WO2015016412A1 - MoS2 박막 및 이의 제조방법 - Google Patents

MoS2 박막 및 이의 제조방법 Download PDF

Info

Publication number
WO2015016412A1
WO2015016412A1 PCT/KR2013/007299 KR2013007299W WO2015016412A1 WO 2015016412 A1 WO2015016412 A1 WO 2015016412A1 KR 2013007299 W KR2013007299 W KR 2013007299W WO 2015016412 A1 WO2015016412 A1 WO 2015016412A1
Authority
WO
WIPO (PCT)
Prior art keywords
mos
thin film
precursor
sulfur
atomic layer
Prior art date
Application number
PCT/KR2013/007299
Other languages
English (en)
French (fr)
Inventor
민요셉
Original Assignee
건국대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 건국대학교 산학협력단 filed Critical 건국대학교 산학협력단
Priority to US14/908,863 priority Critical patent/US9863039B2/en
Priority to EP13890707.6A priority patent/EP3037569B1/en
Priority to CN201380078541.XA priority patent/CN105408516B/zh
Publication of WO2015016412A1 publication Critical patent/WO2015016412A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/305Sulfides, selenides, or tellurides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G39/00Compounds of molybdenum
    • C01G39/06Sulfides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45555Atomic layer deposition [ALD] applied in non-semiconductor technology

