl peroxide and orthochloroperoxide can be used.
  • the silicone resin contains an adhesion assistant.
  • adhesion assistant for example, at least selected from the group consisting of an amino silane coupling agent, an epoxy-modified silane coupling agent, a vinyl silane coupling agent, a chloro silane coupling agent, and a mercapto silane coupling agent 1 type or more is mentioned.
  • Inorganic fillers added to silicone resins have been used as fillers for the purpose of reinforcing silicone resins, adjusting viscosity, improving heat resistance, improving flame resistance, etc., and the most typical filler is silica particles. is there.
  • the specific surface area of the silica particles is preferably 50 m 2 / g or more, more preferably 50 to 400 m 2 / g, and particularly preferably 100 to 300 m 2 / g. When the specific surface area is within this range, it is easy to impart excellent tear strength characteristics to the obtained cured silicone.
  • the specific surface area is measured by the BET method.
  • Silica particles may be used alone or in combination of two or more.
  • silica particles examples include natural products such as quartz, quartz, quartz sand, and diatomaceous earth, and synthetic products such as dry silica, silica fume, wet silica, silica gel, and colloidal silica.
  • methylchlorosilanes such as trimethylchlorosilane, dimethyldichlorosilane, and methyltrichlorosilane, dimethylpolysiloxane
  • Hydrophobic silica particles are preferred in which the surface of the particles is hydrophobized with an organosilicon compound such as hexaorganodisilazane such as hexamethyldisilazane, divinyltetramethyldisilazane, dimethyltetravinyldisilazane.
  • the content of silica particles is preferably 10 to 20% by mass, more preferably 12 to 20% by mass with respect to the total silicone resin.
  • the content of silica particles is less than 10% by mass, the mechanical strength of the silicone rubber tends to be lowered.
  • the content of the silica particles exceeds 20% by mass, the fluidity of the resin composition tends to be lowered, the coating workability is deteriorated, and the resin becomes brittle and the adhesiveness tends to be reduced.
  • the resin viscosity of the silicone resin used is preferably 5,000 to 40,000 mPa ⁇ sec, more preferably 7,000 to 25,000 mPa ⁇ sec, and particularly preferably 8,000 to 22,000 mPa ⁇ sec. -Sec.
  • the resin viscosity is less than 5,000 mPa ⁇ sec, the resin penetrates into the fabric, so the amount of the resin present on the surface of the base fabric is reduced, and peeling at the interface between the coating agent and the sealing agent is likely to occur when the bag is deployed. Become.
  • the resin viscosity exceeds 40,000 mPa ⁇ sec, it becomes difficult to adjust the coating amount to 45 g / m 2 or less.
  • Any solvent-based or solvent-free system may be used as long as the viscosity can be adjusted within the above range, but a solvent-free system is preferable in consideration of the influence on the environment.
  • the viscosity of the resin composition is also defined as “resin viscosity”.
  • the amount of weft strain / warp strain at the time of tension in the coated fabric is 0.30 to 0.65, indicating that the interfacial delamination between the coating agent and the sealing agent during air bag deployment even after long-term heat aging. Found that it is important to not occur.
  • the amount of weft strain / warp strain at the time of tension is more preferably 0.35 to 0.60.
  • the weft strain / warp strain amount is less than 0.30, the warp deformation in the warp direction of the base fabric increases when the airbag is deployed, and the bonding point between the coating agent and the sealing agent is shifted, resulting in interface peeling. .
  • the amount of weft strain / warp strain exceeds 0.65, the amount of deformation in the weft direction of the base fabric increases when the airbag is deployed, and similarly, the bonding point between the coating agent and the sealing agent interface shifts and interface peeling occurs. appear.
  • the weft strain / warp strain amount of the base fabric can be optimized by adjusting the balance of the weft crimp rate by adjusting the tension during weaving or processing of the base fabric or coating.
  • the adjustment of the weft strain / warp strain amount of the base fabric can be performed in each process from weaving to coated fabric.
  • methods for reducing the warp amount are: a) a method of increasing the modulus of the raw yarn used for the warp, a) a method of increasing the warp direction tension during weaving, and c) a warp during drying after weaving. Examples thereof include a method of drying and heat setting in a state of being tensioned in the direction, and a method of passing through a drying zone in a state of being tensioned in the warp direction during coating.
  • a method of drying and heat setting in a state of being strained in the warp direction during drying or a method of passing through a drying zone in a state of being strained in the direction of warp during coating, particularly preferably a warp during coating It is a method of tensioning in the direction.
  • This method is particularly preferable because it is close to the final step of the airbag fabric and not only facilitates adjustment to the required physical properties but also facilitates adjustment of the resin amount during coating.
  • use a pin tenter or the like to adjust with a predetermined tension in the weft direction and adjust the required weft strain amount / warp strain amount of the base fabric. good.
  • the amount of distortion in the weft direction can be adjusted by the raw yarn used, the weft tension during weaving, the tension during drying, the amount of heat, and the like.
  • the method of measuring the amount of latitude / warp distortion is described. Cut at 300 mm in the warp direction and 55 mm in the weft direction, remove almost the same number of warps from both ends, and adjust the weft direction to 50 mm. Thereafter, the test piece is grasped at 200 mm between chucks by a constant speed tension type tensile tester, and a line is drawn in the weft direction at a central 100 mm portion. Thereafter, the belt was stopped at the time of pulling 125N, 250N, 500N, 1000N, and 2000N, respectively, and the amount of change in the warp direction and the amount of change in the weft direction of the central portion marked earlier were read. The amount of change in the transverse direction at the time of tension / the amount of change in warp was calculated, and the absolute values were averaged to obtain the amount of warp / warp strain. In addition, the sample selected 5 places at random and measured.
  • the coated cloth for airbags of the present invention has a process-average resin thickness at the top of the coated cloth surface of 4 ⁇ m or more. Preferably it is 6 micrometers or more.
  • the top of the head is a part of an area obtained by photographing the cut surface portion cut out by 2 or 3 shown in FIG. 1 using an SEM and dividing the portion to which the resin is attached into three parts from the cross-sectional photograph. Indicates. When this portion is less than 4 ⁇ m, there is a high possibility that peeling occurs between the fabric and the coating agent when the airbag is deployed. An upper limit is not particularly provided, but if it is 25 ⁇ m or more, there is a problem that the adhesiveness of the coated cloth surface is increased, which is not preferable.
  • the resin coating amount of the coated fabric for airbag of the present invention is preferably 15 to 45 g / m 2 . More preferably, it is 20 to 35 g / m 2 .
  • the amount of the resin applied is 15 g / m 2 or less, the thickness of the resin layer applied to the surface of the fabric is low, and thus the required background average resin thickness on the surface of the coated cloth cannot be obtained.
  • the coating amount is 45 g / m 2 or more, the adhesion between the coating agent and the sealing agent can be ensured, but the flexibility of the coated fabric deteriorates, so that not only the storage property is impaired, but the overall weight of the bag is large. Become.
  • the difference in bending resistance in the 45 ° cantilever method in the warp direction and the weft direction is 3 to 20 mm. More preferably, it is 3 to 15 mm. In the case of 20 mm or more, the warp of the base fabric or the change amount of the base fabric in the weft direction becomes high when the airbag is deployed, the adhesion point between the coating agent and the sealing agent is likely to be shifted, and interface peeling occurs.
  • the difference in bending resistance between the warp direction and the weft direction can be optimized by adding a difference between the warp and the crimp rate.
  • the difference in bending resistance the smaller the warp of the base fabric when the airbag is deployed or the difference in the change in the base fabric in the weft direction.
  • the difference in the bending resistance between the warp direction and the weft direction is less than 3 mm, it is necessary to increase the warp tension in the weaving conditions or reduce the weft driving speed. This is a disadvantageous result.
  • the quality of the base fabric is not preferable because there is a problem that the adhesion between the fabric and the coating agent deteriorates due to generation of fluff and the like.
  • the coated base fabric of the present invention may be a double-sided coated base fabric coated on both sides of the woven fabric, but a single-side coated base fabric coated only on one side is preferable from the viewpoint of storage.
  • a conventionally known application method is used as a method for applying the silicone resin.
  • the coating method include knife coating, comma coating, die coating, gravure roll coating, kiss roll coating, spray method, and Dip method.
  • the tension of the base cloth in the traveling direction of the base cloth is controlled to 400 to 1000 N / m, preferably 400 to 800 N / m. Is preferred.
  • the tension of the base fabric is less than 400 N / m, the ear portion of the base fabric becomes bulky, a large difference occurs in the coating amount between the central portion and the end portion of the base fabric, and the thickness variation in the width direction increases.
  • the heating temperature and time there is no problem as long as the applied silicone resin has reached a temperature sufficient for curing, but preferably the heating temperature is 150 to 220 ° C. and the heating time is 0.2 to 5 minutes. Is preferred.
  • the total fineness of the yarns constituting the woven fabric is preferably 200 to 550 dtex.
  • the total fineness exceeds 550 dtex, the thickness of the base fabric is increased and the rigidity is increased, so that the storage property of the airbag is deteriorated.
  • the total fineness is less than 200 dtex, mechanical properties during the operation of the airbag such as the tensile strength and tear strength of the coated fabric are likely to be insufficient.
  • the cover factor constituting the woven fabric is preferably 1,800 to 2,500, more preferably 1,900 to 2,450. If the cover factor is less than 1,800, physical properties (tensile strength and tear strength) necessary for an airbag tend to be reduced. On the other hand, when the cover factor exceeds 2,500, weaving becomes difficult and the rigidity becomes high, so that the storage property tends to deteriorate.
  • the adhesion between the coating agent and the sealant in the present invention can be evaluated by the initial peel strength and cohesive failure rate, and the peel strength and cohesive failure rate after aging.
  • the initial peel strength is preferably 45 N / cm or more, and more preferably 50 N / cm or more.
  • the peel strength after aging is preferably 60 N / cm or more, more preferably 63 N / cm or more.
  • the cohesive failure rate is preferably 100% both at the initial stage and after aging, and when it is less than 100%, it indicates that peeling has finally occurred at the interface between the sealing agent and the coating agent.
  • the sealant used in the present invention is preferably an addition type or room temperature curable silicone mainly composed of an addition type.
  • Some addition-type silicones are thermosetting, but the thermosetting silicone has the advantage of a short curing time, but requires a heating step, so the room temperature curing type is preferred.
  • a silicone as a sealant having an initial breaking elongation of 800% or more, preferably 1000 to 1500% after curing.
  • the tensile strength is 1.0 MPa or more as a resin physical property of the sealant. If the sealing agent is lower than this value, the strength of the cohesive failure caused by the pressure at the time of airbag deployment is too low, and there is a possibility that air permeability leakage from the sewing portion may occur. Preferably it is 1.5 MPa or more.
  • FIG. 2 is a schematic diagram of an SEM photograph taken at 2 in FIG.
  • the average film thickness is calculated by calculating the average film thickness from the ratio of the mass of the paper from which the resin portion is cut out to the mass of the entire paper, which corresponds to 5 in FIG. 2, and averaging the values in the warp direction and the weft direction. It was set as the value obtained. The average film thickness was calculated to the first decimal place and rounded off.
