WO2016122081A1 - 금속 칼코게나이드 박막의 제조 방법 - Google Patents

금속 칼코게나이드 박막의 제조 방법 Download PDF

Info

Publication number
WO2016122081A1
WO2016122081A1 PCT/KR2015/010285 KR2015010285W WO2016122081A1 WO 2016122081 A1 WO2016122081 A1 WO 2016122081A1 KR 2015010285 W KR2015010285 W KR 2015010285W WO 2016122081 A1 WO2016122081 A1 WO 2016122081A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
metal
chalcogenide thin
metal chalcogenide
substrate
Prior art date
Application number
PCT/KR2015/010285
Other languages
English (en)
French (fr)
Inventor
최민석
이창구
김영찬
Original Assignee
엘지전자 주식회사
성균관대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사, 성균관대학교산학협력단 filed Critical 엘지전자 주식회사
Publication of WO2016122081A1 publication Critical patent/WO2016122081A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0324Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIVBVI or AIIBIVCVI chalcogenide compounds, e.g. Pb Sn Te
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof

Definitions

  • the present invention relates to the fabrication of hetero-element thin films, and more particularly, to a method for producing a metal chalcogenide thin film that can be produced on a flexible substrate.
  • oxygen group elements five elements of oxygen (O), sulfur (S), selenium (Se), tellurium (Te), and polonium (Po) are called oxygen group elements, among which sulfur, selenium, Only three elements of tellurium are also called sulfur elements or chalcogens.
  • Oxygen and sulfur are typical nonmetallic elements, but other metals lose nonmetallic properties and increase metallicity with increasing atomic number.
  • Selenium, tellurium and polonium are rare elements and polonium is a natural radioactive element.
  • Metal chacogenide is a compound of transition metals and chalcogens, a nanomaterial with a graphene-like structure. Since the thickness is very thin as the thickness of the atomic layer, it has flexible and transparent properties, and electrically exhibits various properties such as semiconductors and conductors.
  • the metal chalcogenide of the semiconductor property has an electron band mobility of several hundred cm 2 / V ⁇ s while having an appropriate band gap, which is suitable for the application of semiconductor devices such as transistors, Has the potential.
  • An optical element such as a metal chalcogenide material most actively studied and MoS 2, In the case of WS 2 and so on, because of the direct band gap (direct band gap) in a single layer state there is an efficient light absorption can take place with optical sensors, solar cells of the application Suitable for
  • the manufacturing method which can form a uniform and continuous thin film on a large area board
  • An object of the present invention is to provide a method for producing a metal chalcogenide thin film that can be formed on a large area substrate uniform and flexible substrate to form a metal chalcogenide thin film through a roll-to-roll process.
  • the present invention a method for producing a metal chalcogenide thin film, forming a diffusion barrier on the metal substrate in the form of a foil; And supplying a transition metal precursor and a chalcogen-containing gas on the diffusion barrier to form a metal chalcogenide thin film.
  • the metal substrate may have a thickness of 25 to 100 ⁇ m.
  • the metal substrate may include at least one of Cu, Ni, Pt, Fe, Au, brass, and stainless steel.
  • the diffusion barrier layer is Al 2 O 3 , HfO 2 , SiO 2 , Si 3 N 4 , SrTiO 3 , quartz, glass, mica (mica), graphene, graphite (graphite) , hexagonal boron nitride (hBN), Cu 2 O, CuO, Cu 2 O 3 , NiO, Ni 2 O 3 , PtO 2 , PtO, Pt 3 O 4 , FeO, Fe 3 O 4 , Fe 4 O 5 , and Fe It may include at least one of 2 O 3 .
  • the diffusion barrier layer may be any one of an insulator, graphene, an oxide layer formed by oxidizing the metal substrate, and a multilayer structure in which the diffusion barrier layer is combined.
  • the diffusion barrier may include an insulator.
  • the diffusion barrier layer graphene; And an insulator positioned on the graphene.
  • the diffusion barrier layer may include the metal oxide layer.
  • the metal oxide film may be formed by oxidizing the metal substrate.
  • the metal oxide layer may be formed by oxidizing the metal substrate by at least one of dry / wet thermal oxidation, oxygen plasma oxidation, and electrochemical oxidation.
  • the diffusion barrier layer may be for preventing the metal substrate from being sulfided by the chalcogen-containing gas.
  • the metal chalcogenide thin film is MX 2 (where M is Mo, W, Ti, Zr, Hf, V, Nb, Ta, Tc, Re, Co, Rh, Ir, Ni, Pd, Pt And X is at least one of S, Se, and Te.) And compounds or mixtures thereof.
  • the chalcogen-containing gas may include at least one of a gas containing at least one of S, Se, and Te, H 2 S, H 2 Se, and H 2 Te.
  • the forming of the metal chalcogenide thin film may be performed by a roll-to-roll process.
  • the method may further include transferring the metal chalcogenide thin film to the final substrate.
  • the transferring may include forming a support substrate on the metal chalcogenide thin film; Removing the metal substrate and the diffusion barrier layer; And the metal chalcogenide thin film may include the above.
  • the forming of the support substrate may be performed by attaching the support substrate onto the metal chalcogenide thin film using a transfer tape.
  • the transferring may be performed by a roll-to-roll process.
  • the final substrate may be a silicon substrate.
  • a silicon oxide may be positioned between the metal chalcogenide thin film and the silicon substrate.
  • the diffusion barrier layer may be formed in atomic layer units using an atomic layer deposition (ALD) process.
  • ALD atomic layer deposition
  • the present invention has the following effects.
  • a metal chalcogenide thin film is formed by a gas phase reaction, and a gas chalcogen source is used to obtain a high quality thin film, and a large area uniform thin film synthesis is possible.
  • the metal chalcogenide thin film can be synthesized and transferred directly to a flexible metal substrate such as a metal foil, and thus can be utilized in a roll-to-roll process.
  • FIG. 1 is a flow chart showing an example of a process for producing a metal chalcogenide thin film of the present invention.
  • FIGS. 2 to 5 are diagrams showing an example of a method of manufacturing a metal chalcogenide thin film according to the first embodiment of the present invention.
  • 6 to 8 are diagrams showing an example of a method of manufacturing a metal chalcogenide thin film according to a second embodiment of the present invention.
  • FIGS. 9 to 11 are diagrams showing an example of a method for manufacturing a metal chalcogenide thin film according to a third embodiment of the present invention.
  • FIG. 12 is a schematic view showing a process of forming a metal chalcogenide thin film through a roll-to-roll process.
  • first, second, etc. may be used to describe various elements, components, regions, layers, and / or regions, such elements, components, regions, layers, and / or regions It will be understood that it should not be limited by these terms.
  • FIG. 1 is a flow chart showing an example of a process for producing a metal chalcogenide thin film of the present invention.
  • the process of manufacturing the metal chalcogenide thin film includes forming a diffusion barrier layer on a foil-shaped metal substrate (S10) and using a transition metal precursor and a chalcogen-containing gas on the diffusion barrier layer.
  • Supplying may be configured to include a step (S20) to form a metal chalcogenide thin film.
  • the method may further include transferring the metal chalcogenide thin film thus formed to the final substrate (S30).
  • the metal substrate in the form of a foil a flexible substrate having a thickness of 25 to 100 ⁇ m may be used.
  • the flexible substrate in the form of a foil may mean a substrate in the form of a conventional metal foil.
  • the metal substrate may include at least one of Cu, Ni, Pt, Fe, Au, brass, and stainless steel.
  • a metal substrate such as copper foil can be used.
  • the diffusion barrier formed on the metal substrate may be Al 2 O 3 , HfO 2 , SiO 2 , Si 3 N 4 , SrTiO 3 , quartz, glass, mica, graphene. , Graphite, hBN, Cu 2 O, CuO, Cu 2 O 3 , NiO, Ni 2 O 3 , PtO 2 , PtO, Pt 3 O 4 , FeO, Fe 3 O 4 , Fe 4 O 5 , and Fe It may include at least one of 2 O 3 .
  • the diffusion barrier may be any one of an insulator, a multilayer structure in which an insulator is positioned on graphene, and a metal oxide film formed by oxidizing the metal substrate.
  • the structure of the diffusion barrier and its formation process will be described later in detail.
  • M is at least one of Mo, W, Ti, Zr, Hf, V, Nb, Ta, Tc, Re, Co, Rh, Ir, Ni, Pd, Pt, and X is at least one of S, Se, Te Which one.
  • Such metal chalcogenide thin films may include such MX 2 structures and compounds or mixtures thereof.
  • the process of forming the metal chalcogenide thin film on the diffusion barrier layer (S20) is a chemical vapor deposition (CVD), a solution method (solution process), plasma enhanced chemical vapor deposition (PECVD) Various methods such as vapor deposition) and sputtering can be used, but are not limited to these methods.
  • CVD chemical vapor deposition
  • solution method solution method
  • PECVD plasma enhanced chemical vapor deposition
  • vapor deposition vapor deposition
  • sputtering can be used, but are not limited to these methods.
  • the process of forming the metal chalcogenide thin film (S20) may be performed using the following method.
  • it may be formed by vapor deposition of a solid metal source and a solid chalcogen precursor, or may be formed by forming a metal thin film by sulfidation of the metal thin film, and also by forming a metal precursor thin film by sulfiding. .
  • a gaseous metal precursor and a chalcogen-containing gas may be reacted using a chemical vapor deposition (CVD) device to form a metal chacogenide thin film using a vapor deposition method.
  • CVD chemical vapor deposition
  • the process of forming the metal chalcogenide thin film may include supplying a gasified metal precursor, supplying a chalcogen-containing gas, and using the gasified metal precursor and the chalcogen-containing gas on the diffusion barrier. It may be configured to include a process of forming a thin film by the reaction. This process can be done in a different order or at the same time.
  • hydrogen sulfide may be used as the chalcogen-containing gas, and in addition, at least one gas of S 2 , Se 2 , Te 2 , H 2 Se, and H 2 Te may be used. have.
  • the vaporized (transition) metal precursor can be made by heating the metal powder. That is, radicals vaporized by heating the metal powder may be used.
  • Such metal powder may use molybdenum oxide (MoO 3 ), in addition, MoO, MoO 2 , WO 2 , WO 3 , VO, VO 2 , V 2 O 3 , V 2 O 5 , V 3 O 5 , NbO , NbO 2 , Nb 2 O 5 , TaO, TaO 2 , Ta 2 O 5 , TiO, TiO 2 , Ti 2 O 3 , Ti 3 O 5 , ZrO 2 , HfO 2 , TcO 2 , Tc 2 O 7 , ReO 2 , ReO 3 , Re 2 O 3 , Re 2 O 7 , CoO, Co 2 O 3 , Co 3 O 4 , Rh 2 O 3 , RhO 2 , IrO 2 , Ir 2 O 3 , IrO 2 ⁇ 2H 2 O, NiO , Ni 2 O 3, PdO, PdO 2, PtO, PtO 2, PtO 3, Pt 3 O 4, PtO 2 ⁇ H
  • metal chalcogenide thin film Through such a method for forming a metal chalcogenide thin film, it may be possible to synthesize a uniform and continuous transition metal chalcogenide thin film having a large area of 4 inches or more wafer size.
  • the metal chalcogenide thin film can be synthesized and transferred directly to a flexible metal substrate such as a metal foil, and thus can be utilized in a roll-to-roll process.
  • a large area flexible substrate is required for such a large area transition metal chalcogenide synthesis and roll-to-roll process.
  • a metal substrate in the form of a metal foil capable of withstanding high temperatures may be suitable as the flexible substrate.
  • the metal foil can alloy with the transition metal precursor and react with the chalcogenide precursor, the metal chalcogenide thin film can be difficult to form directly on the metal foil. Therefore, in order to prevent the metal atoms and the chalcogen atoms from reacting with each other on the metal substrate, forming a diffusion barrier on the surface of the metal foil and then synthesizing the transition metal chalcogenide thin film to synthesize a large area transition metal chalcogenide and roll to roll Application of the process may be possible.
  • the diffusion barrier is made of insulators such as Al 2 O 3 , HfO 2 , SiO 2 , Si 3 N 4 , SrTiO 3 , quartz, glass, mica, hBN, etc., and graphene, graphite ( conductors such as graphite) may be used.