Definitions

  • the present invention relates to a MoS 2 thin film and a method for manufacturing the same.
  • Transition metal chalcogenide has a layered structure similar to graphite.
  • MoS 2 is in the spotlight as a semiconductor active layer of a transistor to replace graphene, and is attracting attention as a catalyst for a hydrogen evolution reaction to replace platinum.
  • lithium ions can be easily intercalated or reextracted between layers, and thus are being studied as electrode materials of lithium ion batteries [Chhowalla, M. et al, Nature Chemistry 2013, 5, 263-275].
  • Non-Patent Document 1 Wang, H. et al., IEEE Tech. Dig. IEDM, 88-91 (2012) exists (Non-Patent Document 1), and Wang et al. Prepared a MoS 2 atomic layer at 650 ° C. using MoO 3 and S (elemental sulfur) as precursors, and the mobility was approximately A transistor that is 190 cm 2 / Vs has been reported.
  • the precursors used here are all solid and the vapor pressure is very low, chemical vapor deposition in vacuum equipment is difficult to apply to the mass production process because the equipment such as vacuum chamber is continuously contaminated.
  • Atomic layer deposition which grows thin films using chemical adsorption of precursors, is the most suitable method for growing atomic layers, but it is a thin film or monolayer of layered transition metal sulfides such as MoS 2. We are not utilized for growth of).
  • ALD Atomic layer deposition
  • an atomic layer is formed by a chemisorption reaction between a precursor and a surface functional group, and a thin film is formed by alternately chemisorbing two different precursors.
  • a series of processes consisting of adsorption and purge of the first precursor and adsorption and purge of the second precursor constitute one cycle. It has the advantage of being adjustable at the atomic layer level.
  • MoS 2 is expected to be able to form a thin film using atomic layer deposition because it is composed of two elements, Mo (molybdenum) and S (sulfur), but due to the absence of a suitable precursor, MoS using atomic layer deposition 2 Thin film growth has not been reported.
  • Mo precursors such as MoF 6 , MoCl 6 , Mo (CO) 6, and the like have been reported, but no suitable precursor has been devised for sulfur. Similar to the use of H 2 O as an oxygen precursor may be used for H 2 S to sulfur precursor, but it is difficult to apply to mass production since the material having a H 2 S gas is toxic, corrosive, explosive.
  • an object of the present invention is to provide a MoS 2 thin film and a method for manufacturing the same.
  • the atomic layer deposition method is used to find and provide a sulfur precursor which is not a solid and not a toxic gas in forming the MoS 2 thin film. Therefore, it is possible to introduce into the actual process when manufacturing the thin film, and to provide a method that can form a MoS 2 thin film without high-efficiency in commercialization and without contaminating the manufacturing equipment. Also to provide a method for producing such a thin film MoS 2 MoS 2 thin film capable of adjusting the thickness.
  • MoS 2 thin film according to an aspect of the present invention for solving the above problems is formed from a molybdenum precursor and a sulfur precursor, it is grown using atomic layer deposition.
  • step 2) supplying an inert gas into the reactor after step 1) to remove excess molybdenum precursor and by-products that did not form a chemical functional layer including Mo;
  • step 4) supplying an inert gas into the reactor after step 3) to remove sulfur precursors and by-products which have not been adsorbed in step 3);
  • MoS 2 thin film and a manufacturing method thereof according to the present invention is to provide a thin film by the MoS 2 in an atomic layer deposition method.
  • it is environmentally friendly because it does not use a toxic gas such as H 2 S as a sulfur precursor by atomic layer deposition. It also prevents damage and contamination of manufacturing equipment during the manufacturing process.
  • it is possible to manufacture by controlling the thickness of the MoS 2 thin film at the atomic layer level.
  • FIG. 1 is a diagram illustrating a process of preparing a MoS 2 thin film using Mo (CO) 6 and dimethyldisulfide as an embodiment according to the present invention and by atomic layer deposition.
  • 3A is a graph showing the thickness of the MoS 2 thin film obtained when 100 cycles of atomic layer deposition using Mo (CO) 6 and dimethyldisulfide was performed according to the deposition temperature.
  • 3B is a graph showing the growth rate of the MoO 3 thin film according to the deposition temperature in the atomic layer deposition method using Mo (CO) 6 as a Mo precursor and using a mixed gas of O 3 and H 2 O as an oxygen precursor (Diskus, M. et al, J. Mater. Chem. 2011, 21, 705-710).
  • Figure 4a is a graph showing the thickness of the thin film according to the feeding time of Mo (CO) 6 in atomic layer deposition using Mo (CO) 6 and dimethyldisulfide.
  • Figure 4b is a graph showing the thickness of the thin film according to the supply time of dimethyldisulfide in the atomic layer deposition method using Mo (CO) 6 and dimethyldisulfide.
  • FIG. 6 is a graph showing that the crystallinity of the MoS 2 thin film grown by atomic layer deposition is improved by a heat treatment process.
  • the present inventors can provide a MoS 2 thin film by controlling the thickness while atomic layer deposition method, and the result of the diligent research efforts to find a sulfur precursor that is not a solid and at the same time the sulfur precursor used in this process is not a solid , MoS2 thin film and a method for manufacturing the same according to the present invention was completed.
  • the MoS 2 thin film according to the present invention is formed from a molybdenum precursor and a sulfur precursor, and is grown using atomic layer deposition.
  • the MoS 2 is well known as a layered transition metal sulfide, and in the present invention, since MoS 2 is grown by atomic layer deposition, the thickness of the thin film or the number of atomic layers of MoS 2 are precisely controlled at the Angstrom level by controlling the number of deposition cycles. Can be. Therefore, the MoS 2 thin film may be formed as a single layer by atomic layer deposition.
  • the MoS 2 is lower costs and more ease in the manufacturing process to produce a thin film is actually forming a single layer through a chemical vapor deposition such as atomic layer deposition method other than the deposition method can form a MoS 2 monolayer.
  • growth by atomic layer deposition is preferable because a single layer of MoS 2 can be uniformly formed in a large area.
  • the sulfur precursor is not a toxic gas such as H 2 S, and not a solid such as sulfur for more appropriate application in the manufacturing process. Eventually, if it does not discharge toxic gas and is not in a solid form, it can be used without particular limitation. More preferably, the sulfur precursor used to form the MoS 2 thin film is a disulfide compound, which is a liquid at room temperature and dialkyldisulfide. most preferred is dialkyldisulfide or dihalodisulfide.
  • a temperature section appears in which the deposition rate does not change regardless of the deposition temperature, which is called an ALD temperature window.
  • This temperature range depends on the precursor used but is usually present at temperatures below 400 degrees.
  • MoS 2 thin films are deposited by atomic layer deposition. Is formed at 100-120 ° C. (FIG. 3A).
  • the thickness of the thin film is thin, if the deposition temperature of the atomic layer deposition method exceeds 120 °C due to the thermal decomposition of the molybdenum precursor thin film It is not preferable because the thickness of is rapidly increased.
  • the molybdenum precursor may be used without particular limitation as long as it can be utilized as a precursor including molybdenum. However, preferably, at least one selected from the group consisting of Mo (CO) 6 , MoF 6 , MoCl 6 .
  • MoS 2 thin film according to the present invention is formed through the atomic layer deposition method as described above, which is the chemically adsorbed on the surface of the substrate or the like when the molybdenum precursor is deposited, the chemical functional groups containing Mo are formed on the surface, wherein the sulfur The precursor chemisorbs and the surface is saturated with a chemical functional group containing sulfur. Since the adsorption reactions are repeated, MoS 2 is grown by the ALD process.
  • the peak in the 375-385 cm- 1 and 400-410 cm -1 as indicated by the MoS 2 thin film in Fig. 2 obtains a Raman spectrum, using a 532 nm laser is formed.
  • the MoS 2 thin film may be used as a semiconductor active layer thin film of a transistor, a catalyst for hydrogen evolution reaction, and an electrode material of a lithium ion battery.
  • step 2) supplying an inert gas into the reactor after step 1) to remove excess molybdenum precursor and by-products that did not form a chemical functional layer including Mo;
  • step 4) supplying an inert gas into the reactor after step 3) to remove sulfur precursors and by-products which have not been adsorbed in step 3);
  • the sulfur precursor in step 2) is preferably dialkyldisulfide or dihalodisulfide.
  • the substrate in step 1) is not particularly limited if the atomic layer deposition method can be applied, but should be a substrate having thermal stability in the ALD temperature window.
  • a substrate having thermal stability in the ALD temperature window Preferably, at least one selected from the group consisting of a wafer such as Si or sapphire, glass, a polymer film, alumina or silica powder / carrier, and the like.
  • the molybdenum precursor in step 1) may be used without particular limitation as long as it can be utilized as a precursor including molybdenum. However, preferably, at least one selected from the group consisting of Mo (CO) 6 , MoF 6 , MoCl 6 .
  • the reactor in step 1) may be used without particular limitation as long as it is a device capable of performing atomic layer deposition.
  • the supply pressure is a pressure capable of forming a MoS 2 thin film by chemical adsorption of a sulfur precursor by atomic layer deposition in step 3) while forming a chemical functional layer including Mo.
  • 0.1-10 Torr When the vapor pressure of the molybdenum precursor is low, an inert gas such as nitrogen may be used as a delivery gas.
  • the supply pressure of the molybdenum precursor is less than 0.1 Torr, it is difficult to form a chemical functional layer containing Mo sufficiently, and when the supply pressure of the molybdenum precursor exceeds 10 Torr, more than necessary molybdenum precursor is supplied. It is not desirable because it is economical.
  • the inert gas introduced in step 2) or 4) is an element corresponding to group 18 on the periodic table or a gas capable of safely purging excess molybdenum precursor or sulfur precursor, without particular limitation. It is possible to use, and preferred examples include nitrogen (N 2 ), argon (Ar) and the like. Alternatively, steps 2) and 4) may be replaced by a vacuum purge step of removing extra precursors and by-products by vacuum without using a separate purge gas.
  • the input pressure of the inert gas introduced in the step 2) or 4) is the amount necessary to remove the molybdenum precursor that did not form the chemical functional layer containing Mo in step 1) or failed to chemisorb in step 3) Any amount necessary to remove the sulfur precursor may be added without particular limitation, and may be supplied at 0.5-5 Torr as a preferred embodiment.
  • the sulfur precursor in step 3) is preferably dialkyldisulfide or dihalodisulfide.
  • the MoS 2 thin film can be provided through a safe and environmentally friendly process in the manufacturing process.
  • step 3 the sulfur precursor is supplied, and chemical adsorption including sulfur to the chemical functional layer including Mo is performed through the atomic layer deposition method. Specifically, when the molybdenum precursor is deposited, the chemical adsorption is performed on the surface of the substrate. Thus, chemical functional groups containing Mo are formed on the surface, and the sulfur precursor is chemisorbed to saturate the chemical functional group containing sulfur. Since the adsorption reactions are repeated, MoS 2 is grown by the ALD process.
  • the supply pressure is not particularly limited as long as the chemical functional layer including Mo formed in step 1) and the pressure capable of sufficiently chemisorbing are preferred, but preferably in step 1).
  • the chemical functional layer including Mo formed it is preferably 0.1-10 Torr.
  • an inert gas such as nitrogen may be used as a delivery gas.
  • the supply pressure of the sulfur precursor is less than 0.1 Torr, it is difficult to chemisorb sufficiently to the chemical functional layer containing Mo, which is not preferable.
  • the supply pressure of the sulfur precursor exceeds 10 Torr, the sulfur precursor remains without chemisorption. Is undesirable because it is uneconomical.
  • Formation of the MoS 2 thin film according to the present invention is preferably made in a temperature range corresponding to the ALD temperature window, when the temperature is less than the temperature range, the chemical adsorption of precursors is not smooth, so the growth rate of the thin film is reduced, the thickness is thinner It is not preferable, since the thickness of the thin film rapidly increases due to the thermal decomposition of the molybdenum precursor when it exceeds the temperature range.
  • the supply time of the molybdenum precursor in step 1) should be a time sufficient for the surface functional groups to be saturated by chemisorption of the molybdenum precursor.
  • the supply time of Mo (CO) 6 is preferable when it is 3 seconds or more as shown in FIG. 4A.
  • the supply time of the sulfur precursor in step 3) should be a time sufficient for the functional groups including molybdenum prepared through steps 1) and 2) to be saturated by chemisorption of the sulfur precursor.
  • the supply time of dimethyl disulfide is preferably 0.5-5 seconds as shown in FIG. 4B.
  • step 4 It is preferable to supply the inert gas in step 4) to remove the sulfur precursor and by-products which have not been adsorbed in step 3).
  • the steps 1) to 4) may be repeated, and if the steps 1) to 4) are repeated, the thickness of the MoS 2 thin film is increased as shown in FIG. 5, and the thickness of the MoS 2 thin film is Since it is determined according to the number of repetitions of steps 1) to 4), it is possible to precisely control the thickness of the MoS 2 thin film. Therefore, since the MoS 2 thin film prepared according to the present invention is grown by atomic layer deposition, the thickness of the thin film or the number of MoS 2 atomic layers can be precisely controlled at the Angstrom level by controlling the number of deposition cycles.
  • the temperature of the heat treatment is preferably 400-1,000 ° C, since the crystallization does not occur when the temperature of the heat treatment is less than 400 ° C, molybdenum and sulfur is lower when the temperature of the heat treatment exceeds 1,000 ° C It is not preferable because it can diffuse into the film.
  • the Raman spectrum measurement results of the MoS 2 thin film prepared according to the present invention is a peak at 375-385 cm -1 and 400-410 cm -1 .
  • the MoS 2 thin film thus prepared may be used as a semiconductor active layer thin film of a transistor, a catalyst for hydrogen evolution reaction, and an electrode material of a lithium ion battery.
  • Production method of MoS 2 thin film according to the invention are the MoS 2 thin film, because of forming the MoS 2 thin film by an atomic layer deposition method may be formed of a single layer.
  • MoS 2 is formed as a single layer by atomic layer deposition, the number of cycles can be precisely controlled by controlling the number of cycles, thereby providing a uniform single layer MoS 2 in a large area regardless of the size of the substrate.
  • the MoS 2 thin film when manufacturing the MoS 2 thin film by the method of manufacturing the MoS 2 thin film according to the present invention, it is possible to provide the MoS 2 thin film in a safe and environmentally friendly way by atomic layer deposition, the thickness and the number of atomic layers Can be finely adjusted by the number of repeated cycles.
  • Molybdenum Hexacarbonyl Mo (Co) 6 , Aldrich
  • Molybdenum precursor to perform atomic layer deposition.
  • Dimethyl Disulfide CH 3 S 2 CH 3 , Aldrich
  • purging gas was prepared with high purity nitrogen (N 2 , 99.999%).
  • the substrate was prepared with SiO 2 (300 nm) / Si wafer.
  • Molybdenum Hexacarbonyl (Mo (Co) 6 ) was supplied to the vacuum reactor in which the Si wafer was injected using high purity nitrogen as a transfer gas, and the reactor pressure was maintained at about 1.43 Torr.
  • the molybdenum precursor supply time was performed for 1 second, 2 seconds, 3 seconds, 4 seconds, and 5 seconds, respectively.
  • high purity nitrogen (N 2 ) was supplied at 1.75 Torr, and nitrogen was continuously supplied to purge residual Molybdenum Hexacarbonyl (Mo (Co) 6 ) and by-products. Following this purge with nitrogen, Dimethyl Disulfide was fed to the reactor at 1.1 Torr.
  • Sulfur precursor supply time was carried out for 0.5 seconds, 1 second, 1.5 seconds, 2 seconds respectively. Thereafter, high purity nitrogen was added to 1.75 Torr, and a purge step of removing sulfur precursors remaining without reacting with the residue was performed.
  • the temperature in the reactor was kept constant during the process, the temperature was performed for 60, 80, 90, 95, 100, 110, 120, 140 °C, respectively.
  • Figure 1 is a diagram illustrating the process of this embodiment. This process was repeated to prepare a MoS 2 thin film, the thickness of the thin film repeated 100 times at various deposition temperatures are shown in Figure 3a.
  • the specimen grown through the above process was put in a chamber equipped with a lamp heater and heat-treated at 485 °C for 2 hours.
  • a thin film of MoO 3 was prepared in the same manner as in Example except that ozone (O 3 ) was used instead of the sulfur precursor.
  • an ALD temperature window is formed at 100-120 ° C. so that the thickness of the thin film does not change significantly even when the temperature changes. It could be confirmed.
  • the ALD temperature window is formed between 157-172 °C, it is confirmed that the ALD temperature window is formed in a different temperature range than the present embodiment could.
  • the ALD temperature window is formed in the region where the temperature is higher than in the case of this embodiment.
  • the thickness can be adjusted at the atomic layer level by cycle repetition in the manufacturing process, so that the thickness increases linearly according to the number of cycles as shown in FIG. You can do it. Therefore, the MoS 2 thin film according to the present embodiment can adjust its thickness according to the cycle of repeating the manufacturing process.
  • the (002) peak of the MoS 2 is apparent as the heat treatment is performed.
  • the heat treatment was not performed, it was confirmed that the peak did not appear because of poor crystallinity. Therefore, it is preferable to perform heat treatment, and the temperature range of the heat treatment is preferably 400-1,000 ° C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

본 발명은 MoS2 박막 및 이의 제조방법에 관한 것이다. 본 발명에 따른 MoS2 박막 및 이의 제조방법은 MoS2 박막을 원자층증착법에 의하여 제공하는 것이다. 특히 원자층증착법에 의하면서도 H2S와 같은 유독 가스를 황 전구체로 사용하지 않기 때문에 친환경적이다. 또한 제조 과정에서 제조 장비의 손상 및 오염을 방지할 수 있다. 또한 MoS2 박막의 두께를 원자층 수준에서 정교하게 조절하여 제조하는 것이 가능하다.