  • weft strain amount / warp strain amount The measurement of the weft strain amount / warp strain amount is performed by cutting at 300 mm in the warp direction and 55 mm in the weft direction, removing the warp and adjusting the weft direction to 50 mm. Thereafter, the test piece is grasped at 200 mm between chucks by a constant speed tension type tensile tester, and a line is drawn in the weft direction at a central 100 mm portion. Thereafter, the belt was stopped at the time of pulling 125N, 250N, 500N, 1000N, and 2000N, respectively, and the amount of change in the warp direction and the amount of change in the weft direction of the central portion marked earlier were read. The amount of change in the transverse direction at the time of tension / the amount of change in warp was calculated, and the absolute values were averaged to obtain the amount of warp / warp strain. In addition, the sample selected 5 places at random and measured.
  • the peak strength obtained at this time was defined as peel strength (N / cm), and the adhesiveness between the coating agent and the sealant was expressed as a ratio (%) of cohesive failure at the adhesive interface.
  • the peak strength obtained at this time was defined as peel strength (N / cm), and the adhesiveness between the coating agent and the sealant was expressed as a ratio (%) of cohesive failure at the adhesive interface.
  • Example 1 A polyamide 66 multifilament yarn having a total fineness of 470 dtex and 140 filaments was woven in a plain jet weave in a water jet loom, contracted with boiling water, and dried at 130 ° C.
  • the resulting woven fabric had a weaving density in the warp direction of 46 / 2.54 cm, a weaving density in the weft direction of 46 / 2.54 cm, and a cover factor of 1,994.
  • an addition polymerization type vinyl methyl silicone resin having a resin viscosity of 10,000 mPa ⁇ sec was applied to one side of the woven fabric by a floating knife coat. Subsequently, it was cured at 200 ° C. for 1 minute to obtain a coated base fabric having an application amount of 35 g / m 2 .
  • the obtained coated fabric had a weft average resin thickness at the top of the woven fabric surface of 11.3 ⁇ m, a weft strain / warp strain of 0.57 and a weft softness of 59 mm / 67 mm, respectively.
  • the properties of this coated fabric were evaluated and are shown in Table 1.
  • the obtained coated fabric showed 100% cohesive failure of the sealant both in the initial stage and after aging, and was excellent in adhesion between the coat agent and the sealant.
  • Example 2 Except that the coating amount of the resin after drying was adjusted to 20 g / m 2 , an airbag coated fabric was prepared in the same manner as in Example 1, and the weft strain / warp strain amount was set to 0.48 as the physical properties of the base fabric. Changed. At this time, the average resin thickness at the top of the head of the coated fabric obtained was 7.3 ⁇ m, and the bending resistance of the background was 64 mm / 72 mm. The properties of this coated fabric were evaluated and are shown in Table 1. The obtained coated fabric showed 100% cohesive failure of the sealant both in the initial stage and after aging, and was excellent in adhesion between the coat agent and the sealant.
  • Example 3 A coated fabric for an airbag was prepared in the same manner as in Example 1 except that a polyamide 66 multifilament yarn having a total fineness of 470 dtex and 72 filaments was used and the coating amount of the resin after drying was adjusted to 26 g / m 2. As the fabric properties, the amount of weft strain / warp strain was changed to 0.52. At this time, the average resin thickness at the top of the head of the coated fabric of the obtained coated fabric was 7.1 ⁇ m, and the bending resistance of the background was 67 mm / 76 mm. The properties of this coated fabric were evaluated and are shown in Table 1. The obtained coated fabric showed 100% cohesive failure of the sealant both in the initial stage and after aging, and was excellent in adhesion between the coat agent and the sealant.
  • Example 4 A polyamide 66 multifilament yarn having a total fineness of 470 dtex and 144 filaments was woven in a plain jet weave in a water jet loom, contracted with boiling water, and dried at 130 ° C.
  • the obtained woven fabric had a weaving density in the warp direction of 51 yarns / 2.54 cm, a weaving density in the weft direction of 51 yarns / 2.54 cm, and a cover factor of 2,211.
  • the coating amount of the resin after drying was adjusted to 25 g / m 2
  • an air bag coated fabric was prepared in the same manner as in Example 1, and the weft strain / warp strain amount was set to 0.42 as the physical properties of the base fabric.
  • Example 4 A polyamide 66 multifilament yarn having a total fineness of 470 dtex and 144 filaments was woven in a plain jet weave in a water jet loom, contracted with boiling water, and dried at 130 ° C.
  • the obtained woven fabric had a weaving density in the
  • the background average resin thickness at the top of the woven fabric surface of the obtained coated fabric was 8.4 ⁇ m, and the bending resistance of the background was 69 mm / 79 mm.
  • the properties of this coated fabric were evaluated and are shown in Table 1.
  • the obtained coated fabric showed 100% cohesive failure of the sealant both in the initial stage and after aging, and was excellent in adhesion between the coat agent and the sealant.
  • Example 5 A polyamide 66 multifilament yarn having a total fineness of 350 dtex and 108 filaments was woven in a plain jet weave in a water jet loom, contracted with boiling water, and dried at 130 ° C.
  • the resulting woven fabric had a weave density in the warp direction of 55 / 2.54 cm, a weave density in the weft direction of 55 / 2.54 cm, and a cover factor of 2,058.
  • the coating amount of the resin after drying was adjusted to 36 g / m 2
  • a coated fabric for an airbag was prepared in the same manner as in Example 1, and the weft strain / warp strain amount was 0.60 as the base fabric properties.
  • Example 5 A polyamide 66 multifilament yarn having a total fineness of 350 dtex and 108 filaments was woven in a plain jet weave in a water jet loom, contracted with boiling water, and dried at 130 ° C.
  • the resulting woven fabric had a weave density in the warp direction of 55
  • the background average resin thickness of the top of the coated fabric obtained on the woven fabric surface was 10.8 ⁇ m, and the bending resistance of the background was 70 mm / 75 mm.
  • the properties of this coated fabric were evaluated and are shown in Table 1.
  • the obtained coated fabric showed 100% cohesive failure of the sealant both in the initial stage and after aging, and was excellent in adhesion between the coat agent and the sealant.
  • Example 6 A polyamide 66 multifilament yarn having a total fineness of 270 dtex and 84 filaments was woven in a plain jet weave in a water jet loom, contracted with boiling water, and dried at 130 ° C.
  • the resulting woven fabric had a weaving density in the warp direction of 69 / 2.54 cm, a weaving density in the weft direction of 69 / 2.54 cm, and a cover factor of 2,268.
  • a coated fabric for an airbag was produced in the same manner as in Example 1 except that the coating amount of the resin after drying was adjusted to 25 g / m 2 , and the weft strain / warp strain amount was set to 0.00 as the base fabric properties. 37.
  • the background average resin thickness at the top of the coated fabric of the obtained coated fabric was 10.4 ⁇ m, and the bending resistance of the background was 66 mm / 78 mm.
  • the properties of this coated fabric were evaluated and are shown in Table 1.
  • the obtained coated fabric showed 100% cohesive failure of the sealant both in the initial stage and after aging, and was excellent in adhesion between the coat agent and the sealant.
  • Example 7 A polyamide 66 multifilament yarn having a total fineness of 235 dtex and 72 filaments was woven in a plain jet weave in a water jet loom, contracted with boiling water, and dried at 130 ° C.
  • the resulting woven fabric had a weave density of 73 yarns / 2.54 cm in the warp direction, a weave density of 73 yarns / 2.54 cm in the weft direction, and a cover factor of 2,238.
  • a coated fabric for an airbag was prepared in the same manner as in Example 1 except that the coating amount of the resin after drying was adjusted to 24 g / m 2 , and the weft strain / warp strain amount was set to 0.00 as the base fabric properties. 44.
  • the background average resin thickness at the top of the coated fabric of the obtained coated fabric was 8.9 ⁇ m, and the bending resistance of the background was 66 mm / 81 mm.
  • the properties of this coated fabric were evaluated and are shown in Table 1.
  • the obtained coated fabric showed 100% cohesive failure of the sealant both in the initial stage and after aging, and was excellent in adhesion between the coat agent and the sealant.
  • Example 1 In Example 1, except that the coating amount of the resin after drying was adjusted to 14 g / m 2 , a coated fabric for an airbag was produced in the same manner as in Example 1, and the background average of the top of the coated fabric on the surface of the fabric was averaged. The resin thickness was changed to 3.8 ⁇ m. At this time, the obtained coated fabric had a weft strain / warp strain amount of 0.66 and a warp softness of 68 mm / 74 mm, respectively. The properties of this coated fabric were evaluated and are shown in Table 1. The obtained coated fabric initially showed 100% cohesive failure, but did not show 100% cohesive failure after aging. This is because peeling occurred between the fabric and the coating agent before the sealing agent cohesively breaks down.
  • Example 2 In Example 3, after weaving in a water jet loom, drying finish is performed at 130 ° C, and then heat setting is performed at 180 ° C while stretching 0% in the warp direction and 1% in the transverse direction, and the resin after drying A coated fabric for an airbag was produced in the same manner as in Example 1 except that the coating amount was adjusted to 21 g / m 2 , and the weft strain / warp strain amount was changed to 0.28 as the base fabric properties. At this time, the average resin thickness at the top of the head of the resulting coated fabric on the fabric surface was 5.2 ⁇ m, and the bending resistance of the background was 64 mm / 79 mm. The properties of this coated fabric were evaluated and are shown in Table 1.
  • the obtained coated fabric did not show 100% cohesive failure of the sealant both at the initial stage and after aging, and was extremely inferior in adhesion between the coat agent and the sealant. This is because the deformation amount in the warp direction of the base fabric is increased during the peel test, and the bonding point between the coating agent and the sealant interface is shifted.
  • Example 3 In Example 5, except that the coating amount of the resin after drying was adjusted to 33 g / m 2 , a coated fabric for an airbag was produced in the same manner as in Example 1, and the weft strain / warp strain amount was set as the base fabric property. Changed to 0.68. At this time, the background average resin thickness at the top of the surface of the coated fabric obtained was 10.6 ⁇ m, and the bending resistance of the background was 71 mm / 76 mm, respectively. The properties of this coated fabric were evaluated and are shown in Table 1. The obtained coated fabric initially exhibited 100% cohesive failure, but did not exhibit 100% cohesive failure after aging, and had poor adhesion between the coating agent and the sealant. This is because the deformation amount in the weft direction of the base fabric is increased during the peel test, and the bonding point between the coating agent and the sealant interface is shifted.
  • Example 8 In Example 1, after weaving in a water jet loom, dry finishing is performed at 130 ° C., and then heat setting is performed at 180 ° C. while stretching by 0% in the warp direction and 1.5% in the transverse direction.
  • a coated fabric for an airbag was prepared in the same manner as in Example 1 except that the resin coating amount was adjusted to 25 g / m 2 , and the bending resistance of the background was changed to 62 mm / 84 mm as the base fabric properties. At this time, the weft average resin thickness of the top of the coated fabric on the woven fabric surface was 8.4 ⁇ m, and the weft strain / warp strain amount was 0.42. The properties of this coated fabric were evaluated and are shown in Table 1.
  • the obtained coated fabric initially showed 100% cohesive failure. It did not show 100% cohesive failure after aging. This is because the amount of deformation in the warp direction of the base fabric is increased during the peel test due to a large difference in the bending resistance of the background, and the bonding point between the coating agent and the sealant interface is shifted.
  • the airbag coated fabric of the present invention is a rollover that uses a sealing agent in the sewing portion because the adhesive fabric of the airbag of the present invention maintains the adhesiveness between the coating agent and the sealing agent even after long-term heat aging. Since an optimal base fabric can be provided for curtain airbags, the industrial contribution is significant.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Air Bags (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Woven Fabrics (AREA)

