WO2014178686A1 - 황화 니켈 박막의 제조 방법 - Google Patents

황화 니켈 박막의 제조 방법 Download PDF

Info

Publication number
WO2014178686A1
WO2014178686A1 PCT/KR2014/003959 KR2014003959W WO2014178686A1 WO 2014178686 A1 WO2014178686 A1 WO 2014178686A1 KR 2014003959 W KR2014003959 W KR 2014003959W WO 2014178686 A1 WO2014178686 A1 WO 2014178686A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
nickel
substrate
sulfide thin
nickel sulfide
Prior art date
Application number
PCT/KR2014/003959
Other languages
English (en)
French (fr)
Inventor
박보근
김창균
정택모
성명모
한규석
Original Assignee
한국화학연구원
한양대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원, 한양대학교 산학협력단 filed Critical 한국화학연구원
Publication of WO2014178686A1 publication Critical patent/WO2014178686A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/305Sulfides, selenides, or tellurides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2022Light-sensitive devices characterized by he counter electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02568Chalcogenide semiconducting materials not being oxides, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method of manufacturing a nickel sulfide thin film, and more particularly, to a method of manufacturing a nickel sulfide thin film using a nickel precursor and hydrogen sulfide.
  • nickel (Ni) metal has a lower resistivity (10-18 ⁇ ⁇ cm) and better thermal stability than the titanium silicide layer used as an ohmic contact layer in a conventional semiconductor process. It is known that a wide range of potential applications are used now and in the future, and nickel sulfide is expected to be widely used in the manufacture of electrodes for secondary batteries or absorbers for solar cells.
  • a conventional deposition method such as PVD (Physical Vapor Deposition) or CVD (Chemical Vapor Deposition) is used, but such a deposition method such as PVD and CVD may deposit a metal layer on a substrate. Due to the high deposition temperature conditions, low step coverage of the deposited metal layer and difficulty in controlling the thickness, there was a problem in that the metal layer was not easily deposited on the complex pattern or the organic layer.
  • An object of the present invention is to solve the above problems, it is easy to control the thickness of the metal layer using atomic layer deposition (Atomic Layer Deposition) while forming a uniform metal layer, relative to the temperature to form a metal layer on the substrate To provide a nickel sulfide thin film formation method that can be lowered.
  • atomic layer deposition Atomic Layer Deposition
  • the present invention comprises the steps of: a) introducing a substrate into a deposition chamber; b) adsorbing a nickel precursor represented by Chemical Formula 1 by atomic layer deposition on the substrate; c) removing remaining by-products except the adsorbed nickel precursor; d) introducing a sulfur source into the deposition chamber and exchanging the nickel precursor adsorbed on the substrate to form a nickel sulfide thin film on the substrate; And e) removing the remaining by-products except for the nickel sulfide thin film.
  • R 1 , R 2 , R 3 and R 4 are independently C 1 -C 4 linear or branched alkyl groups
  • the temperature of forming a uniform metal layer while easily adjusting the thickness of the metal layer and forming the metal layer on the substrate Can be lowered to prevent chemical vapor deposition during the atomic layer deposition process, and can be applied to electrodes of electronic devices such as secondary batteries, ultra thin film solar cells, and dyes. It can be used to manufacture next generation energy devices such as electrodes of sensitized solar cells.
  • FIG. 1 is a graph of thickness growth versus feed time of Ni (dmamb) 2 of Example 1.
  • FIG. 2 is a graph of thickness growth versus supply time of H 2 S of Example 1.
  • FIG. 3 is a graph of thickness growth with increasing ALD process cycle of Example 2.
  • Figure 4 is a table showing the AFM image and thickness with increasing ALD process cycle of Example 2.
  • FIG. 5 is an EDS analysis spectrum of a nickel sulfide thin film prepared according to Example 3.
  • FIG. 6 is an SEM photograph of a nickel sulfide thin film prepared according to Example 3.
  • FIG. 6 is an SEM photograph of a nickel sulfide thin film prepared according to Example 3.
  • the present invention comprises the steps of: a) introducing a substrate into a deposition chamber; b) adsorbing a nickel precursor represented by Chemical Formula 1 by atomic layer deposition on the substrate; c) removing remaining by-products except the adsorbed nickel precursor; d) introducing a sulfur source into the deposition chamber and exchanging the nickel precursor adsorbed on the substrate to form a nickel sulfide thin film on the substrate; And e) removing the remaining by-products except the nickel sulfide thin film; and a method for manufacturing a nickel sulfide thin film using an atomic layer deposition method comprising a.
  • m is an integer ranging from 1 to 3
  • R1, R2, R3 and R4 are independently a C1-C4 linear or branched alkyl group, preferably m is 1 or 2.
  • the nickel precursor and the sulfur source represented by the formula (1) are alternately supplied to the substrate and adsorbed while maintaining the temperature of the substrate constant, and the deposition chamber is interposed between these steps.
  • the thin film is deposited by exhausting or by sending an inert gas such as argon to the deposition chamber to remove unreacted residues and by-products.
  • the method for producing a nickel sulfide thin film according to the present invention includes the following manufacturing steps.
  • the substrate introduced into the deposition chamber is a substrate on which a nickel sulfide thin film according to the present invention is formed, selected from silicon (Si), germanium (Ge), silicon carbide (SiC), glass, and organic polymer. It consists of 1 or more types, A silicon (Si) wafer, a germanium (Ge) wafer, a silicon carbide (SiC) wafer, glass, a polyethylene terephthalate (PET), a polyimide (PI), etc. are mentioned.