  • an insulator may be more suitable as a diffusion barrier in most cases except for the production of Schottky diodes.
  • Such a foil-shaped metal substrate and the diffusion barrier layer formed on the metal substrate can be easily removed with a dedicated etching solution or buffered oxide etchant (BOE), and may be a substrate such as poly (methylmethacrylate) or polydimethylsiloxane (PMMS).
  • BOE buffered oxide etchant
  • PMMS polydimethylsiloxane
  • Transfer tapes such as thermal release tapes and photoelectric tapes can be used to transfer over a variety of final substrates, including flexible substrates.
  • the transferring process may include forming a support substrate on the metal chalcogenide thin film, removing the metal substrate and the diffusion barrier, and transferring the metal chalcogenide thin film to the final substrate.
  • the forming of the supporting substrate may be formed by attaching the supporting substrate onto the metal chalcogenide thin film using a transfer tape such as the above-mentioned thermal transfer tape or photoelectric transfer tape.
  • the support substrate when the support substrate is attached using a transfer tape, when the support substrate can be easily removed through a post-treatment process such as applying heat or irradiating light, the entire transfer process or Some may be performed by a roll to roll process.
  • a post-treatment process such as applying heat or irradiating light
  • At least one of the process of forming the metal chalcogenide thin film and the transfer process may be continuously performed by the roll-to-roll process.
  • FIGS. 2 to 8 are diagrams showing an example of a method of manufacturing a metal chalcogenide thin film according to the first embodiment of the present invention.
  • This embodiment specifically shows an example of using an insulator as the diffusion barrier film 20.
  • the example using a copper foil as the metal substrate 10 is demonstrated.
  • an insulator diffusion barrier film 20 is formed on a metal substrate 10 made of copper foil.
  • the insulator may be, for example, an aluminum oxide (Al 2 O 3 ) thin film 21.
  • the metal chalcogenide thin film is an MoS 2 thin film.
  • the MoS 2 thin film may be formed using MoO 3 particles and H 2 S gas.
  • MoO 3 particles and H 2 S gas directly on the metal thin film, most of the metal can be easily corroded by the H 2 S gas to produce impurities that are not necessary for thin film synthesis.
  • an insulator such as Al 2 O 3 thin film 21 may be first deposited on the metal substrate 10 to prevent the metal (copper) from sulfiding.
  • the diffusion barrier 20 may be formed in atomic layer units using an atomic layer deposition (ALD) process.
  • an insulator diffusion barrier layer 20 such as an Al 2 O 3 thin film 21 having a thickness of several tens of nanometers is deposited on the copper foil-shaped metal substrate 10 by an ALD process.
  • an insulator diffusion prevention film 20 deposited with ALD there are almost no defects or flaws in the lattice structure and thus may effectively block the inflow of H 2 S gas.
  • the MoS 2 thin film 30 may be formed on the Al 2 O 3 thin film 21.
  • the process of forming the MoS 2 thin film 30 is as follows.
  • a transition metal precursor radical vaporized from a transition metal precursor eg, MoO 3 , WO 3 , MoCl 5 , WCl 5 , Mo (CO) 6 , W (CO) 6, etc.
  • a transition metal precursor eg, MoO 3 , WO 3 , MoCl 5 , WCl 5 , Mo (CO) 6 , W (CO) 6, etc.
  • a chalcogen such as H 2 S
  • the metal precursor and chalcogen precursor combination may be variously applied.
  • the diffusion barrier 20 formed on the metal substrate 10 fabricated above is placed in the CVD chamber.
  • a metal precursor eg MoO 3
  • a chalcogen-containing gas eg H 2 S
  • the vaporization temperature of MoO 3 may be set to 400 to 1000 ° C.
  • the metal chalcogenide thin film 30 is formed on the diffusion barrier layer 20 by the reaction of the metal precursor and the chalcogen-containing gas.
  • the synthesis temperature of MoS 2 may be 400 to 1000 °C.
  • the MoS 2 thin film 30 thus formed may be utilized as a MOSFET device by itself, but may be utilized for device development of various substrates, particularly transparent substrates and flexible substrates, through transfer.
  • the copper foil metal substrate 10 or the Al 2 O 3 thin film 21 can be easily removed with a dedicated etchant, buffered oxide etchant (BOE), or the like.
  • a dedicated etchant buffered oxide etchant (BOE)
  • BOE buffered oxide etchant
  • substrates such as poly (methylmethacrylate) (PMMA), polydimethylsiloxane (PDMS), transfer tapes such as thermal release tapes and photoelectric tapes may be used to transfer onto various final substrates 40 including flexible substrates. (See FIG. 3 (c)).
  • PMMA poly (methylmethacrylate)
  • PDMS polydimethylsiloxane
  • transfer tapes such as thermal release tapes and photoelectric tapes
  • a silicon oxide (SiO 2 ) may be positioned between the silicon substrate 40 and the MoS 2 thin film 30.
  • 4 is a 500-magnification optical micrograph of MoS 2 thin film
  • 5 is a 1000 magnification optical micrograph of MoS 2 thin film. As shown, it can be seen that a uniform high quality thin film was formed.
  • 6 to 8 are diagrams showing an example of a method of manufacturing a metal chalcogenide thin film according to a second embodiment of the present invention.
  • This embodiment shows an example of using a hybrid thin film made of graphene 22 and insulator 21 as the diffusion barrier film 20.
  • the example using a copper foil as the metal substrate 10 is demonstrated.
  • a hybrid diffusion barrier film 20 made of graphene 22 and an insulator 21 is formed on a metal substrate 10 made of copper foil.
  • the insulator may use an aluminum oxide (Al 2 O 3 ) thin film 21.
  • using the multilayer structure of the graphene 22 and the insulator 21 as the diffusion barrier 20 may further reduce the diffusion of H 2 S into the metal substrate 10.
  • the diffusion barrier layer 20 is formed by forming a thin film of graphene 22 on the metal substrate 10 made of metal foil such as copper (Cu), and then forming a thin film of the insulator 21 using an ALD process. can do.
  • the graphene 22 of the diffusion barrier film 20 may be grown by using a chemical vapor deposition (CVD) method.
  • the insulator 21 thin film may be formed by depositing a material such as Al 2 O 3 or HfO 2 by the ALD method.
  • the MoS 2 thin film 30 may be formed on the thin film of the insulator 21.
  • the process of forming the MoS 2 thin film 30 is as described in the first embodiment.
  • the thin film of the insulator 21 such as the copper foil metal substrate 10 or Al 2 O 3 can be easily removed with a dedicated etchant or buffered oxide etchant (BOE).
  • a dedicated etchant or buffered oxide etchant BOE
  • substrates such as poly (methylmethacrylate) (PMMA), polydimethylsiloxane (PDMS), transfer tapes such as thermal release tapes and photoelectric tapes may be used to transfer onto various final substrates 40 including flexible substrates. (See FIG. 9 (c)).
  • PMMA poly (methylmethacrylate)
  • PDMS polydimethylsiloxane
  • transfer tapes such as thermal release tapes and photoelectric tapes
  • FIG. 8 shows the Raman spectrum of the MoS 2 thin film 30 formed on the hybrid diffusion barrier film 20, and it can be seen that a uniform thin film of high quality was formed.
  • FIGS. 9 to 11 are diagrams showing an example of a method for manufacturing a metal chalcogenide thin film according to a third embodiment of the present invention.
  • This embodiment shows an example of using the diffusion barrier film 20 made of the metal oxide film 23 formed by oxidizing the metal substrate 10.
  • the example using a copper foil as the metal substrate 10 is demonstrated.
  • a diffusion barrier film 20 including a metal oxide film 23 is formed on a metal substrate 10 made of copper foil.
  • the metal oxide layer 23 is formed on the surface of the metal substrate 10 through dry / wet thermal oxidation, oxygen plasma oxidation, electrochemical oxidation, or the like to prevent H 2 S from diffusing to the metal substrate 10. It can be used as the diffusion barrier 20. Since the metal oxide layer 23 may be formed by oxidizing the metal substrate 10 itself in the form of a metal foil, the metal oxide layer 23 may be easily formed.
  • the MoS 2 thin film 30 may be formed on the metal oxide layer 23.
  • the process of forming the MoS 2 thin film 30 is as described in the first embodiment.
  • FIG 10 is an optical micrograph showing a state in which the MoS 2 thin film 30 is formed on the diffusion barrier film 20 formed of the metal oxide film 23. As shown, it can be seen that the MoS 2 thin film 30 of uniform high quality was formed.
  • the metal oxide film 23 and the metal substrate 10 can be easily removed with a dedicated etchant, buffered oxide etchant (BOE), or the like.
  • a dedicated etchant buffered oxide etchant (BOE)
  • BOE buffered oxide etchant
  • substrates such as poly (methylmethacrylate) (PMMA), polydimethylsiloxane (PDMS), transfer tapes such as thermal release tapes and photoelectric tapes may be used to transfer onto various final substrates 40 including flexible substrates. (See FIG. 12 (c)).
  • PMMA poly (methylmethacrylate)
  • PDMS polydimethylsiloxane
  • transfer tapes such as thermal release tapes and photoelectric tapes may be used to transfer onto various final substrates 40 including flexible substrates. (See FIG. 12 (c)).
  • Silicon oxide may be located between the silicon substrate 40 and the MoS 2 thin film 30.
  • FIG. 11 shows the Raman spectrum of the MoS 2 thin film 30 formed on the diffusion barrier film 20 including the metal oxide film 23, and it can be seen that a high quality uniform thin film was formed.
  • At least one or more of the formation and transfer process of the metal chalcogenide thin film 30 may be made through a roll-to-roll process.
  • FIG. 12 is a schematic view showing a process of forming a metal chalcogenide thin film through a roll-to-roll process.
  • the (transition) metal chalcogenide thin film is formed by a CVD method through a roll-to-roll process, the following process may be performed.
  • the foil-shaped metal substrate 10 on which the diffusion barrier film 20 is formed is wound on one roll (supply roll; 51), and the metal substrate 10 is passed through the CVD chamber 61, and then the opposite roll (winding roll) ; 52).
  • the chalcogenide precursor gas eg, H 2 S
  • the fluid eg, MoO 3 + Ar
  • the metal substrate 10 on which the diffusion barrier film 20 is formed may continuously proceed from the feed roll 51 to the take-up roll 52 side.
  • a transition metal chalcogenide thin film may be formed on the metal substrate 10 on which the diffusion barrier 20 is formed by the gas phase reaction between the metal precursor and the chalcogenide precursor.
  • the metal substrate 10 is flexible in the form of a foil and proceeds from the feed roll 51 to the take-up roll 52, so that the transition metal chalcogenide thin film can be deposited through a roll-to-roll process.
  • the CVD chamber 61 is cooled to room temperature and adjusted to atmospheric pressure, and then the transition metal chalcogenide thin film synthesized through the roll-to-roll process is removed from the chamber 61.
  • the process of transferring the metal chalcogenide thin film formed on the metal substrate 10 to the final substrate may also be performed through a roll-to-roll process.
  • a supporting substrate on which a transfer tape is attached onto a metal chalcogenide thin film may be continuously attached through a roller.
  • the process of transferring to the final substrate and the separation of the support substrate may also be performed through a roll-to-roll process.
  • metal chalcogenide thin film formation method it is possible to synthesize a uniform and continuous transition metal chalcogenide thin film of a large area of 4 inches wafer size or more.
  • the metal chalcogenide thin film can be synthesized and transferred directly to a flexible metal substrate such as a metal foil, and thus can be utilized in a roll-to-roll process.
  • the present invention through the metal chalcogenide thin film formation method, it is possible to synthesize a uniform and continuous transition metal chalcogenide thin film of a large area of 4 inches wafer size or more.
  • the metal chalcogenide thin film can be synthesized and transferred directly to a flexible metal substrate such as a metal foil, and thus can be utilized in a roll-to-roll process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