Abstract

 本発明の目的は、自動車用エアバッグに用いるコート布に関し、更に詳しくは長期耐熱エージング後においてもコート樹脂に接着するシール剤を塗布し縫製するロールオーバーカーテンエアバッグに最適なコート布に関する。 合成繊維製織物の少なくとも片面に、付加重合型の無溶剤シリコーン樹脂を塗布してなるエアバッグ用コート布であって、該シリコーン樹脂の塗布量が15~45g/mであり、コート布引張時の緯歪み量/経歪み量が0.30~0.65であることを特徴とするエアバッグ用コート布。

Description

エアバッグ用コート布
 本発明は、自動車用エアバッグに用いるシリコーン樹脂コート布に関し、更に詳しくはロールオーバーカーテンエアバッグに最適なコート布に関する。
 自動車用エアバッグは、衝突の際、衝撃を受けてセンサーが作動し、高温、高圧のガスを発生させ、このガスによりエアバッグを瞬間的に膨張させ、衝突時に乗員の顔面、前頭部などの人体を保護する目的で使用される。近年、安全装備の一つとして幅広く普及しており、運転席、助手席のみならず、ニーバッグ、サイドバッグ、カーテンエアバッグ等の実用化が進み、複数のエアバッグが標準装備される自動車が増加している。
 搭載されるエアバッグの部位及び数量の増加にともない、エアバッグシステムの更なる軽量化、コンパクト化の要望が高まり、システムの各部品は小型化、軽量化を目指して設計されてきている。このような背景から、エアバッグの袋体も、バッグ容量の低減や、使用する基布のノンコート化により軽量化が検討されているが、人体に近い位置にあるサイドバッグ、カーテンエアバッグについては展開速度が要求される為に、コート布の使用が主流となっている。
 更に昨今カーテンエアバッグの中でもロールオーバー(横転)に対応したエアバッグの搭載が増加している。このロールオーバーカーテンエアバッグは、車体が横転する間においても乗員の頭部を保護し、また人が車外へ飛び出さないようにエアバッグ展開後から10秒程度、内圧を保持する特性が求められている。
 従来、長時間の内圧保持を達成する為に、袋織可能な織機を用いて高密度編成された袋織織物の表面に、片面50g/m以下で、例えば実施例にて両面合わせて70g/mのシリコーン樹脂をコーティングした基布が検討されている(例えば、特許文献1を参照)。
 袋織基布の場合バッグの外側にコーティングを施す必要があり、気密性を維持する為には樹脂の塗布量を高くする必要がある為に、バッグ全体の質量が増大し、軽量化の点から好ましくない。また塗布量が多い場合、コート面同士の接触による粘着性が増大する問題がある。
 そこでその他の内圧保持を達成する手段として、袋織基布を用いずにコーティングされた2枚の基布のコート面を内側にして縫製する事で、基布のコート量を少なくしたバッグの検討がなされている。この時、縫製部からのガス漏れを防止する技術として、基布を2枚重ねて縫製する際に、縫製ラインに沿ってコート樹脂に接着するシール剤を塗布し縫製する方法が利用されている。内圧を保持する為には、エアバッグ展開時に織物とコート樹脂界面での剥離が発生しない事だけでなく、シール剤とコート樹脂界面の剥離についても発生しないことが求められている。シールされた縫製部分でのシール剤の破壊は無い方が好ましいが、破壊される場合には、シール剤自身が凝集破壊することが好ましい。
 従来、基布を構成する糸としてアスペクト比が1.2~2.5の扁平糸を用いて、コート布表面の凹凸を小さくし、縫製ラインに使用するシール剤とコート樹脂の接着性を向上したエアバッグ用基布が検討されている(例えば、特許文献2を参照)。しかしながら初期での接着性は問題ない結果であるものの、シール剤が硬化してシール剤凝集破壊が起こり難い耐熱エージング後の接着性について、基布特性の面からは何ら議論されておらず、他の文献を含めても見当たらないのが現状である。
特開2011-042898号公報 特開2008-156798号公報
 本発明の目的は、自動車用エアバッグに用いるコート布に関し、更に詳しくは長期耐熱エージング後においても、コート樹脂に接着するシール剤を塗布し縫製するロールオーバーカーテンエアバッグに最適なエアバッグ用コート布を提供することにある。
 前記の課題を解決することができる本発明のエアバッグ用コート布は、以下の構成よりなる。
 すなわち、本発明は、合成繊維製織物の少なくとも片面に、付加重合型の無溶剤シリコーン樹脂を塗布してなるエアバッグ用コート布であって、該シリコーン樹脂の塗布量が15~45g/mであり、コート布引張時の緯歪み量/経歪み量が0.30~0.65であることを特徴とするエアバッグ用コート布である。
 またコート布表面における頭頂部の経緯平均樹脂厚みが4μm以上であるエアバッグ用コート布である。
 またコート布の経緯の剛軟度差が3~20mmであるエアバッグ用コート布である。
 また本発明の好適な実施形態は、織物を構成する糸条の総繊度が、200~550dtexであり、織物のカバーファクターが、1,800~2,500である事である。
 本発明のエアバッグ用コート布は、長期耐熱エージング後においてもコート剤とシール剤の接着性が維持されるために、縫製部にシール剤を用いるロールオーバーカーテンエアバッグに最適な基布を提供することができる。
本発明のエアバッグ用コート布の表面のSEM写真の模式図である。 図1の破線部で切断した際の断面から、織物表面における頭頂部の位置(斜線部)を示す説明図である。
 以下本発明を詳述する。
<合成繊維織物>
 本発明において、合成繊維製織物とは、合成繊維糸条を用いて製織される織物を意味する。織物は、機械的強度に優れ、厚さを薄くできるという点で優れている。織物の組織は、特に限定されるものでなく、平織、綾織、朱子織およびこれらの変化織、多軸織などを用いることができる。これらの中でも、優れた機械的強度を有する平織物が特に好ましい。
 合成繊維としては、特にナイロン66、ナイロン6、ナイロン46、ナイロン12等の脂肪族ポリアミド繊維、アラミド繊維のような芳香族ポリアミド繊維、ポリエチレンテレフタレート、ポリトリメチレンテレフタレートやポリブチレンテレフタレートなどのポリエステル繊維が使用される。
 他には、全芳香族ポリエステル繊維、ポリパラフェニレン・ベンゾビス・オキサゾール繊維(PBO繊維)、超高分子量ポリエチレン繊維、ポリフェニレンサルファイド繊維、ポリエーテルケトン繊維等が挙げられる。ただし、経済性を勘案すると、ポリエステル繊維、ポリアミド繊維が好ましく、特に好ましくはナイロン66である。また、これらの繊維はその一部または全部が再利用された原材料より得られるものでもよい。
 また、これらの合成繊維には、原糸製造工程や後加工工程での工程通過性を向上させるために、各種添加剤を含有させてもよい。添加剤としては、例えば、酸化防止剤、熱安定剤、平滑剤、帯電防止剤、増粘剤、難燃剤等が挙げられる。また、この合成繊維は原着糸や製糸後染色したものでもよい。また、単糸の断面は、通常の丸断面のほか、異形断面のどのようなものであってもよい。
 合成繊維の単繊維繊度としては、1~8dtexが好ましく、より好ましくは3~7dtexである。1dtex以上とすることで、織物の強度等を維持することができる。一方、8dtex以下とすることで、剛性を低く抑え、収納性を維持することができる。
 製織工程の織機としては、ウォータージェットルーム、エアージェットルーム及びレピアルーム等を用いる事が出来る。特に生産性を高める点では、高速製織が比較的容易なウォータージェットルームが好ましく用いられる。
 製織後の生機は、精錬、乾燥仕上げを実施しても良いが、乾燥後に熱セットを行わず、乾燥前に温水に通す事が好ましい。温水に通す事で糸が収縮し、織物の空隙を埋める役割を果たす為に、樹脂をコートした際に織物内部への樹脂の浸透が抑制される効果が見られ、ベース布の表面に樹脂膜厚を上げる事が出来る。この場合、温水は80~95℃で20秒以上通す事が望ましく、20秒未満では、織物の空隙を埋める効果が低くなる。
 本発明の基布のコートする前のベース基布の油剤付着量が0.2重量%未満である事が望ましい。油剤付着量が0.2重量%以上あると、シリコーン樹脂との接着性が低下してしまう。より好ましくは0.1重量%以下である。ベース基布の油剤付着量は少なくても問題は無いが、工程通過性を考慮すると0.01重量%以上が好ましい。
 <コート布>
 織物にコーティングされる樹脂は、耐熱性、耐寒性、難燃性を有するシリコーン系樹脂が望ましい。シリコーン系樹脂の具体例としては付加重合型シリコーン樹脂等が挙げられる。例えば、ジメチルシリコーンゴム、メチルビニルシリコーンゴム、メチルフェニルシリコーンゴム、トリメチルシリコーンゴム、フロロシリコーンゴム、メチルシリコーンレジン、メチルフェニルシリコーンレジン、メチルビニルシリコーンレジン、エポキシ変性シリコーンレジン、アクリル変性シリコーンレジン、ポリエステル変性シリコーンレジンなどが挙げられる。なかでも、硬化後にゴム弾性を有し、強度や伸びに優れ、コスト面でも有利な、付加重合型メチルビニルシリコーンゴムが好適である。