  • the nickel aminoalkoxide of the formula (1) adsorbed on the substrate has good volatility and is suitable for use as a precursor for atomic layer deposition.
  • the nickel aminoalkoxide of the formula (1) preferably a compound of the formula (2) can be used.
  • the nickel aminoalkoxide of Chemical Formula 1 supplied to the deposition chamber is stored in a container outside the deposition chamber and is supplied to the deposition chamber using an inert gas such as argon as a transport gas when supplied to the deposition chamber.
  • Nickel aminoalkoxide of the formula (1) is preferably supplied to the surface of the substrate for more than 4 seconds per cycle, more specifically 4 seconds to 6 seconds. If the supply time is less than 4 seconds, the adsorption of the nickel aminoalkoxide of the formula (1) is difficult to be made sufficiently. Even if the supply time is too long in excess of 6 seconds, the amount adsorbed on the substrate is saturated, so that the process time is longer and the process time is longer.
  • the reaction time of one cycle may be controlled by controlling the amount of nickel aminoalkoxide or sulfur source of Formula 1 to be fed into the deposition chamber per unit time.
  • step c) is the first purification step of the reaction of the formula (1)
  • Nickel aminoalkoxide and reaction byproducts are removed by evacuating through an exhaust pump.
  • step d) supplies a sulfur source into the deposition chamber to allow sulfur to adsorb to the surface of the substrate on which the nickel aminoalkoxide of Formula 1 is adsorbed.
  • the sulfur source is preferably sulfur or hydrogen sulfide, most preferably hydrogen sulfide.
  • the sulfur source is preferably supplied at least 1 second per cycle, more specifically, at least 1 second and at most 3 seconds, since the adsorption of the sulfur source is difficult to be achieved when the supply time is less than 1 second. .
  • the sulfur source supply time is too long exceeding 3 seconds, the amount of adsorption on the substrate is saturated, so that the process time is longer and the process time is longer.
  • step d) of adsorbing sulfur one of a method of simply supplying a sulfur source and a method of generating plasma together with the supply of sulfur source may be selected.
  • step e a second purifying step, which is step e), is performed.
  • the second purge stage exhausts them through an exhaust pump by sending an inert gas to the chamber or vacuum purging to remove unreacted sulfur sources and reaction byproducts.
  • Nickel sulfide having excellent properties by maintaining the temperature of the substrate in the step a) to e) of the production method according to the invention at 80 to 400 °C, more preferably 80 to 200 °C, even more preferably 80 to 100 °C A thin film can be formed.
  • the temperature of the substrate is less than 80 ° C., the reaction between the nickel precursor adsorbed on the substrate and sulfur may not be performed well, and thus the nickel sulfide thin film may not be formed well.
  • the temperature of the substrate may be too high, exceeding 400 ° C. In this case, the physical properties of the substrate may be changed, or the CVD process may be performed instead of the ALD process, which is not preferable.
  • the silicon substrate on which the nickel oxide thin film was to be deposited was washed sequentially with acetone, ethanol and deionized water, and then mounted in an atomic layer deposition reactor, and the reactor was evacuated with an exhaust pump.
  • the temperature of the substrate was adjusted to 100 ° C., and bis (dimethylamino-2-methyl-2-butoxy) nickel (II) [Ni (dmamb) 2 ] as a precursor was opened to maintain a constant vapor pressure by opening a valve of a nickel precursor supply pipe.
  • Hydrogen sulfide was used as the sulfur source.
  • the temperature of the deposition chamber, the nickel precursor supply pipe, and the nickel precursor container was kept constant at 90 ° C, and the deposition reaction was carried out in the order of nickel precursor supply, argon purification, hydrogen sulfide supply, and argon conversion.
  • the flow rate of argon, a purge gas was adjusted to 200 sccm, the purge time was 40 seconds, and the working pressure of the reactor was adjusted to 1 Torr.
  • FIG. 1 the thicknesses of the thin films obtained by maintaining the temperature of the substrate at 100 ° C. and increasing the supply time of Ni (dmamb) 2 were measured by ellipsometry, and the growth rate thereof was shown with respect to the supply time.
  • the supply time of Ni (dmamb) 2 exceeds 4 seconds, the surface reaction is saturated and the growth rate is almost constant, which is the most characteristic property of atomic layer deposition.
  • FIG. 2 shows the thicknesses of the thin films obtained by increasing the supply time of H 2 S as in Ni (dmamb) 2 .
  • the surface reaction was saturated while the supply time of Ni (dmamb) 2 was over 1 second, and the growth rate was almost constant.
  • Example 2 Under the same conditions as in Example 1, after supplying Ni (dmamb) 2 and hydrogen sulfide to 4 seconds and 1 second, respectively, the thickness of the thin film obtained by increasing the cycle of the ALD process to 8, 12, 25, and 50 was measured. 3 is shown. In addition, the graph and thickness confirmed through the AFM image, line profiling of the nickel sulfide thin film when the cycle of the ALD process is repeated 12, 25 and 50 times are shown in FIG. Through this, since the thickness of the thin film is primarily dependent on the ALD cycle, it can be clearly seen from FIG. 3 and FIG. 4 that the thin film manufacturing process exhibits true ALD characteristics.
  • EDS analysis was performed after 200 cycles of the ALD process, after cleaning the surface by argon ion sputtering for 5 minutes to remove carbon contamination on the surface of the formed nitride thin film.
  • the spectrum is shown in FIG. 5.
  • the characteristic optoelectronic peaks of nickel, oxygen, silicon and sulfur can be observed.
  • the ratio of nickel and sulfur was determined to be about 1: 0.93. Through this, it was found that the nickel sulfide thin film was well formed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