본 발명은 이종원소 박막의 제작에 관한 것으로 특히, 유연 기판 상에 제조 가능한 금속 칼코게나이드 박막의 제조 방법에 관한 것이다. 이러한 본 발명은, 금속 칼코게나이드 박막의 제조 방법에 있어서, 포일 형태의 금속 기판 상에 확산 방지막을 형성하는 단계; 및 상기 확산 방지막 상에 전이금속 전구체 및 칼코겐 함유 기체를 공급하여 금속 칼코게나이드 박막을 형성하는 단계를 포함하여 구성될 수 있다.

Description

금속 칼코게나이드 박막의 제조 방법
본 발명은 이종원소 박막의 제작에 관한 것으로 특히, 유연 기판 상에 제조 가능한 금속 칼코게나이드 박막의 제조 방법에 관한 것이다.
주기율표 16족에 속하는 원소 중 산소(O), 황(S), 셀레늄(Se), 텔루륨(Te), 폴로늄(Po) 다섯 원소를 산소족 원소(oxygen group element)라고 하며 이들 중 황, 셀레늄, 텔루륨의 세 원소만을 황족원소 또는 칼코겐(chalcogens)이라고도 한다.
산소, 황은 대표적인 비금속원소이나 이밖에는 원자번호의 증가와 함께 비금속성을 잃고 금속성이 증가한다. 셀레늄, 텔루륨, 폴로늄은 희유원소이고 폴로늄은 천연방사성 원소이다.
금속 칼코게나이드(metal chacogenide)는 전이금속과 칼코겐의 화합물로서 그래핀과 유사한 구조를 가지는 나노 재료이다. 그 두께는 원자 수 층의 두께로 매우 얇기 때문에 유연하고 투명한 특성을 가지며, 전기적으로는 반도체, 도체 등의 다양한 성질을 보인다.
특히, 반도체 성질의 금속 칼코게나이드의 경우 적절한 밴드갭(band gap)을 가지면서 수백 ㎠/V·s의 전자 이동도를 보이므로 트랜지스터 등의 반도체 소자의 응용에 적합하고 향후 유연 트랜지스터 소자에 큰 잠재력을 가지고 있다.
금속 칼코게나이드 물질 중 가장 활발히 연구되고 있는 MoS2, WS2 등의 경우 단층 상태에서 다이렉트 밴드갭(direct band gap)을 가지므로 효율적인 광 흡수가 일어날 수 있어 광센서, 태양전지 등의 광소자 응용에 적합하다.
이러한 금속 칼코게나이드 박막을 효율적으로 이용하기 위하여 대면적 기판 상에 균일하고 연속적인 박막 형성이 가능하고, 또한 유연 기판에 형성 가능한 제조 방법이 요구된다.
본 발명이 이루고자 하는 기술적 과제는, 대면적 기판 상에 균일하고 유연 기판에 형성 가능하여 롤투롤 공정을 통하여 금속 칼코게나이드 박막을 형성할 수 있는 금속 칼코게나이드 박막의 제조 방법을 제공하고자 한다.
상기 기술적 과제를 이루기 위하여, 본 발명은, 금속 칼코게나이드 박막의 제조 방법에 있어서, 포일 형태의 금속 기판 상에 확산 방지막을 형성하는 단계; 및 상기 확산 방지막 상에 전이금속 전구체 및 칼코겐 함유 기체를 공급하여 금속 칼코게나이드 박막을 형성하는 단계를 포함하여 구성될 수 있다.
여기서, 상기 금속 기판은, 두께가 25 내지 100 ㎛일 수 있다.
여기서, 상기 금속 기판은 Cu, Ni, Pt, Fe, Au, brass, 및 스테인레스 스틸(stainless steel) 중 적어도 어느 하나를 포함할 수 있다.
여기서, 상기 확산 방지막은 Al2O3, HfO2, SiO2, Si3N4, SrTiO3, 수정 (quartz), 유리(glass), mica(운모), 그래핀(graphene), 그라파이트(graphite), hBN(hexagonal boron nitride), Cu2O, CuO, Cu2O3, NiO, Ni2O3, PtO2, PtO, Pt3O4, FeO, Fe3O4, Fe4O5, 및 Fe2O3 중 적어도 어느 하나를 포함할 수 있다.
여기서, 상기 확산 방지막은, 절연체, 그래핀, 상기 금속 기판을 산화하여 형성한 산화막 및 이들이 조합된 다층 구조 중 어느 하나일 수 있다.
여기서, 상기 확산 방지막은, 절연체를 포함할 수 있다.
여기서, 상기 확산 방지막은, 그래핀; 및 상기 그래핀 상에 위치하는 절연체를 포함할 수 있다.
여기서, 상기 확산 방지막은, 상기 금속 산화막을 포함할 수 있다.
이때, 상기 금속 산화막은, 상기 금속 기판을 산화시켜 형성될 수 있다.
또한, 상기 금속 산화막은, 상기 금속 기판을 건식/습식 열산화, 산소 플라즈마 산화 및 전기화학적 산화 중 적어도 어느 하나의 방법으로 산화시킴으로써 형성할 수 있다.
여기서, 상기 확산 방지막은, 상기 금속 기판이 상기 칼코겐 함유 기체에 의하여 황화되는 것을 방지하기 위한 것일 수 있다.
여기서, 상기 금속 칼코게나이드 박막은 MX2 (여기서, M은 Mo, W, Ti, Zr, Hf, V, Nb, Ta, Tc, Re, Co, Rh, Ir, Ni, Pd, Pt 중 적어도 어느 하나이고, X는 S, Se, Te 중 적어도 어느 하나이다.) 및 이들의 화합물 또는 혼합물을 포함할 수 있다.
여기서, 상기 칼코겐 함유 기체는 S, Se, Te 중 적어도 어느 하나를 함유하는 기체, H2S, H2Se, 및 H2Te 중 적어도 어느 하나를 포함할 수 있다.
여기서, 상기 금속 칼코게나이드 박막을 형성하는 단계는 롤투롤(Roll-to-roll) 공정에 의하여 수행될 수 있다.
여기서, 상기 금속 칼코게나이드 박막을 최종 기판으로 전사하는 단계를 더 포함할 수 있다.
이때, 상기 전사하는 단계는, 상기 금속 칼코게나이드 박막 상에 지지 기판을 형성하는 단계; 상기 금속 기판 및 확산 방지막을 제거하는 단계; 및 상기 금속 칼코게나이드 박막을 상기를 포함할 수 있다.
이때, 상기 지지 기판을 형성하는 단계는, 전사 테이프를 이용하여 상기 지지 기판을 상기 금속 칼코게나이드 박막 상에 부착하여 형성할 수 있다.
이때, 상기 전사하는 단계는 롤투롤 공정에 의하여 수행될 수 있다.
여기서, 상기 최종 기판은 실리콘 기판일 수 있다.
이때, 상기 금속 칼코게나이드 박막과 상기 실리콘 기판 사이에는 실리콘 산화물이 위치할 수 있다.
여기서, 상기 확산 방지막은 ALD(atomic layer deposition) 공정을 이용하여 원자층(atomic layer) 단위로 형성할 수 있다.
본 발명은 다음과 같은 효과가 있는 것이다.
먼저, 기상 반응에 의해 금속 칼코게나이드 박막이 형성하고, 기체 칼코겐 소스를 이용하므로 고품질의 박막을 얻을 수 있으며, 대면적 균일 박막 합성이 가능하다.
이와 같은 금속 칼코게나이드 박막 형성 방법을 통하여, 4인치 웨이퍼 크기 이상의 대면적의 균일하고 연속적인 전이금속 칼코게나이드 박막의 합성이 가능할 수 있다.
또한, 금속 포일과 같이 유연한 금속 기판에 직접 금속 칼코게나이드 박막의 합성 및 전사가 가능하게 되어 롤투롤(Roll-to-Roll) 공정에 활용할 수 있게 된다.
도 1은 본 발명의 금속 칼코게나이드 박막을 제조하는 과정의 일례를 나타내는 순서도이다.
도 2 내지 도 5는 본 발명의 제1실시예에 따른 금속 칼코게나이드 박막의 제조 방법의 예를 나타내는 도이다.
도 6 내지 도 8은 본 발명의 제2실시예에 따른 금속 칼코게나이드 박막의 제조 방법의 예를 나타내는 도이다.
도 9 내지 도 11은 본 발명의 제3실시예에 따른 금속 칼코게나이드 박막의 제조 방법의 예를 나타내는 도이다.
도 12는 롤투롤 공정을 통하여 금속 칼코게나이드 박막을 형성하는 과정을 나타내는 개략도이다.
이하, 첨부된 도면을 참고하여 본 발명에 의한 실시예를 상세히 설명하면 다음과 같다.
본 발명이 여러 가지 수정 및 변형을 허용하면서도, 그 특정 실시예들이 도면들로 예시되어 나타내어지며, 이하에서 상세히 설명될 것이다. 그러나 본 발명을 개시된 특별한 형태로 한정하려는 의도는 아니며, 오히려 본 발명은 청구항들에 의해 정의된 본 발명의 사상과 합치되는 모든 수정, 균등 및 대용을 포함한다.
층, 영역 또는 기판과 같은 요소가 다른 구성요소 "상(on)"에 존재하는 것으로 언이하, 첨부된 도면을 참고하여 본 발명에 의한 실시예를 상세히 설명하면 다음과 같다.
본 발명이 여러 가지 수정 및 변형을 허용하면서도, 그 특정 실시예들이 도면들로 예시되어 나타내어지며, 이하에서 상세히 설명될 것이다. 그러나 본 발명을 개시된 특별한 형태로 한정하려는 의도는 아니며, 오히려 본 발명은 청구항들에 의해 정의된 본 발명의 사상과 합치되는 모든 수정, 균등 및 대용을 포함한다.
층, 영역 또는 기판과 같은 요소가 다른 구성요소 "상(on)"에 존재하는 것으로 언급될 때, 이것은 직접적으로 다른 요소 상에 존재하거나 또는 그 사이에 중간 요소가 존재할 수도 있다는 것을 이해할 수 있을 것이다.
비록 제1, 제2 등의 용어가 여러 가지 요소들, 성분들, 영역들, 층들 및/또는 지역들을 설명하기 위해 사용될 수 있지만, 이러한 요소들, 성분들, 영역들, 층들 및/또는 지역들은 이러한 용어에 의해 한정되어서는 안 된다는 것을 이해할 것이다.
또한, 본 발명에서 설명하는 공정은 반드시 순서대로 적용됨을 의미하는 것은 아니다. 예를 들어, 여러 단계가 기재되어 있는 경우, 반드시 순서대로 수행되어야 하는 것은 아님을 이해할 수 있다.
도 1은 본 발명의 금속 칼코게나이드 박막을 제조하는 과정의 일례를 나타내는 순서도이다.
도 1에서 도시하는 바와 같이, 금속 칼코게나이드 박막을 제조하는 과정은, 포일 형태의 금속 기판 상에 확산 방지막을 형성하는 단계(S10) 및 이러한 확산 방지막 상에 전이금속 전구체 및 칼코겐 함유 기체를 공급하여 금속 칼코게나이드 박막을 형성하는 단계(S20)를 포함하여 구성될 수 있다. 이후, 이와 같이 형성된 금속 칼코게나이드 박막을 최종 기판으로 전사하는 단계(S30)를 더 포함할 수 있다.
이때, 포일 형태의 금속 기판은, 일반적으로 두께가 25 내지 100 ㎛인 유연 기판이 이용될 수 있다. 포일 형태의 유연 기판이란 통상적인 금속 포일 형태의 기판을 의미할 수 있다.
이러한, 금속 기판은 Cu, Ni, Pt, Fe, Au, 황동(brass), 및 스테인레스 스틸(strainless steel) 중 적어도 어느 하나를 포함할 수 있다. 예를 들어, 구리 포일과 같은 금속 기판을 이용할 수 있다.
이와 같은 금속 기판 상에 형성되는 확산 방지막은 Al2O3, HfO2, SiO2, Si3N4, SrTiO3, 수정(quartz), 유리(glass), mica(운모), 그래핀(graphene), 그라파이트(graphite), hBN, Cu2O, CuO, Cu2O3, NiO, Ni2O3, PtO2, PtO, Pt3O4, FeO, Fe3O4, Fe4O5, 및 Fe2O3 중 적어도 어느 하나를 포함할 수 있다.
이러한 확산 방지막은, 절연체, 그래핀 상에 절연체가 위치하는 복층 구조, 및 상기 금속 기판을 산화하여 형성한 금속 산화막 중 어느 하나일 수 있다. 이러한 확산 방지막의 구조 및 그 형성 과정은 자세히 후술한다.
이와 같은 확산 방지막 상에, MX2 구조를 가지는 금속 칼코게나이드 박막을 형성한다. 여기서, M은 Mo, W, Ti, Zr, Hf, V, Nb, Ta, Tc, Re, Co, Rh, Ir, Ni, Pd, Pt 중 적어도 어느 하나이고, X는 S, Se, Te 중 적어도 어느 하나이다.
이러한 금속 칼코게나이드 박막은 이러한 MX2 구조 및 이들의 화합물 또는 혼합물을 포함할 수 있다.
이와 같은 확산 방지막 상에 금속 칼코게나이드 박막을 형성하는 과정(S20)은 화학기상증착법(CVD; chemical vapor deposition), 용액을 이용한 성장법(solution process), 플라즈마 화학기상증착법(PECVD: plasma enhanced chemical vapor deposition) 및 스퍼터링(sputtering) 등 다양한 방법이 이용될 수 있으며, 이러한 방법에 한정되지 않는다.
구체적으로, 금속 칼코게나이드 박막을 형성하는 과정(S20)은 다음과 같은 방법들을 이용하여 수행될 수 있다.
즉, 고체 금속 소스와 고체 칼코겐 전구체의 기상 증착에 의하여 형성되거나, 금속 박막을 형성하고 이 금속 박막의 황화 반응을 통한 형성할 수 있으며, 또한, 금속 전구체 박막의 황화 반응을 통한 형성이 가능하다.
한편, 화학기상증착(CVD) 장비를 이용하여 기체화된 금속 전구체와 칼코겐 함유 기체를 반응시켜 기상 증착법을 이용하여 금속 칼코게나이드(metal chacogenide) 박막을 형성할 수도 있다.
이러한 금속 칼코게나이드 박막의 형성 과정은, 기체화된 금속 전구체를 공급하는 과정, 칼코겐(chacogen) 함유 기체를 공급하는 과정, 및 확산 방지막 상에 이러한 기체화된 금속 전구체 및 칼코겐 함유 기체를 반응시켜 박막을 형성하는 과정을 포함하여 구성될 수 있다. 이와 같은 과정은 서로 순서를 달리하거나 동시에 이루어질 수 있다.
이때, 칼코겐 함유 기체로서 황화수소(H2S)를 이용할 수 있으며, 그 외에도 S2, Se2, Te2를 포함하는 기체, H2Se, 및 H2Te 중 적어도 어느 하나의 기체를 이용할 수 있다.
기체화된 (전이)금속 전구체는 금속 파우더를 가열하여 만들어질 수 있다. 즉, 금속 파우더를 가열하여 기체화된 라디칼(radical)을 이용할 수 있다.
이러한 금속 파우더는 산화몰리브덴(MoO3)을 이용할 수 있고, 그 외에도, MoO, MoO2, WO2, WO3, VO, VO2, V2O3, V2O5, V3O5, NbO, NbO2, Nb2O5, TaO, TaO2, Ta2O5, TiO, TiO2, Ti2O3, Ti3O5, ZrO2, HfO2, TcO2, Tc2O7, ReO2, ReO3, Re2O3, Re2O7, CoO, Co2O3, Co3O4, Rh2O3, RhO2, IrO2, Ir2O3, IrO2·2H2O, NiO, Ni2O3, PdO, PdO2, PtO, PtO2, PtO3, Pt3O4, PtO2·H2O, GaO, Ga2O, Ga2O3, SnO, SnO2와 같은 산화 금속 중 적어도 어느 하나를 이용할 수 있다.
또한, MoF3, MoF6, MoF4, Mo4F20, MoCl2, MoCl3, MoCl6, MoCl4, MoCl5, MoBr3, MoBr4, MoI2, MoI3, MoI4, WF6, WF4, [WF5]4, WCl2, WCl6, WCl4, [WCl5]2, [W6Cl12]Cl6, WBr3, WBr6, WBr4, WBr5, W6Br14, WI2, WI3, WI4, VF2, VF3, VF4, VF5, VCl2, VCl3, VCl4, VBr2, VBr3, VBr4, VI2, VI3, VI4, NbCl3, NbCl4, NbCl5, NbBr4, NbBr5, NbI3, NbI4, NbI5, TaF3, [TaF5]4, TaCl3, TaCl4, TaCl5, TaBr3, TaBr4, TaBr5, TaI4, TaI5, TiF2, TiF3, TiF4, TiCl4, TiCl3, TiCl2, TiBr3, TiBr4, HfCl4, HfBr2, HfBr4, HfI3, HfI4, ZrF4, ZrCl2, ZrCl3, ZrCl4, ZrBr3, ZrBr4, ZrI2, ZrI3, ZrI4, TcF6, TcF5, TcCl4, TcCl6, TcBr4, ReF6, ReF4, ReF5, ReF7, Re3Cl9, ReCl5, ReCl4, ReCl6, ReBr3, ReBr4, ReBr5, ReI3, ReI4, CoF2, CoF3, CoF4, CoCl2, CoCl3, CoBr2, CoI2, RhF3, RhF6, RhF4, [RhF5]4, RhCl3, RhBr3, RhI3, IrF3, IrF6, IrF4, [IrF5]4, IrCl2, IrCl3, IrCl4, IrBr2, IrBr3, IrBr4, IrI2, IrI3, IrI4, NiF2, NiCl2, NiBr2, NiI2, PdF2, PdF4, PdCl2, PdBr2, PdI2, PtF6, PtF4, [PtF5]4, PtCl2, PtCl3, PtCl4, Pt6Cl12, PtBr2, PtBr3, PtBr4, PtI2, PtI3, PtI4, GaF3, GaCl2, GaCl3, GaBr3, GaI3, SnF2, SnF4, SnCl2, SnCl4, SnBr2, SnBr4, SnI2, SnI4와 같은 할로겐화 금속 중 적어도 어느 하나를 이용할 수 있다.
또한, Mo(CO)6, W(CO)6, Nb(CO)6, V(CO)6, Ta(CO)6, Ti(CO)6, Zr(CO)7, Tc2(CO)10, Hf(CO)7 Re2(CO)10, Co2(CO)8, Co4(CO)12, Co6(CO)16, Rh2(CO)8, Rh4(CO)12, Rh6(CO)16, Ir2(CO)8, Ir4(CO)12, Ir6(CO)16, Ni(CO)4, Pd(CO)4, Pt(CO)4와 같은 금속 카보닐 화합물 중 적어도 어느 하나를 이용할 수 있다.
이와 같은 금속 파우더 및 칼코겐 함유 기체를 이용하여 MoS2, MoSe2, MoTe2, WS2, WSe2, WTe2, NbS2, NbSe2, NbTe2, TaS2, TaSe2, TaTe2, ZrS2, ZrSe2, ZrTe2, HfS2, HfSe2, TcS2, ReS2, ReTe2, CoS, CoS2, CoSe2, CoTe, RhS2, RhSe2, RhTe2, IrS2, IrSe2, IrTe3, NiS, NiSe, NiTe, PdS2, PdSe, PdSe2, PdTe, PdTe2, PtS, PtS2, PtSe2, PtTe, PtTe2, GaS, Ga2S3, GaSe, Ga2Se3, Ga2Te3, SnS2, SnS, SnSe2, SnSe, SnTe 중 적어도 어느 하나의 박막을 형성할 수 있다.
이와 같은 금속 칼코게나이드 박막 형성 방법을 통하여, 4인치 웨이퍼 크기 이상의 대면적의 균일하고 연속적인 전이금속 칼코게나이드 박막의 합성이 가능할 수 있다. 또한, 금속 포일과 같이 유연한 금속 기판에 직접 금속 칼코게나이드 박막의 합성 및 전사가 가능하게 되어 롤투롤(Roll-to-Roll) 공정에 활용할 수 있게 된다.
즉, 이와 같은 대면적 전이금속 칼코게나이드 합성 및 롤투롤 공정을 위해서는 대면적의 유연 기판이 필요하다. 또한, 이들 박막의 합성 시 고온 열처리 과정이 포함될 수 있으므로 높은 온도를 견딜 수 있는 금속 포일 형태의 금속 기판이 유연 기판으로 적합할 수 있다.
그러나 금속 포일은 전이금속 전구체와 합금을 이루고 칼코겐 전구체와 반응할 수 있으므로, 금속 칼코게나이드 박막은 금속 포일 상에 직접 형성하기 어려울 수 있다. 따라서, 금속 기판 상에서 금속 원자와 칼코겐 원자가 서로 반응하는 것을 방지하기 위하여, 금속 포일 표면에 확산 방지막을 형성한 후 전이금속 칼코게나이드 박막을 합성하면 대면적 전이금속 칼코게나이드의 합성 및 롤투롤 공정의 적용이 가능할 수 있다.
확산 방지막은 Al2O3, HfO2, SiO2, Si3N4, SrTiO3, 수정(quartz), 유리(glass), 운모(mica), hBN 등과 같은 절연체 및 그래핀(graphene), 그라파이트(graphite) 등의 도체가 이용될 수 있다. 반도체 성질의 전이금속 칼코게나이드 박막을 합성하는 경우 쇼트키 다이오드(Schottky diode) 제작을 제외한 대부분의 상황에서 확산 방지막으로 절연체가 더 적합할 수 있다.
이와 같은 포일 형태의 금속 기판 및 이 금속 기판 위에 형성된 확산 방지막은 전용 에칭액이나 BOE(buffered oxide etchant) 등으로 용이하게 제거할 수 있으며, PMMA[poly(methylmethacrylate)], PDMS(polydimethylsiloxane)와 같은 기재, 열전사 테이프(thermal release tape) 및 광전사 테이프와 같은 전사 테이프 등을 이용하여 유연 기판을 포함한 다양한 최종 기판 위에 전사할 수 있다.
이때, 이러한 전사하는 과정은, 금속 칼코게나이드 박막 상에 지지 기판을 형성하는 단계, 금속 기판 및 확산 방지막을 제거하는 단계, 및 금속 칼코게나이드 박막을 최종 기판으로 전사하는 단계를 포함할 수 있다.
이때, 지지 기판을 형성하는 단계는, 위에서 언급한 열전사 테이프 또는 광전사 테이프와 같은 전사 테이프를 이용하여 지지 기판을 금속 칼코게나이드 박막 상에 부착하여 형성할 수 있다.
이와 같이, 지지 기판을 전사 테이프를 이용하여 부착하는 경우에는, 이러한 지지 기판이 열을 가하거나 광을 조사하는 등의 후처리 과정을 통하여 용이하게 제거 가능하게 되는 경우에는 이와 같은 전사 과정의 전체 또는 일부가 롤투롤 공정에 의하여 수행될 수 있다.
즉, 금속 칼코게나이드 박막을 형성하는 과정 및 전사 과정 중 적어도 어느 하나 이상의 과정이 롤투롤 공정에 의하여 연속적으로 수행될 수 있다.
이하, 확산 방지막 상에 금속 칼코게나이드 박막을 형성하는 구체적인 과정을 각 실시예를 통하여 자세히 설명한다.
실시예1: 절연체 확산 방지막 이용
도 2 내지 도 8은 본 발명의 제1실시예에 따른 금속 칼코게나이드 박막의 제조 방법의 예를 나타내는 도이다.
본 실시예는 확산 방지막(20)으로 절연체를 이용하는 예를 구체적으로 나타내고 있다. 이하, 금속 기판(10)으로서 구리 포일을 이용하는 예를 설명한다.
도 2(a)를 참조하면, 구리 포일로 이루어지는 금속 기판(10) 상에 절연체 확산 방지막(20)을 형성한다. 여기서 절연체는 일례로, 알루미늄 산화물(Al2O3) 박막(21)을 이용할 수 있다.
금속 칼코게나이드 박막의 일례로는 MoS2 박막을 예로 들 수 있다. 이러한 MoS2 박막은 MoO3 입자와 H2S 가스를 이용하여 형성할 수 있다. 금속 박막 상에 직접 MoO3 입자와 H2S 가스를 이용하여 MoS2 박막을 형성하는 경우, 대부분의 금속은 H2S 가스에 의해 쉽게 부식되어 박막 합성 시 필요치 않은 불순물을 만들어낼 수 있다.
따라서, 이를 방지 하기 위해서 Al2O3 박막(21) 같은 절연체를 먼저 금속 기판(10) 위에 증착하여 금속(구리)이 황화되는 것을 방지할 수 있다. 이러한 확산 방지막(20)은 ALD(atomic layer deposition) 공정을 이용하여 원자층(atomic layer) 단위로 형성할 수 있다.
즉, 구리 포일 형태의 금속 기판(10) 위에 ALD 공정으로 수십 나노미터 두께의 Al2O3 박막(21)과 같은 절연체 확산 방지막(20)을 증착시킨다. ALD로 증착된 절연체 확산 방지막(20)의 경우에 격자 구조상의 결함이나 흠이 거의 없어서 H2S 가스의 유입을 효과적으로 차단해 주는 역할을 할 수 있다.
이후, 도 2(b)에 도시된 바와 같이, Al2O3 박막(21) 상에 MoS2 박막(30)을 형성할 수 있다.
이러한 MoS2 박막(30)을 형성하는 과정은 다음과 같다.
먼저, 전이금속 전구체(예를 들어, MoO3, WO3, MoCl5, WCl5, Mo(CO)6, W(CO)6 등)에서 증기화 된 전이금속 전구체 라디칼과 H2S 등 칼코겐 전구체 가스의 반응온도 및 함량비 조절에 따라 전이금속 칼코게나이드 박막을 단층부터 다층으로 성장시킨다.
목표 전이금속 칼코게나이드에 따라 금속 전구체 및 칼코겐 전구체 조합은 다양하게 적용될 수 있다.
구체적으로, 먼저, 위에서 제작한 금속 기판(10) 상에 형성된 확산 방지막(20)을 CVD 챔버 내에 위치시킨다.
확산 방지막(20) 상에 금속 전구체(예를 들면, MoO3) 및 칼코겐 함유 기체(예를 들면, H2S)를 공급한다. 이때, MoO3의 기화 온도는 400 내지 1000 ℃로 설정할 수 있다.
이후, 이러한 금속 전구체와 칼코겐 함유 기체의 반응으로 확산 방지막(20) 상에 금속 칼코게나이드 박막(30)이 형성된다. 이때, MoS2의 합성온도는 400 내지 1000 ℃일 수 있다.
이렇게 형성된 MoS2 박막(30)은 그 자체로도 MOSFET 소자로서 활용할 수 있지만 전사를 통하여 다양한 기판, 특히 투명 기판 및 유연 기판 등의 소자 개발에 활용될 수 있다.
위에서 언급한 바와 같이, 구리 포일 금속 기판(10)이나 Al2O3 박막(21)은 전용 에칭액이나 BOE(buffered oxide etchant) 등으로 손쉽게 제거할 수 있다.
또한, PMMA[poly(methylmethacrylate)], PDMS(polydimethylsiloxane)와 같은 기재, 열전사 테이프(thermal release tape) 및 광전사 테이프와 같은 전사 테이프 등을 이용하여 유연 기판을 포함한 다양한 최종 기판(40) 위에 전사할 수 있다(도 3(c) 참고).
이때, 실리콘 기판(40)과 MoS2 박막(30) 사이에는 실리콘 산화물(SiO2)가 위치할 수 있다.
도 3은 이러한 MoS2 박막(30)의 라만 스펙트럼을 나타내고 있으며, 고품질의 균일한 박막이 형성되었음을 알 수 있다.
도 4는 MoS2 박막의 500 배율 광학 현미경 사진이고, 도 5는 MoS2 박막의 1000 배율 광학 현미경 사진이다. 도시하는 바와 같이, 균일한 고품질의 박막이 형성되었음을 알 수 있다.
실시예2: 하이브리드 확산 방지막 이용
도 6 내지 도 8은 본 발명의 제2실시예에 따른 금속 칼코게나이드 박막의 제조 방법의 예를 나타내는 도이다.
