CN114807897A - 一种1T’MoTe2纳米薄膜的制备方法 - Google Patents

一种1T’MoTe2纳米薄膜的制备方法 Download PDF

Info

Publication number
CN114807897A
CN114807897A CN202210443144.9A CN202210443144A CN114807897A CN 114807897 A CN114807897 A CN 114807897A CN 202210443144 A CN202210443144 A CN 202210443144A CN 114807897 A CN114807897 A CN 114807897A
Authority
CN
China
Prior art keywords
mote
foil
molybdenum trioxide
nano film
molybdenum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210443144.9A
Other languages
English (en)
Other versions
CN114807897B (zh
Inventor
郝国林
李嘉成
高慧
郝玉龙
柴晔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiangtan University
Original Assignee
Xiangtan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiangtan University filed Critical Xiangtan University
Priority to CN202210443144.9A priority Critical patent/CN114807897B/zh
Publication of CN114807897A publication Critical patent/CN114807897A/zh
Application granted granted Critical
Publication of CN114807897B publication Critical patent/CN114807897B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/305Sulfides, selenides, or tellurides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开一种1T’MoTe2纳米薄膜的制备方法。本发明以金属钼箔为原料,设计得到三氧化钼箔;再把三氧化钼箔覆盖在一片二氧化硅基底上方作为钼源前驱体,从而形成金属前驱体分子扩散受限的微型反应空间;待化学气相沉积系统升温至指定温度后,前驱体被输运至生长区域;通过调控空间限域的高度,获得不同厚度1T’MoTe2纳米薄膜。本发明基于空间限域的常压化学沉积法,通过调节生长温度以及生长基底与氧化钼箔之间的空间限域高度等生长参数,可以实现大面积均匀的1T’MoTe2纳米薄膜的制备,从而可实现大规模的1T’MoTe2纳米薄膜的工业化生产。