본 발명은 a) 증착 챔버 내로 기판을 도입하는 단계; b) 상기 기판 상에 원자층 증착법으로 화학식 1로 표시되는 니켈 전구체를 흡착하는 단계; c) 상기 흡착된 니켈 전구체를 제외한 나머지 부산물을 제거하는 단계; d) 상기 증착 챔버 내로 황 원을 유입시켜, 상기 기판에 흡착된 상기 니켈전구체와 교환 반응시켜 상기 기판 상에 황화 니켈 박막을 형성하는 단계; 및 e) 상기 황화 니켈 박막을 제외한 나머지 부산물을 제거하는 단계;를 포함하는 원자층 증착법을 이용한 황화 니켈 박막의 제조 방법에 관한 것이다. 본 발명의 원자층 증착법(Atomic Layer Deposition)을 이용한 황화 니켈 박막의 제조 방법에 의하여 황화 니켈 박막을 제조하는 경우, 금속층 두께의 조절이 용이하면서도 균일한 금속층을 형성하고, 기판 상에 금속층을 형성하는 온도를 상대적으로 낮출 수 있다.

Description

황화 니켈 박막의 제조 방법
본 발명은 황화 니켈 박막의 제조 방법에 관한 것으로서, 보다 구체적으로 니켈 전구체와 황화수소를 사용하여 황화 니켈 박막을 제조하는 방법에 관한 것이다.
반도체 및 자기 저장 소자를 포함하는 전자소자가 점점 미세화 됨에 따라 균일한 두께의 금속 또는 금속 박막을 형성하는 것이 점점 중요해지고 있으며, 특히, 최근 들어 이차전지 등에 사용되는 전극이나 태양전지의 absorber 등의 제작에 있어서도 그 중요성이 나날이 높아지고 있다.
예를 들어, 니켈(Ni) 금속은 기존의 반도체 공정에서 오믹 컨택층으로 사용되고 있는 타이타늄 실리사이드막보다 비저항이 낮고(10 ~ 18 μΩ·cm) 열적 안정성이 우수하여 차세대 반도체 공정에서의 오믹 컨택층으로 사용되어, 현재 그리고 향후에 잠재적인 응용분야가 넓은 물질로 알려져 있으며, 특히 황화 니켈의 경우 이차전지의 전극이나 태양전지의 absorber 등의 제작에 널리 사용될 것으로 예측되고 있다.
상기와 같이 기판상에 금속 박막을 형성하기 위하여 종래에는 PVD(Physical vapor deposition) 또는 CVD(Chemical vapor deposition) 등의 증착 방법을 이용하였으나, 이러한 PVD 및 CVD 등의 증착 방법은 금속층을 기판에 증착하기 위한 높은 증착 온도 조건, 증착된 금속층의 낮은 단차 도포성 및 두께 조절의 어려움 등으로 인해 복잡한 패턴이나 유기막 위에 금속층을 용이하게 증착하지 못하는 문제점이 있었다.
이러한 문제점을 극복하기 위하여, 예를 들어, 한국 공개공보 10-2010-0071463 등에서 니켈을 비롯한 많은 금속들의 증착방법으로 ALD를 사용하는 방법에 대한 많은 연구가 이루어지고 있으나, 기존의 방법으로는 황화 니켈의 박막 형성을 위한 증착을 충분히 구현해 내지 못하고 있는 실정이다.
본 발명의 목적은 상기와 같은 문제점을 해결하기 위한 것으로서, 원자층 증착법(Atomic Layer Deposition)을 이용하여 금속층 두께의 조절이 용이하면서도 균일한 금속층을 형성하고, 기판 상에 금속층을 형성하는 온도를 상대적으로 낮출 수 있는 황화 니켈 박막 형성 방법을 제공하기 위한 것이다.
상기 목적을 달성하기 위하여,
본 발명은 a) 증착 챔버 내로 기판을 도입하는 단계; b) 상기 기판 상에 원자층 증착법으로 하기 화학식 1로 표시되는 니켈 전구체를 흡착하는 단계; c) 상기 흡착된 니켈 전구체를 제외한 나머지 부산물을 제거하는 단계; d) 상기 증착 챔버 내로 황 원을 유입시켜, 상기 기판에 흡착된 상기 니켈전구체와 교환 반응시켜 상기 기판 상에 황화 니켈 박막을 형성하는 단계; 및 e) 상기 황화 니켈 박막을 제외한 나머지 부산물을 제거하는 단계;를 포함하는 원자층 증착법을 이용한 황화 니켈 박막의 제조 방법을 제공한다.