 シリコーン樹脂を使用する場合には、反応硬化剤を用いても良く、例えば、白金粉末、塩化白金酸、四塩化白金酸等の白金系化合物や、パラジウム化合物、ロジウム化合物、ベンゾイルパーオキサイド、パラクロルベンゾイルパーオキサイド、オルソクロロパーオキサイドなどの有機過酸化物等を用いることができる。
 シリコーン樹脂と基布との接着性を向上させるために、シリコーン樹脂に接着助剤を含有させることが好ましい。接着助剤としては、例えば、アミノ系シランカップリング剤、エポキシ変性シランカップリング剤、ビニル系シランカップリング剤、クロル系シランカップリング剤、およびメルカプト系シランカップリング剤よりなる群から選ばれる少なくとも1種以上が挙げられる。
 シリコーン樹脂に加える無機質充填剤は、従来からシリコーン樹脂の補強、粘度調整、耐熱性向上、難燃性向上などを目的とする充填剤として使用されており、最も代表的な充填剤はシリカ粒子である。シリカ粒子の比表面積は、50m/g以上が好ましく、より好ましくは50~400m/g、特に好ましくは100~300m/gである。該比表面積がこの範囲にあると、得られたシリコーン硬化物に優れた引裂強度特性を付与しやすい。比表面積はBET法により測定される。シリカ粒子は、単独で用いても二種以上を併用してもよい。本発明で使用できるシリカ粒子としては、例えば、石英、水晶、珪砂、珪藻土等の天然品、乾式シリカ、シリカヒューム、湿式シリカ、シリカゲル、コロイダルシリカ等の合成品が挙げられる。
 上記のシリカ粒子は、シリコーン樹脂と添加剤を含む樹脂組成物に対してより良好な流動性を付与させやすくするため、トリメチルクロロシラン、ジメチルジクロロシラン、メチルトリクロロシラン等のメチルクロロシラン類、ジメチルポリシロキサン、ヘキサメチルジシラザン、ジビニルテトラメチルジシラザン、ジメチルテトラビニルジシラザン等のヘキサオルガノジシラザンなどの有機ケイ素化合物を用いて粒子の表面を疎水化処理した、疎水性シリカ粒子が好ましい。
 シリカ粒子の含有量は、全シリコーン樹脂に対して10~20質量%が好ましく、より好ましくは12~20質量%である。シリカ粒子の含有量が10質量%未満の場合、シリコーンゴムの機械的強度が低下しやすくなる。一方、シリカ粒子の含有量が20質量%を超える場合、樹脂組成物の流動性が低下しやすくなり、コーティング作業性が悪化するばかりか、樹脂が脆くなり、接着性が低減する傾向がある。
 本発明において、使用するシリコーン樹脂の樹脂粘度は、5,000~40,000mPa・secが好ましく、より好ましくは7,000~25,000mPa・secであり、特に好ましくは8,000~22,000mPa・secである。樹脂粘度が5,000mPa・sec未満の場合、樹脂が織物内部に入りこむために、基布表面に存在する樹脂量が低下し、バッグ展開時にコート剤とシール剤の界面での剥離が発生しやすくなる。一方、樹脂粘度が40,000mPa・secを超える場合、45g/m以下の塗布量に調整することが困難になる。上記の粘度の範囲内に調整できるのであれば、溶剤系、無溶剤系どちらでも構わないが、環境への影響を考慮すると、無溶剤系が好適である。
 なお、本発明では、樹脂以外の添加剤を含有する樹脂組成物の場合、該樹脂組成物の粘度も「樹脂の粘度」と定義する。
 エアバッグは温度や湿度が大きく変化する環境下で長時間車内に保管される為に、特に長期耐熱エージング試験後の剥離特性が極めて重要な要求特性となっている。本発明らは、コート布において引張時の緯歪み量/経歪み量が0.30~0.65である事が、長期耐熱エージング後においてもエアバッグ展開時にコート剤とシール剤間の界面剥離が発生しないために重要であることを見出した。引張時の緯歪み量/経歪み量は、より好ましくは0.35~0.60である。緯歪み量/経歪み量が0.30未満である場合、エアバッグ展開時に基布の経方向の変形量が大きくなりコート剤とシール剤界面の結合点がずれ、界面剥離が発生してしまう。一方で緯歪み量/経歪み量が0.65を超える場合は、エアバッグ展開時に基布の緯方向の変形量が高くなり同様にコート剤とシール剤界面の結合点がずれ、界面剥離が発生する。いずれのケースにおいても、製造初期段階の評価では発生しなくても、長期耐熱エージング後のシール剤の硬化が進んだ状態で、界面剥離が発生する問題が生じることを見出したものである。基布の緯歪み量/経歪み量は、製織、或いはベース布加工時、コーティング時のテンション調整による経緯クリンプ率バランスの調整により適正化することが出来る。
 基布の緯歪み量/経歪み量の調整は、製織からコート布の各工程において行うことが出来る。例えば経歪み量小さくする方法としては、ア)経糸に使用する原糸のモジュラスを高くする方法、イ)製織時において、経糸方向のテンションを高くする方法、ウ)製織後の乾燥時において、経糸方向に緊張した状態で乾燥、熱セットする方法、エ)コーティング時に経糸方向に緊張させた状態で乾燥ゾーンを通過させる方法等が挙げられる。この中で好ましくは、乾燥時に経糸方向に緊張させた状態で乾燥、熱セットする方法、あるいはコーティング時に経糸方向に緊張させた状態で乾燥ゾーンを通過させる方法であり、特に好ましくは、コーティング時に経糸方向に緊張させる方法である。この方法はエアバッグ布最終工程に近く、要求する物性への調整がしやすいだけでなく、コーティング時の樹脂量の調製も行いやすくなるため、特に好ましい。コーティング時に経糸方向に緊張させた状態で乾燥ゾーンを通過させる際に、ピンテンター等を用い、経緯方向に所定の張力で調整し、要求する基布の緯歪み量/経歪み量を調整しても良い。緯方向の歪み量も経方向と同様、使用する原糸、製織時の緯糸張力、乾燥時の張力、熱量等により調整することが出来る。
 ここで緯歪み量/経歪み量の測定方法を記載する。経糸方向に300mm、緯糸方向に55mmでカットし、経糸を両端からほぼ同本数取り除き緯糸方向を50mmに調整する。その後、定速緊張型引張試験機にてチャック間を200mmで試験片を掴み、中央100mmの部分に緯糸方向に線を引く。その後125N、250N、500N、1000N、2000N引張時に各々停止させ、経方向の変化量と、先程印をつけた中央部の緯方向の変化量を読み取った。各々の引張時の緯方向変化量÷経変化量を計算し、その絶対値を平均し緯歪み量/経歪み量とした。なおサンプルは5箇所をランダムに選択して測定を実施した。
 本発明のエアバッグ用コート布は、コート布表面における頭頂部の経緯平均樹脂厚みが4μm以上であることが重要である。好ましくは6μm以上である。なお、頭頂部とは、図1記載の2、あるいは3により切り出された切断面部分をSEMを用いて撮影し、その断面写真から、樹脂が付着している部分を3等分した領域の一部分を示す。この部分が4μm未満であると、エアバッグが展開した際に、織物とコート剤の間で剥離が発生する可能性が高くなり好ましくない。上限は特に設けないが、25μm以上になるとコート布表面の粘着性が高くなる問題が発生するため好ましくない。
 本発明のエアバッグ用コート布の樹脂塗布量は、15~45g/mの塗布量が好ましい。より好ましくは、20~35g/mである。15g/m以下の樹脂の塗布量では、織物表面に塗布されている樹脂層の厚みが低くなる為に、必要とするコート布表面における頭頂部の経緯平均樹脂厚みが得られない。一方で45g/m以上の塗布量では、コート剤とシール剤の接着性は確保出来るが、コート織物の柔軟性が悪化する為に、収納性を損なうだけでなく、バッグ全体の重量が大きくなる。
 本発明のエアバッグ用コート布は、経方向、緯方向の45°カンチレバー法における剛軟度の差が3~20mmである事が望ましい。より好ましくは、3~15mmである。20mm以上の場合は、エアバッグ展開時に基布の経、もしくは緯方向の基布変化量が高くなり、コート剤とシール剤界面の接着点がずれやすくなり、界面剥離が発生する。経方向、緯方向の剛軟度の差は、経緯クリンプ率差をつけることにより適正化することが出来る。剛軟度の差が小さければ小さい程、エアバッグ展開時の基布の経、もしくは緯方向の基布変化量差が少なくなって良い。しかし、経方向と緯方向の剛軟度差を3mm未満とした場合、製織条件にて経方向の張力を上げる、或いは緯糸の打ち込み速度を低減させる事等が必要となり、基布品位や生産性の面で不利な結果となる。特に基布品位については、毛羽等の発生により織物とコート剤の接着性が悪化する問題が発生するため好ましくない。