본 실시예는 확산 방지막(20)으로 그래핀(22)과 절연체(21)로 이루어지는 하이브리드 박막을 이용하는 예를 나타내고 있다. 이하, 금속 기판(10)으로서 구리 포일을 이용하는 예를 설명한다.
도 6(a)를 참조하면, 구리 포일로 이루어지는 금속 기판(10) 상에 그래핀(22)과 절연체(21)로 이루어지는 하이브리드 확산 방지막(20)을 형성한다. 여기서 절연체는 알루미늄 산화물(Al2O3) 박막(21)을 이용할 수 있다.
이와 같이, 확산 방지막(20)으로 그래핀(22)과 절연체(21)의 복층 구조를 활용하면 H2S가 금속 기판(10)으로 확산되는 것을 더욱 감소시킬 수 있다.
즉, 구리(Cu)와 같은 금속 포일로 이루어지는 금속 기판(10) 위에 그래핀(22) 박막을 형성하고, 그 후에 ALD 공정을 이용하여 절연체(21) 박막을 형성함으로써 확산 방지막(20)을 형성할 수 있다.
확산 방지막(20)의 그래핀(22)은 CVD(chemical vapor deposition) 방법을 활용하여 성장할 수 있다. 절연체(21) 박막으로는 Al2O3 또는 HfO2와 같은 물질을 ALD 방법으로 증착하여 형성할 수 있다.
이후, 도 6(b)에 도시된 바와 같이, 절연체(21) 박막 상에 MoS2 박막(30)을 형성할 수 있다. 이러한 MoS2 박막(30)을 형성하는 과정은 제1실시예에서 설명한 바와 같다.
위에서 언급한 바와 같이, 구리 포일 금속 기판(10)이나 Al2O3과 같은 절연체(21) 박막은 전용 에칭액이나 BOE(buffered oxide etchant) 등으로 손쉽게 제거할 수 있다.
또한, PMMA[poly(methylmethacrylate)], PDMS(polydimethylsiloxane)와 같은 기재, 열전사 테이프(thermal release tape) 및 광전사 테이프와 같은 전사 테이프 등을 이용하여 유연 기판을 포함한 다양한 최종 기판(40) 위에 전사할 수 있다(도 9(c) 참고).
도 7은 최종 기판으로서 실리콘 기판(40) 상에 전사된 MoS2 박막(30)을 나타내고 있다. 이러한 실리콘 기판(40)과 MoS2 박막(30) 사이에는 실리콘 산화물(SiO2)가 위치할 수 있다.
도 8은 이러한 하이브리드 확산 방지막(20) 상에 형성된 MoS2 박막(30)의 라만 스펙트럼을 나타내고 있으며, 고품질의 균일한 박막이 형성되었음을 알 수 있다.
그 외에 설명되지 않은 부분은 위에서 설명한 실시예와 동일한 사항이 적용될 수 있다.
실시예3: 금속 산화막 확산 방지막 이용
도 9 내지 도 11은 본 발명의 제3실시예에 따른 금속 칼코게나이드 박막의 제조 방법의 예를 나타내는 도이다.
본 실시예는 금속 기판(10)을 산화시켜 형성된 금속 산화막(23)으로 이루어지는 확산 방지막(20)을 이용하는 예를 나타내고 있다. 이하, 금속 기판(10)으로서 구리 포일을 이용하는 예를 설명한다.
도 9(a)를 참조하면, 구리 포일로 이루어지는 금속 기판(10) 상에 금속 산화막(23)을 포함하는 확산 방지막(20)을 형성한다.
이러한 금속 산화막(23)은 금속 기판(10) 표면에 건식/습식 열산화, 산소 플라즈마 산화, 전기화학적 산화 등의 방법을 통해 형성하여 H2S가 금속 기판(10)으로 확산되는 것을 방지하기 위한 확산 방지막(20)으로 이용될 수 있다. 이러한 금속 산화막(23)은 금속 포일 형태의 금속 기판(10) 자체를 산화하여 형성할 수 있기 때문에 형성이 간편한 장점이 있다.
이후, 도 9(b)에 도시된 바와 같이, 금속 산화막(23) 상에 MoS2 박막(30)을 형성할 수 있다. 이러한 MoS2 박막(30)을 형성하는 과정은 제1실시예에서 설명한 바와 같다.
도 10는 금속 산화막(23)으로 이루어지는 확산 방지막(20) 상에 MoS2 박막(30)이 형성된 상태를 나타내는 광학 현미경 사진이다. 도시하는 바와 같이, 균일한 고품질의 MoS2 박막(30)이 형성되었음을 알 수 있다.
위에서 언급한 바와 같이, 금속 산화막(23) 및 금속 기판(10)은 전용 에칭액이나 BOE(buffered oxide etchant) 등으로 손쉽게 제거할 수 있다.
또한, PMMA[poly(methylmethacrylate)], PDMS(polydimethylsiloxane)와 같은 기재, 열전사 테이프(thermal release tape) 및 광전사 테이프와 같은 전사 테이프 등을 이용하여 유연 기판을 포함한 다양한 최종 기판(40) 위에 전사할 수 있다(도 12(c) 참고).
이러한 실리콘 기판(40)과 MoS2 박막(30) 사이에는 실리콘 산화물(SiO2)가 위치할 수 있다.
도 11은 이러한 금속 산화막(23)을 포함하는 확산 방지막(20) 상에 형성된 MoS2 박막(30)의 라만 스펙트럼을 나타내고 있으며, 고품질의 균일한 박막이 형성되었음을 알 수 있다.
그 외에 설명되지 않은 부분은 위에서 설명한 실시예와 동일한 사항이 적용될 수 있다.
위에서 언급한 바와 같이, 금속 칼코게나이드 박막(30)의 형성 및 전사 과정 중 적어도 어느 하나 이상은 롤투롤 공정을 통하여 이루어질 수 있다.
도 12는 롤투롤 공정을 통하여 금속 칼코게나이드 박막을 형성하는 과정을 나타내는 개략도이다.
도 12를 참조하면, (전이)금속 칼코게나이드 박막을 롤투롤 공정을 통하여 CVD 방법을 이용하여 형성하는 경우, 아래와 같은 과정을 거칠 수 있다.
먼저, 확산 방지막(20)이 형성된 포일 형태의 금속 기판(10)을 한쪽 롤(공급롤; 51)에 감고, 이러한 금속 기판(10)을 CVD 챔버(61)를 통과시킨 후 반대편 롤(권취롤; 52)에 연결한다.
이후, CVD 챔버(61)에 칼코게나이드 전구체 가스(예를 들면, H2S) 및 금속 전구체와 캐리어 가스가 섞인 유체(예를 들면, MoO3+Ar)를 공급하며, 열원(60)을 통하여 고온(400 내지 1000 ℃)으로 가열한다. 이때, 확산 방지막(20)이 형성된 금속 기판(10)은 공급롤(51)에서 권취롤(52) 측으로 연속적으로 진행할 수 있다.
다음에, 이러한 금속 전구체와 칼코게나이드 전구체의 기상 반응에 의해 확산 방지막(20)이 형성된 금속 기판(10) 위에 전이금속 칼코게나이드 박막이 형성될 수 있다. 이때, 금속 기판(10)은 포일 형태로서 유연하여 공급롤(51)에서 권취롤(52)로 진행하며 합성이 되므로 전이금속 칼코게나이드 박막이 롤투롤 공정을 통하여 증착될 수 있는 것이다.
금속 칼코게나이드 박막의 합성이 완료되면 CVD 챔버(61)를 상온으로 냉각시키고 상압으로 조절한 후, 롤투롤 과정을 통하여 합성된 전이금속 칼코게나이드 박막을 챔버(61)에서 꺼낸다.
이후, 이러한 금속 기판(10) 상에 형성된 금속 칼코게나이드 박막을 최종 기판으로 전사하는 과정 또한 롤투롤 공정을 통하여 이루어질 수 있다. 예를 들어, 롤러를 통하여 금속 칼코게나이드 박막 상에 전사 테이프를 부착한 지지 기판이 연속적으로 부착될 수 있다.
또한, 금속 기판(10) 및 확산 방지막(20)을 제거하는 과정을 거친 후, 최종 기판에 전사하는 과정 및 지지 기판을 분리하는 과정 또한 연속적으로 롤투롤 과정을 통하여 이루어질 수 있다.
위에서 언급한 바와 같이, 이와 같은 금속 칼코게나이드 박막 형성 방법을 통하여, 4인치 웨이퍼 크기 이상의 대면적의 균일하고 연속적인 전이금속 칼코게나이드 박막의 합성이 가능할 수 있다.
또한, 금속 포일과 같이 유연한 금속 기판에 직접 금속 칼코게나이드 박막의 합성 및 전사가 가능하게 되어 롤투롤(Roll-to-Roll) 공정에 활용할 수 있게 된다.
한편, 본 명세서와 도면에 개시된 본 발명의 실시 예들은 이해를 돕기 위해 특정 예를 제시한 것에 지나지 않으며, 본 발명의 범위를 한정하고자 하는 것은 아니다. 여기에 개시된 실시 예들 이외에도 본 발명의 기술적 사상에 바탕을 둔 다른 변형 예들이 실시 가능하다는 것은, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 자명한 것이다.
본 발명에 따르면, 금속 칼코게나이드 박막 형성 방법을 통하여, 4인치 웨이퍼 크기 이상의 대면적의 균일하고 연속적인 전이금속 칼코게나이드 박막의 합성이 가능할 수 있다.
또한, 금속 포일과 같이 유연한 금속 기판에 직접 금속 칼코게나이드 박막의 합성 및 전사가 가능하게 되어 롤투롤(Roll-to-Roll) 공정에 활용할 수 있게 된다.