[화학식 1]
Figure PCTKR2014003959-appb-I000001
(m은 1 내지 3 범위의 정수이고, R1, R2, R3 및 R4는 독립적으로 C1-C4 선형 또는 분지형 알킬기다)
본 발명의 원자층 증착법(Atomic Layer Deposition)을 이용한 황화 니켈 박막의 제조 방법에 의하여 황화 니켈 박막을 제조하면, 금속층 두께의 조절이 용이하면서도 균일한 금속층을 형성하고, 기판 상에 금속층을 형성하는 온도를 상대적으로 낮출 수 있어, 원자층 증착법(Atomic Layer Deposition)을 수행하는 도중 화학적 기상 증착법(Chemical Vapor Deposition)가 일어나는 것을 방지할 수 있으며, 이차전지와 같은 전자소자의 전극이나, 초박막 태양전지, 염료감응형 태양전지의 전극과 같은 차세대 에너지 소자의 제조에 사용될 수 있다.
도 1은 실시예 1의 Ni(dmamb)2 의 공급시간에 대한 두께 성장의 그래프이다.
도 2는 실시예 1의 H2S의 공급시간에 대한 두께 성장의 그래프이다.
도 3은 실시예 2의 ALD 공정 사이클 증가에 따른 두께 성장의 그래프이다.
도 4는 실시예 2의 ALD 공정 사이클 증가에 따른 AFM 사진 및 두께를 나타낸 표이다.
도 5는 실시예 3에 따라 제조된 황화 니켈 박막의 EDS 분석 스펙트럼이다.
도 6은 실시예 3에 따라 제조된 황화 니켈 박막의 SEM 사진이다.
본 발명은 a) 증착 챔버 내로 기판을 도입하는 단계; b) 상기 기판 상에 원자층 증착법으로 하기 화학식 1로 표시되는 니켈 전구체를 흡착하는 단계; c) 상기 흡착된 니켈 전구체를 제외한 나머지 부산물을 제거하는 단계; d) 상기 증착 챔버 내로 황 원을 유입시켜, 상기 기판에 흡착된 상기 니켈전구체와 교환 반응시켜 상기 기판 상에 황화 니켈 박막을 형성하는 단계; 및 e) 상기 황화 니켈 박막을 제외한 나머지 부산물을 제거하는 단계;를 포함하는 원자층 증착법을 이용한 황화 니켈 박막의 제조 방법에 관한 것이다.
[화학식 1]
Figure PCTKR2014003959-appb-I000002
상기 화학식 1에서, m은 1 내지 3 범위의 정수이고, R1, R2, R3 및 R4는 독립적으로 C1-C4 선형 또는 분지형 알킬기이며, 바람직하게는 m이 1 또는 2이다.
본 발명의 원자층 증착법에 따른 황화 니켈 박막의 형성 방법에서는, 기판의 온도를 일정하게 유지하면서 상기 화학식 1로 표시되는 니켈 전구체와 황 원을 기판에 번갈아 공급하여 흡착시키고 이들 단계 사이에 증착 챔버를 배기하거나 증착 챔버에 아르곤과 같은 비활성 기체를 보내어 반응하지 않은 잔류물과 부산물을 제거하는 과정을 통해 박막을 증착시킨다.
본 발명에 따른 황화 니켈 박막을 형성하는 공정은
기판을 증착 챔버 내로 도입하는 단계, 니켈 전구체의 흡착 단계, 제1 정화 단계, 황 원의 흡착 단계 및 제2 정화 단계로 이루어지며 상기 니켈 전구체의 흡착 단계, 제1 정화 단계, 황 원의 흡착 단계 및 제2 정화 단계의 네 단계가 1 주기를 구성한다. 원하는 두께로 황화 니켈 박막을 얻으려면 상기 네 단계를 1 주기로 하여 목표 두께에 도달할 때까지 이를 반복하여 실시할 수 있다.
구체적으로 본 발명에 따른 황화 니켈 박막의 제조방법은 하기의 제조단계를 포함한다.
a) 증착 챔버 내로 기판을 도입하는 단계;
b) 상기 기판 상에 원자층 증착법으로 상기 화학식 1로 표시되는 니켈 전구체를 흡착하는 단계;
c) 상기 흡착된 니켈 전구체를 제외한 나머지 부산물을 제거하는 단계;