Description

MoS2 박막 및 이의 제조방법
본 발명은 MoS2 박막 및 이의 제조방법에 관한 것이다.
전이금속 칼코게나이드(transition metal chalcogenide)는 그래파이트와 유사한 층상 구조를 가지고 있다. 특히 MoS2는 그래핀을 대체할 트랜지스터의 반도체 활성층으로 각광 받고 있으며, 백금을 대체할 수소 발생 반응(hydrogen evolution reaction)의 촉매로 주목 받고 있다. 또한, MoS2의 층상 구조로 인하여 리튬이온이 각 층 사이에 intercalation되거나 다시 extraction 되는 것이 용이하기 때문에 리튬이온전지의 전극물질로도 연구되고 있다 [Chhowalla, M. et al, Nature Chemistry 2013, 5, 263-275].
벌크 MoS2 단결정의 경우, 그래핀과는 달리 1.3 eV의 indirect bandgap을 가지며 mobility가 상온에서 50-200 ㎠/Vs로 우수하다. 또한 단일원자층 수준으로 얇아지게 되면 1.8 eV의 direct bandgap을 가지게 되기 때문에 이를 박막화하여 트랜지스터의 활성층으로 활용하고자 하는 연구가 활발히 진행되고 있다[Wang, Q. H. et al., Nature Nanotechnology 2012, 7, 699-712]. 특히 최근에는 MoS2의 monolayer, bilayer 또는 수층을 이용하여 박막을 제작하는 경우 벌크 MoS2의 이동도에 근접한 값을 얻을 수 있는 것으로 알려져 있다.
MoS2 박막을 제조하는 방법으로는 MoS2 단결정에서 원자층을 떼어내는 exfoliation 방식과 Mo(또는 MoO3)와 황을 전구체로 사용하여 고온에서 화학기상증착법을 이용하여 MoS2를 기판 등에 증착하기 위한 연구가 이루어지고 있지만 이러한 공정들은 실제 소자를 제작하기 위한 양산 공정(특히 반도체 공정)에서는 도입하기 어렵다는 현실적인 문제가 있다. 또한 화학기상증착에 의하는 경우에는 그 원리의 한계로 인하여 원자층의 수를 조절하기 어렵다는 한계가 있다.
선행기술문헌으로서 MIT의 Wang 등이 보고한 Wang, H. et al., IEEE Tech. Dig. IEDM, 88 - 91 (2012)가 존재하며(비특허문헌 1), Wang 등은 MoO3과 S(elemental sulfur)를 전구체로 사용하여 650 ℃에서 MoS2 원자층을 제조하고 이를 이용하여 mobility가 대략 190 ㎠/Vs인 트랜지스터를 보고하였다. 하지만 여기에 사용된 전구체들은 모두 고체이며 증기압이 매우 낮기 때문에 진공 장비에서 화학기상증착을 수행할 경우 진공 챔버 등 장비가 지속적으로 오염되어 양산 과정에는 적용하기 어려운 방법이다.
한편 전구체의 화학 흡착을 이용하여 박막을 성장시키는 원자층증착법(Atomic layer deposition, ALD)은 원자층을 성장시키기에 가장 적합한 방법임에도 불구하고 MoS2와 같은 층상 전이금속 황화물의 박막 또는 단일층(monolayer)의 성장에 활용되지 못하고 있다. 원자층증착법에서는 전구체와 표면 작용기와의 화학 흡착 반응에 의해서 원자층을 형성하며 서로 다른 두 가지 전구체를 교차적으로 화학 흡착시키는 방법으로 박막을 형성하는 기술이다. 일반적으로 두 가지 전구체를 사용하는 원자층증착법의 경우 첫 번째 전구체의 흡착 및 퍼지와 두 번째 전구체의 흡착 및 퍼지로 이루어지는 일련의 과정이 하나의 사이클을 구성하며, 사이클 수를 조절하여 박막의 두께를 원자층 수준에서 조절할 수 있는 장점을 가지고 있다.
MoS2의 경우에는 Mo(몰르브덴)와 S(황) 두 가지 원소로 이루어지기 때문에 원자층증착법을 이용하여 박막을 형성할 수 있을 것으로 기대되지만, 적합한 전구체의 부재로 인하여 원자층증착법을 이용한 MoS2 박막 성장은 보고되지 않고 있다. 특히 Mo 전구체는 MoF6, MoCl6, Mo(CO)6 등이 보고되어 있음에 반하여, 황에 대하여는 적절한 전구체를 고안하지 못하고 있다. 산소 전구체로 H2O를 사용하는 것과 마찬가지로 황 전구체로 H2S를 사용할 수도 있으나 H2S 기체는 독성, 부식성, 폭발성을 가진 물질이기 때문에 양산 공정에 적용하기에 어려움이 있다.
본 발명은 상술한 문제점을 해결하기 위해 안출된 것으로서, 본 발명의 목적은 MoS2 박막 및 이의 제조방법을 제공하는 것이다. 특히 원자층증착법을 이용하되 상기 MoS2 박막을 형성하는데 있어서 고체가 아니면서 유독 가스가 아닌 황 전구체를 발견하여 제공하는 것이다. 그리하여 박막의 제조시 실제 공정에 도입이 가능하며 상용화시 효율이 우수하고 제조 장비를 오염시키지 않으면서 MoS2 박막을 형성할 수 있는 방법을 제공하는 것이다. 또한 이러한 MoS2 박막의 두께 조절이 가능한 MoS2 박막의 제조방법을 제공하는 것이다.
위와 같은 과제를 해결하기 위한 본 발명의 한 특징에 따른 MoS2 박막은 몰리브덴 전구체 및 황 전구체로부터 형성되며, 원자층증착법을 사용하여 성장된다.
본 발명의 또 다른 특징에 따른 MoS2 박막의 제조방법은
1) 진공 상태인 반응기 내에 몰리브덴 전구체를 공급하여 기판에 Mo을 포함하는 화학작용기층을 형성하는 단계;
2) 상기 1)단계 이후 반응기 내에 비활성기체를 공급하여 Mo을 포함하는 화학작용기층을 형성하지 못한 여분의 몰리브덴 전구체 및 부산물을 제거하는 단계;
3) 상기 반응기 내에 황 전구체를 공급하여 Mo을 포함하는 화학작용기 층에 황 전구체를 화학 흡착시켜 MoS2 원자층을 형성하는 단계; 및
4) 상기 3)단계 이후 반응기 내에 비활성기체를 공급하여 3)단계에서 흡착하지 못한 황 전구체와 부산물을 제거하는 단계;
를 포함한다.
본 발명에 따른 MoS2 박막 및 이의 제조방법은 MoS2 박막을 원자층증착법에 의하여 제공하는 것이다. 특히 원자층증착법에 의하면서도 H2S와 같은 유독 가스를 황 전구체로 사용하지 않기 때문에 친환경적이다. 또한 제조 과정에서 제조 장비의 손상 및 오염을 방지할 수 있다. 또한 MoS2 박막의 두께를 원자층 수준에서 정교하게 조절하여 제조하는 것이 가능하다.
도 1은 본 발명에 따른 한가지 실시예로서 Mo(CO)6와 dimethyldisulfide를 이용하고 원자층증착법에 의하여 MoS2 박막을 제조하는 과정을 도식화한 그림이다.
도 2는 본 발명에 따라 제조된 MoS2 박막의 라만 스펙트럼이다.
도 3a는 Mo(CO)6와 dimethyldisulfide를 이용한 원자층증착법을 100 사이클 수행하였을 때 얻을 수 있는 MoS2 박막의 두께를 증착 온도에 따라서 나타낸 그래프이다.
도 3b는 Mo(CO)6를 Mo전구체로 사용하고, O3와 H2O의 혼합기체를 산소 전구체로 이용한 원자층증착법에서 MoO3 박막의 성장 속도를 증착 온도에 따라서 나타낸 그래프이다(Diskus, M. et al, J. Mater. Chem. 2011, 21, 705 - 710).
도 4a는 Mo(CO)6와 dimethyldisulfide를 이용한 원자층증착법에서 Mo(CO)6의 공급시간에 따른 박막의 두께를 나타낸 그래프이다.
도 4b는 Mo(CO)6와 dimethyldisulfide를 이용한 원자층증착법에서 dimethyldisulfide의 공급시간에 따른 박막의 두께를 나타낸 그래프이다.
도 5는 Mo(CO)6와 dimethyldisulfide를 이용한 원자층증착법에서 사이클 수에 따른 두께의 선형적 증가를 보여주는 그래프이다.
도 6은 원자층증착법에 의하여 성장된 MoS2 박막의 결정성이 열처리 공정에 의하여 향상됨을 보여주는 그래프이다.
이에 본 발명자는 원자층증착법에 의하면서도 두께를 조절하여 MoS2박막을 제공 할 수 있으며, 이 과정에서 사용하는 황 전구체가 고체가 아님과 동시에 유독가스가 아닌 황 전구체를 발견하기 위하여 예의 연구 노력한 결과, 본 발명에 따른 MoS2 박막 및 이의 제조방법을 발견하여 본 발명을 완성하였다.
구체적으로 본 발명에 따른 MoS2 박막은 몰리브덴 전구체 및 황 전구체로부터 형성되며, 원자층증착법을 사용하여 성장된다.
상기 MoS2는 층상 전이금속 황화물로 잘 알려져 있으며, 본 발명에서는 MoS2를 원자층증착법에 의해서 성장하기 때문에 증착 사이클 수를 조절하여 박막의 두께 또는 MoS2 원자층의 수를 Angstrom 수준에서 정교하게 조절할 수 있다. 따라서 상기 MoS2 박막은 원자층증착법에 의해 단일층으로 형성될 수 있다. 상기 MoS2가 화학기상증착 등 다른 증착 방법이 아닌 원자층증착법을 통해 단일층을 형성하는 것이 실제 박막을 생산하는 제조 공정에서 보다 간편하면서 비용을 절감하여 MoS2 단일층을 형성할 수 있다. 또한 일반적인 화학기상증착법과는 달리 원자층증착법에 의한 성장에서는 넓은 면적에 균일하게 MoS2 단일층을 형성할 수 있어 바람직하다.