Claims (20)

  1. 금속 칼코게나이드 박막의 제조 방법에 있어서,
    포일 형태의 금속 기판 상에 확산 방지막을 형성하는 단계; 및
    상기 확산 방지막 상에 전이금속 전구체 및 칼코겐 함유 기체를 공급하여 금속 칼코게나이드 박막을 형성하는 단계를 포함하는 것을 특징으로 하는 금속 칼코게나이드 박막의 제조 방법.
  2. 제1항에 있어서, 상기 금속 기판은, 두께가 25 내지 100 ㎛인 것을 특징으로 하는 금속 칼코게나이드 박막의 제조 방법.
  3. 제1항에 있어서, 상기 금속 기판은 Cu, Ni, Pt, Fe, Au, brass, 및 스테인레스 스틸(strainless steel) 중 적어도 어느 하나를 포함하는 것을 특징으로 하는 금속 칼코게나이드 박막의 제조 방법.
  4. 제1항에 있어서, 상기 확산 방지막은 Al2O3, HfO2, SiO2, Si3N4, SrTiO3, 수정 (quartz), 유리(glass), mica(운모), 그래핀(graphene), 그라파이트(graphite), hBN, Cu2O, CuO, Cu2O3, NiO, Ni2O3, PtO2, PtO, Pt3O4, FeO, Fe3O4, Fe4O5, 및 Fe2O3 중 적어도 어느 하나를 포함하는 것을 특징으로 하는 금속 칼코게나이드 박막의 제조 방법.
  5. 제1항에 있어서, 상기 확산 방지막은, 절연체를 포함하는 것을 특징으로 하는 금속 칼코게나이드 박막의 제조 방법.
  6. 제1항에 있어서, 상기 확산 방지막은,
    그래핀; 및
    상기 그래핀 상에 위치하는 절연체를 포함하는 것을 특징으로 하는 금속 칼코게나이드 박막의 제조 방법.
  7. 제1항에 있어서, 상기 확산 방지막은, 상기 금속 산화막을 포함하는 것을 특징으로 하는 금속 칼코게나이드 박막의 제조 방법.
  8. 제7항에 있어서, 상기 금속 산화막은, 상기 금속 기판을 산화시켜 형성된 것을 특징으로 하는 금속 칼코게나이드 박막의 제조 방법.
  9. 제8항에 있어서, 상기 금속 산화막은, 상기 금속 기판을 건식/습식 열산화, 산소 플라즈마 산화 및 전기화학적 산화 중 적어도 어느 하나의 방법으로 산화시킴으로써 형성하는 것을 특징으로 하는 금속 칼코게나이드 박막의 제조 방법.
  10. 제1항에 있어서, 상기 확산 방지막은, 상기 금속 기판이 상기 칼코겐 함유 기체에 의하여 황화되는 것을 방지하기 위한 것을 특징으로 하는 금속 칼코게나이드 박막의 제조 방법.
  11. 제1항에 있어서, 상기 금속 칼코게나이드 박막은 MX2 (여기서, M은 Mo, W, Ti, Zr, Hf, V, Nb, Ta, Tc, Re, Co, Rh, Ir, Ni, Pd, Pt 중 적어도 어느 하나이고, X는 S, Se, Te 중 적어도 어느 하나이다.) 및 이들의 화합물 또는 혼합물을 포함하는 것을 특징으로 하는 금속 칼코게나이드 박막의 제조 방법.
  12. 제1항에 있어서, 상기 칼코겐 함유 기체는 S, Se, Te 중 적어도 어느 하나를 함유하는 기체, H2S, H2Se, 및 H2Te 중 적어도 어느 하나를 포함하는 것을 특징으로 하는 금속 칼코게나이드 박막의 제조 방법.
  13. 제1항에 있어서, 상기 금속 칼코게나이드 박막을 형성하는 단계는 롤투롤(Roll-to-roll) 공정에 의하여 수행되는 것을 특징으로 하는 금속 칼코게나이드 박막의 제조 방법.
  14. 제1항에 있어서, 상기 금속 칼코게나이드 박막을 최종 기판으로 전사하는 단계를 더 포함하는 것을 특징으로 하는 금속 칼코게나이드 박막의 제조 방법.
  15. 제14항에 있어서, 상기 전사하는 단계는,
    상기 금속 칼코게나이드 박막 상에 지지 기판을 형성하는 단계;
    상기 금속 기판 및 확산 방지막을 제거하는 단계; 및
    상기 금속 칼코게나이드 박막을 상기 최종 기판으로 전사하는 단계를 포함하는 것을 특징으로 하는 금속 칼코게나이드 박막의 제조 방법.
  16. 제15항에 있어서, 상기 지지 기판을 형성하는 단계는, 전사 테이프를 이용하여 상기 지지 기판을 상기 금속 칼코게나이드 박막 상에 부착하는 것을 특징으로 하는 금속 칼코게나이드 박막의 제조 방법.
  17. 제16항에 있어서, 상기 전사하는 단계는 롤투롤 공정에 의하여 수행되는 것을 특징으로 하는 금속 칼코게나이드 박막의 제조 방법.
  18. 제14항에 있어서, 상기 최종 기판은 실리콘 기판인 것을 특징으로 하는 금속 칼코게나이드 박막의 제조 방법.
  19. 제18항에 있어서, 상기 금속 칼코게나이드 박막과 상기 실리콘 기판 사이에는 실리콘 산화물이 위치하는 것을 특징으로 하는 금속 칼코게나이드 박막의 제조 방법.
  20. 제1항에 있어서, 상기 확산 방지막은 ALD(atomic layer deposition) 공정을 이용하여 원자층(atomic layer) 단위로 형성하는 것을 특징으로 하는 금속 칼코게나이드 박막의 제조 방법.
PCT/KR2015/010285 2015-01-29 2015-09-30 금속 칼코게나이드 박막의 제조 방법 WO2016122081A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0014289 2015-01-29
KR1020150014289A KR102325522B1 (ko) 2015-01-29 2015-01-29 금속 칼코게나이드 박막의 제조 방법

Publications (1)

Publication Number Publication Date
WO2016122081A1 true WO2016122081A1 (ko) 2016-08-04

Family

ID=56543656

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/010285 WO2016122081A1 (ko) 2015-01-29 2015-09-30 금속 칼코게나이드 박막의 제조 방법

Country Status (2)

Country Link
KR (1) KR102325522B1 (ko)
WO (1) WO2016122081A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11097526B2 (en) 2017-03-15 2021-08-24 International Business Machines Corporation Device for positioning of molecules
US11377735B2 (en) * 2016-11-02 2022-07-05 Commissariat A L'energie Atomique Et Aux Energies Alternatives Apparatus for depositing chalcogenide thin films
CN114807897A (zh) * 2022-04-25 2022-07-29 湘潭大学 一种1T’MoTe2纳米薄膜的制备方法
CN115161616A (zh) * 2022-05-26 2022-10-11 湘潭大学 一种大面积双层3r相mx2纳米片的制备方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101886642B1 (ko) * 2017-04-03 2018-08-08 성균관대학교산학협력단 이종접합 복합체 및 이의 제조 방법
KR102000338B1 (ko) * 2017-08-03 2019-07-15 한양대학교 산학협력단 금속 칼코겐 화합물 박막의 결정성 향상 방법 및 이종 접합 구조의 금속 칼코겐 화합물 제조 방법
KR102024463B1 (ko) * 2018-03-19 2019-09-23 연세대학교 산학협력단 전이금속칼코겐 화합물의 대면적 전사 방법
KR102550652B1 (ko) 2018-04-02 2023-07-05 삼성전자주식회사 반도체 소자의 제조 방법
KR101933477B1 (ko) 2018-05-02 2018-12-31 인천대학교 산학협력단 황화 주석막 트랜스퍼 방법 및 이를 이용한 광전 소자
US11624127B2 (en) 2019-10-29 2023-04-11 Samsung Electronics Co., Ltd. Boron nitride layer, apparatus including the same, and method of fabricating the boron nitride layer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050009229A1 (en) * 2003-07-10 2005-01-13 International Business Machines Corporation Solution deposition of chalcogenide films
US20060239882A1 (en) * 2003-01-31 2006-10-26 Seo Dong-Kyun Preparation of metal chalcogenides from reactions of metal compounds and chalcogen
US20100172823A1 (en) * 2005-04-07 2010-07-08 Yeda Research & Development Company Ltd. Process and apparatus for producing inorganic fullerene-like nanoparticles
US20130312831A1 (en) * 2012-05-24 2013-11-28 International Business Machines Corporation Techniques for Forming a Chalcogenide Thin Film Using Additive to a Liquid-Based Chalcogenide Precursor
US20140273333A1 (en) * 2013-03-13 2014-09-18 Intermolecular Inc. Methods for fabricating ZnOSe alloys

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002124692A (ja) * 2000-10-13 2002-04-26 Hitachi Ltd 太陽電池およびその製造方法
KR101360997B1 (ko) * 2012-03-12 2014-02-11 성균관대학교산학협력단 금속 칼코게나이드 박막의 제조 방법
KR101500944B1 (ko) * 2013-03-22 2015-03-10 경희대학교 산학협력단 칼코겐 화합물의 2차원 대면적 성장 방법, cmos형 구조체의 제조 방법, 칼코겐 화합물의 막, 칼코겐 화합물의 막을 포함하는 전자 소자 및 cmos형 구조체

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060239882A1 (en) * 2003-01-31 2006-10-26 Seo Dong-Kyun Preparation of metal chalcogenides from reactions of metal compounds and chalcogen
US20050009229A1 (en) * 2003-07-10 2005-01-13 International Business Machines Corporation Solution deposition of chalcogenide films
US20100172823A1 (en) * 2005-04-07 2010-07-08 Yeda Research & Development Company Ltd. Process and apparatus for producing inorganic fullerene-like nanoparticles
US20130312831A1 (en) * 2012-05-24 2013-11-28 International Business Machines Corporation Techniques for Forming a Chalcogenide Thin Film Using Additive to a Liquid-Based Chalcogenide Precursor
US20140273333A1 (en) * 2013-03-13 2014-09-18 Intermolecular Inc. Methods for fabricating ZnOSe alloys

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11377735B2 (en) * 2016-11-02 2022-07-05 Commissariat A L'energie Atomique Et Aux Energies Alternatives Apparatus for depositing chalcogenide thin films
US11097526B2 (en) 2017-03-15 2021-08-24 International Business Machines Corporation Device for positioning of molecules
US11104115B2 (en) * 2017-03-15 2021-08-31 International Business Machines Corporation Device for positioning of molecules
CN114807897A (zh) * 2022-04-25 2022-07-29 湘潭大学 一种1T’MoTe2纳米薄膜的制备方法
CN114807897B (zh) * 2022-04-25 2023-11-17 湘潭大学 一种1T’MoTe2纳米薄膜的制备方法
CN115161616A (zh) * 2022-05-26 2022-10-11 湘潭大学 一种大面积双层3r相mx2纳米片的制备方法
CN115161616B (zh) * 2022-05-26 2024-01-19 湘潭大学 一种大面积双层3r相mx2纳米片的制备方法

Also Published As

Publication number Publication date
KR20160093375A (ko) 2016-08-08
KR102325522B1 (ko) 2021-11-12

Similar Documents

Publication Publication Date Title
WO2016122081A1 (ko) 금속 칼코게나이드 박막의 제조 방법
US10400331B2 (en) Method for manufacturing metal chalcogenide thin film and thin film manufactured thereby
WO2017018834A1 (ko) 2차원 전이금속 디칼코지나이드 박막의 제조 방법
KR20000076134A (ko) 금속성분들을 갖는 반응기내의 반도체 처리공정중에 금속 오염물을 감소시키는 방법
US7396563B2 (en) Ceramic thin film on various substrates, and process for producing same
WO2015016412A1 (ko) MoS2 박막 및 이의 제조방법
JP2004523134A (ja) 誘電体膜の形成方法
US7887884B2 (en) Method for atomic layer deposition of materials using an atmospheric pressure for semiconductor devices
WO2018143611A1 (ko) 대면적 금속 칼코겐 박막의 제조방법 및 이에 의해 제조된 금속 칼코겐 박막을 포함하는 전자소자의 제조방법
Kim et al. Structural properties and interfacial layer formation mechanisms of PbTiO3 thin films grown on p‐Si substrates
WO2021246697A1 (ko) 베타 산화갈륨 박막 제조방법
WO2023067309A1 (en) A method of producing an electronic device precursor
WO2018186535A1 (ko) 흡착억제 표면처리를 이용한 2차원 물질의 제조방법
WO2017188546A1 (ko) 박막 증착 방법
WO2024043625A1 (ko) 다층 전이금속 디칼코게나이드 박막의 표면특성 및 두께 제어방법
TWI809778B (zh) 用於均勻石墨烯cvd生長的晶圓以及製造其的方法
US6500256B2 (en) Single crystal silicon layer, its epitaxial growth method and semiconductor device
US20240153762A1 (en) Wafer for the cvd growth of uniform graphene and method of manufacture thereof
WO2015060636A1 (ko) 단원자 증착법을 이용한 복합 및 비대칭적인 복합박막 및 이의 제조방법
WO2024117712A1 (ko) 반도체 소자 및 이의 제조 방법
WO2022220450A1 (ko) 문턱 전압이 제어된 반도체 소자 및 그 제조방법
WO2022245021A1 (ko) 박막 증착 방법
WO2020256515A1 (ko) 물질막 및 타겟 패턴의 선택적 제조 방법
KR20010062325A (ko) 다결정 실리콘 층, 그 성장 방법 및 반도체 장치
WO2024019392A1 (ko) 박막 제조방법, 박막, 및 기판처리장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15880261

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15880261

Country of ref document: EP

Kind code of ref document: A1