d) 상기 증착 챔버 내로 황 원을 유입시켜, 상기 기판에 흡착된 상기 니켈전구체와 교환 반응시켜 상기 기판 상에 황화 니켈 박막을 형성하는 단계; 및
e) 상기 황화 니켈 박막을 제외한 나머지 부산물을 제거하는 단계.
상기 a) 단계에서, 증착 챔버로 도입되는 상기 기판은 본 발명에 따른 황화 니켈 박막이 형성되는 기판으로서, 실리콘(Si), 게르마늄(Ge), 탄화규소(SiC), 유리 및 유기고분자로부터 선택되는 1종 이상으로 이루어지며, 실리콘 (Si) 웨이퍼, 게르마늄 (Ge) 웨이퍼, 탄화규소 (SiC) 웨이퍼, 유리, 폴리에틸렌테레프탈레이트(PET), 폴리이미드(PI) 등을 들 수 있다.
상기 b) 단계에서, 상기 기판 상에 흡착되는 상기 화학식 1의 니켈 아미노알콕사이드는 휘발성이 좋고 안정하여 원자층 증착의 전구체로 사용하기에 적합하다. 또한, 상기 화학식 1의 니켈 아미노알콕사이드는, 바람직하게는 하기 화학식 2의 화합물을 사용할 수 있다.
[화학식 2]
Figure PCTKR2014003959-appb-I000003
상기 증착 챔버에 공급되는 상기 화학식 1의 니켈 아미노알콕사이드는 증착 챔버 외부의 용기에 저장되고 증착 챔버에 공급시 아르곤 등의 불활성 기체를 운송가스로 사용하여 증착 챔버로 공급한다.
상기 화학식 1의 니켈 아미노알콕사이드는 기판의 표면에 1 주기 당 4초 이상, 보다 구체적으로는 4초 이상 6초 이하로 공급하는 것이 바람직하다. 공급 시간을 4초 미만으로 하면 상기 화학식 1의 니켈 아미노알콕사이드의 흡착이 충분히 이루어지기 어렵다. 상기 공급 시간을 6초를 초과하여 너무 길게 하더라도 기판에 흡착되는 양이 포화되어 더 이상 증가하지 않고 공정시간이 길어지므로 비효율적이게 된다. 단위 시간 당 증착 챔버 안으로 공급하는 상기 화학식 1의 니켈 아미노알콕사이드나 황 원의 양을 조절함으로써 한 주기의 반응 시간을 조절할 수도 있다.
b) 단계에서 상기 화학식 1의 니켈 아미노알콕사이드의 일차적인 흡착 단계를 실시한 뒤, c) 단계는 제 1 정화단계로서 아르곤 가스와 같은 비활성 기체를 챔버로 보내거나 진공 정화함으로써 반응하지 않은 상기 화학식 1의 니켈 아미노알콕사이드 및 반응 부산물을 배기펌프를 통해 배기함으로써 제거한다.
상기 c) 단계에서 정화를 한 후, d) 단계는 증착 챔버 안으로 황 원을 공급하여 상기 화학식 1의 니켈 아미노알콕사이드 이 흡착해 있는 기판의 표면에 황이 흡착하게 한다. 상기 황 원으로는 황 또는 황화 수소가 바람직하며, 황화 수소가 가장 바람직하다. 상기 황 원은 1 주기 당 1초 이상, 보다 구체적으로는 1초 이상 3초 이하로 공급하는 것이 바람직한데 그 이유는 공급 시간을 1초 미만으로 하면 황 원의 흡착이 충분히 이루어지기 어렵기 때문이다. 또한 황 원 공급 시간을 3초를 초과하여 너무 길게 하더라도 기판에 흡착되는 양이 포화되어 더 이상 증가하지 않고 공정시간이 길어지므로 비효율적이 게 된다. 상기 황을 흡착하는 d) 단계에서는 단순히 황 원을 공급하는 방법과 황 원의 공급과 함께 플라스마를 발생시키는 방법 중 어느 하나를 선택할 수 있다.
이어서, d) 단계가 완료되면, e) 단계인 제 2 정화단계가 진행된다. 제 2 정화단계는 반응하지 않은 황 원과 반응 부산물을 제거하기 위해 비활성 기체를 챔버로 보내거나 진공 정화함으로써 이들을 배기 펌프를 통해 배기한다.