 本発明のコーティング基布は、織物の両面にコーティングされた両面コーティング基布であってもよいが、収納性の点から、片面にのみにコーティングされる片面コーティング基布が好ましい。
 本発明において、シリコーン樹脂を塗布する方法は、従来の公知の付与方法が用いられる。コート法としては、例えば、ナイフコート、コンマコート、ダイコート、グラビアロールコート、キスロールコート、スプレー法、Dip法等が挙げられる。
 長尺の織物基布にシリコーン樹脂組成物をナイフコーティングで連続的に塗布する際、基布の進行方向における基布の張力を400~1000N/m、好ましくは400~800N/mに制御することが好ましい。基布の張力が400N/m未満では、基布織物の耳部が嵩高くなり、基布の中央部と端部の塗布量に大きな差が生じ、幅方向の厚み変動が大きくなる。一方、基布の張力が1000N/mを超える場合には、経緯のクリンプ率のバランスが崩れ、経方向及び緯方向共に塗布量を特定範囲に維持することが困難となるばかりでなく、基布引張時の緯歪み量/経歪み量を特定範囲に維持することが難しい。
 塗布後のコーティング剤を乾燥、硬化させる方法としては、熱風、赤外光、マイクロウェーブ等など、一般に用いられる加熱方法が使用されるが、コスト面で熱風照射方法が広く用いられている。加熱温度、時間については、塗布したシリコーン樹脂が硬化するのに十分な温度に達していれば問題ないが、好ましくは加熱温度が150~220℃、加熱時間が0.2~5分であることが好ましい。
 織物を構成する糸条の総繊度は、200~550dtexであることが好ましい。総繊度が550dtexを超えると、基布の厚さが増大して剛性が高くなるため、エアバッグの収納性が悪くなる。一方、総繊度が200dtex未満の場合には、コート布の引張強力や引裂強力などのエアバッグ作動時の機械特性が不十分となりやすい。
 織物を構成するカバーファクターは1,800~2,500が好ましく、より好ましくは1,900~2,450である。カバーファクターが1,800未満であると、エアバッグとして必要な物理特性(引張強力や引裂強力)が低下する傾向がある。一方、カバーファクターが2,500を超える場合には、製織性が困難になり、剛性が高くなるため収納性が悪化する傾向がある。なお、カバーファクター(CF)は、下記式により算出できる。なお、総繊度の単位は「デシテックス」であり、織密度の単位は「本/2.54cm」である。
 CF=(経糸の総繊度)1/2×経糸密度+(緯糸の総繊度)1/2×緯糸密度
 本発明におけるコート剤とシール剤との接着性は、初期ピール強度及び凝集破壊率、並びにエージング後のピール強度及び凝集破壊率によって評価することができる。望ましい接着性を示す範囲として、初期ピール強度が45N/cm以上であることが好ましく、より好ましくは50N/cm以上である。加えてエージング後のピール強度が60N/cm以上であることが好ましく、より好ましくは63N/cm以上である。初期ピール強度が45N/cm未満及びエージング後ピール強度が60N/cm未満ではエアバッグが展開した際に縫製糸穴までシール剤の破壊が起こり、縫製糸穴から通気する事で乗員を保護するのに必要な内圧を保持することが出来ない。また、凝集破壊率は初期及びエージング後ともに100%であることが好ましく、100%未満である場合、最終的にシール剤とコート剤の界面で剥離が発生したことを示している。
 本発明に用いられるシール剤は、付加型もしくは付加型を主体とする室温硬化性シリコーンが好ましい。付加型のシリコーンには熱硬化性のものもあるが、熱硬化性シリコーンは硬化時間が短い利点はあるものの加熱工程が必要となるため、室温硬化型が好ましい。
 さらに、シール剤のシリコーンとして硬化後の、初期破断伸度が800%以上、好ましくは1000~1500%であるものを用いることが好ましい。極めて柔らかいシリコーンを用いることにより接合部が柔軟性を保ち、折り畳みの体積を小さくすることができる。
 また、シール剤の樹脂物性として引張強度が1.0MPa以上有することが好ましい。この値より低いシール剤では、エアバッグ展開時の圧力により凝集破壊をするものの強度が低すぎるため、縫製部からの通気度漏れが生じる恐れがある。好ましくは1.5MPa以上である。
 以下、実施例を用いて本発明を具体的に説明するが、本発明は実施例に限定されるものではない。なお、実施例における各種物性の評価は、下記の方法を用いた。
(1)総繊度
 JIS L-1095 9.4.1記載の方法で測定した。
(2)フィラメント数
 繊維糸条の断面写真よりフィラメント数を数えた。
(3)織物の密度
 JIS L-1096 8.6.1記載の方法で測定した。
(4)塗布量
 JIS L 1096 8.4.2記載の方法でコート布の質量を測定した。次に、ブランク試料として、樹脂を塗布せずにコーティング時と同じ条件で加工処理を行った後、JIS L 1096 8.4.2記載の方法に準拠し、ブランク試料の質量を測定した。その後、コート布の質量とブランク試料の質量との差を塗布量とした。なお、塗布量の単位は、1m当たりの質量(g/m)で表した。
(5)織物表面における頭頂部の平均樹脂厚み
 図1の2,3に示す破線部の位置で、カミソリを用いてコーティング基布を切断し、SEMを用いて断面写真を経糸方向及び緯糸方向で撮影し、紙に印刷した。次いで、その断面写真から、図2の4に相当する糸の断面の長さを1として全体を3等分し、頭頂部(図2の5)の膜厚を算出した。なお図2は図1の2で切断された、緯糸切断面でのSEM写真の模式図である。
 平均膜厚の算出方法は、図2の5に相当する、樹脂部分を切り取った紙の質量と全体の紙の質量の比より、平均膜厚を算出し、経糸方向と緯糸方向の値を平均化した値とした。平均膜厚は、小数第1位の桁まで求め、四捨五入して丸めた。
(6)緯歪み量/経歪み量
 緯歪み量/経歪み量の測定は、経糸方向に300mm、緯糸方向に55mmでカットし、経糸を取り除き横糸方向を50mmに調整する。その後、定速緊張型引張試験機にてチャック間を200mmで試験片を掴み、中央100mmの部分に緯糸方向に線を引く。その後125N、250N、500N、1000N、2000N引張時に各々停止させ、経方向の変化量と、先程印をつけた中央部の緯方向の変化量を読み取った。各々の引張時の緯方向変化量÷経変化量を計算し、その絶対値を平均し緯歪み量/経歪み量とした。なおサンプルは5箇所をランダムに選択して測定を実施した。
(7)剛軟度
 JIS L 1096:1999 8.19.1 A法(45°カンチレバー法)記載の方法で測定した。
(8)初期 ピール強度、凝集破壊率
 幅60mmのコート布2枚を、樹脂物性として引張強度が3.0MPa、引張伸度が1300%である付加硬化タイプの室温硬化型シリコーン接着剤の厚さが1mmとなるように該接着剤により貼り合わせ、23℃×65%RH環境下で24hr放置して、該接着剤を硬化させた。次に貼り合わせた2枚のコート布を切断して50mm幅の断片を作製し、この断片についてチャック間60mm、引張速度500mm/minの引張速度においてT型剥離試験を行った。この時得られたピーク強度をピール強度(N/cm)として、コート剤とシール剤の接着性は、接着界面の凝集破壊の割合(%)で示した。なお、凝集破壊率は、次のように算出した。剥離試験後のサンプルに、シリコーン接着剤層が0.2mm以上存在している部分を凝集破壊とした。凝集破壊の面積とT型剥離試験を行ったサンプルの面積から凝集破壊率を算出した。結果はN=4の測定結果を平均した。
(9)エージング後 ピール強度、凝集破壊率
 幅60mmのコート布2枚を、樹脂物性として引張強度が3.0MPa、引張伸度が1300%である付加硬化タイプの室温硬化型シリコーン接着剤の厚さが1mmとなるように該接着剤により貼り合わせ、その後23℃×65%RH環境下で24hr放置後、110℃に設定したオーブンに入れて、1000hr放置した。次に貼り合わせた2枚のコート布を切断して50mm幅の断片を作製し、この断片についてチャック間60mm、引張速度500mm/minの引張速度においてT型剥離試験を行った。この時得られたピーク強度をピール強度(N/cm)として、コート剤とシール剤の接着性は、接着界面の凝集破壊の割合(%)で示した。なお、凝集破壊率は、次のように算出した。剥離試験後のサンプルに、シリコーン接着剤層が0.2mm以上存在している部分を凝集破壊とした。凝集破壊の面積とT型剥離試験を行ったサンプルの面積から凝集破壊率を算出した。結果はN=4の測定結果を平均した。
(実施例1)