상기 MoS2 박막을 형성하는데 있어 황 전구체는 H2S와 같은 유독 가스가 아닌 것이 바람직하며, 제조 과정에 보다 적절하게 적용하기 위해 황과 같은 고체가 아닌 것이 바람직하다. 결국 유독 가스를 배출하지 않고 고체 형태가 아닌 것이라면 특별한 제한 없이 사용될 수 있는 것이지만, 더욱 바람직하게는 상기 MoS2 박막을 형성하는데 사용되는 황 전구체는 다이설파이드(disulfide) 화합물로서 상온에서 액체인 다이알킬디설파이드(dialkyldisulfide) 또는 다이할로디설파이드(dihalodisulfide)인 것이 가장 바람직하다. 이렇게 황 전구체로서 상기 다이알킬디설파이드(dialkyldisulfide) 또는 다이할로디설파이드(dihalodisulfide)인 경우 제조 과정에서 유독 가스를 사용하지 않게 되어 안전하고 친환경적인 공정을 통하여 MoS2 박막의 제공이 가능해진다. 또한 증기압이 낮은 고체 황을 기화시켜 증착 공정을 수행하는 것에 비하여 상기 액체 전구체들은 상온에서 쉽게 기화되기 때문에 제조 장비의 손상을 방지하여 우수한 효율의 제조공정을 달성할 수 있다.
일반적으로 원자층증착법으로 박막을 증착하는 경우, 증착 온도에 상관 없이 증착 속도가 변하지 않는 양상을 보이는 온도 구간이 나타나며, 이를 ALD temperature window라고 한다. 이 온도 구간은 사용된 전구체에 따라서 달라지지만 대개의 경우 400도 이하의 온도에서 나타난다.
이러한 ALD temperature window에 관한 바람직한 예시로서 상기 황전구체 중 다이메틸디설파이드(dimethyldisulfide)를 사용하고, Mo 전구체로는 Mo(CO)6를 사용하여 원자층증착법에 의해 MoS2 박막을 증착하는 경우 ALD temperature window는 100-120 ℃에서 형성된다(도 3a).
상기 원자층증착법의 증착 온도가 100 ℃ 미만인 경우에는 전구체들의 화학 흡착이 원활하지 못해 박막의 두께가 얇아지며, 상기 원자층증착법의 증착 온도가 120 ℃를 초과하는 경우에는 몰리브덴 전구체의 열분해로 인하여 박막의 두께가 급격하게 증가하게 되므로 바람직하지 않다.
본 발명에서 몰리브덴 전구체는 몰리브덴을 포함하여 전구체로 활용할 수 있는 것이라면 특별한 제한 없이 사용될 수 있다. 다만, 바람직하게는 Mo(CO)6, MoF6, MoCl6로 이루어지는 군으로부터 선택되는 어느 하나 이상일 수 있다.
본 발명에 따른 MoS2 박막은 상기와 같이 원자층증착법을 통해 형성되는데, 이는 상기 몰리브덴 전구체가 증착시 기판 등의 표면에 화학 흡착되어 Mo를 포함하는 화학작용기들이 표면에 형성되고, 여기에 상기 황 전구체가 화학 흡착하여 표면이 황을 포함하는 화학작용기로 포화된다. 상기의 흡착반응들이 반복되므로 ALD 공정에 의해서 MoS2가 성장된다.
한편 상기 MoS2 박막을 532 nm 레이져를 이용하여 라만 스펙트럼을 얻으면 도 2에 나타낸 바와 같이 375-385 cm-1 및 400-410 cm-1에서 피크가 형성된다.
이러한 MoS2 박막은 트랜지스터의 반도체 활성층 박막, 수소발생반응 (hydrogen evolution reaction)의 촉매, 리튬이온전지의 전극 물질로 활용될 수 있다.
본 발명의 또 다른 특징에 따른 MoS2 박막의 제조방법은
1) 진공 상태인 반응기 내에 몰리브덴 전구체를 공급하여 기판에 Mo을 포함하는 화학작용기층을 형성하는 단계;
2) 상기 1)단계 이후 반응기 내에 비활성기체를 공급하여 Mo을 포함하는 화학작용기층을 형성하지 못한 여분의 몰리브덴 전구체 및 부산물을 제거하는 단계;
3) 상기 반응기 내에 황 전구체를 공급하여 Mo을 포함하는 화학작용기 층에 황 전구체를 화학 흡착시켜 MoS2 원자층을 형성하는 단계; 및
4) 상기 3)단계 이후 반응기 내에 비활성기체를 공급하여 3)단계에서 흡착하지 못한 황 전구체와 부산물을 제거하는 단계;
를 포함한다.
상기 2)단계에서의 황 전구체는 다이알킬디설파이드 또는 다이할로디설파이드인 것이 바람직하다.
상기 1)단계에서의 기판은 원자층증착법을 적용할 수 있는 것이라면 특별한 제한이 있는 것은 아니지만 ALD temperature window에 열적 안정성을 가지는 기판이어야 한다. 바람직하게는 Si 또는 사파이어 등의 wafer, 유리, 고분자 필름, 알루미나 또는 실리카 분말/담체 등으로 이루어지는 군으로부터 선택되는 어느 하나 이상인 것이 바람직하다.
상기 1)단계에서의 몰리브덴 전구체는 몰리브덴을 포함하여 전구체로 활용할 수 있는 것이라면 특별한 제한 없이 사용될 수 있다. 다만, 바람직하게는 Mo(CO)6, MoF6, MoCl6로 이루어지는 군으로부터 선택되는 어느 하나 이상일 수 있다.
상기 1)단계에서의 반응기는 원자층증착법을 수행할 수 있는 장비라면 특별한 제한 없이 사용될 수 있다.
상기 1)단계에서 몰리브덴 전구체를 투입하는데 있어 공급 압력은 Mo을 포함하는 화학작용기 층을 형성하면서 3)단계에서 원자층증착법에 의해 황 전구체의 화학 흡착에 의해 MoS2 박막을 형성할 수 있는 압력이라면 특별한 제한이 없지만 바람직하게는 0.1-10 Torr로 투입되는 것이 바람직하다. 상기 몰리브덴 전구체의 증기압이 낮은 경우에는 질소와 같은 비활성기체를 이송기체로 사용하여 공급할 수 있다. 상기 몰리브덴 전구체의 공급 압력이 0.1 Torr 미만으로 투입되면 Mo을 포함하는 화학작용기 층을 충분히 형성하기 어려워 바람직하지 않고, 상기 몰리브덴 전구체의 공급 압력이 10 Torr를 초과하면 필요 이상의 몰리브덴 전구체를 공급하게 되어 비경제적이므로 바람직하지 않다.
상기 2)단계 또는 4)단계에서 투입되는 비활성기체는 주기율표상 18족에 해당하는 원소 또는 안전하게 여분의 몰리브덴 전구체나 황 전구체를 제거하기 위한 퍼지 공정(Purge)을 수행할 수 있는 기체라면 특별한 제한 없이 사용할 수 있고, 바람직한 실시예로서 질소(N2), 아르곤(Ar) 등이 있다. 또는 별도의 퍼지용 기체를 사용하지 않고 진공에 의하여 여분의 전구체와 부산물을 제거하는 진공퍼지 단계로 상기 2)단계 및 4)단계를 대체할 수 있다. 또한 상기 2)단계 또는 4)단계에서 투입되는 비활성기체의 투입 압력은 상기 1)단계에서 Mo을 포함하는 화학작용기 층을 형성하지 못한 몰리브덴 전구체를 제거하는데 필요한 양 또는 3)단계에서 화학 흡착하지 못한 황 전구체를 제거하는데 필요한 양이라면 특별한 제한 없이 투입될 수 있으며, 바람직한 실시예로서 0.5-5 Torr로 공급될 수 있다.
상기 3)단계에서의 황 전구체는 다이알킬디설파이드 또는 다이할로디설파이드인 것이 바람직하다. 이렇게 황 전구체로서 상기 다이알킬디설파이드(dialkyldisulfide) 또는 다이할로디설파이드(dihalodisulfide)인 경우 제조 과정에서 안전하고 친환경적인 공정을 통하여 MoS2 박막의 제공이 가능해진다.
상기 3)단계에서 황 전구체가 공급되어 Mo을 포함하는 화학작용기 층에 황을 포함하는 화학 흡착은 원자층증착법의 방식을 통해 이루어지며, 구체적으로는 상기 몰리브덴 전구체가 증착시 기판의 표면에 화학 흡착되어 Mo를 포함하는 화학작용기들이 표면에 형성되고, 여기에 상기 황 전구체가 화학흡착하여 표면이 황을 포함하는 화학작용기로 포화된다. 상기의 흡착반응들이 반복되므로 ALD 공정에 의해서 MoS2가 성장하게 된다.
상기 3)단계에 따른 황 전구체를 투입하는데 있어서 공급 압력은 1)단계에서 형성된 Mo을 포함하는 화학작용기 층과 충분히 화학 흡착할 수 있는 압력이라면 특별히 제한되는 것은 아니지만, 바람직하게는 상기 1)단계에서 형성된 Mo을 포함하는 화학작용기층을 고려하여 0.1-10 Torr인 것이 바람직하다. 상기 황 전구체의 증기압이 낮은 경우에는 질소와 같은 비활성기체를 이송기체로 사용하여 공급할 수 있다. 상기 황 전구체의 공급 압력이 0.1 Torr 미만인 경우에는 Mo을 포함하는 화학작용기층에 충분히 화학 흡착하기 어려워 바람직하지 않으며, 상기 황 전구체의 공급 압력이 10 Torr를 초과하는 경우에는 화학 흡착하지 않고 남는 황 전구체가 존재하여 비경제적이므로 바람직하지 않다.
본 발명에 따른 MoS2 박막의 형성은 ALD temperature window에 해당하는 온도 구간에서 이루어지는 것이 바람직한데, 상기 온도 구간 미만인 경우에는 전구체들의 화학 흡착이 원활하지 못해 박막의 성장 속도가 느려지며, 두께가 얇아지므로 바람직하지 않으며, 상기 온도 구간을 초과하는 경우에는 몰리브덴 전구체의 열분해로 인하여 박막의 두께가 급격하게 증가하게 되므로 바람직하지 않다.