본 발명에 따른 제조방법의 상기 a) 내지 e) 단계에서 기판의 온도를 80 내지 400 ℃, 더욱 바람직하게는 80 내지 200℃, 보다 더 바람직하게는 80 내지 100℃로 유지하여 특성이 우수한 황화 니켈 박막을 형성할 수 있다. 상기 기판의 온도를 80℃ 미만으로 하는 경우에는 기판에 흡착된 니켈 전구체와 황 간의 반응이 잘 이루어지지 않아 황화 니켈 박막이 잘 형성되지 않을 수 있으며, 상기 기판의 온도를 400℃를 초과하여 너무 높게 하는 경우에는 기판의 물성이 변하거나, ALD 공정 대신 CVD 공정이 수행될 수 있어서 바람직하지 않게 된다.
본 발명은 하기의 실시예에 의하여 보다 더 잘 이해될 수 있으며, 하기의 실시예는 본 발명의 예시 목적을 위한 것이며 첨부된 특허청구범위에 의하여 한정되는 보호범위를 제한하고자 하는 것은 아니다.
실시예
원자층 침착법에 의한 황화 니켈 박막의 형성
<실시예 1>
니켈 산화물 박막을 침착하고자 하는 실리콘 기판을 아세톤, 에탄올, 탈이온수로 차례로 세척한 뒤에 원자층 침착 반응기에 장착하고 반응기를 배기펌프로 배기하였다. 기판의 온도를 100℃로 맞추고, 전구체로, 비스(디메틸아미노-2-메틸-2-부톡시)니켈(II) [Ni(dmamb)2]를 니켈 전구체 공급관의 밸브를 열면 증기압을 일정하게 유지할 수 있다. 황 원으로는 황화 수소를 사용하였다.
증착 챔버, 니켈 전구체 공급관, 니켈 전구체 용기의 온도를 90℃로 일정하게 유지하고 니켈 전구체 공급, 아르곤 정화, 황화 수소 공급, 아르곤 전화의 순서에 따라 침착 반응을 실시하였다. 이 때 정화 기체인 아르곤의 유량은 200 sccm으로, 정화 시간은 40 초로, 반응기의 공정 압력(working pressure)은 1 Torr로 조절하였다.
도 1에 기판의 온도를 100℃로 유지하고 Ni(dmamb)2의 공급 시간을 늘리면서 얻은 박막들의 두께를 타원편광법(ellipsometry)으로 측정하여 그 성장 속도를 공급 시간에 대하여 도시하였다. 도 1에서 보는 바와 같이 Ni(dmamb)2의 공급 시간이 4초를 넘으면서 표면 반응이 포화하여 성장 속도가 거의 일정해짐을 확인할 수 있는데 이는 원자층 침착의 가장 특징적인 성질이다. 또한, 도 2에 Ni(dmamb)2와 마찬가지로 H2S의 공급 시간을 늘리면서 얻은 박막들의 두께를 도시하였다. 도 2에서 보는 바와 같이 Ni(dmamb)2의 공급 시간이 1초를 넘으면서 표면 반응이 포화하여 성장 속도가 거의 일정해짐을 확인할 수 있었다.
<실시예 2>
실시예 1과 같은 조건에서, Ni(dmamb)2와 황화 수소의 공급시간을 각각 4초 및 1초로 한 후, ALD 공정의 주기를 8, 12, 25, 50 회로 늘리면서 얻은 박막의 두께를 측정하여 도 3에 도시하였다. 또한, 상기 ALD 공정의 주기를 12회, 25회 및 50회 반복한 경우의 황화 니켈 박막의 AFM image, 라인 프로파일링(line profiling)을 통하여 확인한 그래프 및 두께를 도 4에 나타내었다. 이를 통하여, 박막의 두께가 ALD 주기에 일차적으로 의존하므로, 도 3 및 도 4로부터 박막 제조 공정이 진정한 ALD 특성을 나타냄을 명확히 알 수 있다.
<실시예 3>
실시예 2와 같은 조건에서, ALD 공정의 주기를 200회 실시하여, 형성한 질화 박막에 대해, 표면에 있는 탄소오염을 제거하기 위해 5 분 동안 아르곤 이온 스퍼터링으로 표면을 깨끗하게 한 후 측정한 EDS 분석 스펙트럼을 도 5에 나타내었다.
이 스펙트럼에서는 니켈과 산소, 실리콘 및 황의 특성 광전자 봉우리를 관찰할 수 있다. 니켈과 황의 비율이 약 1:0.93으로 측정되었다. 이를 통하여, 황화 니켈 박막이 잘 형성되어 있음을 알 수 있었다.
또한, 상기 형성된 질화 박막의 측면 및 표면을 SEM으로 촬영하여 각각 도 6 (a) 및 (b)에 나타내었다.