 総繊度が470dtex、140フィラメントのポリアミド66マルチフィラメント糸を平織りにてウォータージェットルームにて製織後、沸水にて収縮加工し、130℃で乾燥仕上げを行った。得られた織物は、経糸方向の織密度が46本/2.54cm、緯糸方向の織密度が46本/2.54cm、カバーファクターが1,994であった。
 次にこの織物の片面に、樹脂粘度が10,000mPa・secである付加重合型のビニルメチルシリコーン樹脂をフローティングナイフコートにて塗布した。次いで、200℃で1分間硬化処理し、塗布量が35g/mであるコーティング基布を得た。得られたコート布の織物表面における頭頂部の経緯平均樹脂厚みが11.3μm、緯歪み量/経歪み量は0.57、経緯の剛軟度がそれぞれ59mm/67mmであった。このコート布の特性を評価し、表1に示した。得られたコート布は、初期、エージング後共にシール剤の100%凝集破壊を示しており、コート剤とシール剤の接着性に優れていた。
(実施例2)
 乾燥後の樹脂の塗布量を20g/mに調整した以外は、実施例1と同様にしてエアバッグ用コート布を作製し、基布物性として緯歪み量/経歪み量を0.48に変化させた。この時、得られたコート布の織物表面における頭頂部の経緯平均樹脂厚みは7.3μm、経緯の剛軟度がそれぞれ64mm/72mmであった。このコート布の特性を評価し、表1に示した。得られたコート布は、初期、エージング後共にシール剤の100%凝集破壊を示しており、コート剤とシール剤の接着性に優れていた。
(実施例3)
 総繊度が470dtex、72フィラメントのポリアミド66マルチフィラメント糸を用い、乾燥後の樹脂の塗布量を26g/mに調整した以外は、実施例1同様にしてエアバッグ用コート布を作製し、基布物性として緯歪み量/経歪み量を0.52に変化させた。この時、得られたコート布の織物表面における頭頂部の経緯平均樹脂厚みは7.1μm、経緯の剛軟度がそれぞれ67mm/76mmであった。このコート布の特性を評価し、表1に示した。得られたコート布は、初期、エージング後共にシール剤の100%凝集破壊を示しており、コート剤とシール剤の接着性に優れていた。
 (実施例4)
 総繊度が470dtex、144フィラメントのポリアミド66マルチフィラメント糸を平織りにてウォータージェットルームにて製織後、沸水にて収縮加工し、130℃で乾燥仕上げを行った。得られた織物は、経糸方向の織密度が51本/2.54cm、緯糸方向の織密度が51本/2.54cm、カバーファクターが2,211であった。その後、乾燥後の樹脂の塗布量を25g/mに調整した以外は、実施例1同様にしてエアバッグ用コート布を作製し、基布物性として緯歪み量/経歪み量を0.42に変化させた。この時、得られたコート布の織物表面における頭頂部の経緯平均樹脂厚みは8.4μm、経緯の剛軟度がそれぞれ69mm/79mmであった。このコート布の特性を評価し、表1に示した。得られたコート布は、初期、エージング後共にシール剤の100%凝集破壊を示しており、コート剤とシール剤の接着性に優れていた。
(実施例5)
 総繊度が350dtex、108フィラメントのポリアミド66マルチフィラメント糸を平織りにてウォータージェットルームにて製織後、沸水にて収縮加工し、130℃で乾燥仕上げを行った。得られた織物は、経糸方向の織密度が55本/2.54cm、緯糸方向の織密度が55本/2.54cm、カバーファクターが2,058であった。その後、乾燥後の樹脂の塗布量を36g/mに調整した以外は、実施例1同様にしてエアバッグ用コート布を作製し、基布物性として緯歪み量/経歪み量を0.60に変化させた。この時、得られたコート布の織物表面における頭頂部の経緯平均樹脂厚みは10.8μm、経緯の剛軟度がそれぞれ70mm/75mmであった。このコート布の特性を評価し、表1に示した。得られたコート布は、初期、エージング後共にシール剤の100%凝集破壊を示しており、コート剤とシール剤の接着性に優れていた。
(実施例6)
 総繊度が270dtex、84フィラメントのポリアミド66マルチフィラメント糸を平織りにてウォータージェットルームにて製織後、沸水にて収縮加工し、130℃で乾燥仕上げを行った。得られた織物は、経糸方向の織密度が69本/2.54cm、緯糸方向の織密度が69本/2.54cm、カバーファクターが2,268であった。その後、乾燥後の樹脂の塗布量を25g/mに調整した以外は、実施例1と同様にしてエアバッグ用コート布を作製し、基布物性として緯歪み量/経歪み量を0.37に変化させた。この時、得られたコート布の織物表面における頭頂部の経緯平均樹脂厚みは10.4μm、経緯の剛軟度がそれぞれ66mm/78mmであった。このコート布の特性を評価し、表1に示した。得られたコート布は、初期、エージング後共にシール剤の100%凝集破壊を示しており、コート剤とシール剤の接着性に優れていた。
(実施例7)
 総繊度が235dtex、72フィラメントのポリアミド66マルチフィラメント糸を平織りにてウォータージェットルームにて製織後、沸水にて収縮加工し、130℃で乾燥仕上げを行った。得られた織物は、経糸方向の織密度が73本/2.54cm、緯糸方向の織密度が73本/2.54cm、カバーファクターが2,238であった。その後、乾燥後の樹脂の塗布量を24g/mに調整した以外は、実施例1と同様にしてエアバッグ用コート布を作製し、基布物性として緯歪み量/経歪み量を0.44に変化させた。この時、得られたコート布の織物表面における頭頂部の経緯平均樹脂厚みは8.9μm、経緯の剛軟度がそれぞれ66mm/81mmであった。このコート布の特性を評価し、表1に示した。得られたコート布は、初期、エージング後共にシール剤の100%凝集破壊を示しており、コート剤とシール剤の接着性に優れていた。
(比較例1)
 実施例1において、乾燥後の樹脂の塗布量を14g/mに調整した以外は、実施例1と同様にしてエアバッグ用コート布を作製し、コート布の織物表面における頭頂部の経緯平均樹脂厚みは3.8μmに変化させた。この時、得られたコート布の緯歪み量/経歪み量は0.66、経緯の剛軟度がそれぞれ68mm/74mmであった。このコート布の特性を評価し、表1に示した。得られたコート布は、初期は100%凝集破壊を示したが、エージング後は100%凝集破壊を示さなかった。これは、シール剤が凝集破壊する前に織物とコート剤の間で剥離が発生した為である。
(比較例2)
 実施例3において、ウォータージェットルームにて製織後、130℃で乾燥仕上げを行い、その後経方向に0%、横方向に1%伸張させながら180℃で熱セットを実施し、さらに乾燥後の樹脂の塗布量を21g/mに調整した以外は、実施例1同様にしてエアバッグ用コート布を作製し、基布物性として緯歪み量/経歪み量を0.28に変化させた。この時、得られたコート布の織物表面における頭頂部の経緯平均樹脂厚みは5.2μm、経緯の剛軟度がそれぞれ64mm/79mmであった。このコート布の特性を評価し、表1に示した。得られたコート布は、初期、エージング後共にシール剤の100%凝集破壊を示さず、コート剤とシール剤の接着性に極めて劣っていた。これは、ピール試験時に基布の経方向の変形量が高くなり、コート剤とシール剤界面の結合点がずれた為である。
(比較例3)
 実施例5において、乾燥後の樹脂の塗布量を33g/mに調整した以外は、実施例1同様にしてエアバッグ用コート布を作製し、基布物性として緯歪み量/経歪み量を0.68に変化させた。この時、得られたコート布の織物表面における頭頂部の経緯平均樹脂厚みは10.6μm、経緯の剛軟度がそれぞれ71mm/76mmであった。このコート布の特性を評価し、表1に示した。得られたコート布は、初期は100%凝集破壊を示したが、エージング後は100%凝集破壊を示さず、コート剤とシール剤の接着性に劣っていた。これは、ピール試験時に基布の緯方向の変形量が高くなり、コート剤とシール剤界面の結合点がずれた為である。
(実施例8)
 実施例1において、ウォータージェットルームにて製織後、130℃で乾燥仕上げを行い、その後経方向に0%、横方向に1.5%伸張させながら180℃で熱セットを実施し、乾燥後の樹脂の塗布量を25g/mに調整した以外は、実施例1同様にしてエアバッグ用コート布を作製し、基布物性として経緯の剛軟度をそれぞれ62mm/84mmに変化させた。この時、得られたコート布の織物表面における頭頂部の経緯平均樹脂厚みは8.4μm、緯歪み量/経歪み量は0.42であった。このコート布の特性を評価し、表1に示した。得られたコート布は、初期は100%凝集破壊を示した。エージング後は100%凝集破壊を示さなかった。これは、経緯の剛軟度差が大きいためにピール試験時に基布の経方向の変形量が高くなり、コート剤とシール剤界面の結合点がずれた為である。
Figure JPOXMLDOC01-appb-T000001
 