상기 1)단계에서 몰리브덴 전구체의 공급 시간은 표면 작용기들이 몰리브덴 전구체의 화학 흡착에 의하여 포화되기에 충분한 시간이어야 한다. 바람직한 일실시예로서 Mo(CO)6와 디메틸디설파이드를 사용한 원자층증착법의 경우에는 Mo(CO)6의 공급 시간은 도4a에 나타낸 바와 같이 3초 이상일 때 바람직하다.
또한 상기 3)단계에서 황 전구체의 공급 시간은 상기 1), 2)단계를 통하여 준비된 몰리브덴을 포함하는 작용기들이 황 전구체의 화학 흡착에 의하여 포화되기에 충분한 시간이어야 한다. 바람직한 일실시예로서 Mo(CO)6와 디메틸디설파이드를 사용한 원자층증착법의 경우에는 디메틸디설파이드의 공급 시간은 도4b에 나타낸 바와 같이 0.5-5 초 일 때 바람직하다.
상기 4)단계에서 비활성기체를 공급하여 3)단계에서 흡착하지 못한 황 전구체와 부산물을 제거하는 것이 바람직하다.
한편 상기 1) 내지 4)단계를 반복하여 수행할 수 있으며, 상기 1) 내지 4)단계를 반복하게 되면 도 5에 나타낸 바와 같이 상기 MoS2 박막의 두께가 증가하고, 상기 MoS2 박막의 두께는 상기 1) 내지 4)단계의 반복 회수에 따라 결정되므로 MoS2 박막의 정교한 두께 조절이 가능하게 된다. 그러므로 본 발명에 따라 제조된 MoS2 박막은 원자층증착법에 의해 성장하기 때문에 증착 사이클 수를 조절하여 박막의 두께 또는 MoS2 원자층의 수를 Angstrom 수준에서 정교하게 조절할 수 있다.
또한 상기 1) 내지 4)단계를 반복한 후에 열처리하는 단계를 더 포함하면 박막의 결정성이 향상되기 때문에 바람직하다. 이때 상기 열처리의 온도는 400 -1,000 ℃인 것이 바람직한데, 상기 열처리의 온도가 400 ℃ 미만인 경우에는 결정화기 일어나지 않기 때문에 바람직하지 않고, 상기 열처리의 온도가 1,000 ℃를 초과하는 경우에는 몰리브덴과 황이 하부막으로 확산할 수 있기 때문에 바람직하지 않다.
한편 본 발명에 따라 제조된 MoS2 박막의 라만 스펙트럼 측정 결과는 375-385 cm-1 및 400-410 cm-1에서 피크가 형성된다.
이렇게 제조된 MoS2 박막은 트랜지스터의 반도체 활성층 박막, 수소발생반응 (hydrogen evolution reaction)의 촉매, 리튬이온전지의 전극 물질로 활용될 수 있다.
본 발명에 따른 MoS2박막의 제조방법은 원자층증착법을 통해 상기 MoS2 박막을 형성하는 것이기 때문에 상기 MoS2 박막은 단일층으로 형성될 수 있다. 원자층증착법에 의해 MoS2가 단일층으로 형성되면, 사이클 수를 조절하여 층수를 정교하게 조절할 수 있기 때문에 기판의 크기에 상관없이 넓은 면적에 균일한 단일층 MoS2를 제공할 수 있다.
이렇게 본 발명에 따른 MoS2 박막의 제조방법에 의하여 MoS2 박막을 제조하는 경우 원자층증착법에 의하여도 안전하고 친환경적인 방법으로 MoS2 박막을 제공하는 것이 가능하게 되며, 그 두께 및 원자층의 수를 반복 사이클 회수에 의해 정교하게 조절하는 것이 가능하게 된다.
이하 본 발명을 바람직한 실시예를 참고로 하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되는 것은 아니다.
실시예
원자층증착법을 실시하기 위해 몰리브덴 전구체로는 Molybdenum Hexacarbonyl(Mo(Co)6, 알드리치)를 준비하였다. 또한 황 전구체로는 Dimethyl Disulfide(CH3S2CH3, 알드리치)를 준비하였다. 또한 Purging gas로는 고순도의 질소(N2, 99.999%)를 준비하였다. 또한 기판은 SiO2(300 nm)/Si wafer를 준비하였다.
그리하여 Si wafer가 투입된 진공 상태의 반응기에 고순도 질소를 이송기체로 사용하여 Molybdenum Hexacarbonyl(Mo(Co)6)를 공급하였으며 이때 반응기의 압력은 약 1.43 Torr로 유지하였다. 몰리브덴 전구체 공급시간은 1 초, 2 초, 3 초, 4 초, 5 초를 각각 실시하였다. 그리고 퍼지 가스로서 고순도 질소(N2)를 1.75 Torr로 공급하였고, 질소를 계속적으로 공급하여 잔류 Molybdenum Hexacarbonyl(Mo(Co)6) 및 부산물을 제거하는 퍼지 공정을 실시하였다. 이러한 질소에 의한 퍼지 공정 다음에 반응기에 Dimethyl Disulfide를 1.1 Torr로 공급하였다. 황 전구체 공급시간은 0.5 초, 1 초, 1.5 초, 2 초 동안 각각 실시하였다. 그 후 다시 고순도의 질소를 1.75 Torr 투입하여 잔류물과 반응하지 않고 남은 황 전구체를 제거하는 퍼지 단계를 수행였다. 상기 공정들이 진행되는 동안 반응기 내의 온도는 일정하게 유지하였으며, 그 온도는 60, 80, 90, 95, 100, 110, 120, 140 ℃ 대하여 각각 수행하였다.
하기 도 1은 이러한 실시예의 과정을 도식화한 그림이다. 이러한 과정을 반복하여 MoS2 박막을 제조하였고, 여러 가지 증착 온도에서 100 회 반복한 박막의 두께를 도 3a에 나타내었다.
또한, 상기 과정을 통하여 성장된 시편을 램프 히터가 장착된 챔버에 투입한 후 485 ℃에서 2 시간 열처리하였다.
비교예
황 전구체 대신에 오존(O3)을 사용한 것을 제외하고는 상기 실시예와 동일한 방법을 사용하여 MoO3 박막을 제조하였다.
실험예
<실험예 1: 라만 스펙트럼의 측정>
상기 실시예에 따른 MoS2박막의 라만 스펙트럼을 측정하는 실험을 532 nm 레이져를 사용하여 진행하였다. 이의 결과는 하기 도 2에 나타내었다.
하기 도 2에서 확인할 수 있는 바와 같이 MoS2의 in-plane vibration과 out-of-plane vibration에 의한 피크들이 각각 381.14 cm-1와 406.96 cm-1에서 나타남을 확인할 수 있었다. 이를 통해 상기 실시예에 따른 MoS2 박막이 MoS2(2H phase)에 해당하는 것임을 확인할 수 있었다.
<실험예 2: 증착 온도에 따른 비교>
상기 실시예와 비교예의 박막을 가지고 증착 온도만을 50-150 ℃로 다양하게 변화하여 박막의 두께의 변화 양상을 관찰하는 실험을 진행하였다. 이의 결과는 하기 도 3에 나타내었다.
하기 도 3에서 확인할 수 있는 바와 같이 본 실시예에 따른 MoS2 박막의 경우(도 3a)에는 100-120 ℃에서 ALD temperature window가 형성되어 온도의 변화에도 박막의 두께가 크게 변화하지 않고 일정하게 유지되는 것을 확인할 수 있었다. 하지만 비교예에 따른 MoO3 박막의 경우(도 3b)에는 이러한 ALD temperature window가 157-172 ℃ 사이에서 형성되는 것을 확인할 수 있어 본 실시예의 경우와는 다른 온도 범위에서 ALD temperature window가 형성되는 것을 확인할 수 있었다. 또한 비교예의 경우에는 본 실시예의 경우보다 온도가 높은 영역에서 ALD temperature window가 형성되는 것을 확인할 수 있었다.
또한 도 4에서 확인할 수 있는 바와 같이 제조 공정을 100 번 반복한 경우 몰리브덴 전구체와 황 전구체의 공급 시간에 따른 두께의 변화 양상은 Mo 층을 형성하는 몰리브덴 전구체의 경우(도 4a)에는 3 sec이 되기 전까지는 지속적으로 증가하다가 3 sec 이후부터는 큰 변화 없이 두께를 일정하게 유지함을 확인할 수 있었다. 반면에 황 전구체의 경우(도 4b)에는 상온에서 액체이면서도 휘발성이 우수한 전구체이기 때문에 매우 짧은 공급 시간만으로도 화학 흡착이 포화됨을 확인하였다.
또한 실시예의 경우 두께의 조절은 제조 과정상의 사이클 반복에 의해 원자층 수준에서 두께를 조절할 수 있기 때문에 도 5와 같이 사이클 수에 따라서 선형으로 두께가 증가하며, 이를 이용하여 원하는 두께의 박막을 자유롭게 제조할 수 있게 된다. 그러므로 본 실시예에 따른 MoS2 박막은 제조 과정을 반복하는 사이클에 따라 그 두께를 조절할 수 있게 된다.
<실험예 3: 열처리 유무에 따른 비교>
상기 실시예에 따른 MoS2 박막의 경우 열처리를 수행함에 따라 결정성이 우수하게 향상하는지를 확인하는 실험을 진행하였다. 이의 실험은 증착된 시편을 램프 히터가 장착된 챔버에 넣은 후 485 ℃에서 2 시간 유지하는 방식으로 진행하였다. 이의 결과는 하기 도 6에 나타내었다.
하기 도 6에서 확인할 수 있는 바와 같이 열처리를 수행함에 따라 MoS2의 (002) 피크가 확연하게 나타남을 확인할 수 있었다. 반면에 열처리를 수행하지 않는 경우에는 결정성이 좋지 않아서 해당 피크가 나타나지 않음을 확인할 수 있었다. 그러므로 열처리를 수행하는 것이 바람직하며, 상기 열처리의 온도 범위는 400-1,000 ℃인 것이 바람직하다.
상기에서는 본 발명의 바람직한 실시예에 대하여 설명하였지만, 본 발명은 이에 한정되는 것은 아니고, 본 발명의 기술 사상 범위 내에서 여러 가지로 변형하여 실시하는 것이 가능하고, 이 또한 첨부된 특허 청구 범위에 속하는 것은 당연하다.