Description

一种1T’MoTe2纳米薄膜的制备方法
技术领域
本发明涉及薄膜的制备,尤其涉及一种1T’MoTe2纳米薄膜的制备方法。
背景技术
过渡金属硫属化物是一类具有相似组成的材料,其化学式为MX2,其中M是过渡金属元素(例如:Mo,W等),X是硫族元素(如S,Se或Te)。过渡金属硫属化物(TMDs)是一组层状材料,平面内具有较强的相互作用,而平面间的相互作用较弱。因此用机械剥离法能够将TMDs材料剥离成单层厚度,每层TMDs都由三层原子组成,其中过渡金属原子被两个硫原子夹在中间形成一种类三明治结构。过渡金属硫属化物由于其丰富的物理性质和广泛的潜在应用而引起了研究者的兴趣。目前大多数相关研究都是集中在半导体性质的过渡金属硫属化物(例如:二硫化钼),最近的研究发现1T’MoTe2具有韦尔半金属和量子自旋霍尔绝缘体等性质,且其在0.1K时具有超导特性,由于其具有这些有趣的性质而吸引了研究者们的兴趣。
1T’MoTe2是一种具备超导的半金属材料,其在量子器件、非线性光学和拓扑场效应晶体管等方面显示出了优异的应用前景。尽管1T’MoTe2具有很多优异的特性,但是对制备大尺寸、分布均匀且厚度可控的1T’MoTe2薄膜却鲜有报道。
发明内容
本发明的目的是提供一种1T’MoTe2纳米薄膜的制备方法,利用常压化学气相沉积的方法可控制备厚度可调的1T’MoTe2纳米薄膜。1T’MoTe2薄膜在场效应晶体管、超导、巨磁阻等领域均表现出优异的性能,且1T’MoTe2薄膜在空气中性质较为稳定,为研究二维金属性过渡金属硫属化合物的拓扑学、电学与磁学特性提供了一个纳米级实验的平台。这一方法成本较低,可控性高,适用于可重复性的大面积厚度可控的1T’MoTe2纳米薄膜的制备。
为达到上述目的,本发明采用的技术方案为:
一种1T’MoTe2纳米薄膜的制备方法,包括如下步骤:
(1)将金属钼箔放置在管式炉加热区中心,升高温度至440-500℃,在空气氛围中氧化得到三氧化钼箔;
(2)按照气流由上游至下游的顺序,在载气气流上游放置装有碲粉的氧化铝舟,,将二氧化硅基底与三氧化钼箔放置于管式炉的加热中心,二氧化硅基底与三氧化钼箔之间的空间限域高度为0.4mm~4mm;
(3)向管式炉内的反应管中通入氩气和氢气混合气体,对反应管进行清洗;
(4)升高管式炉的温度,使碲粉的温度升高至420~470℃、三氧化钼箔的温度升高至500~560℃,进行1T’MoTe2纳米薄膜的生长;
(5)1T’MoTe2纳米薄膜生长结束后,将温度降至室温,同时关闭氩气和氢气,制备得到二氧化硅基底上的1T’MoTe2薄膜。
优选地,步骤(1)中,金属钼箔在空气氛围中的氧化时间为20-40min分钟。
优选地,步骤(2)中,三氧化钼箔和二氧化硅基底是按如下方法放置的:将一块二氧化硅硅片光滑面朝上放在管式炉中心上,再将三氧化钼箔盖在上面,二氧化硅基底与三氧化钼箔之间的空间限域高度为0.4mm~4mm。
优选地,步骤(4)中,碲粉的量为200~420mg,三氧化钼金属氧化物箔大小为15mm×20mm;碲粉与三氧化钼箔的距离为11~14cm。
优选地,所述步骤(4)中,生长时间为1~20分钟。
优选地,步骤(5)中,氩气和氢气的流量分别为80-150sccm和10-30sccm。
本发明与现有技术相比较具有如下优点:
1)本发明以金属钼箔为原料,设计得到三氧化钼箔前驱体,相比现有技术采用三氧化钼粉末,本发明的前驱体设计能够使金属前驱体均匀扩散生从而长出厚度可控、大面积、均匀的1T’MoTe2纳米薄膜,尤其是通过简单的空间限域就能实现1T’MoTe2纳米薄膜的厚度灵活控制。
2)本发明所得1T’MoTe2纳米薄膜样品可以直接进行原子力显微镜、开尔文探针显微镜、扫描电子显微镜、透射电子显微镜等表征,进而可以实现其微观形貌和电子结构的探索。
附图说明
图1为实施例1所对应的化学气相沉积方法制备的1T’MoTe2纳米薄膜的光学显微镜表征结果;
图2为实施例1所对应的化学气相沉积方法制备的1T’MoTe2纳米薄膜的拉曼表征结果;
图3为实施例1所对应的化学气相沉积方法制备的1T’MoTe2纳米薄膜的扫描电子显微镜表征结果。
图4为实施例1所对应的化学气相沉积方法制备的1T’MoTe2纳米薄膜的原子力显微镜表征结果。
图5为实施例1所对应的化学气相沉积方法制备的1T’MoTe2纳米薄膜的X射线光电子能谱。
图6为实施例1所对对应的化学气相沉积方法制备的1T’MoTe2纳米薄膜的高倍透射电子显微镜和能量色散X射线光谱图。
图7为实施例2-5所对应的化学气相沉积方法制备的1T’MoTe2纳米薄膜的原子力显微镜表征结果,对应的空间限域高度分别为:1mm、2mm、3mm和4mm,。
图8为对比例1所对应的化学气相沉积方法制备的1T’MoTe2纳米带的光学显微镜表征结果;
图9为对比例1所对应的化学气相沉积方法制备的1T’MoTe2纳米带的扫描电子显微镜表征结果。
具体实施方式
本说明书中公开的任一特征,除非特别叙述,均可被其他等效或具有类似目的的替代特征加以替换。除非特别叙述,每个特征只是一系列等效或者类似特征中的一个例子而已。所述仅仅只是为了帮助理解本发明,不应该视为对本发明的具体限制。
下面以附图和具体实施例对本发明作进一步详细的说明。
实施例1
将金属钼箔放置在管式炉中,升高温度至500℃,在空气氛围中氧化20分钟得到三氧化钼箔,再将二氧化硅基底与三氧化钼箔面对面放置于管式炉的加热中心,二氧化硅基底与三氧化钼箔之间的空间限域高度为0.4mm,在氩氢混合气气流上游放置装有200mg碲粉的氧化铝舟。然后向管式炉的反应管内通入20分钟的氩气和氢气混合气体,对反应管进行清洗,排出管式炉中反应管内的空气;升高管式炉的温度,使碲粉的温度升高至450℃左右、三氧化钼箔的温度至550℃,进行1T’MoTe2纳米薄膜的生长;通过氩氢混合气体将碲分子输运到二氧化硅基底上实现1T’MoTe2纳米薄膜的生长,1T’MoTe2纳米薄膜的生长时间为1~20分钟可调,本实例的生长时间为5分钟。生长结束后,待管式炉温度降至室温,同时关闭氩气和氢气,打开炉体取出1T’MoTe2纳米薄膜样品。
将实施例1所得1T’MoTe2薄膜样品进行光学显微镜、拉曼、原子力显微镜、扫描电子显微镜、X射线光电子能谱和透射电子显微镜表征,结果如图1~6所示。由光学显微镜表征数据可看出,1T’MoTe2纳米薄膜大面积且非常均匀的分布在二氧化硅基底上。由拉曼表征数据可看出,样品在112cm-1、128cm-1、161cm-1、189cm-1、256cm-1附近出峰,经与文献比对,确实为1T’MoTe2相对应的峰。由扫描电子显微镜和原子力显微镜表征数据可以看出,1T’MoTe2厚度为18.8nm,且分布均匀。而在X射线光电子能谱中,Mo 3d和Te 3d的测试所得XPS图谱与标准结合能曲线分别相符。在图6中,我们通过高倍透射电子显微镜和能量色散X射线表征,定性且定量证明了钼碲元素原子计量比为一比二,以及1T’MoTe2的单斜晶体结构。
实施例2~5
在保持实施例1中其他生长条件不变的情况下,将三氧化钼箔与二氧化硅基底之间的空间限域高度分别调控为:1mm、2mm、3mm和4mm,能够得到与实施例1基本一致的表征的结果,不同点在于,上述空间限域高度对应的1T’MoTe2纳米薄膜厚度分别为7.6nm、4.8nm、3.8nm和2.2nm。
实施例6~8
其它条件与实施例相同,不同的是:将实施例1中的二氧化硅基底用蓝宝石基底、云母基底、玻璃基底替代,也可得到大面积均匀分布的1T’MoTe2纳米薄膜。
对比例1
在保持实施例1中其他生长条件不变的情况下,直接以MoO3粉末作为前驱体,即没有金属钼箔制备三氧化钼箔的过程,最终制备得到1T’MoTe2纳米带。
将对比例1所得1T’MoTe2薄膜带进行光学显微镜和扫描电子显微镜表征,结果如图7~8所示。由光学显微镜和扫描电子显微镜表征数据可看出,1T’MoTe2纳米带散乱且无规则地分布在二氧化硅基底上。
最后所应说明的是,以上实施例仅用以说明本发明的技术方案而非限制。尽管参照实施例对本发明进行了详细说明,本领域的普通技术人员应该理解,对本发明的技术方案进行修改或者等同替换,都不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (6)