Claims (11)

  1. a) 증착 챔버 내로 기판을 도입하는 단계;
    b) 상기 기판 상에 원자층 증착법으로 하기 화학식 1로 표시되는 니켈 전구체를 흡착하는 단계;
    c) 상기 흡착된 니켈 전구체를 제외한 나머지 부산물을 제거하는 단계;
    d) 상기 증착 챔버 내로 황 원을 유입시켜, 상기 기판에 흡착된 상기 니켈전구체와 교환 반응시켜 상기 기판 상에 황화 니켈 박막을 형성하는 단계; 및
    e) 상기 황화 니켈 박막을 제외한 나머지 부산물을 제거하는 단계;
    를 포함하는 원자층 증착법을 이용한 황화 니켈 박막의 제조 방법.
    [화학식 1]
    Figure PCTKR2014003959-appb-I000004
    (m은 1 내지 3 범위의 정수이고, R1, R2, R3 및 R4는 독립적으로 C1-C4 선형 또는 분지형 알킬기다)
  2. 청구항 1에 있어서,
    화학식 1에서 m이 1 또는 2임을 특징으로 하는 황화 니켈 박막의 제조 방법.
  3. 청구항 2에 있어서,
    니켈 아미노알콕사이드가 하기 화학식 2의 화합물인 것을 특징으로 하는 황화 니켈 박막의 제조 방법.
    [화학식 2]
    Figure PCTKR2014003959-appb-I000005
  4. 청구항 1에 있어서,
    상기 황 원은 황 또는 황화 수소로부터 선택되는 것을 특징으로 하는 황화 니켈 박막의 제조 방법.
  5. 청구항 4에 있어서,
    상기 황 원은 황화 수소인 것을 특징으로 하는 황화 니켈 박막의 제조 방법.
  6. 청구항 1에 있어서,
    상기 기판은 실리콘(Si), 게르마늄(Ge), 탄화규소(SiC), 유리 및 유기고분자로부터 선택되는 어느 하나 이상으로 이루어진 것을 특징으로 하는 황화 니켈 박막의 제조 방법.
  7. 청구항 1에 있어서,
    기판의 온도를 80 내지 400℃ 범위에서 유지하는 것을 특징으로 하는 황화 니켈 박막의 제조 방법.
  8. 청구항 7에 있어서,
    기판의 온도를 80 내지 200℃ 범위에서 유지하는 것을 특징으로 하는 황화 니켈 박막의 제조 방법.
  9. 청구항 8에 있어서,
    기판의 온도를 80 내지 100℃ 범위에서 유지하는 것을 특징으로 하는 황화 니켈 박막의 제조 방법.
  10. 청구항 1에 있어서,
    상기 b) 단계는 상기 니켈 전구체를 4초 이상 6초 이하의 주기로 공급하고,
    상기 d) 단계는 상기 황 원을 1초 이상 3초 이하의 주기로 공급하는 것을 특징으로 하는 황화 니켈 박막의 제조 방법.
  11. 청구항 1에 있어서,
    b) 내지 e) 단계를 반복하여 수행하는 것을 특징으로 하는 황화 니켈 박막의 제조 방법.
PCT/KR2014/003959 2013-05-03 2014-05-02 황화 니켈 박막의 제조 방법 WO2014178686A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0050315 2013-05-03
KR1020130050315A KR101521800B1 (ko) 2013-05-03 2013-05-03 황화 니켈 박막의 제조 방법

Publications (1)

Publication Number Publication Date
WO2014178686A1 true WO2014178686A1 (ko) 2014-11-06

Family

ID=51843722

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/003959 WO2014178686A1 (ko) 2013-05-03 2014-05-02 황화 니켈 박막의 제조 방법

Country Status (2)