Claims (19)

  1. 몰리브덴 전구체 및 황 전구체로부터 형성되며, 원자층증착법을 사용하여 성장된 MoS2 박막.
  2. 제1항에 있어서,
    상기 몰리브덴 전구체는 MoF6, MoCl6 및 Mo(CO)6로 이루어지는 군으로부터 선택된 어느 하나 이상인 것을 특징으로 하는 MoS2 박막.
  3. 제1항에 있어서,
    상기 황 전구체는 다이알킬디설파이드 또는 다이할로디설파이드인 것을 특징으로 하는 MoS2 박막.
  4. 제1항에 있어서,
    상기 MoS2 박막의 라만 스펙트럼은 375-385 cm-1 및 400-410 cm-1에서 피크가 형성되는 것을 특징으로 하는 MoS2 박막.
  5. 제1항 내지 제4항 중 어느 한 항에 따른 MoS2 박막은 트랜지스터의 반도체 활성층, 수소발생반응의 촉매 및 리튬이온전지의 전극으로 이루어지는 군으로부터 선택된 어느 하나에 포함되는 것을 특징으로 하는 MoS2 박막.
  6. 제2항 또는 제3항에 있어서,
    상기 몰리브덴 전구체는 Mo(CO)6이며, 황 전구체는 다이메틸디설파이드인 것을 특징으로 하는 MoS2 박막.
  7. 제 6항에 있어서,
    상기 원자층증착법은 ALD temperature window가 100-120 ℃인 것을 특징으로 하는 MoS2 박막.
  8. 1) 진공 상태인 반응기 내에 몰리브덴 전구체를 공급하여 기판에 Mo을 포함하는 화학작용기층을 형성하는 단계;
    2) 상기 1)단계 이후 반응기 내에 비활성기체를 공급하여 Mo을 포함하는 화학작용기층을 형성하지 못한 여분의 몰리브덴 전구체 및 부산물을 제거하는 단계;
    3) 상기 반응기 내에 황 전구체를 공급하여 Mo을 포함하는 화학작용기 층에 황 전구체를 화학 흡착시켜 MoS2 원자층을 형성하는 단계; 및
    4) 상기 3)단계 이후 반응기 내에 비활성기체를 공급하여 3)단계에서 흡착하지 못한 황 전구체와 부산물을 제거하는 단계;
    를 포함하는 MoS2 박막의 제조방법.
  9. 제8항에 있어서,
    상기 몰리브덴 전구체는 MoF6, MoCl6 및 Mo(CO)6로 이루어지는 군으로부터 선택된 어느 하나 이상인 것을 특징으로 하는 MoS2 박막의 제조방법.
  10. 제8항에 있어서,
    상기 황 전구체는 다이알킬디설파이드 또는 다이할로디설파이드인 것을 특징으로 하는 MoS2 박막의 제조방법.
  11. 제9항 또는 제10항에 있어서,
    상기 몰리브덴 전구체는 Mo(CO)6이며, 황 전구체는 다이메틸디설파이드인 것을 특징으로 하는 MoS2 박막의 제조방법.
  12. 제11항에 있어서,
    상기 3)단계에 따른 MoS2 원자층의 형성은 ALD temperature window가 100-120 ℃인 것을 특징으로 하는 MoS2 박막의 제조방법.
  13. 제8항에 있어서,
    상기 1)단계에서 몰리브덴 전구체의 공급 압력은 0.1-10 Torr인 것을 특징으로 하는 MoS2 박막의 제조방법.
  14. 제8항에 있어서,
    상기 3)단계에서 황 전구체의 공급 압력은 0.1-10 Torr인 것을 특징으로 하는 MoS2 박막의 제조방법.
  15. 제8항에 있어서,
    상기 1)단계 내지 4)단계를 반복하게 되면 상기 MoS2 박막의 두께가 증가하고, 상기 MoS2 박막의 두께는 상기 1)단계 내지 4)단계의 반복 회수에 따라 결정되는 것을 특징으로 하는 MoS2 박막의 제조방법.
  16. 제15항에 있어서,
    상기 1)단계 내지 4)단계를 반복한 후에 열처리하는 단계를 더 포함하는 것을 특징으로 하는 MoS2 박막의 제조방법.
  17. 제16항에 있어서,
    상기 열처리는 400-1,000 ℃로 이루어지는 것을 특징으로 하는 MoS2 박막의 제조방법.
  18. 제8항에 있어서,
    상기 제조방법에 의해 제조된 MoS2 박막의 라만 스펙트럼은 375-385 cm-1 및 400-410 cm-1에서 피크가 형성되는 것을 특징으로 하는 MoS2 박막의 제조방법.
  19. 제8항 내지 제18항 중 어느 한 항에 따른 제조방법에 따라 제조된 MoS2 박막은 트랜지스터의 반도체 활성층, 수소발생반응의 촉매 및 리튬이온전지의 전극으로 이루어지는 군으로부터 선택된 어느 하나에 포함되는 것을 특징으로 하는 MoS2 박막의 제조방법.
PCT/KR2013/007299 2013-07-31 2013-08-13 MoS2 박막 및 이의 제조방법 WO2015016412A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/908,863 US9863039B2 (en) 2013-07-31 2013-08-13 MoS2 thin film and method for manufacturing same
EP13890707.6A EP3037569B1 (en) 2013-07-31 2013-08-13 Mos2 thin film and method for manufacturing same
CN201380078541.XA CN105408516B (zh) 2013-07-31 2013-08-13 MoS2薄膜及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0090880 2013-07-31
KR1020130090880A KR101621470B1 (ko) 2013-07-31 2013-07-31 MoS2 박막 및 이의 제조방법