 
 
 本発明のエアバッグ用コート布は、本発明のエアバッグ用コート布は、長期耐熱エージング後においてもコート剤とシール剤の接着性が維持されるために、縫製部にシール剤を用いるロールオーバーカーテンエアバッグに最適な基布を提供することができる為、産業上の寄与は大である。
    1:コーティング基布
    2:緯糸切断面方向
    3:経糸切断面方向
    4:緯糸断面
    5:頭頂部

Claims (5)

  1.  合成繊維製織物の少なくとも片面に、付加重合型の無溶剤シリコーン樹脂を塗布してなるエアバッグ用コート布であって、該シリコーン樹脂の塗布量が15~45g/mであり、コート布引張時の緯歪み量/経歪み量が0.30~0.65であることを特徴とするエアバッグ用コート布。
  2.  コート布表面における頭頂部の経緯平均樹脂厚みが4μm以上であることを特徴とする請求項1記載のエアバッグ用コート布。
  3.  コート布の経緯の剛軟度差が3~20mmであることを特徴とする請求項1~2のいずれか1項に記載のエアバッグ用コート布。
  4.  織物を構成する糸条の総繊度が、200~550dtexである請求項1~3のいずれか1項に記載のエアバッグ用コート布。
  5. 織物のカバーファクターが、1,800~2,500である請求項1~4のいずれか1項に記載のエアバッグ用コート布。
     