Country Link
KR (1) KR101521800B1 (ko)
WO (1) WO2014178686A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111876748A (zh) * 2020-07-16 2020-11-03 北京大学深圳研究生院 一种基于有机硫前驱体的金属硫化物薄膜及其制备方法
CN112779520A (zh) * 2019-11-05 2021-05-11 有进科技材料股份有限公司 利用表面保护物质的薄膜形成方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100071463A (ko) * 2008-12-19 2010-06-29 주식회사 유피케미칼 금속 박막 또는 금속 산화물 박막 증착용 유기금속 전구체 화합물 및 이를 이용한 박막 증착 방법
US20100163937A1 (en) * 2008-12-31 2010-07-01 Scott Bruce Clendenning Methods of forming nickel sulfide film on a semiconductor device
US20100193951A1 (en) * 2009-01-26 2010-08-05 Christian Dussarrat Metal precursors for deposition of metal-containing films
KR20100109567A (ko) * 2008-02-01 2010-10-08 레르 리키드 쏘시에떼 아노님 뿌르 레드 에렉스뿔라따시옹 데 프로세데 조르즈 클로드 베타-디케티미나토 리간드를 함유하는 새로운 금속 전구체
WO2011006064A1 (en) * 2009-07-10 2011-01-13 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Metal-containing precursors for deposition of metal-containing films

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100109567A (ko) * 2008-02-01 2010-10-08 레르 리키드 쏘시에떼 아노님 뿌르 레드 에렉스뿔라따시옹 데 프로세데 조르즈 클로드 베타-디케티미나토 리간드를 함유하는 새로운 금속 전구체
KR20100071463A (ko) * 2008-12-19 2010-06-29 주식회사 유피케미칼 금속 박막 또는 금속 산화물 박막 증착용 유기금속 전구체 화합물 및 이를 이용한 박막 증착 방법
US20100163937A1 (en) * 2008-12-31 2010-07-01 Scott Bruce Clendenning Methods of forming nickel sulfide film on a semiconductor device
US20100193951A1 (en) * 2009-01-26 2010-08-05 Christian Dussarrat Metal precursors for deposition of metal-containing films
WO2011006064A1 (en) * 2009-07-10 2011-01-13 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Metal-containing precursors for deposition of metal-containing films

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112779520A (zh) * 2019-11-05 2021-05-11 有进科技材料股份有限公司 利用表面保护物质的薄膜形成方法
CN111876748A (zh) * 2020-07-16 2020-11-03 北京大学深圳研究生院 一种基于有机硫前驱体的金属硫化物薄膜及其制备方法
CN111876748B (zh) * 2020-07-16 2022-07-29 北京大学深圳研究生院 一种基于有机硫前驱体的金属硫化物薄膜及其制备方法

Also Published As

Publication number Publication date
KR20140131474A (ko) 2014-11-13
KR101521800B1 (ko) 2015-05-20

Similar Documents

Publication Publication Date Title
US20160225991A1 (en) Amine precursors for depositing graphene
TWI752516B (zh) 使用表面保護材料來形成薄膜的方法
TW201710548A (zh) 形成高p型摻雜鍺錫膜的方法以及包含該等膜的結構和裝置
KR20100095426A (ko) 증착 공정들 간의 플라즈마 처리
US9382270B2 (en) Substituted silacyclopropane precursors and their use for the deposition of silicon-containing films
JP2017508883A (ja) ゲルマニウムまたは酸化ゲルマニウムの原子層堆積
CN116666501A (zh) 一种提升氧化铝钝化膜沉积均匀性的方法及应用
WO2014178686A1 (ko) 황화 니켈 박막의 제조 방법
JP4733519B2 (ja) 半導体装置の製造方法及びこの方法で得られた半導体装置
CN110607515A (zh) 一种二维金属有机框架材料的制备方法及产物
JP4581119B2 (ja) NiSi膜形成材料およびNiSi膜形成方法
CN110724931A (zh) 一种原子层沉积制备二硫化铼薄膜的方法
TWI817139B (zh) 氣相沉積前驅物化合物及使用方法
WO2024014766A1 (ko) 고균일 3차원 계층구조를 가지는 전이금속 디칼코제나이드 박막의 제조 방법
WO2021137594A1 (ko) 표면 보호 물질을 이용한 물질막 형성 방법
WO2022240028A1 (ko) 화학기상증착법을 이용한 태양전지용 cigs 광흡수층의 제조방법
WO2021137595A1 (ko) 표면 보호 물질을 이용한 물질막 형성 방법
KR101724456B1 (ko) 연료전지용 분리판의 코팅 방법 및 연료전지용 분리판
CN112908846B (zh) 形成半导体结构的方法及半导体结构
US11837635B2 (en) Method of forming graphene on a silicon substrate
WO2013118937A1 (ko) 아연주석산화물 박막의 제조방법
US11946139B2 (en) Atomic layer deposition of lithium boron comprising nanocomposite solid electrolytes
US20230407465A1 (en) METHOD OF FORMING SiOCN LAYER
WO2021162240A1 (ko) 표면 보호 물질을 이용한 박막 형성 방법
JP2006097101A (ja) 膜形成材料、膜形成方法、及び素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14791351

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14791351

Country of ref document: EP

Kind code of ref document: A1