Publications (1)

Publication Number Publication Date
WO2015016412A1 true WO2015016412A1 (ko) 2015-02-05

Family

ID=52431926

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/007299 WO2015016412A1 (ko) 2013-07-31 2013-08-13 MoS2 박막 및 이의 제조방법

Country Status (5)

Country Link
US (1) US9863039B2 (ko)
EP (1) EP3037569B1 (ko)
KR (1) KR101621470B1 (ko)
CN (1) CN105408516B (ko)
WO (1) WO2015016412A1 (ko)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104846434A (zh) * 2015-04-10 2015-08-19 武汉大学 一种二维过渡金属二硫族化合物单晶及其制备方法和应用
CN106065466A (zh) * 2015-04-22 2016-11-02 三星电子株式会社 用于层状过渡金属硫属化合物层的组合物及形成层状过渡金属硫属化合物层的方法
CN107557754A (zh) * 2017-07-21 2018-01-09 杭州电子科技大学 一种二硫化钨薄膜的制备方法
CN107923039A (zh) * 2015-05-27 2018-04-17 Asm Ip 控股有限公司 用于含钼或钨薄膜的ald的前体的合成和用途
TWI624558B (zh) * 2015-09-15 2018-05-21 美商精微超科技公司 二維金屬硫族化物薄膜之雷射輔助原子層沉積
US10010593B2 (en) 2014-10-14 2018-07-03 The Trustees Of The University Of Pennsylvania Recombinant Listeria vaccine strains and methods of using the same in cancer immunotherapy
US11014866B2 (en) 2016-10-12 2021-05-25 Asm Ip Holding B.V. Synthesis and use of precursors for vapor deposition of tungsten containing thin films
US11791153B2 (en) 2020-02-10 2023-10-17 Asm Ip Holding B.V. Deposition of hafnium oxide within a high aspect ratio hole

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150090043A1 (en) * 2013-09-27 2015-04-02 Infineon Technologies Ag Mems
US9991390B2 (en) * 2014-09-30 2018-06-05 The Regents Of The University Of California Thin film transition metal dichalcogenides and methods
KR101655757B1 (ko) 2015-07-17 2016-09-08 한국화학연구원 이황화몰리브덴 박막의 제조방법
KR101881304B1 (ko) * 2016-07-25 2018-08-27 한국표준과학연구원 고균일 2차원 전이금속 디칼코지나이드 박막의 제조 방법
WO2017018834A1 (ko) * 2015-07-29 2017-02-02 한국표준과학연구원 2차원 전이금속 디칼코지나이드 박막의 제조 방법
KR101703814B1 (ko) * 2015-09-16 2017-02-08 한국과학기술연구원 결정성장유도체 및 용매를 이용한 2차원 소재 박막의 두께를 조절하는 방법
CN105800566A (zh) * 2016-04-15 2016-07-27 中国科学院上海技术物理研究所 交替注入反应物生长单层和多层过渡金属硫化物的方法
US10662527B2 (en) 2016-06-01 2020-05-26 Asm Ip Holding B.V. Manifolds for uniform vapor deposition
WO2018098451A1 (en) * 2016-11-28 2018-05-31 North Carolina State University Catalysts for hydrogen evolution reaction including transition metal chalcogenide films and methods of forming the same
WO2018186535A1 (ko) * 2017-04-06 2018-10-11 한국해양대학교 산학협력단 흡착억제 표면처리를 이용한 2차원 물질의 제조방법
CN107338422A (zh) * 2017-06-26 2017-11-10 东南大学 一种原子层沉积二硫化钼薄膜的方法
CN108588673B (zh) * 2017-07-21 2019-11-12 杭州电子科技大学 一种二硫化钼薄膜的制备方法
CN107686131B (zh) * 2017-07-24 2019-07-23 桂林理工大学 一种Sm2(MoO4)3薄膜的直接制备方法
CN109309235A (zh) * 2017-07-27 2019-02-05 北京大学深圳研究生院 一种双功能电催化剂及其应用与制备方法
CN107937884B (zh) * 2017-09-19 2019-09-03 云南师范大学 一种大面积二硫化钼薄膜的原子层沉积制备方法
CN107740069B (zh) * 2017-10-24 2019-08-23 上海纳米技术及应用国家工程研究中心有限公司 原子层沉积一步制备具有超润滑作用的二硫化钼薄膜的方法及其产品和应用
CN107974666B (zh) * 2017-11-28 2019-08-16 南通大学 一种快速测定时序式ALD制程的ALD-window的方法
KR102506444B1 (ko) 2017-11-29 2023-03-06 삼성전자주식회사 이차원 tmd 박막의 성장방법 및 이를 포함하는 소자의 제조방법
CN108165938B (zh) * 2017-12-20 2019-12-03 上海纳米技术及应用国家工程研究中心有限公司 异质结光化学阵列的制备方法及其产品和应用
US11560625B2 (en) 2018-01-19 2023-01-24 Entegris, Inc. Vapor deposition of molybdenum using a bis(alkyl-arene) molybdenum precursor
CN108365012A (zh) * 2018-01-23 2018-08-03 东南大学 一种基于原子层沉积制备二硫化钼场效应管的方法
US11447862B2 (en) * 2018-03-07 2022-09-20 Uchicago Argonne, Llc Methods to deposit controlled thin layers of transition metal dichalcogenides
US11393681B2 (en) 2018-03-07 2022-07-19 Uchicago Argonne, Llc Methods to deposit and etch controlled thin layers of transition metal dichalcogenides
US11492701B2 (en) 2019-03-19 2022-11-08 Asm Ip Holding B.V. Reactor manifolds
US11142824B2 (en) 2019-04-23 2021-10-12 Uchicago Argonne, Llc Method of producing thin layer of large area transition metal dichalcogenides MoS2 and others
CN110400832A (zh) * 2019-06-12 2019-11-01 北海惠科光电技术有限公司 阵列基板的制备方法及阵列基板
US11821079B2 (en) 2019-09-22 2023-11-21 Applied Materials, Inc. Methods for depositing molybdenum sulfide
KR20210048408A (ko) 2019-10-22 2021-05-03 에이에스엠 아이피 홀딩 비.브이. 반도체 증착 반응기 매니폴드
CN113072099B (zh) * 2020-01-03 2022-07-08 中国科学院上海微系统与信息技术研究所 TMDs二维材料薄膜、器件及制备方法
CN111270299B (zh) * 2020-02-12 2021-11-05 东华理工大学 一种利用熔盐电解法生长大面积单晶3R-MoS2薄膜的方法
US11408073B2 (en) * 2020-04-16 2022-08-09 Honda Motor Co., Ltd. Method for growth of atomic layer ribbons and nanoribbons of transition metal dichalcogenides
US11519068B2 (en) 2020-04-16 2022-12-06 Honda Motor Co., Ltd. Moisture governed growth method of atomic layer ribbons and nanoribbons of transition metal dichalcogenides
US11639546B2 (en) 2020-04-16 2023-05-02 Honda Motor Co., Ltd. Moisture governed growth method of atomic layer ribbons and nanoribbons of transition metal dichalcogenides
CN111876748B (zh) * 2020-07-16 2022-07-29 北京大学深圳研究生院 一种基于有机硫前驱体的金属硫化物薄膜及其制备方法
CN111943270B (zh) * 2020-08-21 2023-04-25 南京工程学院 一种用于制造二硫化钼量子点阵列的设备与工艺方法
US11626284B2 (en) * 2020-10-02 2023-04-11 Applied Materials, Inc. Method of forming a 2-dimensional channel material, using ion implantation
CN114318288A (zh) * 2020-10-09 2022-04-12 昆山微电子技术研究院 一种高质量二硫化钼薄膜的原子层沉积制备方法
CN115557536A (zh) * 2021-07-01 2023-01-03 南京大学 一种制备单层二硫化钼纳米片的方法
FR3130295B1 (fr) * 2021-12-15 2024-01-19 Commissariat Energie Atomique Procede de depot par voie chimique sous vide d’un film mince de sulfure de tungstene et/ou de molybdene
KR20240009063A (ko) * 2022-07-13 2024-01-22 한국표준과학연구원 고균일 3차원 계층구조를 가지는 전이금속 디칼코제나이드 박막의 제조 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100809000B1 (ko) * 2006-03-15 2008-03-05 경북대학교 산학협력단 Ald 방법에 의한 반도체 디바이스 및 그 제조방법
EP1825021B1 (en) * 2004-12-03 2008-06-04 3M Innovative Properties Company Microfabrication using patterned topography and self-assembled monolayers
WO2008140578A2 (en) * 2006-11-21 2008-11-20 Honeywell International Inc. Atomic layer deposition on fibrous materials
WO2011056519A2 (en) * 2009-10-26 2011-05-12 Asm International N.V. Synthesis and use of precursors for ald of group va element containing thin films
KR20120058723A (ko) * 2010-11-30 2012-06-08 건국대학교 산학협력단 표면확산유도 원자층 증착법