PCT/JP2014/072115 2013-08-26 2014-08-25 エアバッグ用コート布 WO2015029933A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US14/914,101 US11377064B2 (en) 2013-08-26 2014-08-25 Coated fabric for airbag
PL14839740T PL3040246T3 (pl) 2013-08-26 2014-08-25 Materiał powlekany na poduszkę powietrzną
EP14839740.9A EP3040246B1 (en) 2013-08-26 2014-08-25 Coated fabric for airbag
CN201480046894.6A CN105473389B (zh) 2013-08-26 2014-08-25 气囊用涂层布
ES14839740.9T ES2676299T3 (es) 2013-08-26 2014-08-25 Tela recubierta para airbag
JP2014549232A JP6634677B2 (ja) 2013-08-26 2014-08-25 エアバッグ用コート布
BR112016004222-0A BR112016004222B1 (pt) 2013-08-26 2014-08-25 Tecido revestido para um airbag automotivo
US17/138,718 US20210122323A1 (en) 2013-08-26 2020-12-30 Coated Fabric for Airbag

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013174823 2013-08-26
JP2013-174823 2013-08-26

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/914,101 A-371-Of-International US11377064B2 (en) 2013-08-26 2014-08-25 Coated fabric for airbag
US17/138,718 Continuation US20210122323A1 (en) 2013-08-26 2020-12-30 Coated Fabric for Airbag

Publications (1)

Publication Number Publication Date
WO2015029933A1 true WO2015029933A1 (ja) 2015-03-05

Family

ID=52586491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/072115 WO2015029933A1 (ja) 2013-08-26 2014-08-25 エアバッグ用コート布

Country Status (9)

Country Link
US (2) US11377064B2 (ja)
EP (1) EP3040246B1 (ja)
JP (2) JP6634677B2 (ja)
CN (1) CN105473389B (ja)
BR (1) BR112016004222B1 (ja)
ES (1) ES2676299T3 (ja)
PL (1) PL3040246T3 (ja)
PT (1) PT3040246T (ja)
WO (1) WO2015029933A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106029452B (zh) * 2014-03-31 2020-06-05 东洋纺株式会社 气囊用涂层基布
DE112016003956T5 (de) * 2015-09-30 2018-05-24 Seiren Co., Ltd. Airbag-basisstoff, airbag und verfahren zum herstellen eines airbag-basisstoffs
WO2019017273A1 (ja) * 2017-07-19 2019-01-24 帝人フロンティア株式会社 エアバッグ用織物
CN112512871B (zh) * 2018-08-08 2023-03-14 旭化成株式会社 气囊用多层膜和气囊
CN109455264B (zh) * 2018-12-27 2024-01-30 青岛正和游艇有限公司 一种机动橡皮艇艉板固定连接结构及连接方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001200447A (ja) * 1999-11-11 2001-07-27 Toyoda Spinning & Weaving Co Ltd 産業資材用基布およびその製造方法
JP2007169816A (ja) * 2005-12-21 2007-07-05 Toyobo Co Ltd 剥離強度に優れたエアバッグ用コート布帛およびその製造方法
JP2008156798A (ja) 2006-12-26 2008-07-10 Toray Ind Inc エアバッグ用コート布帛およびエアバッグ
WO2010137282A1 (ja) * 2009-05-29 2010-12-02 東洋紡績株式会社 エアバッグ用コーティング基布及びその製造方法
JP2011042898A (ja) 2009-08-21 2011-03-03 Toray Ind Inc エアバッグ用コーティング織物
WO2013118755A1 (ja) * 2012-02-07 2013-08-15 東洋紡株式会社 エアバッグ用コーティング基布及びエアバッグ用コーティング基布の製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995005296A1 (de) * 1993-08-17 1995-02-23 Trw Repa Gmbh Gassack für ein rückhaltesystem in fahrzeugen und gewebe zu seiner herstellung
JP3284842B2 (ja) * 1995-09-04 2002-05-20 東洋紡績株式会社 エアバッグ用高密度織物
CN1131348C (zh) * 2000-01-20 2003-12-17 东洋纺织株式会社 用于气囊的无覆盖纺织品及其生产过程和系统
US20020195808A1 (en) * 2001-06-06 2002-12-26 Chiou Joseph J. Airbag having reinforced seams
JP2004183152A (ja) 2002-12-04 2004-07-02 Toray Ind Inc エアバッグ用基布およびエアバッグ
JP2005054168A (ja) * 2003-05-07 2005-03-03 Shin Etsu Chem Co Ltd 液状シリコーンゴムコーティング剤組成物及びエアーバッグ
CN1306106C (zh) * 2005-03-29 2007-03-21 东华大学 羊毛角蛋白包覆腈纶、丙纶和锦纶及其织物的制造方法
JP3932049B2 (ja) * 2005-08-10 2007-06-20 東洋紡績株式会社 エアバッグ用織物の製造方法
JP4935066B2 (ja) * 2005-12-21 2012-05-23 東洋紡績株式会社 接着性に優れたエアーバッグ用コート布帛およびその製造方法
JP5120776B2 (ja) * 2008-02-08 2013-01-16 信越化学工業株式会社 付加反応硬化型シリコーンゴム用接着剤
JP5397326B2 (ja) * 2010-06-24 2014-01-22 信越化学工業株式会社 液状シリコーンゴムコーティング剤組成物、カーテンエアーバッグ及びその製造方法
JP5257498B2 (ja) * 2011-10-03 2013-08-07 東洋紡株式会社 剥離強度に優れたエアバッグ用コート布帛
JP5614512B1 (ja) * 2013-01-28 2014-10-29 東レ株式会社 エアバッグ用織物、その製造方法およびエアバッグ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001200447A (ja) * 1999-11-11 2001-07-27 Toyoda Spinning & Weaving Co Ltd 産業資材用基布およびその製造方法
JP2007169816A (ja) * 2005-12-21 2007-07-05 Toyobo Co Ltd 剥離強度に優れたエアバッグ用コート布帛およびその製造方法
JP2008156798A (ja) 2006-12-26 2008-07-10 Toray Ind Inc エアバッグ用コート布帛およびエアバッグ
WO2010137282A1 (ja) * 2009-05-29 2010-12-02 東洋紡績株式会社 エアバッグ用コーティング基布及びその製造方法
JP2011042898A (ja) 2009-08-21 2011-03-03 Toray Ind Inc エアバッグ用コーティング織物
WO2013118755A1 (ja) * 2012-02-07 2013-08-15 東洋紡株式会社 エアバッグ用コーティング基布及びエアバッグ用コーティング基布の製造方法

Also Published As

Publication number Publication date
PL3040246T3 (pl) 2018-08-31
JP2019173262A (ja) 2019-10-10
US20210122323A1 (en) 2021-04-29
EP3040246A1 (en) 2016-07-06
US11377064B2 (en) 2022-07-05
JP6634677B2 (ja) 2020-01-22
US20160207492A1 (en) 2016-07-21
BR112016004222A2 (ja) 2017-08-01
EP3040246B1 (en) 2018-04-18
ES2676299T3 (es) 2018-07-18
CN105473389A (zh) 2016-04-06
CN105473389B (zh) 2018-07-10
JPWO2015029933A1 (ja) 2017-03-02
BR112016004222B1 (pt) 2022-03-08
EP3040246A4 (en) 2017-04-19
PT3040246T (pt) 2018-06-04

Similar Documents

Publication Publication Date Title
JP2019173262A (ja) エアバッグ用コート布
JP5994792B2 (ja) エアバッグ用コーティング基布及びエアバッグ用コーティング基布の製造方法
EP3619078B1 (en) Low permeability and high strength woven fabric and methods of making the same
JP5626495B2 (ja) エアバッグ用コート布及びその製造方法
JP5044168B2 (ja) エアバッグ用基布及びエアバッグ
WO2010137282A1 (ja) エアバッグ用コーティング基布及びその製造方法
WO2019167820A1 (ja) エアバッグ用ノンコート基布、エアバッグ用コーティング基布およびそれを用いたエアバッグ
JP5469292B2 (ja) エアバッグ用基布及びエアバッグ
JP5549172B2 (ja) エアバッグ用コート布
JP2007100292A (ja) エアバッグ用織物
JPWO2020153446A1 (ja) エアバッグ用コーティング基布およびそれを含むエアバッグ
JP2011080158A (ja) エアバッグ用コート布
KR102349770B1 (ko) 실리콘 코팅 천
JP2007046193A (ja) エアバッグ用織物の製造方法
US11376827B2 (en) Silicone-coated fabric
JP7120217B2 (ja) シリコーンコート布

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480046894.6

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2014549232

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14839740

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014839740

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014839740

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14914101

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: IDP00201601533

Country of ref document: ID

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016004222

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112016004222

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160226