1.一种1T’MoTe2纳米薄膜的制备方法,其特征在于,包括如下步骤:
(1)将金属钼箔放置在管式炉加热区中心,升高温度至440-500℃,在空气氛围中氧化得到三氧化钼箔;
(2)按照气流由上游至下游的顺序,在载气气流上游放置装有碲粉的氧化铝舟,,将二氧化硅基底与三氧化钼箔放置于管式炉的加热中心,二氧化硅基底与三氧化钼箔之间的空间限域高度为0.4mm~4mm;
(3)向管式炉内的反应管中通入氩气和氢气混合气体,对反应腔体进行清洗;
(4)升高管式炉的温度,使碲粉的温度至420~470℃、三氧化钼箔的温度至500~560℃,进行1T’MoTe2纳米薄膜的生长;
(5)生长结束后,管式炉温度降至室温,同时关闭氩气和氢气,得到大面积均匀的1T’MoTe2薄膜。
2.根据权利要求1所述的1T’MoTe2纳米薄膜的制备方法,其特征在于,步骤(1)中,金属钼箔在空气氛围中的氧化时间为20-40分钟。
3.根据权利要求1所述的1T’MoTe2纳米薄膜的制备方法,其特征在于,步骤(2)中,三氧化钼箔和二氧化硅基底的舟是按以下方法放置的:将一块二氧化硅硅片光滑面朝上放在管式炉中心区域,再将三氧化钼箔面对面盖在上面,二氧化硅基底与三氧化钼箔之间的空间限域高度为0.4mm~4mm。
4.根据权利要求1所述的1T’MoTe2纳米薄膜的制备方法,其特征在于,步骤(4)中,碲粉的量为200~420mg,三氧化钼箔大小为15mm×20mm;碲粉与三氧化钼箔的距离为11~14cm。
5.根据权利要求1所述的1T’MoTe2纳米薄膜的制备方法,其特征在于,步骤(5)中,氩气和氢气的流量分别为80-150sccm和10-30sccm。
6.根据权利要求1所述的1T’MoTe2纳米薄膜的制备方法,其特征在于,步骤4)中,生长时间为1~20分钟。
CN202210443144.9A 2022-04-25 2022-04-25 一种1T’MoTe2纳米薄膜的制备方法 Active CN114807897B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210443144.9A CN114807897B (zh) 2022-04-25 2022-04-25 一种1T’MoTe2纳米薄膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210443144.9A CN114807897B (zh) 2022-04-25 2022-04-25 一种1T’MoTe2纳米薄膜的制备方法

Publications (2)

Publication Number Publication Date
CN114807897A true CN114807897A (zh) 2022-07-29
CN114807897B CN114807897B (zh) 2023-11-17

Family

ID=82508265

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210443144.9A Active CN114807897B (zh) 2022-04-25 2022-04-25 一种1T’MoTe2纳米薄膜的制备方法