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4992305A (en) * 1988-06-22 1991-02-12 Georgia Tech Research Corporation Chemical vapor deposition of transistion metals
US6835671B2 (en) * 2002-08-16 2004-12-28 Freescale Semiconductor, Inc. Method of making an integrated circuit using an EUV mask formed by atomic layer deposition
US20120318358A1 (en) * 2011-06-17 2012-12-20 Precursor Energetics, Inc. Solution-based processes for solar cells

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1825021B1 (en) * 2004-12-03 2008-06-04 3M Innovative Properties Company Microfabrication using patterned topography and self-assembled monolayers
KR100809000B1 (ko) * 2006-03-15 2008-03-05 경북대학교 산학협력단 Ald 방법에 의한 반도체 디바이스 및 그 제조방법
WO2008140578A2 (en) * 2006-11-21 2008-11-20 Honeywell International Inc. Atomic layer deposition on fibrous materials
WO2011056519A2 (en) * 2009-10-26 2011-05-12 Asm International N.V. Synthesis and use of precursors for ald of group va element containing thin films
KR20120058723A (ko) * 2010-11-30 2012-06-08 건국대학교 산학협력단 표면확산유도 원자층 증착법

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHHOWALLA, M. ET AL., NATURE CHEMISTRY, vol. 5, 2013, pages 263 - 275
DISKUS, M. ET AL., J. MATER. CHEM., vol. 21, 2011, pages 705 - 710
WANG, H. ET AL., IEEE TECH. DIG. IEDM, 2012, pages 88 - 91
WANG, Q. H. ET AL., NATURE NANOTECHNOLOGY, vol. 7, 2012, pages 699 - 712

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10010593B2 (en) 2014-10-14 2018-07-03 The Trustees Of The University Of Pennsylvania Recombinant Listeria vaccine strains and methods of using the same in cancer immunotherapy
CN104846434B (zh) * 2015-04-10 2017-03-15 武汉大学 一种二维过渡金属二硫族化合物单晶及其制备方法和应用
CN104846434A (zh) * 2015-04-10 2015-08-19 武汉大学 一种二维过渡金属二硫族化合物单晶及其制备方法和应用
CN106065466A (zh) * 2015-04-22 2016-11-02 三星电子株式会社 用于层状过渡金属硫属化合物层的组合物及形成层状过渡金属硫属化合物层的方法
CN106065466B (zh) * 2015-04-22 2020-03-06 三星电子株式会社 用于层状过渡金属硫属化合物层的组合物及形成层状过渡金属硫属化合物层的方法
US10079144B2 (en) * 2015-04-22 2018-09-18 Samsung Electronics Co., Ltd. Composition for layered transition metal chalcogenide compound layer and method of forming layered transition metal chalcogenide compound layer
US11047042B2 (en) 2015-05-27 2021-06-29 Asm Ip Holding B.V. Synthesis and use of precursors for ALD of molybdenum or tungsten containing thin films
CN107923039A (zh) * 2015-05-27 2018-04-17 Asm Ip 控股有限公司 用于含钼或钨薄膜的ald的前体的合成和用途
CN107923039B (zh) * 2015-05-27 2021-06-29 Asm Ip 控股有限公司 用于含钼或钨薄膜的ald的前体的合成和用途
US11624112B2 (en) 2015-05-27 2023-04-11 Asm Ip Holding B.V. Synthesis and use of precursors for ALD of molybdenum or tungsten containing thin films
TWI624558B (zh) * 2015-09-15 2018-05-21 美商精微超科技公司 二維金屬硫族化物薄膜之雷射輔助原子層沉積
US11014866B2 (en) 2016-10-12 2021-05-25 Asm Ip Holding B.V. Synthesis and use of precursors for vapor deposition of tungsten containing thin films
US11667595B2 (en) 2016-10-12 2023-06-06 Asm Ip Holding B.V. Synthesis and use of precursors for vapor deposition of tungsten containing thin films
CN107557754B (zh) * 2017-07-21 2019-09-20 杭州电子科技大学 一种二硫化钨薄膜的制备方法
CN107557754A (zh) * 2017-07-21 2018-01-09 杭州电子科技大学 一种二硫化钨薄膜的制备方法
US11791153B2 (en) 2020-02-10 2023-10-17 Asm Ip Holding B.V. Deposition of hafnium oxide within a high aspect ratio hole

Also Published As

Publication number Publication date
CN105408516A (zh) 2016-03-16
CN105408516B (zh) 2018-05-25
US20160168694A1 (en) 2016-06-16
KR101621470B1 (ko) 2016-05-16
EP3037569B1 (en) 2018-04-18
KR20150015183A (ko) 2015-02-10
US9863039B2 (en) 2018-01-09
EP3037569A1 (en) 2016-06-29
EP3037569A4 (en) 2017-01-11

Similar Documents

Publication Publication Date Title
WO2015016412A1 (ko) MoS2 박막 및 이의 제조방법
US9984874B2 (en) Method of producing transition metal dichalcogenide layer
WO2019221583A1 (ko) 층상형 aln, 이의 제조 방법 및 이로부터 박리된 aln 나노시트
US20190006605A1 (en) Germanane analogs and optoelectronic devices using the same
WO2012053782A2 (en) Process for growing silicon carbide single crystal and device for the same
WO2021096326A1 (ko) 표면 보호 물질을 이용한 박막 형성 방법
WO2016122081A1 (ko) 금속 칼코게나이드 박막의 제조 방법
WO2013100456A1 (en) Silicon carbide powder, method for manufacturing the same and method for growing single crystal
WO2020080856A1 (ko) 증착공정에서 발생되는 탄화규소 부산물을 단결정 원료로 재생하는 방법
WO2016043396A1 (ko) 질소 도핑된 그래핀의 제조방법 및 이로부터 제조된 질소 도핑된 그래핀
US20180009664A1 (en) Method for synthesizing carbon materials from carbon agglomerates containing carbine/carbynoid chains
CN116902928B (zh) 纳米花结构的钛掺杂二硒化铪及其制备方法
WO2019066179A1 (ko) 열적 안정성 및 반응성이 우수한 기상 증착 전구체 및 이의 제조방법
WO2015056944A1 (ko) 몰리브데넘 화합물 또는 텅스텐 화합물, 이의 제조 방법 및 이를 이용하여 박막을 형성하는 방법
WO2016129774A1 (ko) 수직배향 탄소 나노 튜브 집합체의 제조방법
WO2016080801A1 (ko) 질화규소 나노섬유의 제조방법
WO2018186535A1 (ko) 흡착억제 표면처리를 이용한 2차원 물질의 제조방법
Wu et al. Three step fabrication of graphene at low temperature by remote plasma enhanced chemical vapor deposition
WO2021141324A1 (ko) 표면 보호 물질을 이용한 박막 형성 방법
WO2020190105A2 (ko) 피리딘성 질소 및 피롤성 질소의 함량이 제어된 sp2 혼성 구조를 갖는 탄소 소재의 제조방법 및 이에 의해 제조된 탄소 소재
WO2014209030A1 (ko) 커버부재를 이용한 그래핀의 제조방법 및 그를 포함하는 전자소자의 제조방법
WO2024014766A1 (ko) 고균일 3차원 계층구조를 가지는 전이금속 디칼코제나이드 박막의 제조 방법
Min et al. MoS 2 thin film and method for manufacturing same
WO2014178686A1 (ko) 황화 니켈 박막의 제조 방법
WO2022108034A1 (ko) 선택성 부여제를 이용한 영역 선택적 박막 형성 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380078541.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13890707

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14908863

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013890707

Country of ref document: EP