Country Status (1)

Country Link
CN (1) CN114807897B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016122081A1 (ko) * 2015-01-29 2016-08-04 엘지전자 주식회사 금속 칼코게나이드 박막의 제조 방법
CN108083339A (zh) * 2017-08-15 2018-05-29 深圳大学 一种制备单层二维过渡金属硫化物材料的方法
CN109809372A (zh) * 2019-03-26 2019-05-28 湘潭大学 一种基于空间限域策略制备单层二硒化钨纳米带的方法
CN110790313A (zh) * 2019-12-18 2020-02-14 湘潭大学 一种3r相过渡金属硫属化合物二维纳米片的制备方法
CN112938909A (zh) * 2021-03-29 2021-06-11 湘潭大学 一种二碲化钨纳米带的制备方法
CN113428845A (zh) * 2021-08-25 2021-09-24 中国人民解放军国防科技大学 一种二维二碲化钼纳米材料的限域化学气相沉积制备方法
CN113501505A (zh) * 2021-08-19 2021-10-15 河北大学 一种二维硒化钨纳米材料及其制备方法
CN114293172A (zh) * 2022-01-11 2022-04-08 福州大学 一种二硫化钼图形的制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016122081A1 (ko) * 2015-01-29 2016-08-04 엘지전자 주식회사 금속 칼코게나이드 박막의 제조 방법
CN108083339A (zh) * 2017-08-15 2018-05-29 深圳大学 一种制备单层二维过渡金属硫化物材料的方法
CN109809372A (zh) * 2019-03-26 2019-05-28 湘潭大学 一种基于空间限域策略制备单层二硒化钨纳米带的方法
CN110790313A (zh) * 2019-12-18 2020-02-14 湘潭大学 一种3r相过渡金属硫属化合物二维纳米片的制备方法
CN112938909A (zh) * 2021-03-29 2021-06-11 湘潭大学 一种二碲化钨纳米带的制备方法
CN113501505A (zh) * 2021-08-19 2021-10-15 河北大学 一种二维硒化钨纳米材料及其制备方法
CN113428845A (zh) * 2021-08-25 2021-09-24 中国人民解放军国防科技大学 一种二维二碲化钼纳米材料的限域化学气相沉积制备方法
CN114293172A (zh) * 2022-01-11 2022-04-08 福州大学 一种二硫化钼图形的制备方法

Also Published As

Publication number Publication date
CN114807897B (zh) 2023-11-17

Similar Documents

Publication Publication Date Title
CN109809372B (zh) 一种基于空间限域策略制备单层二硒化钨纳米带的方法
CN103194729B (zh) 金属硫属化物薄膜的制备方法
CN108910953B (zh) 一种Fe掺杂单层MoS2化学气相沉积制备方法
CN112359421B (zh) 一种反向气流法制备层状铋氧硒半导体薄膜的方法
CN110983294A (zh) 一种一步CVD法制备WS2/MoS2异质结的方法
US8513641B2 (en) Core-shell nanowire comprising silicon rich oxide core and silica shell
KR100825765B1 (ko) 산화물계 나노 구조물의 제조 방법
CN110155959B (zh) 二维过渡金属合金硫族化合物的限域化学气相沉积制备方法
CN109650354B (zh) 一种二维碲化铅纳米片的制备方法、应用和一种纳米材料
CN109868454B (zh) 一种二维硫化铬材料的制备方法
CN112938909B (zh) 一种二碲化钨纳米带的制备方法
Liu et al. Atomic layer deposited 2D MoS 2 atomic crystals: From material to circuit
CN113666418A (zh) 一种二维原子晶体多层转角ws2纳米材料及其制备方法
CN112875655A (zh) 一种非层状二维Cr2Se3纳米片的制备方法和应用
CN112456452B (zh) 一种二硒化锗纳米材料的制备方法
CN113718227B (zh) 一类二维层状三元化合物及其制备方法
CN109706434B (zh) 一种固溶体纳米线及其制备方法和用途
CN114807897B (zh) 一种1T’MoTe2纳米薄膜的制备方法
CN115874151A (zh) 一种大面积硫化钯或/和二硫化钯纳米薄膜的制备方法
Xie et al. Fast solid-phase synthesis of large-area few-layer 1T’-MoTe2 films
CN113735160B (zh) 一种利用Sn纳米线作为模板引导生长CdS分支结构及其催化生长方法和应用
CN114197054B (zh) 一种高阶超晶格的合成及其应用
CN113045213B (zh) 一种二硫化钼平面同质结的制备方法
CN114411148B (zh) 二维材料、二维材料合金以及二维材料异质结制备方法
CN112919472B (zh) 一种碳化钼二维材料的制备方法及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant